Files
seerr/bin/duplicate-detector/detect.mjs

275 lines
7.4 KiB
JavaScript

#!/usr/bin/env node
/**
* Duplicate Issue Detector
*
* Triggered on new issue creation. Compares the new issue against an
* existing embedding index, then uses an LLM to
* confirm duplicates before posting a comment for maintainer review.
*/
import { pipeline } from '@huggingface/transformers';
import { existsSync, readFileSync } from 'node:fs';
import {
addLabel,
dotProduct,
fetchIssues,
getIssue,
issueText,
postComment,
} from './utils.mjs';
const SIMILARITY_THRESHOLD = 0.55;
const TOP_K = 5;
const MAX_COMMENT_CANDIDATES = 3;
const MODEL_NAME = process.env.EMBEDDING_MODEL || 'Xenova/all-MiniLM-L6-v2';
const GROQ_MODEL = process.env.GROQ_MODEL || 'llama-3.3-70b-versatile';
const INDEX_PATH = 'issue_index.json';
const LABEL_NAME = 'possible-duplicate';
const GROQ_API_KEY = process.env.GROQ_API_KEY || '';
const ISSUE_NUMBER = parseInt(process.env.ISSUE_NUMBER, 10);
function loadIndex(path) {
if (!existsSync(path)) {
console.error(
`Index file not found at ${path}. Run build-index.mjs first.`
);
process.exit(1);
}
const data = JSON.parse(readFileSync(path, 'utf-8'));
console.log(`Loaded index with ${data.issues.length} issues`);
return data;
}
function findSimilar(
queryEmbedding,
index,
{ topK = TOP_K, threshold = SIMILARITY_THRESHOLD, excludeNumber } = {}
) {
const { issues, embeddings } = index;
if (!issues.length) return [];
const scored = issues.map((issue, i) => ({
...issue,
score: dotProduct(queryEmbedding, embeddings[i]),
}));
return scored
.sort((a, b) => b.score - a.score)
.filter(
(c) =>
c.score >= threshold && (!excludeNumber || c.number !== excludeNumber)
)
.slice(0, topK);
}
const CONFIRM_SYSTEM_PROMPT = `You are a GitHub issue triage assistant. You will be given a NEW issue and one \
or more CANDIDATE issues that may be duplicates.
For each candidate, determine if the new issue is truly a duplicate (same root \
problem/request) or merely related (similar area but different issue).
Respond ONLY with a JSON array of objects, each with:
- "number": the candidate issue number
- "duplicate": true or false
- "reason": one-sentence explanation
Example:
[{"number": 123, "duplicate": true, "reason": "Both report the same crash when ..."}]`;
async function confirmWithLlm(newIssue, candidates) {
if (!GROQ_API_KEY) {
console.warn('GROQ_API_KEY not set — skipping LLM confirmation');
return candidates;
}
const candidateText = candidates
.map(
(c) =>
`### Candidate #${c.number} (similarity: ${c.score.toFixed(2)})\n` +
`**Title:** ${c.title}\n` +
`**State:** ${c.state}\n` +
`**Body preview:** ${(c.body_preview || 'N/A').slice(0, 500)}`
)
.join('\n\n');
const userPrompt =
`## NEW ISSUE #${newIssue.number}\n` +
`**Title:** ${newIssue.title}\n` +
`**Body:**\n${(newIssue.body || 'No body').slice(0, 1500)}\n\n` +
`---\n\n` +
`## CANDIDATES\n${candidateText}`;
try {
const resp = await fetch(
'https://api.groq.com/openai/v1/chat/completions',
{
method: 'POST',
headers: {
Authorization: `Bearer ${GROQ_API_KEY}`,
'Content-Type': 'application/json',
},
body: JSON.stringify({
model: GROQ_MODEL,
messages: [
{ role: 'system', content: CONFIRM_SYSTEM_PROMPT },
{ role: 'user', content: userPrompt },
],
temperature: 0.1,
max_tokens: 1024,
}),
signal: AbortSignal.timeout(30_000),
}
);
if (!resp.ok) {
const text = await resp.text();
throw new Error(`Groq API error ${resp.status}: ${text}`);
