Files
Will Norris 3ec5be3f51 all: remove AUTHORS file and references to it
This file was never truly necessary and has never actually been used in
the history of Tailscale's open source releases.

A Brief History of AUTHORS files
---

The AUTHORS file was a pattern developed at Google, originally for
Chromium, then adopted by Go and a bunch of other projects. The problem
was that Chromium originally had a copyright line only recognizing
Google as the copyright holder. Because Google (and most open source
projects) do not require copyright assignemnt for contributions, each
contributor maintains their copyright. Some large corporate contributors
then tried to add their own name to the copyright line in the LICENSE
file or in file headers. This quickly becomes unwieldy, and puts a
tremendous burden on anyone building on top of Chromium, since the
license requires that they keep all copyright lines intact.

The compromise was to create an AUTHORS file that would list all of the
copyright holders. The LICENSE file and source file headers would then
include that list by reference, listing the copyright holder as "The
Chromium Authors".

This also become cumbersome to simply keep the file up to date with a
high rate of new contributors. Plus it's not always obvious who the
copyright holder is. Sometimes it is the individual making the
contribution, but many times it may be their employer. There is no way
for the proejct maintainer to know.

Eventually, Google changed their policy to no longer recommend trying to
keep the AUTHORS file up to date proactively, and instead to only add to
it when requested: https://opensource.google/docs/releasing/authors.
They are also clear that:

> Adding contributors to the AUTHORS file is entirely within the
> project's discretion and has no implications for copyright ownership.

It was primarily added to appease a small number of large contributors
that insisted that they be recognized as copyright holders (which was
entirely their right to do). But it's not truly necessary, and not even
the most accurate way of identifying contributors and/or copyright
holders.

In practice, we've never added anyone to our AUTHORS file. It only lists
Tailscale, so it's not really serving any purpose. It also causes
confusion because Tailscalars put the "Tailscale Inc & AUTHORS" header
in other open source repos which don't actually have an AUTHORS file, so
it's ambiguous what that means.

Instead, we just acknowledge that the contributors to Tailscale (whoever
they are) are copyright holders for their individual contributions. We
also have the benefit of using the DCO (developercertificate.org) which
provides some additional certification of their right to make the
contribution.

The source file changes were purely mechanical with:

    git ls-files | xargs sed -i -e 's/\(Tailscale Inc &\) AUTHORS/\1 contributors/g'

Updates #cleanup

Change-Id: Ia101a4a3005adb9118051b3416f5a64a4a45987d
Signed-off-by: Will Norris <will@tailscale.com>
2026-01-23 15:49:45 -08:00

