Files
lmms/plugins/SpectrumAnalyzer/SaProcessor.cpp
Martin Pavelek c3b4d5188a New Spectrum Analyzer (#4950)
Replace old spectrum analyzer by new one with higher resolution and
many new features.

Resolves #2847.
2019-07-17 22:45:26 +02:00

572 lines
18 KiB
C++

/* SaProcessor.cpp - implementation of SaProcessor class.
*
* Copyright (c) 2019 Martin Pavelek <he29/dot/HS/at/gmail/dot/com>
*
* Based partially on Eq plugin code,
* Copyright (c) 2014-2017, David French <dave/dot/french3/at/googlemail/dot/com>
*
* This file is part of LMMS - https://lmms.io
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program (see COPYING); if not, write to the
* Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301 USA.
*
*/
#include "SaProcessor.h"
#include <algorithm>
#include <cmath>
#include <iostream>
#include <QMutexLocker>
#include "lmms_math.h"
SaProcessor::SaProcessor(SaControls *controls) :
m_controls(controls),
m_inBlockSize(FFT_BLOCK_SIZES[0]),
m_fftBlockSize(FFT_BLOCK_SIZES[0]),
m_sampleRate(Engine::mixer()->processingSampleRate()),
m_framesFilledUp(0),
m_spectrumActive(false),
m_waterfallActive(false),
m_waterfallNotEmpty(0),
m_reallocating(false)
{
m_fftWindow.resize(m_inBlockSize, 1.0);
precomputeWindow(m_fftWindow.data(), m_inBlockSize, BLACKMAN_HARRIS);
m_bufferL.resize(m_fftBlockSize, 0);
m_bufferR.resize(m_fftBlockSize, 0);
m_spectrumL = (fftwf_complex *) fftwf_malloc(binCount() * sizeof (fftwf_complex));
m_spectrumR = (fftwf_complex *) fftwf_malloc(binCount() * sizeof (fftwf_complex));
m_fftPlanL = fftwf_plan_dft_r2c_1d(m_fftBlockSize, m_bufferL.data(), m_spectrumL, FFTW_MEASURE);
m_fftPlanR = fftwf_plan_dft_r2c_1d(m_fftBlockSize, m_bufferR.data(), m_spectrumR, FFTW_MEASURE);
m_absSpectrumL.resize(binCount(), 0);
m_absSpectrumR.resize(binCount(), 0);
m_normSpectrumL.resize(binCount(), 0);
m_normSpectrumR.resize(binCount(), 0);
m_history.resize(binCount() * m_waterfallHeight * sizeof qRgb(0,0,0), 0);
clear();
}
SaProcessor::~SaProcessor()
{
if (m_fftPlanL != NULL) {fftwf_destroy_plan(m_fftPlanL);}
if (m_fftPlanR != NULL) {fftwf_destroy_plan(m_fftPlanR);}
if (m_spectrumL != NULL) {fftwf_free(m_spectrumL);}
if (m_spectrumR != NULL) {fftwf_free(m_spectrumR);}
m_fftPlanL = NULL;
m_fftPlanR = NULL;
m_spectrumL = NULL;
m_spectrumR = NULL;
}
// Load a batch of data from LMMS; run FFT analysis if buffer is full enough.
void SaProcessor::analyse(sampleFrame *in_buffer, const fpp_t frame_count)
{
#ifdef SA_DEBUG
int start_time = std::chrono::high_resolution_clock::now().time_since_epoch().count();
#endif
// only take in data if any view is visible and not paused
if ((m_spectrumActive || m_waterfallActive) && !m_controls->m_pauseModel.value())
{
const bool stereo = m_controls->m_stereoModel.value();
fpp_t in_frame = 0;
while (in_frame < frame_count)
{
// fill sample buffers and check for zero input
bool block_empty = true;
for (; in_frame < frame_count && m_framesFilledUp < m_inBlockSize; in_frame++, m_framesFilledUp++)
{
if (stereo)
{
m_bufferL[m_framesFilledUp] = in_buffer[in_frame][0];
m_bufferR[m_framesFilledUp] = in_buffer[in_frame][1];
}
else
{
m_bufferL[m_framesFilledUp] =
m_bufferR[m_framesFilledUp] = (in_buffer[in_frame][0] + in_buffer[in_frame][1]) * 0.5f;
}
if (in_buffer[in_frame][0] != 0.f || in_buffer[in_frame][1] != 0.f)
{
block_empty = false;
}
}
// Run analysis only if buffers contain enough data.
