Files
lmms/include/lmms_math.h
David Carlier f4890ec375 Make it workable on OpenBSD
- Additional LMMS_BUILD flag.
- Disallow on plugins -Wl,-no-undefined which triggers undefined references.
- Make sure X11 headers are found.

Lib ossaudio is needed only for OpenBSD

redundant expression removal

simplify condition for detection OS 'kind'

seems the last commit brought an issue on OSx travis test ....
2016-03-25 14:44:15 +00:00

329 lines
7.2 KiB
C++

/*
* lmms_math.h - defines math functions
*
* Copyright (c) 2004-2008 Tobias Doerffel <tobydox/at/users.sourceforge.net>
*
* This file is part of LMMS - http://lmms.io
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program (see COPYING); if not, write to the
* Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301 USA.
*
*/
#ifndef LMMS_MATH_H
#define LMMS_MATH_H
#include <stdint.h>
#include "lmms_constants.h"
#include "lmmsconfig.h"
#include <QtCore/QtGlobal>
#include <cmath>
using namespace std;
#if defined (LMMS_BUILD_WIN32) || defined (LMMS_BUILD_APPLE) || defined(LMMS_BUILD_HAIKU) || defined (__FreeBSD__) || defined(__OpenBSD__)
#ifndef isnanf
#define isnanf(x) isnan(x)
#endif
#ifndef isinff
#define isinff(x) isinf(x)
#endif
#ifndef _isnanf
#define _isnanf(x) isnan(x)
#endif
#ifndef _isinff
#define _isinff(x) isinf(x)
#endif
#ifndef exp10
#define exp10(x) pow( 10.0, x )
#endif
#ifndef exp10f
#define exp10f(x) powf( 10.0f, x )
#endif
#endif
#ifdef __INTEL_COMPILER
static inline float absFraction( const float _x )
{
return( _x - ( _x >= 0.0f ? floorf( _x ) : floorf( _x ) - 1 ) );
}
static inline float fraction( const float _x )
{
return( _x - floorf( _x ) );
}
#else
static inline float absFraction( const float _x )
{
return( _x - ( _x >= 0.0f ? static_cast<int>( _x ) :
static_cast<int>( _x ) - 1 ) );
}
static inline float fraction( const float _x )
{
return( _x - static_cast<int>( _x ) );
}
#if 0
// SSE3-version
static inline float absFraction( float _x )
{
unsigned int tmp;
asm(
"fld %%st\n\t"
"fisttp %1\n\t"
"fild %1\n\t"
"ftst\n\t"
"sahf\n\t"
"jae 1f\n\t"
"fld1\n\t"
"fsubrp %%st, %%st(1)\n\t"
"1:\n\t"
"fsubrp %%st, %%st(1)"
: "+t"( _x ), "=m"( tmp )
:
: "st(1)", "cc" );
return( _x );
}
static inline float absFraction( float _x )
{
unsigned int tmp;
asm(
"fld %%st\n\t"
"fisttp %1\n\t"
"fild %1\n\t"
"fsubrp %%st, %%st(1)"
: "+t"( _x ), "=m"( tmp )
:
: "st(1)" );
return( _x );
}
#endif
#endif
#define FAST_RAND_MAX 32767
static inline int fast_rand()
{
static unsigned long next = 1;
next = next * 1103515245 + 12345;
return( (unsigned)( next / 65536 ) % 32768 );
}
static inline double fastRand( double range )
{
static const double fast_rand_ratio = 1.0 / FAST_RAND_MAX;
return fast_rand() * range * fast_rand_ratio;
}
static inline float fastRandf( float range )
{
static const float fast_rand_ratio = 1.0f / FAST_RAND_MAX;
return fast_rand() * range * fast_rand_ratio;
}
//! @brief Takes advantage of fmal() function if present in hardware
static inline long double fastFmal( long double a, long double b, long double c )
{
#ifdef FP_FAST_FMAL
#ifdef __clang__
return fma( a, b, c );
#else
return fmal( a, b, c );
#endif
#else
return a * b + c;
#endif
}
//! @brief Takes advantage of fmaf() function if present in hardware
static inline float fastFmaf( float a, float b, float c )
{
#ifdef FP_FAST_FMAF
#ifdef __clang__
return fma( a, b, c );
#else
return fmaf( a, b, c );
#endif
#else
return a * b + c;
#endif
}
//! @brief Takes advantage of fma() function if present in hardware
