Files
ollama/x/mlxrunner/model/quant.go
Patrick Devine 041fb77639 model: add gemma3 to the mlxrunner (#14276)
This change adds the gemma3 model to the mlxrunner and simplifies some of the quantization
code for loading weights.
2026-02-15 22:47:59 -08:00

131 lines
3.2 KiB
Go

//go:build mlx
package model
import (
"strings"
"github.com/ollama/ollama/x/mlxrunner/mlx"
)
// QuantizationParams returns default groupSize, bits, and mode for a quantization type.
func QuantizationParams(quantization string) (groupSize, bits int, mode string) {
switch strings.ToUpper(quantization) {
case "NVFP4":
return 16, 4, "nvfp4"
case "FP4", "Q4", "INT4":
return 32, 4, "affine"
case "MXFP8":
return 32, 8, "mxfp8"
case "FP8", "Q8", "INT8", "":
return 64, 8, "affine"
default:
return 32, 8, "affine"
}
}
// TensorQuantParams resolves quant params for a tensor using per-tensor metadata
// when available, otherwise falling back to the provided model defaults.
func TensorQuantParams(
defaultGroupSize, defaultBits int,
defaultMode string,
tensorQuant map[string]*TensorQuantInfo,
tensorName string,
) (groupSize, bits int, mode string, fromTensor bool) {
if tensorQuant != nil {
if tq := tensorQuant[tensorName]; tq != nil {
groupSize, bits, mode = QuantizationParams(tq.QuantType)
if tq.GroupSize > 0 {
groupSize = tq.GroupSize
}
return groupSize, bits, mode, true
}
}
return defaultGroupSize, defaultBits, defaultMode, false
}
// ResolveLinearQuantParams resolves quantization params for a quantized linear
// tensor, preferring per-tensor metadata and falling back to shape-based
// inference for affine packed tensors.
func ResolveLinearQuantParams(
defaultGroupSize, defaultBits int,
defaultMode string,
tensorQuant map[string]*TensorQuantInfo,
tensorName string,
weight, scales *mlx.Array,
) (groupSize, bits int, mode string) {
groupSize, bits, mode, fromTensor := TensorQuantParams(
defaultGroupSize,
defaultBits,
defaultMode,
tensorQuant,
tensorName,
)
if mode == "affine" {
if inferredGroupSize, inferredBits, ok := InferAffineQuantParamsFromShapes(weight, scales, bits); ok {
if !fromTensor || groupSize == 0 || bits == 0 {
groupSize = inferredGroupSize
bits = inferredBits
}
}
}
return groupSize, bits, mode
}
// InferAffineQuantParamsFromShapes infers (groupSize,bits) for affine quantized
// tensors from packed weight and scale shapes.
func InferAffineQuantParamsFromShapes(weight, scales *mlx.Array, hintBits int) (groupSize, bits int, ok bool) {
if weight == nil || scales == nil {
return 0, 0, false
}
weightShape := weight.Dims()
scaleShape := scales.Dims()
if len(weightShape) == 0 || len(scaleShape) == 0 {
return 0, 0, false
}
weightCols := weightShape[len(weightShape)-1]
scalesCols := scaleShape[len(scaleShape)-1]
if weightCols <= 0 || scalesCols <= 0 {
return 0, 0, false
}
groupSize4 := weightCols * 8 / scalesCols
groupSize8 := weightCols * 4 / scalesCols
switch {
case groupSize4 == 32:
return 32, 4, true
case groupSize8 == 64:
return 64, 8, true
case groupSize4 == 64 && groupSize8 == 32:
if hintBits == 8 {
return 32, 8, true
}
if hintBits == 4 {
return 64, 4, true
}
}
if isCommonGroupSize(groupSize4) && !isCommonGroupSize(groupSize8) {
return groupSize4, 4, true
}
if isCommonGroupSize(groupSize8) && !isCommonGroupSize(groupSize4) {
return groupSize8, 8, true
}
return 0, 0, false
}
func isCommonGroupSize(v int) bool {
switch v {
case 16, 32, 64, 128:
return true
default:
return false
}
}