Files
rsync/simd-checksum-x86_64.cpp
2020-06-01 18:38:06 -07:00

431 lines
18 KiB
C++

/*
* SSE2/SSSE3/AVX2-optimized routines to support checksumming of bytes.
*
* Copyright (C) 1996 Andrew Tridgell
* Copyright (C) 1996 Paul Mackerras
* Copyright (C) 2004-2020 Wayne Davison
* Copyright (C) 2020 Jorrit Jongma
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, visit the http://fsf.org website.
*/
/*
* Optimization target for get_checksum1() was the Intel Atom D2700, the
* slowest CPU in the test set and the most likely to be CPU limited during
* transfers. The combination of intrinsics was chosen specifically for the
* most gain on that CPU, other combinations were occasionally slightly
* faster on the others.
*
* While on more modern CPUs transfers are less likely to be CPU limited
* (at least by this specific function), lower CPU usage is always better.
* Improvements may still be seen when matching chunks from NVMe storage
* even on newer CPUs.
*
* Benchmarks (in MB/s) C SSE2 SSSE3 AVX2
* - Intel Atom D2700 550 750 1000 N/A
* - Intel i7-7700hq 1850 2550 4050 6200
* - AMD ThreadRipper 2950x 2900 5600 8950 8100
*
* Curiously the AMD is slower with AVX2 than SSSE3, while the Intel is
* significantly faster. AVX2 is kept because it's more likely to relieve
* the bottleneck on the slower CPU.
*
* This optimization for get_checksum1() is intentionally limited to x86-64
* as no 32-bit CPU was available for testing. As 32-bit CPUs only have half
* the available xmm registers, this optimized version may not be faster than
* the pure C version anyway. Note that all x86-64 CPUs support at least SSE2.
*
* This file is compiled using GCC 4.8+'s C++ front end to allow the use of
* the target attribute, selecting the fastest code path based on runtime
* detection of CPU capabilities.
*/
#ifdef __x86_64__
#ifdef __cplusplus
#include "rsync.h"
#ifdef HAVE_SIMD
#include <immintrin.h>
/* Compatibility functions to let our SSSE3 algorithm run on SSE2 */
__attribute__ ((target("sse2"))) static inline __m128i sse_interleave_odd_epi16(__m128i a, __m128i b)
{
return _mm_packs_epi32(
_mm_srai_epi32(a, 16),
_mm_srai_epi32(b, 16)
);
}
__attribute__ ((target("sse2"))) static inline __m128i sse_interleave_even_epi16(__m128i a, __m128i b)
{
return sse_interleave_odd_epi16(
_mm_slli_si128(a, 2),
_mm_slli_si128(b, 2)
);
}
__attribute__ ((target("sse2"))) static inline __m128i sse_mulu_odd_epi8(__m128i a, __m128i b)
{
return _mm_mullo_epi16(
_mm_srli_epi16(a, 8),
_mm_srai_epi16(b, 8)
);
}
__attribute__ ((target("sse2"))) static inline __m128i sse_mulu_even_epi8(__m128i a, __m128i b)
{
return _mm_mullo_epi16(
_mm_and_si128(a, _mm_set1_epi16(0xFF)),
_mm_srai_epi16(_mm_slli_si128(b, 1), 8)
);
}
__attribute__ ((target("sse2"))) static inline __m128i sse_hadds_epi16(__m128i a, __m128i b)
{
return _mm_adds_epi16(
sse_interleave_even_epi16(a, b),
sse_interleave_odd_epi16(a, b)
);
}