410 lines
12 KiB
Go

// Copyright (c) Tailscale Inc & contributors
// SPDX-License-Identifier: BSD-3-Clause
// Package controlbase implements the base transport of the Tailscale
// 2021 control protocol.
//
// The base transport implements Noise IK, instantiated with
// Curve25519, ChaCha20Poly1305 and BLAKE2s.
package controlbase
import (
"crypto/cipher"
"encoding/binary"
"fmt"
"net"
"sync"
"time"
"golang.org/x/crypto/blake2s"
chp "golang.org/x/crypto/chacha20poly1305"
"tailscale.com/syncs"
"tailscale.com/types/key"
)
const (
// maxMessageSize is the maximum size of a protocol frame on the
// wire, including header and payload.
maxMessageSize = 4096
// maxCiphertextSize is the maximum amount of ciphertext bytes
// that one protocol frame can carry, after framing.
maxCiphertextSize = maxMessageSize - 3
// maxPlaintextSize is the maximum amount of plaintext bytes that
// one protocol frame can carry, after encryption and framing.
maxPlaintextSize = maxCiphertextSize - chp.Overhead
)
// A Conn is a secured Noise connection. It implements the net.Conn
// interface, with the unusual trait that any write error (including a
// SetWriteDeadline induced i/o timeout) causes all future writes to
// fail.
type Conn struct {
conn net.Conn
version uint16
peer key.MachinePublic
handshakeHash [blake2s.Size]byte
rx rxState
tx txState
}
// rxState is all the Conn state that Read uses.
type rxState struct {
syncs.Mutex
cipher cipher.AEAD
nonce nonce
buf *maxMsgBuffer // or nil when reads exhausted
n int // number of valid bytes in buf
next int // offset of next undecrypted packet
plaintext []byte // slice into buf of decrypted bytes
hdrBuf [headerLen]byte // small buffer used when buf is nil
}
// txState is all the Conn state that Write uses.
type txState struct {
sync.Mutex
cipher cipher.AEAD
nonce nonce
err error // records the first partial write error for all future calls
}
// ProtocolVersion returns the protocol version that was used to
// establish this Conn.
func (c *Conn) ProtocolVersion() int {
return int(c.version)
}
// HandshakeHash returns the Noise handshake hash for the connection,
// which can be used to bind other messages to this connection
// (i.e. to ensure that the message wasn't replayed from a different
// connection).
func (c *Conn) HandshakeHash() [blake2s.Size]byte {
return c.handshakeHash
}
// Peer returns the peer's long-term public key.
func (c *Conn) Peer() key.MachinePublic {
return c.peer
}
// readNLocked reads into c.rx.buf until buf contains at least total
// bytes. Returns a slice of the total bytes in rxBuf, or an
// error if fewer than total bytes are available.
//
// It may be called with a nil c.rx.buf only if total == headerLen.
//
// On success, c.rx.buf will be non-nil.
func (c *Conn) readNLocked(total int) ([]byte, error) {
if total > maxMessageSize {
return nil, errReadTooBig{total}
}
for {
if total <= c.rx.n {
return c.rx.buf[:total], nil
}
var n int
var err error
if c.rx.buf == nil {
if c.rx.n != 0 || total != headerLen {
panic("unexpected")
}
// Optimization to reduce memory usage.
// Most connections are blocked forever waiting for
// a read, so we don't want c.rx.buf to be allocated until
// we know there's data to read. Instead, when we're
// waiting for data to arrive here, read into the
// 3 byte hdrBuf:
n, err = c.conn.Read(c.rx.hdrBuf[:])
if n > 0 {
c.rx.buf = getMaxMsgBuffer()
copy(c.rx.buf[:], c.rx.hdrBuf[:n])
}
} else {
n, err = c.conn.Read(c.rx.buf[c.rx.n:])
}
c.rx.n += n
if err != nil {
return nil, err
}
}
}
// decryptLocked decrypts msg (which is header+ciphertext) in-place
// and sets c.rx.plaintext to the decrypted bytes.
func (c *Conn) decryptLocked(msg []byte) (err error) {
if msgType := msg[0]; msgType != msgTypeRecord {
return fmt.Errorf("received message with unexpected type %d, want %d", msgType, msgTypeRecord)
}
