mirror of
https://github.com/LMMS/lmms.git
synced 2026-01-05 21:18:04 -05:00
917 lines
22 KiB
C++
917 lines
22 KiB
C++
/*
|
|
* BasicFilters.h - simple but powerful filter-class with most used filters
|
|
*
|
|
* original file by ???
|
|
* modified and enhanced by Tobias Doerffel
|
|
*
|
|
* Lowpass_SV code originally from Nekobee, Copyright (C) 2004 Sean Bolton and others
|
|
* adapted & modified for use in LMMS
|
|
*
|
|
* Copyright (c) 2004-2009 Tobias Doerffel <tobydox/at/users.sourceforge.net>
|
|
*
|
|
* This file is part of LMMS - https://lmms.io
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public
|
|
* License along with this program (see COPYING); if not, write to the
|
|
* Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
|
|
* Boston, MA 02110-1301 USA.
|
|
*
|
|
*/
|
|
|
|
|
|
#ifndef BASIC_FILTERS_H
|
|
#define BASIC_FILTERS_H
|
|
|
|
#ifndef __USE_XOPEN
|
|
#define __USE_XOPEN
|
|
#endif
|
|
|
|
#include <math.h>
|
|
|
|
#include "lmms_basics.h"
|
|
#include "lmms_constants.h"
|
|
#include "interpolation.h"
|
|
#include "Memory.h"
|
|
|
|
template<ch_cnt_t CHANNELS=DEFAULT_CHANNELS> class BasicFilters;
|
|
|
|
template<ch_cnt_t CHANNELS>
|
|
class LinkwitzRiley
|
|
{
|
|
MM_OPERATORS
|
|
public:
|
|
LinkwitzRiley( float sampleRate )
|
|
{
|
|
m_sampleRate = sampleRate;
|
|
clearHistory();
|
|
}
|
|
virtual ~LinkwitzRiley() {}
|
|
|
|
inline void clearHistory()
|
|
{
|
|
for( int i = 0; i < CHANNELS; ++i )
|
|
{
|
|
m_z1[i] = m_z2[i] = m_z3[i] = m_z4[i] = 0.0f;
|
|
}
|
|
}
|
|
|
|
inline void setSampleRate( float sampleRate )
|
|
{
|
|
m_sampleRate = sampleRate;
|
|
}
|
|
|
|
inline void setCoeffs( float freq )
|
|
{
|
|
// wc
|
|
const double wc = D_2PI * freq;
|
|
const double wc2 = wc * wc;
|
|
const double wc3 = wc2 * wc;
|
|
m_wc4 = wc2 * wc2;
|
|
|
|
// k
|
|
const double k = wc / tan( D_PI * freq / m_sampleRate );
|
|
const double k2 = k * k;
|
|
const double k3 = k2 * k;
|
|
m_k4 = k2 * k2;
|
|
|
|
// a
|
|
static const double sqrt2 = sqrt( 2.0 );
|
|
const double sq_tmp1 = sqrt2 * wc3 * k;
|
|
const double sq_tmp2 = sqrt2 * wc * k3;
|
|
|
|
m_a = 1.0 / ( 4.0 * wc2 * k2 + 2.0 * sq_tmp1 + m_k4 + 2.0 * sq_tmp2 + m_wc4 );
|
|
|
|
// b
|
|
m_b1 = ( 4.0 * ( m_wc4 + sq_tmp1 - m_k4 - sq_tmp2 ) ) * m_a;
|
|
m_b2 = ( 6.0 * m_wc4 - 8.0 * wc2 * k2 + 6.0 * m_k4 ) * m_a;
|
|
m_b3 = ( 4.0 * ( m_wc4 - sq_tmp1 + sq_tmp2 - m_k4 ) ) * m_a;
|
|
m_b4 = ( m_k4 - 2.0 * sq_tmp1 + m_wc4 - 2.0 * sq_tmp2 + 4.0 * wc2 * k2 ) * m_a;
|
|
}
|
|
|
|
inline void setLowpass( float freq )
|
|
{
|
|
setCoeffs( freq );
|
|
m_a0 = m_wc4 * m_a;
|
|
m_a1 = 4.0 * m_a0;
|
|
m_a2 = 6.0 * m_a0;
|
|
}
|
|
|
|
inline void setHighpass( float freq )
|
|
{
|
|
setCoeffs( freq );
|
|
m_a0 = m_k4 * m_a;
|
|
m_a1 = -4.0 * m_a0;
|
|
m_a2 = 6.0 * m_a0;
|
|
}
|
|
|
|
inline float update( float in, ch_cnt_t ch )
|
|
{
|
|
const double x = in - ( m_z1[ch] * m_b1 ) - ( m_z2[ch] * m_b2 ) -
