Files
tailscale/derp/derpserver/derpserver_test.go
Will Norris 3ec5be3f51 all: remove AUTHORS file and references to it
This file was never truly necessary and has never actually been used in
the history of Tailscale's open source releases.

A Brief History of AUTHORS files
---

The AUTHORS file was a pattern developed at Google, originally for
Chromium, then adopted by Go and a bunch of other projects. The problem
was that Chromium originally had a copyright line only recognizing
Google as the copyright holder. Because Google (and most open source
projects) do not require copyright assignemnt for contributions, each
contributor maintains their copyright. Some large corporate contributors
then tried to add their own name to the copyright line in the LICENSE
file or in file headers. This quickly becomes unwieldy, and puts a
tremendous burden on anyone building on top of Chromium, since the
license requires that they keep all copyright lines intact.

The compromise was to create an AUTHORS file that would list all of the
copyright holders. The LICENSE file and source file headers would then
include that list by reference, listing the copyright holder as "The
Chromium Authors".

This also become cumbersome to simply keep the file up to date with a
high rate of new contributors. Plus it's not always obvious who the
copyright holder is. Sometimes it is the individual making the
contribution, but many times it may be their employer. There is no way
for the proejct maintainer to know.

Eventually, Google changed their policy to no longer recommend trying to
keep the AUTHORS file up to date proactively, and instead to only add to
it when requested: https://opensource.google/docs/releasing/authors.
They are also clear that:

> Adding contributors to the AUTHORS file is entirely within the
> project's discretion and has no implications for copyright ownership.

It was primarily added to appease a small number of large contributors
that insisted that they be recognized as copyright holders (which was
entirely their right to do). But it's not truly necessary, and not even
the most accurate way of identifying contributors and/or copyright
holders.

In practice, we've never added anyone to our AUTHORS file. It only lists
Tailscale, so it's not really serving any purpose. It also causes
confusion because Tailscalars put the "Tailscale Inc & AUTHORS" header
in other open source repos which don't actually have an AUTHORS file, so
it's ambiguous what that means.

Instead, we just acknowledge that the contributors to Tailscale (whoever
they are) are copyright holders for their individual contributions. We
also have the benefit of using the DCO (developercertificate.org) which
provides some additional certification of their right to make the
contribution.

The source file changes were purely mechanical with:

    git ls-files | xargs sed -i -e 's/\(Tailscale Inc &\) AUTHORS/\1 contributors/g'

Updates #cleanup

Change-Id: Ia101a4a3005adb9118051b3416f5a64a4a45987d
Signed-off-by: Will Norris <will@tailscale.com>
2026-01-23 15:49:45 -08:00

