Files
tailscale/ipn/ipnlocal/bus.go
Will Norris 3ec5be3f51 all: remove AUTHORS file and references to it
This file was never truly necessary and has never actually been used in
the history of Tailscale's open source releases.

A Brief History of AUTHORS files
---

The AUTHORS file was a pattern developed at Google, originally for
Chromium, then adopted by Go and a bunch of other projects. The problem
was that Chromium originally had a copyright line only recognizing
Google as the copyright holder. Because Google (and most open source
projects) do not require copyright assignemnt for contributions, each
contributor maintains their copyright. Some large corporate contributors
then tried to add their own name to the copyright line in the LICENSE
file or in file headers. This quickly becomes unwieldy, and puts a
tremendous burden on anyone building on top of Chromium, since the
license requires that they keep all copyright lines intact.

The compromise was to create an AUTHORS file that would list all of the
copyright holders. The LICENSE file and source file headers would then
include that list by reference, listing the copyright holder as "The
Chromium Authors".

This also become cumbersome to simply keep the file up to date with a
high rate of new contributors. Plus it's not always obvious who the
copyright holder is. Sometimes it is the individual making the
contribution, but many times it may be their employer. There is no way
for the proejct maintainer to know.

Eventually, Google changed their policy to no longer recommend trying to
keep the AUTHORS file up to date proactively, and instead to only add to
it when requested: https://opensource.google/docs/releasing/authors.
They are also clear that:

> Adding contributors to the AUTHORS file is entirely within the
> project's discretion and has no implications for copyright ownership.

It was primarily added to appease a small number of large contributors
that insisted that they be recognized as copyright holders (which was
entirely their right to do). But it's not truly necessary, and not even
the most accurate way of identifying contributors and/or copyright
holders.

In practice, we've never added anyone to our AUTHORS file. It only lists
Tailscale, so it's not really serving any purpose. It also causes
confusion because Tailscalars put the "Tailscale Inc & AUTHORS" header
in other open source repos which don't actually have an AUTHORS file, so
it's ambiguous what that means.

Instead, we just acknowledge that the contributors to Tailscale (whoever
they are) are copyright holders for their individual contributions. We
also have the benefit of using the DCO (developercertificate.org) which
provides some additional certification of their right to make the
contribution.

The source file changes were purely mechanical with:

    git ls-files | xargs sed -i -e 's/\(Tailscale Inc &\) AUTHORS/\1 contributors/g'

Updates #cleanup

Change-Id: Ia101a4a3005adb9118051b3416f5a64a4a45987d
Signed-off-by: Will Norris <will@tailscale.com>
2026-01-23 15:49:45 -08:00

162 lines
4.2 KiB
Go

// Copyright (c) Tailscale Inc & contributors
// SPDX-License-Identifier: BSD-3-Clause
package ipnlocal
import (
"context"
"time"
"tailscale.com/ipn"
"tailscale.com/tstime"
)
type rateLimitingBusSender struct {
fn func(*ipn.Notify) (keepGoing bool)
lastFlush time.Time // last call to fn, or zero value if none
interval time.Duration // 0 to flush immediately; non-zero to rate limit sends
clock tstime.DefaultClock // non-nil for testing
didSendTestHook func() // non-nil for testing
// pending, if non-nil, is the pending notification that we
// haven't sent yet. We own this memory to mutate.
pending *ipn.Notify
// flushTimer is non-nil if the timer is armed.
flushTimer tstime.TimerController // effectively a *time.Timer
flushTimerC <-chan time.Time // ... said ~Timer's C chan
}
func (s *rateLimitingBusSender) close() {
if s.flushTimer != nil {
s.flushTimer.Stop()
}
}
func (s *rateLimitingBusSender) flushChan() <-chan time.Time {
return s.flushTimerC
}
func (s *rateLimitingBusSender) flush() (keepGoing bool) {
if n := s.pending; n != nil {
s.pending = nil
return s.flushNotify(n)
}
return true
}
func (s *rateLimitingBusSender) flushNotify(n *ipn.Notify) (keepGoing bool) {
s.lastFlush = s.clock.Now()
return s.fn(n)
}
// send conditionally sends n to the underlying fn, possibly rate
// limiting it, depending on whether s.interval is set, and whether
// n is a notable notification that the client (typically a GUI) would
// want to act on (render) immediately.
//
// It returns whether the caller should keep looping.
//
// The passed-in memory 'n' is owned by the caller and should
// not be mutated.
func (s *rateLimitingBusSender) send(n *ipn.Notify) (keepGoing bool) {
if s.interval <= 0 {
// No rate limiting case.
return s.fn(n)
}
if isNotableNotify(n) {
// Notable notifications are always sent immediately.
// But first send any boring one that was pending.
// TODO(bradfitz): there might be a boring one pending
// with a NetMap or Engine field that is redundant
// with the new one (n) with NetMap or Engine populated.
// We should clear the pending one's NetMap/Engine in
// that case. Or really, merge the two, but mergeBoringNotifies
// only handles the case of both sides being boring.
// So for now, flush both.
if !s.flush() {
return false
}
return s.flushNotify(n)
}
s.pending = mergeBoringNotifies(s.pending, n)
d := s.clock.Now().Sub(s.lastFlush)
if d > s.interval {
return s.flush()
}
nextFlushIn := s.interval - d
if s.flushTimer == nil {
s.flushTimer, s.flushTimerC = s.clock.NewTimer(nextFlushIn)
} else {
s.flushTimer.Reset(nextFlushIn)
}
return true
}
func (s *rateLimitingBusSender) Run(ctx context.Context, ch <-chan *ipn.Notify) {
for {
select {
case <-ctx.Done():
return
case n, ok := <-ch:
if !ok {
return
}
if !s.send(n) {
return
}
if f := s.didSendTestHook; f != nil {
f()
}
case <-s.flushChan():
if !s.flush() {
return
}
}
}
}
// mergeBoringNotify merges new notify 'src' into possibly-nil 'dst',
// either mutating 'dst' or allocating a new one if 'dst' is nil,
// returning the merged result.
//
// dst and src must both be "boring" (i.e. not notable per isNotifiableNotify).
func mergeBoringNotifies(dst, src *ipn.Notify) *ipn.Notify {
if dst == nil {
dst = &ipn.Notify{Version: src.Version}
}
if src.NetMap != nil {
dst.NetMap = src.NetMap
}
if src.Engine != nil {
dst.Engine = src.Engine
}
return dst
}
// isNotableNotify reports whether n is a "notable" notification that
// should be sent on the IPN bus immediately (e.g. to GUIs) without
// rate limiting it for a few seconds.
//
// It effectively reports whether n contains any field set that's
// not NetMap or Engine.
func isNotableNotify(n *ipn.Notify) bool {
if n == nil {
return false
}
return n.State != nil ||
n.SessionID != "" ||
n.BrowseToURL != nil ||
n.LocalTCPPort != nil ||
n.ClientVersion != nil ||
n.Prefs != nil ||
n.ErrMessage != nil ||
n.LoginFinished != nil ||
!n.DriveShares.IsNil() ||
n.Health != nil ||
len(n.IncomingFiles) > 0 ||
len(n.OutgoingFiles) > 0 ||
n.FilesWaiting != nil ||
n.SuggestedExitNode != nil
}