mirror of
https://github.com/LMMS/lmms.git
synced 2026-01-24 22:38:07 -05:00
Summary: * `NULL` -> `nullptr` * `gui` -> Function `getGUI()` * `pluginFactory` -> Function `getPluginFactory()` * `assert` (redefinition) -> using `NDEBUG` instead, which standard `assert` respects. * `powf` (C stdlib symbol clash) -> removed and all expansions replaced with calls to `std::pow`. * `exp10` (nonstandard function symbol clash) -> removed and all expansions replaced with calls to `std::pow`. * `PATH_DEV_DSP` -> File-scope QString of identical name and value. * `VST_SNC_SHM_KEY_FILE` -> constexpr char* with identical name and value. * `MM_ALLOC` and `MM_FREE` -> Functions with identical name and implementation. * `INVAL`, `OUTVAL`, etc. for automation nodes -> Functions with identical names and implementations. * BandLimitedWave.h: All integer constant macros replaced with constexpr ints of same name and value. * `FAST_RAND_MAX` -> constexpr int of same name and value. * `QSTR_TO_STDSTR` -> Function with identical name and equivalent implementation. * `CCONST` -> constexpr function template with identical name and implementation. * `F_OPEN_UTF8` -> Function with identical name and equivalent implementation. * `LADSPA_PATH_SEPARATOR` -> constexpr char with identical name and value. * `UI_CTRL_KEY` -> constexpr char* with identical name and value. * `ALIGN_SIZE` -> Renamed to `LMMS_ALIGN_SIZE` and converted from a macro to a constexpr size_t. * `JACK_MIDI_BUFFER_MAX` -> constexpr size_t with identical name and value. * versioninfo.h: `PLATFORM`, `MACHINE` and `COMPILER_VERSION` -> prefixed with `LMMS_BUILDCONF_` and converted from macros to constexpr char* literals. * Header guard _OSCILLOSCOPE -> renamed to OSCILLOSCOPE_H * Header guard _TIME_DISPLAY_WIDGET -> renamed to TIME_DISPLAY_WIDGET_H * C-style typecasts in DrumSynth.cpp have been replaced with `static_cast`. * constexpr numerical constants are initialized with assignment notation instead of curly brace intializers. * In portsmf, `Alg_seq::operator[]` will throw an exception instead of returning null if the operator index is out of range. Additionally, in many places, global constants that were declared as `const T foo = bar;` were changed from const to constexpr, leaving them const and making them potentially evaluable at compile time. Some macros that only appeared in single source files and were unused in those files have been removed entirely.
917 lines
22 KiB
C++
917 lines
22 KiB
C++
/*
|
|
* BasicFilters.h - simple but powerful filter-class with most used filters
|
|
*
|
|
* original file by ???
|
|
* modified and enhanced by Tobias Doerffel
|
|
*
|
|
* Lowpass_SV code originally from Nekobee, Copyright (C) 2004 Sean Bolton and others
|
|
* adapted & modified for use in LMMS
|
|
*
|
|
* Copyright (c) 2004-2009 Tobias Doerffel <tobydox/at/users.sourceforge.net>
|
|
*
|
|
* This file is part of LMMS - https://lmms.io
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public
|
|
* License along with this program (see COPYING); if not, write to the
|
|
* Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
|
|
* Boston, MA 02110-1301 USA.
|
|
*
|
|
*/
|
|
|
|
|
|
#ifndef BASIC_FILTERS_H
|
|
#define BASIC_FILTERS_H
|
|
|
|
#ifndef __USE_XOPEN
|
|
#define __USE_XOPEN
|
|
#endif
|
|
|
|
#include <math.h>
|
|
|
|
#include "lmms_basics.h"
|
|
#include "lmms_constants.h"
|
|
#include "interpolation.h"
|
|
#include "MemoryManager.h"
|
|
|
|
template<ch_cnt_t CHANNELS=DEFAULT_CHANNELS> class BasicFilters;