978 lines
23 KiB
Go

// Copyright (c) Tailscale Inc & contributors
// SPDX-License-Identifier: BSD-3-Clause
package derpserver
import (
"bufio"
"cmp"
"context"
"crypto/x509"
"encoding/asn1"
"encoding/binary"
"expvar"
"fmt"
"log"
"net"
"os"
"reflect"
"strconv"
"sync"
"testing"
"time"
"github.com/axiomhq/hyperloglog"
qt "github.com/frankban/quicktest"
"go4.org/mem"
"golang.org/x/time/rate"
"tailscale.com/derp"
"tailscale.com/derp/derpconst"
"tailscale.com/types/key"
"tailscale.com/types/logger"
)
const testMeshKey = "0123456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef"
func TestSetMeshKey(t *testing.T) {
for name, tt := range map[string]struct {
key string
want key.DERPMesh
wantErr bool
}{
"clobber": {
key: testMeshKey,
wantErr: false,
},
"invalid": {
key: "badf00d",
wantErr: true,
},
} {
t.Run(name, func(t *testing.T) {
s := &Server{}
err := s.SetMeshKey(tt.key)
if tt.wantErr {
if err == nil {
t.Fatalf("expected err")
}
return
}
if err != nil {
t.Fatalf("unexpected err: %v", err)
}
want, err := key.ParseDERPMesh(tt.key)
if err != nil {
t.Fatal(err)
}
if !s.meshKey.Equal(want) {
t.Fatalf("got %v, want %v", s.meshKey, want)
}
})
}
}
func TestIsMeshPeer(t *testing.T) {
s := &Server{}
err := s.SetMeshKey(testMeshKey)
if err != nil {
t.Fatal(err)
}
for name, tt := range map[string]struct {
want bool
meshKey string
wantAllocs float64
}{
"nil": {
want: false,
wantAllocs: 0,
},
"mismatch": {
meshKey: "6d529e9d4ef632d22d4a4214cb49da8f1ba1b72697061fb24e312984c35ec8d8",
want: false,
wantAllocs: 1,
},
"match": {
meshKey: testMeshKey,
want: true,
wantAllocs: 0,
},
} {
t.Run(name, func(t *testing.T) {
var got bool
var mKey key.DERPMesh
if tt.meshKey != "" {
mKey, err = key.ParseDERPMesh(tt.meshKey)
if err != nil {
t.Fatalf("ParseDERPMesh(%q) failed: %v", tt.meshKey, err)
}
}
info := derp.ClientInfo{
MeshKey: mKey,
}
allocs := testing.AllocsPerRun(1, func() {
got = s.isMeshPeer(&info)
})
if got != tt.want {
t.Fatalf("got %t, want %t: info = %#v", got, tt.want, info)
}
if allocs != tt.wantAllocs && tt.want {
t.Errorf("%f allocations, want %f", allocs, tt.wantAllocs)
}
})
}
}
type testFwd int
func (testFwd) ForwardPacket(key.NodePublic, key.NodePublic, []byte) error {
panic("not called in tests")
}
func (testFwd) String() string {
panic("not called in tests")
}
func pubAll(b byte) (ret key.NodePublic) {
var bs [32]byte
for i := range bs {
bs[i] = b
}
return key.NodePublicFromRaw32(mem.B(bs[:]))
}
func TestForwarderRegistration(t *testing.T) {
s := &Server{
clients: make(map[key.NodePublic]*clientSet),
clientsMesh: map[key.NodePublic]PacketForwarder{},
}
want := func(want map[key.NodePublic]PacketForwarder) {
t.Helper()
if got := s.clientsMesh; !reflect.DeepEqual(got, want) {
t.Fatalf("mismatch\n got: %v\nwant: %v\n", got, want)
}
}
wantCounter := func(c *expvar.Int, want int) {
t.Helper()
if got := c.Value(); got != int64(want) {
t.Errorf("counter = %v; want %v", got, want)
}
}
singleClient := func(c *sclient) *clientSet {
cs := &clientSet{}
cs.activeClient.Store(c)
return cs
}
u1 := pubAll(1)
u2 := pubAll(2)
u3 := pubAll(3)
s.AddPacketForwarder(u1, testFwd(1))
s.AddPacketForwarder(u2, testFwd(2))
