mirror of
https://github.com/LMMS/lmms.git
synced 2026-01-01 11:07:57 -05:00
* use c++ std::* math functions This updates usages of sin, cos, tan, pow, exp, log, log10, sqrt, fmod, fabs, and fabsf, excluding any usages that look like they might be part of a submodule or 3rd-party code. There's probably some std math functions not listed here that haven't been updated yet. * fix std::sqrt typo lmao one always sneaks by * Apply code review suggestions - std::pow(2, x) -> std::exp2(x) - std::pow(10, x) -> lmms::fastPow10f(x) - std::pow(x, 2) -> x * x, std::pow(x, 3) -> x * x * x, etc. - Resolve TODOs, fix typos, and so forth Co-authored-by: Rossmaxx <74815851+Rossmaxx@users.noreply.github.com> * Fix double -> float truncation, DrumSynth fix I mistakenly introduced a bug in my recent PR regarding template constants, in which a -1 that was supposed to appear outside of an abs() instead was moved inside it, screwing up the generated waveform. I fixed that and also simplified the function by factoring out the phase domain wrapping using the new `ediv()` function from this PR. It should behave how it's supposed to now... assuming all my parentheses are in the right place lol * Annotate magic numbers with TODOs for C++20 * On second thought, why wait? What else is lmms::numbers for? * begone inline Co-authored-by: Rossmaxx <74815851+Rossmaxx@users.noreply.github.com> * begone other inline Co-authored-by: Rossmaxx <74815851+Rossmaxx@users.noreply.github.com> * Re-inline function in lmms_math.h For functions, constexpr implies inline so this just re-adds inline to the one that isn't constexpr yet * Formatting fixes, readability improvements Co-authored-by: Dalton Messmer <messmer.dalton@gmail.com> * Fix previously missed pow() calls, cleanup Co-authored-by: Dalton Messmer <messmer.dalton@gmail.com> * Just delete ediv() entirely lmao No ediv(), no std::fmod(), no std::remainder(), just std::floor(). It should all work for negative phase inputs as well. If I end up needing ediv() in the future, I can add it then. * Simplify DrumSynth triangle waveform This reuses more work and is also a lot more easy to visualize. It's probably a meaningless micro-optimization, but it might be worth changing it back to a switch-case and just calculating ph_tau and saw01 at the beginning of the function in all code paths, even if it goes unused for the first two cases. Guess I'll see if anybody has strong opinions about it. * Move multiplication inside abs() * Clean up a few more pow(x, 2) -> x * x * Remove numbers::inv_pi, numbers::inv_tau * delete spooky leading 0 Co-authored-by: Dalton Messmer <messmer.dalton@gmail.com> --------- Co-authored-by: Rossmaxx <74815851+Rossmaxx@users.noreply.github.com> Co-authored-by: Dalton Messmer <messmer.dalton@gmail.com>
591 lines
19 KiB
C++
Executable File
591 lines
19 KiB
C++
Executable File
/*
|
|
* Compressor.cpp
|
|
*
|
|
* Copyright (c) 2020 Lost Robot <r94231@gmail.com>
|
|
*
|
|
* This file is part of LMMS - https://lmms.io
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public
|
|
* License along with this program (see COPYING); if not, write to the
|
|
* Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
|
|
* Boston, MA 02110-1301 USA.
