Files
motion/alg.c
MrDave f196a2c5af Whitespace and Tab cleanup
Remove trailing whitespace and convert tabs to four spaces.
No code changes.
2017-02-12 18:25:43 -07:00

1375 lines
42 KiB
C

/* alg.c
*
* Detect changes in a video stream.
* Copyright 2001 by Jeroen Vreeken (pe1rxq@amsat.org)
* This software is distributed under the GNU public license version 2
* See also the file 'COPYING'.
*
*/
#include "motion.h"
#include "alg.h"
#ifdef __MMX__
#define HAVE_MMX
#include "mmx.h"
#endif
#define MAX2(x, y) ((x) > (y) ? (x) : (y))
#define MAX3(x, y, z) ((x) > (y) ? ((x) > (z) ? (x) : (z)) : ((y) > (z) ? (y) : (z)))
/**
* alg_locate_center_size
* Locates the center and size of the movement.
*/
void alg_locate_center_size(struct images *imgs, int width, int height, struct coord *cent)
{
unsigned char *out = imgs->out;
int *labels = imgs->labels;
int x, y, centc = 0, xdist = 0, ydist = 0;
cent->x = 0;
cent->y = 0;
cent->maxx = 0;
cent->maxy = 0;
cent->minx = width;
cent->miny = height;
/* If Labeling enabled - locate center of largest labelgroup. */
if (imgs->labelsize_max) {
/* Locate largest labelgroup */
for (y = 0; y < height; y++) {
for (x = 0; x < width; x++) {
if (*(labels++) & 32768) {
cent->x += x;
cent->y += y;
centc++;
}
}
}
} else {
/* Locate movement */
for (y = 0; y < height; y++) {
for (x = 0; x < width; x++) {
if (*(out++)) {
cent->x += x;
cent->y += y;
centc++;
}
}
}
}
if (centc) {
cent->x = cent->x / centc;
cent->y = cent->y / centc;
}
/* Now we find the size of the Motion. */
/* First reset pointers back to initial value. */
centc = 0;
labels = imgs->labels;
out = imgs->out;
/* If Labeling then we find the area around largest labelgroup instead. */
if (imgs->labelsize_max) {
for (y = 0; y < height; y++) {
for (x = 0; x < width; x++) {
if (*(labels++) & 32768) {
if (x > cent->x)
xdist += x - cent->x;
else if (x < cent->x)
xdist += cent->x - x;
if (y > cent->y)
ydist += y - cent->y;
else if (y < cent->y)
ydist += cent->y - y;
centc++;
}
}
}
} else {
for (y = 0; y < height; y++) {
for (x = 0; x < width; x++) {
if (*(out++)) {
if (x > cent->x)
xdist += x - cent->x;
else if (x < cent->x)
xdist += cent->x - x;
if (y > cent->y)
ydist += y - cent->y;
else if (y < cent->y)
ydist += cent->y - y;
centc++;
}
}
}
}
if (centc) {
cent->minx = cent->x - xdist / centc * 2;
cent->maxx = cent->x + xdist / centc * 2;
/*
* Make the box a little bigger in y direction to make sure the
* heads fit in so we multiply by 3 instead of 2 which seems to
* to work well in practical.
*/
cent->miny = cent->y - ydist / centc * 3;
cent->maxy = cent->y + ydist / centc * 2;
}
if (cent->maxx > width - 1)
cent->maxx = width - 1;
else if (cent->maxx < 0)
cent->maxx = 0;
if (cent->maxy > height - 1)
cent->maxy = height - 1;
else if (cent->maxy < 0)
cent->maxy = 0;
if (cent->minx > width - 1)
cent->minx = width - 1;
else if (cent->minx < 0)
cent->minx = 0;
if (cent->miny > height - 1)
cent->miny = height - 1;
else if (cent->miny < 0)
cent->miny = 0;
/* Align for better locate box handling */
cent->minx += cent->minx % 2;
cent->miny += cent->miny % 2;
cent->maxx -= cent->maxx % 2;
cent->maxy -= cent->maxy % 2;
cent->width = cent->maxx - cent->minx;
cent->height = cent->maxy - cent->miny;
/*
* We want to center Y coordinate to be the center of the action.
* The head of a person is important so we correct the cent.y coordinate
* to match the correction to include a persons head that we just did above.
*/
cent->y = (cent->miny + cent->maxy) / 2;
}
/**
* alg_draw_location
* Draws a box around the movement.
*/
void alg_draw_location(struct coord *cent, struct images *imgs, int width, unsigned char *new,
int style, int mode, int process_thisframe)
{
unsigned char *out = imgs->out;
int x, y;
out = imgs->out;
/* Debug image always gets a 'normal' box. */
if ((mode == LOCATE_BOTH) && process_thisframe) {
int width_miny = width * cent->miny;
int width_maxy = width * cent->maxy;
for (x = cent->minx; x <= cent->maxx; x++) {
int width_miny_x = x + width_miny;
int width_maxy_x = x + width_maxy;
out[width_miny_x] =~out[width_miny_x];
out[width_maxy_x] =~out[width_maxy_x];
}
for (y = cent->miny; y <= cent->maxy; y++) {
int width_minx_y = cent->minx + y * width;
int width_maxx_y = cent->maxx + y * width;
out[width_minx_y] =~out[width_minx_y];
out[width_maxx_y] =~out[width_maxx_y];
}
}
if (style == LOCATE_BOX) { /* Draw a box on normal images. */
int width_miny = width * cent->miny;
int width_maxy = width * cent->maxy;
for (x = cent->minx; x <= cent->maxx; x++) {
int width_miny_x = x + width_miny;
int width_maxy_x = x + width_maxy;
new[width_miny_x] =~new[width_miny_x];
new[width_maxy_x] =~new[width_maxy_x];
}
for (y = cent->miny; y <= cent->maxy; y++) {
int width_minx_y = cent->minx + y * width;
int width_maxx_y = cent->maxx + y * width;
new[width_minx_y] =~new[width_minx_y];
new[width_maxx_y] =~new[width_maxx_y];
}
} else if (style == LOCATE_CROSS) { /* Draw a cross on normal images. */
int centy = cent->y * width;
for (x = cent->x - 10; x <= cent->x + 10; x++) {
new[centy + x] =~new[centy + x];
out[centy + x] =~out[centy + x];
}
for (y = cent->y - 10; y <= cent->y + 10; y++) {
new[cent->x + y * width] =~new[cent->x + y * width];
out[cent->x + y * width] =~out[cent->x + y * width];
}
}
}
/**
* alg_draw_red_location
* Draws a RED box around the movement.