// We don't check the length field here, because the caller
// already did in order to figure out how big the msg slice should
// be.
ciphertext := msg[headerLen:]
if !c.rx.nonce.Valid() {
return errCipherExhausted{}
}
c.rx.plaintext, err = c.rx.cipher.Open(ciphertext[:0], c.rx.nonce[:], ciphertext, nil)
c.rx.nonce.Increment()
if err != nil {
// Once a decryption has failed, our Conn is no longer
// synchronized with our peer. Nuke the cipher state to be
// safe, so that no further decryptions are attempted. Future
// read attempts will return net.ErrClosed.
c.rx.cipher = nil
}
return err
}
// encryptLocked encrypts plaintext into buf (including the
// packet header) and returns a slice of the ciphertext, or an error
// if the cipher is exhausted (i.e. can no longer be used safely).
func (c *Conn) encryptLocked(plaintext []byte, buf *maxMsgBuffer) ([]byte, error) {
if !c.tx.nonce.Valid() {
// Received 2^64-1 messages on this cipher state. Connection
// is no longer usable.
return nil, errCipherExhausted{}
}
buf[0] = msgTypeRecord
binary.BigEndian.PutUint16(buf[1:headerLen], uint16(len(plaintext)+chp.Overhead))
ret := c.tx.cipher.Seal(buf[:headerLen], c.tx.nonce[:], plaintext, nil)
c.tx.nonce.Increment()
return ret, nil
}
// wholeMessageLocked returns a slice of one whole Noise transport
// message from c.rx.buf, if one whole message is available, and
// advances the read state to the next Noise message in the
// buffer. Returns nil without advancing read state if there isn't one
// whole message in c.rx.buf.
func (c *Conn) wholeMessageLocked() []byte {
available := c.rx.n - c.rx.next
if available < headerLen {
return nil
}
bs := c.rx.buf[c.rx.next:c.rx.n]
totalSize := headerLen + int(binary.BigEndian.Uint16(bs[1:3]))
if len(bs) < totalSize {
return nil
}
c.rx.next += totalSize
return bs[:totalSize]
}
// decryptOneLocked decrypts one Noise transport message, reading from
// c.conn as needed, and sets c.rx.plaintext to point to the decrypted
// bytes. c.rx.plaintext is only valid if err == nil.
func (c *Conn) decryptOneLocked() error {
c.rx.plaintext = nil
// Fast path: do we have one whole ciphertext frame buffered
// already?
if bs := c.wholeMessageLocked(); bs != nil {
return c.decryptLocked(bs)
}
if c.rx.next != 0 {
// To simplify the read logic, move the remainder of the
// buffered bytes back to the head of the buffer, so we can
// grow it without worrying about wraparound.
c.rx.n = copy(c.rx.buf[:], c.rx.buf[c.rx.next:c.rx.n])
c.rx.next = 0
}
// Return our buffer to the pool if it's empty, lest we be
// blocked in a long Read call, reading the 3 byte header. We
// don't to keep that buffer unnecessarily alive.
if c.rx.n == 0 && c.rx.next == 0 && c.rx.buf != nil {
bufPool.Put(c.rx.buf)
c.rx.buf = nil
}
bs, err := c.readNLocked(headerLen)
if err != nil {
return err
}
// The rest of the header (besides the length field) gets verified
// in decryptLocked, not here.
messageLen := headerLen + int(binary.BigEndian.Uint16(bs[1:3]))
bs, err = c.readNLocked(messageLen)
if err != nil {
return err
}
c.rx.next = len(bs)
return c.decryptLocked(bs)
}
// Read implements io.Reader.
func (c *Conn) Read(bs []byte) (int, error) {
c.rx.Lock()
defer c.rx.Unlock()
if c.rx.cipher == nil {
return 0, net.ErrClosed
}
// If no plaintext is buffered, decrypt incoming frames until we
// have some plaintext. Zero-byte Noise frames are allowed in this
// protocol, which is why we have to loop here rather than decrypt
// a single additional frame.
for len(c.rx.plaintext) == 0 {
if err := c.decryptOneLocked(); err != nil {
return 0, err
}
}
n := copy(bs, c.rx.plaintext)
c.rx.plaintext = c.rx.plaintext[n:]
// Lose slice's underlying array pointer to unneeded memory so
// GC can collect more.
if len(c.rx.plaintext) == 0 {
c.rx.plaintext = nil
}
return n, nil
}
// Write implements io.Writer.