|
|
*
|
|
*/
|
|
|
|
#include "Compressor.h"
|
|
|
|
#include "embed.h"
|
|
#include "interpolation.h"
|
|
#include "lmms_math.h"
|
|
#include "plugin_export.h"
|
|
|
|
namespace lmms
|
|
{
|
|
|
|
|
|
extern "C"
|
|
{
|
|
|
|
Plugin::Descriptor PLUGIN_EXPORT compressor_plugin_descriptor =
|
|
{
|
|
LMMS_STRINGIFY(PLUGIN_NAME),
|
|
"Compressor",
|
|
QT_TRANSLATE_NOOP("PluginBrowser", "A dynamic range compressor."),
|
|
"Lost Robot <r94231@gmail.com>",
|
|
0x0100,
|
|
Plugin::Type::Effect,
|
|
new PluginPixmapLoader("logo"),
|
|
nullptr,
|
|
nullptr,
|
|
} ;
|
|
|
|
}
|
|
|
|
|
|
CompressorEffect::CompressorEffect(Model* parent, const Descriptor::SubPluginFeatures::Key* key) :
|
|
Effect(&compressor_plugin_descriptor, parent, key),
|
|
m_compressorControls(this)
|
|
{
|
|
m_sampleRate = Engine::audioEngine()->outputSampleRate();
|
|
|
|
m_yL[0] = m_yL[1] = COMP_NOISE_FLOOR;
|
|
|
|
// 200 ms
|
|
m_crestTimeConst = std::exp(-1.f / (0.2f * m_sampleRate));
|
|
|
|
connect(&m_compressorControls.m_attackModel, SIGNAL(dataChanged()), this, SLOT(calcAttack()), Qt::DirectConnection);
|
|
connect(&m_compressorControls.m_releaseModel, SIGNAL(dataChanged()), this, SLOT(calcRelease()), Qt::DirectConnection);
|
|
connect(&m_compressorControls.m_holdModel, SIGNAL(dataChanged()), this, SLOT(calcHold()), Qt::DirectConnection);
|
|
connect(&m_compressorControls.m_ratioModel, SIGNAL(dataChanged()), this, SLOT(calcRatio()), Qt::DirectConnection);
|
|
connect(&m_compressorControls.m_rangeModel, SIGNAL(dataChanged()), this, SLOT(calcRange()), Qt::DirectConnection);
|
|
connect(&m_compressorControls.m_rmsModel, SIGNAL(dataChanged()), this, SLOT(resizeRMS()), Qt::DirectConnection);
|
|
connect(&m_compressorControls.m_lookaheadLengthModel, SIGNAL(dataChanged()), this, SLOT(calcLookaheadLength()), Qt::DirectConnection);
|
|
connect(&m_compressorControls.m_thresholdModel, SIGNAL(dataChanged()), this, SLOT(calcThreshold()), Qt::DirectConnection);
|
|
connect(&m_compressorControls.m_kneeModel, SIGNAL(dataChanged()), this, SLOT(calcKnee()), Qt::DirectConnection);
|
|
connect(&m_compressorControls.m_outGainModel, SIGNAL(dataChanged()), this, SLOT(calcOutGain()), Qt::DirectConnection);
|
|
connect(&m_compressorControls.m_inGainModel, SIGNAL(dataChanged()), this, SLOT(calcInGain()), Qt::DirectConnection);
|
|
connect(&m_compressorControls.m_tiltModel, SIGNAL(dataChanged()), this, SLOT(calcTiltCoeffs()), Qt::DirectConnection);
|
|
connect(&m_compressorControls.m_tiltFreqModel, SIGNAL(dataChanged()), this, SLOT(calcTiltCoeffs()), Qt::DirectConnection);
|
|
connect(&m_compressorControls.m_limiterModel, SIGNAL(dataChanged()), this, SLOT(redrawKnee()), Qt::DirectConnection);
|
|
connect(&m_compressorControls.m_mixModel, SIGNAL(dataChanged()), this, SLOT(calcMix()), Qt::DirectConnection);
