/* * Delay.h - Delay effect objects to use as building blocks in DSP * * Copyright (c) 2014 Vesa Kivimäki * Copyright (c) 2006-2014 Tobias Doerffel * * This file is part of LMMS - http://lmms.io * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program (see COPYING); if not, write to the * Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301 USA. * */ #ifndef DELAY_H #define DELAY_H #include "lmms_basics.h" #include "lmms_math.h" #include "interpolation.h" #include "MemoryManager.h" // brief usage // Classes: // CombFeedback: a feedback comb filter - basically a simple delay line, makes a comb shape in the freq response // CombFeedfwd: a feed-forward comb filter - an "inverted" comb filter, can be combined with CombFeedback to create a net allpass if negative gain is used // CombFeedbackDualtap: same as CombFeedback but takes two delay values // AllpassDelay: an allpass delay - combines feedback and feed-forward - has flat frequency response // all classes are templated with channel count, any arbitrary channel count can be used for each fx // Methods (for all classes): // setDelay sets delay amount in frames. It's up to you to make this samplerate-agnostic. // Fractions are allowed - linear interpolation is used to deal with them // CombFeedbackDualTap is a special case: it requires 2 delay times // setMaxDelay (re)sets the maximum allowed delay, in frames // NOTE: for performance reasons, there's no bounds checking at setDelay, so make sure you set maxDelay >= delay! // clearHistory clears the delay buffer // setGain sets the feedback/feed-forward gain, in linear amplitude, negative values are allowed // 1.0 is full feedback/feed-forward, -1.0 is full negative feedback/feed-forward // update runs the fx for one frame - takes as arguments input and number of channel to run, returns output template class CombFeedback { public: typedef double frame[CHANNELS]; CombFeedback( int maxDelay ) : m_size( maxDelay ), m_position( 0 ), m_feedBack( 0.0 ), m_delay( 0 ), m_fraction( 0.0 ) { m_buffer = MM_ALLOC( frame, maxDelay ); memset( m_buffer, 0, sizeof( frame ) * maxDelay ); } virtual ~CombFeedback() { MM_FREE( m_buffer ); } inline void setMaxDelay( int maxDelay ) { if( maxDelay > m_size ) { MM_FREE( m_buffer ); m_buffer = MM_ALLOC( frame, maxDelay ); memset( m_buffer, 0, sizeof( frame ) * maxDelay ); } m_size = maxDelay; m_position %= m_size; } inline void clearHistory() { memset( m_buffer, 0, sizeof( frame ) * m_size ); } inline void setDelay( double delay ) { m_delay = static_cast( ceil( delay ) ); m_fraction = 1.0 - ( delay - floor( delay ) ); } inline void setGain( double gain ) { m_gain = gain; } inline double update( double in, ch_cnt_t ch ) { int readPos = m_position - m_delay; if( readPos < 0 ) { readPos += m_size; } const double y = linearInterpolate( m_buffer[readPos][ch], m_buffer[( readPos + 1 ) % m_size][ch], m_fraction ); ++m_position %= m_size; m_buffer[m_position][ch] = in + m_gain * y; return y; } private: frame * m_buffer; int m_size; int m_position; double m_gain; int m_delay; double m_fraction; }; template class CombFeedfwd { typedef double frame[CHANNELS]; CombFeedfwd( int maxDelay ) : m_size( maxDelay ), m_position( 0 ), m_feedBack( 0.0 ), m_delay( 0 ), m_fraction( 0.0 ) { m_buffer = MM_ALLOC( frame, maxDelay ); memset( m_buffer, 0, sizeof( frame ) * maxDelay ); } virtual ~CombFeedfwd() { MM_FREE( m_buffer ); } inline void setMaxDelay( int maxDelay ) { if( maxDelay > m_size ) { MM_FREE( m_buffer ); m_buffer = MM_ALLOC( frame, maxDelay ); memset( m_buffer, 0, sizeof( frame ) * maxDelay ); } m_size = maxDelay; m_position %= m_size; } inline void clearHistory() { memset( m_buffer, 0, sizeof( frame ) * m_size ); } inline