*/
void alg_draw_red_location(struct coord *cent, struct images *imgs, int width, unsigned char *new,
int style, int mode, int process_thisframe)
{
unsigned char *out = imgs->out;
unsigned char *new_u, *new_v;
int x, y, v, cwidth, cblock;
cwidth = width / 2;
cblock = imgs->motionsize / 4;
x = imgs->motionsize;
v = x + cblock;
out = imgs->out;
new_u = new + x;
new_v = new + v;
/* Debug image always gets a 'normal' box. */
if ((mode == LOCATE_BOTH) && process_thisframe) {
int width_miny = width * cent->miny;
int width_maxy = width * cent->maxy;
for (x = cent->minx; x <= cent->maxx; x++) {
int width_miny_x = x + width_miny;
int width_maxy_x = x + width_maxy;
out[width_miny_x] =~out[width_miny_x];
out[width_maxy_x] =~out[width_maxy_x];
}
for (y = cent->miny; y <= cent->maxy; y++) {
int width_minx_y = cent->minx + y * width;
int width_maxx_y = cent->maxx + y * width;
out[width_minx_y] =~out[width_minx_y];
out[width_maxx_y] =~out[width_maxx_y];
}
}
if (style == LOCATE_REDBOX) { /* Draw a red box on normal images. */
int width_miny = width * cent->miny;
int width_maxy = width * cent->maxy;
int cwidth_miny = cwidth * (cent->miny / 2);
int cwidth_maxy = cwidth * (cent->maxy / 2);
for (x = cent->minx + 2; x <= cent->maxx - 2; x += 2) {
int width_miny_x = x + width_miny;
int width_maxy_x = x + width_maxy;
int cwidth_miny_x = x / 2 + cwidth_miny;
int cwidth_maxy_x = x / 2 + cwidth_maxy;
new_u[cwidth_miny_x] = 128;
new_u[cwidth_maxy_x] = 128;
new_v[cwidth_miny_x] = 255;
new_v[cwidth_maxy_x] = 255;
new[width_miny_x] = 128;
new[width_maxy_x] = 128;
new[width_miny_x + 1] = 128;
new[width_maxy_x + 1] = 128;
new[width_miny_x + width] = 128;
new[width_maxy_x + width] = 128;
new[width_miny_x + 1 + width] = 128;
new[width_maxy_x + 1 + width] = 128;
}
for (y = cent->miny; y <= cent->maxy; y += 2) {
int width_minx_y = cent->minx + y * width;
int width_maxx_y = cent->maxx + y * width;
int cwidth_minx_y = (cent->minx / 2) + (y / 2) * cwidth;
int cwidth_maxx_y = (cent->maxx / 2) + (y / 2) * cwidth;
new_u[cwidth_minx_y] = 128;
new_u[cwidth_maxx_y] = 128;
new_v[cwidth_minx_y] = 255;
new_v[cwidth_maxx_y] = 255;
new[width_minx_y] = 128;
new[width_maxx_y] = 128;
new[width_minx_y + width] = 128;
new[width_maxx_y + width] = 128;
new[width_minx_y + 1] = 128;
new[width_maxx_y + 1] = 128;
new[width_minx_y + width + 1] = 128;
new[width_maxx_y + width + 1] = 128;
}
} else if (style == LOCATE_REDCROSS) { /* Draw a red cross on normal images. */
int cwidth_maxy = cwidth * (cent->y / 2);
for (x = cent->x - 10; x <= cent->x + 10; x += 2) {
int cwidth_maxy_x = x / 2 + cwidth_maxy;
new_u[cwidth_maxy_x] = 128;
new_v[cwidth_maxy_x] = 255;
}
for (y = cent->y - 10; y <= cent->y + 10; y += 2) {
int cwidth_minx_y = (cent->x / 2) + (y / 2) * cwidth;
new_u[cwidth_minx_y] = 128;
new_v[cwidth_minx_y] = 255;
}
}
}
#define NORM 100
#define ABS(x) ((x) < 0 ? -(x) : (x))
#define DIFF(x, y) (ABS((x)-(y)))
#define NDIFF(x, y) (ABS(x) * NORM / (ABS(x) + 2 * DIFF(x, y)))
/**
* alg_noise_tune
*
*/
void alg_noise_tune(struct context *cnt, unsigned char *new)
{
struct images *imgs = &cnt->imgs;
int i;
unsigned char *ref = imgs->ref;
int diff, sum = 0, count = 0;
unsigned char *mask = imgs->mask;
unsigned char *smartmask = imgs->smartmask_final;
i = imgs->motionsize;
for (; i > 0; i--) {
diff = ABS(*ref - *new);
if (mask)
diff = ((diff * *mask++) / 255);
if (*smartmask) {
sum += diff + 1;
count++;
}
ref++;
new++;
smartmask++;
}
if (count > 3) /* Avoid divide by zero. */
sum /= count / 3;
/* 5: safe, 4: regular, 3: more sensitive */
cnt->noise = 4 + (cnt->noise + sum) / 2;
}
/**
* alg_threshold_tune
*
*/
void alg_threshold_tune(struct context *cnt, int diffs, int motion)
{
int i;
int sum = 0, top = diffs;
if (!diffs)
return;
if (motion)
diffs = cnt->threshold / 4;
for (i = 0; i < THRESHOLD_TUNE_LENGTH - 1; i++) {
sum += cnt->diffs_last[i];
if (cnt->diffs_last[i + 1] && !motion)
cnt->diffs_last[i] = cnt->diffs_last[i + 1];
else
cnt->diffs_last[i] = cnt->threshold / 4;
if (cnt->diffs_last[i] > top)
top = cnt->diffs_last[i];
}
sum += cnt->diffs_last[i];
cnt->diffs_last[i] = diffs;
sum /= THRESHOLD_TUNE_LENGTH / 4;
if (sum < top * 2)
sum = top * 2;
if (sum < cnt->conf.max_changes)
cnt->threshold = (cnt->threshold + sum) / 2;
}
/*
* Labeling by Joerg Weber. Based on an idea from Hubert Mara.