want(map[key.NodePublic]PacketForwarder{
u1: testFwd(1),
u2: testFwd(2),
})
// Verify a remove of non-registered forwarder is no-op.
s.RemovePacketForwarder(u2, testFwd(999))
want(map[key.NodePublic]PacketForwarder{
u1: testFwd(1),
u2: testFwd(2),
})
// Verify a remove of non-registered user is no-op.
s.RemovePacketForwarder(u3, testFwd(1))
want(map[key.NodePublic]PacketForwarder{
u1: testFwd(1),
u2: testFwd(2),
})
// Actual removal.
s.RemovePacketForwarder(u2, testFwd(2))
want(map[key.NodePublic]PacketForwarder{
u1: testFwd(1),
})
// Adding a dup for a user.
wantCounter(&s.multiForwarderCreated, 0)
s.AddPacketForwarder(u1, testFwd(100))
s.AddPacketForwarder(u1, testFwd(100)) // dup to trigger dup path
want(map[key.NodePublic]PacketForwarder{
u1: newMultiForwarder(testFwd(1), testFwd(100)),
})
wantCounter(&s.multiForwarderCreated, 1)
// Removing a forwarder in a multi set that doesn't exist; does nothing.
s.RemovePacketForwarder(u1, testFwd(55))
want(map[key.NodePublic]PacketForwarder{
u1: newMultiForwarder(testFwd(1), testFwd(100)),
})
// Removing a forwarder in a multi set that does exist should collapse it away
// from being a multiForwarder.
wantCounter(&s.multiForwarderDeleted, 0)
s.RemovePacketForwarder(u1, testFwd(1))
want(map[key.NodePublic]PacketForwarder{
u1: testFwd(100),
})
wantCounter(&s.multiForwarderDeleted, 1)
// Removing an entry for a client that's still connected locally should result
// in a nil forwarder.
u1c := &sclient{
key: u1,
logf: logger.Discard,
}
s.clients[u1] = singleClient(u1c)
s.RemovePacketForwarder(u1, testFwd(100))
want(map[key.NodePublic]PacketForwarder{
u1: nil,
})
// But once that client disconnects, it should go away.
s.unregisterClient(u1c)
want(map[key.NodePublic]PacketForwarder{})
// But if it already has a forwarder, it's not removed.
s.AddPacketForwarder(u1, testFwd(2))
s.unregisterClient(u1c)
want(map[key.NodePublic]PacketForwarder{
u1: testFwd(2),
})
// Now pretend u1 was already connected locally (so clientsMesh[u1] is nil), and then we heard
// that they're also connected to a peer of ours. That shouldn't transition the forwarder
// from nil to the new one, not a multiForwarder.
s.clients[u1] = singleClient(u1c)
s.clientsMesh[u1] = nil
want(map[key.NodePublic]PacketForwarder{
u1: nil,
})
s.AddPacketForwarder(u1, testFwd(3))
want(map[key.NodePublic]PacketForwarder{
u1: testFwd(3),
})
}
type channelFwd struct {
// id is to ensure that different instances that reference the
// same channel are not equal, as they are used as keys in the
// multiForwarder map.
id int
c chan []byte
}
func (f channelFwd) String() string { return "" }
func (f channelFwd) ForwardPacket(_ key.NodePublic, _ key.NodePublic, packet []byte) error {
f.c <- packet
return nil
}
func TestMultiForwarder(t *testing.T) {
received := 0
var wg sync.WaitGroup
ch := make(chan []byte)
ctx, cancel := context.WithCancel(context.Background())
s := &Server{
clients: make(map[key.NodePublic]*clientSet),
clientsMesh: map[key.NodePublic]PacketForwarder{},
}
u := pubAll(1)
s.AddPacketForwarder(u, channelFwd{1, ch})
wg.Add(2)
go func() {
defer wg.Done()
for {