|
|
( m_z3[ch] * m_b3 ) - ( m_z4[ch] * m_b4 );
|
|
const double y = ( m_a0 * x ) + ( m_z1[ch] * m_a1 ) + ( m_z2[ch] * m_a2 ) +
|
|
( m_z3[ch] * m_a1 ) + ( m_z4[ch] * m_a0 );
|
|
m_z4[ch] = m_z3[ch];
|
|
m_z3[ch] = m_z2[ch];
|
|
m_z2[ch] = m_z1[ch];
|
|
m_z1[ch] = x;
|
|
|
|
return y;
|
|
}
|
|
|
|
private:
|
|
float m_sampleRate;
|
|
double m_wc4;
|
|
double m_k4;
|
|
double m_a, m_a0, m_a1, m_a2;
|
|
double m_b1, m_b2, m_b3, m_b4;
|
|
|
|
typedef double frame[CHANNELS];
|
|
frame m_z1, m_z2, m_z3, m_z4;
|
|
};
|
|
typedef LinkwitzRiley<2> StereoLinkwitzRiley;
|
|
|
|
template<ch_cnt_t CHANNELS>
|
|
class BiQuad
|
|
{
|
|
MM_OPERATORS
|
|
public:
|
|
BiQuad()
|
|
{
|
|
clearHistory();
|
|
}
|
|
virtual ~BiQuad() {}
|
|
|
|
inline void setCoeffs( float a1, float a2, float b0, float b1, float b2 )
|
|
{
|
|
m_a1 = a1;
|
|
m_a2 = a2;
|
|
m_b0 = b0;
|
|
m_b1 = b1;
|
|
m_b2 = b2;
|
|
}
|
|
inline void clearHistory()
|
|
{
|
|
for( int i = 0; i < CHANNELS; ++i )
|
|
{
|
|
m_z1[i] = 0.0f;
|
|
m_z2[i] = 0.0f;
|
|
}
|
|
}
|
|
inline float update( float in, ch_cnt_t ch )
|
|
{
|
|
// biquad filter in transposed form
|
|
const float out = m_z1[ch] + m_b0 * in;
|
|
m_z1[ch] = m_b1 * in + m_z2[ch] - m_a1 * out;
|
|
m_z2[ch] = m_b2 * in - m_a2 * out;
|
|
return out;
|
|
}
|
|
private:
|
|
float m_a1, m_a2, m_b0, m_b1, m_b2;
|
|
float m_z1 [CHANNELS], m_z2 [CHANNELS];
|
|
|
|
friend class BasicFilters<CHANNELS>; // needed for subfilter stuff in BasicFilters
|
|
};
|
|
typedef BiQuad<2> StereoBiQuad;
|
|
|
|
template<ch_cnt_t CHANNELS>
|
|
class OnePole
|
|
{
|
|
MM_OPERATORS
|
|
public:
|
|
OnePole()
|
|
{
|
|
m_a0 = 1.0;
|
|
m_b1 = 0.0;
|
|
for( int i = 0; i < CHANNELS; ++i )
|
|
{
|
|
m_z1[i] = 0.0;
|
|
}
|
|
}
|
|
virtual ~OnePole() {}
|
|
|
|
inline void setCoeffs( float a0, float b1 )
|
|
{
|
|
m_a0 = a0;
|
|
m_b1 = b1;
|
|
}
|
|
|
|
inline float update( float s, ch_cnt_t ch )
|
|
{
|
|
if( qAbs( s ) < 1.0e-10f && qAbs( m_z1[ch] ) < 1.0e-10f ) return 0.0f;
|
|
return m_z1[ch] = s * m_a0 + m_z1[ch] * m_b1;
|
|
}
|
|
|
|
private:
|
|
float m_a0, m_b1;
|
|
float m_z1 [CHANNELS];
|
|
};
|
|
typedef OnePole<2> StereoOnePole;
|
|
|
|
template<ch_cnt_t CHANNELS>
|
|
class BasicFilters
|
|
{
|
|
MM_OPERATORS
|
|
public:
|
|
enum FilterTypes
|
|
{
|
|
LowPass,
|
|
HiPass,
|
|
BandPass_CSG,
|
|
BandPass_CZPG,
|
|
Notch,
|
|
AllPass,
|
|
Moog,
|
|
DoubleLowPass,
|
|
Lowpass_RC12,
|
|
Bandpass_RC12,
|
|
Highpass_RC12,
|
|
Lowpass_RC24,
|
|
Bandpass_RC24,
|
|
Highpass_RC24,
|
|
Formantfilter,
|
|
DoubleMoog,
|
|
Lowpass_SV,
|
|
Bandpass_SV,
|
|
Highpass_SV,
|
|
Notch_SV,
|
|
FastFormant,
|
|
Tripole,
|
|
NumFilters
|
|
};
|
|
|
|
static inline float minFreq()
|
|
{
|
|
return( 5.0f );
|
|
}
|
|
|
|
static inline float minQ()
|
|
{
|
|
return( 0.01f );
|
|
}
|
|
|
|
inline void setFilterType( const int _idx )
|
|
{
|
|
m_doubleFilter = _idx == DoubleLowPass || _idx == DoubleMoog;