// Also, to prevent audio interruption and a momentary GUI freeze,
// skip analysis if buffers are being reallocated.
if (m_framesFilledUp < m_inBlockSize || m_reallocating) {return;}
// update sample rate
m_sampleRate = Engine::mixer()->processingSampleRate();
// apply FFT window
for (unsigned int i = 0; i < m_inBlockSize; i++)
{
m_bufferL[i] = m_bufferL[i] * m_fftWindow[i];
m_bufferR[i] = m_bufferR[i] * m_fftWindow[i];
}
// lock data shared with SaSpectrumView and SaWaterfallView
QMutexLocker lock(&m_dataAccess);
// Run FFT on left channel, convert the result to absolute magnitude
// spectrum and normalize it.
fftwf_execute(m_fftPlanL);
absspec(m_spectrumL, m_absSpectrumL.data(), binCount());
normalize(m_absSpectrumL, m_normSpectrumL, m_inBlockSize);
// repeat analysis for right channel if stereo processing is enabled
if (stereo)
{
fftwf_execute(m_fftPlanR);
absspec(m_spectrumR, m_absSpectrumR.data(), binCount());
normalize(m_absSpectrumR, m_normSpectrumR, m_inBlockSize);
}
// count empty lines so that empty history does not have to update
if (block_empty && m_waterfallNotEmpty)
{
m_waterfallNotEmpty -= 1;
}
else if (!block_empty)
{
m_waterfallNotEmpty = m_waterfallHeight + 2;
}
if (m_waterfallActive && m_waterfallNotEmpty)
{
// move waterfall history one line down and clear the top line
QRgb *pixel = (QRgb *)m_history.data();
std::copy(pixel,
pixel + binCount() * m_waterfallHeight - binCount(),
pixel + binCount());
memset(pixel, 0, binCount() * sizeof (QRgb));
// add newest result on top
int target; // pixel being constructed
float accL = 0; // accumulators for merging multiple bins
float accR = 0;
for (unsigned int i = 0; i < binCount(); i++)
{
// Every frequency bin spans a frequency range that must be
// partially or fully mapped to a pixel. Any inconsistency
// may be seen in the spectrogram as dark or white lines --
// play white noise to confirm your change did not break it.
float band_start = freqToXPixel(binToFreq(i) - binBandwidth() / 2.0, binCount());
float band_end = freqToXPixel(binToFreq(i + 1) - binBandwidth() / 2.0, binCount());
if (m_controls->m_logXModel.value())
{
// Logarithmic scale
if (band_end - band_start > 1.0)
{
// band spans multiple pixels: draw all pixels it covers
for (target = (int)band_start; target < (int)band_end; target++)
{
if (target >= 0 && target < binCount())
{
pixel[target] = makePixel(m_normSpectrumL[i], m_normSpectrumR[i]);
}
}
// save remaining portion of the band for the following band / pixel
// (in case the next band uses sub-pixel drawing)
accL = (band_end - (int)band_end) * m_normSpectrumL[i];
accR = (band_end - (int)band_end) * m_normSpectrumR[i];
}
else
{
// sub-pixel drawing; add contribution of current band
target = (int)band_start;
if ((int)band_start == (int)band_end)
{
// band ends within current target pixel, accumulate
accL += (band_end - band_start) * m_normSpectrumL[i];
accR += (band_end - band_start) * m_normSpectrumR[i];
}
else
{
// Band ends in the next pixel -- finalize the current pixel.