select {
case <-ch:
received += 1
case <-ctx.Done():
return
}
}
}()
go func() {
defer wg.Done()
for {
s.AddPacketForwarder(u, channelFwd{2, ch})
s.AddPacketForwarder(u, channelFwd{3, ch})
s.RemovePacketForwarder(u, channelFwd{2, ch})
s.RemovePacketForwarder(u, channelFwd{1, ch})
s.AddPacketForwarder(u, channelFwd{1, ch})
s.RemovePacketForwarder(u, channelFwd{3, ch})
if ctx.Err() != nil {
return
}
}
}()
// Number of messages is chosen arbitrarily, just for this loop to
// run long enough concurrently with {Add,Remove}PacketForwarder loop above.
numMsgs := 5000
var fwd PacketForwarder
for i := range numMsgs {
s.mu.Lock()
fwd = s.clientsMesh[u]
s.mu.Unlock()
fwd.ForwardPacket(u, u, []byte(strconv.Itoa(i)))
}
cancel()
wg.Wait()
if received != numMsgs {
t.Errorf("expected %d messages to be forwarded; got %d", numMsgs, received)
}
}
func TestMetaCert(t *testing.T) {
priv := key.NewNode()
pub := priv.Public()
s := New(priv, t.Logf)
certBytes := s.MetaCert()
cert, err := x509.ParseCertificate(certBytes)
if err != nil {
log.Fatal(err)
}
if fmt.Sprint(cert.SerialNumber) != fmt.Sprint(derp.ProtocolVersion) {
t.Errorf("serial = %v; want %v", cert.SerialNumber, derp.ProtocolVersion)
}
if g, w := cert.Subject.CommonName, derpconst.MetaCertCommonNamePrefix+pub.UntypedHexString(); g != w {
t.Errorf("CommonName = %q; want %q", g, w)
}
if n := len(cert.Extensions); n != 1 {
t.Fatalf("got %d extensions; want 1", n)
}
// oidExtensionBasicConstraints is the Basic Constraints ID copied
// from the x509 package.
oidExtensionBasicConstraints := asn1.ObjectIdentifier{2, 5, 29, 19}
if id := cert.Extensions[0].Id; !id.Equal(oidExtensionBasicConstraints) {
t.Errorf("extension ID = %v; want %v", id, oidExtensionBasicConstraints)
}
}
func TestServerDupClients(t *testing.T) {
serverPriv := key.NewNode()
var s *Server
clientPriv := key.NewNode()
clientPub := clientPriv.Public()
var c1, c2, c3 *sclient
var clientName map[*sclient]string
// run starts a new test case and resets clients back to their zero values.
run := func(name string, dupPolicy dupPolicy, f func(t *testing.T)) {
s = New(serverPriv, t.Logf)
s.dupPolicy = dupPolicy
c1 = &sclient{key: clientPub, logf: logger.WithPrefix(t.Logf, "c1: ")}
c2 = &sclient{key: clientPub, logf: logger.WithPrefix(t.Logf, "c2: ")}
c3 = &sclient{key: clientPub, logf: logger.WithPrefix(t.Logf, "c3: ")}
clientName = map[*sclient]string{
c1: "c1",
c2: "c2",
c3: "c3",
}
t.Run(name, f)
}
runBothWays := func(name string, f func(t *testing.T)) {
run(name+"_disablefighters", disableFighters, f)
run(name+"_lastwriteractive", lastWriterIsActive, f)
}
wantSingleClient := func(t *testing.T, want *sclient) {
t.Helper()
got, ok := s.clients[want.key]
if !ok {
t.Error("no clients for key")
return
}
if got.dup != nil {
t.Errorf("unexpected dup set for single client")
}
cur := got.activeClient.Load()
if cur != want {
t.Errorf("active client = %q; want %q", clientName[cur], clientName[want])
}
if cur != nil {
if cur.isDup.Load() {
t.Errorf("unexpected isDup on singleClient")
}
if cur.isDisabled.Load() {
t.Errorf("unexpected isDisabled on singleClient")
}
}
}
wantNoClient := func(t *testing.T) {
