--- toc_depth: 3 --- # Understanding RenderCV This guide walks you through how RenderCV works, explaining each step and the tools we use. ## The Core Workflow RenderCV does more than this (Markdown, HTML, PNG outputs, watching files, etc.), but at its core, what happens is: ```mermaid flowchart LR A[YAML file] --> B[Typst file] B --> C[PDF] ``` Read a YAML file, generate a Typst file, compile it to PDF. Everything else is built on top of this foundation. ## What is Typst? Before we dive into the steps, let's understand what [Typst](https://typst.app/) is. Typst is a computer language. Just like Python, HTML, or JavaScript. You write Typst code to describe what a page should look like and what content it contains. You save it as a text file (`.typ` extension). When you compile a `*.typ` file with Typst compiler, you get a PDF. RenderCV generates a Typst file from your YAML and compiles it with the Typst compiler to produce your CV as a PDF. ## Step 1: Reading the YAML File When a user gives us a YAML file like this: ```yaml cv: name: John Doe location: San Francisco, CA sections: education: - institution: MIT degree: PhD start_date: 2020-09 end_date: 2024-05 ``` We need to: 1. Parse the YAML into Python dictionaries 2. Validate the data (Does `start_date` come before `end_date`? Is `name` actually provided and is it a string?) ### [`ruamel.yaml`](https://github.com/pycontribs/ruamel-yaml): YAML Parser Python doesn't have a built-in YAML library. To read YAML files, you need a library. **We use `ruamel.yaml`**, one of the best YAML parsers available. What does it do? Simple: **converts YAML text into Python dictionaries.** **YAML file** (`cv.yaml`): ```yaml cv: name: John Doe location: San Francisco, CA sections: education: - institution: MIT degree: PhD start_date: 2020-09 ``` **After parsing with `ruamel.yaml`:** ```python from ruamel.yaml import YAML yaml = YAML() data = yaml.load(open("cv.yaml")) # Now data is a Python dictionary: { "cv": { "name": "John Doe", "location": "San Francisco, CA", "sections": { "education": [ { "institution": "MIT", "degree": "PhD", "start_date": "2020-09" } ] } } } # You can access it like any Python dict: data["cv"]["name"] # "John Doe" data["cv"]["sections"]["education"][0]["institution"] # "MIT" ``` That's it. YAML text becomes a Python dictionary we can work with. `ruamel.yaml` is being called in [`src/rendercv/schema/yaml_reader.py`](https://github.com/rendercv/rendercv/blob/main/src/rendercv/schema/yaml_reader.py). ### [`pydantic`](https://github.com/pydantic/pydantic): Python Dictionary Validator Now we have a dictionary. We need to validate it. Without a library, you'd write: ```python if "name" not in data["cv"]: raise ValueError("Missing 'name' field") if not isinstance(data["cv"]["name"], str): raise ValueError("name must be a string") if "sections" in data["cv"]: for section_name, entries in data["cv"]["sections"].items(): for entry in entries: if "start_date" in entry and "end_date" in entry: # Parse dates, compare them... # This is already hundreds of lines and we're barely started ``` With `pydantic`, we can define the structure once: ```python from pydantic import BaseModel from datetime import date as Date class Education(BaseModel): institution: str start_date: Date end_date: Date @pydantic.model_validator(mode="after") def check_dates(self): if self.start_date > self.end_date: raise ValueError("start_date cannot be after end_date") return self class Cv(BaseModel): name: str location: str | None = None education: list[Education] ``` Then validate: ```python # This dictionary (from ruamel.yaml): data = { "name": "John Doe", "location": "San Francisco", "education": [ { "institution": "MIT", "start_date": "2020-09", "end_date": "2024-05" } ] } # Becomes this validated object: cv = Cv.model_validate(data) # Now you have clean, validated objects: cv.name # "John Doe" cv.education[0].institution # "MIT" cv.education[0].start_date # "2020-09", guaranteed dates are valid ``` That's the power. Dictionary goes in, `pydantic` checks everything, clean Python object comes out. ![Strict Validation Feature of RenderCV](../assets/images/validation.gif) **RenderCV's entire data model is `pydantic` models all the way down:** ```python class RenderCVModel(BaseModel): cv: Cv # ← pydantic model design: Design # ← pydantic model locale: Locale # ← pydantic model settings: Settings # ← pydantic model ``` Each field is another `pydantic` model. `Cv` contains more `pydantic` models like `EducationEntry`, `ExperienceEntry`, etc. It's