Compare commits

..

36 Commits

Author SHA1 Message Date
Ettore Di Giacinto
3c894ebe05 [dropme
] quick CI check

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2026-01-16 19:22:47 +01:00
LocalAI [bot]
cb8616c7d1 chore: ⬆️ Update ggml-org/llama.cpp to 785a71008573e2d84728fb0ba9e851d72d3f8fab (#8053)
⬆️ Update ggml-org/llama.cpp

Signed-off-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: mudler <2420543+mudler@users.noreply.github.com>
2026-01-15 22:53:17 +01:00
LocalAI [bot]
ff31d50488 chore: ⬆️ Update ggml-org/whisper.cpp to 2eeeba56e9edd762b4b38467bab96c2517163158 (#8052)
⬆️ Update ggml-org/whisper.cpp

Signed-off-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: mudler <2420543+mudler@users.noreply.github.com>
2026-01-15 22:52:56 +01:00
Divyanshupandey007
1a50717e33 fix: reduce log verbosity for /api/operations polling (#8050)
* fix: reduce log verbosity for /api/operations polling

Reduces log clutter by changing the log level from INFO to DEBUG for successful (200 OK) /api/operations requests. This endpoint is polled frequently by the Web UI, causing log spam. Fixes #7989.

* fix: reduce log verbosity for /api/operations polling

Reduces log clutter by changing the log level from INFO to DEBUG for successful (200 OK) /api/operations requests. This endpoint is polled frequently by the Web UI, causing log spam. Fixes #7989.
2026-01-15 21:13:13 +01:00
LocalAI [bot]
49d6305509 chore: ⬆️ Update ggml-org/llama.cpp to d98b548120eecf98f0f6eaa1ba7e29b3afda9f2e (#8040)
⬆️ Update ggml-org/llama.cpp

Signed-off-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: mudler <2420543+mudler@users.noreply.github.com>
2026-01-15 08:39:46 +01:00
Ettore Di Giacinto
d20a113aef fix(functions): do not duplicate function when valid JSON is inside XML tags (#8043)
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2026-01-14 23:42:00 +01:00
LocalAI [bot]
cbaa793520 chore: ⬆️ Update ggml-org/whisper.cpp to 47af2fb70f7e4ee1ba40c8bed513760fdfe7a704 (#8039)
⬆️ Update ggml-org/whisper.cpp

Signed-off-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: mudler <2420543+mudler@users.noreply.github.com>
2026-01-14 22:12:32 +01:00
Ettore Di Giacinto
6fe3fc880f Update section headers in README.md for clarity
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2026-01-14 22:11:58 +01:00
Ettore Di Giacinto
752e641c48 Clarify Docker usage in README
Updated Docker section in README to clarify usage.

Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2026-01-14 22:10:59 +01:00
Ettore Di Giacinto
44d78b4d15 chore(doc): put alert on install.sh until is fixed (#8042)
See: https://github.com/mudler/LocalAI/issues/8032

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2026-01-14 22:08:48 +01:00
Ettore Di Giacinto
64d0a96ba3 feat(ui): add video gen UI (#8020)
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2026-01-14 11:43:32 +01:00
Ettore Di Giacinto
b19afc9e64 feat(diffusers): add support to LTX-2 (#8019)
* feat(diffusers): add support to LTX-2

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* Add to the gallery

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

---------

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2026-01-14 09:07:30 +01:00
LocalAI [bot]
d6e698876b chore: ⬆️ Update ggml-org/llama.cpp to e4832e3ae4d58ac0ecbdbf4ae055424d6e628c9f (#8015)
⬆️ Update ggml-org/llama.cpp

Signed-off-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: mudler <2420543+mudler@users.noreply.github.com>
2026-01-14 08:09:37 +01:00
LocalAI [bot]
8962205546 chore: ⬆️ Update ggml-org/whisper.cpp to a96310871a3b294f026c3bcad4e715d17b5905fe (#8014)
⬆️ Update ggml-org/whisper.cpp

Signed-off-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: mudler <2420543+mudler@users.noreply.github.com>
2026-01-14 08:09:00 +01:00
LocalAI [bot]
eddc460118 chore: ⬆️ Update leejet/stable-diffusion.cpp to 7010bb4dff7bd55b03d35ef9772142c21699eba9 (#8013)
⬆️ Update leejet/stable-diffusion.cpp

Signed-off-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: mudler <2420543+mudler@users.noreply.github.com>
2026-01-14 08:08:31 +01:00
Ettore Di Giacinto
a6ff354c86 feat(tts): add pocket-tts backend (#8018)
* feat(pocket-tts): add new backend

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* Add to the gallery

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* fixups

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* Update docs

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

---------

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2026-01-13 23:35:19 +01:00
dependabot[bot]
3a2be4df48 chore(deps): bump github.com/onsi/ginkgo/v2 from 2.27.3 to 2.27.5 (#8004)
Bumps [github.com/onsi/ginkgo/v2](https://github.com/onsi/ginkgo) from 2.27.3 to 2.27.5.
- [Release notes](https://github.com/onsi/ginkgo/releases)
- [Changelog](https://github.com/onsi/ginkgo/blob/master/CHANGELOG.md)
- [Commits](https://github.com/onsi/ginkgo/compare/v2.27.3...v2.27.5)

---
updated-dependencies:
- dependency-name: github.com/onsi/ginkgo/v2
  dependency-version: 2.27.5
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2026-01-13 09:06:20 +01:00
dependabot[bot]
4e1f448e86 chore(deps): bump fyne.io/fyne/v2 from 2.7.1 to 2.7.2 (#8003)
Bumps [fyne.io/fyne/v2](https://github.com/fyne-io/fyne) from 2.7.1 to 2.7.2.
- [Release notes](https://github.com/fyne-io/fyne/releases)
- [Changelog](https://github.com/fyne-io/fyne/blob/master/CHANGELOG.md)
- [Commits](https://github.com/fyne-io/fyne/compare/v2.7.1...v2.7.2)

---
updated-dependencies:
- dependency-name: fyne.io/fyne/v2
  dependency-version: 2.7.2
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2026-01-13 08:45:58 +01:00
dependabot[bot]
3e0168360a chore(deps): bump github.com/gpustack/gguf-parser-go from 0.22.1 to 0.23.1 (#8001)
chore(deps): bump github.com/gpustack/gguf-parser-go

Bumps [github.com/gpustack/gguf-parser-go](https://github.com/gpustack/gguf-parser-go) from 0.22.1 to 0.23.1.
- [Release notes](https://github.com/gpustack/gguf-parser-go/releases)
- [Commits](https://github.com/gpustack/gguf-parser-go/compare/v0.22.1...v0.23.1)

---
updated-dependencies:
- dependency-name: github.com/gpustack/gguf-parser-go
  dependency-version: 0.23.1
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2026-01-13 08:45:35 +01:00
dependabot[bot]
ea4157887b chore(deps): bump github.com/onsi/gomega from 1.38.3 to 1.39.0 (#8000)
Bumps [github.com/onsi/gomega](https://github.com/onsi/gomega) from 1.38.3 to 1.39.0.
- [Release notes](https://github.com/onsi/gomega/releases)
- [Changelog](https://github.com/onsi/gomega/blob/master/CHANGELOG.md)
- [Commits](https://github.com/onsi/gomega/compare/v1.38.3...v1.39.0)

---
updated-dependencies:
- dependency-name: github.com/onsi/gomega
  dependency-version: 1.39.0
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2026-01-13 08:45:18 +01:00
dependabot[bot]
699c50be47 chore(deps): bump github.com/mudler/go-processmanager from 0.0.0-20240820160718-8b802d3ecf82 to 0.1.0 (#7992)
chore(deps): bump github.com/mudler/go-processmanager

Bumps [github.com/mudler/go-processmanager](https://github.com/mudler/go-processmanager) from 0.0.0-20240820160718-8b802d3ecf82 to 0.1.0.
- [Release notes](https://github.com/mudler/go-processmanager/releases)
- [Commits](https://github.com/mudler/go-processmanager/commits/v0.1.0)

---
updated-dependencies:
- dependency-name: github.com/mudler/go-processmanager
  dependency-version: 0.1.0
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2026-01-13 08:44:53 +01:00
dependabot[bot]
94eecc43a3 chore(deps): bump protobuf from 6.33.2 to 6.33.4 in /backend/python/transformers (#7993)
chore(deps): bump protobuf in /backend/python/transformers

Bumps [protobuf](https://github.com/protocolbuffers/protobuf) from 6.33.2 to 6.33.4.
- [Release notes](https://github.com/protocolbuffers/protobuf/releases)
- [Commits](https://github.com/protocolbuffers/protobuf/commits)

---
updated-dependencies:
- dependency-name: protobuf
  dependency-version: 6.33.4
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2026-01-12 23:46:32 +00:00
LocalAI [bot]
7e35ec6c4f chore: ⬆️ Update ggml-org/llama.cpp to bcf7546160982f56bc290d2e538544bbc0772f63 (#7991)
⬆️ Update ggml-org/llama.cpp

Signed-off-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: mudler <2420543+mudler@users.noreply.github.com>
2026-01-12 21:14:33 +00:00
Ettore Di Giacinto
7891c33cb1 chore(vulkan): bump vulkan-sdk to 1.4.335.0 (#7981)
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2026-01-12 07:51:26 +01:00
Ettore Di Giacinto
271cc79709 chore(backends): do not bundle cuda target directory (#7982)
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2026-01-12 07:51:09 +01:00
LocalAI [bot]
3d12d5e70d chore: ⬆️ Update leejet/stable-diffusion.cpp to 885e62ea822e674c6837a8225d2d75f021b97a6a (#7979)
⬆️ Update leejet/stable-diffusion.cpp

