Files
rsync/io.c

1089 lines
23 KiB
C

/* -*- c-file-style: "linux" -*-
*
* Copyright (C) 1996-2001 by Andrew Tridgell
* Copyright (C) Paul Mackerras 1996
* Copyright (C) 2001, 2002 by Martin Pool <mbp@samba.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/**
* @file io.c
*
* Socket and pipe IO utilities used in rsync.
*
* rsync provides its own multiplexing system, which is used to send
* stderr and stdout over a single socket. We need this because
* stdout normally carries the binary data stream, and stderr all our
* error messages.
*
* For historical reasons this is off during the start of the
* connection, but it's switched on quite early using
* io_start_multiplex_out() and io_start_multiplex_in().
**/
#include "rsync.h"
/** If no timeout is specified then use a 60 second select timeout */
#define SELECT_TIMEOUT 60
static int io_multiplexing_out;
static int io_multiplexing_in;
static int multiplex_in_fd = -1;
static int multiplex_out_fd = -1;
static time_t last_io;
static int no_flush;
extern int bwlimit;
extern int verbose;
extern int io_timeout;
extern int am_server;
extern int am_daemon;
extern int am_sender;
extern struct stats stats;
const char phase_unknown[] = "unknown";
/**
* The connection might be dropped at some point; perhaps because the
* remote instance crashed. Just giving the offset on the stream is
* not very helpful. So instead we try to make io_phase_name point to
* something useful.
*
* For buffered/multiplexed IO these names will be somewhat
* approximate; perhaps for ease of support we would rather make the
* buffer always flush when a single application-level IO finishes.
*
* @todo Perhaps we want some simple stack functionality, but there's
* no need to overdo it.
**/
const char *io_write_phase = phase_unknown;
const char *io_read_phase = phase_unknown;
/** Ignore EOF errors while reading a module listing if the remote
version is 24 or less. */
int kludge_around_eof = False;
int msg_fd_in = -1;
int msg_fd_out = -1;
static int io_filesfrom_f_in = -1;
static int io_filesfrom_f_out = -1;
static char io_filesfrom_buf[2048];
static char *io_filesfrom_bp;
static char io_filesfrom_lastchar;
static int io_filesfrom_buflen;
static void read_loop(int fd, char *buf, size_t len);
struct redo_list {
struct redo_list *next;
int num;
};
static struct redo_list *redo_list_head;
static struct redo_list *redo_list_tail;
struct msg_list {
struct msg_list *next;
char *buf;
int len;
};
static struct msg_list *msg_list_head;
static struct msg_list *msg_list_tail;
static void redo_list_add(int num)
{
struct redo_list *rl;
if (!(rl = new(struct redo_list)))
exit_cleanup(RERR_MALLOC);
rl->next = NULL;
rl->num = num;
if (redo_list_tail)
redo_list_tail->next = rl;
else
redo_list_head = rl;
redo_list_tail = rl;
}
static void check_timeout(void)
{
time_t t;
if (!io_timeout)
return;
if (!last_io) {
last_io = time(NULL);
return;
}
t = time(NULL);
if (last_io && io_timeout && (t-last_io) >= io_timeout) {
if (!am_server && !am_daemon) {
rprintf(FERROR,"io timeout after %d seconds - exiting\n",
(int)(t-last_io));
}
exit_cleanup(RERR_TIMEOUT);
}
}
/** Setup the fd used to receive MSG_* messages. Only needed when
* we're the generator because the sender and receiver both use the
* multiplexed IO setup. */
void set_msg_fd_in(int fd)
{
msg_fd_in = fd;
}
/** Setup the fd used to send our MSG_* messages. Only needed when
* we're the receiver because the generator and the sender both use
