* add ability to disable cloud
Users can now easily opt-out of cloud inference and web search by
setting
```
"disable_ollama_cloud": true
```
in their `~/.ollama/server.json` settings file. After a setting update,
the server must be restarted.
Alternatively, setting the environment variable `OLLAMA_NO_CLOUD=1` will
also disable cloud features. While users previously were able to avoid
cloud models by not pulling or `ollama run`ing them, this gives them an
easy way to enforce that decision. Any attempt to run a cloud model when
cloud is disabled will fail.
The app's old "airplane mode" setting, which did a similar thing for
hiding cloud models within the app is now unified with this new cloud
disabled mode. That setting has been replaced with a "Cloud" toggle,
which behind the scenes edits `server.json` and then restarts the
server.
* gate cloud models across TUI and launch flows when cloud is disabled
Block cloud models from being selected, launched, or written to
integration configs when cloud mode is turned off:
- TUI main menu: open model picker instead of launching with a
disabled cloud model
- cmd.go: add IsCloudModelDisabled checks for all Selection* paths
- LaunchCmd: filter cloud models from saved Editor configs before
launch, fall through to picker if none remain
- Editor Run() methods (droid, opencode, openclaw): filter cloud
models before calling Edit() and persist the cleaned list
- Export SaveIntegration, remove SaveIntegrationModel wrapper that
was accumulating models instead of replacing them
* rename saveIntegration to SaveIntegration in config.go and tests
* cmd/config: add --model guarding and empty model list fixes
* Update docs/faq.mdx
Co-authored-by: Jeffrey Morgan <jmorganca@gmail.com>
* Update internal/cloud/policy.go
Co-authored-by: Jeffrey Morgan <jmorganca@gmail.com>
* Update internal/cloud/policy.go
Co-authored-by: Jeffrey Morgan <jmorganca@gmail.com>
* Update server/routes.go
Co-authored-by: Jeffrey Morgan <jmorganca@gmail.com>
* Revert "Update internal/cloud/policy.go"
This reverts commit 8bff8615f9.
Since this error shows up in other integrations, we want it to be
prefixed with Ollama
* rename cloud status
* more status renaming
* fix tests that weren't updated after rename
---------
Co-authored-by: ParthSareen <parth.sareen@ollama.com>
Co-authored-by: Jeffrey Morgan <jmorganca@gmail.com>
This change fixes an issue where GGML based models (for either the Ollama runner or
the legacy llama.cpp runner) would try to load the mlx library. That would panic
and the model fails to start.
This change adds a new MLX based runner which includes:
* Method-based MLX bindings
* Subprocess-based MLX runner (x/mlxrunner)
* KV cache with tree management
* A basic sampler
The GLM4-MoE-Lite model has been ported to use the new bindings.
---------
Co-authored-by: Michael Yang <git@mxy.ng>
This change includes:
- changes to the safetensors metadata format
- changes to the create command to properly create the blobs with the new format
- changes to load the new format
- fixes ollama show to properly show each tensor
When context length is clamped to the model's trained context length,
ollama ps now shows the actual clamped value instead of the originally
configured value.
- Fix panic in ollama show for image gen models (safe type assertion)
- Add vision capability for Flux2KleinPipeline models at create time
- Flatten transparent PNG images onto white background for better results
Remove static VRAM estimation (EstimateVRAM, CheckMemoryRequirements)
which wasn't helpful. Instead, report the actual tensor weight size
from the manifest for ollama ps.
- Remove memory estimation check from runner startup
- Remove EstimateVRAM, CheckMemoryRequirements, modelVRAMEstimates
- Add TotalTensorSize() to get actual weight size from manifest
- Use weight size for Server.vramSize instead of estimates
Note: This is better than showing 0 or inaccurate estimates, but the
weight size is a drastic underestimation of actual memory usage since
it doesn't account for activations, intermediate tensors, or MLX
overhead. Future work should query real-time memory from MLX
(e.g., MetalGetActiveMemory) for accurate reporting.
Remove the Qwen image generation and image editing model packages
to clean up the codebase. These models will be reintroduced later.
- Delete x/imagegen/models/qwen_image/ (10 files)
- Delete x/imagegen/models/qwen_image_edit/ (5 files)
- Remove related CLI flags and imports from cmd/engine/main.go
- Update comments in cache/step.go to remove Qwen-specific references
Add --quantize fp4 support to ollama create for image generation models
(flux2, z-image-turbo), using MLX's affine 4-bit quantization.
Changes:
- Add fp4 to validation in CreateImageGenModel
- Add FP4 case to quantizeTensor (group_size=32, bits=4, affine mode)
- Add GetQuantization() to WeightSource interface for dynamic params
- Update LoadLinearLayer to use quantization params from model metadata
* MLX - dynamic loading of mlx-c
Create a wrapper layer to indirect the dependency on mlx-c so
the main ollama binary does not have a load-time dependency on mlx-c, mlx, and on linux, cuda. Lazy load the library via dlopen
so we can adjust the path to ensure the dependencies are found
and fail gracefully if not present.
* review comments
* fix broken tests
* x: make `ollama create --experimental` import from safetensors
This change allows pulling in safetensors models into the new experimental model format, and also
fixes the `ollama show` command to be able to correctly display the model information.
* gofumpt the linter
* gofumpt the linter again
* validate the model name
- Install mlx.metallib for arm64 builds (required for Metal GPU acceleration)
- Apply rpath settings to all macOS builds, not just x86_64
- Add CMAKE_BUILD_WITH_INSTALL_RPATH to avoid install_name_tool errors
- Update build_darwin.sh to copy, sign, and package the metallib
TeaCache:
- Timestep embedding similarity caching for diffusion models
- Polynomial rescaling with configurable thresholds
- Reduces transformer forward passes by ~30-50%
FP8 quantization:
- Support for FP8 quantized models (8-bit weights with scales)
- QuantizedMatmul on Metal, Dequantize on CUDA
- Client-side quantization via ollama create --quantize fp8
Other bug fixes:
- Fix `/api/show` API for image generation models
- Server properly returns model info (architecture, parameters, quantization)
- Memory allocation optimizations
- CLI improvements for image generation
Removes 5-minute HTTP client timeout that caused "context deadline
exceeded" errors on large file downloads. Stall detection (10s)
already handles unresponsive connections.
Fixes progress bar total going down on resume by calculating total
from all blobs upfront and reporting already-downloaded bytes
as completed immediately.
* WIP - MLX backend with gemma3
* MLX: add cmake and go tag build toggles
To build the new MLX backend code:
cmake --preset MLX
cmake --build --preset MLX --parallel
cmake --install build --component MLX
go build -tags mlx .
Note: the main.go entrypoint for the MLX engine will change in a follow up commit.
* add experimental image generation runtime
* add experimental image generation runtime
* MLX: wire up cuda build for linux
* MLX: get dependencies correct and dedup
This is still too large for a unified github artifact, but is now "correct" for the mlx_cuda_v13
directory.
* fix relative link bug in dedup
* Add darwin build and readme
* add go build tag for mlx dependent code and wire up build_darwin.sh
* lint cleanup
* macos: build mlx for x86
This will be CPU only.
* cuda build instructions and fix drift from mlx bump
* stale comment
* Delete agent helper doc
* Clean up readme.md
* Revise README for tokenizer clarity and details
Updated README to clarify tokenizer functionality and removed correctness section.
---------
Co-authored-by: jmorganca <jmorganca@gmail.com>