/* * Monstro.cpp - a monstrous semi-modular 3-osc synth with modulation matrix * * Copyright (c) 2014 Vesa Kivimäki * * This file is part of LMMS - https://lmms.io * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program (see COPYING); if not, write to the * Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301 USA. * */ #include #include "Monstro.h" #include "Engine.h" #include "InstrumentTrack.h" #include "templates.h" #include "gui_templates.h" #include "ToolTip.h" #include "Song.h" #include "lmms_math.h" #include "interpolation.h" #include "embed.cpp" extern "C" { Plugin::Descriptor PLUGIN_EXPORT monstro_plugin_descriptor = { STRINGIFY( PLUGIN_NAME ), "Monstro", QT_TRANSLATE_NOOP( "pluginBrowser", "Monstrous 3-oscillator synth with modulation matrix" ), "Vesa Kivimäki ", 0x0100, Plugin::Instrument, new PluginPixmapLoader( "logo" ), NULL, NULL } ; } MonstroSynth::MonstroSynth( MonstroInstrument * _i, NotePlayHandle * _nph ) : m_parent( _i ), m_nph( _nph ) { m_osc1l_phase = 0.0f; m_osc1r_phase = 0.0f; m_osc2l_phase = 0.0f; m_osc2r_phase = 0.0f; m_osc3l_phase = 0.0f; m_osc3r_phase = 0.0f; m_ph2l_last = 0.0f; m_ph2r_last = 0.0f; m_ph3l_last = 0.0f; m_ph3r_last = 0.0f; m_env_phase[0] = 0.0f; m_env_phase[1] = 0.0f; m_lfo_phase[0] = 0.0f; m_lfo_phase[1] = 0.0f; m_lfo_next[0] = Oscillator::noiseSample( 0.0f ); m_lfo_next[1] = Oscillator::noiseSample( 0.0f ); m_osc1l_last = 0.0f; m_osc1r_last = 0.0f; m_l_last = 0.0f; m_r_last = 0.0f; m_invert2l = false; m_invert2r = false; m_invert3l = false; m_invert3r = false; m_counter2l = 0; m_counter2r = 0; m_counter3l = 0; m_counter3r = 0; } MonstroSynth::~MonstroSynth() { } void MonstroSynth::renderOutput( fpp_t _frames, sampleFrame * _buf ) { float modtmp; // temp variable for freq modulation // macros for modulating with env/lfos #define modulatefreq( car, mod ) \ modtmp = 0.0f; \ if( mod##_e1 != 0.0f ) modtmp += env[0][f] * mod##_e1; \ if( mod##_e2 != 0.0f ) modtmp += env[1][f] * mod##_e2; \ if( mod##_l1 != 0.0f ) modtmp += lfo[0][f] * mod##_l1; \ if( mod##_l2 != 0.0f ) modtmp += lfo[1][f] * mod##_l2; \ car = qBound( MIN_FREQ, car * powf( 2.0f, modtmp ), MAX_FREQ ); #define modulateabs( car, mod ) \ if( mod##_e1 != 0.0f ) car += env[0][f] * mod##_e1; \ if( mod##_e2 != 0.0f ) car += env[1][f] * mod##_e2; \ if( mod##_l1 != 0.0f ) car += lfo[0][f] * mod##_l1; \ if( mod##_l2 != 0.0f ) car += lfo[1][f] * mod##_l2; #define modulatephs( car, mod ) \ if( mod##_e1 != 0.0f ) car += env[0][f] * mod##_e1; \ if( mod##_e2 != 0.0f ) car += env[1][f] * mod##_e2; \ if( mod##_l1 != 0.0f ) car += lfo[0][f] * mod##_l1; \ if( mod##_l2 != 0.0f ) car += lfo[1][f] * mod##_l2; #define modulatevol( car, mod ) \ if( mod##_e1 > 0.0f ) car *= ( 1.0f - mod##_e1 + mod##_e1 * env[0][f] ); \ if( mod##_e1 < 0.0f ) car *= ( 1.0f + mod##_e1 * env[0][f] ); \ if( mod##_e2 > 0.0f ) car *= ( 1.0f - mod##_e2 + mod##_e2 * env[1][f] ); \ if( mod##_e2 < 0.0f ) car *= ( 1.0f + mod##_e2 * env[1][f] ); \ if( mod##_l1 != 0.0f ) car *= ( 1.0f + mod##_l1 * lfo[0][f] ); \ if( mod##_l2 != 0.0f ) car *= ( 1.0f + mod##_l2 * lfo[1][f] ); \ car = qBound( -MODCLIP, car, MODCLIP ); //////////////////// // // // MODULATORS // // // //////////////////// // LFO phase offsets const float lfo1_po = m_parent->m_lfo1Phs.value() / 360.0f; const float lfo2_po = m_parent->m_lfo2Phs.value() / 360.0f; // remove cruft from phase counters to prevent overflow, add phase offset m_lfo_phase[0] = absFraction( m_lfo_phase[0] + lfo1_po ); m_lfo_phase[1] = absFraction( m_lfo_phase[1] + lfo2_po ); // LFO rates and increment m_lfo_rate[0] = ( m_parent->m_lfo1Rate.value() * 0.001f * m_parent->m_samplerate ); m_lfo_rate[1] = ( m_parent->m_lfo2Rate.value() * 0.001f * m_parent->m_samplerate ); m_lfo_inc[0] = 1.0f / m_lfo_rate[0]; m_lfo_inc[1] = 1.0f / m_lfo_rate[1]; m_env_sus[0] = m_parent-> m_env1Sus.value(); m_env_sus[1] = m_parent-> m_env2Sus.value(); m_lfovalue[0] = m_parent->m_lfo1Wave.value(); m_lfovalue[1] = m_parent->m_lfo2Wave.value(); m_lfoatt[0] = m_parent->m_lfo1_att; m_lfoatt[1] = m_parent->m_lfo2_att; m_env_pre[0] = m_parent->m_env1_pre; m_env_att[0] = m_parent->m_env1_att; m_env_hold[0] = m_parent->m_env1_hold; m_env_dec[0] = m_parent->m_env1_dec; m_env_rel[0] = m_parent->m_env1_rel; m_env_pre[1] = m_parent->m_env2_pre; m_env_att[1] = m_parent->m_env2_att; m_env_hold[1] = m_parent->m_env2_hold; m_env_dec[1] = m_parent->m_env2_dec; m_env_rel[1] = m_parent->m_env2_rel; // get updated osc1 values // get pulse width const float pw = ( m_parent->m_osc1Pw.value() * 0.01f ); const float o1pw_e1 = ( m_parent->m_pw1env1.value() ); const float o1pw_e2 = ( m_parent->m_pw1env2.value() ); const float o1pw_l1 = ( m_parent->m_pw1lfo1.value() * 0.5f ); const float o1pw_l2 = ( m_parent->m_pw1lfo2.value() * 0.5f ); const bool o1pw_mod = o1pw_e1 != 0.0f || o1pw_e2 != 0.0f || o1pw_l1 != 0.0f || o1pw_l2 != 0.0f; // get phases const float o1lpo = m_parent->m_osc1l_po; const float o1rpo = m_parent->m_osc1r_po; const float o1p_e1 = ( m_parent->m_phs1env1.value() ); const float o1p_e2 = ( m_parent->m_phs1env2.value() ); const float o1p_l1 = ( m_parent->m_phs1lfo1.value() * 0.5f ); const float o1p_l2 = ( m_parent->m_phs1lfo2.value() * 0.5f ); const bool o1p_mod = o1p_e1 != 0.0f || o1p_e2 != 0.0f || o1p_l1 != 0.0f || o1p_l2 != 0.0f; // get pitch const float o1lfb = ( m_parent->m_osc1l_freq * m_nph->frequency() ); const float o1rfb = ( m_parent->m_osc1r_freq * m_nph->frequency() ); const float o1f_e1 = ( m_parent->m_pit1env1.value() * 2.0f ); const float o1f_e2 = ( m_parent->m_pit1env2.value() * 2.0f ); const float o1f_l1 = ( m_parent->m_pit1lfo1.value() ); const float o1f_l2 = ( m_parent->m_pit1lfo2.value() ); const bool o1f_mod = o1f_e1 != 0.0f || o1f_e2 != 0.0f || o1f_l1 != 0.0f || o1f_l2 != 0.0f; // get volumes const float o1lv = m_parent->m_osc1l_vol; const float o1rv = m_parent->m_osc1r_vol; const float o1v_e1 = ( m_parent->m_vol1env1.value() ); const float o1v_e2 = ( m_parent->m_vol1env2.value() ); const float o1v_l1 = ( m_parent->m_vol1lfo1.value() ); const float o1v_l2 = ( m_parent->m_vol1lfo2.value() ); const bool o1v_mod = o1v_e1 != 0.0f || o1v_e2 != 0.0f || o1v_l1 != 0.0f || o1v_l2 != 0.0f; // update osc2 // get waveform const int o2w = m_parent->m_osc2Wave.value(); // get phases const float o2lpo = m_parent->m_osc2l_po; const float o2rpo = m_parent->m_osc2r_po; const float o2p_e1 = ( m_parent->m_phs2env1.value() ); const float o2p_e2 = ( m_parent->m_phs2env2.value() ); const float o2p_l1 = ( m_parent->m_phs2lfo1.value() * 0.5f ); const float o2p_l2 = ( m_parent->m_phs2lfo2.value() * 0.5f ); const bool o2p_mod = o2p_e1 != 0.0f || o2p_e2 != 0.0f || o2p_l1 != 0.0f || o2p_l2 != 0.0f; // get pitch const float o2lfb = ( m_parent->m_osc2l_freq * m_nph->frequency() ); const float o2rfb = ( m_parent->m_osc2r_freq * m_nph->frequency() ); const float o2f_e1 = ( m_parent->m_pit2env1.value() * 2.0f ); const float o2f_e2 = ( m_parent->m_pit2env2.value() * 2.0f ); const float o2f_l1 = ( m_parent->m_pit2lfo1.value() ); const float o2f_l2 = ( m_parent->m_pit2lfo2.value() ); const bool o2f_mod = o2f_e1 != 0.0f || o2f_e2 != 0.0f || o2f_l1 != 0.0f || o2f_l2 != 0.0f; // get volumes const float o2lv = m_parent->m_osc2l_vol; const float o2rv = m_parent->m_osc2r_vol; const float o2v_e1 = ( m_parent->m_vol2env1.value() ); const float o2v_e2 = ( m_parent->m_vol2env2.value() ); const float o2v_l1 = ( m_parent->m_vol2lfo1.value() ); const float o2v_l2 = ( m_parent->m_vol2lfo2.value() ); const bool o2v_mod = o2v_e1 != 0.0f || o2v_e2 != 0.0f || o2v_l1 != 0.0f || o2v_l2 != 0.0f; // update osc3 // get waveforms const int o3w1 = m_parent->m_osc3Wave1.value(); const int o3w2 = m_parent->m_osc3Wave2.value(); // get phases const float o3lpo = m_parent->m_osc3l_po; const float o3rpo = m_parent->m_osc3r_po; const float o3p_e1 = ( m_parent->m_phs3env1.value() ); const float o3p_e2 = ( m_parent->m_phs3env2.value() ); const float o3p_l1 = ( m_parent->m_phs3lfo1.value() * 0.5f ); const float o3p_l2 = ( m_parent->m_phs3lfo2.value() * 0.5f ); const bool o3p_mod = o3p_e1 != 0.0f || o3p_e2 != 0.0f || o3p_l1 != 0.0f || o3p_l2 != 0.0f; // get pitch modulators const float o3fb = ( m_parent->m_osc3_freq * m_nph->frequency() ); const float o3f_e1 = ( m_parent->m_pit3env1.value() * 2.0f ); const float o3f_e2 = ( m_parent->m_pit3env2.value() * 2.0f ); const float o3f_l1 = ( m_parent->m_pit3lfo1.value() ); const float o3f_l2 = ( m_parent->m_pit3lfo2.value() ); const bool o3f_mod = o3f_e1 != 0.0f || o3f_e2 != 0.0f || o3f_l1 != 0.0f || o3f_l2 != 0.0f; // get volumes const float o3lv = m_parent->m_osc3l_vol; const float o3rv = m_parent->m_osc3r_vol; const float o3v_e1 = ( m_parent->m_vol3env1.value() ); const float o3v_e2 = ( m_parent->m_vol3env2.value() ); const float o3v_l1 = ( m_parent->m_vol3lfo1.value() ); const float o3v_l2 = ( m_parent->m_vol3lfo2.value() ); const bool o3v_mod = o3v_e1 != 0.0f || o3v_e2 != 0.0f || o3v_l1 != 0.0f || o3v_l2 != 0.0f; // get sub const float o3sub = ( m_parent->m_osc3Sub.value() + 100.0f ) / 200.0f; const float o3s_e1 = ( m_parent->m_sub3env1.value() ); const float o3s_e2 = ( m_parent->m_sub3env2.value() ); const float o3s_l1 = ( m_parent->m_sub3lfo1.value() * 0.5f ); const float o3s_l2 = ( m_parent->m_sub3lfo2.value() * 0.5f ); const bool o3s_mod = o3s_e1 != 0.0f || o3s_e2 != 0.0f || o3s_l1 != 0.0f || o3s_l2 != 0.0f; //o2-o3 modulation const int omod = m_parent->m_o23Mod.value(); // sync information const bool o1ssr = m_parent->m_osc1SSR.value(); const bool o1ssf = m_parent->m_osc1SSF.value(); const bool o2sync = m_parent->m_osc2SyncH.value(); const bool o3sync = m_parent->m_osc3SyncH.value(); const bool o2syncr = m_parent->m_osc2SyncR.value(); const bool o3syncr = m_parent->m_osc3SyncR.value(); /////////////////////////// // // // start buffer loop // // // /////////////////////////// // declare working variables for for loop // phase manipulation vars - these can be reused by all oscs float leftph; float rightph; float pd_l; float pd_r; float len_l; float len_r; // osc1 vars float o1l_f; float o1r_f; float o1l_p = m_osc1l_phase + o1lpo; // we add phase offset here so we don't have to do it every frame float o1r_p = m_osc1r_phase + o1rpo; // then substract it again after loop... float o1_pw; // osc2 vars float o2l_f; float o2r_f; float o2l_p = m_osc2l_phase + o2lpo; float o2r_p = m_osc2r_phase + o2rpo; // osc3 vars float o3l_f; float o3r_f; float o3l_p = m_osc3l_phase + o3lpo; float o3r_p = m_osc3r_phase + o3rpo; float sub; // modulators float lfo[2][ m_parent->m_fpp ]; float env[2][ m_parent->m_fpp ]; // render modulators: envelopes, lfos updateModulators( &env[0][0], &env[1][0], &lfo[0][0], &lfo[1][0], _frames ); // begin for loop for( f_cnt_t f = 0; f < _frames; ++f ) { /* // debug code if( f % 10 == 0 ) { qDebug( "env1 %f -- env1 phase %f", m_env1_buf[f], m_env1_phase ); qDebug( "env1 pre %f att %f dec %f rel %f ", m_parent->m_env1_pre, m_parent->m_env1_att, m_parent->m_env1_dec, m_parent->m_env1_rel ); }*/ ///////////////////////////// // // // OSC 1 // // // ///////////////////////////// // calc and mod frequencies o1l_f = o1lfb; o1r_f = o1rfb; if( o1f_mod ) { modulatefreq( o1l_f, o1f ) modulatefreq( o1r_f, o1f ) } // calc and modulate pulse o1_pw = pw; if( o1pw_mod ) { modulateabs( o1_pw, o1pw ) o1_pw = qBound( PW_MIN, o1_pw, PW_MAX ); } // calc and modulate phase leftph = o1l_p; rightph = o1r_p; if( o1p_mod ) { modulatephs( leftph, o1p ) modulatephs( rightph, o1p ) } // pulse wave osc sample_t O1L = ( absFraction( leftph ) < o1_pw ) ? 1.0f : -1.0f; sample_t O1R = ( absFraction( rightph ) < o1_pw ) ? 1.0f : -1.0f; // check for rise/fall, and sync if appropriate // sync on rise if( o1ssr ) { // hard sync if( o2sync ) { if( O1L > m_osc1l_last ) { o2l_p = o2lpo; m_counter2l = m_parent->m_counterMax; } if( O1R > m_osc1r_last ) { o2r_p = o2rpo; m_counter2r = m_parent->m_counterMax; } } if( o3sync ) { if( O1L > m_osc1l_last ) { o3l_p = o3lpo; m_counter3l = m_parent->m_counterMax; } if( O1R > m_osc1r_last ) { o3r_p = o3rpo; m_counter3r = m_parent->m_counterMax; } } // reverse sync if( o2syncr ) { if( O1L > m_osc1l_last ) { m_invert2l = !m_invert2l; m_counter2l = m_parent->m_counterMax; } if( O1R > m_osc1r_last ) { m_invert2r = !m_invert2r; m_counter2r = m_parent->m_counterMax; } } if( o3syncr ) { if( O1L > m_osc1l_last ) { m_invert3l = !m_invert3l; m_counter3l = m_parent->m_counterMax; } if( O1R > m_osc1r_last ) { m_invert3r = !m_invert3r; m_counter3r = m_parent->m_counterMax; } } } // sync on fall if( o1ssf ) { // hard sync if( o2sync ) { if( O1L < m_osc1l_last ) { o2l_p = o2lpo; m_counter2l = m_parent->m_counterMax; } if( O1R < m_osc1r_last ) { o2r_p = o2rpo; m_counter2r = m_parent->m_counterMax; } } if( o3sync ) { if( O1L < m_osc1l_last ) { o3l_p = o3lpo; m_counter3l = m_parent->m_counterMax; } if( O1R < m_osc1r_last ) { o3r_p = o3rpo; m_counter3r = m_parent->m_counterMax; } } // reverse sync if( o2syncr ) { if( O1L < m_osc1l_last ) { m_invert2l = !m_invert2l; m_counter2l = m_parent->m_counterMax; } if( O1R < m_osc1r_last ) { m_invert2r = !m_invert2r; m_counter2r = m_parent->m_counterMax; } } if( o3syncr ) { if( O1L < m_osc1l_last ) { m_invert3l = !m_invert3l; m_counter3l = m_parent->m_counterMax; } if( O1R < m_osc1r_last ) { m_invert3r = !m_invert3r; m_counter3r = m_parent->m_counterMax; } } } // update last before signal is touched // also do a very simple amp delta cap const sample_t tmpl = m_osc1l_last; const sample_t tmpr = m_osc1r_last; m_osc1l_last = O1L; m_osc1r_last = O1R; if( tmpl != O1L ) O1L = 0.0f; if( tmpr != O1R ) O1R = 0.0f; // modulate volume O1L *= o1lv; O1R *= o1rv; if( o1v_mod ) { modulatevol( O1L, o1v ) modulatevol( O1R, o1v ) } // update osc1 phase working variable o1l_p += 1.0f / ( static_cast( m_parent->m_samplerate ) / o1l_f ); o1r_p += 1.0f / ( static_cast( m_parent->m_samplerate ) / o1r_f ); ///////////////////////////// // // // OSC 2 // // // ///////////////////////////// // calc and mod frequencies o2l_f = o2lfb; o2r_f = o2rfb; if( o2f_mod ) { modulatefreq( o2l_f, o2f ) modulatefreq( o2r_f, o2f ) } // calc and modulate phase leftph = o2l_p; rightph = o2r_p; if( o2p_mod ) { modulatephs( leftph, o2p ) modulatephs( rightph, o2p ) } leftph = absFraction( leftph ); rightph = absFraction( rightph ); // phase delta pd_l = qAbs( leftph - m_ph2l_last ); if( pd_l > 0.5 ) pd_l = 1.0 - pd_l; pd_r = qAbs( rightph - m_ph2r_last ); if( pd_r > 0.5 ) pd_r = 1.0 - pd_r; // multi-wave DC Oscillator len_l = BandLimitedWave::pdToLen( pd_l ); len_r = BandLimitedWave::pdToLen( pd_r ); if( m_counter2l > 0 ) { len_l /= m_counter2l; m_counter2l--; } if( m_counter2r > 0 ) { len_r /= m_counter2r; m_counter2r--; } sample_t O2L = oscillate( o2w, leftph, len_l ); sample_t O2R = oscillate( o2w, rightph, len_r ); // modulate volume O2L *= o2lv; O2R *= o2rv; if( o2v_mod ) { modulatevol( O2L, o2v ) modulatevol( O2R, o2v ) } // reverse sync - invert waveforms when needed if( m_invert2l ) O2L *= -1.0; if( m_invert2r ) O2R *= -1.0; // update osc2 phases m_ph2l_last = leftph; m_ph2r_last = rightph; o2l_p += 1.0f / ( static_cast( m_parent->m_samplerate ) / o2l_f ); o2r_p += 1.0f / ( static_cast( m_parent->m_samplerate ) / o2r_f ); ///////////////////////////// // // // OSC 3 // // // ///////////////////////////// // calc and mod frequencies o3l_f = o3fb; o3r_f = o3fb; if( o3f_mod ) { modulatefreq( o3l_f, o3f ) modulatefreq( o3r_f, o3f ) } // calc and modulate phase leftph = o3l_p; rightph = o3r_p; if( o3p_mod ) { modulatephs( leftph, o3p ) modulatephs( rightph, o3p ) } // o2 modulation? if( omod == MOD_PM ) { leftph += O2L * 0.5f; rightph += O2R * 0.5f; } leftph = absFraction( leftph ); rightph = absFraction( rightph ); // phase delta pd_l = qAbs( leftph - m_ph3l_last ); if( pd_l > 0.5 ) pd_l = 1.0 - pd_l; pd_r = qAbs( rightph - m_ph3r_last ); if( pd_r > 0.5 ) pd_r = 1.0 - pd_r; // multi-wave DC Oscillator len_l = BandLimitedWave::pdToLen( pd_l ); len_r = BandLimitedWave::pdToLen( pd_r ); if( m_counter3l > 0 ) { len_l /= m_counter3l; m_counter3l--; } if( m_counter3r > 0 ) { len_r /= m_counter3r; m_counter3r--; } // sub-osc 1 sample_t O3AL = oscillate( o3w1, leftph, len_l ); sample_t O3AR = oscillate( o3w1, rightph, len_r ); // multi-wave DC Oscillator, sub-osc 2 sample_t O3BL = oscillate( o3w2, leftph, len_l ); sample_t O3BR = oscillate( o3w2, rightph, len_r ); // calc and modulate sub sub = o3sub; if( o3s_mod ) { modulateabs( sub, o3s ) sub = qBound( 0.0f, sub, 1.0f ); } sample_t O3L = linearInterpolate( O3AL, O3BL, sub ); sample_t O3R = linearInterpolate( O3AR, O3BR, sub ); // modulate volume O3L *= o3lv; O3R *= o3rv; if( o3v_mod ) { modulatevol( O3L, o3v ) modulatevol( O3R, o3v ) } // o2 modulation? if( omod == MOD_AM ) { O3L = qBound( -MODCLIP, O3L * qMax( 0.0f, 1.0f + O2L ), MODCLIP ); O3R = qBound( -MODCLIP, O3R * qMax( 0.0f, 1.0f + O2R ), MODCLIP ); } // reverse sync - invert waveforms when needed if( m_invert3l ) O3L *= -1.0; if( m_invert3r ) O3R *= -1.0; // update osc3 phases m_ph3l_last = leftph; m_ph3r_last = rightph; len_l = 1.0f / ( static_cast( m_parent->m_samplerate ) / o3l_f ); len_r = 1.0f / ( static_cast( m_parent->m_samplerate ) / o3r_f ); // handle FM as PM if( omod == MOD_FM ) { len_l += O2L * m_parent->m_fmCorrection; len_r += O2R * m_parent->m_fmCorrection; } o3l_p += len_l; o3r_p += len_r; // integrator - very simple filter sample_t L = O1L + O3L + ( omod == MOD_MIX ? O2L : 0.0f ); sample_t R = O1R + O3R + ( omod == MOD_MIX ? O2R : 0.0f ); _buf[f][0] = linearInterpolate( L, m_l_last, m_parent->m_integrator ); _buf[f][1] = linearInterpolate( R, m_r_last, m_parent->m_integrator ); m_l_last = L; m_r_last = R; } // update phases m_osc1l_phase = absFraction( o1l_p - o1lpo ); m_osc1r_phase = absFraction( o1r_p - o1rpo ); m_osc2l_phase = absFraction( o2l_p - o2lpo ); m_osc2r_phase = absFraction( o2r_p - o2rpo ); m_osc3l_phase = absFraction( o3l_p - o3lpo ); m_osc3r_phase = absFraction( o3r_p - o3rpo ); m_lfo_phase[0] = absFraction( m_lfo_phase[0] - lfo1_po ); m_lfo_phase[1] = absFraction( m_lfo_phase[1] - lfo2_po ); } inline void MonstroSynth::updateModulators( float * env1, float * env2, float * lfo1, float * lfo2, int frames ) { // frames played before const f_cnt_t tfp = m_nph->totalFramesPlayed(); float * lfo [2]; float * env [2]; lfo[0] = lfo1; lfo[1] = lfo2; env[0] = env1; env[1] = env2; for( int i = 0; i < 2; ++i ) { switch( m_lfovalue[i] ) { case WAVE_SINE: for( f_cnt_t f = 0; f < frames; ++f ) { lfo[i][f] = Oscillator::sinSample( m_lfo_phase[i] ); m_lfo_phase[i] += m_lfo_inc[i]; } break; case WAVE_TRI: for( f_cnt_t f = 0; f < frames; ++f ) { lfo[i][f] = Oscillator::triangleSample( m_lfo_phase[i] ); m_lfo_phase[i] += m_lfo_inc[i]; } break; case WAVE_SAW: for( f_cnt_t f = 0; f < frames; ++f ) { lfo[i][f] = Oscillator::sawSample( m_lfo_phase[i] ); m_lfo_phase[i] += m_lfo_inc[i]; } break; case WAVE_RAMP: for( f_cnt_t f = 0; f < frames; ++f ) { lfo[i][f] = Oscillator::sawSample( m_lfo_phase[i] ) * -1.0f; m_lfo_phase[i] += m_lfo_inc[i]; } break; case WAVE_SQR: for( f_cnt_t f = 0; f < frames; ++f ) { lfo[i][f] = Oscillator::squareSample( m_lfo_phase[i] ); m_lfo_phase[i] += m_lfo_inc[i]; } break; case WAVE_SQRSOFT: for( f_cnt_t f = 0; f < frames; ++f ) { lfo[i][f] = oscillate( WAVE_SQRSOFT, m_lfo_phase[i], 0 ); m_lfo_phase[i] += m_lfo_inc[i]; } break; case WAVE_MOOG: for( f_cnt_t f = 0; f < frames; ++f ) { lfo[i][f] = Oscillator::moogSawSample( m_lfo_phase[i] ); m_lfo_phase[i] += m_lfo_inc[i]; } break; case WAVE_SINABS: for( f_cnt_t f = 0; f < frames; ++f ) { lfo[i][f] = oscillate( WAVE_SINABS, m_lfo_phase[i], 0 ); m_lfo_phase[i] += m_lfo_inc[i]; } break; case WAVE_EXP: for( f_cnt_t f = 0; f < frames; ++f ) { lfo[i][f] = Oscillator::expSample( m_lfo_phase[i] ); m_lfo_phase[i] += m_lfo_inc[i]; } break; case WAVE_RANDOM: for( f_cnt_t f = 0; f < frames; ++f ) { if( ( tfp + f ) % static_cast( m_lfo_rate[i] ) == 0 ) m_lfo_last[i] = Oscillator::noiseSample( 0.0f ); lfo[i][f] = m_lfo_last[i]; m_lfo_phase[i] += m_lfo_inc[i]; } break; case WAVE_RANDOM_SMOOTH: for( f_cnt_t f = 0; f < frames; ++f ) { const f_cnt_t tm = ( tfp + f ) % static_cast( m_lfo_rate[i] ); if( tm == 0 ) { m_lfo_last[i] = m_lfo_next[i]; m_lfo_next[i] = Oscillator::noiseSample( 0.0f ); } lfo[i][f] = cosinusInterpolate( m_lfo_last[i], m_lfo_next[i], static_cast( tm ) / m_lfo_rate[i] ); m_lfo_phase[i] += m_lfo_inc[i]; } break; } // attack for( f_cnt_t f = 0; f < frames; ++f ) { if( tfp + f < m_lfoatt[i] ) lfo[i][f] *= ( static_cast( tfp ) / m_lfoatt[i] ); } ///////////////////////////////////////////// // // // // // envelopes // // // // // ///////////////////////////////////////////// for( f_cnt_t f = 0; f < frames; ++f ) { if( m_env_phase[i] < 4.0f && m_nph->isReleased() && f >= m_nph->framesBeforeRelease() ) { if( m_env_phase[i] < 1.0f ) m_env_phase[i] = 5.0f; else if( m_env_phase[i] < 2.0f ) m_env_phase[i] = 5.0f - fraction( m_env_phase[i] ); else if( m_env_phase[i] < 3.0f ) m_env_phase[i] = 4.0f; else m_env_phase[i] = 4.0f + fraction( m_env_phase[i] ); } // process envelope if( m_env_phase[i] < 1.0f ) // pre-delay phase { env[i][f] = 0.0f; m_env_phase[i] = qMin( 1.0f, m_env_phase[i] + m_env_pre[i] ); } else if( m_env_phase[i] < 2.0f ) // attack phase { env[i][f] = calcSlope( i, fraction( m_env_phase[i] ) ); m_env_phase[i] = qMin( 2.0f, m_env_phase[i] + m_env_att[i] ); } else if( m_env_phase[i] < 3.0f ) // hold phase { env[i][f] = 1.0f; m_env_phase[i] = qMin( 3.0f, m_env_phase[i] + m_env_hold[i] ); } else if( m_env_phase[i] < 4.0f ) // decay phase { const sample_t s = calcSlope( i, 1.0f - fraction( m_env_phase[i] ) ); if( s <= m_env_sus[i] ) { env[i][f] = m_env_sus[i]; } else { env[i][f] = s; m_env_phase[i] = qMin( 4.0f - m_env_sus[i], m_env_phase[i] + m_env_dec[i] ); if( m_env_phase[i] == 4.0f ) m_env_phase[i] = 5.0f; // jump over release if sustain is zero - fix for clicking } } else if( m_env_phase[i] < 5.0f ) // release phase { env[i][f] = calcSlope( i, 1.0f - fraction( m_env_phase[i] ) ); m_env_phase[i] += m_env_rel[i]; } else env[i][f] = 0.0f; } } } inline sample_t MonstroSynth::calcSlope( int slope, sample_t s ) { if( m_parent->m_slope[slope] == 1.0f ) return s; if( s == 0.0f ) return s; return fastPow( s, m_parent->m_slope[slope] ); } MonstroInstrument::MonstroInstrument( InstrumentTrack * _instrument_track ) : Instrument( _instrument_track, &monstro_plugin_descriptor ), m_osc1Vol( 33.0, 0.0, 200.0, 0.1, this, tr( "Osc 1 Volume" ) ), m_osc1Pan( 0.0, -100.0, 100.0, 0.1, this, tr( "Osc 1 Panning" ) ), m_osc1Crs( 0.0, -24.0, 24.0, 1.0, this, tr( "Osc 1 Coarse detune" ) ), m_osc1Ftl( 0.0, -100.0, 100.0, 1.0, this, tr( "Osc 1 Fine detune left" ) ), m_osc1Ftr( 0.0, -100.0, 100.0, 1.0, this, tr( "Osc 1 Fine detune right" ) ), m_osc1Spo( 0.0, -180.0, 180.0, 0.1, this, tr( "Osc 1 Stereo phase offset" ) ), m_osc1Pw( 50.0, PW_MIN, PW_MAX, 0.01, this, tr( "Osc 1 Pulse width" ) ), m_osc1SSR( false, this, tr( "Osc 1 Sync send on rise" ) ), m_osc1SSF( false, this, tr( "Osc 1 Sync send on fall" ) ), m_osc2Vol( 33.0, 0.0, 200.0, 0.1, this, tr( "Osc 2 Volume" ) ), m_osc2Pan( 0.0, -100.0, 100.0, 0.1, this, tr( "Osc 2 Panning" ) ), m_osc2Crs( 0.0, -24.0, 24.0, 1.0, this, tr( "Osc 2 Coarse detune" ) ), m_osc2Ftl( 0.0, -100.0, 100.0, 1.0, this, tr( "Osc 2 Fine detune left" ) ), m_osc2Ftr( 0.0, -100.0, 100.0, 1.0, this, tr( "Osc 2 Fine detune right" ) ), m_osc2Spo( 0.0, -180.0, 180.0, 0.1, this, tr( "Osc 2 Stereo phase offset" ) ), m_osc2Wave( this, tr( "Osc 2 Waveform" ) ), m_osc2SyncH( false, this, tr( "Osc 2 Sync Hard" ) ), m_osc2SyncR( false, this, tr( "Osc 2 Sync Reverse" ) ), m_osc3Vol( 33.0, 0.0, 200.0, 0.1, this, tr( "Osc 3 Volume" ) ), m_osc3Pan( 0.0, -100.0, 100.0, 0.1, this, tr( "Osc 3 Panning" ) ), m_osc3Crs( 0.0, -24.0, 24.0, 1.0, this, tr( "Osc 3 Coarse detune" ) ), m_osc3Spo( 0.0, -180.0, 180.0, 0.1, this, tr( "Osc 3 Stereo phase offset" ) ), m_osc3Sub( 0.0, -100.0, 100.0, 0.1, this, tr( "Osc 3 Sub-oscillator mix" ) ), m_osc3Wave1( this, tr( "Osc 3 Waveform 1" ) ), m_osc3Wave2( this, tr( "Osc 3 Waveform 2" ) ), m_osc3SyncH( false, this, tr( "Osc 3 Sync Hard" ) ), m_osc3SyncR( false, this, tr( "Osc 3 Sync Reverse" ) ), m_lfo1Wave( this, tr( "LFO 1 Waveform" ) ), m_lfo1Att( 0.0f, 0.0f, 2000.0f, 1.0f, 2000.0f, this, tr( "LFO 1 Attack" ) ), m_lfo1Rate( 1.0f, 0.1, 10000.0, 0.1, 10000.0f, this, tr( "LFO 1 Rate" ) ), m_lfo1Phs( 0.0, -180.0, 180.0, 0.1, this, tr( "LFO 1 Phase" ) ), m_lfo2Wave( this, tr( "LFO 2 Waveform" ) ), m_lfo2Att( 0.0f, 0.0f, 2000.0f, 1.0f, 2000.0f, this, tr( "LFO 2 Attack" ) ), m_lfo2Rate( 1.0f, 0.1, 10000.0, 0.1, 10000.0f, this, tr( "LFO 2 Rate" ) ), m_lfo2Phs( 0.0, -180.0, 180.0, 0.1, this, tr( "LFO 2 Phase" ) ), m_env1Pre( 0.0f, 0.0f, 2000.0f, 1.0f, 2000.0f, this, tr( "Env 1 Pre-delay" ) ), m_env1Att( 0.0f, 0.0f, 2000.0f, 1.0f, 2000.0f, this, tr( "Env 1 Attack" ) ), m_env1Hold( 0.0f, 0.0f, 4000.0f, 1.0f, 4000.0f, this, tr( "Env 1 Hold" ) ), m_env1Dec( 0.0f, 0.0f, 4000.0f, 1.0f, 4000.0f, this, tr( "Env 1 Decay" ) ), m_env1Sus( 1.0f, 0.0f, 1.0f, 0.001f, this, tr( "Env 1 Sustain" ) ), m_env1Rel( 0.0f, 0.0f, 4000.0f, 1.0f, 4000.0f, this, tr( "Env 1 Release" ) ), m_env1Slope( 0.0f, -1.0f, 1.0f, 0.001f, this, tr( "Env 1 Slope" ) ), m_env2Pre( 0.0f, 0.0f, 2000.0f, 1.0f, 2000.0f, this, tr( "Env 2 Pre-delay" ) ), m_env2Att( 0.0f, 0.0f, 2000.0f, 1.0f, 2000.0f, this, tr( "Env 2 Attack" ) ), m_env2Hold( 0.0f, 0.0f, 4000.0f, 1.0f, 4000.0f, this, tr( "Env 2 Hold" ) ), m_env2Dec( 0.0f, 0.0f, 4000.0f, 1.0f, 4000.0f, this, tr( "Env 2 Decay" ) ), m_env2Sus( 1.0f, 0.0f, 1.0f, 0.001f, this, tr( "Env 2 Sustain" ) ), m_env2Rel( 0.0f, 0.0f, 4000.0f, 1.0f, 4000.0f, this, tr( "Env 2 Release" ) ), m_env2Slope( 0.0f, -1.0f, 1.0f, 0.001f, this, tr( "Env 2 Slope" ) ), m_o23Mod( 0, 0, NUM_MODS - 1, this, tr( "Osc2-3 modulation" ) ), m_selectedView( 0, 0, 1, this, tr( "Selected view" ) ), m_vol1env1( 0.0f, -1.0f, 1.0f, 0.001f, this, tr( "Vol1-Env1" ) ), m_vol1env2( 0.0f, -1.0f, 1.0f, 0.001f, this, tr( "Vol1-Env2" ) ), m_vol1lfo1( 0.0f, -1.0f, 1.0f, 0.001f, this, tr( "Vol1-LFO1" ) ), m_vol1lfo2( 0.0f, -1.0f, 1.0f, 0.001f, this, tr( "Vol1-LFO2" ) ), m_vol2env1( 0.0f, -1.0f, 1.0f, 0.001f, this, tr( "Vol2-Env1" ) ), m_vol2env2( 0.0f, -1.0f, 1.0f, 0.001f, this, tr( "Vol2-Env2" ) ), m_vol2lfo1( 0.0f, -1.0f, 1.0f, 0.001f, this, tr( "Vol2-LFO1" ) ), m_vol2lfo2( 0.0f, -1.0f, 1.0f, 0.001f, this, tr( "Vol2-LFO2" ) ), m_vol3env1( 0.0f, -1.0f, 1.0f, 0.001f, this, tr( "Vol3-Env1" ) ), m_vol3env2( 0.0f, -1.0f, 1.0f, 0.001f, this, tr( "Vol3-Env2" ) ), m_vol3lfo1( 0.0f, -1.0f, 1.0f, 0.001f, this, tr( "Vol3-LFO1" ) ), m_vol3lfo2( 0.0f, -1.0f, 1.0f, 0.001f, this, tr( "Vol3-LFO2" ) ), m_phs1env1( 0.0f, -1.0f, 1.0f, 0.001f, this, tr( "Phs1-Env1" ) ), m_phs1env2( 0.0f, -1.0f, 1.0f, 0.001f, this, tr( "Phs1-Env2" ) ), m_phs1lfo1( 0.0f, -1.0f, 1.0f, 0.001f, this, tr( "Phs1-LFO1" ) ), m_phs1lfo2( 0.0f, -1.0f, 1.0f, 0.001f, this, tr( "Phs1-LFO2" ) ), m_phs2env1( 0.0f, -1.0f, 1.0f, 0.001f, this, tr( "Phs2-Env1" ) ), m_phs2env2( 0.0f, -1.0f, 1.0f, 0.001f, this, tr( "Phs2-Env2" ) ), m_phs2lfo1( 0.0f, -1.0f, 1.0f, 0.001f, this, tr( "Phs2-LFO1" ) ), m_phs2lfo2( 0.0f, -1.0f, 1.0f, 0.001f, this, tr( "Phs2-LFO2" ) ), m_phs3env1( 0.0f, -1.0f, 1.0f, 0.001f, this, tr( "Phs3-Env1" ) ), m_phs3env2( 0.0f, -1.0f, 1.0f, 0.001f, this, tr( "Phs3-Env2" ) ), m_phs3lfo1( 0.0f, -1.0f, 1.0f, 0.001f, this, tr( "Phs3-LFO1" ) ), m_phs3lfo2( 0.0f, -1.0f, 1.0f, 0.001f, this, tr( "Phs3-LFO2" ) ), m_pit1env1( 0.0f, -1.0f, 1.0f, 0.001f, this, tr( "Pit1-Env1" ) ), m_pit1env2( 0.0f, -1.0f, 1.0f, 0.001f, this, tr( "Pit1-Env2" ) ), m_pit1lfo1( 0.0f, -1.0f, 1.0f, 0.001f, this, tr( "Pit1-LFO1" ) ), m_pit1lfo2( 0.0f, -1.0f, 1.0f, 0.001f, this, tr( "Pit1-LFO2" ) ), m_pit2env1( 