* the multiplexed IO setup. */
void set_msg_fd_out(int fd)
{
msg_fd_out = fd;
set_nonblocking(msg_fd_out);
}
/* Add a message to the pending MSG_* list. */
static void msg_list_add(int code, char *buf, int len)
{
struct msg_list *ml;
if (!(ml = new(struct msg_list)))
exit_cleanup(RERR_MALLOC);
ml->next = NULL;
if (!(ml->buf = new_array(char, len+4)))
exit_cleanup(RERR_MALLOC);
SIVAL(ml->buf, 0, ((code+MPLEX_BASE)<<24) | len);
memcpy(ml->buf+4, buf, len);
ml->len = len+4;
if (msg_list_tail)
msg_list_tail->next = ml;
else
msg_list_head = ml;
msg_list_tail = ml;
}
void send_msg(enum msgcode code, char *buf, int len)
{
msg_list_add(code, buf, len);
msg_list_push(NORMAL_FLUSH);
}
/** Read a message from the MSG_* fd and dispatch it. This is only
* called by the generator. */
static void read_msg_fd(void)
{
char buf[200];
size_t n;
int fd = msg_fd_in;
int tag, len;
/* Temporarily disable msg_fd_in. This is needed because we
* may call a write routine that could try to call us back. */
msg_fd_in = -1;
read_loop(fd, buf, 4);
tag = IVAL(buf, 0);
len = tag & 0xFFFFFF;
tag = (tag >> 24) - MPLEX_BASE;
switch (tag) {
case MSG_DONE:
if (len != 0) {
rprintf(FERROR, "invalid message %d:%d\n", tag, len);
exit_cleanup(RERR_STREAMIO);
}
redo_list_add(-1);
break;
case MSG_REDO:
if (len != 4) {
rprintf(FERROR, "invalid message %d:%d\n", tag, len);
exit_cleanup(RERR_STREAMIO);
}
read_loop(fd, buf, 4);
redo_list_add(IVAL(buf,0));
break;
case MSG_INFO:
case MSG_ERROR:
case MSG_LOG:
while (len) {
n = len;
if (n >= sizeof buf)
n = sizeof buf - 1;
read_loop(fd, buf, n);
rwrite((enum logcode)tag, buf, n);
len -= n;
}
break;
default:
rprintf(FERROR, "unknown message %d:%d\n", tag, len);
exit_cleanup(RERR_STREAMIO);
}
msg_fd_in = fd;
}
/* Try to push messages off the list onto the wire. If we leave with more
* to do, return 0. On error, return -1. If everything flushed, return 1.
* This is only called by the receiver. */
int msg_list_push(int flush_it_all)
{
static int written = 0;
struct timeval tv;
fd_set fds;
if (msg_fd_out < 0)
return -1;
while (msg_list_head) {
struct msg_list *ml = msg_list_head;
int n = write(msg_fd_out, ml->buf + written, ml->len - written);
if (n < 0) {
if (errno == EINTR)
continue;
if (errno != EWOULDBLOCK && errno != EAGAIN)
return -1;
if (!flush_it_all)
return 0;
FD_ZERO(&fds);
FD_SET(msg_fd_out, &fds);
tv.tv_sec = io_timeout ? io_timeout : SELECT_TIMEOUT;
tv.tv_usec = 0;
if (!select(msg_fd_out+1, NULL, &fds, NULL, &tv))
check_timeout();
} else if ((written += n) == ml->len) {
free(ml->buf);
msg_list_head = ml->next;
if (!msg_list_head)
msg_list_tail = NULL;
free(ml);
written = 0;
}
}
return 1;
}
int get_redo_num(void)
{
struct redo_list *next;
int num;
while (!redo_list_head)
read_msg_fd();
num = redo_list_head->num;
next = redo_list_head->next;
free(redo_list_head);
redo_list_head = next;
if (!next)
redo_list_tail = NULL;
return num;
}
/**
* When we're the receiver and we have a local --files-from list of names
* that needs to be sent over the socket to the sender, we have to do two
* things at the same time: send the sender a list of what files we're
* processing and read the incoming file+info list from the sender. We do
* this by augmenting the read_timeout() function to copy this data. It
* uses the io_filesfrom_buf to read a block of data from f_in (when it is
* ready, since it might be a pipe) and then blast it out f_out (when it
* is ready to receive more data).