__attribute__ ((target("ssse3"))) static inline __m128i sse_hadds_epi16(__m128i a, __m128i b)
{
return _mm_hadds_epi16(a, b);
}
__attribute__ ((target("sse2"))) static inline __m128i sse_maddubs_epi16(__m128i a, __m128i b)
{
return _mm_adds_epi16(
sse_mulu_even_epi8(a, b),
sse_mulu_odd_epi8(a, b)
);
}
__attribute__ ((target("ssse3"))) static inline __m128i sse_maddubs_epi16(__m128i a, __m128i b)
{
return _mm_maddubs_epi16(a, b);
}
/* These don't actually get called, but we need to define them. */
__attribute__ ((target("default"))) static inline __m128i sse_interleave_odd_epi16(__m128i a, __m128i b) { return a; }
__attribute__ ((target("default"))) static inline __m128i sse_interleave_even_epi16(__m128i a, __m128i b) { return a; }
__attribute__ ((target("default"))) static inline __m128i sse_mulu_odd_epi8(__m128i a, __m128i b) { return a; }
__attribute__ ((target("default"))) static inline __m128i sse_mulu_even_epi8(__m128i a, __m128i b) { return a; }
__attribute__ ((target("default"))) static inline __m128i sse_hadds_epi16(__m128i a, __m128i b) { return a; }
__attribute__ ((target("default"))) static inline __m128i sse_maddubs_epi16(__m128i a, __m128i b) { return a; }
/*
Original loop per 4 bytes:
s2 += 4*(s1 + buf[i]) + 3*buf[i+1] + 2*buf[i+2] + buf[i+3] + 10*CHAR_OFFSET;
s1 += buf[i] + buf[i+1] + buf[i+2] + buf[i+3] + 4*CHAR_OFFSET;
SSE2/SSSE3 loop per 32 bytes:
int16 t1[8];
int16 t2[8];
for (int j = 0; j < 8; j++) {
t1[j] = buf[j*4 + i] + buf[j*4 + i+1] + buf[j*4 + i+2] + buf[j*4 + i+3];
t2[j] = 4*buf[j*4 + i] + 3*buf[j*4 + i+1] + 2*buf[j*4 + i+2] + buf[j*4 + i+3];
}
s2 += 32*s1 + (uint32)(
28*t1[0] + 24*t1[1] + 20*t1[2] + 16*t1[3] + 12*t1[4] + 8*t1[5] + 4*t1[6] +
t2[0] + t2[1] + t2[2] + t2[3] + t2[4] + t2[5] + t2[6] + t2[7]
) + 528*CHAR_OFFSET;
s1 += (uint32)(t1[0] + t1[1] + t1[2] + t1[3] + t1[4] + t1[5] + t1[6] + t1[7]) +
32*CHAR_OFFSET;
*/
/*
Both sse2 and ssse3 targets must be specified here or we lose (a lot) of
performance, possibly due to not unrolling+inlining the called targeted
functions.
*/
__attribute__ ((target("sse2", "ssse3"))) static int32 get_checksum1_sse2_32(schar* buf, int32 len, int32 i, uint32* ps1, uint32* ps2)
{
if (len > 32) {
int aligned = ((uintptr_t)buf & 15) == 0;
uint32 x[4] = {0};
x[0] = *ps1;
__m128i ss1 = _mm_loadu_si128((__m128i_u*)x);
x[0] = *ps2;
__m128i ss2 = _mm_loadu_si128((__m128i_u*)x);
const int16 mul_t1_buf[8] = {28, 24, 20, 16, 12, 8, 4, 0};
__m128i mul_t1 = _mm_loadu_si128((__m128i_u*)mul_t1_buf);
for (; i < (len-32); i+=32) {
// Load ... 2*[int8*16]
// SSSE3 has _mm_lqqdu_si128, but this requires another
// target function for each SSE2 and SSSE3 loads. For reasons
// unknown (to me) we lose about 10% performance on some CPUs if
// we do that right here. We just use _mm_loadu_si128 as for all
// but a handful of specific old CPUs they are synonymous, and
// take the 1-5% hit on those specific CPUs where it isn't.
