Files
lmms/plugins/ladspa_effect/caps/SweepVF.cc
2008-02-27 17:52:56 +00:00

459 lines
8.5 KiB
C++

/*
SweepVF.cc
Copyright 2002-7 Tim Goetze <tim@quitte.de>
http://quitte.de/dsp/
SweepVFI, a lorenz fractal modulating the cutoff frequency of a
state-variable (ladder) filter.
SweepVFII, the same with Q being modulated by a second fractal.
*/
/*
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA or point your web browser to http://www.gnu.org.
*/
#include "basics.h"
#include "SweepVF.h"
#include "Descriptor.h"
#include "dsp/RBJ.h"
void
SweepVFI::init()
{
f = .1;
Q = .1;
lorenz.init();
}
void
SweepVFI::activate()
{
svf.reset();
svf.set_f_Q (f = getport(1) / fs, Q = getport(2));
}
template <sample_func_t F>
void
SweepVFI::one_cycle (int frames)
{
d_sample * s = ports[0];
int blocks = frames / BLOCK_SIZE;
if (frames & (BLOCK_SIZE - 1))
++blocks;
double one_over_blocks = 1 / (double) blocks;
/* cheesy linear interpolation for f, works well though. */
double df = (getport(1) / fs - f) * one_over_blocks;
double dQ = (getport(2) - Q) * one_over_blocks;
svf.set_out ((int) getport(3));
lorenz.set_rate (getport(7));
d_sample * d = ports[8];
while (frames)
{
lorenz.step();
double modulation =
getport(4) * lorenz.get_x() +
getport(5) * lorenz.get_y() +
getport(6) * lorenz.get_z();
double scale = getport(4) + getport(5) + getport(6);
modulation *= scale * f;
svf.set_f_Q (max (.001, f + modulation), Q);
int n = min (frames, BLOCK_SIZE);
for (int i = 0; i < n; ++i)
F (d, i, svf.process (s[i] + normal), adding_gain);
s += n;
d += n;
frames -= n;
f += df;
Q += dQ;
}
f = getport(1) / fs;
Q = getport(2);
}
/* //////////////////////////////////////////////////////////////////////// */
PortInfo
SweepVFI::port_info [] =
{
{
"in",
INPUT | AUDIO,
{0, 0, 0}
}, {
"f",
INPUT | CONTROL,
{BOUNDED | LOG | DEFAULT_LOW, 83, 3383}
}, {
"Q",
INPUT | CONTROL,
{BOUNDED | DEFAULT_MID, 0.001, .999}
}, {
"mode",
INPUT | CONTROL,
{BOUNDED | DEFAULT_1 | INTEGER, 0, 1} /* only lo and band make sense */
}, {
"depth:x",
INPUT | CONTROL,
{BOUNDED | DEFAULT_LOW, 0, 1}
}, {
"depth:y",
INPUT | CONTROL,
{BOUNDED | DEFAULT_MID, 0, 1}
}, {
"depth:z",
INPUT | CONTROL,
{BOUNDED | DEFAULT_MAX, 0, 1}
}, {
"h",
INPUT | CONTROL,
{BOUNDED | DEFAULT_LOW, 0.001, 1} /* .039 */
}, {
"out",
OUTPUT | AUDIO,
{0}
}
};
template <> void
Descriptor<SweepVFI>::setup()
{
UniqueID = 1782;
Label = "SweepVFI";
Properties = HARD_RT;
Name = CAPS "SweepVFI - Resonant filter swept by a Lorenz fractal";
Maker = "Tim Goetze <tim@quitte.de>";
Copyright = "GPL, 2004-7";
/* fill port info and vtable */
autogen();
}
/* //////////////////////////////////////////////////////////////////////// */
void
SweepVFII::init()
{
f = .1;
Q = .1;
lorenz1.init();
lorenz2.init();
}
void
SweepVFII::activate()
{
svf.reset();
svf.set_f_Q (f = getport(1) / fs, Q = getport(2));
}
template <sample_func_t F>
void
SweepVFII::one_cycle (int frames)
{
d_sample * s = ports[0];
int blocks = frames / BLOCK_SIZE;
if (frames & (BLOCK_SIZE - 1))
++blocks;
double one_over_blocks = 1 / (double) blocks;
/* cheesy linear interpolation for f, works well though. */
double df = (getport(1) / fs - f) * one_over_blocks;
double dQ = (getport(2) - Q) * one_over_blocks;
svf.set_out ((int) getport(3));
lorenz1.set_rate (getport(7));
lorenz2.set_rate (getport(11));
d_sample * d = ports[12];
while (frames)
{
/* f modulation */
lorenz1.step();
double modulation1 =
getport(4) * lorenz1.get_x() +
getport(5) * lorenz1.get_y() +
getport(6) * lorenz1.get_z();
double scale1 = getport(4) + getport(5) + getport(6);
modulation1 *= scale1 * f;
/* Q modulation */
lorenz2.step();
double modulation2 =
getport(8) * lorenz2.get_x() +
getport(9) * lorenz2.get_y() +
getport(10) * lorenz2.get_z();
double scale2 = getport(8) + getport(9) + getport(10);
/* enforce Q limit */