* Floodfill enhanced by Ian McConnel based on code from
* http://www.acm.org/pubs/tog/GraphicsGems/
* http://www.codeproject.com/gdi/QuickFill.asp
* Filled horizontal segment of scanline y for xl <= x <= xr.
* Parent segment was on line y - dy. dy = 1 or -1
*/
#define MAXS 10000 /* max depth of stack */
#define PUSH(Y, XL, XR, DY) /* push new segment on stack */ \
if (sp<stack+MAXS && Y+(DY) >= 0 && Y+(DY) < height) \
{sp->y = Y; sp->xl = XL; sp->xr = XR; sp->dy = DY; sp++;}
#define POP(Y, XL, XR, DY) /* pop segment off stack */ \
{sp--; Y = sp->y+(DY = sp->dy); XL = sp->xl; XR = sp->xr;}
typedef struct {
short y, xl, xr, dy;
} Segment;
/**
* iflood
*
*/
static int iflood(int x, int y, int width, int height,
unsigned char *out, int *labels, int newvalue, int oldvalue)
{
int l, x1, x2, dy;
Segment stack[MAXS], *sp = stack; /* Stack of filled segments. */
int count = 0;
if (x < 0 || x >= width || y < 0 || y >= height)
return 0;
PUSH(y, x, x, 1); /* Needed in some cases. */
PUSH(y+1, x, x, -1); /* Seed segment (popped 1st). */
while (sp > stack) {
/* Pop segment off stack and fill a neighboring scan line. */
POP(y, x1, x2, dy);
/*
* Segment of scan line y-dy for x1<=x<=x2 was previously filled,
* now explore adjacent pixels in scan line y
*/
for (x = x1; x >= 0 && out[y * width + x] != 0 && labels[y * width + x] == oldvalue; x--) {
labels[y * width + x] = newvalue;
count++;
}
if (x >= x1)
goto skip;
l = x + 1;
if (l < x1)
PUSH(y, l, x1 - 1, -dy); /* Leak on left? */
x = x1 + 1;
do {
for (; x < width && out[y * width + x] != 0 && labels[y * width + x] == oldvalue; x++) {
labels[y * width + x] = newvalue;
count++;
}
PUSH(y, l, x - 1, dy);
if (x > x2 + 1)
PUSH(y, x2 + 1, x - 1, -dy); /* Leak on right? */
skip:
for (x++; x <= x2 && !(out[y * width + x] != 0 && labels[y * width + x] == oldvalue); x++);
l = x;
} while (x <= x2);
}
return count;
}
/**
* alg_labeling
*
*/
static int alg_labeling(struct context *cnt)
{
struct images *imgs = &cnt->imgs;
unsigned char *out = imgs->out;
int *labels = imgs->labels;
int ix, iy, pixelpos;
int width = imgs->width;
int height = imgs->height;
int labelsize = 0;
int current_label = 2;
/* Keep track of the area just under the threshold. */
int max_under = 0;
cnt->current_image->total_labels = 0;
imgs->labelsize_max = 0;
/* ALL labels above threshold are counted as labelgroup. */
imgs->labelgroup_max = 0;
imgs->labels_above = 0;
/* Init: 0 means no label set / not checked. */
memset(labels, 0, width * height * sizeof(*labels));
pixelpos = 0;
for (iy = 0; iy < height - 1; iy++) {
for (ix = 0; ix < width - 1; ix++, pixelpos++) {
/* No motion - no label */
if (out[pixelpos] == 0) {
labels[pixelpos] = 1;
continue;
}
/* Already visited by iflood */
if (labels[pixelpos] > 0)
continue;
labelsize = iflood(ix, iy, width, height, out, labels, current_label, 0);
if (labelsize > 0) {
MOTION_LOG(DBG, TYPE_ALL, NO_ERRNO, "%s: Label: %i (%i) Size: %i (%i,%i)",
current_label, cnt->current_image->total_labels,
labelsize, ix, iy);
/* Label above threshold? Mark it again (add 32768 to labelnumber). */
if (labelsize > cnt->threshold) {
labelsize = iflood(ix, iy, width, height, out, labels, current_label + 32768, current_label);
imgs->labelgroup_max += labelsize;
imgs->labels_above++;
} else if(max_under < labelsize)
max_under = labelsize;
if (imgs->labelsize_max < labelsize) {
imgs->labelsize_max = labelsize;
imgs->largest_label = current_label;
}
cnt->current_image->total_labels++;
current_label++;
}
}
pixelpos++; /* Compensate for ix < width - 1 */
}
MOTION_LOG(DBG, TYPE_ALL, NO_ERRNO, "%s: %i Labels found. Largest connected Area: %i Pixel(s). "
"Largest Label: %i", imgs->largest_label, imgs->labelsize_max,
cnt->current_image->total_labels);
/* Return group of significant labels or if that's none, the next largest
* group (which is under the threshold, but especially for setup gives an
* idea how close it was).
