Files
s&box team 71f266059a Open source release
This commit imports the C# engine code and game files, excluding C++ source code.

[Source-Commit: ceb3d758046e50faa6258bc3b658a30c97743268]
2025-11-24 09:05:18 +00:00

1582 lines
41 KiB
C#

// RichTextKit
// Copyright © 2019-2020 Topten Software. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may
// not use this product except in compliance with the License. You may obtain
// a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations
// under the License.
using System;
using System.Collections.Generic;
using System.Linq;
using System.Runtime.CompilerServices;
using System.Threading;
using Topten.RichTextKit.Utils;
namespace Topten.RichTextKit
{
/// <summary>
/// Implementation of Unicode Bidirection Algorithm (UAX #9)
/// https://unicode.org/reports/tr9/
/// </summary>
/// <remarks>
/// The Bidi algorithm uses a number of memory arrays for resolved
/// types, level information, bracket types, x9 removal maps and
/// more...
///
/// This implementation of the Bidi algorithm has been designed
/// to reduce memory pressure on the GC by re-using the same
/// work buffers, so instances of this class should be re-used
/// as much as possible.
/// </remarks>
class Bidi
{
/// <summary>
/// A per-thread instance that can be re-used as often
/// as necessary.
/// </summary>
internal static ThreadLocal<Bidi> Instance = new ThreadLocal<Bidi>( () => new Bidi() );
/// <summary>
/// Constructs a new instance of Bidi algorithm processor
/// </summary>
public Bidi()
{
}
/// <summary>
/// Get the resolved levels
/// </summary>
public Slice<sbyte> ResolvedLevels => _resolvedLevels;
/// <summary>
/// Get the resolved paragraph embedding level
/// </summary>
public int ResolvedParagraphEmbeddingLevel => _paragraphEmbeddingLevel;
/// <summary>
/// Process data from a BidiData instance
/// </summary>
/// <param name="data"></param>
public void Process( BidiData data )
{
Process( data.Types, data.PairedBracketTypes, data.PairedBracketValues, data.ParagraphEmbeddingLevel, data.HasBrackets, data.HasEmbeddings, data.HasIsolates, null );
}
/// <summary>
/// Processes Bidi Data
/// </summary>
public void Process(
Slice<Directionality> types,
Slice<PairedBracketType> pairedBracketTypes,
Slice<int> pairedBracketValues,
sbyte paragraphEmbeddingLevel,
bool? hasBrackets,
bool? hasEmbeddings,
bool? hasIsolates,
Slice<sbyte>? outLevels
)
{
// Reset state
_isolatePairs.Clear();
_workingTypesBuffer.Clear();
_levelRuns.Clear();
_resolvedLevelsBuffer.Clear();
// Setup original types and working types
_originalTypes = types;
_workingTypes = _workingTypesBuffer.Add( types );
// Capture paired bracket values and types
_pairedBracketTypes = pairedBracketTypes;
_pairedBracketValues = pairedBracketValues;
// Store things we know
_hasBrackets = hasBrackets ?? _pairedBracketTypes.Length == _originalTypes.Length;
_hasEmbeddings = hasEmbeddings ?? true;
_hasIsolates = hasIsolates ?? true;
// Find all isolate pairs
FindIsolatePairs();
// Resolve the paragraph embedding level
if ( paragraphEmbeddingLevel == 2 )
_paragraphEmbeddingLevel = ResolveEmbeddingLevel( _originalTypes );
else
_paragraphEmbeddingLevel = paragraphEmbeddingLevel;
// Create resolved levels buffer
if ( outLevels.HasValue )
{
if ( outLevels.Value.Length != _originalTypes.Length )
throw new ArgumentException( "Out levels must be the same length as the input data" );
_resolvedLevels = outLevels.Value;
}
else
{
_resolvedLevels = _resolvedLevelsBuffer.Add( _originalTypes.Length );
_resolvedLevels.Fill( _paragraphEmbeddingLevel );
}
// Resolve explicit embedding levels (Rules X1-X8)
ResolveExplicitEmbeddingLevels();
// Build the rule X9 map
BuildX9RemovalMap();
// Process all isolated run sequences
ProcessIsolatedRunSequences();
// Reset whitespace levels
ResetWhitespaceLevels();
// Clean up
AssignLevelsToCodePointsRemovedByX9();
}
/// <summary>
/// The original Directionality types as provided by the caller
/// </summary>
Slice<Directionality> _originalTypes;
/// <summary>
/// Paired bracket types as provided by caller
/// </summary>
Slice<PairedBracketType> _pairedBracketTypes;
/// <summary>
/// Paired bracket values as provided by caller
/// </summary>
Slice<int> _pairedBracketValues;
/// <summary>
/// Try if the incoming data is known to contain brackets
/// </summary>
bool _hasBrackets;
/// <summary>
/// True if the incoming data is known to contain embedding runs
/// </summary>
bool _hasEmbeddings;
/// <summary>
/// True if the incomding data is known to contain isolating runs
/// </summary>
bool _hasIsolates;
/// <summary>
/// Two directional mapping of isolate start/end pairs
/// </summary>
/// <remarks>
/// The forward mapping maps the start index to the end index.
/// The reverse mapping maps the end index to the start index.