Signed-off-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: mudler <2420543+mudler@users.noreply.github.com>
2026-01-11 22:44:11 +01:00
LocalAI [bot]
bc180c2638 chore: ⬆️ Update ggml-org/llama.cpp to 0c3b7a9efebc73d206421c99b7eb6b6716231322 (#7978)
⬆️ Update ggml-org/llama.cpp

Signed-off-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: mudler <2420543+mudler@users.noreply.github.com>
2026-01-11 22:06:30 +01:00
Ettore Di Giacinto
2de30440fe fix(l4t-12): use pip to install python deps (#7967)
* fix: install only torch/torchvision from jetson index

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* fix: use pip for l4t-12

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* Revert "fix: install only torch/torchvision from jetson index"

This reverts commit 2d2b020078

* chatterbox needs wheel

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

---------

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2026-01-11 00:21:32 +01:00
Copilot
673a80a578 feat: Filter backend gallery by system capabilities (#7950)
* Initial plan

* Add backend gallery filtering based on system capabilities

Co-authored-by: mudler <2420543+mudler@users.noreply.github.com>

* Refactor L4T backend check to come before NVIDIA check

Co-authored-by: mudler <2420543+mudler@users.noreply.github.com>

* Refactor: move capabilities business logic to capabilities.go and use constants

Co-authored-by: mudler <2420543+mudler@users.noreply.github.com>

* feat: display system capability in webui and refactor tests

Co-authored-by: mudler <2420543+mudler@users.noreply.github.com>

* chore: rename System/Capability

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* refactor: use getSystemCapabilities in IsBackendCompatible for consistency

Co-authored-by: mudler <2420543+mudler@users.noreply.github.com>

* refactor: keep unused constants private in capabilities.go

Co-authored-by: mudler <2420543+mudler@users.noreply.github.com>

* fix: skip AMD/ROCm and Intel/SYCL tests on darwin

Co-authored-by: mudler <2420543+mudler@users.noreply.github.com>

---------

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
Co-authored-by: copilot-swe-agent[bot] <198982749+Copilot@users.noreply.github.com>
Co-authored-by: mudler <2420543+mudler@users.noreply.github.com>
Co-authored-by: Ettore Di Giacinto <mudler@localai.io>
2026-01-10 23:34:01 +01:00
Jon Roeber
2554e9fabe fix(model): do not assume success when deleting a model process (#7963)
* fix(model): do not assume success when deleting a model process

Signed-off-by: Jon Roeber <jon@roeber.dev>

* Update pkg/model/process.go

Co-authored-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
Signed-off-by: Jon Roeber <65431671+jroeber@users.noreply.github.com>

---------

Signed-off-by: Jon Roeber <jon@roeber.dev>
Signed-off-by: Jon Roeber <65431671+jroeber@users.noreply.github.com>
Co-authored-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2026-01-10 23:33:44 +01:00
LocalAI [bot]
5bfc3eebf8 chore: ⬆️ Update ggml-org/llama.cpp to b1377188784f9aea26b8abde56d4aee8c733eec7 (#7965)
⬆️ Update ggml-org/llama.cpp

Signed-off-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: mudler <2420543+mudler@users.noreply.github.com>
2026-01-10 22:24:26 +01:00
LocalAI [bot]
ab893fe302 feat(swagger): update swagger (#7964)
Signed-off-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: mudler <2420543+mudler@users.noreply.github.com>
2026-01-10 21:46:23 +01:00
Ettore Di Giacinto
c88074a19e feat(api): support 'reasoning' api field (#7959)
This PR adds support to support the 'reasoning' API field of the OpenAI
spec.

LocalAI now will extract automatically thinking tags in both SSE and
non-SSE mode. The changes are adapted as well to the Chat UI now that
will use the reasoning field to extract the thinking process and display
it in the chat.

This fixes https://github.com/mudler/LocalAI/issues/7944

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2026-01-10 19:06:12 +01:00
Copilot
5ca8f0aea0 feat: add tool/function calling support to Anthropic Messages API (#7956)
* Initial plan

* Add tool/function calling schema support to Anthropic Messages API

Co-authored-by: mudler <2420543+mudler@users.noreply.github.com>

* Add E2E tests for Anthropic tool calling

Co-authored-by: mudler <2420543+mudler@users.noreply.github.com>

* Make tool calling tests require model to use tools

- First test now expects hasToolUse to be true with clear error message
- Third test now expects toolUseID to be non-empty (removed conditional)
- Both tests will now fail if model doesn't call the expected tools

Co-authored-by: mudler <2420543+mudler@users.noreply.github.com>

* Add E2E test for tool calling with streaming responses

- Tests that streaming events are properly emitted (content_block_start/delta/stop)
- Verifies tool_use blocks are accumulated correctly in streaming mode
- Ensures model calls tools and stop_reason is set to tool_use

Co-authored-by: mudler <2420543+mudler@users.noreply.github.com>

---------

Co-authored-by: copilot-swe-agent[bot] <198982749+Copilot@users.noreply.github.com>
Co-authored-by: mudler <2420543+mudler@users.noreply.github.com>
2026-01-10 18:44:22 +01:00
LocalAI [bot]
84234e531f chore(model gallery): 🤖 add 1 new models via gallery agent (#7954)
chore(model gallery): 🤖 add new models via gallery agent

Signed-off-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: mudler <2420543+mudler@users.noreply.github.com>
2026-01-10 12:34:23 +01:00
Copilot
4cbf9abfef feat: Add Anthropic Messages API support (#7948)
* Initial plan

* Add Anthropic Messages API support

Co-authored-by: mudler <2420543+mudler@users.noreply.github.com>

* Fix code review comments: add error handling for JSON operations

Co-authored-by: mudler <2420543+mudler@users.noreply.github.com>

* Fix test suite to use existing schema test runner

Co-authored-by: mudler <2420543+mudler@users.noreply.github.com>

* Add Anthropic e2e tests using anthropic-sdk-go for streaming and non-streaming

Co-authored-by: mudler <2420543+mudler@users.noreply.github.com>

* Co-authored-by: mudler <2420543+mudler@users.noreply.github.com>

---------

Co-authored-by: copilot-swe-agent[bot] <198982749+Copilot@users.noreply.github.com>
Co-authored-by: mudler <2420543+mudler@users.noreply.github.com>
2026-01-10 12:33:05 +01:00
83 changed files with 5112 additions and 245 deletions

View File

@@ -105,6 +105,19 @@ jobs:
dockerfile: "./backend/Dockerfile.python"
context: "./"
ubuntu-version: '2404'
- build-type: 'cublas'
cuda-major-version: "12"
cuda-minor-version: "9"
platforms: 'linux/amd64'
tag-latest: 'auto'
tag-suffix: '-gpu-nvidia-cuda-12-pocket-tts'
runs-on: 'ubuntu-latest'
base-image: "ubuntu:24.04"
skip-drivers: 'false'
backend: "pocket-tts"
dockerfile: "./backend/Dockerfile.python"
context: "./"
ubuntu-version: '2404'
- build-type: 'cublas'
cuda-major-version: "12"
cuda-minor-version: "0"
@@ -340,6 +353,19 @@ jobs:
dockerfile: "./backend/Dockerfile.python"
context: "./"
ubuntu-version: '2404'
- build-type: 'cublas'
cuda-major-version: "13"
cuda-minor-version: "0"
platforms: 'linux/amd64'
tag-latest: 'auto'
tag-suffix: '-gpu-nvidia-cuda-13-pocket-tts'
runs-on: 'ubuntu-latest'
base-image: "ubuntu:24.04"
skip-drivers: 'false'
backend: "pocket-tts"
dockerfile: "./backend/Dockerfile.python"
context: "./"
ubuntu-version: '2404'
- build-type: 'cublas'
cuda-major-version: "13"
cuda-minor-version: "0"
@@ -405,6 +431,19 @@ jobs:
backend: "vibevoice"
dockerfile: "./backend/Dockerfile.python"
context: "./"
- build-type: 'l4t'
cuda-major-version: "13"
cuda-minor-version: "0"
platforms: 'linux/arm64'
tag-latest: 'auto'
tag-suffix: '-nvidia-l4t-cuda-13-arm64-pocket-tts'
runs-on: 'ubuntu-24.04-arm'
base-image: "ubuntu:24.04"
skip-drivers: 'false'
ubuntu-version: '2404'
backend: "pocket-tts"
dockerfile: "./backend/Dockerfile.python"
context: "./"
- build-type: 'l4t'
cuda-major-version: "13"
cuda-minor-version: "0"
@@ -641,6 +680,19 @@ jobs:
dockerfile: "./backend/Dockerfile.python"
context: "./"
ubuntu-version: '2404'
- build-type: 'hipblas'
cuda-major-version: ""
cuda-minor-version: ""
platforms: 'linux/amd64'
tag-latest: 'auto'
tag-suffix: '-gpu-rocm-hipblas-pocket-tts'
runs-on: 'arc-runner-set'
base-image: "rocm/dev-ubuntu-24.04:6.4.4"
skip-drivers: 'false'
backend: "pocket-tts"
dockerfile: "./backend/Dockerfile.python"
context: "./"
ubuntu-version: '2404'
- build-type: 'hipblas'
cuda-major-version: ""
cuda-minor-version: ""
@@ -772,6 +824,19 @@ jobs:
dockerfile: "./backend/Dockerfile.python"
context: "./"
ubuntu-version: '2204'
- build-type: 'l4t'
cuda-major-version: "12"
cuda-minor-version: "0"
platforms: 'linux/arm64'
tag-latest: 'auto'
tag-suffix: '-nvidia-l4t-pocket-tts'
runs-on: 'ubuntu-24.04-arm'
base-image: "nvcr.io/nvidia/l4t-jetpack:r36.4.0"
skip-drivers: 'true'
backend: "pocket-tts"
dockerfile: "./backend/Dockerfile.python"
context: "./"
ubuntu-version: '2204'
- build-type: 'l4t'
cuda-major-version: "12"
cuda-minor-version: "0"
@@ -825,6 +890,19 @@ jobs:
dockerfile: "./backend/Dockerfile.python"
context: "./"
ubuntu-version: '2404'
- build-type: 'intel'
cuda-major-version: ""
cuda-minor-version: ""
platforms: 'linux/amd64'
tag-latest: 'auto'
tag-suffix: '-gpu-intel-pocket-tts'
runs-on: 'arc-runner-set'
base-image: "intel/oneapi-basekit:2025.3.0-0-devel-ubuntu24.04"
skip-drivers: 'false'
backend: "pocket-tts"
dockerfile: "./backend/Dockerfile.python"
context: "./"
ubuntu-version: '2404'
- build-type: 'intel'
cuda-major-version: ""
cuda-minor-version: ""
@@ -1278,6 +1356,19 @@ jobs:
dockerfile: "./backend/Dockerfile.python"
context: "./"
ubuntu-version: '2404'
- build-type: ''
cuda-major-version: ""
cuda-minor-version: ""
platforms: 'linux/amd64,linux/arm64'
tag-latest: 'auto'
tag-suffix: '-cpu-pocket-tts'
runs-on: 'ubuntu-latest'
base-image: "ubuntu:24.04"
skip-drivers: 'false'
backend: "pocket-tts"
dockerfile: "./backend/Dockerfile.python"
context: "./"
ubuntu-version: '2404'
backend-jobs-darwin:
uses: ./.github/workflows/backend_build_darwin.yml
strategy:

View File

@@ -41,7 +41,7 @@
platforms: 'linux/amd64'
tag-latest: 'false'
tag-suffix: '-gpu-nvidia-cuda-12'
runs-on: 'ubuntu-latest'
runs-on: 'bigger-runner'
base-image: "ubuntu:24.04"
makeflags: "--jobs=3 --output-sync=target"
ubuntu-version: '2404'
@@ -51,7 +51,7 @@
platforms: 'linux/amd64'
tag-latest: 'false'
tag-suffix: '-gpu-nvidia-cuda-13'
runs-on: 'ubuntu-latest'
runs-on: 'bigger-runner'
base-image: "ubuntu:22.04"
makeflags: "--jobs=3 --output-sync=target"
ubuntu-version: '2404'
@@ -61,7 +61,7 @@
tag-suffix: '-hipblas'
base-image: "rocm/dev-ubuntu-24.04:6.4.4"
grpc-base-image: "ubuntu:24.04"
runs-on: 'ubuntu-latest'
runs-on: 'bigger-runner'
makeflags: "--jobs=3 --output-sync=target"
ubuntu-version: '2404'
- build-type: 'sycl'
@@ -70,14 +70,14 @@
base-image: "intel/oneapi-basekit:2025.3.0-0-devel-ubuntu24.04"
grpc-base-image: "ubuntu:24.04"
tag-suffix: 'sycl'
runs-on: 'ubuntu-latest'
runs-on: 'bigger-runner'
makeflags: "--jobs=3 --output-sync=target"
ubuntu-version: '2404'
- build-type: 'vulkan'
platforms: 'linux/amd64,linux/arm64'
tag-latest: 'false'
tag-suffix: '-vulkan-core'
runs-on: 'ubuntu-latest'
runs-on: 'bigger-runner'
base-image: "ubuntu:24.04"
makeflags: "--jobs=4 --output-sync=target"
ubuntu-version: '2404'

View File

@@ -265,4 +265,23 @@ jobs:
- name: Test moonshine
run: |
make --jobs=5 --output-sync=target -C backend/python/moonshine
make --jobs=5 --output-sync=target -C backend/python/moonshine test
make --jobs=5 --output-sync=target -C backend/python/moonshine test
tests-pocket-tts:
runs-on: ubuntu-latest
steps:
- name: Clone
uses: actions/checkout@v6
with:
submodules: true
- name: Dependencies
run: |
sudo apt-get update
sudo apt-get install build-essential ffmpeg
sudo apt-get install -y ca-certificates cmake curl patch python3-pip
# Install UV
curl -LsSf https://astral.sh/uv/install.sh | sh
pip install --user --no-cache-dir grpcio-tools==1.64.1
- name: Test pocket-tts
run: |
make --jobs=5 --output-sync=target -C backend/python/pocket-tts
make --jobs=5 --output-sync=target -C backend/python/pocket-tts test

View File

@@ -42,22 +42,22 @@ RUN <<EOT bash
ocaml-core ninja-build pkg-config libxml2-dev wayland-protocols python3-jsonschema \
clang-format qtbase5-dev qt6-base-dev libxcb-glx0-dev sudo xz-utils mesa-vulkan-drivers
if [ "amd64" = "$TARGETARCH" ]; then
wget "https://sdk.lunarg.com/sdk/download/1.4.328.1/linux/vulkansdk-linux-x86_64-1.4.328.1.tar.xz" && \
tar -xf vulkansdk-linux-x86_64-1.4.328.1.tar.xz && \
rm vulkansdk-linux-x86_64-1.4.328.1.tar.xz && \
wget "https://sdk.lunarg.com/sdk/download/1.4.335.0/linux/vulkansdk-linux-x86_64-1.4.335.0.tar.xz" && \
tar -xf vulkansdk-linux-x86_64-1.4.335.0.tar.xz && \
rm vulkansdk-linux-x86_64-1.4.335.0.tar.xz && \
mkdir -p /opt/vulkan-sdk && \
mv 1.4.328.1 /opt/vulkan-sdk/ && \
cd /opt/vulkan-sdk/1.4.328.1 && \
mv 1.4.335.0 /opt/vulkan-sdk/ && \
cd /opt/vulkan-sdk/1.4.335.0 && \
./vulkansdk --no-deps --maxjobs \
vulkan-loader \
vulkan-validationlayers \
vulkan-extensionlayer \
vulkan-tools \
shaderc && \
cp -rfv /opt/vulkan-sdk/1.4.328.1/x86_64/bin/* /usr/bin/ && \
cp -rfv /opt/vulkan-sdk/1.4.328.1/x86_64/lib/* /usr/lib/x86_64-linux-gnu/ && \
cp -rfv /opt/vulkan-sdk/1.4.328.1/x86_64/include/* /usr/include/ && \
cp -rfv /opt/vulkan-sdk/1.4.328.1/x86_64/share/* /usr/share/ && \
cp -rfv /opt/vulkan-sdk/1.4.335.0/x86_64/bin/* /usr/bin/ && \
cp -rfv /opt/vulkan-sdk/1.4.335.0/x86_64/lib/* /usr/lib/x86_64-linux-gnu/ && \
cp -rfv /opt/vulkan-sdk/1.4.335.0/x86_64/include/* /usr/include/ && \
cp -rfv /opt/vulkan-sdk/1.4.335.0/x86_64/share/* /usr/share/ && \
rm -rf /opt/vulkan-sdk
fi
if [ "arm64" = "$TARGETARCH" ]; then