*/
void io_set_filesfrom_fds(int f_in, int f_out)
{
io_filesfrom_f_in = f_in;
io_filesfrom_f_out = f_out;
io_filesfrom_bp = io_filesfrom_buf;
io_filesfrom_lastchar = '\0';
io_filesfrom_buflen = 0;
}
/**
* It's almost always an error to get an EOF when we're trying to read
* from the network, because the protocol is self-terminating.
*
* However, there is one unfortunate cases where it is not, which is
* rsync <2.4.6 sending a list of modules on a server, since the list
* is terminated by closing the socket. So, for the section of the
* program where that is a problem (start_socket_client),
* kludge_around_eof is True and we just exit.
*/
static void whine_about_eof(void)
{
if (kludge_around_eof)
exit_cleanup(0);
else {
rprintf(FERROR,
"%s: connection unexpectedly closed "
"(%.0f bytes read so far)\n",
RSYNC_NAME, (double)stats.total_read);
exit_cleanup(RERR_STREAMIO);
}
}
static void die_from_readerr(int err)
{
/* this prevents us trying to write errors on a dead socket */
io_multiplexing_close();
rprintf(FERROR, "%s: read error: %s\n",
RSYNC_NAME, strerror(err));
exit_cleanup(RERR_STREAMIO);
}
/**
* Read from a socket with IO timeout. return the number of bytes
* read. If no bytes can be read then exit, never return a number <= 0.
*
* TODO: If the remote shell connection fails, then current versions
* actually report an "unexpected EOF" error here. Since it's a
* fairly common mistake to try to use rsh when ssh is required, we
* should trap that: if we fail to read any data at all, we should
* give a better explanation. We can tell whether the connection has
* started by looking e.g. at whether the remote version is known yet.
*/
static int read_timeout(int fd, char *buf, size_t len)
{
int n, ret=0;
io_flush(NORMAL_FLUSH);
while (ret == 0) {
/* until we manage to read *something* */
fd_set r_fds, w_fds;
struct timeval tv;
int fd_count = fd+1;
int count;
FD_ZERO(&r_fds);
FD_SET(fd, &r_fds);
if (msg_fd_in >= 0) {
FD_SET(msg_fd_in, &r_fds);
if (msg_fd_in >= fd_count)
fd_count = msg_fd_in+1;
}
if (io_filesfrom_f_out >= 0) {
int new_fd;
if (io_filesfrom_buflen == 0) {
if (io_filesfrom_f_in >= 0) {
FD_SET(io_filesfrom_f_in, &r_fds);
new_fd = io_filesfrom_f_in;
} else {
io_filesfrom_f_out = -1;
new_fd = -1;
}
} else {
FD_ZERO(&w_fds);
FD_SET(io_filesfrom_f_out, &w_fds);
new_fd = io_filesfrom_f_out;
}
if (new_fd >= fd_count)
fd_count = new_fd+1;
}
tv.tv_sec = io_timeout?io_timeout:SELECT_TIMEOUT;
tv.tv_usec = 0;
errno = 0;
count = select(fd_count, &r_fds,
io_filesfrom_buflen? &w_fds : NULL,
NULL, &tv);
if (count == 0) {
msg_list_push(NORMAL_FLUSH);
check_timeout();
}
if (count <= 0) {
if (errno == EBADF) {
exit_cleanup(RERR_SOCKETIO);
}
continue;
}
if (msg_fd_in >= 0 && FD_ISSET(msg_fd_in, &r_fds))
read_msg_fd();
if (io_filesfrom_f_out >= 0) {
if (io_filesfrom_buflen) {
if (FD_ISSET(io_filesfrom_f_out, &w_fds)) {
int l = write(io_filesfrom_f_out,