func (c *Conn) Write(bs []byte) (n int, err error) {
c.tx.Lock()
defer c.tx.Unlock()
if c.tx.err != nil {
return 0, c.tx.err
}
defer func() {
if err != nil {
// All write errors are fatal for this conn, so clear the
// cipher state whenever an error happens.
c.tx.cipher = nil
}
if c.tx.err == nil {
// Only set c.tx.err if not nil so that we can return one
// error on the first failure, and a different one for
// subsequent calls. See the error handling around Write
// below for why.
c.tx.err = err
}
}()
if c.tx.cipher == nil {
return 0, net.ErrClosed
}
buf := getMaxMsgBuffer()
defer bufPool.Put(buf)
var sent int
for len(bs) > 0 {
toSend := bs
if len(toSend) > maxPlaintextSize {
toSend = bs[:maxPlaintextSize]
}
bs = bs[len(toSend):]
ciphertext, err := c.encryptLocked(toSend, buf)
if err != nil {
return sent, err
}
if _, err := c.conn.Write(ciphertext); err != nil {
// Return the raw error on the Write that actually
// failed. For future writes, return that error wrapped in
// a desync error.
c.tx.err = errPartialWrite{err}
return sent, err
}
sent += len(toSend)
}
return sent, nil
}
// Close implements io.Closer.
func (c *Conn) Close() error {
closeErr := c.conn.Close() // unblocks any waiting reads or writes
// Remove references to live cipher state. Strictly speaking this
// is unnecessary, but we want to try and hand the active cipher
// state to the garbage collector promptly, to preserve perfect
// forward secrecy as much as we can.
c.rx.Lock()
c.rx.cipher = nil
c.rx.Unlock()
c.tx.Lock()
c.tx.cipher = nil
c.tx.Unlock()
return closeErr
}
func (c *Conn) LocalAddr() net.Addr { return c.conn.LocalAddr() }
func (c *Conn) RemoteAddr() net.Addr { return c.conn.RemoteAddr() }
func (c *Conn) SetDeadline(t time.Time) error { return c.conn.SetDeadline(t) }
func (c *Conn) SetReadDeadline(t time.Time) error { return c.conn.SetReadDeadline(t) }
func (c *Conn) SetWriteDeadline(t time.Time) error { return c.conn.SetWriteDeadline(t) }
// errCipherExhausted is the error returned when we run out of nonces
// on a cipher.
type errCipherExhausted struct{}
func (errCipherExhausted) Error() string {
return "cipher exhausted, no more nonces available for current key"
}
func (errCipherExhausted) Timeout() bool { return false }
func (errCipherExhausted) Temporary() bool { return false }
// errPartialWrite is the error returned when the cipher state has
// become unusable due to a past partial write.
type errPartialWrite struct {
err error
}
func (e errPartialWrite) Error() string {
return fmt.Sprintf("cipher state desynchronized due to partial write (%v)", e.err)
}
func (e errPartialWrite) Unwrap() error { return e.err }
func (e errPartialWrite) Temporary() bool { return false }
func (e errPartialWrite) Timeout() bool { return false }
// errReadTooBig is the error returned when the peer sent an
// unacceptably large Noise frame.
type errReadTooBig struct {
requested int
}
func (e errReadTooBig) Error() string {
return fmt.Sprintf("requested read of %d bytes exceeds max allowed Noise frame size", e.requested)
}
func (e errReadTooBig) Temporary() bool {
// permanent error because this error only occurs when our peer
// sends us a frame so large we're unwilling to ever decode it.
return false
}
func (e errReadTooBig) Timeout() bool { return false }
type nonce [chp.NonceSize]byte
func (n *nonce) Valid() bool {
return binary.BigEndian.Uint32(n[:4]) == 0 && binary.BigEndian.Uint64(n[4:]) != invalidNonce
}
func (n *nonce) Increment() {
if !n.Valid() {
panic("increment of invalid nonce")
}
binary.BigEndian.PutUint64(n[4:], 1+binary.BigEndian.Uint64(n[4:]))
}
type maxMsgBuffer [maxMessageSize]byte
// bufPool holds the temporary buffers for Conn.Read & Write.
var bufPool = &sync.Pool{
New: func() any {
return new(maxMsgBuffer)
},
}
func getMaxMsgBuffer() *maxMsgBuffer {
return bufPool.Get().(*maxMsgBuffer)
}