*/
return imgs->labelgroup_max ? imgs->labelgroup_max : max_under;
}
/**
* dilate9
* Dilates a 3x3 box.
*/
static int dilate9(unsigned char *img, int width, int height, void *buffer)
{
/*
* - row1, row2 and row3 represent lines in the temporary buffer.
* - Window is a sliding window containing max values of the columns
* in the 3x3 matrix.
* - width is an index into the sliding window (this is faster than
* doing modulo 3 on i).
* - blob keeps the current max value.
*/
int y, i, sum = 0, widx;
unsigned char *row1, *row2, *row3, *rowTemp,*yp;
unsigned char window[3], blob, latest;
/* Set up row pointers in the temporary buffer. */
row1 = buffer;
row2 = row1 + width;
row3 = row2 + width;
/* Init rows 2 and 3. */
memset(row2, 0, width);
memcpy(row3, img, width);
/* Pointer to the current row in img. */
yp = img;
for (y = 0; y < height; y++) {
/* Move down one step; row 1 becomes the previous row 2 and so on. */
rowTemp = row1;
row1 = row2;
row2 = row3;
row3 = rowTemp;
/* If we're at the last row, fill with zeros, otherwise copy from img. */
if (y == height - 1)
memset(row3, 0, width);
else
memcpy(row3, yp+width, width);
/* Init slots 0 and 1 in the moving window. */
window[0] = MAX3(row1[0], row2[0], row3[0]);
window[1] = MAX3(row1[1], row2[1], row3[1]);
/* Init blob to the current max, and set window index. */
blob = MAX2(window[0], window[1]);
widx = 2;
/*
* Iterate over the current row; index i is off by one to eliminate
* a lot of +1es in the loop.
*/
for (i = 2; i <= width - 1; i++) {
/* Get the max value of the next column in the 3x3 matrix. */
latest = window[widx] = MAX3(row1[i], row2[i], row3[i]);
/*
* If the value is larger than the current max, use it. Otherwise,
* calculate a new max (because the new value may not be the max.
*/
if (latest >= blob)
blob = latest;
else
blob = MAX3(window[0], window[1], window[2]);
/* Write the max value (blob) to the image. */
if (blob != 0) {
*(yp + i - 1) = blob;
sum++;
}
/* Wrap around the window index if necessary. */
if (++widx == 3)
widx = 0;
}
/* Store zeros in the vertical sides. */
*yp = *(yp + width - 1) = 0;
yp += width;
}
return sum;
}
/**
* dilate5
* Dilates a + shape.
*/
static int dilate5(unsigned char *img, int width, int height, void *buffer)
{
/*
* - row1, row2 and row3 represent lines in the temporary buffer.
* - mem holds the max value of the overlapping part of two + shapes.
*/
int y, i, sum = 0;
unsigned char *row1, *row2, *row3, *rowTemp, *yp;
unsigned char blob, mem, latest;
/* Set up row pointers in the temporary buffer. */
row1 = buffer;
row2 = row1 + width;
row3 = row2 + width;
/* Init rows 2 and 3. */
memset(row2, 0, width);
memcpy(row3, img, width);
/* Pointer to the current row in img. */
yp = img;
for (y = 0; y < height; y++) {
/* Move down one step; row 1 becomes the previous row 2 and so on. */
rowTemp = row1;
row1 = row2;
row2 = row3;
row3 = rowTemp;
/* If we're at the last row, fill with zeros, otherwise copy from img. */
if (y == height - 1)
memset(row3, 0, width);
else
memcpy(row3, yp + width, width);
/* Init mem and set blob to force an evaluation of the entire + shape. */
mem = MAX2(row2[0], row2[1]);
blob = 1; /* dummy value, must be > 0 */
for (i = 1; i < width - 1; i++) {
/* Get the max value of the "right edge" of the + shape. */
latest = MAX3(row1[i], row2[i + 1], row3[i]);
if (blob == 0) {
/* In case the last blob is zero, only latest matters. */
blob = latest;
mem = row2[i + 1];
} else {
/* Otherwise, we have to check both latest and mem. */
blob = MAX2(mem, latest);
mem = MAX2(row2[i], row2[i + 1]);
}
/* Write the max value (blob) to the image. */
if (blob != 0) {
*(yp + i) = blob;
sum++;
}
}
/* Store zeros in the vertical sides. */
*yp = *(yp + width - 1) = 0;
yp += width;
}
return sum;
}
/**
* erode9
* Erodes a 3x3 box.