|
|
|
|
template<ch_cnt_t CHANNELS>
|
|
class LinkwitzRiley
|
|
{
|
|
MM_OPERATORS
|
|
public:
|
|
LinkwitzRiley( float sampleRate )
|
|
{
|
|
m_sampleRate = sampleRate;
|
|
clearHistory();
|
|
}
|
|
virtual ~LinkwitzRiley() {}
|
|
|
|
inline void clearHistory()
|
|
{
|
|
for( int i = 0; i < CHANNELS; ++i )
|
|
{
|
|
m_z1[i] = m_z2[i] = m_z3[i] = m_z4[i] = 0.0f;
|
|
}
|
|
}
|
|
|
|
inline void setSampleRate( float sampleRate )
|
|
{
|
|
m_sampleRate = sampleRate;
|
|
}
|
|
|
|
inline void setCoeffs( float freq )
|
|
{
|
|
// wc
|
|
const double wc = D_2PI * freq;
|
|
const double wc2 = wc * wc;
|
|
const double wc3 = wc2 * wc;
|
|
m_wc4 = wc2 * wc2;
|
|
|
|
// k
|
|
const double k = wc / tan( D_PI * freq / m_sampleRate );
|
|
const double k2 = k * k;
|
|
const double k3 = k2 * k;
|
|
m_k4 = k2 * k2;
|
|
|
|
// a
|
|
static const double sqrt2 = sqrt( 2.0 );
|
|
const double sq_tmp1 = sqrt2 * wc3 * k;
|
|
const double sq_tmp2 = sqrt2 * wc * k3;
|
|
|
|
m_a = 1.0 / ( 4.0 * wc2 * k2 + 2.0 * sq_tmp1 + m_k4 + 2.0 * sq_tmp2 + m_wc4 );
|
|
|
|
// b
|
|
m_b1 = ( 4.0 * ( m_wc4 + sq_tmp1 - m_k4 - sq_tmp2 ) ) * m_a;
|
|
m_b2 = ( 6.0 * m_wc4 - 8.0 * wc2 * k2 + 6.0 * m_k4 ) * m_a;
|
|
m_b3 = ( 4.0 * ( m_wc4 - sq_tmp1 + sq_tmp2 - m_k4 ) ) * m_a;
|
|
m_b4 = ( m_k4 - 2.0 * sq_tmp1 + m_wc4 - 2.0 * sq_tmp2 + 4.0 * wc2 * k2 ) * m_a;
|
|
}
|
|
|
|
inline void setLowpass( float freq )
|
|
{
|
|
setCoeffs( freq );
|
|
m_a0 = m_wc4 * m_a;
|
|
m_a1 = 4.0 * m_a0;
|
|
m_a2 = 6.0 * m_a0;
|
|
}
|
|
|
|
inline void setHighpass( float freq )
|
|
{
|
|
setCoeffs( freq );
|
|
m_a0 = m_k4 * m_a;
|
|
m_a1 = -4.0 * m_a0;
|
|
m_a2 = 6.0 * m_a0;
|
|
}
|
|
|
|
inline float update( float in, ch_cnt_t ch )
|
|
{
|
|
const double x = in - ( m_z1[ch] * m_b1 ) - ( m_z2[ch] * m_b2 ) -
|
|
( m_z3[ch] * m_b3 ) - ( m_z4[ch] * m_b4 );
|
|
const double y = ( m_a0 * x ) + ( m_z1[ch] * m_a1 ) + ( m_z2[ch] * m_a2 ) +
|
|
( m_z3[ch] * m_a1 ) + ( m_z4[ch] * m_a0 );
|
|
m_z4[ch] = m_z3[ch];
|
|
m_z3[ch] = m_z2[ch];
|
|
m_z2[ch] = m_z1[ch];
|
|
m_z1[ch] = x;
|
|
|
|
return y;
|
|
}
|
|
|
|
private:
|
|
float m_sampleRate;
|
|
double m_wc4;
|
|
double m_k4;
|
|
double m_a, m_a0, m_a1, m_a2;
|
|
double m_b1, m_b2, m_b3, m_b4;
|
|
|
|
typedef double frame[CHANNELS];
|
|
frame m_z1, m_z2, m_z3, m_z4;
|
|
};
|
|
typedef LinkwitzRiley<2> StereoLinkwitzRiley;
|
|
|
|
template<ch_cnt_t CHANNELS>
|
|
class BiQuad
|
|
{
|
|
MM_OPERATORS
|
|
public:
|
|
BiQuad()
|
|
{
|
|
clearHistory();
|
|
}
|
|
virtual ~BiQuad() {}
|
|
|
|
inline void setCoeffs( float a1, float a2, float b0, float b1, float b2 )
|
|
{
|
|
m_a1 = a1;
|
|
m_a2 = a2;
|
|
m_b0 = b0;
|
|
m_b1 = b1;
|
|
m_b2 = b2;
|
|
}
|
|
inline void clearHistory()
|
|
{
|
|
for( int i = 0; i < CHANNELS; ++i )
|
|
{
|
|
m_z1[i] = 0.0f;
|
|
m_z2[i] = 0.0f;
|
|
}
|
|
}
|
|
inline float update( float in, ch_cnt_t ch )
|
|
{
|
|
// biquad filter in transposed form
|
|
const float out = m_z1[ch] + m_b0 * in;
|
|
m_z1[ch] = m_b1 * in + m_z2[ch] - m_a1 * out;
|
|
m_z2[ch] = m_b2 * in - m_a2 * out;
|
|
return out;
|
|
}
|
|
private:
|
|
float m_a1, m_a2, m_b0, m_b1, m_b2;
|
|
float m_z1 [CHANNELS], m_z2 [CHANNELS];
|
|
|
|
friend class BasicFilters<CHANNELS>; // needed for subfilter stuff in BasicFilters
|
|
};
|
|
typedef BiQuad<2> StereoBiQuad;
|
|
|
|
template<ch_cnt_t CHANNELS>
|
|
class OnePole
|
|
{
|
|
MM_OPERATORS
|
|
public:
|
|
OnePole()
|
|
{
|
|
m_a0 = 1.0;
|
|
m_b1 = 0.0;
|
|
for( int i = 0; i < CHANNELS; ++i )