/// </remarks>
BiDictionary<int, int> _isolatePairs = new BiDictionary<int, int>();
/// <summary>
/// The working Directionality types
/// </summary>
Slice<Directionality> _workingTypes;
/// <summary>
/// The buffer underlying _workingTypes
/// </summary>
Buffer<Directionality> _workingTypesBuffer = new Buffer<Directionality>();
/// <summary>
/// The resolved levels
/// </summary>
Slice<sbyte> _resolvedLevels;
/// <summary>
/// The buffer underlying _resolvedLevels
/// </summary>
Buffer<sbyte> _resolvedLevelsBuffer = new Buffer<sbyte>();
/// <summary>
/// The resolve paragraph embedding level
/// </summary>
sbyte _paragraphEmbeddingLevel;
/// <summary>
/// Status stack entry used while resolving explicit
/// embedding levels
/// </summary>
struct Status
{
public sbyte EmbeddingLevel;
public Directionality OverrideStatus;
public bool IsolateStatus;
}
/// <summary>
/// The status stack used during resolution of explicit
/// embedding and isolating runs
/// </summary>
Stack<Status> _statusStack = new Stack<Status>();
/// <summary>
/// Mapping used to virtually remove characters for rule X9
/// </summary>
Buffer<int> _X9Map = new Buffer<int>();
/// <summary>
/// Re-usable list of level runs
/// </summary>
List<LevelRun> _levelRuns = new List<LevelRun>();
/// <summary>
/// Mapping for the current isolating sequence, built
/// by joining level runs from the x9 map.
/// </summary>
Buffer<int> _isolatedRunMapping = new Buffer<int>();
/// <summary>
/// A stack of pending isolate openings used by FindIsolatePairs()
/// </summary>
Stack<int> _pendingIsolateOpenings = new Stack<int>();
/// <summary>
/// Build a list of matching isolates for a directionality slice
/// Implements BD9
/// </summary>
void FindIsolatePairs()
{
// Redundant?
if ( !_hasIsolates )
return;
// Lets double check this as we go and clear the flag
// if there actually aren't any isolate pairs as this might
// mean we can skip some later steps
_hasIsolates = false;
// BD9...
_pendingIsolateOpenings.Clear();
for ( int i = 0; i < _originalTypes.Length; i++ )
{
var t = _originalTypes[i];
if ( t == Directionality.LRI || t == Directionality.RLI || t == Directionality.FSI )
{
_pendingIsolateOpenings.Push( i );
_hasIsolates = true;
}
else if ( t == Directionality.PDI )
{
if ( _pendingIsolateOpenings.Count > 0 )
{
_isolatePairs.Add( _pendingIsolateOpenings.Pop(), i );
}
_hasIsolates = true;
}
}
}
/// <summary>
/// Resolve the explicit embedding levels from the original
/// data. Implements rules X1 to X8.
/// </summary>
private void ResolveExplicitEmbeddingLevels()
{
// Redundant?
if ( !_hasIsolates && !_hasEmbeddings )
return;
// Work variables
_statusStack.Clear();
int overflowIsolateCount = 0;
int overflowEmbeddingCount = 0;
int validIsolateCount = 0;
// Constants
const int maxStackDepth = 125;
// Rule X1 - setup initial state
_statusStack.Clear();
_statusStack.Push( new Status()
{
EmbeddingLevel = _paragraphEmbeddingLevel,
OverrideStatus = Directionality.ON, // Neutral
IsolateStatus = false,
} );
// Process all characters
for ( int i = 0; i < _originalTypes.Length; i++ )
{
switch ( _originalTypes[i] )
{
case Directionality.RLE:
{
// Rule X2
var newLevel = (sbyte)((_statusStack.Peek().EmbeddingLevel + 1) | 1);
if ( newLevel <= maxStackDepth && overflowIsolateCount == 0 && overflowEmbeddingCount == 0 )
{
_statusStack.Push( new Status()
{
EmbeddingLevel = newLevel,
OverrideStatus = Directionality.ON,
IsolateStatus = false,
} );
_resolvedLevels[i] = newLevel;
}
else
{
if ( overflowIsolateCount == 0 )
overflowEmbeddingCount++;
}
break;
}
case Directionality.LRE:
{
// Rule X3
var newLevel = (sbyte)((_statusStack.Peek().EmbeddingLevel + 2) & ~1);
if ( newLevel < maxStackDepth && overflowIsolateCount == 0 && overflowEmbeddingCount == 0 )
{
_statusStack.Push( new Status()
{
EmbeddingLevel = newLevel,
OverrideStatus = Directionality.ON,
IsolateStatus = false,
} );
_resolvedLevels[i] = newLevel;
}
else
{
if ( overflowIsolateCount == 0 )
overflowEmbeddingCount++;
}
break;
}
case Directionality.RLO:
{
// Rule X4
var newLevel = (sbyte)((_statusStack.Peek().EmbeddingLevel + 1) | 1);
if ( newLevel <= maxStackDepth && overflowIsolateCount == 0 && overflowEmbeddingCount == 0 )
{
_statusStack.Push( new Status()
{
EmbeddingLevel = newLevel,
OverrideStatus = Directionality.R,
IsolateStatus = false,
} );
_resolvedLevels[i] = newLevel;
}
else
{
if ( overflowIsolateCount == 0 )
overflowEmbeddingCount++;
}
break;
}
case Directionality.LRO:
{
// Rule X5
var newLevel = (sbyte)((_statusStack.Peek().EmbeddingLevel + 2) & ~1);