View File

@@ -1,5 +1,5 @@
# Disable parallel execution for backend builds
.NOTPARALLEL: backends/diffusers backends/llama-cpp backends/piper backends/stablediffusion-ggml backends/whisper backends/faster-whisper backends/silero-vad backends/local-store backends/huggingface backends/rfdetr backends/kitten-tts backends/kokoro backends/chatterbox backends/llama-cpp-darwin backends/neutts build-darwin-python-backend build-darwin-go-backend backends/mlx backends/diffuser-darwin backends/mlx-vlm backends/mlx-audio backends/stablediffusion-ggml-darwin backends/vllm backends/moonshine
.NOTPARALLEL: backends/diffusers backends/llama-cpp backends/piper backends/stablediffusion-ggml backends/whisper backends/faster-whisper backends/silero-vad backends/local-store backends/huggingface backends/rfdetr backends/kitten-tts backends/kokoro backends/chatterbox backends/llama-cpp-darwin backends/neutts build-darwin-python-backend build-darwin-go-backend backends/mlx backends/diffuser-darwin backends/mlx-vlm backends/mlx-audio backends/stablediffusion-ggml-darwin backends/vllm backends/moonshine backends/pocket-tts
GOCMD=go
GOTEST=$(GOCMD) test
@@ -9,7 +9,7 @@ LAUNCHER_BINARY_NAME=local-ai-launcher
CUDA_MAJOR_VERSION?=13
CUDA_MINOR_VERSION?=0
UBUNTU_VERSION?=2204
UBUNTU_VERSION?=2404
UBUNTU_CODENAME?=noble
GORELEASER?=
@@ -316,6 +316,7 @@ prepare-test-extra: protogen-python
$(MAKE) -C backend/python/vllm
$(MAKE) -C backend/python/vibevoice
$(MAKE) -C backend/python/moonshine
$(MAKE) -C backend/python/pocket-tts
test-extra: prepare-test-extra
$(MAKE) -C backend/python/transformers test
@@ -324,6 +325,7 @@ test-extra: prepare-test-extra
$(MAKE) -C backend/python/vllm test
$(MAKE) -C backend/python/vibevoice test
$(MAKE) -C backend/python/moonshine test
$(MAKE) -C backend/python/pocket-tts test
DOCKER_IMAGE?=local-ai
DOCKER_AIO_IMAGE?=local-ai-aio
@@ -447,17 +449,16 @@ BACKEND_FASTER_WHISPER = faster-whisper|python|.|false|true
BACKEND_COQUI = coqui|python|.|false|true
BACKEND_BARK = bark|python|.|false|true
BACKEND_EXLLAMA2 = exllama2|python|.|false|true
# Python backends with ./backend context
BACKEND_RFDETR = rfdetr|python|./backend|false|true
BACKEND_KITTEN_TTS = kitten-tts|python|./backend|false|true
BACKEND_NEUTTS = neutts|python|./backend|false|true
BACKEND_KOKORO = kokoro|python|./backend|false|true
BACKEND_VLLM = vllm|python|./backend|false|true
BACKEND_DIFFUSERS = diffusers|python|./backend|--progress=plain|true
BACKEND_CHATTERBOX = chatterbox|python|./backend|false|true
BACKEND_VIBEVOICE = vibevoice|python|./backend|--progress=plain|true
BACKEND_MOONSHINE = moonshine|python|./backend|false|true
BACKEND_RFDETR = rfdetr|python|.|false|true
BACKEND_KITTEN_TTS = kitten-tts|python|.|false|true
BACKEND_NEUTTS = neutts|python|.|false|true
BACKEND_KOKORO = kokoro|python|.|false|true
BACKEND_VLLM = vllm|python|.|false|true
BACKEND_DIFFUSERS = diffusers|python|.|--progress=plain|true
BACKEND_CHATTERBOX = chatterbox|python|.|false|true
BACKEND_VIBEVOICE = vibevoice|python|.|--progress=plain|true
BACKEND_MOONSHINE = moonshine|python|.|false|true
BACKEND_POCKET_TTS = pocket-tts|python|.|false|true
# Helper function to build docker image for a backend
# Usage: $(call docker-build-backend,BACKEND_NAME,DOCKERFILE_TYPE,BUILD_CONTEXT,PROGRESS_FLAG,NEEDS_BACKEND_ARG)
@@ -503,12 +504,13 @@ $(eval $(call generate-docker-build-target,$(BACKEND_DIFFUSERS)))
$(eval $(call generate-docker-build-target,$(BACKEND_CHATTERBOX)))
$(eval $(call generate-docker-build-target,$(BACKEND_VIBEVOICE)))
$(eval $(call generate-docker-build-target,$(BACKEND_MOONSHINE)))
$(eval $(call generate-docker-build-target,$(BACKEND_POCKET_TTS)))
# Pattern rule for docker-save targets
docker-save-%: backend-images
docker save local-ai-backend:$* -o backend-images/$*.tar
docker-build-backends: docker-build-llama-cpp docker-build-rerankers docker-build-vllm docker-build-transformers docker-build-diffusers docker-build-kokoro docker-build-faster-whisper docker-build-coqui docker-build-bark docker-build-chatterbox docker-build-vibevoice docker-build-exllama2 docker-build-moonshine
docker-build-backends: docker-build-llama-cpp docker-build-rerankers docker-build-vllm docker-build-transformers docker-build-diffusers docker-build-kokoro docker-build-faster-whisper docker-build-coqui docker-build-bark docker-build-chatterbox docker-build-vibevoice docker-build-exllama2 docker-build-moonshine docker-build-pocket-tts
########################################################
### END Backends

View File

@@ -111,6 +111,8 @@
## 💻 Quickstart
> ⚠️ **Note:** The `install.sh` script is currently experiencing issues due to the heavy changes currently undergoing in LocalAI and may produce broken or misconfigured installations. Please use Docker installation (see below) or manual binary installation until [issue #8032](https://github.com/mudler/LocalAI/issues/8032) is resolved.
Run the installer script:
```bash
@@ -128,7 +130,7 @@ For more installation options, see [Installer Options](https://localai.io/instal
> Note: the DMGs are not signed by Apple as quarantined. See https://github.com/mudler/LocalAI/issues/6268 for a workaround, fix is tracked here: https://github.com/mudler/LocalAI/issues/6244
Or run with docker:
### Containers (Docker, podman, ...)
> **💡 Docker Run vs Docker Start**
>
@@ -137,13 +139,13 @@ Or run with docker:
>
> If you've already run LocalAI before and want to start it again, use: `docker start -i local-ai`
### CPU only image:
#### CPU only image:
```bash
docker run -ti --name local-ai -p 8080:8080 localai/localai:latest
```
### NVIDIA GPU Images:
#### NVIDIA GPU Images:
```bash
# CUDA 13.0
@@ -160,25 +162,25 @@ docker run -ti --name local-ai -p 8080:8080 --gpus all localai/localai:latest-nv
docker run -ti --name local-ai -p 8080:8080 --gpus all localai/localai:latest-nvidia-l4t-arm64-cuda-13
```
### AMD GPU Images (ROCm):
#### AMD GPU Images (ROCm):
```bash
docker run -ti --name local-ai -p 8080:8080 --device=/dev/kfd --device=/dev/dri --group-add=video localai/localai:latest-gpu-hipblas
```
### Intel GPU Images (oneAPI):
#### Intel GPU Images (oneAPI):
```bash
docker run -ti --name local-ai -p 8080:8080 --device=/dev/dri/card1 --device=/dev/dri/renderD128 localai/localai:latest-gpu-intel
```
### Vulkan GPU Images:
#### Vulkan GPU Images:
```bash
docker run -ti --name local-ai -p 8080:8080 localai/localai:latest-gpu-vulkan
```
### AIO Images (pre-downloaded models):
#### AIO Images (pre-downloaded models):
```bash
# CPU version
@@ -295,6 +297,7 @@ LocalAI supports a comprehensive range of AI backends with multiple acceleration
| **silero-vad** | Voice Activity Detection | CPU |
| **neutts** | Text-to-speech with voice cloning | CUDA 12/13, ROCm, CPU |
| **vibevoice** | Real-time TTS with voice cloning | CUDA 12/13, ROCm, Intel, CPU |
| **pocket-tts** | Lightweight CPU-based TTS | CUDA 12/13, ROCm, Intel, CPU |
### Image & Video Generation
| Backend | Description | Acceleration Support |
@@ -316,8 +319,8 @@ LocalAI supports a comprehensive range of AI backends with multiple acceleration
|-------------------|-------------------|------------------|
| **NVIDIA CUDA 12** | All CUDA-compatible backends | Nvidia hardware |
| **NVIDIA CUDA 13** | All CUDA-compatible backends | Nvidia hardware |
| **AMD ROCm** | llama.cpp, whisper, vllm, transformers, diffusers, rerankers, coqui, kokoro, bark, neutts, vibevoice | AMD Graphics |
| **Intel oneAPI** | llama.cpp, whisper, stablediffusion, vllm, transformers, diffusers, rfdetr, rerankers, exllama2, coqui, kokoro, bark, vibevoice | Intel Arc, Intel iGPUs |
| **AMD ROCm** | llama.cpp, whisper, vllm, transformers, diffusers, rerankers, coqui, kokoro, bark, neutts, vibevoice, pocket-tts | AMD Graphics |
| **Intel oneAPI** | llama.cpp, whisper, stablediffusion, vllm, transformers, diffusers, rfdetr, rerankers, exllama2, coqui, kokoro, bark, vibevoice, pocket-tts | Intel Arc, Intel iGPUs |
| **Apple Metal** | llama.cpp, whisper, diffusers, MLX, MLX-VLM, bark-cpp | Apple M1/M2/M3+ |
| **Vulkan** | llama.cpp, whisper, stablediffusion | Cross-platform GPUs |
| **NVIDIA Jetson (CUDA 12)** | llama.cpp, whisper, stablediffusion, diffusers, rfdetr | ARM64 embedded AI (AGX Orin, etc.) |

View File

@@ -47,22 +47,22 @@ RUN <<EOT bash
ocaml-core ninja-build pkg-config libxml2-dev wayland-protocols python3-jsonschema \
clang-format qtbase5-dev qt6-base-dev libxcb-glx0-dev sudo xz-utils
if [ "amd64" = "$TARGETARCH" ]; then
wget "https://sdk.lunarg.com/sdk/download/1.4.328.1/linux/vulkansdk-linux-x86_64-1.4.328.1.tar.xz" && \
tar -xf vulkansdk-linux-x86_64-1.4.328.1.tar.xz && \
rm vulkansdk-linux-x86_64-1.4.328.1.tar.xz && \
wget "https://sdk.lunarg.com/sdk/download/1.4.335.0/linux/vulkansdk-linux-x86_64-1.4.335.0.tar.xz" && \
tar -xf vulkansdk-linux-x86_64-1.4.335.0.tar.xz && \
rm vulkansdk-linux-x86_64-1.4.335.0.tar.xz && \
mkdir -p /opt/vulkan-sdk && \
mv 1.4.328.1 /opt/vulkan-sdk/ && \
cd /opt/vulkan-sdk/1.4.328.1 && \
mv 1.4.335.0 /opt/vulkan-sdk/ && \
cd /opt/vulkan-sdk/1.4.335.0 && \
./vulkansdk --no-deps --maxjobs \
vulkan-loader \
vulkan-validationlayers \
vulkan-extensionlayer \
vulkan-tools \
shaderc && \
cp -rfv /opt/vulkan-sdk/1.4.328.1/x86_64/bin/* /usr/bin/ && \
cp -rfv /opt/vulkan-sdk/1.4.328.1/x86_64/lib/* /usr/lib/x86_64-linux-gnu/ && \
cp -rfv /opt/vulkan-sdk/1.4.328.1/x86_64/include/* /usr/include/ && \
cp -rfv /opt/vulkan-sdk/1.4.328.1/x86_64/share/* /usr/share/ && \
cp -rfv /opt/vulkan-sdk/1.4.335.0/x86_64/bin/* /usr/bin/ && \
cp -rfv /opt/vulkan-sdk/1.4.335.0/x86_64/lib/* /usr/lib/x86_64-linux-gnu/ && \
cp -rfv /opt/vulkan-sdk/1.4.335.0/x86_64/include/* /usr/include/ && \
cp -rfv /opt/vulkan-sdk/1.4.335.0/x86_64/share/* /usr/share/ && \
rm -rf /opt/vulkan-sdk
fi
if [ "arm64" = "$TARGETARCH" ]; then

