mirror of
https://github.com/LMMS/lmms.git
synced 2026-01-22 13:28:04 -05:00
Replace old spectrum analyzer by new one with higher resolution and many new features. Resolves #2847.
572 lines
18 KiB
C++
572 lines
18 KiB
C++
/* SaProcessor.cpp - implementation of SaProcessor class.
|
|
*
|
|
* Copyright (c) 2019 Martin Pavelek <he29/dot/HS/at/gmail/dot/com>
|
|
*
|
|
* Based partially on Eq plugin code,
|
|
* Copyright (c) 2014-2017, David French <dave/dot/french3/at/googlemail/dot/com>
|
|
*
|
|
* This file is part of LMMS - https://lmms.io
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public
|
|
* License along with this program (see COPYING); if not, write to the
|
|
* Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
|
|
* Boston, MA 02110-1301 USA.
|
|
*
|
|
*/
|
|
|
|
#include "SaProcessor.h"
|
|
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
#include <iostream>
|
|
#include <QMutexLocker>
|
|
|
|
#include "lmms_math.h"
|
|
|
|
|
|
SaProcessor::SaProcessor(SaControls *controls) :
|
|
m_controls(controls),
|
|
m_inBlockSize(FFT_BLOCK_SIZES[0]),
|
|
m_fftBlockSize(FFT_BLOCK_SIZES[0]),
|
|
m_sampleRate(Engine::mixer()->processingSampleRate()),
|
|
m_framesFilledUp(0),
|
|
m_spectrumActive(false),
|
|
m_waterfallActive(false),
|
|
m_waterfallNotEmpty(0),
|
|
m_reallocating(false)
|
|
{
|
|
m_fftWindow.resize(m_inBlockSize, 1.0);
|
|
precomputeWindow(m_fftWindow.data(), m_inBlockSize, BLACKMAN_HARRIS);
|
|
|
|
m_bufferL.resize(m_fftBlockSize, 0);
|
|
m_bufferR.resize(m_fftBlockSize, 0);
|
|
m_spectrumL = (fftwf_complex *) fftwf_malloc(binCount() * sizeof (fftwf_complex));
|
|
m_spectrumR = (fftwf_complex *) fftwf_malloc(binCount() * sizeof (fftwf_complex));
|
|
m_fftPlanL = fftwf_plan_dft_r2c_1d(m_fftBlockSize, m_bufferL.data(), m_spectrumL, FFTW_MEASURE);
|
|
m_fftPlanR = fftwf_plan_dft_r2c_1d(m_fftBlockSize, m_bufferR.data(), m_spectrumR, FFTW_MEASURE);
|
|
|
|
m_absSpectrumL.resize(binCount(), 0);
|
|
m_absSpectrumR.resize(binCount(), 0);
|
|
m_normSpectrumL.resize(binCount(), 0);
|
|
m_normSpectrumR.resize(binCount(), 0);
|
|
|
|
m_history.resize(binCount() * m_waterfallHeight * sizeof qRgb(0,0,0), 0);
|
|
|
|
clear();
|
|
}
|
|
|
|
|
|
SaProcessor::~SaProcessor()
|
|
{
|
|
if (m_fftPlanL != NULL) {fftwf_destroy_plan(m_fftPlanL);}
|
|
if (m_fftPlanR != NULL) {fftwf_destroy_plan(m_fftPlanR);}
|
|
if (m_spectrumL != NULL) {fftwf_free(m_spectrumL);}
|
|
if (m_spectrumR != NULL) {fftwf_free(m_spectrumR);}
|
|
|
|
m_fftPlanL = NULL;
|
|
m_fftPlanR = NULL;
|
|
m_spectrumL = NULL;
|
|
m_spectrumR = NULL;
|
|
}
|
|
|
|
|
|
// Load a batch of data from LMMS; run FFT analysis if buffer is full enough.
