/*
* This file is part of Motion.
*
* Motion is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Motion is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Motion. If not, see .
*
*/
#include "motion.hpp"
#include "util.hpp"
#include "camera.hpp"
#include "conf.hpp"
#include "logger.hpp"
#include "alg_sec.hpp"
#ifdef HAVE_OPENCV
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wconversion"
#include
#include
#include
#include
#include
#include
#include
#pragma GCC diagnostic pop
using namespace cv;
using namespace dnn;
static void *algsec_handler(void *arg)
{
((cls_algsec *)arg)->handler();
return nullptr;
}
void cls_algsec::debug_notice(Mat &mat_dst, bool isdetect)
{
if (handler_stop == true) {
return;
}
if (cfg_log_level >= DBG) {
if (first_pass == true) {
MOTION_LOG(DBG, TYPE_ALL, NO_ERRNO
, "Secondary detect and debug enabled.");
MOTION_LOG(DBG, TYPE_ALL, NO_ERRNO
, "Saving source and detected images to %s"
, cfg_target_dir.c_str());
first_pass = false;
}
if (isdetect == true) {
imwrite(cfg_target_dir + "/detect_" + method + ".jpg"
, mat_dst);
} else {
imwrite(cfg_target_dir + "/src_" + method + ".jpg"
, mat_dst);
}
}
}
void cls_algsec::image_show(Mat &mat_dst)
{
std::vector buff;
std::vector param(2);
if (handler_stop == true) {
return;
}
/* We check the size so that we at least fill in the first image so the
* web stream will have something to start with. After feeding in at least
* the first image, we rely upon the connection count to tell us whether we
* need to expend the CPU to compress and load the secondary images */
if ((cam->stream.secondary.jpg_cnct >0) ||
(cam->imgs.size_secondary == 0) ||
(cfg_log_level >= DBG)) {
debug_notice(mat_dst, detected);
param[0] = cv::IMWRITE_JPEG_QUALITY;
param[1] = 75;
cv::imencode(".jpg", mat_dst, buff, param);
pthread_mutex_lock(&mutex);
std::copy(buff.begin(), buff.end(), cam->imgs.image_secondary);
cam->imgs.size_secondary = (int)buff.size();
pthread_mutex_unlock(&mutex);
}
}
void cls_algsec::label_image(Mat &mat_dst
, std::vector &src_pos, std::vector &src_weights)
{
std::vector fltr_pos;
std::vector fltr_weights;
std::string testdir;
std::size_t indx0, indx1;
std::vector buff;
std::vector param(2);
char wstr[10];
try {
detected = false;
debug_notice(mat_dst, detected);
for (indx0=0; indx0 threshold)) {
fltr_pos.push_back(r);
fltr_weights.push_back(w);
detected = true;
}
}
if (detected) {
for (indx0=0; indx0current_image->location.minx;
roi.y = cam->current_image->location.miny;
roi.width = cam->current_image->location.width;
roi.height = cam->current_image->location.height;
/* Images smaller than 100 cause seg faults. 112 is the nearest
multiple of 16 greater than 100*/
if (roi.height < 112) {
roi.height = 112;
}
if ((roi.y + roi.height) > (height-112)) {
roi.y = height - roi.height;
} else if ((roi.y + roi.height) > height) {
roi.height = height - roi.y;
}
if (roi.width < 112) {
roi.width = 112;
}
if ((roi.x + roi.width) > (width-112)) {
roi.x = width - roi.width;
} else {
roi.width = width - roi.x;
}
/*
MOTION_LOG(INF, TYPE_ALL, NO_ERRNO, "Base %d %d (%dx%d) img(%dx%d)"
,cam->current_image->location.minx
,cam->current_image->location.miny
,cam->current_image->location.width