|
|
{
|
|
m_z1[i] = 0.0;
|
|
}
|
|
}
|
|
virtual ~OnePole() {}
|
|
|
|
inline void setCoeffs( float a0, float b1 )
|
|
{
|
|
m_a0 = a0;
|
|
m_b1 = b1;
|
|
}
|
|
|
|
inline float update( float s, ch_cnt_t ch )
|
|
{
|
|
if( qAbs( s ) < 1.0e-10f && qAbs( m_z1[ch] ) < 1.0e-10f ) return 0.0f;
|
|
return m_z1[ch] = s * m_a0 + m_z1[ch] * m_b1;
|
|
}
|
|
|
|
private:
|
|
float m_a0, m_b1;
|
|
float m_z1 [CHANNELS];
|
|
};
|
|
typedef OnePole<2> StereoOnePole;
|
|
|
|
template<ch_cnt_t CHANNELS>
|
|
class BasicFilters
|
|
{
|
|
MM_OPERATORS
|
|
public:
|
|
enum FilterTypes
|
|
{
|
|
LowPass,
|
|
HiPass,
|
|
BandPass_CSG,
|
|
BandPass_CZPG,
|
|
Notch,
|
|
AllPass,
|
|
Moog,
|
|
DoubleLowPass,
|
|
Lowpass_RC12,
|
|
Bandpass_RC12,
|
|
Highpass_RC12,
|
|
Lowpass_RC24,
|
|
Bandpass_RC24,
|
|
Highpass_RC24,
|
|
Formantfilter,
|
|
DoubleMoog,
|
|
Lowpass_SV,
|
|
Bandpass_SV,
|
|
Highpass_SV,
|
|
Notch_SV,
|
|
FastFormant,
|
|
Tripole,
|
|
NumFilters
|
|
};
|
|
|
|
static inline float minFreq()
|
|
{
|
|
return( 5.0f );
|
|
}
|
|
|
|
static inline float minQ()
|
|
{
|
|
return( 0.01f );
|
|
}
|
|
|
|
inline void setFilterType( const int _idx )
|
|
{
|
|
m_doubleFilter = _idx == DoubleLowPass || _idx == DoubleMoog;
|
|
if( !m_doubleFilter )
|
|
{
|
|
m_type = static_cast<FilterTypes>( _idx );
|
|
return;
|
|
}
|
|
|
|
// Double lowpass mode, backwards-compat for the goofy
|
|
// Add-NumFilters to signify doubleFilter stuff
|
|
m_type = _idx == DoubleLowPass
|
|
? LowPass
|
|
: Moog;
|
|
if( m_subFilter == nullptr )
|
|
{
|
|
m_subFilter = new BasicFilters<CHANNELS>(
|
|
static_cast<sample_rate_t>(
|
|
m_sampleRate ) );
|
|
}
|
|
m_subFilter->m_type = m_type;
|
|
}
|
|
|
|
inline BasicFilters( const sample_rate_t _sample_rate ) :
|
|
m_doubleFilter( false ),
|
|
m_sampleRate( (float) _sample_rate ),
|
|
m_sampleRatio( 1.0f / m_sampleRate ),
|
|
m_subFilter( nullptr )
|
|
{
|
|
clearHistory();
|
|
}
|
|
|
|
inline ~BasicFilters()
|
|
{
|
|
delete m_subFilter;
|
|
}
|
|
|
|
inline void clearHistory()
|
|
{
|
|
// reset in/out history for biquads
|
|
m_biQuad.clearHistory();
|
|
|
|
// reset in/out history
|
|
for( ch_cnt_t _chnl = 0; _chnl < CHANNELS; ++_chnl )
|
|
{
|
|
// reset in/out history for moog-filter
|
|
m_y1[_chnl] = m_y2[_chnl] = m_y3[_chnl] = m_y4[_chnl] =
|
|
m_oldx[_chnl] = m_oldy1[_chnl] =
|
|
m_oldy2[_chnl] = m_oldy3[_chnl] = 0.0f;
|
|
|
|
// tripole
|
|
m_last[_chnl] = 0.0f;
|
|
|
|
// reset in/out history for RC-filters
|
|
m_rclp0[_chnl] = m_rcbp0[_chnl] = m_rchp0[_chnl] = m_rclast0[_chnl] = 0.0f;
|
|
m_rclp1[_chnl] = m_rcbp1[_chnl] = m_rchp1[_chnl] = m_rclast1[_chnl] = 0.0f;
|
|
|
|
for(int i=0; i<6; i++)
|
|
m_vfbp[i][_chnl] = m_vfhp[i][_chnl] = m_vflast[i][_chnl] = 0.0f;
|
|
|
|
// reset in/out history for SV-filters
|
|
m_delay1[_chnl] = 0.0f;
|
|
m_delay2[_chnl] = 0.0f;
|
|
m_delay3[_chnl] = 0.0f;
|
|
m_delay4[_chnl] = 0.0f;
|
|
}
|
|
}
|
|
|
|
inline sample_t update( sample_t _in0, ch_cnt_t _chnl )
|
|
{
|
|
sample_t out;
|
|
switch( m_type )
|
|
{
|
|
case Moog:
|
|
{
|
|
sample_t x = _in0 - m_r*m_y4[_chnl];
|
|
|
|
// four cascaded onepole filters
|
|
// (bilinear transform)
|
|
m_y1[_chnl] = qBound( -10.0f,
|
|
( x + m_oldx[_chnl] ) * m_p
|
|
- m_k * m_y1[_chnl],
|
|
10.0f );
|
|
m_y2[_chnl] = qBound( -10.0f,
|
|
( m_y1[_chnl] + m_oldy1[_chnl] ) * m_p
|
|
- m_k * m_y2[_chnl],
|
|
10.0f );
|
|
m_y3[_chnl] = qBound( -10.0f,
|
|
( m_y2[_chnl] + m_oldy2[_chnl] ) * m_p
|
|
- m_k * m_y3[_chnl],
|
|