|
|
|
|
connect(&m_compressorControls.m_autoAttackModel, SIGNAL(dataChanged()), this, SLOT(calcAutoAttack()), Qt::DirectConnection);
|
|
connect(&m_compressorControls.m_autoReleaseModel, SIGNAL(dataChanged()), this, SLOT(calcAutoRelease()), Qt::DirectConnection);
|
|
|
|
connect(&m_compressorControls.m_thresholdModel, SIGNAL(dataChanged()), this, SLOT(calcAutoMakeup()), Qt::DirectConnection);
|
|
connect(&m_compressorControls.m_ratioModel, SIGNAL(dataChanged()), this, SLOT(calcAutoMakeup()), Qt::DirectConnection);
|
|
connect(&m_compressorControls.m_kneeModel, SIGNAL(dataChanged()), this, SLOT(calcAutoMakeup()), Qt::DirectConnection);
|
|
connect(&m_compressorControls.m_autoMakeupModel, SIGNAL(dataChanged()), this, SLOT(calcAutoMakeup()), Qt::DirectConnection);
|
|
|
|
connect(Engine::audioEngine(), SIGNAL(sampleRateChanged()), this, SLOT(changeSampleRate()));
|
|
changeSampleRate();
|
|
}
|
|
|
|
|
|
|
|
|
|
float CompressorEffect::msToCoeff(float ms)
|
|
{
|
|
// Convert time in milliseconds to applicable lowpass coefficient
|
|
return std::exp(m_coeffPrecalc / ms);
|
|
}
|
|
|
|
|
|
|
|
void CompressorEffect::calcAutoMakeup()
|
|
{
|
|
// Formulas using the compressor's Threshold, Ratio, and Knee values to estimate a good makeup gain value
|
|
|
|
float tempGainResult;
|
|
if (-m_thresholdVal < m_kneeVal)
|
|
{
|
|
const float temp = -m_thresholdVal + m_kneeVal;
|
|
tempGainResult = ((m_compressorControls.m_limiterModel.value() ? 0 : m_ratioVal) - 1) * temp * temp / (4 * m_kneeVal);
|
|
}
|
|
else// Above knee
|
|
{
|
|
tempGainResult = m_compressorControls.m_limiterModel.value()
|
|
? m_thresholdVal
|
|
: m_thresholdVal - m_thresholdVal * m_ratioVal;
|
|
}
|
|
|
|
m_autoMakeupVal = 1.f / dbfsToAmp(tempGainResult);
|
|
}
|
|
|
|
|
|
|
|
void CompressorEffect::calcAttack()
|
|
{
|
|
m_attCoeff = msToCoeff(m_compressorControls.m_attackModel.value());
|
|
}
|
|
|
|
void CompressorEffect::calcRelease()
|
|
{
|
|
m_relCoeff = msToCoeff(m_compressorControls.m_releaseModel.value());
|
|
}
|
|
|
|
void CompressorEffect::calcAutoAttack()
|
|
{
|
|
m_autoAttVal = m_compressorControls.m_autoAttackModel.value() * 0.01f;
|
|
}
|
|
|
|
void CompressorEffect::calcAutoRelease()
|
|
{
|
|
m_autoRelVal = m_compressorControls.m_autoReleaseModel.value() * 0.01f;
|
|
}
|
|
|
|
void CompressorEffect::calcHold()
|
|
{
|
|
m_holdLength = m_compressorControls.m_holdModel.value() * 0.001f * m_sampleRate;
|
|
m_holdTimer[0] = 0;
|
|
m_holdTimer[1] = 0;
|
|
}
|
|
|
|
void CompressorEffect::calcOutGain()
|
|
{
|
|
// 0.999 is needed to keep the values from crossing the threshold all the time
|
|
// (most commonly for limiters specifically), and is kept across all modes for consistency.