if ( newLevel <= maxStackDepth && overflowIsolateCount == 0 && overflowEmbeddingCount == 0 )
{
_statusStack.Push( new Status()
{
EmbeddingLevel = newLevel,
OverrideStatus = Directionality.L,
IsolateStatus = false,
} );
_resolvedLevels[i] = newLevel;
}
else
{
if ( overflowIsolateCount == 0 )
overflowEmbeddingCount++;
}
break;
}
case Directionality.RLI:
case Directionality.LRI:
case Directionality.FSI:
{
// Rule X5a, X5b and X5c
var resolvedIsolate = _originalTypes[i];
if ( resolvedIsolate == Directionality.FSI )
{
if ( !_isolatePairs.TryGetValue( i, out var endOfIsolate ) )
{
endOfIsolate = _originalTypes.Length;
}
// Rule X5c
if ( ResolveEmbeddingLevel( _originalTypes.SubSlice( i + 1, endOfIsolate - (i + 1) ) ) == 1 )
resolvedIsolate = Directionality.RLI;
else
resolvedIsolate = Directionality.LRI;
}
// Replace RLI's level with current embedding level
var tos = _statusStack.Peek();
_resolvedLevels[i] = tos.EmbeddingLevel;
// Apply override
if ( tos.OverrideStatus != Directionality.ON )
{
_workingTypes[i] = tos.OverrideStatus;
}
// Work out new level
sbyte newLevel;
if ( resolvedIsolate == Directionality.RLI )
newLevel = (sbyte)((tos.EmbeddingLevel + 1) | 1);
else
newLevel = (sbyte)((tos.EmbeddingLevel + 2) & ~1);
// Valid?
if ( newLevel <= maxStackDepth && overflowIsolateCount == 0 && overflowEmbeddingCount == 0 )
{
validIsolateCount++;
_statusStack.Push( new Status()
{
EmbeddingLevel = newLevel,
OverrideStatus = Directionality.ON,
IsolateStatus = true,
} );
}
else
{
overflowIsolateCount++;
}
break;
}
case Directionality.BN:
{
// Mentioned in rule X6 - "for all types besides ..., BN, ..."
// no-op
break;
}
default:
{
// Rule X6
var tos = _statusStack.Peek();
_resolvedLevels[i] = tos.EmbeddingLevel;
if ( tos.OverrideStatus != Directionality.ON )
{
_workingTypes[i] = tos.OverrideStatus;
}
break;
}
case Directionality.PDI:
{
// Rule X6a
if ( overflowIsolateCount > 0 )
{
overflowIsolateCount--;
}
else if ( validIsolateCount != 0 )
{
overflowEmbeddingCount = 0;
while ( !_statusStack.Peek().IsolateStatus )
_statusStack.Pop();
_statusStack.Pop();
validIsolateCount--;
}
var tos = _statusStack.Peek();
_resolvedLevels[i] = tos.EmbeddingLevel;
if ( tos.OverrideStatus != Directionality.ON )
{
_workingTypes[i] = tos.OverrideStatus;
}
break;
}
case Directionality.PDF:
{
// Rule X7
if ( overflowIsolateCount == 0 )
{
if ( overflowEmbeddingCount > 0 )
{
overflowEmbeddingCount--;
}
else
{
if ( !_statusStack.Peek().IsolateStatus && _statusStack.Count >= 2 )
{
_statusStack.Pop();
}
}
}
break;
}
case Directionality.B:
{
// Rule X8
_resolvedLevels[i] = _paragraphEmbeddingLevel;
break;
}
}
}
}
/// <summary>
/// Resolve the paragraph embedding level if not explicitly passed
/// by the caller. Also used by rule X5c for FSI isolating sequences.
/// </summary>
/// <param name="data">The data to be evaluated</param>
/// <returns>The resolved embedding level</returns>
public sbyte ResolveEmbeddingLevel( Slice<Directionality> data )
{
// P2
for ( var i = 0; i < data.Length; ++i )
{
switch ( data[i] )
{
case Directionality.L:
// P3
return 0;
case Directionality.AL:
case Directionality.R:
// P3
return 1;
case Directionality.FSI:
case Directionality.LRI:
case Directionality.RLI:
// Skip isolate pairs
// (Because we're working with a slice, we need to adjust the indicies
// we're using for the isolatePairs map)
if ( _isolatePairs.TryGetValue( data.Start + i, out i ) )
{
i -= data.Start;
}
else
{
i = data.Length;
}
break;
}
}
// P3
return 0;
}
/// <summary>
/// Build a map to the original data positions that excludes all
/// the types defined by rule X9
/// </summary>
void BuildX9RemovalMap()
{
// Reserve room for the x9 map
_X9Map.Length = _originalTypes.Length;
if ( _hasEmbeddings || _hasIsolates )
{
// Build a map the removes all x9 characters
var j = 0;
for ( int i = 0; i < _originalTypes.Length; i++ )
{
if ( !IsRemovedByX9( _originalTypes[i] ) )
{
_X9Map[j++] = i;
}
}
// Set the final length
_X9Map.Length = j;
}
else
{
for ( int i = 0, count = _originalTypes.Length; i < count; i++ )
{
_X9Map[i] = i;
}
}
}
/// <summary>
/// Find the original character index for an entry in the X9 map
/// </summary>
/// <param name="index">Index in the x9 removal map</param>
/// <returns>Index to the original data</returns>
[MethodImpl( MethodImplOptions.AggressiveInlining )]
int mapX9( int index )
{
//return index < _X9Map.Length ? _X9Map[index] : _originalTypes.Length;
return _X9Map[index];
}
/// <summary>
/// Provides information about a level run - a continuous
/// sequence of equal levels.
