Files
python/meshtastic/analysis/__main__.py
2025-08-19 22:03:37 +02:00

208 lines
6.4 KiB
Python

"""Post-run analysis tools for meshtastic."""
import argparse
import logging
import os
from typing import cast, List
import dash_bootstrap_components as dbc # type: ignore[import-untyped]
import numpy as np
import pandas as pd
import plotly.express as px # type: ignore[import-untyped]
import plotly.graph_objects as go # type: ignore[import-untyped]
import pyarrow as pa
from dash import Dash, dcc, html # type: ignore[import-untyped]
from pyarrow import feather
from .. import mesh_pb2, powermon_pb2
from ..slog import root_dir
# Configure panda options
pd.options.mode.copy_on_write = True
def to_pmon_names(arr) -> List[str]:
"""Convert the power monitor state numbers to their corresponding names.
arr (list): List of power monitor state numbers.
Returns the List of corresponding power monitor state names.
"""
def to_pmon_name(n):
try:
s = powermon_pb2.PowerMon.State.Name(int(n))
return s if s != "None" else None
except ValueError:
return None
return [to_pmon_name(x) for x in arr]
def read_pandas(filepath: str) -> pd.DataFrame:
"""Read a feather file and convert it to a pandas DataFrame.
filepath (str): Path to the feather file.
Returns the pandas DataFrame.
"""
# per https://arrow.apache.org/docs/python/pandas.html#reducing-memory-use-in-table-to-pandas
# use this to get nullable int fields treated as ints rather than floats in pandas
dtype_mapping = {
pa.int8(): pd.Int8Dtype(),
pa.int16(): pd.Int16Dtype(),
pa.int32(): pd.Int32Dtype(),
pa.int64(): pd.Int64Dtype(),
pa.uint8(): pd.UInt8Dtype(),
pa.uint16(): pd.UInt16Dtype(),
pa.uint32(): pd.UInt32Dtype(),
pa.uint64(): pd.UInt64Dtype(),
pa.bool_(): pd.BooleanDtype(),
pa.float32(): pd.Float32Dtype(),
pa.float64(): pd.Float64Dtype(),
pa.string(): pd.StringDtype(),
}
return cast(pd.DataFrame, feather.read_table(filepath).to_pandas(types_mapper=dtype_mapping.get)) # type: ignore[arg-type]
def get_pmon_raises(dslog: pd.DataFrame) -> pd.DataFrame:
"""Get the power monitor raises from the slog DataFrame.
dslog (pd.DataFrame): The slog DataFrame.
Returns the DataFrame containing the power monitor raises.
"""
pmon_events = dslog[dslog["pm_mask"].notnull()]
pm_masks = pd.Series(pmon_events["pm_mask"]).to_numpy()
# possible to do this with pandas rolling windows if I was smarter?
pm_changes = [
(pm_masks[i - 1] ^ x if i != 0 else x) for i, x in enumerate(pm_masks)
]
pm_raises = [(pm_masks[i] & x) for i, x in enumerate(pm_changes)]
pm_falls = [(~pm_masks[i] & x if i != 0 else 0) for i, x in enumerate(pm_changes)]
pmon_events["pm_raises"] = to_pmon_names(pm_raises)
pmon_events["pm_falls"] = to_pmon_names(pm_falls)
pmon_raises = pmon_events[pmon_events["pm_raises"].notnull()][["time", "pm_raises"]]
pmon_falls = pmon_events[pmon_events["pm_falls"].notnull()]
# pylint: disable=unused-variable
def get_endtime(row):
"""Find the corresponding fall event."""
following = pmon_falls[
(pmon_falls["pm_falls"] == row["pm_raises"])
& (pmon_falls["time"] > row["time"])
]
return following.iloc[0] if not following.empty else None
# HMM - setting end_time doesn't work yet - leave off for now
# pmon_raises['end_time'] = pmon_raises.apply(get_endtime, axis=1)
return pmon_raises
def get_board_info(dslog: pd.DataFrame) -> tuple:
"""Get the board information from the slog DataFrame.
dslog (pd.DataFrame): The slog DataFrame.
Returns a tuple containing the board ID and software version.
"""
board_info = dslog[dslog["sw_version"].notnull()]
sw_version = board_info.iloc[0]["sw_version"]
board_id = mesh_pb2.HardwareModel.Name(board_info.iloc[0]["board_id"])
return (board_id, sw_version)
def create_argparser() -> argparse.ArgumentParser:
"""Create the argument parser for the script."""
parser = argparse.ArgumentParser(description="Meshtastic power analysis tools")
group = parser
group.add_argument(
"--slog",
help="Specify the structured-logs directory (defaults to latest log directory)",
)
group.add_argument(
"--no-server",
action="store_true",
help="Exit immediately, without running the visualization web server",
)
return parser
def create_dash(slog_path: str) -> Dash:
"""Create a Dash application for visualizing power consumption data.
slog_path (str): Path to the slog directory.
Returns the Dash application.
"""
app = Dash(external_stylesheets=[dbc.themes.BOOTSTRAP])
dpwr = read_pandas(os.path.join(slog_path, "power.feather"))
dslog = read_pandas(os.path.join(slog_path, "slog.feather"))
pmon_raises = get_pmon_raises(dslog)
def set_legend(f, name):
f["data"][0]["showlegend"] = True
f["data"][0]["name"] = name
return f
avg_pwr_lines = px.line(dpwr, x="time", y="average_mW").update_traces(
line_color="red"
)
set_legend(avg_pwr_lines, "avg power")
max_pwr_points = px.scatter(dpwr, x="time", y="max_mW").update_traces(
marker_color="blue"
)
set_legend(max_pwr_points, "max power")
min_pwr_points = px.scatter(dpwr, x="time", y="min_mW").update_traces(
marker_color="green"
)
set_legend(min_pwr_points, "min power")
fake_y = np.full(len(pmon_raises), 10.0)
pmon_points = px.scatter(pmon_raises, x="time", y=fake_y, text="pm_raises")
fig = go.Figure(data=max_pwr_points.data + avg_pwr_lines.data + pmon_points.data)
fig.update_layout(
legend={"yanchor": "top", "y": 0.99, "xanchor": "left", "x": 0.01}
)
# App layout
app.layout = [
html.Div(children="Meshtastic power analysis tool testing..."),
dcc.Graph(figure=fig),
]
return app
def main():
"""Entry point of the script."""
parser = create_argparser()
args = parser.parse_args()
if not args.slog:
args.slog = os.path.join(root_dir(), "latest")
app = create_dash(slog_path=args.slog)
port = 8051
logging.info(f"Running Dash visualization of {args.slog} (publicly accessible)")
if not args.no_server:
app.run_server(debug=True, host="0.0.0.0", port=port)
else:
logging.info("Exiting without running visualization server")
if __name__ == "__main__":
main()