,cam->current_image->location.height
,width,height);
MOTION_LOG(INF, TYPE_ALL, NO_ERRNO, "Opencv %d %d %d %d"
,roi.x,roi.y,roi.width,roi.height);
*/
mat_dst = mat_src(roi);
}
void cls_algsec::get_image(Mat &mat_dst)
{
Mat mat_src;
if (image_type == "grey") {
mat_dst = Mat(cam->imgs.height, cam->imgs.width
, CV_8UC1, (void*)image_norm);
} else if ((image_type == "roi") || (image_type == "greyroi")) {
/*Discard really small and large images */
if ((cam->current_image->location.width < 64) ||
(cam->current_image->location.height < 64) ||
((cam->current_image->location.width/cam->imgs.width) > 0.7) ||
((cam->current_image->location.height/cam->imgs.height) > 0.7)) {
return;
}
if (image_type == "roi") {
mat_src = Mat(cam->imgs.height*3/2, cam->imgs.width
, CV_8UC1, (void*)image_norm);
cvtColor(mat_src, mat_src, COLOR_YUV2RGB_YV12);
} else {
mat_src = Mat(cam->imgs.height, cam->imgs.width
, CV_8UC1, (void*)image_norm);
}
get_image_roi(mat_src, mat_dst);
} else {
mat_src = Mat(cam->imgs.height*3/2, cam->imgs.width
, CV_8UC1, (void*)image_norm);
cvtColor(mat_src, mat_dst, COLOR_YUV2RGB_YV12);
}
}
void cls_algsec::detect_hog()
{
std::vector detect_weights;
std::vector detect_pos;
Mat mat_dst;
try {
get_image(mat_dst);
if (mat_dst.empty() == true) {
return;
}
equalizeHist(mat_dst, mat_dst);
hog.setSVMDetector(HOGDescriptor::getDefaultPeopleDetector());
hog.detectMultiScale(mat_dst, detect_pos, detect_weights, 0
,Size(hog_winstride, hog_winstride)
,Size(hog_padding, hog_padding)
,scalefactor
,hog_threshold_model
,false);
label_image(mat_dst, detect_pos, detect_weights);
} catch ( cv::Exception& e ) {
const char* err_msg = e.what();
MOTION_LOG(ERR, TYPE_ALL, NO_ERRNO, _("Error %s"),err_msg);
MOTION_LOG(ERR, TYPE_ALL, NO_ERRNO, _("Disabling secondary detection"));
method = "none";
}
}
void cls_algsec::detect_haar()
{
std::vector detect_weights;
std::vector detect_pos;
std::vector levels;
Mat mat_dst;
try {
get_image(mat_dst);
if (mat_dst.empty() == true) {
return;
}
equalizeHist(mat_dst, mat_dst);
haar_cascade.detectMultiScale(
mat_dst, detect_pos, levels, detect_weights
,scalefactor, haar_minneighbors,haar_flags
, Size(haar_minsize,haar_minsize)
, Size(haar_maxsize,haar_maxsize), true);
label_image(mat_dst, detect_pos, detect_weights);
} catch ( cv::Exception& e ) {
const char* err_msg = e.what();
MOTION_LOG(ERR, TYPE_ALL, NO_ERRNO, _("Error %s"),err_msg);
MOTION_LOG(ERR, TYPE_ALL, NO_ERRNO, _("Disabling secondary detection"));
method = "none";
}
}
void cls_algsec::detect_dnn()
{
Mat mat_dst, softmaxProb;
double confidence;
float maxProb = 0.0, sum = 0.0;
Point classIdPoint;
try {
get_image(mat_dst);
if (mat_dst.empty() == true) {
return;
}
Mat blob = blobFromImage(mat_dst
, dnn_scale
, Size(dnn_width, dnn_height)
, Scalar());
net.setInput(blob);
Mat prob = net.forward();
maxProb = *std::max_element(prob.begin(), prob.end());
cv::exp(prob-maxProb, softmaxProb);
sum = (float)cv::sum(softmaxProb)[0];
softmaxProb /= sum;
cv::minMaxLoc(softmaxProb.reshape(1, 1), 0, &confidence, 0, &classIdPoint);
label_image(mat_dst, confidence, classIdPoint);
} catch ( cv::Exception& e ) {
const char* err_msg = e.what();
MOTION_LOG(ERR, TYPE_ALL, NO_ERRNO, _("Error %s"),err_msg);