// Make sure contribution is split correctly on pixel boundary.
accL += ((int)band_end - band_start) * m_normSpectrumL[i];
accR += ((int)band_end - band_start) * m_normSpectrumR[i];
if (target >= 0 && target < binCount()) {pixel[target] = makePixel(accL, accR);}
// save remaining portion of the band for the following band / pixel
accL = (band_end - (int)band_end) * m_normSpectrumL[i];
accR = (band_end - (int)band_end) * m_normSpectrumR[i];
}
}
}
else
{
// Linear: always draws one or more pixels per band
for (target = (int)band_start; target < band_end; target++)
{
if (target >= 0 && target < binCount())
{
pixel[target] = makePixel(m_normSpectrumL[i], m_normSpectrumR[i]);
}
}
}
}
}
#ifdef SA_DEBUG
// report FFT processing speed
start_time = std::chrono::high_resolution_clock::now().time_since_epoch().count() - start_time;
std::cout << "Processed " << m_framesFilledUp << " samples in " << start_time / 1000000.0 << " ms" << std::endl;
#endif
// clean up before checking for more data from input buffer
m_framesFilledUp = 0;
}
}
}
// Produce a spectrogram pixel from normalized spectrum data.
// Values over 1.0 will cause the color components to overflow: this is left
// intentionally untreated as it clearly indicates which frequency is clipping.
// Gamma correction is applied to make small values more visible and to make
// a linear gradient actually appear roughly linear. The correction should be
// around 0.42 to 0.45 for sRGB displays (or lower for bigger visibility boost).
QRgb SaProcessor::makePixel(float left, float right, float gamma_correction) const
{
if (m_controls->m_stereoModel.value())
{
float ampL = pow(left, gamma_correction);
float ampR = pow(right, gamma_correction);
return qRgb(m_controls->m_colorL.red() * ampL + m_controls->m_colorR.red() * ampR,
m_controls->m_colorL.green() * ampL + m_controls->m_colorR.green() * ampR,
m_controls->m_colorL.blue() * ampL + m_controls->m_colorR.blue() * ampR);
}
else
{
float ampL = pow(left, gamma_correction);
// make mono color brighter to compensate for the fact it is not summed
return qRgb(m_controls->m_colorMono.lighter().red() * ampL,
m_controls->m_colorMono.lighter().green() * ampL,
m_controls->m_colorMono.lighter().blue() * ampL);
}
}
// Inform the processor whether any display widgets actually need it.
void SaProcessor::setSpectrumActive(bool active)
{
m_spectrumActive = active;
}
void SaProcessor::setWaterfallActive(bool active)
{
m_waterfallActive = active;
}
// Reallocate data buffers according to newly set block size.
void SaProcessor::reallocateBuffers()
{
unsigned int new_size_index = m_controls->m_blockSizeModel.value();
unsigned int new_in_size, new_fft_size;
unsigned int new_bins;
// get new block sizes and bin count based on selected index
if (new_size_index < FFT_BLOCK_SIZES.size())
{
new_in_size = FFT_BLOCK_SIZES[new_size_index];
}
else
{
new_in_size = FFT_BLOCK_SIZES.back();
}
if (new_size_index + m_zeroPadFactor < FFT_BLOCK_SIZES.size())
{
new_fft_size = FFT_BLOCK_SIZES[new_size_index + m_zeroPadFactor];
}
else
{
new_fft_size = FFT_BLOCK_SIZES.back();
}
new_bins = new_fft_size / 2 +1;
// Lock data shared with SaSpectrumView and SaWaterfallView.
// The m_reallocating is here to tell analyse() to avoid asking for the
// lock, since fftw3 can take a while to find the fastest FFT algorithm
// for given machine, which would produce interruption in the audio stream.