/// </summary>
struct LevelRun
{
public LevelRun( int start, int length, int level, Directionality sos, Directionality eos )
{
this.start = start;
this.length = length;
this.level = level;
this.sos = sos;
this.eos = eos;
}
public int start;
public int length;
public int level;
public Directionality sos;
public Directionality eos;
}
/// <summary>
/// Add a new level run
/// </summary>
/// <remarks>
/// This method resolves the sos and eos values for the run
/// and adds the run to the list
/// /// </remarks>
/// <param name="start">The index of the start of the run (in x9 removed units)</param>
/// <param name="length">The length of the run (in x9 removed units)</param>
/// <param name="level">The level of the run</param>
void AddLevelRun( int start, int length, int level )
{
// Get original indicies to first and last character in this run
int firstCharIndex = mapX9( start );
int lastCharIndex = mapX9( start + length - 1 );
// Work out sos
int i = firstCharIndex - 1;
while ( i >= 0 && IsRemovedByX9( _originalTypes[i] ) )
i--;
var prevLevel = i < 0 ? _paragraphEmbeddingLevel : _resolvedLevels[i];
var sos = DirectionFromLevel( Math.Max( prevLevel, level ) );
// Work out eos
var lastType = _workingTypes[lastCharIndex];
int nextLevel;
if ( lastType == Directionality.LRI || lastType == Directionality.RLI || lastType == Directionality.FSI )
{
nextLevel = _paragraphEmbeddingLevel;
}
else
{
i = lastCharIndex + 1;
while ( i < _originalTypes.Length && IsRemovedByX9( _originalTypes[i] ) )
i++;
nextLevel = i >= _originalTypes.Length ? _paragraphEmbeddingLevel : _resolvedLevels[i];
}
var eos = DirectionFromLevel( Math.Max( nextLevel, level ) );
// Add the run
_levelRuns.Add( new LevelRun( start, length, level, sos, eos ) );
}
/// <summary>
/// Find all runs of the same level, populating the _levelRuns
/// collection
/// </summary>
void FindLevelRuns()
{
int currentLevel = -1;
int runStart = 0;
for ( int i = 0; i < _X9Map.Length; ++i )
{
int level = _resolvedLevels[mapX9( i )];
if ( level != currentLevel )
{
if ( currentLevel != -1 )
{
AddLevelRun( runStart, i - runStart, currentLevel );
}
currentLevel = level;
runStart = i;
}
}
// Don't forget the final level run
if ( currentLevel != -1 )
{
AddLevelRun( runStart, _X9Map.Length - runStart, currentLevel );
}
}
/// <summary>
/// Given a character index, find the level run that starts at that position
/// </summary>
/// <param name="index">The index into the original (unmapped) data</param>
/// <returns>The index of the run that starts at that index</returns>
int FindRunForIndex( int index )
{
for ( int i = 0; i < _levelRuns.Count; i++ )
{
// Passed index is for the original non-x9 filtered data, however
// the level run ranges are for the x9 filtered data. Convert before
// comparing
if ( mapX9( _levelRuns[i].start ) == index )
return i;
}
throw new InvalidOperationException( "Internal error" );
}
/// <summary>
/// Determine and the process all isolated run sequences
/// </summary>
void ProcessIsolatedRunSequences()
{
// Find all runs with the same level
FindLevelRuns();
// Process them one at a time by first building
// a mapping using slices from the x9 map for each
// run section that needs to be joined together to
// form an complete run. That full run mapping
// will be placed in _isolatedRunMapping and then
// processed by ProcessIsolatedRunSequence().
while ( _levelRuns.Count > 0 )
{
// Clear the mapping
_isolatedRunMapping.Clear();
// Combine mappings from this run and all runs that continue on from it
var runIndex = 0;
Directionality eos = _levelRuns[0].eos;
Directionality sos = _levelRuns[0].sos;
int level = _levelRuns[0].level;
while ( true )
{
// Get the run
var r = _levelRuns[runIndex];
// The eos of the isolating run is the eos of the
// last level run that comprises it.