nested validation: when you validate `RenderCVModel`, `pydantic` automatically validates every nested model too. One `model_validate()` call checks the entire structure. See [`src/rendercv/schema/models/rendercv_model.py`](https://github.com/rendercv/rendercv/blob/main/src/rendercv/schema/models/rendercv_model.py) for the top-level model. ## Step 2: Generating the Typst File Now we need to generate a Typst file: ```typst = John Doe San Francisco, CA == Education #strong[MIT] #h(1fr) 2020 – 2024 PhD in Computer Science ``` You could try string concatenation: ```python typst = f"= {cv.name}\n" if cv.location: typst += f"{cv.location}\n" typst += "\n" for section_title, entries in cv.sections.items(): typst += f"== {section_title}\n" for entry in entries: typst += f"#strong[{entry.institution}]" # What about optional fields? Spacing? Line breaks? # Multiple themes with different layouts? # This is impossible to maintain! ``` This doesn't work. You're building hundreds of lines of string concatenation logic, handling conditionals, managing whitespace. It's unworkable. This is why **templating engines were invented**. When you need to programmatically generate complex text files, you need templates. ### [`jinja2`](https://github.com/pallets/jinja): Templating Engine `jinja2` is the most famous templating engine for Python. **Template file** (`Header.j2.typ`): ```jinja2 = {{ cv.name }} {% if cv.location %} {{ cv.location }} {% endif %} {% if cv.email %} #link("mailto:{{ cv.email }}") {% endif %} ``` **Python code:** ```python template = jinja2_env.get_template("Header.j2.typ") output = template.render(cv=cv) ``` **Result:** ```typst = John Doe San Francisco, CA #link("mailto:john@example.com") ``` Clean separation: templates define layout, Python code provides data. Users can override templates to customize their CV without touching Python code. Typst templates live in [`src/rendercv/renderer/templater/templates/typst/`](https://github.com/rendercv/rendercv/blob/main/src/rendercv/renderer/templater/templates/typst/). `jinja2` is being called in [`src/rendercv/renderer/templater/templater.py`](https://github.com/rendercv/rendercv/blob/main/src/rendercv/renderer/templater/templater.py). ### [`markdown`](https://github.com/Python-Markdown/markdown): Markdown to Typst Users want to write Markdown in their YAML: ```yaml highlights: - "**Published** [3 papers](https://example.com) on neural networks" - "Collaborated with *Professor Smith*" ``` But Typst doesn't understand `**bold**` or `[links](url)`. We need Typst syntax: `#strong[bold]` and `#link("url")[text]`. **We use the `markdown` library.** It parses Markdown into an XML tree. Then we walk the tree and convert each element to Typst: ```python match element.tag: case "strong": return f"#strong[{content}]" case "em": return f"#emph[{content}]" case "a": href = element.get("href") return f'#link("{href}")[{content}]' ``` Result: `#strong[Published] #link("https://example.com")[3 papers]` See [`src/rendercv/renderer/templater/markdown_parser.py`](https://github.com/rendercv/rendercv/blob/main/src/rendercv/renderer/templater/markdown_parser.py). The `markdown_to_typst()` function does this conversion. ## Step 3: Compiling to PDF ### [`typst`](https://github.com/messense/typst-py): Typst Compiler `typst` library is the Python bindings for the Typst compiler. ```python from typst import compile compile("cv.typ", output="cv.pdf") ``` Done. Typst file has been compiled to PDF. `typst` is being called in [`src/rendercv/renderer/pdf_png.py`](https://github.com/rendercv/rendercv/blob/main/src/rendercv/renderer/pdf_png.py). ## The Complete Pipeline When you run `rendercv render cv.yaml`: 1. **Parse** - `ruamel.yaml` reads YAML → Python dict 2. **Validate** - `pydantic` validates dict → `RenderCVModel` object 3. **Generate** - `jinja2` renders templates with data → Typst file 4. **Compile** - `typst` compiles Typst → PDF Everything else (Markdown support, watch mode, PNG output, HTML export) builds on this core. ## Learn More - [`src/rendercv/cli/render_command/run_rendercv.py`](https://github.com/rendercv/rendercv/blob/main/src/rendercv/cli/render_command/run_rendercv.py): The complete flow - [`src/rendercv/schema/models/rendercv_model.py`](https://github.com/rendercv/rendercv/blob/main/src/rendercv/schema/models/rendercv_model.py): The top-level Pydantic model - [`src/rendercv/renderer/templater/templater.py`](https://github.com/rendercv/rendercv/blob/main/src/rendercv/renderer/templater/templater.py): Template rendering