*/
static int erode9(unsigned char *img, int width, int height, void *buffer, unsigned char flag)
{
int y, i, sum = 0;
char *Row1,*Row2,*Row3;
Row1 = buffer;
Row2 = Row1 + width;
Row3 = Row1 + 2 * width;
memset(Row2, flag, width);
memcpy(Row3, img, width);
for (y = 0; y < height; y++) {
memcpy(Row1, Row2, width);
memcpy(Row2, Row3, width);
if (y == height-1)
memset(Row3, flag, width);
else
memcpy(Row3, img + (y+1) * width, width);
for (i = width - 2; i >= 1; i--) {
if (Row1[i - 1] == 0 ||
Row1[i] == 0 ||
Row1[i + 1] == 0 ||
Row2[i - 1] == 0 ||
Row2[i] == 0 ||
Row2[i + 1] == 0 ||
Row3[i - 1] == 0 ||
Row3[i] == 0 ||
Row3[i + 1] == 0)
img[y * width + i] = 0;
else
sum++;
}
img[y * width] = img[y * width + width - 1] = flag;
}
return sum;
}
/**
* erode5
* Erodes in a + shape.
*/
static int erode5(unsigned char *img, int width, int height, void *buffer, unsigned char flag)
{
int y, i, sum = 0;
char *Row1,*Row2,*Row3;
Row1 = buffer;
Row2 = Row1 + width;
Row3 = Row1 + 2 * width;
memset(Row2, flag, width);
memcpy(Row3, img, width);
for (y = 0; y < height; y++) {
memcpy(Row1, Row2, width);
memcpy(Row2, Row3, width);
if (y == height-1)
memset(Row3, flag, width);
else
memcpy(Row3, img + (y + 1) * width, width);
for (i = width - 2; i >= 1; i--) {
if (Row1[i] == 0 ||
Row2[i - 1] == 0 ||
Row2[i] == 0 ||
Row2[i + 1] == 0 ||
Row3[i] == 0)
img[y * width + i] = 0;
else
sum++;
}
img[y * width] = img[y * width + width - 1] = flag;
}
return sum;
}
/**
* alg_despeckle
* Despeckling routine to remove noisy detections.
*/
int alg_despeckle(struct context *cnt, int olddiffs)
{
int diffs = 0;
unsigned char *out = cnt->imgs.out;
int width = cnt->imgs.width;
int height = cnt->imgs.height;
int done = 0, i, len = strlen(cnt->conf.despeckle_filter);
unsigned char *common_buffer = cnt->imgs.common_buffer;
for (i = 0; i < len; i++) {
switch (cnt->conf.despeckle_filter[i]) {
case 'E':
if ((diffs = erode9(out, width, height, common_buffer, 0)) == 0)
i = len;
done = 1;
break;
case 'e':
if ((diffs = erode5(out, width, height, common_buffer, 0)) == 0)
i = len;
done = 1;
break;
case 'D':
diffs = dilate9(out, width, height, common_buffer);
done = 1;
break;
case 'd':
diffs = dilate5(out, width, height, common_buffer);
done = 1;
break;
/* No further despeckle after labeling! */
case 'l':
diffs = alg_labeling(cnt);
i = len;
done = 2;
break;
}
}
/* If conf.despeckle_filter contains any valid action EeDdl */
if (done) {
if (done != 2)
cnt->imgs.labelsize_max = 0; // Disable Labeling
return diffs;
} else {
cnt->imgs.labelsize_max = 0; // Disable Labeling
}
return olddiffs;
}
/**
* alg_tune_smartmask
* Generates actual smartmask. Calculate sensitivity based on motion.
*/
void alg_tune_smartmask(struct context *cnt)
{
int i, diff;
int motionsize = cnt->imgs.motionsize;
unsigned char *smartmask = cnt->imgs.smartmask;
unsigned char *smartmask_final = cnt->imgs.smartmask_final;
int *smartmask_buffer = cnt->imgs.smartmask_buffer;
int sensitivity = cnt->lastrate * (11 - cnt->smartmask_speed);
for (i = 0; i < motionsize; i++) {
/* Decrease smart_mask sensitivity every 5*speed seconds only. */
if (smartmask[i] > 0)
smartmask[i]--;
/* Increase smart_mask sensitivity based on the buffered values. */
diff = smartmask_buffer[i]/sensitivity;
if (diff) {
if (smartmask[i] <= diff + 80)
smartmask[i] += diff;
else
smartmask[i] = 80;
smartmask_buffer[i] %= sensitivity;
}
/* Transfer raw mask to the final stage when above trigger value. */
if (smartmask[i] > 20)
smartmask_final[i] = 0;
else
smartmask_final[i] = 255;
}
/* Further expansion (here:erode due to inverted logic!) of the mask. */
diff = erode9(smartmask_final, cnt->imgs.width, cnt->imgs.height,
cnt->imgs.common_buffer, 255);
diff = erode5(smartmask_final, cnt->imgs.width, cnt->imgs.height,
cnt->imgs.common_buffer, 255);
}
/* Increment for *smartmask_buffer in alg_diff_standard. */
#define SMARTMASK_SENSITIVITY_INCR 5
/**
* alg_diff_standard
*
*/
int alg_diff_standard(struct context *cnt, unsigned char *new)
{
struct images *imgs = &cnt->imgs;
int i, diffs = 0;
int noise = cnt->noise;
int smartmask_speed = cnt->smartmask_speed;
unsigned char *ref = imgs->ref;
unsigned char *out = imgs->out;
unsigned char *mask = imgs->mask;
unsigned char *smartmask_final = imgs->smartmask_final;
int *smartmask_buffer = imgs->smartmask_buffer;
#ifdef HAVE_MMX
mmx_t mmtemp; /* Used for transferring to/from memory. */
int unload; /* Counter for unloading diff counts. */
#endif
i = imgs->motionsize;
memset(out + i, 128, i / 2); /* Motion pictures are now b/w i.o. green */
/*
* Keeping this memset in the MMX case when zeroes are necessarily
* written anyway seems to be beneficial in terms of speed. Perhaps a
* cache thing?