eos = r.eos;
// Remove this run as we've now processed it
_levelRuns.RemoveAt( runIndex );
// Add the x9 map indicies for the run range to the mapping
// for this isolated run
_isolatedRunMapping.Add( _X9Map.SubSlice( r.start, r.length ) );
// Get the last character and see if it's an isolating run with a matching
// PDI and concatenate that run to this one
int lastCharacterIndex = _isolatedRunMapping[_isolatedRunMapping.Length - 1];
var lastType = _originalTypes[lastCharacterIndex];
if ( (lastType == Directionality.LRI || lastType == Directionality.RLI || lastType == Directionality.FSI) &&
_isolatePairs.TryGetValue( lastCharacterIndex, out var nextRunIndex ) )
{
// Find the continuing run index
runIndex = FindRunForIndex( nextRunIndex );
}
else
{
break;
}
}
// Process this isolated run
ProcessIsolatedRunSequence( sos, eos, level );
}
}
/// <summary>
/// The level of the isolating run currently being processed
/// </summary>
int _runLevel;
/// <summary>
/// The direction of the isolating run currently being processed
/// </summary>
Directionality _runDirection;
/// <summary>
/// The length of the isolating run currently being processed
/// </summary>
int _runLength;
/// <summary>
/// A mapped slice of the resolved types for the isolating run currently
/// being processed
/// </summary>
MappedSlice<Directionality> _runResolvedTypes;
/// <summary>
/// A mapped slice of the original types for the isolating run currently
/// being processed
/// </summary>
MappedSlice<Directionality> _runOriginalTypes;
/// <summary>
/// A mapped slice of the run levels for the isolating run currently
/// being processed
/// </summary>
MappedSlice<sbyte> _runLevels;
/// <summary>
/// A mapped slice of the paired bracket types of the isolating
/// run currently being processed
/// </summary>
MappedSlice<PairedBracketType> _runPairedBracketTypes;
/// <summary>
/// A mapped slice of the paired bracket values of the isolating
/// run currently being processed
/// </summary>
MappedSlice<int> _runPairedBracketValues;
/// <summary>
/// Process a single isolated run sequence, where the character sequence
/// mapping is currently held in _isolatedRunMapping.
/// </summary>
void ProcessIsolatedRunSequence( Directionality sos, Directionality eos, int runLevel )
{
// Create mappings onto the underlying data
_runResolvedTypes = new MappedSlice<Directionality>( _workingTypes, _isolatedRunMapping.AsSlice() );
_runOriginalTypes = new MappedSlice<Directionality>( _originalTypes, _isolatedRunMapping.AsSlice() );
_runLevels = new MappedSlice<sbyte>( _resolvedLevels, _isolatedRunMapping.AsSlice() );
if ( _hasBrackets )
{
_runPairedBracketTypes = new MappedSlice<PairedBracketType>( _pairedBracketTypes, _isolatedRunMapping.AsSlice() );
_runPairedBracketValues = new MappedSlice<int>( _pairedBracketValues, _isolatedRunMapping.AsSlice() );
}
_runLevel = runLevel;
_runDirection = DirectionFromLevel( runLevel );
_runLength = _runResolvedTypes.Length;
// By tracking the types of characters known to be in the current run, we can
// skip some of the rules that we know won't apply. The flags will be
// initialized while we're processing rule W1 below.
bool hasEN = false;
bool hasAL = false;
bool hasES = false;
bool hasCS = false;
bool hasAN = false;
bool hasET = false;
// Rule W1
// Also, set hasXX flags
int i;
var prevType = sos;
for ( i = 0; i < _runLength; i++ )
{
var t = _runResolvedTypes[i];
switch ( t )
{
case Directionality.NSM:
_runResolvedTypes[i] = prevType;
break;
case Directionality.LRI:
case Directionality.RLI:
case Directionality.FSI:
case Directionality.PDI:
prevType = Directionality.ON;
break;
case Directionality.EN:
hasEN = true;
prevType = t;
break;
case Directionality.AL:
hasAL = true;
prevType = t;
break;
case Directionality.ES:
hasES = true;
prevType = t;
break;
case Directionality.CS:
hasCS = true;
prevType = t;
break;
case Directionality.AN:
hasAN = true;
prevType = t;
break;
case Directionality.ET:
hasET = true;
prevType = t;
break;
default:
prevType = t;
break;
}
}
// Rule W2
if ( hasEN )
{
for ( i = 0; i < _runLength; i++ )
{
if ( _runResolvedTypes[i] == Directionality.EN )
{
for ( int j = i - 1; j >= 0; j-- )
{
var t = _runResolvedTypes[j];
if ( t == Directionality.L || t == Directionality.R || t == Directionality.AL )
{
if ( t == Directionality.AL )
{
_runResolvedTypes[i] = Directionality.AN;
hasAN = true;
}
break;
}
}
}
}
}
// Rule W3
if ( hasAL )
{
for ( i = 0; i < _runLength; i++ )
{
if ( _runResolvedTypes[i] == Directionality.AL )
{
_runResolvedTypes[i] = Directionality.R;
}
}
}
// Rule W4
if ( (hasES || hasCS) && (hasEN || hasAN) )
{
for ( i = 1; i < _runLength - 1; ++i )
{
ref var rt = ref _runResolvedTypes[i];
if ( rt == Directionality.ES )
{
var prevSepType = _runResolvedTypes[i - 1];
var succSepType = _runResolvedTypes[i + 1];
if ( prevSepType == Directionality.EN && succSepType == Directionality.EN )
{
// ES between EN and EN
rt = Directionality.EN;
}
}
else if ( rt == Directionality.CS )
{
var prevSepType = _runResolvedTypes[i - 1];
var succSepType = _runResolvedTypes[i + 1];
if ( (prevSepType == Directionality.AN && succSepType == Directionality.AN) ||
(prevSepType == Directionality.EN && succSepType == Directionality.EN) )
{
// CS between (AN and AN) or (EN and EN)
rt = prevSepType;
}
}
}
}
// Rule W5
if ( hasET && hasEN )
{
for ( i = 0; i < _runLength; ++i )
{
if ( _runResolvedTypes[i] == Directionality.ET )
{
// Locate end of sequence
int seqStart = i;
int seqEnd = i;
while ( seqEnd < _runLength && _runResolvedTypes[seqEnd] == Directionality.ET )
seqEnd++;
// Preceeded by, or followed by EN?