io_filesfrom_bp,
io_filesfrom_buflen);
if (l > 0) {
if (!(io_filesfrom_buflen -= l))
io_filesfrom_bp = io_filesfrom_buf;
else
io_filesfrom_bp += l;
} else {
/* XXX should we complain? */
io_filesfrom_f_out = -1;
}
}
} else if (io_filesfrom_f_in >= 0) {
if (FD_ISSET(io_filesfrom_f_in, &r_fds)) {
int l = read(io_filesfrom_f_in,
io_filesfrom_buf,
sizeof io_filesfrom_buf);
if (l <= 0) {
/* Send end-of-file marker */
io_filesfrom_buf[0] = '\0';
io_filesfrom_buf[1] = '\0';
io_filesfrom_buflen = io_filesfrom_lastchar? 2 : 1;
io_filesfrom_f_in = -1;
} else {
extern int eol_nulls;
if (!eol_nulls) {
char *s = io_filesfrom_buf + l;
/* Transform CR and/or LF into '\0' */
while (s-- > io_filesfrom_buf) {
if (*s == '\n' || *s == '\r')
*s = '\0';
}
}
if (!io_filesfrom_lastchar) {
/* Last buf ended with a '\0', so don't
* let this buf start with one. */
while (l && !*io_filesfrom_bp)
io_filesfrom_bp++, l--;
}
if (!l)
io_filesfrom_bp = io_filesfrom_buf;
else {
char *f = io_filesfrom_bp;
char *t = f;
char *eob = f + l;
/* Eliminate any multi-'\0' runs. */
while (f != eob) {
if (!(*t++ = *f++)) {
while (f != eob && !*f)
f++, l--;
}
}
io_filesfrom_lastchar = f[-1];
}
io_filesfrom_buflen = l;
}
}
}
}
if (!FD_ISSET(fd, &r_fds)) continue;
n = read(fd, buf, len);
if (n > 0) {
buf += n;
len -= n;
ret += n;
if (io_timeout)
last_io = time(NULL);
continue;
} else if (n == 0) {
whine_about_eof();
return -1; /* doesn't return */
} else if (n < 0) {
if (errno == EINTR || errno == EWOULDBLOCK ||
errno == EAGAIN)
continue;
die_from_readerr(errno);
}
}
return ret;
}
/**
* Read a line into the "fname" buffer (which must be at least MAXPATHLEN
* characters long).
*/
int read_filesfrom_line(int fd, char *fname)
{
char ch, *s, *eob = fname + MAXPATHLEN - 1;
int cnt;
extern int io_timeout;
extern int eol_nulls;
extern char *remote_filesfrom_file;
int reading_remotely = remote_filesfrom_file != NULL;
int nulls = eol_nulls || reading_remotely;
start:
s = fname;
while (1) {
cnt = read(fd, &ch, 1);
if (cnt < 0 && (errno == EWOULDBLOCK
|| errno == EINTR || errno == EAGAIN)) {
struct timeval tv;
fd_set fds;
FD_ZERO(&fds);
FD_SET(fd, &fds);
tv.tv_sec = io_timeout? io_timeout : SELECT_TIMEOUT;
tv.tv_usec = 0;
if (!select(fd+1, &fds, NULL, NULL, &tv))
check_timeout();
continue;
}
if (cnt != 1)
break;
if (nulls? !ch : (ch == '\r' || ch == '\n')) {
/* Skip empty lines if reading locally. */
if (!reading_remotely && s == fname)
continue;
break;
}
if (s < eob)
*s++ = ch;
}
*s = '\0';
/* Dump comments. */
if (*fname == '#' || *fname == ';')
goto start;
return s - fname;
}
/**
* Continue trying to read len bytes - don't return until len has been
* read.
**/
static void read_loop(int fd, char *buf, size_t len)
{
while (len) {
int n = read_timeout(fd, buf, len);
buf += n;
len -= n;
}
}
/**
* Read from the file descriptor handling multiplexing - return number
* of bytes read.