__m128i in8_1, in8_2;
if (!aligned) {
in8_1 = _mm_loadu_si128((__m128i_u*)&buf[i]);
in8_2 = _mm_loadu_si128((__m128i_u*)&buf[i + 16]);
} else {
in8_1 = _mm_load_si128((__m128i_u*)&buf[i]);
in8_2 = _mm_load_si128((__m128i_u*)&buf[i + 16]);
}
// (1*buf[i] + 1*buf[i+1]), (1*buf[i+2], 1*buf[i+3]), ... 2*[int16*8]
// Fastest, even though multiply by 1
__m128i mul_one = _mm_set1_epi8(1);
__m128i add16_1 = sse_maddubs_epi16(mul_one, in8_1);
__m128i add16_2 = sse_maddubs_epi16(mul_one, in8_2);
// (4*buf[i] + 3*buf[i+1]), (2*buf[i+2], buf[i+3]), ... 2*[int16*8]
__m128i mul_const = _mm_set1_epi32(4 + (3 << 8) + (2 << 16) + (1 << 24));
__m128i mul_add16_1 = sse_maddubs_epi16(mul_const, in8_1);
__m128i mul_add16_2 = sse_maddubs_epi16(mul_const, in8_2);
// s2 += 32*s1
ss2 = _mm_add_epi32(ss2, _mm_slli_epi32(ss1, 5));
// [sum(t1[0]..t1[7]), X, X, X] [int32*4]; faster than multiple _mm_hadds_epi16
// Shifting left, then shifting right again and shuffling (rather than just
// shifting right as with mul32 below) to cheaply end up with the correct sign
// extension as we go from int16 to int32.
__m128i sum_add32 = _mm_add_epi16(add16_1, add16_2);
sum_add32 = _mm_add_epi16(sum_add32, _mm_slli_si128(sum_add32, 2));
sum_add32 = _mm_add_epi16(sum_add32, _mm_slli_si128(sum_add32, 4));
sum_add32 = _mm_add_epi16(sum_add32, _mm_slli_si128(sum_add32, 8));
sum_add32 = _mm_srai_epi32(sum_add32, 16);
sum_add32 = _mm_shuffle_epi32(sum_add32, 3);
// [sum(t2[0]..t2[7]), X, X, X] [int32*4]; faster than multiple _mm_hadds_epi16
__m128i sum_mul_add32 = _mm_add_epi16(mul_add16_1, mul_add16_2);
sum_mul_add32 = _mm_add_epi16(sum_mul_add32, _mm_slli_si128(sum_mul_add32, 2));
sum_mul_add32 = _mm_add_epi16(sum_mul_add32, _mm_slli_si128(sum_mul_add32, 4));
sum_mul_add32 = _mm_add_epi16(sum_mul_add32, _mm_slli_si128(sum_mul_add32, 8));
sum_mul_add32 = _mm_srai_epi32(sum_mul_add32, 16);
sum_mul_add32 = _mm_shuffle_epi32(sum_mul_add32, 3);
// s1 += t1[0] + t1[1] + t1[2] + t1[3] + t1[4] + t1[5] + t1[6] + t1[7]
ss1 = _mm_add_epi32(ss1, sum_add32);
// s2 += t2[0] + t2[1] + t2[2] + t2[3] + t2[4] + t2[5] + t2[6] + t2[7]
ss2 = _mm_add_epi32(ss2, sum_mul_add32);
// [t1[0] + t1[1], t1[2] + t1[3] ...] [int16*8]
// We could've combined this with generating sum_add32 above and
// save an instruction but benchmarking shows that as being slower
__m128i add16 = sse_hadds_epi16(add16_1, add16_2);
// [t1[0], t1[1], ...] -> [t1[0]*28 + t1[1]*24, ...] [int32*4]