if ( (seqStart == 0 ? sos : _runResolvedTypes[seqStart - 1]) == Directionality.EN
|| (seqEnd == _runLength ? eos : _runResolvedTypes[seqEnd]) == Directionality.EN )
{
// Change the entire range
for ( int j = seqStart; i < seqEnd; ++i )
{
_runResolvedTypes[i] = Directionality.EN;
}
}
// continue at end of sequence
i = seqEnd;
}
}
}
// Rule W6
if ( hasES || hasET || hasCS )
{
for ( i = 0; i < _runLength; ++i )
{
ref var t = ref _runResolvedTypes[i];
if ( t == Directionality.ES || t == Directionality.ET || t == Directionality.CS )
{
t = Directionality.ON;
}
}
}
// Rule W7.
if ( hasEN )
{
var prevStrongType = sos;
for ( i = 0; i < _runLength; ++i )
{
ref var rt = ref _runResolvedTypes[i];
if ( rt == Directionality.EN )
{
// If prev strong type was an L change this to L too
if ( prevStrongType == Directionality.L )
{
_runResolvedTypes[i] = Directionality.L;
}
}
// Remember previous strong type (NB: AL should already be changed to R)
if ( rt == Directionality.L || rt == Directionality.R )
{
prevStrongType = rt;
}
}
}
// Rule N0 - process bracket pairs
if ( _hasBrackets )
{
int count;
var pairedBrackets = LocatePairedBrackets();
for ( i = 0, count = pairedBrackets.Count; i < count; i++ )
{
var pb = pairedBrackets[i];
var dir = InspectPairedBracket( pb );
// Case "d" - no strong types in the brackets, ignore
if ( dir == Directionality.ON )
{
continue;
}
// Case "b" - strong type found that matches the embedding direction
if ( (dir == Directionality.L || dir == Directionality.R) && dir == _runDirection )
{
SetPairedBracketDirection( pb, dir );
continue;
}
// Case "c" - found opposite strong type found, look before to establish context
dir = InspectBeforePairedBracket( pb, sos );
if ( dir == _runDirection || dir == Directionality.ON )
{
dir = _runDirection;
}
SetPairedBracketDirection( pb, dir );
}
}
// Rules N1 and N2 - resolve neutral types
for ( i = 0; i < _runLength; ++i )
{
var t = _runResolvedTypes[i];
if ( IsNeutralType( t ) )
{
// Locate end of sequence
int seqStart = i;
int seqEnd = i;
while ( seqEnd < _runLength && IsNeutralType( _runResolvedTypes[seqEnd] ) )
seqEnd++;
// Work out the preceding type
Directionality typeBefore;
if ( seqStart == 0 )
{
typeBefore = sos;
}
else
{
typeBefore = _runResolvedTypes[seqStart - 1];
if ( typeBefore == Directionality.AN || typeBefore == Directionality.EN )
{
typeBefore = Directionality.R;
}
}
// Work out the following type
Directionality typeAfter;
if ( seqEnd == _runLength )
{
typeAfter = eos;
}
else
{
typeAfter = _runResolvedTypes[seqEnd];
if ( typeAfter == Directionality.AN || typeAfter == Directionality.EN )
{
typeAfter = Directionality.R;
}
}
// Work out the final resolved type
Directionality resolvedType;
if ( typeBefore == typeAfter )
{
// Rule N1
resolvedType = typeBefore;
}
else
{
// Rule N2
resolvedType = _runDirection;
}
// Apply changes
for ( int j = seqStart; j < seqEnd; j++ )
{
_runResolvedTypes[j] = resolvedType;
}
// continue after this run
i = seqEnd;
}
}
// Rules I1 and I2 - resolve implicit types
if ( (_runLevel & 0x01) == 0 )
{
// Rule I1 - even
for ( i = 0; i < _runLength; i++ )
{
var t = _runResolvedTypes[i];
ref var l = ref _runLevels[i];
if ( t == Directionality.R )
l++;
else if ( t == Directionality.AN || t == Directionality.EN )
l += 2;
}
}
else
{
// Rule I2 - odd
for ( i = 0; i < _runLength; i++ )
{
var t = _runResolvedTypes[i];
ref var l = ref _runLevels[i];
if ( t != Directionality.R )
l++;
}
}
}
/// <summary>
/// IComparer for BracketPairs
/// </summary>
class PairedBracketComparer : IComparer<BracketPair>
{
int IComparer<BracketPair>.Compare( BracketPair x, BracketPair y )
{
return x.OpeningIndex - y.OpeningIndex;
}
}
/// <summary>
/// An shared instance of the PairedBracket comparer
/// </summary>
static PairedBracketComparer _pairedBracketComparer = new PairedBracketComparer();
/// <summary>
/// Maximum pairing depth for paired brackets
/// </summary>
const int MaxPairedBracketDepth = 63;
/// <summary>
/// Re-useable list of pending opening brackets used by the
/// LocatePairedBrackets method
/// </summary>
List<int> _pendingOpeningBrackets = new List<int>();
/// <summary>
/// Resolved list of paired brackets
/// </summary>
List<BracketPair> _pairedBrackets = new List<BracketPair>();
/// <summary>
/// Locate all pair brackets in the current isolating run
/// </summary>
/// <returns>A sorted list of BracketPairs</returns>
List<BracketPair> LocatePairedBrackets()
{
// Clear work collections
_pendingOpeningBrackets.Clear();
_pairedBrackets.Clear();
// Since List.Sort is expensive on memory if called often (it internally
// allocates an ArraySorted object) and since we will rarely have many
// items in this list (most paragraphs will only have a handful of bracket
// pairs - if that), we use a simple linear lookup and insert most of the
// time. If there are more that `sortLimit` paired brackets we abort th
// linear searching/inserting and using List.Sort at the end.