|
|
void SaProcessor::analyse(sampleFrame *in_buffer, const fpp_t frame_count)
|
|
{
|
|
#ifdef SA_DEBUG
|
|
int start_time = std::chrono::high_resolution_clock::now().time_since_epoch().count();
|
|
#endif
|
|
// only take in data if any view is visible and not paused
|
|
if ((m_spectrumActive || m_waterfallActive) && !m_controls->m_pauseModel.value())
|
|
{
|
|
const bool stereo = m_controls->m_stereoModel.value();
|
|
fpp_t in_frame = 0;
|
|
while (in_frame < frame_count)
|
|
{
|
|
// fill sample buffers and check for zero input
|
|
bool block_empty = true;
|
|
for (; in_frame < frame_count && m_framesFilledUp < m_inBlockSize; in_frame++, m_framesFilledUp++)
|
|
{
|
|
if (stereo)
|
|
{
|
|
m_bufferL[m_framesFilledUp] = in_buffer[in_frame][0];
|
|
m_bufferR[m_framesFilledUp] = in_buffer[in_frame][1];
|
|
}
|
|
else
|
|
{
|
|
m_bufferL[m_framesFilledUp] =
|
|
m_bufferR[m_framesFilledUp] = (in_buffer[in_frame][0] + in_buffer[in_frame][1]) * 0.5f;
|
|
}
|
|
if (in_buffer[in_frame][0] != 0.f || in_buffer[in_frame][1] != 0.f)
|
|
{
|
|
block_empty = false;
|
|
}
|
|
}
|
|
|
|
// Run analysis only if buffers contain enough data.
|
|
// Also, to prevent audio interruption and a momentary GUI freeze,
|
|
// skip analysis if buffers are being reallocated.
|
|
if (m_framesFilledUp < m_inBlockSize || m_reallocating) {return;}
|
|
|
|
// update sample rate
|
|
m_sampleRate = Engine::mixer()->processingSampleRate();
|
|
|
|
// apply FFT window
|
|
for (unsigned int i = 0; i < m_inBlockSize; i++)
|
|
{
|
|
m_bufferL[i] = m_bufferL[i] * m_fftWindow[i];
|
|
m_bufferR[i] = m_bufferR[i] * m_fftWindow[i];
|
|
}
|
|
|
|
// lock data shared with SaSpectrumView and SaWaterfallView
|
|
QMutexLocker lock(&m_dataAccess);
|
|
|
|
// Run FFT on left channel, convert the result to absolute magnitude
|
|
// spectrum and normalize it.
|
|
fftwf_execute(m_fftPlanL);
|
|
absspec(m_spectrumL, m_absSpectrumL.data(), binCount());
|
|
normalize(m_absSpectrumL, m_normSpectrumL, m_inBlockSize);
|
|
|
|
// repeat analysis for right channel if stereo processing is enabled
|
|
if (stereo)
|
|
{
|
|
fftwf_execute(m_fftPlanR);
|
|
absspec(m_spectrumR, m_absSpectrumR.data(), binCount());
|
|
normalize(m_absSpectrumR, m_normSpectrumR, m_inBlockSize);
|
|
}
|
|
|
|
// count empty lines so that empty history does not have to update
|
|
if (block_empty && m_waterfallNotEmpty)
|
|
{
|
|
m_waterfallNotEmpty -= 1;
|
|
}
|
|
else if (!block_empty)
|
|
{
|
|
m_waterfallNotEmpty = m_waterfallHeight + 2;
|
|
}
|
|
|
|
if (m_waterfallActive && m_waterfallNotEmpty)
|
|
{
|
|
// move waterfall history one line down and clear the top line
|
|
QRgb *pixel = (QRgb *)m_history.data();
|
|
std::copy(pixel,
|
|
pixel + binCount() * m_waterfallHeight - binCount(),
|
|
pixel + binCount());
|
|
memset(pixel, 0, binCount() * sizeof (QRgb));
|
|
|
|
// add newest result on top
|
|
int target; // pixel being constructed
|
|
float accL = 0; // accumulators for merging multiple bins
|
|
float accR = 0;
|
|
|
|
for (unsigned int i = 0; i < binCount(); i++)
|
|
{
|
|
// Every frequency bin spans a frequency range that must be
|
|
// partially or fully mapped to a pixel. Any inconsistency
|
|
// may be seen in the spectrogram as dark or white lines --
|
|
// play white noise to confirm your change did not break it.