__m128i mul32 = _mm_madd_epi16(add16, mul_t1);
// [sum(mul32), X, X, X] [int32*4]; faster than multiple _mm_hadd_epi32
mul32 = _mm_add_epi32(mul32, _mm_srli_si128(mul32, 4));
mul32 = _mm_add_epi32(mul32, _mm_srli_si128(mul32, 8));
// s2 += 28*t1[0] + 24*t1[1] + 20*t1[2] + 16*t1[3] + 12*t1[4] + 8*t1[5] + 4*t1[6]
ss2 = _mm_add_epi32(ss2, mul32);
#if CHAR_OFFSET != 0
// s1 += 32*CHAR_OFFSET
__m128i char_offset_multiplier = _mm_set1_epi32(32 * CHAR_OFFSET);
ss1 = _mm_add_epi32(ss1, char_offset_multiplier);
// s2 += 528*CHAR_OFFSET
char_offset_multiplier = _mm_set1_epi32(528 * CHAR_OFFSET);
ss2 = _mm_add_epi32(ss2, char_offset_multiplier);
#endif
}
_mm_store_si128((__m128i_u*)x, ss1);
*ps1 = x[0];
_mm_store_si128((__m128i_u*)x, ss2);
*ps2 = x[0];
}
return i;
}
/*
AVX2 loop per 64 bytes:
int16 t1[16];
int16 t2[16];
for (int j = 0; j < 16; j++) {
t1[j] = buf[j*4 + i] + buf[j*4 + i+1] + buf[j*4 + i+2] + buf[j*4 + i+3];
t2[j] = 4*buf[j*4 + i] + 3*buf[j*4 + i+1] + 2*buf[j*4 + i+2] + buf[j*4 + i+3];
}
s2 += 64*s1 + (uint32)(
60*t1[0] + 56*t1[1] + 52*t1[2] + 48*t1[3] + 44*t1[4] + 40*t1[5] + 36*t1[6] + 32*t1[7] + 28*t1[8] + 24*t1[9] + 20*t1[10] + 16*t1[11] + 12*t1[12] + 8*t1[13] + 4*t1[14] +
t2[0] + t2[1] + t2[2] + t2[3] + t2[4] + t2[5] + t2[6] + t2[7] + t2[8] + t2[9] + t2[10] + t2[11] + t2[12] + t2[13] + t2[14] + t2[15]
) + 2080*CHAR_OFFSET;
s1 += (uint32)(t1[0] + t1[1] + t1[2] + t1[3] + t1[4] + t1[5] + t1[6] + t1[7] + t1[8] + t1[9] + t1[10] + t1[11] + t1[12] + t1[13] + t1[14] + t1[15]) +
64*CHAR_OFFSET;
*/
__attribute__ ((target("avx2"))) static int32 get_checksum1_avx2_64(schar* buf, int32 len, int32 i, uint32* ps1, uint32* ps2)
{
if (len > 64) {
// Instructions reshuffled compared to SSE2 for slightly better performance
int aligned = ((uintptr_t)buf & 31) == 0;
uint32 x[8] = {0};
x[0] = *ps1;
__m256i ss1 = _mm256_lddqu_si256((__m256i_u*)x);
x[0] = *ps2;
__m256i ss2 = _mm256_lddqu_si256((__m256i_u*)x);
// The order gets shuffled compared to SSE2
const int16 mul_t1_buf[16] = {60, 56, 52, 48, 28, 24, 20, 16, 44, 40, 36, 32, 12, 8, 4, 0};
__m256i mul_t1 = _mm256_lddqu_si256((__m256i_u*)mul_t1_buf);
for (; i < (len-64); i+=64) {
// Load ... 2*[int8*32]
__m256i in8_1, in8_2;
if (!aligned) {
in8_1 = _mm256_lddqu_si256((__m256i_u*)&buf[i]);
in8_2 = _mm256_lddqu_si256((__m256i_u*)&buf[i + 32]);
} else {
in8_1 = _mm256_load_si256((__m256i_u*)&buf[i]);
in8_2 = _mm256_load_si256((__m256i_u*)&buf[i + 32]);
}
// Prefetch for next loops. This has no observable effect on the
// tested AMD but makes as much as 20% difference on the Intel.