void setDelay( double delay ) { m_delay = static_cast( ceil( delay ) ); m_fraction = 1.0 - ( delay - floor( delay ) ); } inline void setGain( double gain ) { m_gain = gain; } inline double update( double in, ch_cnt_t ch ) { int readPos = m_position - m_delay; if( readPos < 0 ) { readPos += m_size; } const double y = linearInterpolate( m_buffer[readPos][ch], m_buffer[( readPos + 1 ) % m_size][ch], m_fraction ) + in * m_gain; ++m_position %= m_size; m_buffer[m_position][ch] = in; return y; } private: frame * m_buffer; int m_size; int m_position; double m_gain; int m_delay; double m_fraction; }; template class CombFeedbackDualtap { typedef double frame[CHANNELS]; CombFeedbackDualtap( int maxDelay ) : m_size( maxDelay ), m_position( 0 ), m_feedBack( 0.0 ), m_delay( 0 ), m_fraction( 0.0 ) { m_buffer = MM_ALLOC( frame, maxDelay ); memset( m_buffer, 0, sizeof( frame ) * maxDelay ); } virtual ~CombFeedbackDualtap() { MM_FREE( m_buffer ); } inline void setMaxDelay( int maxDelay ) { if( maxDelay > m_size ) { MM_FREE( m_buffer ); m_buffer = MM_ALLOC( frame, maxDelay ); memset( m_buffer, 0, sizeof( frame ) * maxDelay ); } m_size = maxDelay; m_position %= m_size; } inline void clearHistory() { memset( m_buffer, 0, sizeof( frame ) * m_size ); } inline void setDelays( double delay1, double delay2 ) { m_delay1 = static_cast( ceil( delay1 ) ); m_fraction1 = 1.0 - ( delay1 - floor( delay1 ) ); m_delay2 = static_cast( ceil( delay2 ) ); m_fraction2 = 1.0 - ( delay2 - floor( delay2 ) ); } inline void setGain( double gain ) { m_gain = gain; } inline double update( double in, ch_cnt_t ch ) { int readPos1 = m_position - m_delay1; if( readPos1 < 0 ) { readPos1 += m_size; } int readPos2 = m_position - m_delay2; if( readPos2 < 0 ) { readPos2 += m_size; } const double y = linearInterpolate( m_buffer[readPos1][ch], m_buffer[( readPos1 + 1 ) % m_size][ch], m_fraction1 ) + linearInterpolate( m_buffer[readPos2][ch], m_buffer[( readPos2 + 1 ) % m_size][ch], m_fraction2 ); ++m_position %= m_size; m_buffer[m_position][ch] = in + m_gain * y; return y; } private: frame * m_buffer; int m_size; int m_position; double m_gain; int m_delay1; int m_delay2; double m_fraction1; double m_fraction2; }; template class AllpassDelay { public: typedef double frame[CHANNELS]; AllpassDelay( int maxDelay ) : m_size( maxDelay ), m_position( 0 ), m_feedBack( 0.0 ), m_delay( 0 ), m_fraction( 0.0 ) { m_buffer = MM_ALLOC( frame, maxDelay ); memset( m_buffer, 0, sizeof( frame ) * maxDelay ); } virtual ~AllpassDelay() { MM_FREE( m_buffer ); } inline void setMaxDelay( int maxDelay ) { if( maxDelay > m_size ) { MM_FREE( m_buffer ); m_buffer = MM_ALLOC( frame, maxDelay ); memset( m_buffer, 0, sizeof( frame ) * maxDelay ); } m_size = maxDelay; m_position %= m_size; } inline void clearHistory() { memset( m_buffer, 0, sizeof( frame ) * m_size ); } inline void setDelay( double delay ) { m_delay = static_cast( ceil( delay ) ); m_fraction = 1.0 - ( delay - floor( delay ) ); } inline void setGain( double gain ) { m_gain = gain; } inline double update( double in, ch_cnt_t ch ) { int readPos = m_position - m_delay; if( readPos < 0 ) { readPos += m_size; } const double y = linearInterpolate( m_buffer[readPos][ch], m_buffer[( readPos + 1 ) % m_size][ch], m_fraction ) + in * -m_gain; const double x = in + m_gain * y; ++m_position %= m_size; m_buffer[m_position][ch] = x; return y; } private: frame * m_buffer; int m_size; int m_position; double m_gain; int m_delay; double m_fraction; }; // convenience typedefs for stereo effects typedef CombFeedback<2> StereoCombFeedback; typedef CombFeedfwd<2> StereoCombFeedfwd; typedef CombFeedbackDualtap<2> StereoCombFeedbackDualtap; typedef AllpassDelay<2> StereoAllpassDelay; #endif