|
|
float band_start = freqToXPixel(binToFreq(i) - binBandwidth() / 2.0, binCount());
|
|
float band_end = freqToXPixel(binToFreq(i + 1) - binBandwidth() / 2.0, binCount());
|
|
if (m_controls->m_logXModel.value())
|
|
{
|
|
// Logarithmic scale
|
|
if (band_end - band_start > 1.0)
|
|
{
|
|
// band spans multiple pixels: draw all pixels it covers
|
|
for (target = (int)band_start; target < (int)band_end; target++)
|
|
{
|
|
if (target >= 0 && target < binCount())
|
|
{
|
|
pixel[target] = makePixel(m_normSpectrumL[i], m_normSpectrumR[i]);
|
|
}
|
|
}
|
|
// save remaining portion of the band for the following band / pixel
|
|
// (in case the next band uses sub-pixel drawing)
|
|
accL = (band_end - (int)band_end) * m_normSpectrumL[i];
|
|
accR = (band_end - (int)band_end) * m_normSpectrumR[i];
|
|
}
|
|
else
|
|
{
|
|
// sub-pixel drawing; add contribution of current band
|
|
target = (int)band_start;
|
|
if ((int)band_start == (int)band_end)
|
|
{
|
|
// band ends within current target pixel, accumulate
|
|
accL += (band_end - band_start) * m_normSpectrumL[i];
|
|
accR += (band_end - band_start) * m_normSpectrumR[i];
|
|
}
|
|
else
|
|
{
|
|
// Band ends in the next pixel -- finalize the current pixel.
|
|
// Make sure contribution is split correctly on pixel boundary.
|
|
accL += ((int)band_end - band_start) * m_normSpectrumL[i];
|
|
accR += ((int)band_end - band_start) * m_normSpectrumR[i];
|
|
|
|
if (target >= 0 && target < binCount()) {pixel[target] = makePixel(accL, accR);}
|
|
|
|
// save remaining portion of the band for the following band / pixel
|
|
accL = (band_end - (int)band_end) * m_normSpectrumL[i];
|
|
accR = (band_end - (int)band_end) * m_normSpectrumR[i];
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Linear: always draws one or more pixels per band
|
|
for (target = (int)band_start; target < band_end; target++)
|
|
{
|
|
if (target >= 0 && target < binCount())
|
|
{
|
|
pixel[target] = makePixel(m_normSpectrumL[i], m_normSpectrumR[i]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#ifdef SA_DEBUG
|
|
// report FFT processing speed
|
|
start_time = std::chrono::high_resolution_clock::now().time_since_epoch().count() - start_time;
|
|
std::cout << "Processed " << m_framesFilledUp << " samples in " << start_time / 1000000.0 << " ms" << std::endl;
|
|
#endif
|
|
|
|
// clean up before checking for more data from input buffer
|
|
m_framesFilledUp = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Produce a spectrogram pixel from normalized spectrum data.
|
|
// Values over 1.0 will cause the color components to overflow: this is left
|
|
// intentionally untreated as it clearly indicates which frequency is clipping.
|
|
// Gamma correction is applied to make small values more visible and to make
|
|
// a linear gradient actually appear roughly linear. The correction should be
|
|
// around 0.42 to 0.45 for sRGB displays (or lower for bigger visibility boost).
|
|
QRgb SaProcessor::makePixel(float left, float right, float gamma_correction) const
|
|
{
|
|
if (m_controls->m_stereoModel.value())
|
|
{
|
|
float ampL = pow(left, gamma_correction);
|
|
float ampR = pow(right, gamma_correction);
|
|
return qRgb(m_controls->m_colorL.red() * ampL + m_controls->m_colorR.red() * ampR,
|
|
m_controls->m_colorL.green() * ampL + m_controls->m_colorR.green() * ampR,
|
|
m_controls->m_colorL.blue() * ampL + m_controls->m_colorR.blue() * ampR);
|
|
}
|
|
else
|
|
{
|
|
float ampL = pow(left, gamma_correction);
|
|
// make mono color brighter to compensate for the fact it is not summed
|
|
return qRgb(m_controls->m_colorMono.lighter().red() * ampL,
|
|
m_controls->m_colorMono.lighter().green() * ampL,
|
|
m_controls->m_colorMono.lighter().blue() * ampL);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
// Inform the processor whether any display widgets actually need it.