View File

@@ -104,22 +104,22 @@ RUN <<EOT bash
ocaml-core ninja-build pkg-config libxml2-dev wayland-protocols python3-jsonschema \
clang-format qtbase5-dev qt6-base-dev libxcb-glx0-dev sudo xz-utils
if [ "amd64" = "$TARGETARCH" ]; then
wget "https://sdk.lunarg.com/sdk/download/1.4.328.1/linux/vulkansdk-linux-x86_64-1.4.328.1.tar.xz" && \
tar -xf vulkansdk-linux-x86_64-1.4.328.1.tar.xz && \
rm vulkansdk-linux-x86_64-1.4.328.1.tar.xz && \
wget "https://sdk.lunarg.com/sdk/download/1.4.335.0/linux/vulkansdk-linux-x86_64-1.4.335.0.tar.xz" && \
tar -xf vulkansdk-linux-x86_64-1.4.335.0.tar.xz && \
rm vulkansdk-linux-x86_64-1.4.335.0.tar.xz && \
mkdir -p /opt/vulkan-sdk && \
mv 1.4.328.1 /opt/vulkan-sdk/ && \
cd /opt/vulkan-sdk/1.4.328.1 && \
mv 1.4.335.0 /opt/vulkan-sdk/ && \
cd /opt/vulkan-sdk/1.4.335.0 && \
./vulkansdk --no-deps --maxjobs \
vulkan-loader \
vulkan-validationlayers \
vulkan-extensionlayer \
vulkan-tools \
shaderc && \
cp -rfv /opt/vulkan-sdk/1.4.328.1/x86_64/bin/* /usr/bin/ && \
cp -rfv /opt/vulkan-sdk/1.4.328.1/x86_64/lib/* /usr/lib/x86_64-linux-gnu/ && \
cp -rfv /opt/vulkan-sdk/1.4.328.1/x86_64/include/* /usr/include/ && \
cp -rfv /opt/vulkan-sdk/1.4.328.1/x86_64/share/* /usr/share/ && \
cp -rfv /opt/vulkan-sdk/1.4.335.0/x86_64/bin/* /usr/bin/ && \
cp -rfv /opt/vulkan-sdk/1.4.335.0/x86_64/lib/* /usr/lib/x86_64-linux-gnu/ && \
cp -rfv /opt/vulkan-sdk/1.4.335.0/x86_64/include/* /usr/include/ && \
cp -rfv /opt/vulkan-sdk/1.4.335.0/x86_64/share/* /usr/share/ && \
rm -rf /opt/vulkan-sdk
fi
if [ "arm64" = "$TARGETARCH" ]; then

View File

@@ -61,22 +61,22 @@ RUN <<EOT bash
ocaml-core ninja-build pkg-config libxml2-dev wayland-protocols python3-jsonschema \
clang-format qtbase5-dev qt6-base-dev libxcb-glx0-dev sudo xz-utils
if [ "amd64" = "$TARGETARCH" ]; then
wget "https://sdk.lunarg.com/sdk/download/1.4.328.1/linux/vulkansdk-linux-x86_64-1.4.328.1.tar.xz" && \
tar -xf vulkansdk-linux-x86_64-1.4.328.1.tar.xz && \
rm vulkansdk-linux-x86_64-1.4.328.1.tar.xz && \
wget "https://sdk.lunarg.com/sdk/download/1.4.335.0/linux/vulkansdk-linux-x86_64-1.4.335.0.tar.xz" && \
tar -xf vulkansdk-linux-x86_64-1.4.335.0.tar.xz && \
rm vulkansdk-linux-x86_64-1.4.335.0.tar.xz && \
mkdir -p /opt/vulkan-sdk && \
mv 1.4.328.1 /opt/vulkan-sdk/ && \
cd /opt/vulkan-sdk/1.4.328.1 && \
mv 1.4.335.0 /opt/vulkan-sdk/ && \
cd /opt/vulkan-sdk/1.4.335.0 && \
./vulkansdk --no-deps --maxjobs \
vulkan-loader \
vulkan-validationlayers \
vulkan-extensionlayer \
vulkan-tools \
shaderc && \
cp -rfv /opt/vulkan-sdk/1.4.328.1/x86_64/bin/* /usr/bin/ && \
cp -rfv /opt/vulkan-sdk/1.4.328.1/x86_64/lib/* /usr/lib/x86_64-linux-gnu/ && \
cp -rfv /opt/vulkan-sdk/1.4.328.1/x86_64/include/* /usr/include/ && \
cp -rfv /opt/vulkan-sdk/1.4.328.1/x86_64/share/* /usr/share/ && \
cp -rfv /opt/vulkan-sdk/1.4.335.0/x86_64/bin/* /usr/bin/ && \
cp -rfv /opt/vulkan-sdk/1.4.335.0/x86_64/lib/* /usr/lib/x86_64-linux-gnu/ && \
cp -rfv /opt/vulkan-sdk/1.4.335.0/x86_64/include/* /usr/include/ && \
cp -rfv /opt/vulkan-sdk/1.4.335.0/x86_64/share/* /usr/share/ && \
rm -rf /opt/vulkan-sdk
fi
if [ "arm64" = "$TARGETARCH" ]; then

View File

@@ -1,5 +1,5 @@
LLAMA_VERSION?=593da7fa49503b68f9f01700be9f508f1e528992
LLAMA_VERSION?=785a71008573e2d84728fb0ba9e851d72d3f8fab
LLAMA_REPO?=https://github.com/ggerganov/llama.cpp
CMAKE_ARGS?=

View File

@@ -8,7 +8,7 @@ JOBS?=$(shell nproc --ignore=1)
# stablediffusion.cpp (ggml)
STABLEDIFFUSION_GGML_REPO?=https://github.com/leejet/stable-diffusion.cpp
STABLEDIFFUSION_GGML_VERSION?=0e52afc6513cc2dea9a1a017afc4a008d5acf2b0
STABLEDIFFUSION_GGML_VERSION?=7010bb4dff7bd55b03d35ef9772142c21699eba9
CMAKE_ARGS+=-DGGML_MAX_NAME=128

View File

@@ -8,7 +8,7 @@ JOBS?=$(shell nproc --ignore=1)
# whisper.cpp version
WHISPER_REPO?=https://github.com/ggml-org/whisper.cpp
WHISPER_CPP_VERSION?=679bdb53dbcbfb3e42685f50c7ff367949fd4d48
WHISPER_CPP_VERSION?=2eeeba56e9edd762b4b38467bab96c2517163158
SO_TARGET?=libgowhisper.so
CMAKE_ARGS+=-DBUILD_SHARED_LIBS=OFF

