/* * CrossoverEQ.cpp - A native 4-band Crossover Equalizer * good for simulating tonestacks or simple peakless (flat-band) equalization * * Copyright (c) 2014 Vesa Kivimäki * Copyright (c) 2006-2014 Tobias Doerffel * * This file is part of LMMS - http://lmms.io * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program (see COPYING); if not, write to the * Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301 USA. * */ #include "CrossoverEQ.h" #include "lmms_math.h" #include "embed.cpp" extern "C" { Plugin::Descriptor PLUGIN_EXPORT crossovereq_plugin_descriptor = { STRINGIFY( PLUGIN_NAME ), "Crossover Equalizer", QT_TRANSLATE_NOOP( "pluginBrowser", "A 4-band Crossover Equalizer" ), "Vesa Kivimäki ", 0x0100, Plugin::Effect, new PluginPixmapLoader( "logo" ), NULL, NULL }; } CrossoverEQEffect::CrossoverEQEffect( Model* parent, const Descriptor::SubPluginFeatures::Key* key ) : Effect( &crossovereq_plugin_descriptor, parent, key ), m_controls( this ), m_sampleRate( Engine::mixer()->processingSampleRate() ), m_lp1( m_sampleRate ), m_lp2( m_sampleRate ), m_lp3( m_sampleRate ), m_hp2( m_sampleRate ), m_hp3( m_sampleRate ), m_hp4( m_sampleRate ), m_needsUpdate( true ) { m_tmp1 = MM_ALLOC( sampleFrame, Engine::mixer()->framesPerPeriod() ); m_tmp2 = MM_ALLOC( sampleFrame, Engine::mixer()->framesPerPeriod() ); m_work = MM_ALLOC( sampleFrame, Engine::mixer()->framesPerPeriod() ); } CrossoverEQEffect::~CrossoverEQEffect() { MM_FREE( m_tmp1 ); MM_FREE( m_tmp2 ); MM_FREE( m_work ); } void CrossoverEQEffect::sampleRateChanged() { m_sampleRate = Engine::mixer()->processingSampleRate(); m_lp1.setSampleRate( m_sampleRate ); m_lp2.setSampleRate( m_sampleRate ); m_lp3.setSampleRate( m_sampleRate ); m_hp2.setSampleRate( m_sampleRate ); m_hp3.setSampleRate( m_sampleRate ); m_hp4.setSampleRate( m_sampleRate ); m_needsUpdate = true; } bool CrossoverEQEffect::processAudioBuffer( sampleFrame* buf, const fpp_t frames ) { if( !isEnabled() || !isRunning () ) { return( false ); } // filters update if( m_needsUpdate || m_controls.m_xover12.isValueChanged() ) { m_lp1.setLowpass( m_controls.m_xover12.value() ); m_lp1.clearHistory(); m_hp2.setHighpass( m_controls.m_xover12.value() ); m_hp2.clearHistory(); } if( m_needsUpdate || m_controls.m_xover23.isValueChanged() ) { m_lp2.setLowpass( m_controls.m_xover23.value() ); m_lp2.clearHistory(); m_hp3.setHighpass( m_controls.m_xover23.value() ); m_hp3.clearHistory(); } if( m_needsUpdate || m_controls.m_xover34.isValueChanged() ) { m_lp3.setLowpass( m_controls.m_xover34.value() ); m_lp3.clearHistory(); m_hp4.setHighpass( m_controls.m_xover34.value() ); m_hp4.clearHistory(); } // gain values update if( m_needsUpdate || m_controls.m_gain1.isValueChanged() ) { m_gain1 = dbvToAmp( m_controls.m_gain1.value() ); } if( m_needsUpdate || m_controls.m_gain2.isValueChanged() ) { m_gain2 = dbvToAmp( m_controls.m_gain2.value() ); } if( m_needsUpdate || m_controls.m_gain3.isValueChanged() ) { m_gain3 = dbvToAmp( m_controls.m_gain3.value() ); } if( m_needsUpdate || m_controls.m_gain4.isValueChanged() ) { m_gain4 = dbvToAmp( m_controls.m_gain4.value() ); } // mute values update const bool mute1 = m_controls.m_mute1.value(); const bool mute2 = m_controls.m_mute2.value(); const bool mute3 = m_controls.m_mute3.value(); const bool mute4 = m_controls.m_mute4.value(); m_needsUpdate = false; memset( m_work, 0, sizeof( sampleFrame ) * frames ); // run temp bands for( int f = 0; f < frames; ++f ) { m_tmp1[f][0] = m_lp2.update( buf[f][0], 0 ); m_tmp1[f][1] = m_lp2.update( buf[f][1], 1 ); m_tmp2[f][0] = m_hp3.update( buf[f][0], 0 ); m_tmp2[f][1] = m_hp3.update( buf[f][1], 1 ); } // run band 1 if( ! mute1 ) { for( int f = 0; f < frames; ++f ) { m_work[f][0] += m_lp1.update( m_tmp1[f][0], 0 ) * m_gain1; m_work[f][1] += m_lp1.update( m_tmp1[f][1], 1 ) * m_gain1; } } // run band 2 if( ! mute2 ) { for( int f = 0; f < frames; ++f ) { m_work[f][0] += m_hp2.update( m_tmp1[f][0], 0 ) * m_gain2; m_work[f][1] += m_hp2.update( m_tmp1[f][1], 1 ) * m_gain2; } } // run band 3 if( ! mute3 ) { for( int f = 0; f < frames; ++f ) { m_work[f][0] += m_lp3.update( m_tmp2[f][0], 0 ) * m_gain3; m_work[f][1] += m_lp3.update( m_tmp2[f][1], 1 ) * m_gain3; } } // run band 4 if( ! mute4 ) { for( int f = 0; f < frames; ++f ) { m_work[f][0] += m_hp4.update( m_tmp2[f][0], 0 ) * m_gain4; m_work[f][1] += m_hp4.update( m_tmp2[f][1], 1 ) * m_gain4; } } const float d = dryLevel(); const float w = wetLevel(); double outSum = 0.0; for( int f = 0; f < frames; ++f ) { outSum = buf[f][0] * buf[f][0] + buf[f][1] * buf[f][1]; buf[f][0] = d * buf[f][0] + w * m_work[f][0]; buf[f][1] = d * buf[f][1] + w * m_work[f][1]; } checkGate( outSum ); return isRunning(); } extern "C" { // necessary for getting instance out of shared lib Plugin * PLUGIN_EXPORT lmms_plugin_main( Model* parent, void* data ) { return new CrossoverEQEffect( parent, static_cast( data ) ); } }