|
|
void SaProcessor::setSpectrumActive(bool active)
|
|
{
|
|
m_spectrumActive = active;
|
|
}
|
|
|
|
void SaProcessor::setWaterfallActive(bool active)
|
|
{
|
|
m_waterfallActive = active;
|
|
}
|
|
|
|
|
|
// Reallocate data buffers according to newly set block size.
|
|
void SaProcessor::reallocateBuffers()
|
|
{
|
|
unsigned int new_size_index = m_controls->m_blockSizeModel.value();
|
|
unsigned int new_in_size, new_fft_size;
|
|
unsigned int new_bins;
|
|
|
|
// get new block sizes and bin count based on selected index
|
|
if (new_size_index < FFT_BLOCK_SIZES.size())
|
|
{
|
|
new_in_size = FFT_BLOCK_SIZES[new_size_index];
|
|
}
|
|
else
|
|
{
|
|
new_in_size = FFT_BLOCK_SIZES.back();
|
|
}
|
|
if (new_size_index + m_zeroPadFactor < FFT_BLOCK_SIZES.size())
|
|
{
|
|
new_fft_size = FFT_BLOCK_SIZES[new_size_index + m_zeroPadFactor];
|
|
}
|
|
else
|
|
{
|
|
new_fft_size = FFT_BLOCK_SIZES.back();
|
|
}
|
|
|
|
new_bins = new_fft_size / 2 +1;
|
|
|
|
// Lock data shared with SaSpectrumView and SaWaterfallView.
|
|
// The m_reallocating is here to tell analyse() to avoid asking for the
|
|
// lock, since fftw3 can take a while to find the fastest FFT algorithm
|
|
// for given machine, which would produce interruption in the audio stream.
|
|
m_reallocating = true;
|
|
QMutexLocker lock(&m_dataAccess);
|
|
|
|
// destroy old FFT plan and free the result buffer
|
|
if (m_fftPlanL != NULL) {fftwf_destroy_plan(m_fftPlanL);}
|
|
if (m_fftPlanR != NULL) {fftwf_destroy_plan(m_fftPlanR);}
|
|
if (m_spectrumL != NULL) {fftwf_free(m_spectrumL);}
|
|
if (m_spectrumR != NULL) {fftwf_free(m_spectrumR);}
|
|
|
|
// allocate new space, create new plan and resize containers
|
|
m_fftWindow.resize(new_in_size, 1.0);
|
|
precomputeWindow(m_fftWindow.data(), new_in_size, (FFT_WINDOWS) m_controls->m_windowModel.value());
|
|
m_bufferL.resize(new_fft_size, 0);
|
|
m_bufferR.resize(new_fft_size, 0);
|
|
m_spectrumL = (fftwf_complex *) fftwf_malloc(new_bins * sizeof (fftwf_complex));
|
|
m_spectrumR = (fftwf_complex *) fftwf_malloc(new_bins * sizeof (fftwf_complex));
|
|
m_fftPlanL = fftwf_plan_dft_r2c_1d(new_fft_size, m_bufferL.data(), m_spectrumL, FFTW_MEASURE);
|
|
m_fftPlanR = fftwf_plan_dft_r2c_1d(new_fft_size, m_bufferR.data(), m_spectrumR, FFTW_MEASURE);
|
|
|
|
if (m_fftPlanL == NULL || m_fftPlanR == NULL)
|
|
{
|
|
std::cerr << "Failed to create new FFT plan!" << std::endl;
|
|
}
|
|
m_absSpectrumL.resize(new_bins, 0);
|
|
m_absSpectrumR.resize(new_bins, 0);
|
|
m_normSpectrumL.resize(new_bins, 0);
|
|
m_normSpectrumR.resize(new_bins, 0);
|
|
|
|
m_history.resize(new_bins * m_waterfallHeight * sizeof qRgb(0,0,0), 0);
|
|
|
|
// done; publish new sizes and clean up
|
|
m_inBlockSize = new_in_size;
|
|
m_fftBlockSize = new_fft_size;
|
|
|
|
lock.unlock();
|
|
m_reallocating = false;
|
|
clear();
|
|
}
|
|
|
|
|
|
// Precompute a new FFT window based on currently selected type.