*
* Never returns <= 0.
*/
static int read_unbuffered(int fd, char *buf, size_t len)
{
static size_t remaining;
int tag, ret = 0;
char line[1024];
static char *buffer;
static size_t bufferIdx = 0;
static size_t bufferSz;
if (fd != multiplex_in_fd)
return read_timeout(fd, buf, len);
if (!io_multiplexing_in && remaining == 0) {
if (!buffer) {
bufferSz = 2 * IO_BUFFER_SIZE;
buffer = new_array(char, bufferSz);
if (!buffer) out_of_memory("read_unbuffered");
}
remaining = read_timeout(fd, buffer, bufferSz);
bufferIdx = 0;
}
while (ret == 0) {
if (remaining) {
len = MIN(len, remaining);
memcpy(buf, buffer + bufferIdx, len);
bufferIdx += len;
remaining -= len;
ret = len;
break;
}
read_loop(fd, line, 4);
tag = IVAL(line, 0);
remaining = tag & 0xFFFFFF;
tag = (tag >> 24) - MPLEX_BASE;
switch (tag) {
case MSG_DATA:
if (!buffer || remaining > bufferSz) {
buffer = realloc_array(buffer, char, remaining);
if (!buffer) out_of_memory("read_unbuffered");
bufferSz = remaining;
}
read_loop(fd, buffer, remaining);
bufferIdx = 0;
break;
case MSG_INFO:
case MSG_ERROR:
if (remaining >= sizeof line) {
rprintf(FERROR, "multiplexing overflow %d:%ld\n\n",
tag, (long)remaining);
exit_cleanup(RERR_STREAMIO);
}
read_loop(fd, line, remaining);
rwrite((enum logcode)tag, line, remaining);
remaining = 0;
break;
default:
rprintf(FERROR, "unexpected tag %d\n", tag);
exit_cleanup(RERR_STREAMIO);
}
}
if (remaining == 0)
io_flush(NORMAL_FLUSH);
return ret;
}
/**
* Do a buffered read from @p fd. Don't return until all @p n bytes
* have been read. If all @p n can't be read then exit with an
* error.
**/
static void readfd(int fd, char *buffer, size_t N)
{
int ret;
size_t total=0;
while (total < N) {
ret = read_unbuffered(fd, buffer + total, N-total);
total += ret;
}
stats.total_read += total;
}
int32 read_int(int f)
{
char b[4];
int32 ret;
readfd(f,b,4);
ret = IVAL(b,0);
if (ret == (int32)0xffffffff) return -1;
return ret;
}
int64 read_longint(int f)
{
int64 ret;
char b[8];
ret = read_int(f);
if ((int32)ret != (int32)0xffffffff) {
return ret;
}
#ifdef NO_INT64
rprintf(FERROR,"Integer overflow - attempted 64 bit offset\n");
exit_cleanup(RERR_UNSUPPORTED);
#else
readfd(f,b,8);
ret = IVAL(b,0) | (((int64)IVAL(b,4))<<32);
#endif
return ret;
}
void read_buf(int f,char *buf,size_t len)
{
readfd(f,buf,len);
}
void read_sbuf(int f,char *buf,size_t len)
{
read_buf(f,buf,len);
buf[len] = 0;
}
unsigned char read_byte(int f)
{
unsigned char c;
read_buf(f, (char *)&c, 1);
return c;
}
/**
* Sleep after writing to limit I/O bandwidth usage.
*
* @todo Rather than sleeping after each write, it might be better to
* use some kind of averaging. The current algorithm seems to always
* use a bit less bandwidth than specified, because it doesn't make up
* for slow periods. But arguably this is a feature. In addition, we
* ought to take the time used to write the data into account.