*/
memset(out, 0, i);
#ifdef HAVE_MMX
/*
* NOTE: The Pentium has two instruction pipes: U and V. I have grouped MMX
* instructions in pairs according to how I think they will be scheduled in
* the U and V pipes. Due to pairing constraints, the V pipe will sometimes
* be empty (for example, memory access always goes into the U pipe).
*
* The following MMX registers are kept throughout the loop:
* mm5 - 8 separate diff counters (unloaded periodically)
* mm6 - mask: 00ff 00ff 00ff 00ff
* mm7 - noise level as 8 packed bytes
*
* -- Per Jonsson
*/
/*
* To avoid a div, we work with differences multiplied by 255 in the
* default case and *mask otherwise. Thus, the limit to compare with is
* 255 * (noise + 1) - 1).
*/
mmtemp.uw[0] = mmtemp.uw[1] = mmtemp.uw[2] = mmtemp.uw[3] =
(unsigned short)(noise * 255 + 254);
/*
* Reset mm5 to zero, set the mm6 mask, and store the multiplied noise
* level as four words in mm7.
*/
movq_m2r(mmtemp, mm7); /* U */
pcmpeqb_r2r(mm6, mm6); /* V */
pxor_r2r(mm5, mm5); /* U */
psrlw_i2r(8, mm6); /* V */
/*
* We must unload mm5 every 255th round, because the diffs accumulate
* in each packed byte, which can hold at most 255 diffs before it
* gets saturated.
*/
unload = 255;
for (; i > 7; i -= 8) {
/* Calculate abs(*ref-*new) for 8 pixels in parallel. */
movq_m2r(*ref, mm0); /* U: mm0 = r7 r6 r5 r4 r3 r2 r1 r0 */
pxor_r2r(mm4, mm4); /* V: mm4 = 0 */
movq_m2r(*new, mm1); /* U: mm1 = n7 n6 n5 n4 n3 n2 n1 n0 */
movq_r2r(mm0, mm2); /* V: mm2 = r7 r6 r5 r4 r3 r2 r1 r0 */
/* These subtractions are saturated, i.e. won't go below 0. */
psubusb_r2r(mm1, mm0); /* U: mm0 = (r7-n7) ... (r0-n0) */
psubusb_r2r(mm2, mm1); /* V: mm1 = (n7-r7) ... (n0-r0) */
/* Each byte dX in mm0 is abs(nX-rX). */
por_r2r(mm1, mm0); /* U: mm0 = d7 d6 d5 d4 d3 d2 d1 d0 */
/* Expand the absolute differences to words in mm0 and mm1. */
movq_r2r(mm0, mm1); /* U: mm1 = d7 d6 d5 d4 d3 d2 d1 d0 */
punpcklbw_r2r(mm4, mm0); /* V: mm0 = d3 d2 d1 d0 */
punpckhbw_r2r(mm4, mm1); /* U: mm1 = d7 d6 d5 d4 */
if (mask) {
/*
* Load and expand 8 mask bytes to words in mm2 and mm3. Then
* multiply by mm0 and mm1, respectively.
*/
movq_m2r(*mask, mm2); /* U: mm2 = m7 m6 m5 m4 m3 m2 m1 m0 */
movq_r2r(mm2, mm3); /* U: mm3 = m7 m6 m5 m4 m3 m2 m1 m0 */
punpcklbw_r2r(mm4, mm2); /* v: mm2 = m3 m2 m1 m0 */
punpckhbw_r2r(mm4, mm3); /* U: mm3 = m7 m6 m5 m4 */
pmullw_r2r(mm2, mm0); /* V: mm0 = (d3*m3) ... (d0*m0) */
pmullw_r2r(mm3, mm1); /* U: mm1 = (d7*m7) ... (d4*m4) */
mask += 8;
} else {
/*
* Not using mask - multiply the absolute differences by 255. We
* do this by left-shifting 8 places and then subtracting dX.
*/
movq_r2r(mm0, mm2); /* U: mm2 = d3 d2 d1 d0 */
psllw_i2r(8, mm0); /* V: mm2 = (256*d3) ... (256*d0) */
movq_r2r(mm1, mm3); /* U: mm3 = d7 d6 d5 d4 */
psllw_i2r(8, mm1); /* V: mm3 = (256*d7) ... (256*d4) */
psubusw_r2r(mm2, mm0); /* U */
psubusw_r2r(mm3, mm1); /* V */
}
/*
* Next, compare the multiplied absolute differences with the multiplied
* noise level (repeated as 4 words in mm7), resulting in a "motion flag"
* for each pixel.
*
* Since pcmpgtw performs signed comparisons, we have to subtract noise,
* test for equality to 0 and then invert the result.
*
* Note that it is safe to generate the "motion flags" before the
* smartmask code, as all that can happen is that individual flags get
* reset to 0 because of the smartmask.