|
|
void SaProcessor::rebuildWindow()
|
|
{
|
|
// computation is done in fft_helpers
|
|
QMutexLocker lock(&m_dataAccess);
|
|
precomputeWindow(m_fftWindow.data(), m_inBlockSize, (FFT_WINDOWS) m_controls->m_windowModel.value());
|
|
}
|
|
|
|
|
|
// Clear all data buffers and replace contents with zeros.
|
|
// Note: may take a few milliseconds, do not call in a loop!
|
|
void SaProcessor::clear()
|
|
{
|
|
QMutexLocker lock(&m_dataAccess);
|
|
m_framesFilledUp = 0;
|
|
std::fill(m_bufferL.begin(), m_bufferL.end(), 0);
|
|
std::fill(m_bufferR.begin(), m_bufferR.end(), 0);
|
|
std::fill(m_absSpectrumL.begin(), m_absSpectrumL.end(), 0);
|
|
std::fill(m_absSpectrumR.begin(), m_absSpectrumR.end(), 0);
|
|
std::fill(m_normSpectrumL.begin(), m_normSpectrumL.end(), 0);
|
|
std::fill(m_normSpectrumR.begin(), m_normSpectrumR.end(), 0);
|
|
std::fill(m_history.begin(), m_history.end(), 0);
|
|
}
|
|
|
|
|
|
// --------------------------------------
|
|
// Frequency conversion helpers
|
|
//
|
|
|
|
// Get sample rate value that is valid for currently stored results.
|
|
unsigned int SaProcessor::getSampleRate() const
|
|
{
|
|
return m_sampleRate;
|
|
}
|
|
|
|
|
|
// Maximum frequency of a sampled signal is equal to half of its sample rate.
|
|
float SaProcessor::getNyquistFreq() const
|
|
{
|
|
return getSampleRate() / 2.0f;
|
|
}
|
|
|
|
|
|
// FFTW automatically discards upper half of the symmetric FFT output, so
|
|
// the useful bin count is the transform size divided by 2, plus zero.
|
|
unsigned int SaProcessor::binCount() const
|
|
{
|
|
return m_fftBlockSize / 2 + 1;
|
|
}
|
|
|
|
|
|
// Return the center frequency of given frequency bin.
|
|
float SaProcessor::binToFreq(unsigned int bin_index) const
|
|
{
|
|
return getNyquistFreq() * bin_index / binCount();
|
|
}
|
|
|
|
|
|
// Return width of the frequency range that falls into one bin.
|
|
// The binCount is lowered by one since half of the first and last bin is
|
|
// actually outside the frequency range.
|
|
float SaProcessor::binBandwidth() const
|
|
{
|
|
return getNyquistFreq() / (binCount() - 1);
|
|
}
|
|
|
|
|
|
float SaProcessor::getFreqRangeMin(bool linear) const
|
|
{
|
|
switch (m_controls->m_freqRangeModel.value())
|
|
{
|
|
case FRANGE_AUDIBLE: return FRANGE_AUDIBLE_START;
|
|
case FRANGE_BASS: return FRANGE_BASS_START;
|
|
case FRANGE_MIDS: return FRANGE_MIDS_START;
|
|
case FRANGE_HIGH: return FRANGE_HIGH_START;
|
|
default:
|
|
case FRANGE_FULL: return linear ? 0 : LOWEST_LOG_FREQ;
|
|
}
|
|
}
|
|
|
|
|
|
float SaProcessor::getFreqRangeMax() const
|
|
{
|
|
switch (m_controls->m_freqRangeModel.value())
|
|
{
|
|
case FRANGE_AUDIBLE: return FRANGE_AUDIBLE_END;
|
|
case FRANGE_BASS: return FRANGE_BASS_END;
|
|
case FRANGE_MIDS: return FRANGE_MIDS_END;
|
|
case FRANGE_HIGH: return FRANGE_HIGH_END;
|
|
default:
|
|
case FRANGE_FULL: return getNyquistFreq();
|
|
}
|
|
}
|
|
|
|
|
|
// Map frequency to pixel x position on a display of given width.