|
|
if( !m_doubleFilter )
|
|
{
|
|
m_type = static_cast<FilterTypes>( _idx );
|
|
return;
|
|
}
|
|
|
|
// Double lowpass mode, backwards-compat for the goofy
|
|
// Add-NumFilters to signify doubleFilter stuff
|
|
m_type = _idx == DoubleLowPass
|
|
? LowPass
|
|
: Moog;
|
|
if( m_subFilter == NULL )
|
|
{
|
|
m_subFilter = new BasicFilters<CHANNELS>(
|
|
static_cast<sample_rate_t>(
|
|
m_sampleRate ) );
|
|
}
|
|
m_subFilter->m_type = m_type;
|
|
}
|
|
|
|
inline BasicFilters( const sample_rate_t _sample_rate ) :
|
|
m_doubleFilter( false ),
|
|
m_sampleRate( (float) _sample_rate ),
|
|
m_sampleRatio( 1.0f / m_sampleRate ),
|
|
m_subFilter( NULL )
|
|
{
|
|
clearHistory();
|
|
}
|
|
|
|
inline ~BasicFilters()
|
|
{
|
|
delete m_subFilter;
|
|
}
|
|
|
|
inline void clearHistory()
|
|
{
|
|
// reset in/out history for biquads
|
|
m_biQuad.clearHistory();
|
|
|
|
// reset in/out history
|
|
for( ch_cnt_t _chnl = 0; _chnl < CHANNELS; ++_chnl )
|
|
{
|
|
// reset in/out history for moog-filter
|
|
m_y1[_chnl] = m_y2[_chnl] = m_y3[_chnl] = m_y4[_chnl] =
|
|
m_oldx[_chnl] = m_oldy1[_chnl] =
|
|
m_oldy2[_chnl] = m_oldy3[_chnl] = 0.0f;
|
|
|
|
// tripole
|
|
m_last[_chnl] = 0.0f;
|
|
|
|
// reset in/out history for RC-filters
|
|
m_rclp0[_chnl] = m_rcbp0[_chnl] = m_rchp0[_chnl] = m_rclast0[_chnl] = 0.0f;
|
|
m_rclp1[_chnl] = m_rcbp1[_chnl] = m_rchp1[_chnl] = m_rclast1[_chnl] = 0.0f;
|
|
|
|
for(int i=0; i<6; i++)
|
|
m_vfbp[i][_chnl] = m_vfhp[i][_chnl] = m_vflast[i][_chnl] = 0.0f;
|
|
|
|
// reset in/out history for SV-filters
|
|
m_delay1[_chnl] = 0.0f;
|
|
m_delay2[_chnl] = 0.0f;
|
|
m_delay3[_chnl] = 0.0f;
|
|
m_delay4[_chnl] = 0.0f;
|
|
}
|
|
}
|
|
|
|
inline sample_t update( sample_t _in0, ch_cnt_t _chnl )
|
|
{
|
|
sample_t out;
|
|
switch( m_type )
|
|
{
|
|
case Moog:
|
|
{
|
|
sample_t x = _in0 - m_r*m_y4[_chnl];
|
|
|
|
// four cascaded onepole filters
|
|
// (bilinear transform)
|
|
m_y1[_chnl] = qBound( -10.0f,
|
|
( x + m_oldx[_chnl] ) * m_p
|
|
- m_k * m_y1[_chnl],
|
|
10.0f );
|
|
m_y2[_chnl] = qBound( -10.0f,
|
|
( m_y1[_chnl] + m_oldy1[_chnl] ) * m_p
|
|
- m_k * m_y2[_chnl],
|
|
10.0f );
|
|
m_y3[_chnl] = qBound( -10.0f,
|
|
( m_y2[_chnl] + m_oldy2[_chnl] ) * m_p
|
|
- m_k * m_y3[_chnl],
|
|
10.0f );
|
|
m_y4[_chnl] = qBound( -10.0f,
|
|
( m_y3[_chnl] + m_oldy3[_chnl] ) * m_p
|
|
- m_k * m_y4[_chnl],
|
|
10.0f );
|
|
|
|
m_oldx[_chnl] = x;
|
|
m_oldy1[_chnl] = m_y1[_chnl];
|
|
m_oldy2[_chnl] = m_y2[_chnl];
|
|
m_oldy3[_chnl] = m_y3[_chnl];
|
|
out = m_y4[_chnl] - m_y4[_chnl] * m_y4[_chnl] *
|
|
m_y4[_chnl] * ( 1.0f / 6.0f );
|
|
break;
|
|
}
|
|
|
|
// 3x onepole filters with 4x oversampling and interpolation of oversampled signal:
|
|
// input signal is linear-interpolated after oversampling, output signal is averaged from oversampled outputs
|
|
case Tripole:
|
|
{
|
|
out = 0.0f;
|
|
float ip = 0.0f;
|
|
for( int i = 0; i < 4; ++i )
|