10.0f );
|
|
m_y4[_chnl] = qBound( -10.0f,
|
|
( m_y3[_chnl] + m_oldy3[_chnl] ) * m_p
|
|
- m_k * m_y4[_chnl],
|
|
10.0f );
|
|
|
|
m_oldx[_chnl] = x;
|
|
m_oldy1[_chnl] = m_y1[_chnl];
|
|
m_oldy2[_chnl] = m_y2[_chnl];
|
|
m_oldy3[_chnl] = m_y3[_chnl];
|
|
out = m_y4[_chnl] - m_y4[_chnl] * m_y4[_chnl] *
|
|
m_y4[_chnl] * ( 1.0f / 6.0f );
|
|
break;
|
|
}
|
|
|
|
// 3x onepole filters with 4x oversampling and interpolation of oversampled signal:
|
|
// input signal is linear-interpolated after oversampling, output signal is averaged from oversampled outputs
|
|
case Tripole:
|
|
{
|
|
out = 0.0f;
|
|
float ip = 0.0f;
|
|
for( int i = 0; i < 4; ++i )
|
|
{
|
|
ip += 0.25f;
|
|
sample_t x = linearInterpolate( m_last[_chnl], _in0, ip ) - m_r * m_y3[_chnl];
|
|
|
|
m_y1[_chnl] = qBound( -10.0f,
|
|
( x + m_oldx[_chnl] ) * m_p
|
|
- m_k * m_y1[_chnl],
|
|
10.0f );
|
|
m_y2[_chnl] = qBound( -10.0f,
|
|
( m_y1[_chnl] + m_oldy1[_chnl] ) * m_p
|
|
- m_k * m_y2[_chnl],
|
|
10.0f );
|
|
m_y3[_chnl] = qBound( -10.0f,
|
|
( m_y2[_chnl] + m_oldy2[_chnl] ) * m_p
|
|
- m_k * m_y3[_chnl],
|
|
10.0f );
|
|
m_oldx[_chnl] = x;
|
|
m_oldy1[_chnl] = m_y1[_chnl];
|
|
m_oldy2[_chnl] = m_y2[_chnl];
|
|
|
|
out += ( m_y3[_chnl] - m_y3[_chnl] * m_y3[_chnl] * m_y3[_chnl] * ( 1.0f / 6.0f ) );
|
|
}
|
|
out *= 0.25f;
|
|
m_last[_chnl] = _in0;
|
|
return out;
|
|
}
|
|
|
|
// 4-pole state-variant lowpass filter, adapted from Nekobee source code
|
|
// and extended to other SV filter types
|
|
// /* Hal Chamberlin's state variable filter */
|
|
|
|
case Lowpass_SV:
|
|
case Bandpass_SV:
|
|
{
|
|
float highpass;
|
|
|
|
for( int i = 0; i < 2; ++i ) // 2x oversample
|
|
{
|
|
m_delay2[_chnl] = m_delay2[_chnl] + m_svf1 * m_delay1[_chnl]; /* delay2/4 = lowpass output */
|
|
highpass = _in0 - m_delay2[_chnl] - m_svq * m_delay1[_chnl];
|
|
m_delay1[_chnl] = m_svf1 * highpass + m_delay1[_chnl]; /* delay1/3 = bandpass output */
|
|
|
|
m_delay4[_chnl] = m_delay4[_chnl] + m_svf2 * m_delay3[_chnl];
|
|
highpass = m_delay2[_chnl] - m_delay4[_chnl] - m_svq * m_delay3[_chnl];
|
|
m_delay3[_chnl] = m_svf2 * highpass + m_delay3[_chnl];
|
|
}
|
|
|
|
/* mix filter output into output buffer */
|
|
return m_type == Lowpass_SV
|
|
? m_delay4[_chnl]
|
|
: m_delay3[_chnl];
|
|
}
|
|
|
|
case Highpass_SV:
|
|
{
|
|
float hp;
|
|
|
|
for( int i = 0; i < 2; ++i ) // 2x oversample
|
|
{
|
|
m_delay2[_chnl] = m_delay2[_chnl] + m_svf1 * m_delay1[_chnl];
|
|
hp = _in0 - m_delay2[_chnl] - m_svq * m_delay1[_chnl];
|
|
m_delay1[_chnl] = m_svf1 * hp + m_delay1[_chnl];
|
|
}
|
|
|
|
return hp;
|
|
}
|
|
|
|
case Notch_SV:
|
|
{
|
|
float hp1, hp2;
|
|
|
|
for( int i = 0; i < 2; ++i ) // 2x oversample
|
|
{
|
|
m_delay2[_chnl] = m_delay2[_chnl] + m_svf1 * m_delay1[_chnl]; /* delay2/4 = lowpass output */
|
|
hp1 = _in0 - m_delay2[_chnl] - m_svq * m_delay1[_chnl];
|
|
m_delay1[_chnl] = m_svf1 * hp1 + m_delay1[_chnl]; /* delay1/3 = bandpass output */
|
|
|
|
m_delay4[_chnl] = m_delay4[_chnl] + m_svf2 * m_delay3[_chnl];
|
|
hp2 = m_delay2[_chnl] - m_delay4[_chnl] - m_svq * m_delay3[_chnl];
|
|
m_delay3[_chnl] = m_svf2 * hp2 + m_delay3[_chnl];
|
|
}
|
|
|
|
/* mix filter output into output buffer */
|
|
return m_delay4[_chnl] + hp1;
|
|
}
|
|
|
|
|
|
// 4-times oversampled simulation of an active RC-Bandpass,-Lowpass,-Highpass-
|
|
// Filter-Network as it was used in nearly all modern analog synthesizers. This
|
|
// can be driven up to self-oscillation (BTW: do not remove the limits!!!).