MOTION_LOG(ERR, TYPE_ALL, NO_ERRNO, _("Disabling secondary detection"));
method = "none";
}
}
void cls_algsec::load_haar()
{
try {
if (model_file == "") {
method = "none";
MOTION_LOG(ERR, TYPE_ALL, NO_ERRNO, _("No secondary model specified."));
return;
}
if (haar_cascade.load(model_file) == false) {
/* Loading failed, reset method*/
method = "none";
MOTION_LOG(ERR, TYPE_ALL, NO_ERRNO, _("Failed loading model %s")
,model_file.c_str());
}
} catch ( cv::Exception& e ) {
const char* err_msg = e.what();
MOTION_LOG(ERR, TYPE_ALL, NO_ERRNO, _("Error %s"),err_msg);
MOTION_LOG(ERR, TYPE_ALL, NO_ERRNO, _("Failed loading model %s")
, model_file.c_str());
method = "none";
}
}
void cls_algsec::load_hog()
{
if (image_type == "roi") {
image_type = "greyroi";
} else if (
(image_type != "grey") &&
(image_type != "greyroi")) {
image_type = "grey";
}
}
void cls_algsec::load_dnn()
{
std::string line;
std::ifstream ifs;
try {
if (model_file == "") {
method = "none";
MOTION_LOG(ERR, TYPE_ALL, NO_ERRNO, _("No secondary model specified."));
return;
}
net = readNet(
model_file
, dnn_config
, dnn_framework);
net.setPreferableBackend(dnn_backend);
net.setPreferableTarget(dnn_target);
ifs.open(dnn_classes_file.c_str());
if (ifs.is_open() == false) {
method = "none";
MOTION_LOG(ERR, TYPE_ALL, NO_ERRNO
, _("Classes file not found: %s")
,dnn_classes_file.c_str());
return;
}
while (std::getline(ifs, line)) {
dnn_classes.push_back(line);
}
ifs.close();
} catch ( cv::Exception& e ) {
const char* err_msg = e.what();
MOTION_LOG(ERR, TYPE_ALL, NO_ERRNO, _("Error %s"),err_msg);
MOTION_LOG(ERR, TYPE_ALL, NO_ERRNO, _("Failed loading model %s")
, model_file.c_str());
method = "none";
}
}
void cls_algsec::params_log()
{
ctx_params_item *itm;
int indx;
if (method != "none") {
for (indx=0;indxparams_cnt;indx++) {
itm = ¶ms->params_array[indx];
MOTION_SHT(INF, TYPE_ALL, NO_ERRNO, "%-25s %s"
,itm->param_name.c_str(),itm->param_value.c_str());
}
}
}
void cls_algsec::params_model()
{
ctx_params_item *itm;
int indx;
for (indx=0;indxparams_cnt;indx++) {
itm = ¶ms->params_array[indx];
if (itm->param_name == "model_file") {
model_file = itm->param_value;
} else if (itm->param_name == "frame_interval") {
frame_interval = mtoi(itm->param_value);
} else if (itm->param_name == "image_type") {
image_type = itm->param_value;
} else if (itm->param_name == "threshold") {
threshold = mtof(itm->param_value);
} else if (itm->param_name == "scalefactor") {
scalefactor = mtof(itm->param_value);
} else if (itm->param_name == "rotate") {
rotate = mtoi(itm->param_value);
}
if (method == "hog") {
if (itm->param_name =="padding") {
hog_padding = mtoi(itm->param_value);
} else if (itm->param_name =="threshold_model") {
hog_threshold_model = mtof(itm->param_value);
} else if (itm->param_name =="winstride") {
hog_winstride = mtoi(itm->param_value);
}
} else if (method == "haar") {
if (itm->param_name =="flags") {
haar_flags = mtoi(itm->param_value);
} else if (itm->param_name =="maxsize") {
haar_maxsize = mtoi(itm->param_value);
} else if (itm->param_name =="minsize") {
haar_minsize = mtoi(itm->param_value);
} else if (itm->param_name =="minneighbors") {
haar_minneighbors = mtoi(itm->param_value);
}
