/* * interpolation.h - fast implementations of several interpolation-algorithms * * Copyright (c) 2004-2005 Tobias Doerffel * * This file is part of LMMS - http://lmms.io * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program (see COPYING); if not, write to the * Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301 USA. * */ #ifndef INTERPOLATION_H #define INTERPOLATION_H #ifndef __USE_XOPEN #define __USE_XOPEN #endif #include #include "lmms_constants.h" #include "lmms_math.h" inline float hermiteInterpolate( float x0, float x1, float x2, float x3, float frac_pos ) { const float frsq = frac_pos*frac_pos; const float frsq2 = 2*frsq; return( ( (x2-x0) *0.5f ) * ( frac_pos * (frsq+1) -frsq2 ) + ( frsq2*frac_pos - 3*frsq ) * ( x1-x2 ) + frsq2 * (frac_pos-1) * ( ( x3-x1 ) * 0.25f ) + x1 ); /* const float frsq = frac_pos*frac_pos; //const float frsq2 = 2*frsq; frac_pos *= 0.5; const float frcu = frsq*frac_pos; return ( (frcu - frsq + frac_pos) * ((x2 - x0)) + (4*frcu - 3*frsq) * (x1 - x2) //frsq*(2*frac_pos-3) * (x1 - x2) + (frcu - 0.5*frsq)*((x3 - x1)) + x1 ); */ } inline float cubicInterpolate( float v0, float v1, float v2, float v3, float x ) { float frsq = x*x; float frcu = frsq*v0; float t1 = v3 + 3*v1; return( v1 + fastFmaf( 0.5f, frcu, x ) * ( v2 - frcu * ( 1.0f/6.0f ) - fastFmaf( t1, ( 1.0f/6.0f ), -v0 ) * ( 1.0f/3.0f ) ) + frsq * x * ( t1 * ( 1.0f/6.0f ) - 0.5f * v2 ) + frsq * fastFmaf( 0.5f, v2, -v1 ) ); } inline float cosinusInterpolate( float v0, float v1, float x ) { const float f = ( 1.0f - cosf( x * F_PI ) ) * 0.5f; return fastFmaf( f, v1-v0, v0 ); } inline float linearInterpolate( float v0, float v1, float x ) { return fastFmaf( x, v1-v0, v0 ); } inline float optimalInterpolate( float v0, float v1, float x ) { const float z = x - 0.5f; const float even = v1 + v0; const float odd = v1 - v0; const float c0 = even * 0.50037842517188658; const float c1 = odd * 1.00621089801788210; const float c2 = even * -0.004541102062639801; const float c3 = odd * -1.57015627178718420; return fastFmaf( fastFmaf( fastFmaf( c3, z, c2 ), z, c1 ), z, c0 ); } inline float optimal4pInterpolate( float v0, float v1, float v2, float v3, float x ) { const float z = x - 0.5f; const float even1 = v2 + v1; const float odd1 = v2 - v1; const float even2 = v3 + v0; const float odd2 = v3 - v0; const float c0 = even1 * 0.45868970870461956 + even2 * 0.04131401926395584; const float c1 = odd1 * 0.48068024766578432 + odd2 * 0.17577925564495955; const float c2 = even1 * -0.246185007019907091 + even2 * 0.24614027139700284; const float c3 = odd1 * -0.36030925263849456 + odd2 * 0.10174985775982505; return fastFmaf( fastFmaf( fastFmaf( c3, z, c2 ), z, c1 ), z, c0 ); } inline float lagrangeInterpolate( float v0, float v1, float v2, float v3, float x ) { const float c0 = v1; const float c1 = v2 - v0 * ( 1.0f / 3.0f ) - v1 * 0.5f - v3 * ( 1.0f / 6.0f ); const float c2 = 0.5f * (v0 + v2) - v1; const float c3 = ( 1.0f/6.0f ) * ( v3 - v0 ) + 0.5f * ( v1 - v2 ); return fastFmaf( fastFmaf( fastFmaf( c3, x, c2 ), x, c1 ), x, c0 ); } #endif