m_reallocating = true;
QMutexLocker lock(&m_dataAccess);
// destroy old FFT plan and free the result buffer
if (m_fftPlanL != NULL) {fftwf_destroy_plan(m_fftPlanL);}
if (m_fftPlanR != NULL) {fftwf_destroy_plan(m_fftPlanR);}
if (m_spectrumL != NULL) {fftwf_free(m_spectrumL);}
if (m_spectrumR != NULL) {fftwf_free(m_spectrumR);}
// allocate new space, create new plan and resize containers
m_fftWindow.resize(new_in_size, 1.0);
precomputeWindow(m_fftWindow.data(), new_in_size, (FFT_WINDOWS) m_controls->m_windowModel.value());
m_bufferL.resize(new_fft_size, 0);
m_bufferR.resize(new_fft_size, 0);
m_spectrumL = (fftwf_complex *) fftwf_malloc(new_bins * sizeof (fftwf_complex));
m_spectrumR = (fftwf_complex *) fftwf_malloc(new_bins * sizeof (fftwf_complex));
m_fftPlanL = fftwf_plan_dft_r2c_1d(new_fft_size, m_bufferL.data(), m_spectrumL, FFTW_MEASURE);
m_fftPlanR = fftwf_plan_dft_r2c_1d(new_fft_size, m_bufferR.data(), m_spectrumR, FFTW_MEASURE);
if (m_fftPlanL == NULL || m_fftPlanR == NULL)
{
std::cerr << "Failed to create new FFT plan!" << std::endl;
}
m_absSpectrumL.resize(new_bins, 0);
m_absSpectrumR.resize(new_bins, 0);
m_normSpectrumL.resize(new_bins, 0);
m_normSpectrumR.resize(new_bins, 0);
m_history.resize(new_bins * m_waterfallHeight * sizeof qRgb(0,0,0), 0);
// done; publish new sizes and clean up
m_inBlockSize = new_in_size;
m_fftBlockSize = new_fft_size;
lock.unlock();
m_reallocating = false;
clear();
}
// Precompute a new FFT window based on currently selected type.
void SaProcessor::rebuildWindow()
{
// computation is done in fft_helpers
QMutexLocker lock(&m_dataAccess);
precomputeWindow(m_fftWindow.data(), m_inBlockSize, (FFT_WINDOWS) m_controls->m_windowModel.value());
}
// Clear all data buffers and replace contents with zeros.
// Note: may take a few milliseconds, do not call in a loop!
void SaProcessor::clear()
{
QMutexLocker lock(&m_dataAccess);
m_framesFilledUp = 0;
std::fill(m_bufferL.begin(), m_bufferL.end(), 0);
std::fill(m_bufferR.begin(), m_bufferR.end(), 0);
std::fill(m_absSpectrumL.begin(), m_absSpectrumL.end(), 0);
std::fill(m_absSpectrumR.begin(), m_absSpectrumR.end(), 0);
std::fill(m_normSpectrumL.begin(), m_normSpectrumL.end(), 0);
std::fill(m_normSpectrumR.begin(), m_normSpectrumR.end(), 0);
std::fill(m_history.begin(), m_history.end(), 0);
}
// --------------------------------------
// Frequency conversion helpers
//
// Get sample rate value that is valid for currently stored results.
unsigned int SaProcessor::getSampleRate() const
{
return m_sampleRate;
}
// Maximum frequency of a sampled signal is equal to half of its sample rate.
float SaProcessor::getNyquistFreq() const
{
return getSampleRate() / 2.0f;
}
// FFTW automatically discards upper half of the symmetric FFT output, so
// the useful bin count is the transform size divided by 2, plus zero.
unsigned int SaProcessor::binCount() const
{
return m_fftBlockSize / 2 + 1;
}
// Return the center frequency of given frequency bin.
float SaProcessor::binToFreq(unsigned int bin_index) const
{
return getNyquistFreq() * bin_index / binCount();
}
// Return width of the frequency range that falls into one bin.