|
{
|
|
ip += 0.25f;
|
|
sample_t x = linearInterpolate( m_last[_chnl], _in0, ip ) - m_r * m_y3[_chnl];
|
|
|
|
m_y1[_chnl] = qBound( -10.0f,
|
|
( x + m_oldx[_chnl] ) * m_p
|
|
- m_k * m_y1[_chnl],
|
|
10.0f );
|
|
m_y2[_chnl] = qBound( -10.0f,
|
|
( m_y1[_chnl] + m_oldy1[_chnl] ) * m_p
|
|
- m_k * m_y2[_chnl],
|
|
10.0f );
|
|
m_y3[_chnl] = qBound( -10.0f,
|
|
( m_y2[_chnl] + m_oldy2[_chnl] ) * m_p
|
|
- m_k * m_y3[_chnl],
|
|
10.0f );
|
|
m_oldx[_chnl] = x;
|
|
m_oldy1[_chnl] = m_y1[_chnl];
|
|
m_oldy2[_chnl] = m_y2[_chnl];
|
|
|
|
out += ( m_y3[_chnl] - m_y3[_chnl] * m_y3[_chnl] * m_y3[_chnl] * ( 1.0f / 6.0f ) );
|
|
}
|
|
out *= 0.25f;
|
|
m_last[_chnl] = _in0;
|
|
return out;
|
|
}
|
|
|
|
// 4-pole state-variant lowpass filter, adapted from Nekobee source code
|
|
// and extended to other SV filter types
|
|
// /* Hal Chamberlin's state variable filter */
|
|
|
|
case Lowpass_SV:
|
|
case Bandpass_SV:
|
|
{
|
|
float highpass;
|
|
|
|
for( int i = 0; i < 2; ++i ) // 2x oversample
|
|
{
|
|
m_delay2[_chnl] = m_delay2[_chnl] + m_svf1 * m_delay1[_chnl]; /* delay2/4 = lowpass output */
|
|
highpass = _in0 - m_delay2[_chnl] - m_svq * m_delay1[_chnl];
|
|
m_delay1[_chnl] = m_svf1 * highpass + m_delay1[_chnl]; /* delay1/3 = bandpass output */
|
|
|
|
m_delay4[_chnl] = m_delay4[_chnl] + m_svf2 * m_delay3[_chnl];
|
|
highpass = m_delay2[_chnl] - m_delay4[_chnl] - m_svq * m_delay3[_chnl];
|
|
m_delay3[_chnl] = m_svf2 * highpass + m_delay3[_chnl];
|
|
}
|
|
|
|
/* mix filter output into output buffer */
|
|
return m_type == Lowpass_SV
|
|
? m_delay4[_chnl]
|
|
: m_delay3[_chnl];
|
|
}
|
|
|
|
case Highpass_SV:
|
|
{
|
|
float hp;
|
|
|
|
for( int i = 0; i < 2; ++i ) // 2x oversample
|
|
{
|
|
m_delay2[_chnl] = m_delay2[_chnl] + m_svf1 * m_delay1[_chnl];
|
|
hp = _in0 - m_delay2[_chnl] - m_svq * m_delay1[_chnl];
|
|
m_delay1[_chnl] = m_svf1 * hp + m_delay1[_chnl];
|
|
}
|
|
|
|
return hp;
|
|
}
|
|
|
|
case Notch_SV:
|
|
{
|
|
float hp1, hp2;
|
|
|
|
for( int i = 0; i < 2; ++i ) // 2x oversample
|
|
{
|
|
m_delay2[_chnl] = m_delay2[_chnl] + m_svf1 * m_delay1[_chnl]; /* delay2/4 = lowpass output */
|
|
hp1 = _in0 - m_delay2[_chnl] - m_svq * m_delay1[_chnl];
|
|
m_delay1[_chnl] = m_svf1 * hp1 + m_delay1[_chnl]; /* delay1/3 = bandpass output */
|
|
|
|
m_delay4[_chnl] = m_delay4[_chnl] + m_svf2 * m_delay3[_chnl];
|
|
hp2 = m_delay2[_chnl] - m_delay4[_chnl] - m_svq * m_delay3[_chnl];
|
|
m_delay3[_chnl] = m_svf2 * hp2 + m_delay3[_chnl];
|
|
}
|
|
|
|
/* mix filter output into output buffer */
|
|
return m_delay4[_chnl] + hp1;
|
|
}
|
|
|
|
|
|
// 4-times oversampled simulation of an active RC-Bandpass,-Lowpass,-Highpass-
|
|
// Filter-Network as it was used in nearly all modern analog synthesizers. This
|
|
// can be driven up to self-oscillation (BTW: do not remove the limits!!!).
|
|
// (C) 1998 ... 2009 S.Fendt. Released under the GPL v2.0 or any later version.