t.Helper()
_, ok := s.clients[clientPub]
if !ok {
// Good
return
}
t.Errorf("got client; want empty")
}
wantDupSet := func(t *testing.T) *dupClientSet {
t.Helper()
cs, ok := s.clients[clientPub]
if !ok {
t.Fatal("no set for key; want dup set")
return nil
}
if cs.dup != nil {
return cs.dup
}
t.Fatalf("no dup set for key; want dup set")
return nil
}
wantActive := func(t *testing.T, want *sclient) {
t.Helper()
set, ok := s.clients[clientPub]
if !ok {
t.Error("no set for key")
return
}
got := set.activeClient.Load()
if got != want {
t.Errorf("active client = %q; want %q", clientName[got], clientName[want])
}
}
checkDup := func(t *testing.T, c *sclient, want bool) {
t.Helper()
if got := c.isDup.Load(); got != want {
t.Errorf("client %q isDup = %v; want %v", clientName[c], got, want)
}
}
checkDisabled := func(t *testing.T, c *sclient, want bool) {
t.Helper()
if got := c.isDisabled.Load(); got != want {
t.Errorf("client %q isDisabled = %v; want %v", clientName[c], got, want)
}
}
wantDupConns := func(t *testing.T, want int) {
t.Helper()
if got := s.dupClientConns.Value(); got != int64(want) {
t.Errorf("dupClientConns = %v; want %v", got, want)
}
}
wantDupKeys := func(t *testing.T, want int) {
t.Helper()
if got := s.dupClientKeys.Value(); got != int64(want) {
t.Errorf("dupClientKeys = %v; want %v", got, want)
}
}
// Common case: a single client comes and goes, with no dups.
runBothWays("one_comes_and_goes", func(t *testing.T) {
wantNoClient(t)
s.registerClient(c1)
wantSingleClient(t, c1)
s.unregisterClient(c1)
wantNoClient(t)
})
// A still somewhat common case: a single client was
// connected and then their wifi dies or laptop closes
// or they switch networks and connect from a
// different network. They have two connections but
// it's not very bad. Only their new one is
// active. The last one, being dead, doesn't send and
// thus the new one doesn't get disabled.
runBothWays("small_overlap_replacement", func(t *testing.T) {
wantNoClient(t)
s.registerClient(c1)
wantSingleClient(t, c1)
wantActive(t, c1)
wantDupKeys(t, 0)
wantDupKeys(t, 0)
s.registerClient(c2) // wifi dies; c2 replacement connects
wantDupSet(t)
wantDupConns(t, 2)
wantDupKeys(t, 1)
checkDup(t, c1, true)
checkDup(t, c2, true)
checkDisabled(t, c1, false)
checkDisabled(t, c2, false)
wantActive(t, c2) // sends go to the replacement
s.unregisterClient(c1) // c1 finally times out
wantSingleClient(t, c2)
checkDup(t, c2, false) // c2 is longer a dup
wantActive(t, c2)
wantDupConns(t, 0)
wantDupKeys(t, 0)
})
// Key cloning situation with concurrent clients, both trying
// to write.
run("concurrent_dups_get_disabled", disableFighters, func(t *testing.T) {
wantNoClient(t)
s.registerClient(c1)
wantSingleClient(t, c1)
wantActive(t, c1)
s.registerClient(c2)
wantDupSet(t)
wantDupKeys(t, 1)
wantDupConns(t, 2)
wantActive(t, c2)
checkDup(t, c1, true)
checkDup(t, c2, true)
checkDisabled(t, c1, false)
checkDisabled(t, c2, false)
s.noteClientActivity(c2)
checkDisabled(t, c1, false)
checkDisabled(t, c2, false)
s.noteClientActivity(c1)
checkDisabled(t, c1, true)
checkDisabled(t, c2, true)
wantActive(t, nil)
s.registerClient(c3)