0.0f, -1.0f, 1.0f, 0.001f, this, tr( "Pit2-Env1" ) ), m_pit2env2( 0.0f, -1.0f, 1.0f, 0.001f, this, tr( "Pit2-Env2" ) ), m_pit2lfo1( 0.0f, -1.0f, 1.0f, 0.001f, this, tr( "Pit2-LFO1" ) ), m_pit2lfo2( 0.0f, -1.0f, 1.0f, 0.001f, this, tr( "Pit2-LFO2" ) ), m_pit3env1( 0.0f, -1.0f, 1.0f, 0.001f, this, tr( "Pit3-Env1" ) ), m_pit3env2( 0.0f, -1.0f, 1.0f, 0.001f, this, tr( "Pit3-Env2" ) ), m_pit3lfo1( 0.0f, -1.0f, 1.0f, 0.001f, this, tr( "Pit3-LFO1" ) ), m_pit3lfo2( 0.0f, -1.0f, 1.0f, 0.001f, this, tr( "Pit3-LFO2" ) ), m_pw1env1( 0.0f, -1.0f, 1.0f, 0.001f, this, tr( "PW1-Env1" ) ), m_pw1env2( 0.0f, -1.0f, 1.0f, 0.001f, this, tr( "PW1-Env2" ) ), m_pw1lfo1( 0.0f, -1.0f, 1.0f, 0.001f, this, tr( "PW1-LFO1" ) ), m_pw1lfo2( 0.0f, -1.0f, 1.0f, 0.001f, this, tr( "PW1-LFO2" ) ), m_sub3env1( 0.0f, -1.0f, 1.0f, 0.001f, this, tr( "Sub3-Env1" ) ), m_sub3env2( 0.0f, -1.0f, 1.0f, 0.001f, this, tr( "Sub3-Env2" ) ), m_sub3lfo1( 0.0f, -1.0f, 1.0f, 0.001f, this, tr( "Sub3-LFO1" ) ), m_sub3lfo2( 0.0f, -1.0f, 1.0f, 0.001f, this, tr( "Sub3-LFO2" ) ) { // setup waveboxes setwavemodel( m_osc2Wave ) setwavemodel( m_osc3Wave1 ) setwavemodel( m_osc3Wave2 ) setlfowavemodel( m_lfo1Wave ) setlfowavemodel( m_lfo2Wave ) // make connections: // updateVolumes connect( &m_osc1Vol, SIGNAL( dataChanged() ), this, SLOT( updateVolume1() ) ); connect( &m_osc1Pan, SIGNAL( dataChanged() ), this, SLOT( updateVolume1() ) ); connect( &m_osc2Vol, SIGNAL( dataChanged() ), this, SLOT( updateVolume2() ) ); connect( &m_osc2Pan, SIGNAL( dataChanged() ), this, SLOT( updateVolume2() ) ); connect( &m_osc3Vol, SIGNAL( dataChanged() ), this, SLOT( updateVolume3() ) ); connect( &m_osc3Pan, SIGNAL( dataChanged() ), this, SLOT( updateVolume3() ) ); // updateFreq connect( &m_osc1Crs, SIGNAL( dataChanged() ), this, SLOT( updateFreq1() ) ); connect( &m_osc2Crs, SIGNAL( dataChanged() ), this, SLOT( updateFreq2() ) ); connect( &m_osc3Crs, SIGNAL( dataChanged() ), this, SLOT( updateFreq3() ) ); connect( &m_osc1Ftl, SIGNAL( dataChanged() ), this, SLOT( updateFreq1() ) ); connect( &m_osc2Ftl, SIGNAL( dataChanged() ), this, SLOT( updateFreq2() ) ); connect( &m_osc1Ftr, SIGNAL( dataChanged() ), this, SLOT( updateFreq1() ) ); connect( &m_osc2Ftr, SIGNAL( dataChanged() ), this, SLOT( updateFreq2() ) ); // updatePO connect( &m_osc1Spo, SIGNAL( dataChanged() ), this, SLOT( updatePO1() ) ); connect( &m_osc2Spo, SIGNAL( dataChanged() ), this, SLOT( updatePO2() ) ); connect( &m_osc3Spo, SIGNAL( dataChanged() ), this, SLOT( updatePO3() ) ); // updateEnvelope1 connect( &m_env1Pre, SIGNAL( dataChanged() ), this, SLOT( updateEnvelope1() ) ); connect( &m_env1Att, SIGNAL( dataChanged() ), this, SLOT( updateEnvelope1() ) ); connect( &m_env1Hold, SIGNAL( dataChanged() ), this, SLOT( updateEnvelope1() ) ); connect( &m_env1Dec, SIGNAL( dataChanged() ), this, SLOT( updateEnvelope1() ) ); connect( &m_env1Rel, SIGNAL( dataChanged() ), this, SLOT( updateEnvelope1() ) ); connect( &m_env1Slope, SIGNAL( dataChanged() ), this, SLOT( updateSlope1() ) ); // updateEnvelope2 connect( &m_env2Pre, SIGNAL( dataChanged() ), this, SLOT( updateEnvelope2() ) ); connect( &m_env2Att, SIGNAL( dataChanged() ), this, SLOT( updateEnvelope2() ) ); connect( &m_env2Hold, SIGNAL( dataChanged() ), this, SLOT( updateEnvelope2() ) ); connect( &m_env2Dec, SIGNAL( dataChanged() ), this, SLOT( updateEnvelope2() ) ); connect( &m_env2Rel, SIGNAL( dataChanged() ), this, SLOT( updateEnvelope2() ) ); connect( &m_env2Slope, SIGNAL( dataChanged() ), this, SLOT( updateSlope2() ) ); // updateLFOAtts connect( &m_lfo1Att, SIGNAL( dataChanged() ), this, SLOT( updateLFOAtts() ) ); connect( &m_lfo2Att, SIGNAL( dataChanged() ), this, SLOT( updateLFOAtts() ) ); // updateSampleRate connect( Engine::mixer(), SIGNAL( sampleRateChanged() ), this, SLOT( updateSamplerate() ) ); m_fpp = Engine::mixer()->framesPerPeriod(); updateSamplerate(); updateVolume1(); updateVolume2(); updateVolume3(); updateFreq1(); updateFreq2(); updateFreq3(); updatePO1(); updatePO2(); updatePO3(); updateSlope1(); updateSlope2(); } MonstroInstrument::~MonstroInstrument() { } void MonstroInstrument::playNote( NotePlayHandle * _n, sampleFrame * _working_buffer ) { const fpp_t frames = _n->framesLeftForCurrentPeriod(); const f_cnt_t offset = _n->noteOffset(); if ( _n->totalFramesPlayed() == 0 || _n->m_pluginData == NULL ) { _n->m_pluginData = new MonstroSynth( this, _n ); } MonstroSynth * ms = static_cast( _n->m_pluginData ); ms->renderOutput( frames, _working_buffer + offset ); //applyRelease( _working_buffer, _n ); // we have our own release instrumentTrack()->processAudioBuffer( _working_buffer, frames + offset, _n ); } void MonstroInstrument::deleteNotePluginData( NotePlayHandle * _n ) { delete static_cast( _n->m_pluginData ); } void MonstroInstrument::saveSettings( QDomDocument & _doc, QDomElement & _this ) { m_osc1Vol.saveSettings( _doc, _this, "o1vol" ); m_osc1Pan.saveSettings( _doc, _this, "o1pan" ); m_osc1Crs.saveSettings( _doc, _this, "o1crs" ); m_osc1Ftl.saveSettings( _doc, _this, "o1ftl" ); m_osc1Ftr.saveSettings( _doc, _this, "o1ftr" ); m_osc1Spo.saveSettings( _doc, _this, "o1spo" ); m_osc1Pw.saveSettings( _doc, _this, "o1pw" ); m_osc1SSR.saveSettings( _doc, _this, "o1ssr" ); m_osc1SSF.saveSettings( _doc, _this, "o1ssf" ); m_osc2Vol.saveSettings( _doc, _this, "o2vol" ); m_osc2Pan.saveSettings( _doc, _this, "o2pan" ); m_osc2Crs.saveSettings( _doc, _this, "o2crs" ); m_osc2Ftl.saveSettings( _doc, _this, "o2ftl" ); m_osc2Ftr.saveSettings( _doc, _this, "o2ftr" ); m_osc2Spo.saveSettings( _doc, _this, "o2spo" ); m_osc2Wave.saveSettings( _doc, _this, "o2wav" ); m_osc2SyncH.saveSettings( _doc, _this, "o2syn" ); m_osc2SyncR.saveSettings( _doc, _this, "o2synr" ); m_osc3Vol.saveSettings( _doc, _this, "o3vol" ); m_osc3Pan.saveSettings( _doc, _this, "o3pan" ); m_osc3Crs.saveSettings( _doc, _this, "o3crs" ); m_osc3Spo.saveSettings( _doc, _this, "o3spo" ); m_osc3Sub.saveSettings( _doc, _this, "o3sub" ); m_osc3Wave1.saveSettings( _doc, _this, "o3wav1" ); m_osc3Wave2.saveSettings( _doc, _this, "o3wav2" ); m_osc3SyncH.saveSettings( _doc, _this, "o3syn" ); m_osc3SyncR.saveSettings( _doc, _this, "o3synr" ); m_lfo1Wave.saveSettings( _doc, _this, "l1wav" ); m_lfo1Att.saveSettings( _doc, _this, "l1att" ); m_lfo1Rate.saveSettings( _doc, _this, "l1rat" ); m_lfo1Phs.saveSettings( _doc, _this, "l1phs" ); m_lfo2Wave.saveSettings( _doc, _this, "l2wav" ); m_lfo2Att.saveSettings( _doc, _this, "l2att" ); m_lfo2Rate.saveSettings( _doc, _this, "l2rat" ); m_lfo2Phs.saveSettings( _doc, _this, "l2phs" ); m_env1Pre.saveSettings( _doc, _this, "e1pre" ); m_env1Att.saveSettings( _doc, _this, "e1att" ); m_env1Hold.saveSettings( _doc, _this, "e1hol" ); m_env1Dec.saveSettings( _doc, _this, "e1dec" ); m_env1Sus.saveSettings( _doc, _this, "e1sus" ); m_env1Rel.saveSettings( _doc, _this, "e1rel" ); m_env1Slope.saveSettings( _doc, _this, "e1slo" ); m_env2Pre.saveSettings( _doc, _this, "e2pre" ); m_env2Att.saveSettings( _doc, _this, "e2att" ); m_env2Hold.saveSettings( _doc, _this, "e2hol" ); m_env2Dec.saveSettings( _doc, _this, "e2dec" ); m_env2Sus.saveSettings( _doc, _this, "e2sus" ); m_env2Rel.saveSettings( _doc, _this, "e2rel" ); m_env2Slope.saveSettings( _doc, _this, "e2slo" ); m_o23Mod.saveSettings( _doc, _this, "o23mo" ); m_vol1env1.saveSettings( _doc, _this, "v1e1" ); m_vol1env2.saveSettings( _doc, _this, "v1e2" ); m_vol1lfo1.saveSettings( _doc, _this, "v1l1" ); m_vol1lfo2.saveSettings( _doc, _this, "v1l2" ); m_vol2env1.saveSettings( _doc, _this, "v2e1" ); m_vol2env2.saveSettings( _doc, _this, "v2e2" ); m_vol2lfo1.saveSettings( _doc, _this, "v2l1" ); m_vol2lfo2.saveSettings( _doc, _this, "v2l2" ); m_vol3env1.saveSettings( _doc, _this, "v3e1" ); m_vol3env2.saveSettings( _doc, _this, "v3e2" ); m_vol3lfo1.saveSettings( _doc, _this, "v3l1" ); m_vol3lfo2.saveSettings( _doc, _this, "v3l2" ); m_phs1env1.saveSettings( _doc, _this, "p1e1" ); m_phs1env2.saveSettings( _doc, _this, "p1e2" ); m_phs1lfo1.saveSettings( _doc, _this, "p1l1" ); m_phs1lfo2.saveSettings( _doc, _this, "p1l2" ); m_phs2env1.saveSettings( _doc, _this, "p2e1" ); m_phs2env2.saveSettings( _doc, _this, "p2e2" ); m_phs2lfo1.saveSettings( _doc, _this, "p2l1" ); m_phs2lfo2.saveSettings( _doc, _this, "p2l2" ); m_phs3env1.saveSettings( _doc, _this, "p3e1" ); m_phs3env2.saveSettings( _doc, _this, "p3e2" ); m_phs3lfo1.saveSettings( _doc, _this, "p3l1" ); m_phs3lfo2.saveSettings( _doc, _this, "p3l2" ); m_pit1env1.saveSettings( _doc, _this, "f1e1" ); m_pit1env2.saveSettings( _doc, _this, "f1e2" ); m_pit1lfo1.saveSettings( _doc, _this, "f1l1" ); m_pit1lfo2.saveSettings( _doc, _this, "f1l2" ); m_pit2env1.saveSettings( _doc, _this, "f2e1" ); m_pit2env2.saveSettings( _doc, _this, "f2e2" ); m_pit2lfo1.saveSettings( _doc, _this, "f2l1" ); m_pit2lfo2.saveSettings( _doc, _this, "f2l2" ); m_pit3env1.saveSettings( _doc, _this, "f3e1" ); m_pit3env2.saveSettings( _doc, _this, "f3e2" ); m_pit3lfo1.saveSettings( _doc, _this, "f3l1" ); m_pit3lfo2.saveSettings( _doc, _this, "f3l2" ); m_pw1env1.saveSettings( _doc, _this, "w1e1" ); m_pw1env2.saveSettings( _doc, _this, "w1e2" ); m_pw1lfo1.saveSettings( _doc, _this, "w1l1" ); m_pw1lfo2.saveSettings( _doc, _this, "w1l2" ); m_sub3env1.saveSettings( _doc, _this, "s3e1" ); m_sub3env2.saveSettings( _doc, _this, "s3e2" ); m_sub3lfo1.saveSettings( _doc, _this, "s3l1" ); m_sub3lfo2.saveSettings( _doc, _this, "s3l2" ); } void