static inline double fastFma( double a, double b, double c )
{
#ifdef FP_FAST_FMA
return fma( a, b, c );
#else
return a * b + c;
#endif
}
// source: http://martin.ankerl.com/2007/10/04/optimized-pow-approximation-for-java-and-c-c/
static inline double fastPow( double a, double b )
{
union
{
double d;
int32_t x[2];
} u = { a };
u.x[1] = static_cast<int32_t>( b * ( u.x[1] - 1072632447 ) + 1072632447 );
u.x[0] = 0;
return u.d;
}
// sinc function
static inline double sinc( double _x )
{
return _x == 0.0 ? 1.0 : sin( F_PI * _x ) / ( F_PI * _x );
}
//! @brief Exponential function that deals with negative bases
static inline float signedPowf( float v, float e )
{
return v < 0
? powf( -v, e ) * -1.0f
: powf( v, e );
}
//! @brief Scales @value from linear to logarithmic.
//! Value should be within [0,1]
static inline float logToLinearScale( float min, float max, float value )
{
if( min < 0 )
{
const float mmax = qMax( qAbs( min ), qAbs( max ) );
const float val = value * ( max - min ) + min;
float result = signedPowf( val / mmax, F_E ) * mmax;
return isnan( result ) ? 0 : result;
}
float result = powf( value, F_E ) * ( max - min ) + min;
return isnan( result ) ? 0 : result;
}
//! @brief Scales value from logarithmic to linear. Value should be in min-max range.
static inline float linearToLogScale( float min, float max, float value )
{
static const float EXP = 1.0f / F_E;
const float val = ( value - min ) / ( max - min );
if( min < 0 )
{
const float mmax = qMax( qAbs( min ), qAbs( max ) );
float result = signedPowf( value / mmax, EXP ) * mmax;
return isnan( result ) ? 0 : result;
}
float result = powf( val, EXP ) * ( max - min ) + min;
return isnan( result ) ? 0 : result;
}
//! @brief Converts linear amplitude (0-1.0) to dBV scale. Handles zeroes as -inf.
//! @param amp Linear amplitude, where 1.0 = 0dBV.
//! @return Amplitude in dBV. -inf for 0 amplitude.
static inline float safeAmpToDbv( float amp )
{
return amp == 0.0f
? -INFINITY
: log10f( amp ) * 20.0f;
}
//! @brief Converts dBV-scale to linear amplitude with 0dBV = 1.0. Handles infinity as zero.
//! @param dbv The dBV value to convert: all infinites are treated as -inf and result in 0
//! @return Linear amplitude
static inline float safeDbvToAmp( float dbv )
{
return isinff( dbv )
? 0.0f
: exp10f( dbv * 0.05f );
}
//! @brief Converts linear amplitude (>0-1.0) to dBV scale.
//! @param amp Linear amplitude, where 1.0 = 0dBV. ** Must be larger than zero! **
//! @return Amplitude in dBV.
static inline float ampToDbv( float amp )
{
return log10f( amp ) * 20.0f;
}
//! @brief Converts dBV-scale to linear amplitude with 0dBV = 1.0
//! @param dbv The dBV value to convert. ** Must be a real number - not inf/nan! **
//! @return Linear amplitude
static inline float dbvToAmp( float dbv )
{
return exp10f( dbv * 0.05f );
}
//! returns 1.0f if val >= 0.0f, -1.0 else
static inline float sign( float val )
{
return val >= 0.0f ? 1.0f : -1.0f;
}
//! if val >= 0.0f, returns sqrtf(val), else: -sqrtf(-val)
static inline float sqrt_neg( float val )
{
return sqrtf( fabs( val ) ) * sign( val );
}
// fast approximation of square root
static inline float fastSqrt( float n )
{
union
{
int32_t i;
float f;
} u;
u.f = n;
u.i = ( u.i + ( 127 << 23 ) ) >> 1;
return u.f;
}
//! returns value furthest from zero
template<class T>
static inline T absMax( T a, T b )
{
return qAbs<T>(a) > qAbs<T>(b) ? a : b;
}
//! returns value nearest to zero
template<class T>
static inline T absMin( T a, T b )
{
return qAbs<T>(a) < qAbs<T>(b) ? a : b;
}
#endif