|
|
// (C) 1998 ... 2009 S.Fendt. Released under the GPL v2.0 or any later version.
|
|
|
|
case Lowpass_RC12:
|
|
{
|
|
sample_t lp, bp, hp, in;
|
|
for( int n = 4; n != 0; --n )
|
|
{
|
|
in = _in0 + m_rcbp0[_chnl] * m_rcq;
|
|
in = qBound( -1.0f, in, 1.0f );
|
|
|
|
lp = in * m_rcb + m_rclp0[_chnl] * m_rca;
|
|
lp = qBound( -1.0f, lp, 1.0f );
|
|
|
|
hp = m_rcc * ( m_rchp0[_chnl] + in - m_rclast0[_chnl] );
|
|
hp = qBound( -1.0f, hp, 1.0f );
|
|
|
|
bp = hp * m_rcb + m_rcbp0[_chnl] * m_rca;
|
|
bp = qBound( -1.0f, bp, 1.0f );
|
|
|
|
m_rclast0[_chnl] = in;
|
|
m_rclp0[_chnl] = lp;
|
|
m_rchp0[_chnl] = hp;
|
|
m_rcbp0[_chnl] = bp;
|
|
}
|
|
return lp;
|
|
}
|
|
case Highpass_RC12:
|
|
case Bandpass_RC12:
|
|
{
|
|
sample_t hp, bp, in;
|
|
for( int n = 4; n != 0; --n )
|
|
{
|
|
in = _in0 + m_rcbp0[_chnl] * m_rcq;
|
|
in = qBound( -1.0f, in, 1.0f );
|
|
|
|
hp = m_rcc * ( m_rchp0[_chnl] + in - m_rclast0[_chnl] );
|
|
hp = qBound( -1.0f, hp, 1.0f );
|
|
|
|
bp = hp * m_rcb + m_rcbp0[_chnl] * m_rca;
|
|
bp = qBound( -1.0f, bp, 1.0f );
|
|
|
|
m_rclast0[_chnl] = in;
|
|
m_rchp0[_chnl] = hp;
|
|
m_rcbp0[_chnl] = bp;
|
|
}
|
|
return m_type == Highpass_RC12 ? hp : bp;
|
|
}
|
|
|
|
case Lowpass_RC24:
|
|
{
|
|
sample_t lp, bp, hp, in;
|
|
for( int n = 4; n != 0; --n )
|
|
{
|
|
// first stage is as for the 12dB case...
|
|
in = _in0 + m_rcbp0[_chnl] * m_rcq;
|
|
in = qBound( -1.0f, in, 1.0f );
|
|
|
|
lp = in * m_rcb + m_rclp0[_chnl] * m_rca;
|
|
lp = qBound( -1.0f, lp, 1.0f );
|
|
|
|
hp = m_rcc * ( m_rchp0[_chnl] + in - m_rclast0[_chnl] );
|
|
hp = qBound( -1.0f, hp, 1.0f );
|
|
|
|
bp = hp * m_rcb + m_rcbp0[_chnl] * m_rca;
|
|
bp = qBound( -1.0f, bp, 1.0f );
|
|
|
|
m_rclast0[_chnl] = in;
|
|
m_rclp0[_chnl] = lp;
|
|
m_rcbp0[_chnl] = bp;
|
|
m_rchp0[_chnl] = hp;
|
|
|
|
// second stage gets the output of the first stage as input...
|
|
in = lp + m_rcbp1[_chnl] * m_rcq;
|
|
in = qBound( -1.0f, in, 1.0f );
|
|
|
|
lp = in * m_rcb + m_rclp1[_chnl] * m_rca;
|
|
lp = qBound( -1.0f, lp, 1.0f );
|
|
|
|
hp = m_rcc * ( m_rchp1[_chnl] + in - m_rclast1[_chnl] );
|
|
hp = qBound( -1.0f, hp, 1.0f );
|
|
|
|
bp = hp * m_rcb + m_rcbp1[_chnl] * m_rca;
|
|
bp = qBound( -1.0f, bp, 1.0f );
|
|
|
|
m_rclast1[_chnl] = in;
|
|
m_rclp1[_chnl] = lp;
|
|
m_rcbp1[_chnl] = bp;
|
|
m_rchp1[_chnl] = hp;
|
|
}
|
|
return lp;
|
|
}
|
|
case Highpass_RC24:
|
|
case Bandpass_RC24:
|
|
{
|
|
sample_t hp, bp, in;
|
|
for( int n = 4; n != 0; --n )
|
|
{
|
|
// first stage is as for the 12dB case...