|
|
|
|
case Lowpass_RC12:
|
|
{
|
|
sample_t lp, bp, hp, in;
|
|
for( int n = 4; n != 0; --n )
|
|
{
|
|
in = _in0 + m_rcbp0[_chnl] * m_rcq;
|
|
in = qBound( -1.0f, in, 1.0f );
|
|
|
|
lp = in * m_rcb + m_rclp0[_chnl] * m_rca;
|
|
lp = qBound( -1.0f, lp, 1.0f );
|
|
|
|
hp = m_rcc * ( m_rchp0[_chnl] + in - m_rclast0[_chnl] );
|
|
hp = qBound( -1.0f, hp, 1.0f );
|
|
|
|
bp = hp * m_rcb + m_rcbp0[_chnl] * m_rca;
|
|
bp = qBound( -1.0f, bp, 1.0f );
|
|
|
|
m_rclast0[_chnl] = in;
|
|
m_rclp0[_chnl] = lp;
|
|
m_rchp0[_chnl] = hp;
|
|
m_rcbp0[_chnl] = bp;
|
|
}
|
|
return lp;
|
|
}
|
|
case Highpass_RC12:
|
|
case Bandpass_RC12:
|
|
{
|
|
sample_t hp, bp, in;
|
|
for( int n = 4; n != 0; --n )
|
|
{
|
|
in = _in0 + m_rcbp0[_chnl] * m_rcq;
|
|
in = qBound( -1.0f, in, 1.0f );
|
|
|
|
hp = m_rcc * ( m_rchp0[_chnl] + in - m_rclast0[_chnl] );
|
|
hp = qBound( -1.0f, hp, 1.0f );
|
|
|
|
bp = hp * m_rcb + m_rcbp0[_chnl] * m_rca;
|
|
bp = qBound( -1.0f, bp, 1.0f );
|
|
|
|
m_rclast0[_chnl] = in;
|
|
m_rchp0[_chnl] = hp;
|
|
m_rcbp0[_chnl] = bp;
|
|
}
|
|
return m_type == Highpass_RC12 ? hp : bp;
|
|
}
|
|
|
|
case Lowpass_RC24:
|
|
{
|
|
sample_t lp, bp, hp, in;
|
|
for( int n = 4; n != 0; --n )
|
|
{
|
|
// first stage is as for the 12dB case...
|
|
in = _in0 + m_rcbp0[_chnl] * m_rcq;
|
|
in = qBound( -1.0f, in, 1.0f );
|
|
|
|
lp = in * m_rcb + m_rclp0[_chnl] * m_rca;
|
|
lp = qBound( -1.0f, lp, 1.0f );
|
|
|
|
hp = m_rcc * ( m_rchp0[_chnl] + in - m_rclast0[_chnl] );
|
|
hp = qBound( -1.0f, hp, 1.0f );
|
|
|
|
bp = hp * m_rcb + m_rcbp0[_chnl] * m_rca;
|
|
bp = qBound( -1.0f, bp, 1.0f );
|
|
|
|
m_rclast0[_chnl] = in;
|
|
m_rclp0[_chnl] = lp;
|
|
m_rcbp0[_chnl] = bp;
|
|
m_rchp0[_chnl] = hp;
|
|
|
|
// second stage gets the output of the first stage as input...
|
|
in = lp + m_rcbp1[_chnl] * m_rcq;
|
|
in = qBound( -1.0f, in, 1.0f );
|
|
|
|
lp = in * m_rcb + m_rclp1[_chnl] * m_rca;
|
|
lp = qBound( -1.0f, lp, 1.0f );
|
|
|
|
hp = m_rcc * ( m_rchp1[_chnl] + in - m_rclast1[_chnl] );
|
|
hp = qBound( -1.0f, hp, 1.0f );
|
|
|
|
bp = hp * m_rcb + m_rcbp1[_chnl] * m_rca;
|
|
bp = qBound( -1.0f, bp, 1.0f );
|
|
|
|
m_rclast1[_chnl] = in;
|
|
m_rclp1[_chnl] = lp;
|
|
m_rcbp1[_chnl] = bp;
|
|
m_rchp1[_chnl] = hp;
|
|
}
|
|
return lp;
|
|
}
|
|
case Highpass_RC24:
|
|
case Bandpass_RC24:
|
|
{
|
|
sample_t hp, bp, in;
|
|
for( int n = 4; n != 0; --n )
|
|
{
|
|
// first stage is as for the 12dB case...
|
|
in = _in0 + m_rcbp0[_chnl] * m_rcq;
|
|
in = qBound( -1.0f, in, 1.0f );
|
|
|
|
hp = m_rcc * ( m_rchp0[_chnl] + in - m_rclast0[_chnl] );
|
|
hp = qBound( -1.0f, hp, 1.0f );
|
|
|
|
bp = hp * m_rcb + m_rcbp0[_chnl] * m_rca;
|
|
bp = qBound( -1.0f, bp, 1.0f );
|
|
|
|
m_rclast0[_chnl] = in;
|
|
m_rchp0[_chnl] = hp;
|
|
m_rcbp0[_chnl] = bp;
|
|
|
|
// second stage gets the output of the first stage as input...