MonstroInstrument::loadSettings( const QDomElement & _this ) { m_osc1Vol.loadSettings( _this, "o1vol" ); m_osc1Pan.loadSettings( _this, "o1pan" ); m_osc1Crs.loadSettings( _this, "o1crs" ); m_osc1Ftl.loadSettings( _this, "o1ftl" ); m_osc1Ftr.loadSettings( _this, "o1ftr" ); m_osc1Spo.loadSettings( _this, "o1spo" ); m_osc1Pw.loadSettings( _this, "o1pw" ); m_osc1SSR.loadSettings( _this, "o1ssr" ); m_osc1SSF.loadSettings( _this, "o1ssf" ); m_osc2Vol.loadSettings( _this, "o2vol" ); m_osc2Pan.loadSettings( _this, "o2pan" ); m_osc2Crs.loadSettings( _this, "o2crs" ); m_osc2Ftl.loadSettings( _this, "o2ftl" ); m_osc2Ftr.loadSettings( _this, "o2ftr" ); m_osc2Spo.loadSettings( _this, "o2spo" ); m_osc2Wave.loadSettings( _this, "o2wav" ); m_osc2SyncH.loadSettings( _this, "o2syn" ); m_osc2SyncR.loadSettings( _this, "o2synr" ); m_osc3Vol.loadSettings( _this, "o3vol" ); m_osc3Pan.loadSettings( _this, "o3pan" ); m_osc3Crs.loadSettings( _this, "o3crs" ); m_osc3Spo.loadSettings( _this, "o3spo" ); m_osc3Sub.loadSettings( _this, "o3sub" ); m_osc3Wave1.loadSettings( _this, "o3wav1" ); m_osc3Wave2.loadSettings( _this, "o3wav2" ); m_osc3SyncH.loadSettings( _this, "o3syn" ); m_osc3SyncR.loadSettings( _this, "o3synr" ); m_lfo1Wave.loadSettings( _this, "l1wav" ); m_lfo1Att.loadSettings( _this, "l1att" ); m_lfo1Rate.loadSettings( _this, "l1rat" ); m_lfo1Phs.loadSettings( _this, "l1phs" ); m_lfo2Wave.loadSettings( _this, "l2wav" ); m_lfo2Att.loadSettings( _this, "l2att" ); m_lfo2Rate.loadSettings( _this, "l2rat" ); m_lfo2Phs.loadSettings( _this, "l2phs" ); m_env1Pre.loadSettings( _this, "e1pre" ); m_env1Att.loadSettings( _this, "e1att" ); m_env1Hold.loadSettings( _this, "e1hol" ); m_env1Dec.loadSettings( _this, "e1dec" ); m_env1Sus.loadSettings( _this, "e1sus" ); m_env1Rel.loadSettings( _this, "e1rel" ); m_env1Slope.loadSettings( _this, "e1slo" ); m_env2Pre.loadSettings( _this, "e2pre" ); m_env2Att.loadSettings( _this, "e2att" ); m_env2Hold.loadSettings( _this, "e2hol" ); m_env2Dec.loadSettings( _this, "e2dec" ); m_env2Sus.loadSettings( _this, "e2sus" ); m_env2Rel.loadSettings( _this, "e2rel" ); m_env2Slope.loadSettings( _this, "e2slo" ); m_o23Mod.loadSettings( _this, "o23mo" ); m_vol1env1.loadSettings( _this, "v1e1" ); m_vol1env2.loadSettings( _this, "v1e2" ); m_vol1lfo1.loadSettings( _this, "v1l1" ); m_vol1lfo2.loadSettings( _this, "v1l2" ); m_vol2env1.loadSettings( _this, "v2e1" ); m_vol2env2.loadSettings( _this, "v2e2" ); m_vol2lfo1.loadSettings( _this, "v2l1" ); m_vol2lfo2.loadSettings( _this, "v2l2" ); m_vol3env1.loadSettings( _this, "v3e1" ); m_vol3env2.loadSettings( _this, "v3e2" ); m_vol3lfo1.loadSettings( _this, "v3l1" ); m_vol3lfo2.loadSettings( _this, "v3l2" ); m_phs1env1.loadSettings( _this, "p1e1" ); m_phs1env2.loadSettings( _this, "p1e2" ); m_phs1lfo1.loadSettings( _this, "p1l1" ); m_phs1lfo2.loadSettings( _this, "p1l2" ); m_phs2env1.loadSettings( _this, "p2e1" ); m_phs2env2.loadSettings( _this, "p2e2" ); m_phs2lfo1.loadSettings( _this, "p2l1" ); m_phs2lfo2.loadSettings( _this, "p2l2" ); m_phs3env1.loadSettings( _this, "p3e1" ); m_phs3env2.loadSettings( _this, "p3e2" ); m_phs3lfo1.loadSettings( _this, "p3l1" ); m_phs3lfo2.loadSettings( _this, "p3l2" ); m_pit1env1.loadSettings( _this, "f1e1" ); m_pit1env2.loadSettings( _this, "f1e2" ); m_pit1lfo1.loadSettings( _this, "f1l1" ); m_pit1lfo2.loadSettings( _this, "f1l2" ); m_pit2env1.loadSettings( _this, "f2e1" ); m_pit2env2.loadSettings( _this, "f2e2" ); m_pit2lfo1.loadSettings( _this, "f2l1" ); m_pit2lfo2.loadSettings( _this, "f2l2" ); m_pit3env1.loadSettings( _this, "f3e1" ); m_pit3env2.loadSettings( _this, "f3e2" ); m_pit3lfo1.loadSettings( _this, "f3l1" ); m_pit3lfo2.loadSettings( _this, "f3l2" ); m_pw1env1.loadSettings( _this, "w1e1" ); m_pw1env2.loadSettings( _this, "w1e2" ); m_pw1lfo1.loadSettings( _this, "w1l1" ); m_pw1lfo2.loadSettings( _this, "w1l2" ); m_sub3env1.loadSettings( _this, "s3e1" ); m_sub3env2.loadSettings( _this, "s3e2" ); m_sub3lfo1.loadSettings( _this, "s3l1" ); m_sub3lfo2.loadSettings( _this, "s3l2" ); } QString MonstroInstrument::nodeName() const { return monstro_plugin_descriptor.name; } f_cnt_t MonstroInstrument::desiredReleaseFrames() const { return qMax( 64, qMax( m_env1_relF, m_env2_relF ) ); } PluginView * MonstroInstrument::instantiateView( QWidget * _parent ) { return( new MonstroView( this, _parent ) ); } void MonstroInstrument::updateVolume1() { m_osc1l_vol = leftCh( m_osc1Vol.value(), m_osc1Pan.value() ); m_osc1r_vol = rightCh( m_osc1Vol.value(), m_osc1Pan.value() ); } void MonstroInstrument::updateVolume2() { m_osc2l_vol = leftCh( m_osc2Vol.value(), m_osc2Pan.value() ); m_osc2r_vol = rightCh( m_osc2Vol.value(), m_osc2Pan.value() ); } void MonstroInstrument::updateVolume3() { m_osc3l_vol = leftCh( m_osc3Vol.value(), m_osc3Pan.value() ); m_osc3r_vol = rightCh( m_osc3Vol.value(), m_osc3Pan.value() ); } void MonstroInstrument::updateFreq1() { m_osc1l_freq = powf( 2.0f, m_osc1Crs.value() / 12.0f ) * powf( 2.0f, m_osc1Ftl.value() / 1200.0f ); m_osc1r_freq = powf( 2.0f, m_osc1Crs.value() / 12.0f ) * powf( 2.0f, m_osc1Ftr.value() / 1200.0f ); } void MonstroInstrument::updateFreq2() { m_osc2l_freq = powf( 2.0f, m_osc2Crs.value() / 12.0f ) * powf( 2.0f, m_osc2Ftl.value() / 1200.0f ); m_osc2r_freq = powf( 2.0f, m_osc2Crs.value() / 12.0f ) * powf( 2.0f, m_osc2Ftr.value() / 1200.0f ); } void MonstroInstrument::updateFreq3() { m_osc3_freq = powf( 2.0f, m_osc3Crs.value() / 12.0f ); } void MonstroInstrument::updatePO1() { m_osc1l_po = m_osc1Spo.value() / 720.0f; m_osc1r_po = ( m_osc1Spo.value() * -1.0 ) / 720.0f; } void MonstroInstrument::updatePO2() { m_osc2l_po = m_osc2Spo.value() / 720.0f; m_osc2r_po = ( m_osc2Spo.value() * -1.0 ) / 720.0f; } void MonstroInstrument::updatePO3() { m_osc3l_po = m_osc3Spo.value() / 720.0f; m_osc3r_po = ( m_osc3Spo.value() * -1.0 ) / 720.0f; } void MonstroInstrument::updateEnvelope1() { if( m_env1Pre.value() == 0.0f ) m_env1_pre = 1.0; else m_env1_pre = 1.0f / ( m_env1Pre.value() / 1000.0f ) / m_samplerate; if( m_env1Att.value() == 0.0f ) m_env1_att = 1.0; else m_env1_att = 1.0f / ( m_env1Att.value() / 1000.0f ) / m_samplerate; if( m_env1Hold.value() == 0.0f ) m_env1_hold = 1.0; else m_env1_hold = 1.0f / ( m_env1Hold.value() / 1000.0f ) / m_samplerate; if( m_env1Dec.value() == 0.0f ) m_env1_dec = 1.0; else m_env1_dec = 1.0f / ( m_env1Dec.value() / 1000.0f ) / m_samplerate; if( m_env1Rel.value() == 0.0f ) m_env1_rel = 1.0; else m_env1_rel = 1.0f / ( m_env1Rel.value() / 1000.0f ) / m_samplerate; m_env1_len = ( m_env1Pre.value() + m_env1Att.value() + m_env1Hold.value() + m_env1Dec.value() ) * m_samplerate / 1000.0f; m_env1_relF = m_env1Rel.value() * m_samplerate / 1000.0f; } void MonstroInstrument::updateEnvelope2() { if( m_env2Pre.value() == 0.0f ) m_env2_pre = 1.0; else m_env2_pre = 1.0f / ( m_env2Pre.value() / 1000.0f ) / m_samplerate; if( m_env2Att.value() == 0.0f ) m_env2_att = 1.0; else m_env2_att = 1.0f / ( m_env2Att.value() / 1000.0f ) / m_samplerate; if( m_env2Hold.value() == 0.0f ) m_env2_hold = 1.0; else m_env2_hold = 1.0f / ( m_env2Hold.value() / 1000.0f ) / m_samplerate; if( m_env2Dec.value() == 0.0f ) m_env2_dec = 1.0; else m_env2_dec = 1.0f / ( m_env2Dec.value() / 1000.0f ) / m_samplerate; if( m_env2Rel.value() == 0.0f ) m_env2_rel = 1.0; else m_env2_rel = 1.0f / ( m_env2Rel.value() / 1000.0f ) / m_samplerate; m_env2_len = ( m_env2Pre.value() + m_env2Att.value() + m_env2Hold.value() + m_env2Dec.value() ) * m_samplerate / 1000.0f; m_env2_relF = m_env2Rel.value() * m_samplerate / 1000.0f; } void MonstroInstrument::updateLFOAtts() { m_lfo1_att = m_lfo1Att.value() * m_samplerate / 1000.0f; m_lfo2_att = m_lfo2Att.value() * m_samplerate / 1000.0f; } void MonstroInstrument::updateSamplerate() { m_samplerate = Engine::mixer()->processingSampleRate(); m_integrator = 0.5f - ( 0.5f - INTEGRATOR ) * 44100.0f / m_samplerate; m_fmCorrection = 44100.f / m_samplerate * FM_AMOUNT; m_counterMax = ( m_samplerate * 5 ) / 44100; updateEnvelope1(); updateEnvelope2(); updateLFOAtts(); } void MonstroInstrument::updateSlope1() { const float slope = m_env1Slope.value(); m_slope[0] = exp10f( slope * -1.0f ); } void MonstroInstrument::updateSlope2() { const float slope = m_env2Slope.value(); m_slope[1] = exp10f( slope * -1.0f ); } MonstroView::MonstroView( Instrument * _instrument, QWidget * _parent ) : InstrumentView( _instrument, _parent ) { m_operatorsView = setupOperatorsView( this ); setWidgetBackground( m_operatorsView, "artwork_op" ); m_operatorsView->show(); m_operatorsView->move( 0, 0 ); m_matrixView = setupMatrixView( this ); setWidgetBackground( m_matrixView, "artwork_mat" ); m_matrixView->hide(); m_matrixView->move( 0, 0 ); // "tab buttons" PixmapButton * m_opViewButton = new PixmapButton( this, NULL ); m_opViewButton -> move( 0,0 ); m_opViewButton -> setActiveGraphic( PLUGIN_NAME::getIconPixmap( "opview_active" ) ); m_opViewButton -> setInactiveGraphic( PLUGIN_NAME::getIconPixmap( "opview_inactive" ) ); ToolTip::add( m_opViewButton, tr( "Operators view" ) ); m_opViewButton -> setWhatsThis( tr( "The Operators view contains all