|
|
m_outGainVal = dbfsToAmp(m_compressorControls.m_outGainModel.value()) * 0.999;
|
|
}
|
|
|
|
void CompressorEffect::calcRatio()
|
|
{
|
|
m_ratioVal = 1.f / m_compressorControls.m_ratioModel.value();
|
|
m_redrawKnee = true;
|
|
}
|
|
|
|
void CompressorEffect::calcRange()
|
|
{
|
|
// Range is inactive when turned all the way down
|
|
m_rangeVal = (m_compressorControls.m_rangeModel.value() > m_compressorControls.m_rangeModel.minValue())
|
|
? dbfsToAmp(m_compressorControls.m_rangeModel.value())
|
|
: 0;
|
|
}
|
|
|
|
void CompressorEffect::resizeRMS()
|
|
{
|
|
const float rmsValue = m_compressorControls.m_rmsModel.value();
|
|
m_rmsTimeConst = (rmsValue > 0) ? std::exp(-1.f / (rmsValue * 0.001f * m_sampleRate)) : 0;
|
|
}
|
|
|
|
void CompressorEffect::calcLookaheadLength()
|
|
{
|
|
m_lookaheadLength = std::ceil((m_compressorControls.m_lookaheadLengthModel.value() / 1000.f) * m_sampleRate);
|
|
}
|
|
|
|
void CompressorEffect::calcThreshold()
|
|
{
|
|
m_thresholdVal = m_compressorControls.m_thresholdModel.value();
|
|
m_thresholdAmpVal = dbfsToAmp(m_thresholdVal);
|
|
m_redrawKnee = true;
|
|
m_redrawThreshold = true;
|
|
}
|
|
|
|
void CompressorEffect::calcKnee()
|
|
{
|
|
m_kneeVal = m_compressorControls.m_kneeModel.value() * 0.5f;
|
|
m_redrawKnee = true;
|
|
}
|
|
|
|
void CompressorEffect::calcInGain()
|
|
{
|
|
m_inGainVal = dbfsToAmp(m_compressorControls.m_inGainModel.value());
|
|
}
|
|
|
|
void CompressorEffect::redrawKnee()
|
|
{
|
|
m_redrawKnee = true;
|
|
}
|
|
|
|
void CompressorEffect::calcTiltCoeffs()
|
|
{
|
|
m_tiltVal = m_compressorControls.m_tiltModel.value();
|
|
|
|
const float amp = 6.f / std::log(2.f);
|
|
|
|
const float gfactor = 5;
|
|
const float g1 = m_tiltVal > 0 ? -gfactor * m_tiltVal : -m_tiltVal;
|
|
const float g2 = m_tiltVal > 0 ? m_tiltVal : gfactor * m_tiltVal;
|
|
|
|
m_lgain = std::exp(g1 / amp) - 1;
|
|
m_hgain = std::exp(g2 / amp) - 1;
|
|
|
|
const float omega = numbers::tau_v<float> * m_compressorControls.m_tiltFreqModel.value();
|
|
const float n = 1 / (m_sampleRate * 3 + omega);
|
|
m_a0 = 2 * omega * n;
|
|
m_b1 = (m_sampleRate * 3 - omega) * n;
|
|
}
|
|
|
|
void CompressorEffect::calcMix()
|
|
{
|
|
m_mixVal = m_compressorControls.m_mixModel.value() * 0.01;
|
|
}
|
|
|
|
|
|
|
|
Effect::ProcessStatus CompressorEffect::processImpl(SampleFrame* buf, const fpp_t frames)
|
|
{
|
|
m_cleanedBuffers = false;
|
|
|
|
const float d = dryLevel();
|
|
const float w = wetLevel();
|
|
|
|
float lOutPeak = 0.0;
|
|
float rOutPeak = 0.0;
|
|
float lInPeak = 0.0;
|
|
float rInPeak = 0.0;
|
|
|
|
const bool midside = m_compressorControls.m_midsideModel.value();
|
|
const bool peakmode = m_compressorControls.m_peakmodeModel.value();
|
|
const float inBalance = m_compressorControls.m_inBalanceModel.value();
|
|
const float outBalance = m_compressorControls.m_outBalanceModel.value();
|
|
const bool limiter = m_compressorControls.m_limiterModel.value();
|
|
const float blend = m_compressorControls.m_blendModel.value();
|
|
const float stereoBalance = m_compressorControls.m_stereoBalanceModel.value();
|
|
const bool autoMakeup = m_compressorControls.m_autoMakeupModel.value();
|
|
const int stereoLink = m_compressorControls.m_stereoLinkModel.value();