|
|
in = _in0 + m_rcbp0[_chnl] * m_rcq;
|
|
in = qBound( -1.0f, in, 1.0f );
|
|
|
|
hp = m_rcc * ( m_rchp0[_chnl] + in - m_rclast0[_chnl] );
|
|
hp = qBound( -1.0f, hp, 1.0f );
|
|
|
|
bp = hp * m_rcb + m_rcbp0[_chnl] * m_rca;
|
|
bp = qBound( -1.0f, bp, 1.0f );
|
|
|
|
m_rclast0[_chnl] = in;
|
|
m_rchp0[_chnl] = hp;
|
|
m_rcbp0[_chnl] = bp;
|
|
|
|
// second stage gets the output of the first stage as input...
|
|
in = m_type == Highpass_RC24
|
|
? hp + m_rcbp1[_chnl] * m_rcq
|
|
: bp + m_rcbp1[_chnl] * m_rcq;
|
|
|
|
in = qBound( -1.0f, in, 1.0f );
|
|
|
|
hp = m_rcc * ( m_rchp1[_chnl] + in - m_rclast1[_chnl] );
|
|
hp = qBound( -1.0f, hp, 1.0f );
|
|
|
|
bp = hp * m_rcb + m_rcbp1[_chnl] * m_rca;
|
|
bp = qBound( -1.0f, bp, 1.0f );
|
|
|
|
m_rclast1[_chnl] = in;
|
|
m_rchp1[_chnl] = hp;
|
|
m_rcbp1[_chnl] = bp;
|
|
}
|
|
return m_type == Highpass_RC24 ? hp : bp;
|
|
}
|
|
|
|
case Formantfilter:
|
|
case FastFormant:
|
|
{
|
|
if( qAbs( _in0 ) < 1.0e-10f && qAbs( m_vflast[0][_chnl] ) < 1.0e-10f ) { return 0.0f; } // performance hack - skip processing when the numbers get too small
|
|
sample_t hp, bp, in;
|
|
|
|
out = 0;
|
|
const int os = m_type == FastFormant ? 1 : 4; // no oversampling for fast formant
|
|
for( int o = 0; o < os; ++o )
|
|
{
|
|
// first formant
|
|
in = _in0 + m_vfbp[0][_chnl] * m_vfq;
|
|
in = qBound( -1.0f, in, 1.0f );
|
|
|
|
hp = m_vfc[0] * ( m_vfhp[0][_chnl] + in - m_vflast[0][_chnl] );
|
|
hp = qBound( -1.0f, hp, 1.0f );
|
|
|
|
bp = hp * m_vfb[0] + m_vfbp[0][_chnl] * m_vfa[0];
|
|
bp = qBound( -1.0f, bp, 1.0f );
|
|
|
|
m_vflast[0][_chnl] = in;
|
|
m_vfhp[0][_chnl] = hp;
|
|
m_vfbp[0][_chnl] = bp;
|
|
|
|
in = bp + m_vfbp[2][_chnl] * m_vfq;
|
|
in = qBound( -1.0f, in, 1.0f );
|
|
|
|
hp = m_vfc[0] * ( m_vfhp[2][_chnl] + in - m_vflast[2][_chnl] );
|
|
hp = qBound( -1.0f, hp, 1.0f );
|
|
|
|
bp = hp * m_vfb[0] + m_vfbp[2][_chnl] * m_vfa[0];
|
|
bp = qBound( -1.0f, bp, 1.0f );
|
|
|
|
m_vflast[2][_chnl] = in;
|
|
m_vfhp[2][_chnl] = hp;
|
|
m_vfbp[2][_chnl] = bp;
|
|
|
|
in = bp + m_vfbp[4][_chnl] * m_vfq;
|
|
in = qBound( -1.0f, in, 1.0f );
|
|
|
|
hp = m_vfc[0] * ( m_vfhp[4][_chnl] + in - m_vflast[4][_chnl] );
|
|
hp = qBound( -1.0f, hp, 1.0f );
|
|
|
|
bp = hp * m_vfb[0] + m_vfbp[4][_chnl] * m_vfa[0];
|
|
bp = qBound( -1.0f, bp, 1.0f );
|
|
|
|
m_vflast[4][_chnl] = in;
|
|
m_vfhp[4][_chnl] = hp;
|
|
m_vfbp[4][_chnl] = bp;
|
|
|
|
out += bp;
|
|
|
|
// second formant
|
|
in = _in0 + m_vfbp[0][_chnl] * m_vfq;
|
|
in = qBound( -1.0f, in, 1.0f );
|
|
|
|
hp = m_vfc[1] * ( m_vfhp[1][_chnl] + in - m_vflast[1][_chnl] );
|
|
hp = qBound( -1.0f, hp, 1.0f );
|
|
|
|
bp = hp * m_vfb[1] + m_vfbp[1][_chnl] * m_vfa[1];
|
|
bp = qBound( -1.0f, bp, 1.0f );
|
|
|
|
m_vflast[1][_chnl] = in;
|
|
m_vfhp[1][_chnl] = hp;
|
|
m_vfbp[1][_chnl] = bp;
|
|
|
|
in = bp + m_vfbp[3][_chnl] * m_vfq;
|
|
in = qBound( -1.0f, in, 1.0f );
|
|
|
|
hp = m_vfc[1] * ( m_vfhp[3][_chnl] + in - m_vflast[3][_chnl] );
|
|
hp = qBound( -1.0f, hp, 1.0f );
|
|
|
|
bp = hp * m_vfb[1] + m_vfbp[3][_chnl] * m_vfa[1];
|
|
bp = qBound( -1.0f, bp, 1.0f );
|
|
|
|
m_vflast[3][_chnl] = in;
|
|