the operators. These include both audible " "operators (oscillators) and inaudible operators, or modulators: " "Low-frequency oscillators and Envelopes. \n\n" "Knobs and other widgets in the Operators view have their own what's this -texts, " "so you can get more specific help for them that way. " ) ); PixmapButton * m_matViewButton = new PixmapButton( this, NULL ); m_matViewButton -> move( 125,0 ); m_matViewButton -> setActiveGraphic( PLUGIN_NAME::getIconPixmap( "matview_active" ) ); m_matViewButton -> setInactiveGraphic( PLUGIN_NAME::getIconPixmap( "matview_inactive" ) ); ToolTip::add( m_matViewButton, tr( "Matrix view" ) ); m_matViewButton -> setWhatsThis( tr( "The Matrix view contains the modulation matrix. Here you can define " "the modulation relationships between the various operators: Each " "audible operator (oscillators 1-3) has 3-4 properties that can be " "modulated by any of the modulators. Using more modulations consumes " "more CPU power. \n\n" "The view is divided to modulation targets, grouped by the target oscillator. " "Available targets are volume, pitch, phase, pulse width and sub-osc ratio. " "Note: some targets are specific to one oscillator only. \n\n" "Each modulation target has 4 knobs, one for each modulator. By default " "the knobs are at 0, which means no modulation. Turning a knob to 1 causes " "that modulator to affect the modulation target as much as possible. Turning " "it to -1 does the same, but the modulation is inversed. " ) ); m_selectedViewGroup = new automatableButtonGroup( this ); m_selectedViewGroup -> addButton( m_opViewButton ); m_selectedViewGroup -> addButton( m_matViewButton ); connect( m_opViewButton, SIGNAL( clicked() ), this, SLOT( updateLayout() ) ); connect( m_matViewButton, SIGNAL( clicked() ), this, SLOT( updateLayout() ) ); } MonstroView::~MonstroView() { } void MonstroView::updateLayout() { switch( m_selectedViewGroup->model()->value() ) { case OPVIEW: m_operatorsView->show(); m_matrixView->hide(); break; case MATVIEW: m_operatorsView->hide(); m_matrixView->show(); break; } } void MonstroView::modelChanged() { MonstroInstrument * m = castModel(); m_osc1VolKnob-> setModel( &m-> m_osc1Vol ); m_osc1PanKnob-> setModel( &m-> m_osc1Pan ); m_osc1CrsKnob-> setModel( &m-> m_osc1Crs ); m_osc1FtlKnob-> setModel( &m-> m_osc1Ftl ); m_osc1FtrKnob-> setModel( &m-> m_osc1Ftr ); m_osc1SpoKnob-> setModel( &m-> m_osc1Spo ); m_osc1PwKnob-> setModel( &m-> m_osc1Pw ); m_osc1SSRButton-> setModel( &m-> m_osc1SSR ); m_osc1SSFButton-> setModel( &m-> m_osc1SSF ); m_osc2VolKnob-> setModel( &m-> m_osc2Vol ); m_osc2PanKnob-> setModel( &m-> m_osc2Pan ); m_osc2CrsKnob-> setModel( &m-> m_osc2Crs ); m_osc2FtlKnob-> setModel( &m-> m_osc2Ftl ); m_osc2FtrKnob-> setModel( &m-> m_osc2Ftr ); m_osc2SpoKnob-> setModel( &m-> m_osc2Spo ); m_osc2WaveBox-> setModel( &m-> m_osc2Wave ); m_osc2SyncHButton-> setModel( &m-> m_osc2SyncH ); m_osc2SyncRButton-> setModel( &m-> m_osc2SyncR ); m_osc3VolKnob-> setModel( &m-> m_osc3Vol ); m_osc3PanKnob-> setModel( &m-> m_osc3Pan ); m_osc3CrsKnob-> setModel( &m-> m_osc3Crs ); m_osc3SpoKnob-> setModel( &m-> m_osc3Spo ); m_osc3SubKnob-> setModel( &m-> m_osc3Sub ); m_osc3Wave1Box-> setModel( &m-> m_osc3Wave1 ); m_osc3Wave2Box-> setModel( &m-> m_osc3Wave2 ); m_osc3SyncHButton-> setModel( &m-> m_osc3SyncH ); m_osc3SyncRButton-> setModel( &m-> m_osc3SyncR ); m_lfo1WaveBox-> setModel( &m-> m_lfo1Wave ); m_lfo1AttKnob-> setModel( &m-> m_lfo1Att ); m_lfo1RateKnob-> setModel( &m-> m_lfo1Rate ); m_lfo1PhsKnob-> setModel( &m-> m_lfo1Phs ); m_lfo2WaveBox-> setModel( &m-> m_lfo2Wave ); m_lfo2AttKnob-> setModel( &m-> m_lfo2Att ); m_lfo2RateKnob-> setModel( &m-> m_lfo2Rate ); m_lfo2PhsKnob-> setModel( &m-> m_lfo2Phs ); m_env1PreKnob-> setModel( &m-> m_env1Pre ); m_env1AttKnob-> setModel( &m-> m_env1Att ); m_env1HoldKnob-> setModel( &m-> m_env1Hold ); m_env1DecKnob-> setModel( &m-> m_env1Dec ); m_env1SusKnob-> setModel( &m-> m_env1Sus ); m_env1RelKnob-> setModel( &m-> m_env1Rel ); m_env1SlopeKnob-> setModel( &m-> m_env1Slope ); m_env2PreKnob-> setModel( &m-> m_env2Pre ); m_env2AttKnob-> setModel( &m-> m_env2Att ); m_env2HoldKnob-> setModel( &m-> m_env2Hold ); m_env2DecKnob-> setModel( &m-> m_env2Dec ); m_env2SusKnob-> setModel( &m-> m_env2Sus ); m_env2RelKnob-> setModel( &m-> m_env2Rel ); m_env2SlopeKnob-> setModel( &m-> m_env2Slope ); m_o23ModGroup-> setModel( &m-> m_o23Mod ); m_selectedViewGroup-> setModel( &m-> m_selectedView ); m_vol1env1Knob-> setModel( &m-> m_vol1env1 ); m_vol1env2Knob-> setModel( &m-> m_vol1env2 ); m_vol1lfo1Knob-> setModel( &m-> m_vol1lfo1 ); m_vol1lfo2Knob-> setModel( &m-> m_vol1lfo2 ); m_vol2env1Knob-> setModel( &m-> m_vol2env1 ); m_vol2env2Knob-> setModel( &m-> m_vol2env2 ); m_vol2lfo1Knob-> setModel( &m-> m_vol2lfo1 ); m_vol2lfo2Knob-> setModel( &m-> m_vol2lfo2 ); m_vol3env1Knob-> setModel( &m-> m_vol3env1 ); m_vol3env2Knob-> setModel( &m-> m_vol3env2 ); m_vol3lfo1Knob-> setModel( &m-> m_vol3lfo1 ); m_vol3lfo2Knob-> setModel( &m-> m_vol3lfo2 ); m_phs1env1Knob-> setModel( &m-> m_phs1env1 ); m_phs1env2Knob-> setModel( &m-> m_phs1env2 ); m_phs1lfo1Knob-> setModel( &m-> m_phs1lfo1 ); m_phs1lfo2Knob-> setModel( &m-> m_phs1lfo2 ); m_phs2env1Knob-> setModel( &m-> m_phs2env1 ); m_phs2env2Knob-> setModel( &m-> m_phs2env2 ); m_phs2lfo1Knob-> setModel( &m-> m_phs2lfo1 ); m_phs2lfo2Knob-> setModel( &m-> m_phs2lfo2 ); m_phs3env1Knob-> setModel( &m-> m_phs3env1 ); m_phs3env2Knob-> setModel( &m-> m_phs3env2 ); m_phs3lfo1Knob-> setModel( &m-> m_phs3lfo1 ); m_phs3lfo2Knob-> setModel( &m-> m_phs3lfo2 ); m_pit1env1Knob-> setModel( &m-> m_pit1env1 ); m_pit1env2Knob-> setModel( &m-> m_pit1env2 ); m_pit1lfo1Knob-> setModel( &m-> m_pit1lfo1 ); m_pit1lfo2Knob-> setModel( &m-> m_pit1lfo2 ); m_pit2env1Knob-> setModel( &m-> m_pit2env1 ); m_pit2env2Knob-> setModel( &m-> m_pit2env2 ); m_pit2lfo1Knob-> setModel( &m-> m_pit2lfo1 ); m_pit2lfo2Knob-> setModel( &m-> m_pit2lfo2 ); m_pit3env1Knob-> setModel( &m-> m_pit3env1 ); m_pit3env2Knob-> setModel( &m-> m_pit3env2 ); m_pit3lfo1Knob-> setModel( &m-> m_pit3lfo1 ); m_pit3lfo2Knob-> setModel( &m-> m_pit3lfo2 ); m_pw1env1Knob-> setModel( &m-> m_pw1env1 ); m_pw1env2Knob-> setModel( &m-> m_pw1env2 ); m_pw1lfo1Knob-> setModel( &m-> m_pw1lfo1 ); m_pw1lfo2Knob-> setModel( &m-> m_pw1lfo2 ); m_sub3env1Knob-> setModel( &m-> m_sub3env1 ); m_sub3env2Knob-> setModel( &m-> m_sub3env2 ); m_sub3lfo1Knob-> setModel( &m-> m_sub3lfo1 ); m_sub3lfo2Knob-> setModel( &m-> m_sub3lfo2 ); } void MonstroView::setWidgetBackground( QWidget * _widget, const QString & _pic ) { _widget->setAutoFillBackground( true ); QPalette pal; pal.setBrush( _widget->backgroundRole(), PLUGIN_NAME::getIconPixmap( _pic.toLatin1().constData() ) ); _widget->setPalette( pal ); } QWidget * MonstroView::setupOperatorsView( QWidget * _parent ) { // operators view QWidget * view = new QWidget( _parent ); view-> setFixedSize( 250, 250 ); makeknob( m_osc1VolKnob, KNOBCOL1, O1ROW, tr( "Volume" ), "%", "osc1Knob" ) makeknob( m_osc1PanKnob, KNOBCOL2, O1ROW, tr( "Panning" ), "", "osc1Knob" ) makeknob( m_osc1CrsKnob, KNOBCOL3, O1ROW, tr( "Coarse detune" ), tr( " semitones" ), "osc1Knob" ) makeknob( m_osc1FtlKnob, KNOBCOL4, O1ROW, tr( "Finetune left" ), tr( " cents" ), "osc1Knob" ) makeknob( m_osc1FtrKnob, KNOBCOL5, O1ROW, tr( "Finetune right" ), tr( " cents" ), "osc1Knob" ) makeknob( m_osc1SpoKnob, KNOBCOL6, O1ROW, tr( "Stereo phase offset" ), tr( " deg" ), "osc1Knob" ) makeknob( m_osc1PwKnob, KNOBCOL7, O1ROW, tr( "Pulse width" ), "%", "osc1Knob" ) m_osc1VolKnob -> setVolumeKnob( true ); maketinyled( m_osc1SSRButton, 230, 34, tr( "Send sync on pulse rise" ) ) maketinyled( m_osc1SSFButton, 230, 44, tr( "Send sync on pulse fall" ) ) makeknob( m_osc2VolKnob, KNOBCOL1, O2ROW, tr( "Volume" ), "%", "osc2Knob" ) makeknob( m_osc2PanKnob, KNOBCOL2, O2ROW, tr( "Panning" ), "", "osc2Knob" ) makeknob( m_osc2CrsKnob, KNOBCOL3, O2ROW, tr( "Coarse detune" ), tr( " semitones" ), "osc2Knob" ) makeknob( m_osc2FtlKnob, KNOBCOL4, O2ROW, tr( "Finetune left" ), tr( " cents" ), "osc2Knob" ) makeknob( m_osc2FtrKnob, KNOBCOL5, O2ROW, tr( "Finetune right" ), tr( " cents" ), "osc2Knob" ) makeknob( m_osc2SpoKnob, KNOBCOL6, O2ROW, tr( "Stereo phase offset" ), tr( " deg" ), "osc2Knob" ) m_osc2VolKnob -> setVolumeKnob( true ); m_osc2WaveBox = new ComboBox( view ); m_osc2WaveBox -> setGeometry( 204, O2ROW + 7, 42, 22 ); m_osc2WaveBox->setFont( pointSize<8>( m_osc2WaveBox->font() ) ); maketinyled( m_osc2SyncHButton, 212, O2ROW - 3, tr( "Hard sync oscillator 2" ) ) maketinyled( m_osc2SyncRButton, 191, O2ROW - 3, tr( "Reverse sync oscillator 2" ) ) makeknob( m_osc3VolKnob, KNOBCOL1, O3ROW, tr( "Volume" ), "%", "osc3Knob" ) makeknob( m_osc3PanKnob, KNOBCOL2, O3ROW, tr( "Panning" ), "", "osc3Knob" ) makeknob( m_osc3CrsKnob, KNOBCOL3, O3ROW, tr( "Coarse detune" ), tr( " semitones" ), "osc3Knob" ) makeknob( m_osc3SpoKnob, KNOBCOL4, O3ROW, tr( "Stereo phase offset" ), tr( " deg" ), "osc3Knob" ) makeknob( m_osc3SubKnob, KNOBCOL5, O3ROW, tr( "Sub-osc mix" ), "", "osc3Knob" ) m_osc3VolKnob -> setVolumeKnob( true ); m_osc3Wave1Box = new ComboBox( view ); m_osc3Wave1Box -> setGeometry( 160, O3ROW + 7, 42, 22 ); m_osc3Wave1Box->setFont( pointSize<8>( m_osc3Wave1Box->font() ) ); m_osc3Wave2Box = new ComboBox( view ); m_osc3Wave2Box -> setGeometry( 204, O3ROW + 7, 42, 22 ); m_osc3Wave2Box->setFont( pointSize<8>( m_osc3Wave2Box->font() ) ); maketinyled( m_osc3SyncHButton, 212, O3ROW - 3, tr( "Hard sync oscillator 3" ) ) maketinyled( m_osc3SyncRButton, 191, O3ROW - 3, tr( "Reverse sync oscillator 3" ) ) m_lfo1WaveBox = new ComboBox( view ); m_lfo1WaveBox -> setGeometry( 2, LFOROW + 7, 42, 22 ); m_lfo1WaveBox->setFont( pointSize<8>( m_lfo1WaveBox->font() ) ); maketsknob( m_lfo1AttKnob, LFOCOL1, LFOROW, tr( "Attack" ), " ms", "lfoKnob" ) maketsknob( m_lfo1RateKnob, LFOCOL2, LFOROW, tr( "Rate" ), " ms", "lfoKnob" ) makeknob( m_lfo1PhsKnob, LFOCOL3, LFOROW, tr( "Phase" ), tr( " deg" ), "lfoKnob" ) m_lfo2WaveBox = new ComboBox( view ); m_lfo2WaveBox -> setGeometry( 127, LFOROW + 7, 42, 22 ); m_lfo2WaveBox->setFont( pointSize<8>( m_lfo2WaveBox->font() ) ); maketsknob( m_lfo2AttKnob, LFOCOL4, LFOROW, tr( "Attack" ), " ms", "lfoKnob" ) maketsknob( m_lfo2RateKnob, LFOCOL5, LFOROW, tr( "Rate" ), " ms", "lfoKnob" ) makeknob( m_lfo2PhsKnob, LFOCOL6, LFOROW, tr( "Phase" ), tr( " deg" ), "lfoKnob" ) maketsknob( m_env1PreKnob, KNOBCOL1, E1ROW, tr( "Pre-delay" ), " ms", "envKnob" ) maketsknob( m_env1AttKnob, KNOBCOL2, E1ROW, tr( "Attack" ), " ms", "envKnob" ) maketsknob( m_env1HoldKnob, KNOBCOL3, E1ROW, tr( "Hold" ), " ms", "envKnob" ) maketsknob( m_env1DecKnob, KNOBCOL4, E1ROW, tr( "Decay" ), " ms", "envKnob" ) makeknob( m_env1SusKnob, KNOBCOL5, E1ROW, tr( "Sustain" ), "", "envKnob" ) maketsknob( m_env1RelKnob, KNOBCOL6, E1ROW, tr( "Release" ), " ms", "envKnob" ) makeknob( m_env1SlopeKnob, KNOBCOL7, E1ROW, tr( "Slope" ), "", "envKnob" ) maketsknob( m_env2PreKnob, KNOBCOL1, E2ROW, tr( "Pre-delay" ), " ms", "envKnob" ) maketsknob( m_env2AttKnob, KNOBCOL2, E2ROW, tr( "Attack" ), " ms", "envKnob" ) maketsknob( m_env2HoldKnob, KNOBCOL3, E2ROW, tr( "Hold" ), " ms", "envKnob" ) maketsknob( m_env2DecKnob, KNOBCOL4, E2ROW, tr( "Decay" ), " ms", "envKnob" ) makeknob( m_env2SusKnob, KNOBCOL5, E2ROW, tr( "Sustain" ), "", "envKnob" ) maketsknob( m_env2RelKnob, KNOBCOL6, E2ROW, tr( "Release" ), " ms", "envKnob" ) makeknob( m_env2SlopeKnob, KNOBCOL7, E2ROW, tr( "Slope" ), "", "envKnob" ) // mod selector PixmapButton * m_mixButton = new PixmapButton( view, NULL ); m_mixButton -> move( 225, 185 ); m_mixButton -> setActiveGraphic( PLUGIN_NAME::getIconPixmap( "mix_active" ) ); m_mixButton -> setInactiveGraphic( PLUGIN_NAME::getIconPixmap( "mix_inactive" ) ); ToolTip::add( m_mixButton, tr( "Mix Osc2 with Osc3" ) ); PixmapButton * m_amButton = new PixmapButton( view, NULL ); m_amButton -> move( 225, 185 + 15 ); m_amButton -> setActiveGraphic( PLUGIN_NAME::getIconPixmap( "am_active" ) ); m_amButton -> setInactiveGraphic( PLUGIN_NAME::getIconPixmap( "am_inactive" ) ); ToolTip::add( m_amButton, tr( "Modulate amplitude of Osc3 with Osc2" ) ); PixmapButton * m_fmButton = new PixmapButton( view, NULL ); m_fmButton -> move( 225, 185 + 15*2 ); m_fmButton -> setActiveGraphic( PLUGIN_NAME::getIconPixmap( "fm_active" ) ); m_fmButton -> setInactiveGraphic( PLUGIN_NAME::getIconPixmap( "fm_inactive" ) ); ToolTip::add( m_fmButton, tr( "Modulate frequency of Osc3 with Osc2" ) ); PixmapButton * m_pmButton = new PixmapButton( view, NULL ); m_pmButton -> move( 225, 185 + 15*3 ); m_pmButton -> setActiveGraphic( PLUGIN_NAME::getIconPixmap( "pm_active" ) ); m_pmButton -> setInactiveGraphic( PLUGIN_NAME::getIconPixmap( "pm_inactive" ) ); ToolTip::add( m_pmButton, tr( "Modulate phase of Osc3 with Osc2" ) ); m_o23ModGroup = new automatableButtonGroup( view ); m_o23ModGroup-> addButton( m_mixButton ); m_o23ModGroup-> addButton( m_amButton ); m_o23ModGroup-> addButton( m_fmButton ); m_o23ModGroup-> addButton( m_pmButton ); //////////////////////////////////// // // // whatsthis-information strings // // // //////////////////////////////////// m_osc1CrsKnob -> setWhatsThis( tr( "The CRS knob changes the tuning of oscillator 1 in semitone steps. " ) ); m_osc2CrsKnob -> setWhatsThis( tr( "The CRS knob changes the tuning of oscillator 2 in semitone steps. " ) ); m_osc3CrsKnob -> setWhatsThis( tr( "The CRS knob changes the tuning of oscillator 3 in semitone steps. " ) ); m_osc1FtlKnob -> setWhatsThis( tr( "FTL and FTR change the finetuning of the oscillator for left and right " "channels respectively. These can add stereo-detuning to the oscillator " "which widens the stereo image and causes an illusion of space. " ) ); m_osc1FtrKnob -> setWhatsThis( tr( "FTL and FTR change the finetuning of the oscillator for left and right " "channels respectively. These can add stereo-detuning to the oscillator " "which widens the stereo image and causes an illusion of space. " ) ); m_osc2FtlKnob -> setWhatsThis( tr( "FTL and FTR change the finetuning of the oscillator for left and right " "channels respectively. These can add stereo-detuning to the oscillator " "which widens the stereo image and causes an illusion of space. " ) ); m_osc2FtrKnob -> setWhatsThis( tr( "FTL and FTR change the finetuning of the oscillator for left and right " "channels respectively. These can add stereo-detuning to the oscillator " "which widens the stereo image and causes an illusion of space. " ) ); m_osc1SpoKnob -> setWhatsThis( tr( "The SPO knob modifies the difference in phase between left and right " "channels. Higher difference creates a wider stereo image. " ) ); m_osc2SpoKnob -> setWhatsThis( tr( "The SPO knob modifies the difference in phase between left and right " "channels. Higher difference creates a wider stereo image. " ) ); m_osc3SpoKnob -> setWhatsThis( tr( "The SPO knob modifies the difference in phase between left and right " "channels. Higher difference creates a wider stereo image. " ) ); m_osc1PwKnob -> setWhatsThis( tr( "The PW knob controls the pulse width, also known as duty cycle, " "of oscillator 1. Oscillator 1 is a digital pulse wave oscillator, " "it doesn't produce bandlimited output, which means that you can " "use it as an audible oscillator but it will cause aliasing. You can " "also use it as an inaudible source of a sync signal, which can be " "used to synchronize oscillators 2 and 3. " ) ); m_osc1SSRButton -> setWhatsThis( tr( "Send Sync on Rise: When enabled, the Sync signal is sent every time " "the state of oscillator 1 changes from low to high, ie. when the amplitude " "changes from -1 to 1. " "Oscillator 1's pitch, phase and pulse width may affect the timing of syncs, " "but its volume has no effect on them. Sync signals are sent independently " "for both left and right channels. " ) ); m_osc1SSFButton -> setWhatsThis( tr( "Send Sync on Fall: When enabled, the Sync signal is sent every time " "the state of oscillator 1 changes from high to low, ie. when the amplitude " "changes from 1 to -1. " "Oscillator 1's pitch, phase and pulse width may affect the timing of syncs, " "but its volume has no effect on them. Sync signals are sent independently " "for both left and right channels. " ) ); m_osc2SyncHButton -> setWhatsThis( tr( "Hard sync: Every time the oscillator receives a sync signal from oscillator 1, " "its phase is reset to 0 + whatever its phase offset is. " ) ); m_osc3SyncHButton -> setWhatsThis( tr( "Hard sync: Every time the oscillator receives a sync signal from oscillator 1, " "its phase is reset to 0 + whatever its phase offset is. " ) ); m_osc2SyncRButton -> setWhatsThis( tr( "Reverse sync: Every time the oscillator receives a sync signal from oscillator 1, " "the amplitude of the oscillator gets inverted. " ) ); m_osc3SyncRButton -> setWhatsThis( tr( "Reverse sync: Every time the oscillator receives a sync signal from oscillator 1, " "the amplitude of the oscillator gets inverted. " ) ); m_osc2WaveBox -> setWhatsThis( tr( "Choose waveform for oscillator 2. " ) ); m_osc3Wave1Box -> setWhatsThis( tr( "Choose waveform for oscillator 3's first sub-osc. " "Oscillator 3 can smoothly interpolate between two different waveforms. " ) ); m_osc3Wave2Box -> setWhatsThis( tr( "Choose waveform for oscillator 3's second sub-osc. " "Oscillator 3 can smoothly interpolate between two different waveforms. " ) ); m_osc3SubKnob -> setWhatsThis( tr( "The SUB knob changes the mixing ratio of the two sub-oscs of oscillator 3. " "Each sub-osc can be set to produce a different waveform, and oscillator 3 " "can smoothly interpolate between them. All incoming modulations to oscillator 3 are applied " "to both sub-oscs/waveforms in the exact same way. " ) ); m_mixButton -> setWhatsThis( tr( "In addition to dedicated modulators, Monstro allows oscillator 3 to be modulated by " "the output of oscillator 2. \n\n" "Mix mode means no modulation: the outputs of the oscillators are simply mixed together. " ) ); m_amButton -> setWhatsThis( tr( "In addition to dedicated modulators, Monstro allows oscillator 3 to be modulated by " "the output of oscillator 2. \n\n" "AM means amplitude modulation: Oscillator 3's amplitude (volume) is modulated by oscillator 2. " ) ); m_fmButton -> setWhatsThis( tr( "In addition to dedicated modulators, Monstro allows oscillator 3 to be modulated by " "the output of oscillator 2. \n\n" "FM means frequency modulation: Oscillator 3's frequency (pitch) is modulated by