|
|
const bool audition = m_compressorControls.m_auditionModel.value();
|
|
const bool feedback = m_compressorControls.m_feedbackModel.value();
|
|
const bool lookahead = m_compressorControls.m_lookaheadModel.value();
|
|
|
|
for(fpp_t f = 0; f < frames; ++f)
|
|
{
|
|
auto drySignal = std::array{buf[f][0], buf[f][1]};
|
|
auto s = std::array{drySignal[0] * m_inGainVal, drySignal[1] * m_inGainVal};
|
|
|
|
// Calculate tilt filters, to bias the sidechain to the low or high frequencies
|
|
if (m_tiltVal)
|
|
{
|
|
calcTiltFilter(s[0], s[0], 0);
|
|
calcTiltFilter(s[1], s[1], 1);
|
|
}
|
|
|
|
if (midside)// Convert left/right to mid/side
|
|
{
|
|
const float temp = s[0];
|
|
s[0] = (temp + s[1]) * 0.5;
|
|
s[1] = temp - s[1];
|
|
}
|
|
|
|
s[0] *= inBalance > 0 ? 1 - inBalance : 1;
|
|
s[1] *= inBalance < 0 ? 1 + inBalance : 1;
|
|
|
|
m_gainResult[0] = 0;
|
|
m_gainResult[1] = 0;
|
|
|
|
for (int i = 0; i < 2; i++)
|
|
{
|
|
float inputValue = (feedback && !lookahead) ? m_prevOut[i] : s[i];
|
|
|
|
// Calculate the crest factor of the audio by diving the peak by the RMS
|
|
m_crestPeakVal[i] = qMax(qMax(COMP_NOISE_FLOOR, inputValue * inputValue), m_crestTimeConst * m_crestPeakVal[i] + (1 - m_crestTimeConst) * (inputValue * inputValue));
|
|
m_crestRmsVal[i] = qMax(COMP_NOISE_FLOOR, m_crestTimeConst * m_crestRmsVal[i] + ((1 - m_crestTimeConst) * (inputValue * inputValue)));
|
|
m_crestFactorVal[i] = m_crestPeakVal[i] / m_crestRmsVal[i];
|
|
|
|
m_rmsVal[i] = m_rmsTimeConst * m_rmsVal[i] + ((1 - m_rmsTimeConst) * (inputValue * inputValue));
|
|
|
|
// Grab the peak or RMS value
|
|
inputValue = qMax(COMP_NOISE_FLOOR, peakmode ? std::abs(inputValue) : std::sqrt(m_rmsVal[i]));
|
|
|
|
float t = inputValue;
|
|
|
|
if (t > m_yL[i])// Attack phase
|
|
{
|
|
// We want the "resting value" of our crest factor to be with a sine wave,
|
|
// which with this variable has a value of 2.
|
|
// So, we pull this value down to 0, and multiply it by the percentage of
|
|
// automatic attack control that is applied. We then add 2 back to it.
|
|
float crestFactorValTemp = ((m_crestFactorVal[i] - 2.f) * m_autoAttVal) + 2.f;
|
|
|
|
// Calculate attack value depending on crest factor
|
|
const float att = m_autoAttVal
|
|
? msToCoeff(2.f * m_compressorControls.m_attackModel.value() / (crestFactorValTemp))
|
|
: m_attCoeff;
|
|
|
|
m_yL[i] = m_yL[i] * att + (1 - att) * t;
|
|
m_holdTimer[i] = m_holdLength;// Reset hold timer
|
|
}
|
|
else// Release phase
|
|
{
|
|
float crestFactorValTemp = ((m_crestFactorVal[i] - 2.f) * m_autoRelVal) + 2.f;
|
|
|
|
const float rel = m_autoRelVal
|
|
? msToCoeff(2.f * m_compressorControls.m_releaseModel.value() / (crestFactorValTemp))
|
|
: m_relCoeff;
|
|
|
|
if (m_holdTimer[i])// Don't change peak if hold is being applied
|
|
{
|
|
--m_holdTimer[i];
|
|
}
|
|
else
|
|
{
|
|
m_yL[i] = m_yL[i] * rel + (1 - rel) * t;
|
|
}
|
|
}
|
|
|
|
// Keep it above the noise floor
|
|
m_yL[i] = qMax(COMP_NOISE_FLOOR, m_yL[i]);
|
|
|
|
float scVal = m_yL[i];
|
|
|
|
if (lookahead)
|
|
{
|
|
const float temp = scVal;
|
|
// Lookahead is calculated by picking the largest value between
|
|
// the current sidechain signal and the delayed sidechain signal.