View File

@@ -428,6 +428,28 @@
nvidia-l4t-cuda-12: "nvidia-l4t-vibevoice"
nvidia-l4t-cuda-13: "cuda13-nvidia-l4t-arm64-vibevoice"
icon: https://avatars.githubusercontent.com/u/6154722?s=200&v=4
- &pocket-tts
urls:
- https://github.com/kyutai-labs/pocket-tts
description: |
Pocket TTS is a lightweight text-to-speech model designed to run efficiently on CPUs.
tags:
- text-to-speech
- TTS
license: mit
name: "pocket-tts"
alias: "pocket-tts"
capabilities:
nvidia: "cuda12-pocket-tts"
intel: "intel-pocket-tts"
amd: "rocm-pocket-tts"
nvidia-l4t: "nvidia-l4t-pocket-tts"
default: "cpu-pocket-tts"
nvidia-cuda-13: "cuda13-pocket-tts"
nvidia-cuda-12: "cuda12-pocket-tts"
nvidia-l4t-cuda-12: "nvidia-l4t-pocket-tts"
nvidia-l4t-cuda-13: "cuda13-nvidia-l4t-arm64-pocket-tts"
icon: https://avatars.githubusercontent.com/u/6154722?s=200&v=4
- &piper
name: "piper"
uri: "quay.io/go-skynet/local-ai-backends:latest-piper"
@@ -1605,3 +1627,86 @@
uri: "quay.io/go-skynet/local-ai-backends:master-nvidia-l4t-cuda-13-arm64-vibevoice"
mirrors:
- localai/localai-backends:master-nvidia-l4t-cuda-13-arm64-vibevoice
## pocket-tts
- !!merge <<: *pocket-tts
name: "pocket-tts-development"
capabilities:
nvidia: "cuda12-pocket-tts-development"
intel: "intel-pocket-tts-development"
amd: "rocm-pocket-tts-development"
nvidia-l4t: "nvidia-l4t-pocket-tts-development"
default: "cpu-pocket-tts-development"
nvidia-cuda-13: "cuda13-pocket-tts-development"
nvidia-cuda-12: "cuda12-pocket-tts-development"
nvidia-l4t-cuda-12: "nvidia-l4t-pocket-tts-development"
nvidia-l4t-cuda-13: "cuda13-nvidia-l4t-arm64-pocket-tts-development"
- !!merge <<: *pocket-tts
name: "cpu-pocket-tts"
uri: "quay.io/go-skynet/local-ai-backends:latest-cpu-pocket-tts"
mirrors:
- localai/localai-backends:latest-cpu-pocket-tts
- !!merge <<: *pocket-tts
name: "cpu-pocket-tts-development"
uri: "quay.io/go-skynet/local-ai-backends:master-cpu-pocket-tts"
mirrors:
- localai/localai-backends:master-cpu-pocket-tts
- !!merge <<: *pocket-tts
name: "cuda12-pocket-tts"
uri: "quay.io/go-skynet/local-ai-backends:latest-gpu-nvidia-cuda-12-pocket-tts"
mirrors:
- localai/localai-backends:latest-gpu-nvidia-cuda-12-pocket-tts
- !!merge <<: *pocket-tts
name: "cuda12-pocket-tts-development"
uri: "quay.io/go-skynet/local-ai-backends:master-gpu-nvidia-cuda-12-pocket-tts"
mirrors:
- localai/localai-backends:master-gpu-nvidia-cuda-12-pocket-tts
- !!merge <<: *pocket-tts
name: "cuda13-pocket-tts"
uri: "quay.io/go-skynet/local-ai-backends:latest-gpu-nvidia-cuda-13-pocket-tts"
mirrors:
- localai/localai-backends:latest-gpu-nvidia-cuda-13-pocket-tts
- !!merge <<: *pocket-tts
name: "cuda13-pocket-tts-development"
uri: "quay.io/go-skynet/local-ai-backends:master-gpu-nvidia-cuda-13-pocket-tts"
mirrors:
- localai/localai-backends:master-gpu-nvidia-cuda-13-pocket-tts
- !!merge <<: *pocket-tts
name: "intel-pocket-tts"
uri: "quay.io/go-skynet/local-ai-backends:latest-gpu-intel-pocket-tts"
mirrors:
- localai/localai-backends:latest-gpu-intel-pocket-tts
- !!merge <<: *pocket-tts
name: "intel-pocket-tts-development"
uri: "quay.io/go-skynet/local-ai-backends:master-gpu-intel-pocket-tts"
mirrors:
- localai/localai-backends:master-gpu-intel-pocket-tts
- !!merge <<: *pocket-tts
name: "rocm-pocket-tts"
uri: "quay.io/go-skynet/local-ai-backends:latest-gpu-rocm-hipblas-pocket-tts"
mirrors:
- localai/localai-backends:latest-gpu-rocm-hipblas-pocket-tts
- !!merge <<: *pocket-tts
name: "rocm-pocket-tts-development"
uri: "quay.io/go-skynet/local-ai-backends:master-gpu-rocm-hipblas-pocket-tts"
mirrors:
- localai/localai-backends:master-gpu-rocm-hipblas-pocket-tts
- !!merge <<: *pocket-tts
name: "nvidia-l4t-pocket-tts"
uri: "quay.io/go-skynet/local-ai-backends:latest-nvidia-l4t-pocket-tts"
mirrors:
- localai/localai-backends:latest-nvidia-l4t-pocket-tts
- !!merge <<: *pocket-tts
name: "nvidia-l4t-pocket-tts-development"
uri: "quay.io/go-skynet/local-ai-backends:master-nvidia-l4t-pocket-tts"
mirrors:
- localai/localai-backends:master-nvidia-l4t-pocket-tts
- !!merge <<: *pocket-tts
name: "cuda13-nvidia-l4t-arm64-pocket-tts"
uri: "quay.io/go-skynet/local-ai-backends:latest-nvidia-l4t-cuda-13-arm64-pocket-tts"
mirrors:
- localai/localai-backends:latest-nvidia-l4t-cuda-13-arm64-pocket-tts
- !!merge <<: *pocket-tts
name: "cuda13-nvidia-l4t-arm64-pocket-tts-development"
uri: "quay.io/go-skynet/local-ai-backends:master-nvidia-l4t-cuda-13-arm64-pocket-tts"
mirrors:
- localai/localai-backends:master-nvidia-l4t-cuda-13-arm64-pocket-tts

View File

@@ -17,4 +17,9 @@ if [ "x${BUILD_PROFILE}" == "xintel" ]; then
fi
EXTRA_PIP_INSTALL_FLAGS+=" --no-build-isolation"
if [ "x${BUILD_PROFILE}" == "xl4t12" ]; then
USE_PIP=true
fi
installRequirements

View File

@@ -0,0 +1,5 @@
# Build dependencies needed for packages installed from source (e.g., git dependencies)
# When using --no-build-isolation, these must be installed in the venv first
wheel
setuptools
packaging

View File

@@ -41,6 +41,14 @@ from optimum.quanto import freeze, qfloat8, quantize
from transformers import T5EncoderModel
from safetensors.torch import load_file
# Import LTX-2 specific utilities
try:
from diffusers.pipelines.ltx2.export_utils import encode_video as ltx2_encode_video
LTX2_AVAILABLE = True
except ImportError:
LTX2_AVAILABLE = False
ltx2_encode_video = None
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
COMPEL = os.environ.get("COMPEL", "0") == "1"
XPU = os.environ.get("XPU", "0") == "1"
@@ -290,6 +298,20 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
pipe.enable_model_cpu_offload()
return pipe
# LTX2ImageToVideoPipeline - needs img2vid flag, CPU offload, and special handling
if pipeline_type == "LTX2ImageToVideoPipeline":
self.img2vid = True
self.ltx2_pipeline = True
pipe = load_diffusers_pipeline(
class_name="LTX2ImageToVideoPipeline",
model_id=request.Model,
torch_dtype=torchType,
variant=variant
)
if not DISABLE_CPU_OFFLOAD:
pipe.enable_model_cpu_offload()
return pipe
# ================================================================
# Dynamic pipeline loading - the default path for most pipelines
# Uses the dynamic loader to instantiate any pipeline by class name
@@ -404,6 +426,7 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
fromSingleFile = request.Model.startswith("http") or request.Model.startswith("/") or local
self.img2vid = False
self.txt2vid = False
self.ltx2_pipeline = False
# Load pipeline using dynamic loader
# Special cases that require custom initialization are handled first
@@ -686,7 +709,44 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
print(f"Generating video with {kwargs=}", file=sys.stderr)
# Generate video frames based on pipeline type
if self.PipelineType == "WanPipeline":
if self.ltx2_pipeline or self.PipelineType == "LTX2ImageToVideoPipeline":
# LTX-2 image-to-video generation with audio
if not LTX2_AVAILABLE:
return backend_pb2.Result(success=False, message="LTX-2 pipeline requires diffusers.pipelines.ltx2.export_utils")
# LTX-2 uses 'image' parameter instead of 'start_image'
if request.start_image:
image = load_image(request.start_image)
kwargs["image"] = image
# Remove start_image if it was added
kwargs.pop("start_image", None)
# LTX-2 uses 'frame_rate' instead of 'fps'
frame_rate = float(fps)
kwargs["frame_rate"] = frame_rate
# LTX-2 requires output_type="np" and return_dict=False
kwargs["output_type"] = "np"
kwargs["return_dict"] = False
# Generate video and audio
video, audio = self.pipe(**kwargs)
# Convert video to uint8 format
video = (video * 255).round().astype("uint8")
video = torch.from_numpy(video)
# Use LTX-2's encode_video function which handles audio
ltx2_encode_video(
video[0],
fps=frame_rate,
audio=audio[0].float().cpu(),
audio_sample_rate=self.pipe.vocoder.config.output_sampling_rate,
output_path=request.dst,
)
return backend_pb2.Result(message="Video generated successfully", success=True)
elif self.PipelineType == "WanPipeline":
# WAN2.2 text-to-video generation
output = self.pipe(**kwargs)
frames = output.frames[0] # WAN2.2 returns frames in this format
@@ -727,7 +787,7 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
else:
return backend_pb2.Result(success=False, message=f"Pipeline {self.PipelineType} does not support video generation")
# Export video
# Export video (for non-LTX-2 pipelines)
export_to_video(frames, request.dst, fps=fps)
return backend_pb2.Result(message="Video generated successfully", success=True)

View File

@@ -16,6 +16,10 @@ if [ "x${BUILD_PROFILE}" == "xintel" ]; then
EXTRA_PIP_INSTALL_FLAGS+=" --upgrade --index-strategy=unsafe-first-match"
fi
if [ "x${BUILD_PROFILE}" == "xl4t12" ]; then
USE_PIP=true
fi
# Use python 3.12 for l4t
if [ "x${BUILD_PROFILE}" == "xl4t13" ]; then
PYTHON_VERSION="3.12"

View File

@@ -16,4 +16,8 @@ if [ "x${BUILD_PROFILE}" == "xintel" ]; then
EXTRA_PIP_INSTALL_FLAGS+=" --upgrade --index-strategy=unsafe-first-match"
fi
if [ "x${BUILD_PROFILE}" == "xl4t12" ]; then
USE_PIP=true
fi
installRequirements

View File

@@ -26,6 +26,12 @@ fi
EXTRA_PIP_INSTALL_FLAGS+=" --no-build-isolation"
if [ "x${BUILD_PROFILE}" == "xl4t12" ]; then
USE_PIP=true
fi
git clone https://github.com/neuphonic/neutts-air neutts-air
cp -rfv neutts-air/neuttsair ./

View File

@@ -0,0 +1,23 @@
.PHONY: pocket-tts
pocket-tts:
bash install.sh
.PHONY: run
run: pocket-tts
@echo "Running pocket-tts..."
bash run.sh
@echo "pocket-tts run."
.PHONY: test
test: pocket-tts
@echo "Testing pocket-tts..."
bash test.sh
@echo "pocket-tts tested."
.PHONY: protogen-clean
protogen-clean:
$(RM) backend_pb2_grpc.py backend_pb2.py
.PHONY: clean
clean: protogen-clean
rm -rf venv __pycache__