// Curiously that same Intel sees no benefit from this with SSE2
// or SSSE3.
_mm_prefetch(&buf[i + 64], _MM_HINT_T0);
_mm_prefetch(&buf[i + 96], _MM_HINT_T0);
_mm_prefetch(&buf[i + 128], _MM_HINT_T0);
_mm_prefetch(&buf[i + 160], _MM_HINT_T0);
// (1*buf[i] + 1*buf[i+1]), (1*buf[i+2], 1*buf[i+3]), ... 2*[int16*16]
// Fastest, even though multiply by 1
__m256i mul_one = _mm256_set1_epi8(1);
__m256i add16_1 = _mm256_maddubs_epi16(mul_one, in8_1);
__m256i add16_2 = _mm256_maddubs_epi16(mul_one, in8_2);
// (4*buf[i] + 3*buf[i+1]), (2*buf[i+2], buf[i+3]), ... 2*[int16*16]
__m256i mul_const = _mm256_set1_epi32(4 + (3 << 8) + (2 << 16) + (1 << 24));
__m256i mul_add16_1 = _mm256_maddubs_epi16(mul_const, in8_1);
__m256i mul_add16_2 = _mm256_maddubs_epi16(mul_const, in8_2);
// s2 += 64*s1
ss2 = _mm256_add_epi32(ss2, _mm256_slli_epi32(ss1, 6));
// [t1[0] + t1[1], t1[2] + t1[3] ...] [int16*16]
__m256i add16 = _mm256_hadds_epi16(add16_1, add16_2);
// [t1[0], t1[1], ...] -> [t1[0]*60 + t1[1]*56, ...] [int32*8]
__m256i mul32 = _mm256_madd_epi16(add16, mul_t1);
// [sum(t1[0]..t1[15]), X, X, X, X, X, X, X] [int32*8]
__m256i sum_add32 = _mm256_add_epi16(add16_1, add16_2);
sum_add32 = _mm256_add_epi16(sum_add32, _mm256_permute4x64_epi64(sum_add32, 2 + (3 << 2) + (0 << 4) + (1 << 6)));
sum_add32 = _mm256_add_epi16(sum_add32, _mm256_slli_si256(sum_add32, 2));
sum_add32 = _mm256_add_epi16(sum_add32, _mm256_slli_si256(sum_add32, 4));
sum_add32 = _mm256_add_epi16(sum_add32, _mm256_slli_si256(sum_add32, 8));
sum_add32 = _mm256_srai_epi32(sum_add32, 16);
sum_add32 = _mm256_shuffle_epi32(sum_add32, 3);
// s1 += t1[0] + t1[1] + t1[2] + t1[3] + t1[4] + t1[5] + t1[6] + t1[7] + t1[8] + t1[9] + t1[10] + t1[11] + t1[12] + t1[13] + t1[14] + t1[15]
ss1 = _mm256_add_epi32(ss1, sum_add32);
// [sum(t2[0]..t2[15]), X, X, X, X, X, X, X] [int32*8]
__m256i sum_mul_add32 = _mm256_add_epi16(mul_add16_1, mul_add16_2);
sum_mul_add32 = _mm256_add_epi16(sum_mul_add32, _mm256_permute4x64_epi64(sum_mul_add32, 2 + (3 << 2) + (0 << 4) + (1 << 6)));
sum_mul_add32 = _mm256_add_epi16(sum_mul_add32, _mm256_slli_si256(sum_mul_add32, 2));
sum_mul_add32 = _mm256_add_epi16(sum_mul_add32, _mm256_slli_si256(sum_mul_add32, 4));
sum_mul_add32 = _mm256_add_epi16(sum_mul_add32, _mm256_slli_si256(sum_mul_add32, 8));
sum_mul_add32 = _mm256_srai_epi32(sum_mul_add32, 16);