**/
static void sleep_for_bwlimit(int bytes_written)
{
struct timeval tv;
if (!bwlimit)
return;
assert(bytes_written > 0);
assert(bwlimit > 0);
tv.tv_usec = bytes_written * 1000 / bwlimit;
tv.tv_sec = tv.tv_usec / 1000000;
tv.tv_usec = tv.tv_usec % 1000000;
select(0, NULL, NULL, NULL, &tv);
}
/**
* Write len bytes to the file descriptor @p fd.
*
* This function underlies the multiplexing system. The body of the
* application never calls this function directly.
**/
static void writefd_unbuffered(int fd,char *buf,size_t len)
{
size_t total = 0;
fd_set w_fds, r_fds;
int fd_count, count;
struct timeval tv;
msg_list_push(NORMAL_FLUSH);
no_flush++;
while (total < len) {
FD_ZERO(&w_fds);
FD_SET(fd,&w_fds);
fd_count = fd;
if (msg_fd_in >= 0) {
FD_ZERO(&r_fds);
FD_SET(msg_fd_in,&r_fds);
if (msg_fd_in > fd_count)
fd_count = msg_fd_in;
}
tv.tv_sec = io_timeout?io_timeout:SELECT_TIMEOUT;
tv.tv_usec = 0;
errno = 0;
count = select(fd_count+1, msg_fd_in >= 0 ? &r_fds : NULL,
&w_fds, NULL, &tv);
if (count == 0) {
msg_list_push(NORMAL_FLUSH);
check_timeout();
}
if (count <= 0) {
if (errno == EBADF) {
exit_cleanup(RERR_SOCKETIO);
}
continue;
}
if (msg_fd_in >= 0 && FD_ISSET(msg_fd_in, &r_fds))
read_msg_fd();
if (FD_ISSET(fd, &w_fds)) {
int ret;
size_t n = len-total;
ret = write(fd,buf+total,n);
if (ret < 0) {
if (errno == EINTR)
continue;
if (errno == EWOULDBLOCK || errno == EAGAIN) {
msleep(1);
continue;
}
}
if (ret <= 0) {
/* Don't try to write errors back
* across the stream */
io_multiplexing_close();
rprintf(FERROR, RSYNC_NAME
": writefd_unbuffered failed to write %ld bytes: phase \"%s\": %s\n",
(long) len, io_write_phase,
strerror(errno));
exit_cleanup(RERR_STREAMIO);
}
sleep_for_bwlimit(ret);
total += ret;
if (io_timeout)
last_io = time(NULL);
}
}
no_flush--;
}
static char *io_buffer;
static int io_buffer_count;
void io_start_buffering_out(int fd)
{
if (io_buffer) return;
multiplex_out_fd = fd;
io_buffer = new_array(char, IO_BUFFER_SIZE);
if (!io_buffer) out_of_memory("writefd");
io_buffer_count = 0;
}
void io_start_buffering_in(int fd)
{
multiplex_in_fd = fd;
}
/**
* Write an message to a multiplexed stream. If this fails then rsync
* exits.