}
let content = (await resp.json()).choices[0].message.content.trim();
if (content.startsWith('```')) {
content = content
.split('\n')
.slice(1)
.join('\n')
.replace(/```\s*$/, '')
.trim();
}
const verdicts = JSON.parse(content);
if (!Array.isArray(verdicts)) {
throw new Error('Invalid LLM response format - expected array');
}
const verdictMap = new Map(verdicts.map((v) => [v.number, v]));
const confirmed = [];
for (const c of candidates) {
const verdict = verdictMap.get(c.number);
if (verdict?.duplicate) {
c.llm_reason = verdict.reason || '';
confirmed.push(c);
} else {
const reason = verdict?.reason || 'not evaluated';
console.log(` #${c.number} ruled out by LLM: ${reason}`);
}
}
return confirmed;
} catch (err) {
console.warn(
`LLM confirmation failed: ${err.message} - falling back to all candidates`
);
return candidates;
}
}
function formatComment(candidates) {
const lines = [
'**Possible duplicate detected**',
'',
'This issue may be a duplicate of the following (detected via semantic similarity + LLM review):',
'',
];
for (const c of candidates.slice(0, MAX_COMMENT_CANDIDATES)) {
const confidence = `${(c.score * 100).toFixed(0)}%`;
let line = `- #${c.number} (${confidence} match) — ${c.title}`;
if (c.llm_reason) {
line += `\n > *${c.llm_reason}*`;
}
lines.push(line);
}
lines.push(
'',
'A maintainer will review this. If this is **not** a duplicate, no action is needed.',
'',
`<!-- duplicate-bot: candidates=${candidates.map((c) => c.number).join(',')} -->`
);
return lines.join('\n');
}
async function main() {
if (!ISSUE_NUMBER) {
console.error('ISSUE_NUMBER not set');
process.exit(1);
}
console.log(`Processing issue #${ISSUE_NUMBER}`);
const issue = await getIssue(ISSUE_NUMBER);
const oneHourAgo = new Date(Date.now() - 60 * 60 * 1000).toISOString();
const recentIssues = await fetchIssues({
creator: issue.user.login,
since: oneHourAgo,
state: 'all',
});
if (recentIssues.length > 10) {
console.log(
`User ${issue.user.login} created ${recentIssues.length} issues in the last hour - skipping to prevent spam`
);
return;
}
if (issue.pull_request) {
console.log('Skipping - this is a pull request');
return;
}
if (issue.user.type === 'Bot') {
console.log('Skipping - issue created by bot');
return;
}
console.log(`Loading model: ${MODEL_NAME}`);
const extractor = await pipeline('feature-extraction', MODEL_NAME, {
dtype: 'fp32',
});
const index = loadIndex(INDEX_PATH);
const text = issueText(issue.title, issue.body);
const output = await extractor(text, { pooling: 'mean', normalize: true });
const queryEmbedding = output.tolist()[0];
let candidates = findSimilar(queryEmbedding, index, {
topK: TOP_K,
threshold: SIMILARITY_THRESHOLD,
excludeNumber: issue.number,
});
if (!candidates.length) {
console.log('No similar issues found above threshold - done');
return;
}
console.log(`Found ${candidates.length} candidates above threshold:`);
for (const c of candidates) {
console.log(` #${c.number} (${c.score.toFixed(3)}) - ${c.title}`);
}
console.log('Running LLM confirmation via Groq...');
candidates = await confirmWithLlm(issue, candidates);
if (!candidates.length) {
console.log('LLM ruled out all candidates - done');
return;
}
const comment = formatComment(candidates);
await postComment(ISSUE_NUMBER, comment);
await addLabel(ISSUE_NUMBER, LABEL_NAME);
console.log('Done!');
}
main().catch((err) => {
console.error(err);
process.exit(1);
});