double q = Q + (modulation2 * scale2 * Q);
q = min (0.96, max (q, 0));
svf.set_f_Q (max (.001, f + modulation1), q);
int n = min (frames, BLOCK_SIZE);
for (int i = 0; i < n; ++i)
F (d, i, svf.process (s[i] + normal), adding_gain);
s += n;
d += n;
frames -= n;
f += df;
Q += dQ;
}
f = getport(1) / fs;
Q = getport(2);
}
/* //////////////////////////////////////////////////////////////////////// */
PortInfo
SweepVFII::port_info [] =
{
{
"in",
INPUT | AUDIO,
{0, 0, 0}
}, {
"f",
INPUT | CONTROL,
{BOUNDED | LOG | DEFAULT_LOW, 83, 3383}
}, {
"Q",
INPUT | CONTROL,
{BOUNDED | DEFAULT_MID, 0.001, .999}
}, {
"mode",
INPUT | CONTROL,
{BOUNDED | DEFAULT_1 | INTEGER, 0, 1} /* only lo and band make sense */
}, {
"f:depth:x",
INPUT | CONTROL,
{BOUNDED | DEFAULT_LOW, 0, 1}
}, {
"f:depth:y",
INPUT | CONTROL,
{BOUNDED | DEFAULT_MID, 0, 1}
}, {
"f:depth:z",
INPUT | CONTROL,
{BOUNDED | DEFAULT_MAX, 0, 1}
}, {
"f:h",
INPUT | CONTROL,
{BOUNDED | DEFAULT_LOW, 0.001, 1} /* .039 */
}, {
"Q:depth:x",
INPUT | CONTROL,
{BOUNDED | DEFAULT_LOW, 0, 1}
}, {
"Q:depth:y",
INPUT | CONTROL,
{BOUNDED | DEFAULT_MID, 0, 1}
}, {
"Q:depth:z",
INPUT | CONTROL,
{BOUNDED | DEFAULT_MAX, 0, 1}
}, {
"Q:h",
INPUT | CONTROL,
{BOUNDED | DEFAULT_LOW, 0.001, 1} /* .039 */
}, {
"out",
OUTPUT | AUDIO,
{0}
}
};
template <> void
Descriptor<SweepVFII>::setup()
{
UniqueID = 2582;
Label = "SweepVFII";
Properties = HARD_RT;
Name = CAPS "SweepVFII - Resonant filter, f and Q swept by a Lorenz fractal";
Maker = "Tim Goetze <tim@quitte.de>";
Copyright = "GPL, 2004-7";
/* fill port info and vtable */
autogen();
}
/* //////////////////////////////////////////////////////////////////////// */
void
AutoWah::init()
{
f = 800 / fs;
Q = .5;
}
void
AutoWah::activate()
{
svf.reset();
svf.set_f_Q (f = getport(1) / fs, Q = getport(2));
svf.set_out (DSP::SVF<1>::Band);
/* hi-passing input for envelope RMS calculation */
hp.set_f (250. / fs);
/* smoothing the envelope at 20 Hz */
DSP::RBJ::LP (20. * BLOCK_SIZE / fs, .6, filter.a, filter.b);
rms.reset();
hp.reset();
filter.reset();
}
template <sample_func_t F>
void
AutoWah::one_cycle (int frames)
{
d_sample * s = ports[0];
int blocks = frames / BLOCK_SIZE;
if (frames & (BLOCK_SIZE - 1))
++blocks;
double one_over_blocks = 1 / (double) blocks;
/* cheesy linear interpolation for f, works well though. */
double df = (getport(1) / fs - f) * one_over_blocks;
double dQ = (getport(2) - Q) * one_over_blocks;
double scale = getport(3);
d_sample * d = ports[4];
while (frames)
{
double m = rms.rms();
m = filter.process (m + normal);
/* Leaving debug output in your code is cheesy! */
/*
static int _turn = 0;
if (_turn++ % 100 == 0)
fprintf (stderr, "%.4f\n", m);
*/
m *= scale * .08;
svf.set_f_Q (max (.001, f + m), Q);
int n = min (frames, BLOCK_SIZE);
for (int i = 0; i < n; ++i)
{
d_sample x = s[i] + normal;
/* A stacked SVF in bandpass mode is rather quiet, which is
* compensated here */
F (d, i, 2 * svf.process (x), adding_gain);
/* for envelope calculation, prefer high f content */
x = hp.process (x);
rms.store (x * x);
}
s += n;
d += n;
frames -= n;
f += df;
Q += dQ;
normal = -normal;
}
f = getport(1) / fs;
Q = getport(2);
}
/* //////////////////////////////////////////////////////////////////////// */
PortInfo
AutoWah::port_info [] =
{
{
"in",
INPUT | AUDIO,
{0, 0, 0}
}, {
"f",
INPUT | CONTROL,
{BOUNDED | LOG | DEFAULT_LOW, 43, 933}
}, {
"Q",
INPUT | CONTROL,
{BOUNDED | DEFAULT_LOW, 0.001, .999}
}, {
"depth",
INPUT | CONTROL,
{BOUNDED | DEFAULT_MID, 0, 1}
}, {
"out",
OUTPUT | AUDIO,
{0}
}
};
template <> void
Descriptor<AutoWah>::setup()
{
UniqueID = 2593;
Label = "AutoWah";
Properties = HARD_RT;
Name = CAPS "AutoWah - Resonant envelope-following filter";
Maker = "Tim Goetze <tim@quitte.de>";
Copyright = "GPL, 2004-7";
/* fill port info and vtable */
autogen();
}