|
|
scVal = std::max(m_scLookBuf[i][m_lookWrite], m_scLookBuf[i][(m_lookWrite + m_lookBufLength - m_lookaheadLength) % m_lookBufLength]);
|
|
m_scLookBuf[i][m_lookWrite] = temp;
|
|
}
|
|
|
|
// For the visualizer
|
|
m_displayPeak[i] = qMax(scVal, m_displayPeak[i]);
|
|
|
|
const float currentPeakDbfs = ampToDbfs(scVal);
|
|
|
|
// Now find the gain change that should be applied,
|
|
// depending on the measured input value.
|
|
if (currentPeakDbfs - m_thresholdVal < -m_kneeVal)// Below knee
|
|
{
|
|
m_gainResult[i] = currentPeakDbfs;
|
|
}
|
|
else if (currentPeakDbfs - m_thresholdVal < m_kneeVal)// Within knee
|
|
{
|
|
const float temp = currentPeakDbfs - m_thresholdVal + m_kneeVal;
|
|
m_gainResult[i] = currentPeakDbfs + ((limiter ? 0 : m_ratioVal) - 1) * temp * temp / (4 * m_kneeVal);
|
|
}
|
|
else// Above knee
|
|
{
|
|
m_gainResult[i] = limiter
|
|
? m_thresholdVal
|
|
: m_thresholdVal + (currentPeakDbfs - m_thresholdVal) * m_ratioVal;
|
|
}
|
|
|
|
m_gainResult[i] = dbfsToAmp(m_gainResult[i]) / scVal;
|
|
m_gainResult[i] = qMax(m_rangeVal, m_gainResult[i]);
|
|
}
|
|
|
|
switch (static_cast<StereoLinkMode>(stereoLink))
|
|
{
|
|
case StereoLinkMode::Unlinked:
|
|
{
|
|
break;
|
|
}
|
|
case StereoLinkMode::Maximum:
|
|
{
|
|
m_gainResult[0] = m_gainResult[1] = qMin(m_gainResult[0], m_gainResult[1]);
|
|
break;
|
|
}
|
|
case StereoLinkMode::Average:
|
|
{
|
|
m_gainResult[0] = m_gainResult[1] = (m_gainResult[0] + m_gainResult[1]) * 0.5f;
|
|
break;
|
|
}
|
|
case StereoLinkMode::Minimum:
|
|
{
|
|
m_gainResult[0] = m_gainResult[1] = qMax(m_gainResult[0], m_gainResult[1]);
|
|
break;
|
|
}
|
|
case StereoLinkMode::Blend:
|
|
{
|
|
if (blend > 0)// 0 is unlinked
|
|
{
|
|
if (blend <= 1)// Blend to minimum volume
|
|
{
|
|
const float temp1 = qMin(m_gainResult[0], m_gainResult[1]);
|
|
m_gainResult[0] = linearInterpolate(m_gainResult[0], temp1, blend);
|
|
m_gainResult[1] = linearInterpolate(m_gainResult[1], temp1, blend);
|
|
}
|
|
else if (blend <= 2)// Blend to average volume
|
|
{
|
|
const float temp1 = qMin(m_gainResult[0], m_gainResult[1]);
|
|
const float temp2 = (m_gainResult[0] + m_gainResult[1]) * 0.5f;
|
|
m_gainResult[0] = linearInterpolate(temp1, temp2, blend - 1);
|
|
m_gainResult[1] = m_gainResult[0];
|
|
}
|
|
else// Blend to maximum volume
|
|
{
|
|
const float temp1 = (m_gainResult[0] + m_gainResult[1]) * 0.5f;
|
|
const float temp2 = qMax(m_gainResult[0], m_gainResult[1]);
|
|
m_gainResult[0] = linearInterpolate(temp1, temp2, blend - 2);
|
|