oscillator 2. " "The frequency modulation is implemented as phase modulation, which gives a more stable overall pitch " "than \"pure\" frequency modulation. " ) ); m_pmButton -> setWhatsThis( tr( "In addition to dedicated modulators, Monstro allows oscillator 3 to be modulated by " "the output of oscillator 2. \n\n" "PM means phase modulation: Oscillator 3's phase is modulated by oscillator 2. " "It differs from frequency modulation in that the phase changes are not cumulative. " ) ); m_lfo1WaveBox -> setWhatsThis( tr( "Select the waveform for LFO 1. \n" "\"Random\" and \"Random smooth\" are special waveforms: " "they produce random output, where the rate of the LFO controls how often " "the state of the LFO changes. The smooth version interpolates between these " "states with cosine interpolation. These random modes can be used to give " "\"life\" to your presets - add some of that analog unpredictability... " ) ); m_lfo2WaveBox -> setWhatsThis( tr( "Select the waveform for LFO 2. \n" "\"Random\" and \"Random smooth\" are special waveforms: " "they produce random output, where the rate of the LFO controls how often " "the state of the LFO changes. The smooth version interpolates between these " "states with cosine interpolation. These random modes can be used to give " "\"life\" to your presets - add some of that analog unpredictability... " ) ); m_lfo1AttKnob -> setWhatsThis( tr( "Attack causes the LFO to come on gradually from the start of the note. " ) ); m_lfo2AttKnob -> setWhatsThis( tr( "Attack causes the LFO to come on gradually from the start of the note. " ) ); m_lfo1RateKnob -> setWhatsThis( tr( "Rate sets the speed of the LFO, measured in milliseconds per cycle. Can be synced to tempo. " ) ); m_lfo2RateKnob -> setWhatsThis( tr( "Rate sets the speed of the LFO, measured in milliseconds per cycle. Can be synced to tempo. " ) ); m_lfo1PhsKnob -> setWhatsThis( tr( "PHS controls the phase offset of the LFO. " ) ); m_lfo2PhsKnob -> setWhatsThis( tr( "PHS controls the phase offset of the LFO. " ) ); m_env1PreKnob -> setWhatsThis( tr( "PRE, or pre-delay, delays the start of the envelope from the start of the note. 0 means no delay. " ) ); m_env2PreKnob -> setWhatsThis( tr( "PRE, or pre-delay, delays the start of the envelope from the start of the note. 0 means no delay. " ) ); m_env1AttKnob -> setWhatsThis( tr( "ATT, or attack, controls how fast the envelope ramps up at start, measured in milliseconds. " "A value of 0 means instant. " ) ); m_env2AttKnob -> setWhatsThis( tr( "ATT, or attack, controls how fast the envelope ramps up at start, measured in milliseconds. " "A value of 0 means instant. " ) ); m_env1HoldKnob -> setWhatsThis( tr( "HOLD controls how long the envelope stays at peak after the attack phase. " ) ); m_env2HoldKnob -> setWhatsThis( tr( "HOLD controls how long the envelope stays at peak after the attack phase. " ) ); m_env1DecKnob -> setWhatsThis( tr( "DEC, or decay, controls how fast the envelope falls off from its peak, measured in milliseconds " "it would take to go from peak to zero. The actual decay may be shorter if sustain is used. ") ); m_env2DecKnob -> setWhatsThis( tr( "DEC, or decay, controls how fast the envelope falls off from its peak, measured in milliseconds " "it would take to go from peak to zero. The actual decay may be shorter if sustain is used. ") ); m_env1SusKnob -> setWhatsThis( tr( "SUS, or sustain, controls the sustain level of the envelope. The decay phase will not go below this level " "as long as the note is held. " ) ); m_env2SusKnob -> setWhatsThis( tr( "SUS, or sustain, controls the sustain level of the envelope. The decay phase will not go below this level " "as long as the note is held. " ) ); m_env1RelKnob -> setWhatsThis( tr( "REL, or release, controls how long the release is for the note, measured in how long it would take to " "fall from peak to zero. Actual release may be shorter, depending on at what phase the note is released. ") ); m_env2RelKnob -> setWhatsThis( tr( "REL, or release, controls how long the release is for the note, measured in how long it would take to " "fall from peak to zero. Actual release may be shorter, depending on at what phase the note is released. ") ); m_env1SlopeKnob -> setWhatsThis( tr( "The slope knob controls the curve or shape of the envelope. A value of 0 creates straight rises and falls. " "Negative values create curves that start slowly, peak quickly and fall of slowly again. " "Positive values create curves that start and end quickly, and stay longer near the peaks. " ) ); m_env2SlopeKnob -> setWhatsThis( tr( "The slope knob controls the curve or shape of the envelope. A value of 0 creates straight rises and falls. " "Negative values create curves that start slowly, peak quickly and fall of slowly again. " "Positive values create curves that start and end quickly, and stay longer near the peaks. " ) ); return( view ); } QWidget * MonstroView::setupMatrixView( QWidget * _parent ) { // matrix view QWidget * view = new QWidget( _parent ); view-> setFixedSize( 250, 250 ); makeknob( m_vol1env1Knob, MATCOL1, MATROW1, tr( "Modulation amount" ), "", "matrixKnob" ) makeknob( m_vol1env2Knob, MATCOL2, MATROW1, tr( "Modulation amount" ), "", "matrixKnob" ) makeknob( m_vol1lfo1Knob, MATCOL3, MATROW1, tr( "Modulation amount" ), "", "matrixKnob" ) makeknob( m_vol1lfo2Knob, MATCOL4, MATROW1, tr( "Modulation amount" ), "", "matrixKnob" ) makeknob( m_vol2env1Knob, MATCOL1, MATROW3, tr( "Modulation amount" ), "", "matrixKnob" ) makeknob( m_vol2env2Knob, MATCOL2, MATROW3, tr( "Modulation amount" ), "", "matrixKnob" ) makeknob( m_vol2lfo1Knob, MATCOL3, MATROW3, tr( "Modulation amount" ), "", "matrixKnob" ) makeknob( m_vol2lfo2Knob, MATCOL4, MATROW3, tr( "Modulation amount" ), "", "matrixKnob" ) makeknob( m_vol3env1Knob, MATCOL1, MATROW5, tr( "Modulation amount" ), "", "matrixKnob" ) makeknob( m_vol3env2Knob, MATCOL2, MATROW5, tr( "Modulation amount" ), "", "matrixKnob" ) makeknob( m_vol3lfo1Knob, MATCOL3, MATROW5, tr( "Modulation amount" ), "", "matrixKnob" ) makeknob( m_vol3lfo2Knob, MATCOL4, MATROW5, tr( "Modulation amount" ), "", "matrixKnob" ) makeknob( m_phs1env1Knob, MATCOL1, MATROW2, tr( "Modulation amount" ), "", "matrixKnob" ) makeknob( m_phs1env2Knob, MATCOL2, MATROW2, tr( "Modulation amount" ), "", "matrixKnob" ) makeknob( m_phs1lfo1Knob, MATCOL3, MATROW2, tr( "Modulation amount" ), "", "matrixKnob" ) makeknob( m_phs1lfo2Knob, MATCOL4, MATROW2, tr( "Modulation amount" ), "", "matrixKnob" ) makeknob( m_phs2env1Knob, MATCOL1, MATROW4, tr( "Modulation amount" ), "", "matrixKnob" ) makeknob( m_phs2env2Knob, MATCOL2, MATROW4, tr( "Modulation amount" ), "", "matrixKnob" ) makeknob( m_phs2lfo1Knob, MATCOL3, MATROW4, tr( "Modulation amount" ), "", "matrixKnob" ) makeknob( m_phs2lfo2Knob, MATCOL4, MATROW4, tr( "Modulation amount" ), "", "matrixKnob" ) makeknob( m_phs3env1Knob, MATCOL1, MATROW6, tr( "Modulation amount" ), "", "matrixKnob" ) makeknob( m_phs3env2Knob, MATCOL2, MATROW6, tr( "Modulation amount" ), "", "matrixKnob" ) makeknob( m_phs3lfo1Knob, MATCOL3, MATROW6, tr( "Modulation amount" ), "", "matrixKnob" ) makeknob( m_phs3lfo2Knob, MATCOL4, MATROW6, tr( "Modulation amount" ), "", "matrixKnob" ) makeknob( m_pit1env1Knob, MATCOL5, MATROW1, tr( "Modulation amount" ), "", "matrixKnob" ) makeknob( m_pit1env2Knob, MATCOL6, MATROW1, tr( "Modulation amount" ), "", "matrixKnob" ) makeknob( m_pit1lfo1Knob, MATCOL7, MATROW1, tr( "Modulation amount" ), "", "matrixKnob" ) makeknob( m_pit1lfo2Knob, MATCOL8, MATROW1, tr( "Modulation amount" ), "", "matrixKnob" ) makeknob( m_pit2env1Knob, MATCOL5, MATROW3, tr( "Modulation amount" ), "", "matrixKnob" ) makeknob( m_pit2env2Knob, MATCOL6, MATROW3, tr( "Modulation amount" ), "", "matrixKnob" ) makeknob( m_pit2lfo1Knob, MATCOL7, MATROW3, tr( "Modulation amount" ), "", "matrixKnob" ) makeknob( m_pit2lfo2Knob, MATCOL8, MATROW3, tr( "Modulation amount" ), "", "matrixKnob" ) makeknob( m_pit3env1Knob, MATCOL5, MATROW5, tr( "Modulation amount" ), "", "matrixKnob" ) makeknob( m_pit3env2Knob, MATCOL6, MATROW5, tr( "Modulation amount" ), "", "matrixKnob" ) makeknob( m_pit3lfo1Knob, MATCOL7, MATROW5, tr( "Modulation amount" ), "", "matrixKnob" ) makeknob( m_pit3lfo2Knob, MATCOL8, MATROW5, tr( "Modulation amount" ), "", "matrixKnob" ) makeknob( m_pw1env1Knob, MATCOL5, MATROW2, tr( "Modulation amount" ), "", "matrixKnob" ) makeknob( m_pw1env2Knob, MATCOL6, MATROW2, tr( "Modulation amount" ), "", "matrixKnob" ) makeknob( m_pw1lfo1Knob, MATCOL7, MATROW2, tr( "Modulation amount" ), "", "matrixKnob" ) makeknob( m_pw1lfo2Knob, MATCOL8, MATROW2, tr( "Modulation amount" ), "", "matrixKnob" ) makeknob( m_sub3env1Knob, MATCOL5, MATROW6, tr( "Modulation amount" ), "", "matrixKnob" ) makeknob( m_sub3env2Knob, MATCOL6, MATROW6, tr( "Modulation amount" ), "", "matrixKnob" ) makeknob( m_sub3lfo1Knob, MATCOL7, MATROW6, tr( "Modulation amount" ), "", "matrixKnob" ) makeknob( m_sub3lfo2Knob, MATCOL8, MATROW6, tr( "Modulation amount" ), "", "matrixKnob" ) return( view ); } extern "C" { // necessary for getting instance out of shared lib Plugin * PLUGIN_EXPORT lmms_plugin_main( Model *, void * _data ) { return new MonstroInstrument( static_cast( _data ) ); } }