m_vfhp[3][_chnl] = hp;
|
|
m_vfbp[3][_chnl] = bp;
|
|
|
|
in = bp + m_vfbp[5][_chnl] * m_vfq;
|
|
in = qBound( -1.0f, in, 1.0f );
|
|
|
|
hp = m_vfc[1] * ( m_vfhp[5][_chnl] + in - m_vflast[5][_chnl] );
|
|
hp = qBound( -1.0f, hp, 1.0f );
|
|
|
|
bp = hp * m_vfb[1] + m_vfbp[5][_chnl] * m_vfa[1];
|
|
bp = qBound( -1.0f, bp, 1.0f );
|
|
|
|
m_vflast[5][_chnl] = in;
|
|
m_vfhp[5][_chnl] = hp;
|
|
m_vfbp[5][_chnl] = bp;
|
|
|
|
out += bp;
|
|
}
|
|
return m_type == FastFormant ? out * 2.0f : out * 0.5f;
|
|
}
|
|
|
|
default:
|
|
out = m_biQuad.update( _in0, _chnl );
|
|
break;
|
|
}
|
|
|
|
if( m_doubleFilter )
|
|
{
|
|
return m_subFilter->update( out, _chnl );
|
|
}
|
|
|
|
// Clipper band limited sigmoid
|
|
return out;
|
|
}
|
|
|
|
|
|
inline void calcFilterCoeffs( float _freq, float _q )
|
|
{
|
|
// temp coef vars
|
|
_q = qMax( _q, minQ() );
|
|
|
|
if( m_type == Lowpass_RC12 ||
|
|
m_type == Bandpass_RC12 ||
|
|
m_type == Highpass_RC12 ||
|
|
m_type == Lowpass_RC24 ||
|
|
m_type == Bandpass_RC24 ||
|
|
m_type == Highpass_RC24 )
|
|
{
|
|
_freq = qBound( 50.0f, _freq, 20000.0f );
|
|
const float sr = m_sampleRatio * 0.25f;
|
|
const float f = 1.0f / ( _freq * F_2PI );
|
|
|
|
m_rca = 1.0f - sr / ( f + sr );
|
|
m_rcb = 1.0f - m_rca;
|
|
m_rcc = f / ( f + sr );
|
|
|
|
// Stretch Q/resonance, as self-oscillation reliably starts at a q of ~2.5 - ~2.6
|
|
m_rcq = _q * 0.25f;
|
|
return;
|
|
}
|
|
|
|
if( m_type == Formantfilter ||
|
|
m_type == FastFormant )
|
|
{
|
|
_freq = qBound( minFreq(), _freq, 20000.0f ); // limit freq and q for not getting bad noise out of the filter...
|
|
|
|
// formats for a, e, i, o, u, a
|
|
static const float _f[6][2] = { { 1000, 1400 }, { 500, 2300 },
|
|
{ 320, 3200 },
|
|
{ 500, 1000 },
|
|
{ 320, 800 },
|
|
{ 1000, 1400 } };
|
|
static const float freqRatio = 4.0f / 14000.0f;
|
|
|
|
// Stretch Q/resonance
|
|
m_vfq = _q * 0.25f;
|
|
|
|
// frequency in lmms ranges from 1Hz to 14000Hz
|
|
const float vowelf = _freq * freqRatio;
|
|
const int vowel = static_cast<int>( vowelf );
|
|
const float fract = vowelf - vowel;
|
|
|
|
// interpolate between formant frequencies
|
|
const float f0 = 1.0f / ( linearInterpolate( _f[vowel+0][0], _f[vowel+1][0], fract ) * F_2PI );
|
|
const float f1 = 1.0f / ( linearInterpolate( _f[vowel+0][1], _f[vowel+1][1], fract ) * F_2PI );
|
|
|
|
// samplerate coeff: depends on oversampling
|
|
const float sr = m_type == FastFormant ? m_sampleRatio : m_sampleRatio * 0.25f;
|
|
|
|
m_vfa[0] = 1.0f - sr / ( f0 + sr );
|
|
m_vfb[0] = 1.0f - m_vfa[0];
|
|
m_vfc[0] = f0 / ( f0 + sr );
|
|
m_vfa[1] = 1.0f - sr / ( f1 + sr );
|
|
m_vfb[1] = 1.0f - m_vfa[1];
|
|
m_vfc[1] = f1 / ( f1 + sr );
|
|
return;
|
|
}
|
|
|
|
if( m_type == Moog ||
|
|
m_type == DoubleMoog )
|
|
{
|
|
// [ 0 - 0.5 ]
|
|
const float f = qBound( minFreq(), _freq, 20000.0f ) * m_sampleRatio;
|
|
// (Empirical tunning)
|
|
m_p = ( 3.6f - 3.2f * f ) * f;
|
|
m_k = 2.0f * m_p - 1;
|
|
m_r = _q * powf( F_E, ( 1 - m_p ) * 1.386249f );
|
|
|
|
if( m_doubleFilter )
|
|
{
|
|
m_subFilter->m_r = m_r;
|
|
m_subFilter->m_p = m_p;
|
|
m_subFilter->m_k = m_k;