wantActive(t, c3)
checkDisabled(t, c3, false)
wantDupKeys(t, 1)
wantDupConns(t, 3)
s.unregisterClient(c3)
wantActive(t, nil)
wantDupKeys(t, 1)
wantDupConns(t, 2)
s.unregisterClient(c2)
wantSingleClient(t, c1)
wantDupKeys(t, 0)
wantDupConns(t, 0)
})
// Key cloning with an A->B->C->A series instead.
run("concurrent_dups_three_parties", disableFighters, func(t *testing.T) {
wantNoClient(t)
s.registerClient(c1)
s.registerClient(c2)
s.registerClient(c3)
s.noteClientActivity(c1)
checkDisabled(t, c1, true)
checkDisabled(t, c2, true)
checkDisabled(t, c3, true)
wantActive(t, nil)
})
run("activity_promotes_primary_when_nil", disableFighters, func(t *testing.T) {
wantNoClient(t)
// Last registered client is the active one...
s.registerClient(c1)
wantActive(t, c1)
s.registerClient(c2)
wantActive(t, c2)
s.registerClient(c3)
s.noteClientActivity(c2)
wantActive(t, c3)
// But if the last one goes away, the one with the
// most recent activity wins.
s.unregisterClient(c3)
wantActive(t, c2)
})
run("concurrent_dups_three_parties_last_writer", lastWriterIsActive, func(t *testing.T) {
wantNoClient(t)
s.registerClient(c1)
wantActive(t, c1)
s.registerClient(c2)
wantActive(t, c2)
s.noteClientActivity(c1)
checkDisabled(t, c1, false)
checkDisabled(t, c2, false)
wantActive(t, c1)
s.noteClientActivity(c2)
checkDisabled(t, c1, false)
checkDisabled(t, c2, false)
wantActive(t, c2)
s.unregisterClient(c2)
checkDisabled(t, c1, false)
wantActive(t, c1)
})
}
func TestLimiter(t *testing.T) {
rl := rate.NewLimiter(rate.Every(time.Minute), 100)
for i := range 200 {
r := rl.Reserve()
d := r.Delay()
t.Logf("i=%d, allow=%v, d=%v", i, r.OK(), d)
}
}
// BenchmarkConcurrentStreams exercises mutex contention on a
// single Server instance with multiple concurrent client flows.
func BenchmarkConcurrentStreams(b *testing.B) {
serverPrivateKey := key.NewNode()
s := New(serverPrivateKey, logger.Discard)
defer s.Close()
ln, err := net.Listen("tcp", "127.0.0.1:0")
if err != nil {
b.Fatal(err)
}
defer ln.Close()
ctx, cancel := context.WithCancel(context.Background())
defer cancel()
go func() {
for ctx.Err() == nil {
connIn, err := ln.Accept()
if err != nil {
if ctx.Err() != nil {
return
}
b.Error(err)
return
}
brwServer := bufio.NewReadWriter(bufio.NewReader(connIn), bufio.NewWriter(connIn))
go s.Accept(ctx, connIn, brwServer, "test-client")
}
}()
newClient := func(t testing.TB) *derp.Client {
t.Helper()
connOut, err := net.Dial("tcp", ln.Addr().String())
if err != nil {
b.Fatal(err)
}
t.Cleanup(func() { connOut.Close() })
k := key.NewNode()
brw := bufio.NewReadWriter(bufio.NewReader(connOut), bufio.NewWriter(connOut))
client, err := derp.NewClient(k, connOut, brw, logger.Discard)
if err != nil {
b.Fatalf("client: %v", err)
}
return client
}
b.RunParallel(func(pb *testing.PB) {
c1, c2 := newClient(b), newClient(b)
const packetSize = 100
msg := make([]byte, packetSize)
for pb.Next() {
if err := c1.Send(c2.PublicKey(), msg); err != nil {
b.Fatal(err)
}
_, err := c2.Recv()
if err != nil {
return
}
}
})
}
func BenchmarkSendRecv(b *testing.B) {
for _, size := range []int{10, 100, 1000, 10000} {