// The binCount is lowered by one since half of the first and last bin is
// actually outside the frequency range.
float SaProcessor::binBandwidth() const
{
return getNyquistFreq() / (binCount() - 1);
}
float SaProcessor::getFreqRangeMin(bool linear) const
{
switch (m_controls->m_freqRangeModel.value())
{
case FRANGE_AUDIBLE: return FRANGE_AUDIBLE_START;
case FRANGE_BASS: return FRANGE_BASS_START;
case FRANGE_MIDS: return FRANGE_MIDS_START;
case FRANGE_HIGH: return FRANGE_HIGH_START;
default:
case FRANGE_FULL: return linear ? 0 : LOWEST_LOG_FREQ;
}
}
float SaProcessor::getFreqRangeMax() const
{
switch (m_controls->m_freqRangeModel.value())
{
case FRANGE_AUDIBLE: return FRANGE_AUDIBLE_END;
case FRANGE_BASS: return FRANGE_BASS_END;
case FRANGE_MIDS: return FRANGE_MIDS_END;
case FRANGE_HIGH: return FRANGE_HIGH_END;
default:
case FRANGE_FULL: return getNyquistFreq();
}
}
// Map frequency to pixel x position on a display of given width.
float SaProcessor::freqToXPixel(float freq, unsigned int width) const
{
if (m_controls->m_logXModel.value())
{
if (freq <= 1) {return 0;}
float min = log10(getFreqRangeMin());
float range = log10(getFreqRangeMax()) - min;
return (log10(freq) - min) / range * width;
}
else
{
float min = getFreqRangeMin();
float range = getFreqRangeMax() - min;
return (freq - min) / range * width;
}
}
// Map pixel x position on display of given width back to frequency.
float SaProcessor::xPixelToFreq(float x, unsigned int width) const
{
if (m_controls->m_logXModel.value())
{
float min = log10(getFreqRangeMin());
float max = log10(getFreqRangeMax());
float range = max - min;
return pow(10, min + x / width * range);
}
else
{
float min = getFreqRangeMin();
float range = getFreqRangeMax() - min;
return min + x / width * range;
}
}
// --------------------------------------
// Amplitude conversion helpers
//
float SaProcessor::getAmpRangeMin(bool linear) const
{
// return very low limit to make sure zero gets included at linear grid
if (linear) {return -900;}
switch (m_controls->m_ampRangeModel.value())
{
case ARANGE_EXTENDED: return ARANGE_EXTENDED_START;
case ARANGE_AUDIBLE: return ARANGE_AUDIBLE_START;
case ARANGE_NOISE: return ARANGE_NOISE_START;
default:
case ARANGE_DEFAULT: return ARANGE_DEFAULT_START;
}
}
float SaProcessor::getAmpRangeMax() const
{
switch (m_controls->m_ampRangeModel.value())
{
case ARANGE_EXTENDED: return ARANGE_EXTENDED_END;
case ARANGE_AUDIBLE: return ARANGE_AUDIBLE_END;
case ARANGE_NOISE: return ARANGE_NOISE_END;
default:
case ARANGE_DEFAULT: return ARANGE_DEFAULT_END;
}
}
// Map linear amplitude to pixel y position on a display of given height.
// Note that display coordinates are flipped: amplitude grows from [height] to zero.
float SaProcessor::ampToYPixel(float amplitude, unsigned int height) const
{
if (m_controls->m_logYModel.value())
{
// logarithmic scale: convert linear amplitude to dB (relative to 1.0)
float amplitude_dB = 10 * log10(amplitude);
if (amplitude_dB < getAmpRangeMin())
{
return height;
}
else
{
float max = getAmpRangeMax();
float range = getAmpRangeMin() - max;
return (amplitude_dB - max) / range * height;
}
}
else
{
// linear scale: convert returned ranges from dB to linear scale
float max = pow(10, getAmpRangeMax() / 10);
float range = pow(10, getAmpRangeMin() / 10) - max;
return (amplitude - max) / range * height;
}
}
// Map pixel y position on display of given height back to amplitude.
// Note that display coordinates are flipped: amplitude grows from [height] to zero.
// Also note that in logarithmic Y mode the returned amplitude is in dB, not linear.
float SaProcessor::yPixelToAmp(float y, unsigned int height) const
{
if (m_controls->m_logYModel.value())
{
float max = getAmpRangeMax();
float range = getAmpRangeMin() - max;
return max + range * (y / height);
}
else
{
// linear scale: convert returned ranges from dB to linear scale
float max = pow(10, getAmpRangeMax() / 10);
float range = pow(10, getAmpRangeMin() / 10) - max;
return max + range * (y / height);
}
}