const int sortLimit = 8;
// Process all characters in the run, looking for paired brackets
for ( int ich = 0, length = _runLength; ich < length; ich++ )
{
// Ignore non-neutral characters
if ( _runResolvedTypes[ich] != Directionality.ON )
continue;
switch ( _runPairedBracketTypes[ich] )
{
case PairedBracketType.o:
if ( _pendingOpeningBrackets.Count == MaxPairedBracketDepth )
goto exit;
_pendingOpeningBrackets.Insert( 0, ich );
break;
case PairedBracketType.c:
// see if there is a match
for ( int i = 0; i < _pendingOpeningBrackets.Count; i++ )
{
if ( _runPairedBracketValues[ich] == _runPairedBracketValues[_pendingOpeningBrackets[i]] )
{
// Add this paired bracket set
var opener = _pendingOpeningBrackets[i];
if ( _pairedBrackets.Count < sortLimit )
{
int ppi = 0;
while ( ppi < _pairedBrackets.Count && _pairedBrackets[ppi].OpeningIndex < opener )
{
ppi++;
}
_pairedBrackets.Insert( ppi, new BracketPair( opener, ich ) );
}
else
{
_pairedBrackets.Add( new BracketPair( opener, ich ) );
}
// remove up to and including matched opener
_pendingOpeningBrackets.RemoveRange( 0, i + 1 );
break;
}
}
break;
}
}
exit:
// Is a sort pending?
if ( _pairedBrackets.Count > sortLimit )
_pairedBrackets.Sort( _pairedBracketComparer );
return _pairedBrackets;
}
/// <summary>
/// Inspect a paired bracket set and determine its strong direction
/// </summary>
/// <param name="pb">The paired bracket to be inpected</param>
/// <returns>The direction of the bracket set content</returns>
Directionality InspectPairedBracket( BracketPair pb )
{
var dirEmbed = DirectionFromLevel( _runLevel );
var dirOpposite = Directionality.ON;
for ( int ich = pb.OpeningIndex + 1; ich < pb.ClosingIndex; ich++ )
{
var dir = GetStrongTypeN0( _runResolvedTypes[ich] );
if ( dir == Directionality.ON )
continue;
if ( dir == dirEmbed )
return dir;
dirOpposite = dir;
}
return dirOpposite;
}
/// <summary>
/// Look for a strong type before a paired bracket
/// </summary>
/// <param name="pb">The paired bracket set to be inspected</param>
/// <param name="sos">The sos in case nothing found before the bracket</param>
/// <returns>The strong direction before the brackets</returns>
Directionality InspectBeforePairedBracket( BracketPair pb, Directionality sos )
{
for ( int ich = pb.OpeningIndex - 1; ich >= 0; --ich )
{
var dir = GetStrongTypeN0( _runResolvedTypes[ich] );
if ( dir != Directionality.ON )
return dir;
}
return sos;
}
/// <summary>
/// Sets the direction of a bracket pair, including setting the direction of
/// NSM's inside the brackets and following.
/// </summary>
/// <param name="pb">The paired brackets</param>
/// <param name="dir">The resolved direction for the bracket pair</param>
void SetPairedBracketDirection( BracketPair pb, Directionality dir )
{
// Set the direction of the brackets
_runResolvedTypes[pb.OpeningIndex] = dir;
_runResolvedTypes[pb.ClosingIndex] = dir;
// Set the directionality of NSM's inside the brackets
for ( int i = pb.OpeningIndex + 1; i < pb.ClosingIndex; i++ )
{
if ( _runOriginalTypes[i] == Directionality.NSM )
_runOriginalTypes[i] = dir;
else
break;
}
// Set the directionality of NSM's following the brackets
for ( int i = pb.ClosingIndex + 1; i < _runLength; i++ )
{
if ( _runOriginalTypes[i] == Directionality.NSM )
_runResolvedTypes[i] = dir;
else
break;
}
}
/// <summary>
/// Hold the start and end index of a pair of brackets
/// </summary>
struct BracketPair
{
/// <summary>
/// Index of the opening bracket
/// </summary>
public int OpeningIndex;
/// <summary>
/// Index of the closing bracket
/// </summary>
public int ClosingIndex;
/// <summary>
/// Constructs a new paired bracket
/// </summary>
/// <param name="openingIndex">Index of the opening bracket</param>
/// <param name="closingIndex">Index of the closing bracket</param>
public BracketPair( int openingIndex, int closingIndex )
{
this.OpeningIndex = openingIndex;
this.ClosingIndex = closingIndex;
}
}
/// <summary>
/// Resets whitespace levels. Implements rule L1
/// </summary>
void ResetWhitespaceLevels()
{
for ( int i = 0; i < _resolvedLevels.Length; i++ )
{
var t = _originalTypes[i];
if ( t == Directionality.B || t == Directionality.S )
{
// Rule L1, clauses one and two.