*/
psubusw_r2r(mm7, mm0); /* U: subtract by (multiplied) noise */
psubusw_r2r(mm7, mm1); /* V */
pcmpeqw_r2r(mm4, mm0); /* U: test for equality with 0 */
pcmpeqw_r2r(mm4, mm1); /* V */
pand_r2r(mm6, mm0); /* U: convert 0xffff -> 0x00ff */
pand_r2r(mm6, mm1); /* V */
pxor_r2r(mm6, mm0); /* U: invert the result */
pxor_r2r(mm6, mm1); /* V */
/* Each fX is the "motion flag" = 0 for no motion, 0xff for motion. */
packuswb_r2r(mm1, mm0); /* U: mm0 = f7 f6 f5 f4 f3 f2 f1 f0 */
if (smartmask_speed) {
/*
* Apply the smartmask. Basically, if *smartmask_final is 0, the
* corresponding "motion flag" in mm0 will be reset.
*/
movq_m2r(*smartmask_final, mm3); /* U: mm3 = s7 s6 s5 s4 s3 s2 s1 s0 */
/*
* ...but move the "motion flags" to memory before, in order to
* increment *smartmask_buffer properly below.
*/
movq_r2m(mm0, mmtemp); /* U */
pcmpeqb_r2r(mm4, mm3); /* V: mm3 = 0xff where sX==0 */
/* AND negates the target before anding. */
pandn_r2r(mm0, mm3); /* U: mm3 = 0xff where dX>noise && sX>0 */
movq_r2r(mm3, mm0); /* U */
/* Add to *smartmask_buffer. This is probably the fastest way to do it. */
if (cnt->event_nr != cnt->prev_event) {
if (mmtemp.ub[0]) smartmask_buffer[0] += SMARTMASK_SENSITIVITY_INCR;
if (mmtemp.ub[1]) smartmask_buffer[1] += SMARTMASK_SENSITIVITY_INCR;
if (mmtemp.ub[2]) smartmask_buffer[2] += SMARTMASK_SENSITIVITY_INCR;
if (mmtemp.ub[3]) smartmask_buffer[3] += SMARTMASK_SENSITIVITY_INCR;
if (mmtemp.ub[4]) smartmask_buffer[4] += SMARTMASK_SENSITIVITY_INCR;
if (mmtemp.ub[5]) smartmask_buffer[5] += SMARTMASK_SENSITIVITY_INCR;
if (mmtemp.ub[6]) smartmask_buffer[6] += SMARTMASK_SENSITIVITY_INCR;
if (mmtemp.ub[7]) smartmask_buffer[7] += SMARTMASK_SENSITIVITY_INCR;
}
smartmask_buffer += 8;
smartmask_final += 8;
}
movq_m2r(*new, mm2); /* U: mm1 = n7 n6 n5 n4 n3 n2 n1 n0 */
/*
* Cancel out pixels in *new according to the "motion flags" in mm0.
* Each NX is either 0 or nX as from *new.
*/
pand_r2r(mm0, mm2); /* U: mm1 = N7 N6 N5 N4 N3 N2 N1 N0 */
psubb_r2r(mm0, mm4); /* V: mm4 = 0x01 where dX>noise */
/*
* mm5 holds 8 separate counts - each one is increased according to
* the contents of mm4 (where each byte is either 0x00 or 0x01).
*/
movq_r2m(mm2, *out); /* U: this will stall */
paddusb_r2r(mm4, mm5); /* V: add counts to mm5 */
/*
* Every 255th turn, we need to unload mm5 into the diffs variable,
* because otherwise the packed bytes will get saturated.
*/
if (--unload == 0) {
/* Unload mm5 to memory and reset it. */
movq_r2m(mm5, mmtemp); /* U */
pxor_r2r(mm5, mm5); /* V: mm5 = 0 */
diffs += mmtemp.ub[0] + mmtemp.ub[1] + mmtemp.ub[2] + mmtemp.ub[3] +
mmtemp.ub[4] + mmtemp.ub[5] + mmtemp.ub[6] + mmtemp.ub[7];
unload = 255;
}
out += 8;
ref += 8;
new += 8;
}
/*
* Check if there are diffs left in mm5 that need to be copied to the
* diffs variable.
*/
if (unload < 255) {
movq_r2m(mm5, mmtemp);
diffs += mmtemp.ub[0] + mmtemp.ub[1] + mmtemp.ub[2] + mmtemp.ub[3] +
mmtemp.ub[4] + mmtemp.ub[5] + mmtemp.ub[6] + mmtemp.ub[7];
}
emms();
#endif
/*
* Note that the non-MMX code is present even if the MMX code is present.
* This is necessary if the resolution is not a multiple of 8, in which
* case the non-MMX code needs to take care of the remaining pixels.
*/
for (; i > 0; i--) {
register unsigned char curdiff = (int)(abs(*ref - *new)); /* Using a temp variable is 12% faster. */
/* Apply fixed mask */
if (mask)
curdiff = ((int)(curdiff * *mask++) / 255);
if (smartmask_speed) {
if (curdiff > noise) {
/*
* Increase smart_mask sensitivity every frame when motion
* is detected. (with speed=5, mask is increased by 1 every
* second. To be able to increase by 5 every second (with
* speed=10) we add 5 here. NOT related to the 5 at ratio-
* calculation.
*/
if (cnt->event_nr != cnt->prev_event)
(*smartmask_buffer) += SMARTMASK_SENSITIVITY_INCR;
/* Apply smart_mask */
if (!*smartmask_final)
curdiff = 0;
}
smartmask_final++;
smartmask_buffer++;
}
/* Pixel still in motion after all the masks? */
if (curdiff > noise) {
*out = *new;
diffs++;
}
out++;
ref++;
new++;
}
return diffs;
}
/**
* alg_diff_fast
* Very fast diff function, does not apply mask overlaying.