View File

@@ -0,0 +1,255 @@
#!/usr/bin/env python3
"""
This is an extra gRPC server of LocalAI for Pocket TTS
"""
from concurrent import futures
import time
import argparse
import signal
import sys
import os
import traceback
import scipy.io.wavfile
import backend_pb2
import backend_pb2_grpc
import torch
from pocket_tts import TTSModel
import grpc
def is_float(s):
"""Check if a string can be converted to float."""
try:
float(s)
return True
except ValueError:
return False
def is_int(s):
"""Check if a string can be converted to int."""
try:
int(s)
return True
except ValueError:
return False
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
# If MAX_WORKERS are specified in the environment use it, otherwise default to 1
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1'))
# Implement the BackendServicer class with the service methods
class BackendServicer(backend_pb2_grpc.BackendServicer):
"""
BackendServicer is the class that implements the gRPC service
"""
def Health(self, request, context):
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
def LoadModel(self, request, context):
# Get device
if torch.cuda.is_available():
print("CUDA is available", file=sys.stderr)
device = "cuda"
else:
print("CUDA is not available", file=sys.stderr)
device = "cpu"
mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available()
if mps_available:
device = "mps"
if not torch.cuda.is_available() and request.CUDA:
return backend_pb2.Result(success=False, message="CUDA is not available")
# Normalize potential 'mpx' typo to 'mps'
if device == "mpx":
print("Note: device 'mpx' detected, treating it as 'mps'.", file=sys.stderr)
device = "mps"
# Validate mps availability if requested
if device == "mps" and not torch.backends.mps.is_available():
print("Warning: MPS not available. Falling back to CPU.", file=sys.stderr)
device = "cpu"
self.device = device
options = request.Options
# empty dict
self.options = {}
# The options are a list of strings in this form optname:optvalue
# We are storing all the options in a dict so we can use it later when
# generating the audio
for opt in options:
if ":" not in opt:
continue
key, value = opt.split(":", 1) # Split only on first colon
# if value is a number, convert it to the appropriate type
if is_float(value):
value = float(value)
elif is_int(value):
value = int(value)
elif value.lower() in ["true", "false"]:
value = value.lower() == "true"
self.options[key] = value
# Default voice for caching
self.default_voice_url = self.options.get("default_voice", None)
self._voice_cache = {}
try:
print("Loading Pocket TTS model", file=sys.stderr)
self.tts_model = TTSModel.load_model()
print(f"Model loaded successfully. Sample rate: {self.tts_model.sample_rate}", file=sys.stderr)
# Pre-load default voice if specified
if self.default_voice_url:
try:
print(f"Pre-loading default voice: {self.default_voice_url}", file=sys.stderr)
voice_state = self.tts_model.get_state_for_audio_prompt(self.default_voice_url)
self._voice_cache[self.default_voice_url] = voice_state
print("Default voice loaded successfully", file=sys.stderr)
except Exception as e:
print(f"Warning: Failed to pre-load default voice: {e}", file=sys.stderr)
except Exception as err:
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
return backend_pb2.Result(message="Model loaded successfully", success=True)
def _get_voice_state(self, voice_input):
"""
Get voice state from cache or load it.
voice_input can be:
- HuggingFace URL (e.g., hf://kyutai/tts-voices/alba-mackenna/casual.wav)
- Local file path
- None (use default)
"""
# Use default if no voice specified
if not voice_input:
voice_input = self.default_voice_url
if not voice_input:
return None
# Check cache first
if voice_input in self._voice_cache:
return self._voice_cache[voice_input]
# Load voice state
try:
print(f"Loading voice from: {voice_input}", file=sys.stderr)
voice_state = self.tts_model.get_state_for_audio_prompt(voice_input)
self._voice_cache[voice_input] = voice_state
return voice_state
except Exception as e:
print(f"Error loading voice from {voice_input}: {e}", file=sys.stderr)
return None
def TTS(self, request, context):
try:
# Determine voice input
# Priority: request.voice > AudioPath (from ModelOptions) > default
voice_input = None
if request.voice:
voice_input = request.voice
elif hasattr(request, 'AudioPath') and request.AudioPath:
# Use AudioPath as voice file
if os.path.isabs(request.AudioPath):
voice_input = request.AudioPath
elif hasattr(request, 'ModelFile') and request.ModelFile:
model_file_base = os.path.dirname(request.ModelFile)
voice_input = os.path.join(model_file_base, request.AudioPath)
elif hasattr(request, 'ModelPath') and request.ModelPath:
voice_input = os.path.join(request.ModelPath, request.AudioPath)
else:
voice_input = request.AudioPath
# Get voice state
voice_state = self._get_voice_state(voice_input)
if voice_state is None:
return backend_pb2.Result(
success=False,
message=f"Voice not found or failed to load: {voice_input}. Please provide a valid voice URL or file path."
)
# Prepare text
text = request.text.strip()
if not text:
return backend_pb2.Result(
success=False,
message="Text is empty"
)
print(f"Generating audio for text: {text[:50]}...", file=sys.stderr)
# Generate audio
audio = self.tts_model.generate_audio(voice_state, text)
# Audio is a 1D torch tensor containing PCM data
if audio is None or audio.numel() == 0:
return backend_pb2.Result(
success=False,
message="No audio generated"
)
# Save audio to file
output_path = request.dst
if not output_path:
output_path = "/tmp/pocket-tts-output.wav"
# Ensure output directory exists
output_dir = os.path.dirname(output_path)
if output_dir and not os.path.exists(output_dir):
os.makedirs(output_dir, exist_ok=True)
# Convert torch tensor to numpy and save
audio_numpy = audio.numpy()
scipy.io.wavfile.write(output_path, self.tts_model.sample_rate, audio_numpy)
print(f"Saved audio to {output_path}", file=sys.stderr)
except Exception as err:
print(f"Error in TTS: {err}", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
return backend_pb2.Result(success=True)
def serve(address):
server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS),
options=[
('grpc.max_message_length', 50 * 1024 * 1024), # 50MB
('grpc.max_send_message_length', 50 * 1024 * 1024), # 50MB
('grpc.max_receive_message_length', 50 * 1024 * 1024), # 50MB
])
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
server.add_insecure_port(address)
server.start()
print("Server started. Listening on: " + address, file=sys.stderr)
# Define the signal handler function
def signal_handler(sig, frame):
print("Received termination signal. Shutting down...")
server.stop(0)
sys.exit(0)
# Set the signal handlers for SIGINT and SIGTERM
signal.signal(signal.SIGINT, signal_handler)
signal.signal(signal.SIGTERM, signal_handler)
try:
while True:
time.sleep(_ONE_DAY_IN_SECONDS)
except KeyboardInterrupt:
server.stop(0)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run the gRPC server.")
parser.add_argument(
"--addr", default="localhost:50051", help="The address to bind the server to."
)
args = parser.parse_args()
serve(args.addr)

View File

@@ -0,0 +1,30 @@
#!/bin/bash
set -e
backend_dir=$(dirname $0)
if [ -d $backend_dir/common ]; then
source $backend_dir/common/libbackend.sh
else
source $backend_dir/../common/libbackend.sh
fi
# This is here because the Intel pip index is broken and returns 200 status codes for every package name, it just doesn't return any package links.
# This makes uv think that the package exists in the Intel pip index, and by default it stops looking at other pip indexes once it finds a match.
# We need uv to continue falling through to the pypi default index to find optimum[openvino] in the pypi index
# the --upgrade actually allows us to *downgrade* torch to the version provided in the Intel pip index
if [ "x${BUILD_PROFILE}" == "xintel" ]; then
EXTRA_PIP_INSTALL_FLAGS+=" --upgrade --index-strategy=unsafe-first-match"
fi
# Use python 3.12 for l4t
if [ "x${BUILD_PROFILE}" == "xl4t13" ]; then
PYTHON_VERSION="3.12"
PYTHON_PATCH="12"
PY_STANDALONE_TAG="20251120"
fi
if [ "x${BUILD_PROFILE}" == "xl4t12" ]; then
USE_PIP=true
fi
installRequirements

View File

@@ -0,0 +1,11 @@
#!/bin/bash
set -e
backend_dir=$(dirname $0)
if [ -d $backend_dir/common ]; then
source $backend_dir/common/libbackend.sh
else
source $backend_dir/../common/libbackend.sh
fi
python3 -m grpc_tools.protoc -I../.. -I./ --python_out=. --grpc_python_out=. backend.proto

View File

@@ -0,0 +1,4 @@
--extra-index-url https://download.pytorch.org/whl/cpu
pocket-tts
scipy
torch

View File

@@ -0,0 +1,4 @@
--extra-index-url https://download.pytorch.org/whl/cu121
pocket-tts
scipy
torch

View File

@@ -0,0 +1,4 @@
--extra-index-url https://download.pytorch.org/whl/cu130
pocket-tts
scipy
torch

View File

@@ -0,0 +1,4 @@
--extra-index-url https://download.pytorch.org/whl/rocm6.3
pocket-tts
scipy
torch==2.7.1+rocm6.3

View File

@@ -0,0 +1,4 @@
--extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
pocket-tts
scipy
torch==2.5.1+cxx11.abi

View File

@@ -0,0 +1,4 @@
--extra-index-url https://pypi.jetson-ai-lab.io/jp6/cu129/
pocket-tts
scipy
torch

View File

@@ -0,0 +1,4 @@
--extra-index-url https://download.pytorch.org/whl/cu130
pocket-tts
scipy
torch

View File

@@ -0,0 +1,4 @@
pocket-tts
scipy
torch==2.7.1
torchvision==0.22.1

View File

@@ -0,0 +1,4 @@
grpcio==1.71.0
protobuf
certifi
packaging==24.1

View File

@@ -0,0 +1,9 @@
#!/bin/bash
backend_dir=$(dirname $0)
if [ -d $backend_dir/common ]; then
source $backend_dir/common/libbackend.sh
else
source $backend_dir/../common/libbackend.sh
fi
startBackend $@