} else if (method == "dnn") {
if (itm->param_name == "config") {
dnn_config = itm->param_value;
} else if (itm->param_name == "classes_file") {
dnn_classes_file = itm->param_value;
} else if (itm->param_name =="framework") {
dnn_framework = itm->param_value;
} else if (itm->param_name =="backend") {
dnn_backend = mtoi(itm->param_value);
} else if (itm->param_name =="target") {
dnn_target = mtoi(itm->param_value);
} else if (itm->param_name =="scale") {
dnn_scale = mtof(itm->param_value);
} else if (itm->param_name =="width") {
dnn_width = mtoi(itm->param_value);
} else if (itm->param_name =="height") {
dnn_height = mtoi(itm->param_value);
}
}
}
}
void cls_algsec::params_defaults()
{
util_parms_add_default(params, "model_file", "");
util_parms_add_default(params, "frame_interval", "5");
util_parms_add_default(params, "image_type", "full");
util_parms_add_default(params, "rotate", "0");
if (method == "haar") {
util_parms_add_default(params, "threshold", "1.1");
util_parms_add_default(params, "scalefactor", "1.1");
util_parms_add_default(params, "flags", "0");
util_parms_add_default(params, "maxsize", "1024");
util_parms_add_default(params, "minsize", "8");
util_parms_add_default(params, "minneighbors", "8");
} else if (method == "hog") {
util_parms_add_default(params, "threshold", "1.1");
util_parms_add_default(params, "threshold_model", "2");
util_parms_add_default(params, "scalefactor", "1.05");
util_parms_add_default(params, "padding", "8");
util_parms_add_default(params, "winstride", "8");
} else if (method == "dnn") {
util_parms_add_default(params, "backend", DNN_BACKEND_DEFAULT);
util_parms_add_default(params, "target", DNN_TARGET_CPU);
util_parms_add_default(params, "threshold", "0.75");
util_parms_add_default(params, "width", cam->imgs.width);
util_parms_add_default(params, "height", cam->imgs.height);
util_parms_add_default(params, "scale", "1.0");
}
}
/**Load the parms from the config to algsec struct */
void cls_algsec::load_params()
{
method = cam->cfg->secondary_method;
image_norm = nullptr;
params = nullptr;
detected = false;
height = cam->imgs.height;
width = cam->imgs.width;
frame_missed = 0;
frame_cnt = 0;
too_slow = 0;
in_process = false;
first_pass = true;
handler_stop = false;
cfg_framerate = cam->cfg->framerate;
cfg_log_level = cam->app->cfg->log_level;
cfg_target_dir = cam->cfg->target_dir;
if (method == "none") {
return;
}
image_norm = (u_char*)mymalloc((size_t)cam->imgs.size_norm);
params = new ctx_params;
util_parms_parse(params, "secondary_params", cam->cfg->secondary_params);
params_defaults();
params_log();
params_model();
frame_cnt = frame_interval;
if (method == "haar") {
load_haar();
} else if (method == "hog") {
load_hog();
} else if (method == "dnn") {
load_dnn();
} else {
method = "none";
}
}
/**Detection thread processing loop */
void cls_algsec::handler()
{
long interval;
mythreadname_set("cv",cam->cfg->device_id, cam->cfg->device_name.c_str());
MOTION_LOG(INF, TYPE_ALL, NO_ERRNO,_("Secondary detection starting."));
handler_running = true;
handler_stop = false;
load_params();
interval = 1000000L / cfg_framerate;
is_started = true;
while ((handler_stop == false) && (method != "none")) {
if (in_process){
if (method == "haar") {