m_gainResult[1] = m_gainResult[0];
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Bias compression to the left or right (or mid or side)
|
|
if (stereoBalance != 0)
|
|
{
|
|
m_gainResult[0] = 1 - ((1 - m_gainResult[0]) * (stereoBalance > 0 ? 1 - stereoBalance : 1));
|
|
m_gainResult[1] = 1 - ((1 - m_gainResult[1]) * (stereoBalance < 0 ? 1 + stereoBalance : 1));
|
|
}
|
|
|
|
// For visualizer
|
|
m_displayGain[0] = qMax(m_gainResult[0], m_displayGain[0]);
|
|
m_displayGain[1] = qMax(m_gainResult[1], m_displayGain[1]);
|
|
|
|
// Delay the signal by 20 ms via ring buffer if lookahead is enabled
|
|
if (lookahead)
|
|
{
|
|
s[0] = m_inLookBuf[0][m_lookWrite];
|
|
s[1] = m_inLookBuf[1][m_lookWrite];
|
|
m_inLookBuf[0][m_lookWrite] = drySignal[0];
|
|
m_inLookBuf[1][m_lookWrite] = drySignal[1];
|
|
}
|
|
else
|
|
{
|
|
s[0] = drySignal[0];
|
|
s[1] = drySignal[1];
|
|
}
|
|
|
|
auto delayedDrySignal = std::array{s[0], s[1]};
|
|
|
|
if (midside)// Convert left/right to mid/side
|
|
{
|
|
const float temp = s[0];
|
|
s[0] = (temp + s[1]) * 0.5;
|
|
s[1] = temp - s[1];
|
|
}
|
|
|
|
s[0] *= inBalance > 0 ? 1 - inBalance : 1;
|
|
s[1] *= inBalance < 0 ? 1 + inBalance : 1;
|
|
|
|
s[0] *= m_gainResult[0] * m_inGainVal * m_outGainVal * (outBalance > 0 ? 1 - outBalance : 1);
|
|
s[1] *= m_gainResult[1] * m_inGainVal * m_outGainVal * (outBalance < 0 ? 1 + outBalance : 1);
|
|
|
|
if (midside)// Convert mid/side back to left/right
|
|
{
|
|
const float temp1 = s[0];
|
|
const float temp2 = s[1] * 0.5;
|
|
s[0] = temp1 + temp2;
|
|
s[1] = temp1 - temp2;
|
|
}
|
|
|
|
m_prevOut[0] = s[0];
|
|
m_prevOut[1] = s[1];
|
|
|
|
// Negate wet signal from dry signal
|
|
if (audition)
|
|
{
|
|
s[0] = (-s[0] + delayedDrySignal[0] * m_outGainVal * m_inGainVal);
|
|
s[1] = (-s[1] + delayedDrySignal[1] * m_outGainVal * m_inGainVal);
|
|
}
|
|
else if (autoMakeup)
|
|
{
|
|
s[0] *= m_autoMakeupVal;
|
|
s[1] *= m_autoMakeupVal;
|
|
}
|
|
|
|
// Calculate wet/dry value results
|
|
const float temp1 = delayedDrySignal[0];
|
|
const float temp2 = delayedDrySignal[1];
|
|
buf[f][0] = d * temp1 + w * s[0];
|
|
buf[f][1] = d * temp2 + w * s[1];
|
|
buf[f][0] = (1 - m_mixVal) * temp1 + m_mixVal * buf[f][0];
|
|
buf[f][1] = (1 - m_mixVal) * temp2 + m_mixVal * buf[f][1];
|
|
|
|
if (--m_lookWrite < 0) { m_lookWrite = m_lookBufLength - 1; }
|
|
|
|
lInPeak = drySignal[0] > lInPeak ? drySignal[0] : lInPeak;
|
|
rInPeak = drySignal[1] > rInPeak ? drySignal[1] : rInPeak;
|
|
lOutPeak = s[0] > lOutPeak ? s[0] : lOutPeak;
|
|