*/
static char alg_diff_fast(struct context *cnt, int max_n_changes, unsigned char *new)
{
struct images *imgs = &cnt->imgs;
int i, diffs = 0, step = imgs->motionsize/10000;
int noise = cnt->noise;
unsigned char *ref = imgs->ref;
if (!step % 2)
step++;
/* We're checking only 1 of several pixels. */
max_n_changes /= step;
i = imgs->motionsize;
for (; i > 0; i -= step) {
register unsigned char curdiff = (int)(abs((char)(*ref - *new))); /* Using a temp variable is 12% faster. */
if (curdiff > noise) {
diffs++;
if (diffs > max_n_changes)
return 1;
}
ref += step;
new += step;
}
return 0;
}
/**
* alg_diff
* Uses diff_fast to quickly decide if there is anything worth
* sending to diff_standard.
*/
int alg_diff(struct context *cnt, unsigned char *new)
{
int diffs = 0;
if (alg_diff_fast(cnt, cnt->conf.max_changes / 2, new))
diffs = alg_diff_standard(cnt, new);
return diffs;
}
/**
* alg_lightswitch
* Detects a sudden massive change in the picture.
* It is assumed to be the light being switched on or a camera displacement.
* In any way the user doesn't think it is worth capturing.
*/
int alg_lightswitch(struct context *cnt, int diffs)
{
struct images *imgs = &cnt->imgs;
if (cnt->conf.lightswitch < 0)
cnt->conf.lightswitch = 0;
if (cnt->conf.lightswitch > 100)
cnt->conf.lightswitch = 100;
/* Is lightswitch percent of the image changed? */
if (diffs > (imgs->motionsize * cnt->conf.lightswitch / 100))
return 1;
return 0;
}
/**
* alg_switchfilter
*
*/
int alg_switchfilter(struct context *cnt, int diffs, unsigned char *newimg)
{
int linediff = diffs / cnt->imgs.height;
unsigned char *out = cnt->imgs.out;
int y, x, line;
int lines = 0, vertlines = 0;
for (y = 0; y < cnt->imgs.height; y++) {
line = 0;
for (x = 0; x < cnt->imgs.width; x++) {
if (*(out++))
line++;
}
if (line > cnt->imgs.width / 18)
vertlines++;
if (line > linediff * 2)
lines++;
}
if (vertlines > cnt->imgs.height / 10 && lines < vertlines / 3 &&
(vertlines > cnt->imgs.height / 4 || lines - vertlines > lines / 2)) {
if (cnt->conf.text_changes) {
char tmp[80];
sprintf(tmp, "%d %d", lines, vertlines);
draw_text(newimg, cnt->imgs.width - 10, 20, cnt->imgs.width, tmp, cnt->conf.text_double);
}
return diffs;
}
return 0;
}
/**
* alg_update_reference_frame
*
* Called from 'motion_loop' to calculate the reference frame
* Moving objects are excluded from the reference frame for a certain
* amount of time to improve detection.
*
* Parameters:
*
* cnt - current thread's context struct
* action - UPDATE_REF_FRAME or RESET_REF_FRAME
*
*/
#define ACCEPT_STATIC_OBJECT_TIME 10 /* Seconds */
#define EXCLUDE_LEVEL_PERCENT 20
void alg_update_reference_frame(struct context *cnt, int action)
{
int accept_timer = cnt->lastrate * ACCEPT_STATIC_OBJECT_TIME;
int i, threshold_ref;
int *ref_dyn = cnt->imgs.ref_dyn;
unsigned char *image_virgin = cnt->imgs.image_virgin;
unsigned char *ref = cnt->imgs.ref;
unsigned char *smartmask = cnt->imgs.smartmask_final;
unsigned char *out = cnt->imgs.out;
if (cnt->lastrate > 5) /* Match rate limit */
accept_timer /= (cnt->lastrate / 3);
if (action == UPDATE_REF_FRAME) { /* Black&white only for better performance. */
threshold_ref = cnt->noise * EXCLUDE_LEVEL_PERCENT / 100;
for (i = cnt->imgs.motionsize; i > 0; i--) {
/* Exclude pixels from ref frame well below noise level. */
if (((int)(abs(*ref - *image_virgin)) > threshold_ref) && (*smartmask)) {
if (*ref_dyn == 0) { /* Always give new pixels a chance. */
*ref_dyn = 1;
} else if (*ref_dyn > accept_timer) { /* Include static Object after some time. */
*ref_dyn = 0;
*ref = *image_virgin;
} else if (*out) {
(*ref_dyn)++; /* Motionpixel? Keep excluding from ref frame. */
} else {
*ref_dyn = 0; /* Nothing special - release pixel. */
*ref = (*ref + *image_virgin) / 2;
}
} else { /* No motion: copy to ref frame. */
*ref_dyn = 0; /* Reset pixel */
*ref = *image_virgin;
}
ref++;
image_virgin++;
smartmask++;
ref_dyn++;
out++;
} /* end for i */
} else { /* action == RESET_REF_FRAME - also used to initialize the frame at startup. */
/* Copy fresh image */
memcpy(cnt->imgs.ref, cnt->imgs.image_virgin, cnt->imgs.size);
/* Reset static objects */
memset(cnt->imgs.ref_dyn, 0, cnt->imgs.motionsize * sizeof(*cnt->imgs.ref_dyn));
}
}