detect_haar();
} else if (method == "hog") {
detect_hog();
} else if (method == "dnn") {
detect_dnn();
}
in_process = false;
} else {
SLEEP(0,interval)
}
}
is_started = false;
handler_stop = false;
handler_running = false;
MOTION_LOG(INF, TYPE_ALL, NO_ERRNO,_("Secondary detection stopped."));
pthread_exit(nullptr);
}
void cls_algsec::handler_startup()
{
int retcd;
pthread_attr_t thread_attr;
if (cam->cfg->secondary_method == "none") {
return;
}
if (handler_running == false) {
handler_running = true;
handler_stop = false;
pthread_attr_init(&thread_attr);
pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_DETACHED);
retcd = pthread_create(&handler_thread, &thread_attr, &algsec_handler, this);
if (retcd != 0) {
MOTION_LOG(WRN, TYPE_ALL, NO_ERRNO,_("Unable to start secondary detection"));
handler_running = false;
handler_stop = true;
}
pthread_attr_destroy(&thread_attr);
}
}
void cls_algsec::handler_shutdown()
{
int waitcnt;
if (handler_running == true) {
handler_stop = true;
waitcnt = 0;
while ((handler_running == true) && (waitcnt < cam->cfg->watchdog_tmo)){
SLEEP(1,0)
waitcnt++;
}
if (waitcnt == cam->cfg->watchdog_tmo) {
MOTION_LOG(ERR, TYPE_ALL, NO_ERRNO
, _("Normal shutdown of camera failed"));
if (cam->cfg->watchdog_kill > 0) {
MOTION_LOG(ERR, TYPE_ALL, NO_ERRNO
,_("Waiting additional %d seconds (watchdog_kill).")
,cam->cfg->watchdog_kill);
waitcnt = 0;
while ((handler_running == true) && (waitcnt < cam->cfg->watchdog_kill)){
SLEEP(1,0)
waitcnt++;
}
if (waitcnt == cam->cfg->watchdog_kill) {
MOTION_LOG(ERR, TYPE_ALL, NO_ERRNO
, _("No response to shutdown. Killing it."));
MOTION_LOG(ERR, TYPE_ALL, NO_ERRNO
, _("Memory leaks will occur."));
pthread_kill(handler_thread, SIGVTALRM);
}
} else {
MOTION_LOG(ERR, TYPE_ALL, NO_ERRNO
, _("watchdog_kill set to terminate application."));
exit(1);
}
}
handler_running = false;
}
myfree(image_norm);
mydelete(params);
}
#endif
/*Invoke the secondary detetction method*/
void cls_algsec::detect()
{
#ifdef HAVE_OPENCV
if (method == "none") {
return;
}
if (is_started == false) {
return;
}
if (frame_cnt > 0) {
frame_cnt--;
}
if (frame_cnt == 0){
if (in_process){
frame_missed++;
} else {
memcpy(image_norm
, cam->imgs.image_virgin
, (uint)cam->imgs.size_norm);
/*Set the bool to detect on the new image and reset interval */
in_process = true;
frame_cnt = frame_interval;
if (frame_missed >10){
if (too_slow == 0) {
MOTION_LOG(WRN, TYPE_ALL, NO_ERRNO
,_("Your computer is too slow for these settings."));
} else if (too_slow == 10){
MOTION_LOG(WRN, TYPE_ALL, NO_ERRNO
,_("Missed many frames for secondary detection."));
MOTION_LOG(WRN, TYPE_ALL, NO_ERRNO
,_("Your computer is too slow."));
}
too_slow++;
}
frame_missed = 0;
}
}
/* If the method was changed to none, an error occurred*/
if (method == "none") {
handler_shutdown();
}
#endif
}
cls_algsec::cls_algsec(cls_camera *p_cam)
{
#ifdef HAVE_OPENCV
cam = p_cam;
handler_running = false;
handler_stop = true;
image_norm = nullptr;
params = nullptr;
method = "none";
is_started = false;
pthread_mutex_init(&mutex, NULL);
handler_startup();
#else
(void)p_cam;
#endif
}
cls_algsec::~cls_algsec()
{
#ifdef HAVE_OPENCV
handler_shutdown();
pthread_mutex_destroy(&mutex);
#endif
}