|
|
in = m_type == Highpass_RC24
|
|
? hp + m_rcbp1[_chnl] * m_rcq
|
|
: bp + m_rcbp1[_chnl] * m_rcq;
|
|
|
|
in = qBound( -1.0f, in, 1.0f );
|
|
|
|
hp = m_rcc * ( m_rchp1[_chnl] + in - m_rclast1[_chnl] );
|
|
hp = qBound( -1.0f, hp, 1.0f );
|
|
|
|
bp = hp * m_rcb + m_rcbp1[_chnl] * m_rca;
|
|
bp = qBound( -1.0f, bp, 1.0f );
|
|
|
|
m_rclast1[_chnl] = in;
|
|
m_rchp1[_chnl] = hp;
|
|
m_rcbp1[_chnl] = bp;
|
|
}
|
|
return m_type == Highpass_RC24 ? hp : bp;
|
|
}
|
|
|
|
case Formantfilter:
|
|
case FastFormant:
|
|
{
|
|
if( qAbs( _in0 ) < 1.0e-10f && qAbs( m_vflast[0][_chnl] ) < 1.0e-10f ) { return 0.0f; } // performance hack - skip processing when the numbers get too small
|
|
sample_t hp, bp, in;
|
|
|
|
out = 0;
|
|
const int os = m_type == FastFormant ? 1 : 4; // no oversampling for fast formant
|
|
for( int o = 0; o < os; ++o )
|
|
{
|
|
// first formant
|
|
in = _in0 + m_vfbp[0][_chnl] * m_vfq;
|
|
in = qBound( -1.0f, in, 1.0f );
|
|
|
|
hp = m_vfc[0] * ( m_vfhp[0][_chnl] + in - m_vflast[0][_chnl] );
|
|
hp = qBound( -1.0f, hp, 1.0f );
|
|
|
|
bp = hp * m_vfb[0] + m_vfbp[0][_chnl] * m_vfa[0];
|
|
bp = qBound( -1.0f, bp, 1.0f );
|
|
|
|
m_vflast[0][_chnl] = in;
|
|
m_vfhp[0][_chnl] = hp;
|
|
m_vfbp[0][_chnl] = bp;
|
|
|
|
in = bp + m_vfbp[2][_chnl] * m_vfq;
|
|
in = qBound( -1.0f, in, 1.0f );
|
|
|
|
hp = m_vfc[0] * ( m_vfhp[2][_chnl] + in - m_vflast[2][_chnl] );
|
|
hp = qBound( -1.0f, hp, 1.0f );
|
|
|
|
bp = hp * m_vfb[0] + m_vfbp[2][_chnl] * m_vfa[0];
|
|
bp = qBound( -1.0f, bp, 1.0f );
|
|
|
|
m_vflast[2][_chnl] = in;
|
|
m_vfhp[2][_chnl] = hp;
|
|
m_vfbp[2][_chnl] = bp;
|
|
|
|
in = bp + m_vfbp[4][_chnl] * m_vfq;
|
|
in = qBound( -1.0f, in, 1.0f );
|
|
|
|
hp = m_vfc[0] * ( m_vfhp[4][_chnl] + in - m_vflast[4][_chnl] );
|
|
hp = qBound( -1.0f, hp, 1.0f );
|
|
|
|
bp = hp * m_vfb[0] + m_vfbp[4][_chnl] * m_vfa[0];
|
|
bp = qBound( -1.0f, bp, 1.0f );
|
|
|
|
m_vflast[4][_chnl] = in;
|
|
m_vfhp[4][_chnl] = hp;
|
|
m_vfbp[4][_chnl] = bp;
|
|
|
|
out += bp;
|
|
|
|
// second formant
|
|
in = _in0 + m_vfbp[0][_chnl] * m_vfq;
|
|
in = qBound( -1.0f, in, 1.0f );
|
|
|
|
hp = m_vfc[1] * ( m_vfhp[1][_chnl] + in - m_vflast[1][_chnl] );
|
|
hp = qBound( -1.0f, hp, 1.0f );
|
|
|
|
bp = hp * m_vfb[1] + m_vfbp[1][_chnl] * m_vfa[1];
|
|
bp = qBound( -1.0f, bp, 1.0f );
|
|
|
|
m_vflast[1][_chnl] = in;
|
|
m_vfhp[1][_chnl] = hp;
|
|
m_vfbp[1][_chnl] = bp;
|
|
|
|
in = bp + m_vfbp[3][_chnl] * m_vfq;
|
|
in = qBound( -1.0f, in, 1.0f );
|
|
|
|
hp = m_vfc[1] * ( m_vfhp[3][_chnl] + in - m_vflast[3][_chnl] );
|
|
hp = qBound( -1.0f, hp, 1.0f );
|
|
|
|
bp = hp * m_vfb[1] + m_vfbp[3][_chnl] * m_vfa[1];
|
|
bp = qBound( -1.0f, bp, 1.0f );
|
|
|
|
m_vflast[3][_chnl] = in;
|
|
m_vfhp[3][_chnl] = hp;
|
|
m_vfbp[3][_chnl] = bp;
|
|
|
|
in = bp + m_vfbp[5][_chnl] * m_vfq;
|
|
in = qBound( -1.0f, in, 1.0f );
|
|
|
|
hp = m_vfc[1] * ( m_vfhp[5][_chnl] + in - m_vflast[5][_chnl] );
|
|
hp = qBound( -1.0f, hp, 1.0f );
|
|
|
|
bp = hp * m_vfb[1] + m_vfbp[5][_chnl] * m_vfa[1];