|
|
}
|
|
return;
|
|
}
|
|
|
|
if( m_type == Tripole )
|
|
{
|
|
const float f = qBound( 20.0f, _freq, 20000.0f ) * m_sampleRatio * 0.25f;
|
|
|
|
m_p = ( 3.6f - 3.2f * f ) * f;
|
|
m_k = 2.0f * m_p - 1.0f;
|
|
m_r = _q * 0.1f * powf( F_E, ( 1 - m_p ) * 1.386249f );
|
|
|
|
return;
|
|
}
|
|
|
|
if( m_type == Lowpass_SV ||
|
|
m_type == Bandpass_SV ||
|
|
m_type == Highpass_SV ||
|
|
m_type == Notch_SV )
|
|
{
|
|
const float f = sinf( qMax( minFreq(), _freq ) * m_sampleRatio * F_PI );
|
|
m_svf1 = qMin( f, 0.825f );
|
|
m_svf2 = qMin( f * 2.0f, 0.825f );
|
|
m_svq = qMax( 0.0001f, 2.0f - ( _q * 0.1995f ) );
|
|
return;
|
|
}
|
|
|
|
// other filters
|
|
_freq = qBound( minFreq(), _freq, 20000.0f );
|
|
const float omega = F_2PI * _freq * m_sampleRatio;
|
|
const float tsin = sinf( omega ) * 0.5f;
|
|
const float tcos = cosf( omega );
|
|
|
|
const float alpha = tsin / _q;
|
|
|
|
const float a0 = 1.0f / ( 1.0f + alpha );
|
|
|
|
const float a1 = -2.0f * tcos * a0;
|
|
const float a2 = ( 1.0f - alpha ) * a0;
|
|
|
|
switch( m_type )
|
|
{
|
|
case LowPass:
|
|
{
|
|
const float b1 = ( 1.0f - tcos ) * a0;
|
|
const float b0 = b1 * 0.5f;
|
|
m_biQuad.setCoeffs( a1, a2, b0, b1, b0 );
|
|
break;
|
|
}
|
|
case HiPass:
|
|
{
|
|
const float b1 = ( -1.0f - tcos ) * a0;
|
|
const float b0 = b1 * -0.5f;
|
|
m_biQuad.setCoeffs( a1, a2, b0, b1, b0 );
|
|
break;
|
|
}
|
|
case BandPass_CSG:
|
|
{
|
|
const float b0 = tsin * a0;
|
|
m_biQuad.setCoeffs( a1, a2, b0, 0.0f, -b0 );
|
|
break;
|
|
}
|
|
case BandPass_CZPG:
|
|
{
|
|
const float b0 = alpha * a0;
|
|
m_biQuad.setCoeffs( a1, a2, b0, 0.0f, -b0 );
|
|
break;
|
|
}
|
|
case Notch:
|
|
{
|
|
m_biQuad.setCoeffs( a1, a2, a0, a1, a0 );
|
|
break;
|
|
}
|
|
case AllPass:
|
|
{
|
|
m_biQuad.setCoeffs( a1, a2, a2, a1, 1.0f );
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if( m_doubleFilter )
|
|
{
|
|
m_subFilter->m_biQuad.setCoeffs( m_biQuad.m_a1, m_biQuad.m_a2, m_biQuad.m_b0, m_biQuad.m_b1, m_biQuad.m_b2 );
|
|
}
|
|
}
|
|
|
|
|
|
private:
|
|
// biquad filter
|
|
BiQuad<CHANNELS> m_biQuad;
|
|
|
|
// coeffs for moog-filter
|
|
float m_r, m_p, m_k;
|
|
|
|
// coeffs for RC-type-filters
|
|
float m_rca, m_rcb, m_rcc, m_rcq;
|
|
|
|
// coeffs for formant-filters
|
|
float m_vfa[4], m_vfb[4], m_vfc[4], m_vfq;
|
|
|
|
// coeffs for Lowpass_SV (state-variant lowpass)
|
|
float m_svf1, m_svf2, m_svq;
|
|
|
|
typedef sample_t frame[CHANNELS];
|
|
|
|
// in/out history for moog-filter
|
|
frame m_y1, m_y2, m_y3, m_y4, m_oldx, m_oldy1, m_oldy2, m_oldy3;
|
|
// additional one for Tripole filter
|
|
frame m_last;
|
|
|
|
// in/out history for RC-type-filters
|
|
frame m_rcbp0, m_rclp0, m_rchp0, m_rclast0;
|
|
frame m_rcbp1, m_rclp1, m_rchp1, m_rclast1;
|
|
|
|
// in/out history for Formant-filters
|
|
frame m_vfbp[6], m_vfhp[6], m_vflast[6];
|
|
|
|
// in/out history for Lowpass_SV (state-variant lowpass)
|
|
frame m_delay1, m_delay2, m_delay3, m_delay4;
|
|
|
|
FilterTypes m_type;
|
|
bool m_doubleFilter;
|
|
|
|
float m_sampleRate;
|
|
float m_sampleRatio;
|
|
BasicFilters<CHANNELS> * m_subFilter;
|
|
|
|
} ;
|
|
|
|
|
|
#endif
|