**/
static void mplex_write(int fd, enum msgcode code, char *buf, size_t len)
{
char buffer[4096];
size_t n = len;
SIVAL(buffer, 0, ((MPLEX_BASE + (int)code)<<24) + len);
if (n > (sizeof buffer - 4)) {
n = sizeof buffer - 4;
}
memcpy(&buffer[4], buf, n);
writefd_unbuffered(fd, buffer, n+4);
len -= n;
buf += n;
if (len) {
writefd_unbuffered(fd, buf, len);
}
}
void io_flush(int flush_it_all)
{
int fd = multiplex_out_fd;
msg_list_push(flush_it_all);
if (!io_buffer_count || no_flush)
return;
if (io_multiplexing_out)
mplex_write(fd, MSG_DATA, io_buffer, io_buffer_count);
else
writefd_unbuffered(fd, io_buffer, io_buffer_count);
io_buffer_count = 0;
}
void io_end_buffering(void)
{
io_flush(NORMAL_FLUSH);
if (!io_multiplexing_out) {
free(io_buffer);
io_buffer = NULL;
}
}
static void writefd(int fd,char *buf,size_t len)
{
stats.total_written += len;
msg_list_push(NORMAL_FLUSH);
if (!io_buffer || fd != multiplex_out_fd) {
writefd_unbuffered(fd, buf, len);
return;
}
while (len) {
int n = MIN((int) len, IO_BUFFER_SIZE-io_buffer_count);
if (n > 0) {
memcpy(io_buffer+io_buffer_count, buf, n);
buf += n;
len -= n;
io_buffer_count += n;
}
if (io_buffer_count == IO_BUFFER_SIZE)
io_flush(NORMAL_FLUSH);
}
}
void write_int(int f,int32 x)
{
char b[4];
SIVAL(b,0,x);
writefd(f,b,4);
}
void write_int_named(int f, int32 x, const char *phase)
{
io_write_phase = phase;
write_int(f, x);
io_write_phase = phase_unknown;
}
/*
* Note: int64 may actually be a 32-bit type if ./configure couldn't find any
* 64-bit types on this platform.
*/
void write_longint(int f, int64 x)
{
char b[8];
if (x <= 0x7FFFFFFF) {
write_int(f, (int)x);
return;
}
#ifdef NO_INT64
rprintf(FERROR,"Integer overflow - attempted 64 bit offset\n");
exit_cleanup(RERR_UNSUPPORTED);
#else
write_int(f, (int32)0xFFFFFFFF);
SIVAL(b,0,(x&0xFFFFFFFF));
SIVAL(b,4,((x>>32)&0xFFFFFFFF));
writefd(f,b,8);
#endif
}
void write_buf(int f,char *buf,size_t len)
{
writefd(f,buf,len);
}
/** Write a string to the connection */
static void write_sbuf(int f,char *buf)
{
write_buf(f, buf, strlen(buf));
}
void write_byte(int f,unsigned char c)
{
write_buf(f,(char *)&c,1);
}
/**
* Read a line of up to @p maxlen characters into @p buf. Does not
* contain a trailing newline or carriage return.
*
* @return 1 for success; 0 for io error or truncation.
**/
int read_line(int f, char *buf, size_t maxlen)
{
while (maxlen) {
buf[0] = 0;
read_buf(f, buf, 1);
if (buf[0] == 0)
return 0;
if (buf[0] == '\n') {
buf[0] = 0;
break;
}
if (buf[0] != '\r') {
buf++;
maxlen--;
}
}
if (maxlen == 0) {
*buf = 0;
return 0;
}
return 1;
}
void io_printf(int fd, const char *format, ...)
{
va_list ap;
char buf[1024];
int len;
va_start(ap, format);
len = vsnprintf(buf, sizeof buf, format, ap);
va_end(ap);
if (len < 0) exit_cleanup(RERR_STREAMIO);
write_sbuf(fd, buf);
}
/** Setup for multiplexing a MSG_* stream with the data stream. */
void io_start_multiplex_out(int fd)
{
multiplex_out_fd = fd;
io_flush(NORMAL_FLUSH);
io_start_buffering_out(fd);
io_multiplexing_out = 1;
}
/** Setup for multiplexing a MSG_* stream with the data stream. */
void io_start_multiplex_in(int fd)
{
multiplex_in_fd = fd;
io_flush(NORMAL_FLUSH);
io_multiplexing_in = 1;
}
/** Write an message to the multiplexed data stream. */
int io_multiplex_write(enum msgcode code, char *buf, size_t len)
{
if (!io_multiplexing_out) return 0;
io_flush(NORMAL_FLUSH);
stats.total_written += (len+4);
mplex_write(multiplex_out_fd, code, buf, len);
return 1;
}
/** Stop output multiplexing. */
void io_multiplexing_close(void)
{
io_multiplexing_out = 0;
}