|
|
float SaProcessor::freqToXPixel(float freq, unsigned int width) const
|
|
{
|
|
if (m_controls->m_logXModel.value())
|
|
{
|
|
if (freq <= 1) {return 0;}
|
|
float min = log10(getFreqRangeMin());
|
|
float range = log10(getFreqRangeMax()) - min;
|
|
return (log10(freq) - min) / range * width;
|
|
}
|
|
else
|
|
{
|
|
float min = getFreqRangeMin();
|
|
float range = getFreqRangeMax() - min;
|
|
return (freq - min) / range * width;
|
|
}
|
|
}
|
|
|
|
|
|
// Map pixel x position on display of given width back to frequency.
|
|
float SaProcessor::xPixelToFreq(float x, unsigned int width) const
|
|
{
|
|
if (m_controls->m_logXModel.value())
|
|
{
|
|
float min = log10(getFreqRangeMin());
|
|
float max = log10(getFreqRangeMax());
|
|
float range = max - min;
|
|
return pow(10, min + x / width * range);
|
|
}
|
|
else
|
|
{
|
|
float min = getFreqRangeMin();
|
|
float range = getFreqRangeMax() - min;
|
|
return min + x / width * range;
|
|
}
|
|
}
|
|
|
|
|
|
// --------------------------------------
|
|
// Amplitude conversion helpers
|
|
//
|
|
float SaProcessor::getAmpRangeMin(bool linear) const
|
|
{
|
|
// return very low limit to make sure zero gets included at linear grid
|
|
if (linear) {return -900;}
|
|
switch (m_controls->m_ampRangeModel.value())
|
|
{
|
|
case ARANGE_EXTENDED: return ARANGE_EXTENDED_START;
|
|
case ARANGE_AUDIBLE: return ARANGE_AUDIBLE_START;
|
|
case ARANGE_NOISE: return ARANGE_NOISE_START;
|
|
default:
|
|
case ARANGE_DEFAULT: return ARANGE_DEFAULT_START;
|
|
}
|
|
}
|
|
|
|
|
|
float SaProcessor::getAmpRangeMax() const
|
|
{
|
|
switch (m_controls->m_ampRangeModel.value())
|
|
{
|
|
case ARANGE_EXTENDED: return ARANGE_EXTENDED_END;
|
|
case ARANGE_AUDIBLE: return ARANGE_AUDIBLE_END;
|
|
case ARANGE_NOISE: return ARANGE_NOISE_END;
|
|
default:
|
|
case ARANGE_DEFAULT: return ARANGE_DEFAULT_END;
|
|
}
|
|
}
|
|
|
|
|
|
// Map linear amplitude to pixel y position on a display of given height.
|
|
// Note that display coordinates are flipped: amplitude grows from [height] to zero.
|
|
float SaProcessor::ampToYPixel(float amplitude, unsigned int height) const
|
|
{
|
|
if (m_controls->m_logYModel.value())
|
|
{
|
|
// logarithmic scale: convert linear amplitude to dB (relative to 1.0)
|
|
float amplitude_dB = 10 * log10(amplitude);
|
|
if (amplitude_dB < getAmpRangeMin())
|
|
{
|
|
return height;
|
|
}
|
|
else
|
|
{
|
|
float max = getAmpRangeMax();
|
|
float range = getAmpRangeMin() - max;
|
|
return (amplitude_dB - max) / range * height;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// linear scale: convert returned ranges from dB to linear scale
|
|
float max = pow(10, getAmpRangeMax() / 10);
|
|
float range = pow(10, getAmpRangeMin() / 10) - max;
|
|
return (amplitude - max) / range * height;
|
|
}
|
|
}
|
|
|
|
|
|
// Map pixel y position on display of given height back to amplitude.
|
|
// Note that display coordinates are flipped: amplitude grows from [height] to zero.
|
|
// Also note that in logarithmic Y mode the returned amplitude is in dB, not linear.
|
|
float SaProcessor::yPixelToAmp(float y, unsigned int height) const
|
|
{
|
|
if (m_controls->m_logYModel.value())
|
|
{
|
|
float max = getAmpRangeMax();
|
|
float range = getAmpRangeMin() - max;
|
|
return max + range * (y / height);
|
|
}
|
|
else
|
|
{
|
|
// linear scale: convert returned ranges from dB to linear scale
|
|
float max = pow(10, getAmpRangeMax() / 10);
|
|
float range = pow(10, getAmpRangeMin() / 10) - max;
|
|
return max + range * (y / height);
|
|
}
|
|
}
|
|
|