# yaml-language-server: $schema=https://raw.githubusercontent.com/rendercv/rendercv/refs/tags/v2.5/schema.json cv: name: John Doe headline: location: San Francisco, CA email: john.doe@email.com photo: phone: website: https://rendercv.com/ social_networks: - network: LinkedIn username: rendercv - network: GitHub username: rendercv custom_connections: sections: Welcome to RenderCV: - RenderCV reads a CV written in a YAML file, and generates a PDF with professional typography. - See the [documentation](https://docs.rendercv.com) for more details. education: - institution: Princeton University area: Computer Science degree: PhD date: start_date: 2018-09 end_date: 2023-05 location: Princeton, NJ summary: highlights: - 'Thesis: Efficient Neural Architecture Search for Resource-Constrained Deployment' - 'Advisor: Prof. Sanjeev Arora' - NSF Graduate Research Fellowship, Siebel Scholar (Class of 2022) - institution: Boğaziçi University area: Computer Engineering degree: BS date: start_date: 2014-09 end_date: 2018-06 location: Istanbul, Türkiye summary: highlights: - 'GPA: 3.97/4.00, Valedictorian' - Fulbright Scholarship recipient for graduate studies experience: - company: Nexus AI position: Co-Founder & CTO date: start_date: 2023-06 end_date: present location: San Francisco, CA summary: highlights: - Built foundation model infrastructure serving 2M+ monthly API requests with 99.97% uptime - Raised $18M Series A led by Sequoia Capital, with participation from a16z and Founders Fund - Scaled engineering team from 3 to 28 across ML research, platform, and applied AI divisions - Developed proprietary inference optimization reducing latency by 73% compared to baseline - company: NVIDIA Research position: Research Intern date: start_date: 2022-05 end_date: 2022-08 location: Santa Clara, CA summary: highlights: - Designed sparse attention mechanism reducing transformer memory footprint by 4.2x - Co-authored paper accepted at NeurIPS 2022 (spotlight presentation, top 5% of submissions) - company: Google DeepMind position: Research Intern date: start_date: 2021-05 end_date: 2021-08 location: London, UK summary: highlights: - Developed reinforcement learning algorithms for multi-agent coordination - Published research at top-tier venues with significant academic impact - ICML 2022 main conference paper, cited 340+ times within two years - NeurIPS 2022 workshop paper on emergent communication protocols - Invited journal extension in JMLR (2023) - company: Apple ML Research position: Research Intern date: start_date: 2020-05 end_date: 2020-08 location: Cupertino, CA summary: highlights: - Created on-device neural network compression pipeline deployed across 50M+ devices - Filed 2 patents on efficient model quantization techniques for edge inference - company: Microsoft Research position: Research Intern date: start_date: 2019-05 end_date: 2019-08 location: Redmond, WA summary: highlights: - Implemented novel self-supervised learning framework for low-resource language modeling - Research integrated into Azure Cognitive Services, reducing training data requirements by 60% projects: - name: '[FlashInfer](https://github.com/)' date: start_date: 2023-01 end_date: present location: summary: Open-source library for high-performance LLM inference kernels highlights: - Achieved 2.8x speedup over baseline attention implementations on A100 GPUs - Adopted by 3 major AI labs, 8,500+ GitHub stars, 200+ contributors - name: '[NeuralPrune](https://github.com/)' date: '2021' start_date: end_date: location: summary: Automated neural network pruning toolkit with differentiable masks highlights: - Reduced model size by 90% with less than 1% accuracy degradation on ImageNet - Featured in PyTorch ecosystem tools, 4,200+ GitHub stars publications: - title: 'Sparse Mixture-of-Experts at Scale: Efficient Routing for Trillion-Parameter Models' authors: - '*John Doe*' - Sarah Williams - David Park summary: doi: 10.1234/neurips.2023.1234 url: journal: NeurIPS 2023 date: 2023-07 - title: Neural Architecture Search via Differentiable Pruning authors: - James Liu - '*John Doe*' summary: doi: 10.1234/neurips.2022.5678 url: journal: NeurIPS 2022, Spotlight date: 2022-12 - title: Multi-Agent Reinforcement Learning with Emergent Communication authors: - Maria Garcia - '*John Doe*' - Tom Anderson summary: doi: 10.1234/icml.2022.9012 url: journal: ICML 2022 date: 2022-07 - title: On-Device Model Compression via Learned Quantization authors: - '*John Doe*' - Kevin Wu summary: doi: 10.1234/iclr.2021.3456 url: journal: ICLR 2021, Best Paper Award date: 2021-05 selected_honors: - bullet: MIT Technology Review 35 Under 35 Innovators (2024) - bullet: Forbes 30 Under 30 in Enterprise Technology (2024) - bullet: ACM Doctoral Dissertation Award Honorable Mention (2023) - bullet: Google PhD Fellowship in Machine Learning (2020 – 2023) - bullet: Fulbright Scholarship for Graduate Studies (2018) skills: - label: Languages details: Python, C++, CUDA, Rust, Julia - label: ML Frameworks details: PyTorch, JAX, TensorFlow, Triton, ONNX - label: Infrastructure details: Kubernetes, Ray, distributed training, AWS, GCP - label: Research Areas details: Neural architecture search, model compression, efficient inference, multi-agent RL patents: - number: Adaptive Quantization for Neural Network Inference on Edge Devices (US Patent 11,234,567) - number: Dynamic Sparsity Patterns for Efficient Transformer Attention (US Patent 11,345,678) - number: Hardware-Aware Neural Architecture Search Method (US Patent 11,456,789) invited_talks: - reversed_number: Scaling Laws for Efficient Inference — Stanford HAI Symposium (2024) - reversed_number: Building AI Infrastructure for the Next Decade — TechCrunch Disrupt (2024) - reversed_number: 'From Research to Production: Lessons in ML Systems — NeurIPS Workshop (2023)' - reversed_number: "Efficient Deep Learning: A Practitioner's Perspective — Google Tech Talk (2022)" any_section_title: - You can use any section title you want. - 'You can choose any entry type for the section: `TextEntry`, `ExperienceEntry`, `EducationEntry`, `PublicationEntry`, `BulletEntry`, `NumberedEntry`, or `ReversedNumberedEntry`.' - Markdown syntax is supported everywhere. - The `design` field in YAML gives you control over almost any aspect of your CV design. - See the [documentation](https://docs.rendercv.com) for more details. design: theme: engineeringclassic # page: # size: us-letter # top_margin: 0.7in # bottom_margin: 0.7in # left_margin: 0.7in # right_margin: 0.7in # show_footer: true # show_top_note: true # colors: # body: rgb(0, 0, 0) # name: rgb(0, 79, 144) # headline: rgb(0, 79, 144) # connections: rgb(0, 79, 144) # section_titles: rgb(0, 79, 144) # links: rgb(0, 79, 144) # footer: rgb(128, 128, 128) # top_note: rgb(128, 128, 128) # typography: # line_spacing: 0.6em # alignment: justified # date_and_location_column_alignment: right # font_family: # body: Raleway # name: Raleway # headline: Raleway # connections: Raleway # section_titles: Raleway # font_size: # body: 10pt # name: 30pt # headline: 10pt # connections: 10pt # section_titles: 1.4em # small_caps: # name: false # headline: false # connections: false # section_titles: false # bold: # name: false # headline: false # connections: false # section_titles: false # links: # underline: false # show_external_link_icon: false # header: # alignment: left # photo_width: 3.5cm # photo_position: left # photo_space_left: 0.4cm # photo_space_right: 0.4cm # space_below_name: 0.7cm # space_below_headline: 0.7cm # space_below_connections: 0.7cm # connections: # phone_number_format: national # hyperlink: true # show_icons: true # display_urls_instead_of_usernames: false # separator: '' # space_between_connections: 0.5cm # section_titles: # type: with_full_line # line_thickness: 0.5pt # space_above: 0.5cm # space_below: 0.3cm # sections: # allow_page_break: true # space_between_regular_entries: 1.2em # space_between_text_based_entries: 0.3em # show_time_spans_in: [] # entries: # date_and_location_width: 4.15cm # side_space: 0.2cm # space_between_columns: 0.1cm # allow_page_break: false # short_second_row: false # summary: # space_above: 0.12cm # space_left: 0cm # highlights: # bullet: • # nested_bullet: • # space_left: 0cm # space_above: 0.12cm # space_between_items: 0.12cm # space_between_bullet_and_text: 0.5em # templates: # footer: '*NAME -- PAGE_NUMBER/TOTAL_PAGES*' # top_note: '*LAST_UPDATED CURRENT_DATE*' # single_date: MONTH_ABBREVIATION YEAR # date_range: START_DATE – END_DATE # time_span: HOW_MANY_YEARS YEARS HOW_MANY_MONTHS MONTHS # one_line_entry: # main_column: '**LABEL:** DETAILS' # education_entry: # main_column: |- # **INSTITUTION**, DEGREE in AREA -- LOCATION # SUMMARY # HIGHLIGHTS # degree_column: # date_and_location_column: DATE # normal_entry: # main_column: |- # **NAME** -- **LOCATION** # SUMMARY # HIGHLIGHTS # date_and_location_column: DATE # experience_entry: # main_column: |- # **POSITION**, COMPANY -- LOCATION # SUMMARY # HIGHLIGHTS # date_and_location_column: DATE # publication_entry: # main_column: |- # **TITLE** # SUMMARY # AUTHORS # URL (JOURNAL) # date_and_location_column: DATE locale: language: english # last_updated: Last updated in # month: month # months: months # year: year # years: years # present: present # month_abbreviations: # - Jan # - Feb # - Mar # - Apr # - May # - June # - July # - Aug # - Sept # - Oct # - Nov # - Dec # month_names: # - January # - February # - March # - April # - May # - June # - July # - August # - September # - October # - November # - December settings: current_date: '2025-12-22' render_command: design: locale: typst_path: rendercv_output/NAME_IN_SNAKE_CASE_CV.typ pdf_path: rendercv_output/NAME_IN_SNAKE_CASE_CV.pdf markdown_path: rendercv_output/NAME_IN_SNAKE_CASE_CV.md html_path: rendercv_output/NAME_IN_SNAKE_CASE_CV.html png_path: rendercv_output/NAME_IN_SNAKE_CASE_CV.png dont_generate_markdown: false dont_generate_html: false dont_generate_typst: false dont_generate_pdf: false dont_generate_png: false bold_keywords: []