_resolvedLevels[i] = _paragraphEmbeddingLevel;
// Rule L1, clause three.
for ( int j = i - 1; j >= 0; --j )
{
if ( IsWhitespace( _originalTypes[j] ) )
{ // including format
// codes
_resolvedLevels[j] = _paragraphEmbeddingLevel;
}
else
{
break;
}
}
}
}
// Rule L1, clause four.
for ( int j = _resolvedLevels.Length - 1; j >= 0; j-- )
{
if ( IsWhitespace( _originalTypes[j] ) )
{ // including format codes
_resolvedLevels[j] = _paragraphEmbeddingLevel;
}
else
{
break;
}
}
}
/// <summary>
/// Assign levels to any characters that would be have been
/// removed by rule X9. The idea is to keep level runs together
/// that would otherwise be broken by an interfering isolate/embedding
/// control character.
/// </summary>
void AssignLevelsToCodePointsRemovedByX9()
{
// Redundant?
if ( !_hasIsolates && !_hasEmbeddings )
return;
// No-op?
if ( _workingTypes.Length == 0 )
return;
// Fix up first character
if ( _resolvedLevels[0] < 0 )
_resolvedLevels[0] = _paragraphEmbeddingLevel;
if ( IsRemovedByX9( _originalTypes[0] ) )
_workingTypes[0] = _originalTypes[0];
for ( int i = 1, length = _workingTypes.Length; i < length; i++ )
{
var t = _originalTypes[i];
if ( IsRemovedByX9( t ) )
{
_workingTypes[i] = t;
_resolvedLevels[i] = _resolvedLevels[i - 1];
}
}
}
/// <summary>
/// Check if a directionality type represents whitepsace
/// </summary>
/// <param name="biditype"></param>
/// <returns></returns>
[MethodImpl( MethodImplOptions.AggressiveInlining )]
static bool IsWhitespace( Directionality biditype )
{
switch ( biditype )
{
case Directionality.LRE:
case Directionality.RLE:
case Directionality.LRO:
case Directionality.RLO:
case Directionality.PDF:
case Directionality.LRI:
case Directionality.RLI:
case Directionality.FSI:
case Directionality.PDI:
case Directionality.BN:
case Directionality.WS:
return true;
default:
return false;
}
}
/// <summary>
/// Convert a level to a direction where odd is RTL and
/// even is LTR
/// </summary>
/// <param name="level">The level to convert</param>
/// <returns>A directionality</returns>
[MethodImpl( MethodImplOptions.AggressiveInlining )]
static Directionality DirectionFromLevel( int level )
{
return ((level & 0x1) == 0) ? Directionality.L : Directionality.R;
}
/// <summary>
/// Helper to check if a directionality is removed by rule X9
/// </summary>
/// <param name="biditype">The bidi type to check</param>
/// <returns>True if rule X9 would remove this character; otherwise false</returns>
[MethodImpl( MethodImplOptions.AggressiveInlining )]
public static bool IsRemovedByX9( Directionality biditype )
{
switch ( biditype )
{
case Directionality.LRE:
case Directionality.RLE:
case Directionality.LRO:
case Directionality.RLO:
case Directionality.PDF:
case Directionality.BN:
return true;
default:
return false;
}
}
/// <summary>
/// Check if a a directionality is neutral for rules N1 and N2
/// </summary>
/// <param name="dir"></param>
/// <returns></returns>
[MethodImpl( MethodImplOptions.AggressiveInlining )]
bool IsNeutralType( Directionality dir )
{
switch ( dir )
{
case Directionality.B:
case Directionality.S:
case Directionality.WS:
case Directionality.ON:
case Directionality.RLI:
case Directionality.LRI:
case Directionality.FSI:
case Directionality.PDI:
return true;
}
return false;
}
/// <summary>
/// Maps a direction to a strong type for rule N0
/// </summary>
/// <param name="dir">The direction to map</param>
/// <returns>A strong direction - R, L or ON</returns>
[MethodImpl( MethodImplOptions.AggressiveInlining )]
Directionality GetStrongTypeN0( Directionality dir )
{
switch ( dir )
{
case Directionality.EN:
case Directionality.AN:
case Directionality.AL:
case Directionality.R:
return Directionality.R;
case Directionality.L:
return Directionality.L;
default:
return Directionality.ON;
}
}
}
}