|
|
bp = qBound( -1.0f, bp, 1.0f );
|
|
|
|
m_vflast[5][_chnl] = in;
|
|
m_vfhp[5][_chnl] = hp;
|
|
m_vfbp[5][_chnl] = bp;
|
|
|
|
out += bp;
|
|
}
|
|
return m_type == FastFormant ? out * 2.0f : out * 0.5f;
|
|
}
|
|
|
|
default:
|
|
out = m_biQuad.update( _in0, _chnl );
|
|
break;
|
|
}
|
|
|
|
if( m_doubleFilter )
|
|
{
|
|
return m_subFilter->update( out, _chnl );
|
|
}
|
|
|
|
// Clipper band limited sigmoid
|
|
return out;
|
|
}
|
|
|
|
|
|
inline void calcFilterCoeffs( float _freq, float _q )
|
|
{
|
|
// temp coef vars
|
|
_q = qMax( _q, minQ() );
|
|
|
|
if( m_type == Lowpass_RC12 ||
|
|
m_type == Bandpass_RC12 ||
|
|
m_type == Highpass_RC12 ||
|
|
m_type == Lowpass_RC24 ||
|
|
m_type == Bandpass_RC24 ||
|
|
m_type == Highpass_RC24 )
|
|
{
|
|
_freq = qBound( 50.0f, _freq, 20000.0f );
|
|
const float sr = m_sampleRatio * 0.25f;
|
|
const float f = 1.0f / ( _freq * F_2PI );
|
|
|
|
m_rca = 1.0f - sr / ( f + sr );
|
|
m_rcb = 1.0f - m_rca;
|
|
m_rcc = f / ( f + sr );
|
|
|
|
// Stretch Q/resonance, as self-oscillation reliably starts at a q of ~2.5 - ~2.6
|
|
m_rcq = _q * 0.25f;
|
|
return;
|
|
}
|
|
|
|
if( m_type == Formantfilter ||
|
|
m_type == FastFormant )
|
|
{
|
|
_freq = qBound( minFreq(), _freq, 20000.0f ); // limit freq and q for not getting bad noise out of the filter...
|
|
|
|
// formats for a, e, i, o, u, a
|
|
static const float _f[6][2] = { { 1000, 1400 }, { 500, 2300 },
|
|
{ 320, 3200 },
|
|
{ 500, 1000 },
|
|
{ 320, 800 },
|
|
{ 1000, 1400 } };
|
|
static const float freqRatio = 4.0f / 14000.0f;
|
|
|
|
// Stretch Q/resonance
|
|
m_vfq = _q * 0.25f;
|
|
|
|
// frequency in lmms ranges from 1Hz to 14000Hz
|
|
const float vowelf = _freq * freqRatio;
|
|
const int vowel = static_cast<int>( vowelf );
|
|
const float fract = vowelf - vowel;
|
|
|
|
// interpolate between formant frequencies
|
|
const float f0 = 1.0f / ( linearInterpolate( _f[vowel+0][0], _f[vowel+1][0], fract ) * F_2PI );
|
|
const float f1 = 1.0f / ( linearInterpolate( _f[vowel+0][1], _f[vowel+1][1], fract ) * F_2PI );
|
|
|
|
// samplerate coeff: depends on oversampling
|
|
const float sr = m_type == FastFormant ? m_sampleRatio : m_sampleRatio * 0.25f;
|
|
|
|
m_vfa[0] = 1.0f - sr / ( f0 + sr );
|
|
m_vfb[0] = 1.0f - m_vfa[0];
|
|
m_vfc[0] = f0 / ( f0 + sr );
|
|
m_vfa[1] = 1.0f - sr / ( f1 + sr );
|
|
m_vfb[1] = 1.0f - m_vfa[1];
|
|
m_vfc[1] = f1 / ( f1 + sr );
|
|
return;
|
|
}
|
|
|
|
if( m_type == Moog ||
|
|
m_type == DoubleMoog )
|
|
{
|
|
// [ 0 - 0.5 ]
|
|
const float f = qBound( minFreq(), _freq, 20000.0f ) * m_sampleRatio;
|
|
// (Empirical tunning)
|
|
m_p = ( 3.6f - 3.2f * f ) * f;
|
|
m_k = 2.0f * m_p - 1;
|
|
m_r = _q * powf( F_E, ( 1 - m_p ) * 1.386249f );
|
|
|
|
if( m_doubleFilter )
|
|
{
|
|
m_subFilter->m_r = m_r;
|
|
m_subFilter->m_p = m_p;
|
|
m_subFilter->m_k = m_k;
|
|
}
|
|
return;
|
|
}
|
|
|
|
if( m_type == Tripole )
|
|
{
|
|
const float f = qBound( 20.0f, _freq, 20000.0f ) * m_sampleRatio * 0.25f;