sum_mul_add32 = _mm256_shuffle_epi32(sum_mul_add32, 3);
// s2 += t2[0] + t2[1] + t2[2] + t2[3] + t2[4] + t2[5] + t2[6] + t2[7] + t2[8] + t2[9] + t2[10] + t2[11] + t2[12] + t2[13] + t2[14] + t2[15]
ss2 = _mm256_add_epi32(ss2, sum_mul_add32);
// [sum(mul32), X, X, X, X, X, X, X] [int32*8]
mul32 = _mm256_add_epi32(mul32, _mm256_permute2x128_si256(mul32, mul32, 1));
mul32 = _mm256_add_epi32(mul32, _mm256_srli_si256(mul32, 4));
mul32 = _mm256_add_epi32(mul32, _mm256_srli_si256(mul32, 8));
// s2 += 60*t1[0] + 56*t1[1] + 52*t1[2] + 48*t1[3] + 44*t1[4] + 40*t1[5] + 36*t1[6] + 32*t1[7] + 28*t1[8] + 24*t1[9] + 20*t1[10] + 16*t1[11] + 12*t1[12] + 8*t1[13] + 4*t1[14]
ss2 = _mm256_add_epi32(ss2, mul32);
#if CHAR_OFFSET != 0
// s1 += 64*CHAR_OFFSET
__m256i char_offset_multiplier = _mm256_set1_epi32(64 * CHAR_OFFSET);
ss1 = _mm256_add_epi32(ss1, char_offset_multiplier);
// s2 += 2080*CHAR_OFFSET
char_offset_multiplier = _mm256_set1_epi32(2080 * CHAR_OFFSET);
ss2 = _mm256_add_epi32(ss2, char_offset_multiplier);
#endif
}
_mm256_store_si256((__m256i_u*)x, ss1);
*ps1 = x[0];
_mm256_store_si256((__m256i_u*)x, ss2);
*ps2 = x[0];
}
return i;
}
__attribute__ ((target("default"))) static int32 get_checksum1_avx2_64(schar* buf, int32 len, int32 i, uint32* ps1, uint32* ps2)
{
return i;
}
__attribute__ ((target("default"))) static int32 get_checksum1_sse2_32(schar* buf, int32 len, int32 i, uint32* ps1, uint32* ps2)
{
return i;
}
static inline int32 get_checksum1_default_1(schar* buf, int32 len, int32 i, uint32* ps1, uint32* ps2)
{
uint32 s1 = *ps1;
uint32 s2 = *ps2;
for (; i < (len-4); i+=4) {
s2 += 4*(s1 + buf[i]) + 3*buf[i+1] + 2*buf[i+2] + buf[i+3] + 10*CHAR_OFFSET;
s1 += (buf[i+0] + buf[i+1] + buf[i+2] + buf[i+3] + 4*CHAR_OFFSET);
}
for (; i < len; i++) {
s1 += (buf[i]+CHAR_OFFSET); s2 += s1;
}
*ps1 = s1;
*ps2 = s2;
return i;
}
extern "C" {
uint32 get_checksum1(char *buf1, int32 len)
{
int32 i = 0;
uint32 s1 = 0;
uint32 s2 = 0;
// multiples of 64 bytes using AVX2 (if available)
i = get_checksum1_avx2_64((schar*)buf1, len, i, &s1, &s2);
// multiples of 32 bytes using SSE2/SSSE3 (if available)
i = get_checksum1_sse2_32((schar*)buf1, len, i, &s1, &s2);
// whatever is left
i = get_checksum1_default_1((schar*)buf1, len, i, &s1, &s2);
return (s1 & 0xffff) + (s2 << 16);
}
} // "C"
#endif /* HAVE_SIMD */
#endif /* __cplusplus */
#endif /* __x86_64__ */