rOutPeak = s[1] > rOutPeak ? s[1] : rOutPeak;
|
|
}
|
|
|
|
m_compressorControls.m_outPeakL = lOutPeak;
|
|
m_compressorControls.m_outPeakR = rOutPeak;
|
|
m_compressorControls.m_inPeakL = lInPeak;
|
|
m_compressorControls.m_inPeakR = rInPeak;
|
|
|
|
return ProcessStatus::ContinueIfNotQuiet;
|
|
}
|
|
|
|
void CompressorEffect::processBypassedImpl()
|
|
{
|
|
// Clear lookahead buffers and other values when needed
|
|
if (!m_cleanedBuffers)
|
|
{
|
|
m_yL[0] = m_yL[1] = COMP_NOISE_FLOOR;
|
|
m_gainResult[0] = m_gainResult[1] = 1;
|
|
m_displayPeak[0] = m_displayPeak[1] = COMP_NOISE_FLOOR;
|
|
m_displayGain[0] = m_displayGain[1] = COMP_NOISE_FLOOR;
|
|
std::fill(std::begin(m_scLookBuf[0]), std::end(m_scLookBuf[0]), COMP_NOISE_FLOOR);
|
|
std::fill(std::begin(m_scLookBuf[1]), std::end(m_scLookBuf[1]), COMP_NOISE_FLOOR);
|
|
std::fill(std::begin(m_inLookBuf[0]), std::end(m_inLookBuf[0]), 0);
|
|
std::fill(std::begin(m_inLookBuf[1]), std::end(m_inLookBuf[1]), 0);
|
|
m_cleanedBuffers = true;
|
|
}
|
|
}
|
|
|
|
inline void CompressorEffect::calcTiltFilter(sample_t inputSample, sample_t &outputSample, int filtNum)
|
|
{
|
|
m_tiltOut[filtNum] = m_a0 * inputSample + m_b1 * m_tiltOut[filtNum];
|
|
outputSample = inputSample + m_lgain * m_tiltOut[filtNum] + m_hgain * (inputSample - m_tiltOut[filtNum]);
|
|
}
|
|
|
|
|
|
|
|
void CompressorEffect::changeSampleRate()
|
|
{
|
|
m_sampleRate = Engine::audioEngine()->outputSampleRate();
|
|
|
|
m_coeffPrecalc = COMP_LOG / (m_sampleRate * 0.001f);
|
|
|
|
// 200 ms
|
|
m_crestTimeConst = std::exp(-1.f / (0.2f * m_sampleRate));
|
|
|
|
m_lookBufLength = std::ceil((20.f / 1000.f) * m_sampleRate) + 2;
|
|
for (int i = 0; i < 2; ++i)
|
|
{
|
|
m_inLookBuf[i].resize(m_lookBufLength);
|
|
m_scLookBuf[i].resize(m_lookBufLength, COMP_NOISE_FLOOR);
|
|
}
|
|
m_lookWrite = 0;
|
|
|
|
calcThreshold();
|
|
calcKnee();
|
|
calcRatio();
|
|
calcAutoMakeup();// This should be after Threshold, Knee, and Ratio
|
|
|
|
calcAttack();
|
|
calcRelease();
|
|
calcRange();
|
|
calcLookaheadLength();
|
|
calcHold();
|
|
resizeRMS();
|
|
calcOutGain();
|
|
calcInGain();
|
|
calcTiltCoeffs();
|
|
calcMix();
|
|
|
|
calcAutoAttack();
|
|
calcAutoRelease();
|
|
}
|
|
|
|
|
|
|
|
extern "C"
|
|
{
|
|
|
|
// necessary for getting instance out of shared lib
|
|
PLUGIN_EXPORT Plugin * lmms_plugin_main(Model* parent, void* data)
|
|
{
|
|
return new CompressorEffect(parent, static_cast<const Plugin::Descriptor::SubPluginFeatures::Key *>(data));
|
|
}
|
|
|
|
}
|
|
|
|
|
|
} // namespace lmms
|