b.Run(fmt.Sprintf("msgsize=%d", size), func(b *testing.B) { benchmarkSendRecvSize(b, size) })
}
}
func benchmarkSendRecvSize(b *testing.B, packetSize int) {
serverPrivateKey := key.NewNode()
s := New(serverPrivateKey, logger.Discard)
defer s.Close()
k := key.NewNode()
clientKey := k.Public()
ln, err := net.Listen("tcp", "127.0.0.1:0")
if err != nil {
b.Fatal(err)
}
defer ln.Close()
connOut, err := net.Dial("tcp", ln.Addr().String())
if err != nil {
b.Fatal(err)
}
defer connOut.Close()
connIn, err := ln.Accept()
if err != nil {
b.Fatal(err)
}
defer connIn.Close()
brwServer := bufio.NewReadWriter(bufio.NewReader(connIn), bufio.NewWriter(connIn))
ctx, cancel := context.WithCancel(context.Background())
defer cancel()
go s.Accept(ctx, connIn, brwServer, "test-client")
brw := bufio.NewReadWriter(bufio.NewReader(connOut), bufio.NewWriter(connOut))
client, err := derp.NewClient(k, connOut, brw, logger.Discard)
if err != nil {
b.Fatalf("client: %v", err)
}
go func() {
for {
_, err := client.Recv()
if err != nil {
return
}
}
}()
msg := make([]byte, packetSize)
b.SetBytes(int64(len(msg)))
b.ReportAllocs()
b.ResetTimer()
for range b.N {
if err := client.Send(clientKey, msg); err != nil {
b.Fatal(err)
}
}
}
func TestParseSSOutput(t *testing.T) {
contents, err := os.ReadFile("testdata/example_ss.txt")
if err != nil {
t.Errorf("os.ReadFile(example_ss.txt) failed: %v", err)
}
seen := parseSSOutput(string(contents))
if len(seen) == 0 {
t.Errorf("parseSSOutput expected non-empty map")
}
}
func TestServeDebugTrafficUniqueSenders(t *testing.T) {
s := New(key.NewNode(), t.Logf)
defer s.Close()
clientKey := key.NewNode().Public()
c := &sclient{
key: clientKey,
s: s,
logf: logger.Discard,
senderCardinality: hyperloglog.New(),
}
for i := 0; i < 5; i++ {
c.senderCardinality.Insert(key.NewNode().Public().AppendTo(nil))
}
s.mu.Lock()
cs := &clientSet{}
cs.activeClient.Store(c)
s.clients[clientKey] = cs
s.mu.Unlock()
estimate := c.EstimatedUniqueSenders()
t.Logf("Estimated unique senders: %d", estimate)
if estimate < 4 || estimate > 6 {
t.Errorf("EstimatedUniqueSenders() = %d, want ~5 (4-6 range)", estimate)
}
}
func TestGetPerClientSendQueueDepth(t *testing.T) {
c := qt.New(t)
envKey := "TS_DEBUG_DERP_PER_CLIENT_SEND_QUEUE_DEPTH"
testCases := []struct {
envVal string
want int
}{
// Empty case, envknob treats empty as missing also.
{
"", defaultPerClientSendQueueDepth,
},
{
"64", 64,
},
}
for _, tc := range testCases {
t.Run(cmp.Or(tc.envVal, "empty"), func(t *testing.T) {
t.Setenv(envKey, tc.envVal)
val := getPerClientSendQueueDepth()
c.Assert(val, qt.Equals, tc.want)
})
}
}
func TestSenderCardinality(t *testing.T) {
s := New(key.NewNode(), t.Logf)
defer s.Close()
c := &sclient{
key: key.NewNode().Public(),
s: s,
logf: logger.WithPrefix(t.Logf, "test client: "),
}
if got := c.EstimatedUniqueSenders(); got != 0 {
t.Errorf("EstimatedUniqueSenders() before init = %d, want 0", got)
}
c.senderCardinality = hyperloglog.New()
if got := c.EstimatedUniqueSenders(); got != 0 {
t.Errorf("EstimatedUniqueSenders() with no senders = %d, want 0", got)
}
senders := make([]key.NodePublic, 10)
for i := range senders {
senders[i] = key.NewNode().Public()