|
|
|
|
m_p = ( 3.6f - 3.2f * f ) * f;
|
|
m_k = 2.0f * m_p - 1.0f;
|
|
m_r = _q * 0.1f * powf( F_E, ( 1 - m_p ) * 1.386249f );
|
|
|
|
return;
|
|
}
|
|
|
|
if( m_type == Lowpass_SV ||
|
|
m_type == Bandpass_SV ||
|
|
m_type == Highpass_SV ||
|
|
m_type == Notch_SV )
|
|
{
|
|
const float f = sinf( qMax( minFreq(), _freq ) * m_sampleRatio * F_PI );
|
|
m_svf1 = qMin( f, 0.825f );
|
|
m_svf2 = qMin( f * 2.0f, 0.825f );
|
|
m_svq = qMax( 0.0001f, 2.0f - ( _q * 0.1995f ) );
|
|
return;
|
|
}
|
|
|
|
// other filters
|
|
_freq = qBound( minFreq(), _freq, 20000.0f );
|
|
const float omega = F_2PI * _freq * m_sampleRatio;
|
|
const float tsin = sinf( omega ) * 0.5f;
|
|
const float tcos = cosf( omega );
|
|
|
|
const float alpha = tsin / _q;
|
|
|
|
const float a0 = 1.0f / ( 1.0f + alpha );
|
|
|
|
const float a1 = -2.0f * tcos * a0;
|
|
const float a2 = ( 1.0f - alpha ) * a0;
|
|
|
|
switch( m_type )
|
|
{
|
|
case LowPass:
|
|
{
|
|
const float b1 = ( 1.0f - tcos ) * a0;
|
|
const float b0 = b1 * 0.5f;
|
|
m_biQuad.setCoeffs( a1, a2, b0, b1, b0 );
|
|
break;
|
|
}
|
|
case HiPass:
|
|
{
|
|
const float b1 = ( -1.0f - tcos ) * a0;
|
|
const float b0 = b1 * -0.5f;
|
|
m_biQuad.setCoeffs( a1, a2, b0, b1, b0 );
|
|
break;
|
|
}
|
|
case BandPass_CSG:
|
|
{
|
|
const float b0 = tsin * a0;
|
|
m_biQuad.setCoeffs( a1, a2, b0, 0.0f, -b0 );
|
|
break;
|
|
}
|
|
case BandPass_CZPG:
|
|
{
|
|
const float b0 = alpha * a0;
|
|
m_biQuad.setCoeffs( a1, a2, b0, 0.0f, -b0 );
|
|
break;
|
|
}
|
|
case Notch:
|
|
{
|
|
m_biQuad.setCoeffs( a1, a2, a0, a1, a0 );
|
|
break;
|
|
}
|
|
case AllPass:
|
|
{
|
|
m_biQuad.setCoeffs( a1, a2, a2, a1, 1.0f );
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if( m_doubleFilter )
|
|
{
|
|
m_subFilter->m_biQuad.setCoeffs( m_biQuad.m_a1, m_biQuad.m_a2, m_biQuad.m_b0, m_biQuad.m_b1, m_biQuad.m_b2 );
|
|
}
|
|
}
|
|
|
|
|
|
private:
|
|
// biquad filter
|
|
BiQuad<CHANNELS> m_biQuad;
|
|
|
|
// coeffs for moog-filter
|
|
float m_r, m_p, m_k;
|
|
|
|
// coeffs for RC-type-filters
|
|
float m_rca, m_rcb, m_rcc, m_rcq;
|
|
|
|
// coeffs for formant-filters
|
|
float m_vfa[4], m_vfb[4], m_vfc[4], m_vfq;
|
|
|
|
// coeffs for Lowpass_SV (state-variant lowpass)
|
|
float m_svf1, m_svf2, m_svq;
|
|
|
|
typedef sample_t frame[CHANNELS];
|
|
|
|
// in/out history for moog-filter
|
|
frame m_y1, m_y2, m_y3, m_y4, m_oldx, m_oldy1, m_oldy2, m_oldy3;
|
|
// additional one for Tripole filter
|
|
frame m_last;
|
|
|
|
// in/out history for RC-type-filters
|
|
frame m_rcbp0, m_rclp0, m_rchp0, m_rclast0;
|
|
frame m_rcbp1, m_rclp1, m_rchp1, m_rclast1;
|
|
|
|
// in/out history for Formant-filters
|
|
frame m_vfbp[6], m_vfhp[6], m_vflast[6];
|
|
|
|
// in/out history for Lowpass_SV (state-variant lowpass)
|
|
frame m_delay1, m_delay2, m_delay3, m_delay4;
|
|
|
|
FilterTypes m_type;
|
|
bool m_doubleFilter;
|
|
|
|
float m_sampleRate;
|
|
float m_sampleRatio;
|
|
BasicFilters<CHANNELS> * m_subFilter;
|
|
|
|
} ;
|
|
|
|
|
|
#endif
|