c.senderCardinality.Insert(senders[i].AppendTo(nil))
}
estimate := c.EstimatedUniqueSenders()
t.Logf("Estimated unique senders after 10 inserts: %d", estimate)
if estimate < 8 || estimate > 12 {
t.Errorf("EstimatedUniqueSenders() = %d, want ~10 (8-12 range)", estimate)
}
for i := 0; i < 5; i++ {
c.senderCardinality.Insert(senders[i].AppendTo(nil))
}
estimate2 := c.EstimatedUniqueSenders()
t.Logf("Estimated unique senders after duplicates: %d", estimate2)
if estimate2 < 8 || estimate2 > 12 {
t.Errorf("EstimatedUniqueSenders() after duplicates = %d, want ~10 (8-12 range)", estimate2)
}
}
func TestSenderCardinality100(t *testing.T) {
s := New(key.NewNode(), t.Logf)
defer s.Close()
c := &sclient{
key: key.NewNode().Public(),
s: s,
logf: logger.WithPrefix(t.Logf, "test client: "),
senderCardinality: hyperloglog.New(),
}
numSenders := 100
for i := 0; i < numSenders; i++ {
c.senderCardinality.Insert(key.NewNode().Public().AppendTo(nil))
}
estimate := c.EstimatedUniqueSenders()
t.Logf("Estimated unique senders for 100 actual senders: %d", estimate)
if estimate < 85 || estimate > 115 {
t.Errorf("EstimatedUniqueSenders() = %d, want ~100 (85-115 range)", estimate)
}
}
func TestSenderCardinalityTracking(t *testing.T) {
s := New(key.NewNode(), t.Logf)
defer s.Close()
c := &sclient{
key: key.NewNode().Public(),
s: s,
logf: logger.WithPrefix(t.Logf, "test client: "),
senderCardinality: hyperloglog.New(),
}
zeroKey := key.NodePublic{}
if zeroKey != (key.NodePublic{}) {
c.senderCardinality.Insert(zeroKey.AppendTo(nil))
}
if estimate := c.EstimatedUniqueSenders(); estimate != 0 {
t.Errorf("EstimatedUniqueSenders() after zero key = %d, want 0", estimate)
}
sender1 := key.NewNode().Public()
sender2 := key.NewNode().Public()
if sender1 != (key.NodePublic{}) {
c.senderCardinality.Insert(sender1.AppendTo(nil))
}
if sender2 != (key.NodePublic{}) {
c.senderCardinality.Insert(sender2.AppendTo(nil))
}
estimate := c.EstimatedUniqueSenders()
t.Logf("Estimated unique senders after 2 senders: %d", estimate)
if estimate < 1 || estimate > 3 {
t.Errorf("EstimatedUniqueSenders() = %d, want ~2 (1-3 range)", estimate)
}
}
func BenchmarkHyperLogLogInsert(b *testing.B) {
hll := hyperloglog.New()
sender := key.NewNode().Public()
senderBytes := sender.AppendTo(nil)
b.ResetTimer()
for i := 0; i < b.N; i++ {
hll.Insert(senderBytes)
}
}
func BenchmarkHyperLogLogInsertUnique(b *testing.B) {
hll := hyperloglog.New()
b.ResetTimer()
buf := make([]byte, 32)
for i := 0; i < b.N; i++ {
binary.LittleEndian.PutUint64(buf, uint64(i))
hll.Insert(buf)
}
}
func BenchmarkHyperLogLogEstimate(b *testing.B) {
hll := hyperloglog.New()
for i := 0; i < 100; i++ {
hll.Insert(key.NewNode().Public().AppendTo(nil))
}
b.ResetTimer()
for i := 0; i < b.N; i++ {
_ = hll.Estimate()
}
}
func BenchmarkSenderCardinalityOverhead(b *testing.B) {
hll := hyperloglog.New()
sender := key.NewNode().Public()
b.Run("WithTracking", func(b *testing.B) {
b.ReportAllocs()
for i := 0; i < b.N; i++ {
if hll != nil {
hll.Insert(sender.AppendTo(nil))
}
}
})
b.Run("WithoutTracking", func(b *testing.B) {
b.ReportAllocs()
for i := 0; i < b.N; i++ {
_ = sender.AppendTo(nil)
}
})
}