View File

@@ -0,0 +1,141 @@
"""
A test script to test the gRPC service
"""
import unittest
import subprocess
import time
import os
import tempfile
import backend_pb2
import backend_pb2_grpc
import grpc
class TestBackendServicer(unittest.TestCase):
"""
TestBackendServicer is the class that tests the gRPC service
"""
def setUp(self):
"""
This method sets up the gRPC service by starting the server
"""
self.service = subprocess.Popen(["python3", "backend.py", "--addr", "localhost:50051"])
time.sleep(30)
def tearDown(self) -> None:
"""
This method tears down the gRPC service by terminating the server
"""
self.service.terminate()
self.service.wait()
def test_server_startup(self):
"""
This method tests if the server starts up successfully
"""
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.Health(backend_pb2.HealthMessage())
self.assertEqual(response.message, b'OK')
except Exception as err:
print(err)
self.fail("Server failed to start")
finally:
self.tearDown()
def test_load_model(self):
"""
This method tests if the model is loaded successfully
"""
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.LoadModel(backend_pb2.ModelOptions())
print(response)
self.assertTrue(response.success)
self.assertEqual(response.message, "Model loaded successfully")
except Exception as err:
print(err)
self.fail("LoadModel service failed")
finally:
self.tearDown()
def test_tts_with_hf_voice(self):
"""
This method tests TTS generation with HuggingFace voice URL
"""
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
# Load model
response = stub.LoadModel(backend_pb2.ModelOptions())
self.assertTrue(response.success)
# Create temporary output file
with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as tmp_file:
output_path = tmp_file.name
# Test TTS with HuggingFace voice URL
tts_request = backend_pb2.TTSRequest(
text="Hello world, this is a test.",
dst=output_path,
voice="azelma"
)
tts_response = stub.TTS(tts_request)
self.assertTrue(tts_response.success)
# Verify output file exists and is not empty
self.assertTrue(os.path.exists(output_path))
self.assertGreater(os.path.getsize(output_path), 0)
# Cleanup
os.unlink(output_path)
except Exception as err:
print(err)
self.fail("TTS service failed")
finally:
self.tearDown()
def test_tts_with_default_voice(self):
"""
This method tests TTS generation with default voice (via AudioPath in LoadModel)
"""
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
# Load model with default voice
load_request = backend_pb2.ModelOptions(
Options=["default_voice:azelma"]
)
response = stub.LoadModel(load_request)
self.assertTrue(response.success)
# Create temporary output file
with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as tmp_file:
output_path = tmp_file.name
# Test TTS without specifying voice (should use default)
tts_request = backend_pb2.TTSRequest(
text="Hello world, this is a test.",
dst=output_path
)
tts_response = stub.TTS(tts_request)
self.assertTrue(tts_response.success)
# Verify output file exists and is not empty
self.assertTrue(os.path.exists(output_path))
self.assertGreater(os.path.getsize(output_path), 0)
# Cleanup
os.unlink(output_path)
except Exception as err:
print(err)
self.fail("TTS service with default voice failed")
finally:
self.tearDown()

View File

@@ -0,0 +1,11 @@
#!/bin/bash
set -e
backend_dir=$(dirname $0)
if [ -d $backend_dir/common ]; then
source $backend_dir/common/libbackend.sh
else
source $backend_dir/../common/libbackend.sh
fi
runUnittests

View File

@@ -6,4 +6,4 @@ transformers
bitsandbytes
outetts
sentence-transformers==5.2.0
protobuf==6.33.2
protobuf==6.33.4

View File

@@ -6,4 +6,4 @@ transformers
bitsandbytes
outetts
sentence-transformers==5.2.0
protobuf==6.33.2
protobuf==6.33.4

View File

@@ -6,4 +6,4 @@ transformers
bitsandbytes
outetts
sentence-transformers==5.2.0
protobuf==6.33.2
protobuf==6.33.4

View File

@@ -8,4 +8,4 @@ bitsandbytes
outetts
bitsandbytes
sentence-transformers==5.2.0
protobuf==6.33.2
protobuf==6.33.4

View File

@@ -10,4 +10,4 @@ intel-extension-for-transformers
bitsandbytes
outetts
sentence-transformers==5.2.0
protobuf==6.33.2
protobuf==6.33.4

View File

@@ -1,5 +1,5 @@
grpcio==1.76.0
protobuf==6.33.2
protobuf==6.33.4
certifi
setuptools
scipy==1.15.1

View File

@@ -23,6 +23,10 @@ if [ "x${BUILD_PROFILE}" == "xl4t13" ]; then
PY_STANDALONE_TAG="20251120"
fi
if [ "x${BUILD_PROFILE}" == "xl4t12" ]; then
USE_PIP=true
fi
installRequirements
git clone https://github.com/microsoft/VibeVoice.git

View File

@@ -56,7 +56,7 @@ type RunCMD struct {
UseSubtleKeyComparison bool `env:"LOCALAI_SUBTLE_KEY_COMPARISON" default:"false" help:"If true, API Key validation comparisons will be performed using constant-time comparisons rather than simple equality. This trades off performance on each request for resiliancy against timing attacks." group:"hardening"`
DisableApiKeyRequirementForHttpGet bool `env:"LOCALAI_DISABLE_API_KEY_REQUIREMENT_FOR_HTTP_GET" default:"false" help:"If true, a valid API key is not required to issue GET requests to portions of the web ui. This should only be enabled in secure testing environments" group:"hardening"`
DisableMetricsEndpoint bool `env:"LOCALAI_DISABLE_METRICS_ENDPOINT,DISABLE_METRICS_ENDPOINT" default:"false" help:"Disable the /metrics endpoint" group:"api"`
HttpGetExemptedEndpoints []string `env:"LOCALAI_HTTP_GET_EXEMPTED_ENDPOINTS" default:"^/$,^/browse/?$,^/talk/?$,^/p2p/?$,^/chat/?$,^/text2image/?$,^/tts/?$,^/static/.*$,^/swagger.*$" help:"If LOCALAI_DISABLE_API_KEY_REQUIREMENT_FOR_HTTP_GET is overriden to true, this is the list of endpoints to exempt. Only adjust this in case of a security incident or as a result of a personal security posture review" group:"hardening"`
HttpGetExemptedEndpoints []string `env:"LOCALAI_HTTP_GET_EXEMPTED_ENDPOINTS" default:"^/$,^/browse/?$,^/talk/?$,^/p2p/?$,^/chat/?$,^/image/?$,^/text2image/?$,^/tts/?$,^/static/.*$,^/swagger.*$" help:"If LOCALAI_DISABLE_API_KEY_REQUIREMENT_FOR_HTTP_GET is overriden to true, this is the list of endpoints to exempt. Only adjust this in case of a security incident or as a result of a personal security posture review" group:"hardening"`
Peer2Peer bool `env:"LOCALAI_P2P,P2P" name:"p2p" default:"false" help:"Enable P2P mode" group:"p2p"`
Peer2PeerDHTInterval int `env:"LOCALAI_P2P_DHT_INTERVAL,P2P_DHT_INTERVAL" default:"360" name:"p2p-dht-interval" help:"Interval for DHT refresh (used during token generation)" group:"p2p"`
Peer2PeerOTPInterval int `env:"LOCALAI_P2P_OTP_INTERVAL,P2P_OTP_INTERVAL" default:"9000" name:"p2p-otp-interval" help:"Interval for OTP refresh (used during token generation)" group:"p2p"`

View File

@@ -63,6 +63,25 @@ func (m *GalleryBackend) IsMeta() bool {
return len(m.CapabilitiesMap) > 0 && m.URI == ""
}
// IsCompatibleWith checks if the backend is compatible with the current system capability.
// For meta backends, it checks if any of the capabilities in the map match the system capability.
// For concrete backends, it delegates to SystemState.IsBackendCompatible.
func (m *GalleryBackend) IsCompatibleWith(systemState *system.SystemState) bool {
if systemState == nil {
return true
}
// Meta backends are compatible if the system capability matches one of the keys
if m.IsMeta() {
capability := systemState.Capability(m.CapabilitiesMap)
_, exists := m.CapabilitiesMap[capability]
return exists
}
// For concrete backends, delegate to the system package
return systemState.IsBackendCompatible(m.Name, m.URI)
}
func (m *GalleryBackend) SetInstalled(installed bool) {
m.Installed = installed
}

View File

@@ -172,6 +172,252 @@ var _ = Describe("Gallery Backends", func() {
Expect(nilMetaBackend.IsMeta()).To(BeFalse())
})
It("should check IsCompatibleWith correctly for meta backends", func() {
metaBackend := &GalleryBackend{
Metadata: Metadata{
Name: "meta-backend",
},
CapabilitiesMap: map[string]string{
"nvidia": "nvidia-backend",
"amd": "amd-backend",
"default": "default-backend",
},
}
// Test with nil state - should be compatible
Expect(metaBackend.IsCompatibleWith(nil)).To(BeTrue())
// Test with NVIDIA system - should be compatible (has nvidia key)
nvidiaState := &system.SystemState{GPUVendor: "nvidia", VRAM: 8 * 1024 * 1024 * 1024}
Expect(metaBackend.IsCompatibleWith(nvidiaState)).To(BeTrue())
// Test with default (no GPU) - should be compatible (has default key)
defaultState := &system.SystemState{}
Expect(metaBackend.IsCompatibleWith(defaultState)).To(BeTrue())
})
Describe("IsCompatibleWith for concrete backends", func() {
Context("CPU backends", func() {
It("should be compatible on all systems", func() {
cpuBackend := &GalleryBackend{
Metadata: Metadata{
Name: "cpu-llama-cpp",
},
URI: "quay.io/go-skynet/local-ai-backends:latest-cpu-llama-cpp",
}
Expect(cpuBackend.IsCompatibleWith(&system.SystemState{})).To(BeTrue())
Expect(cpuBackend.IsCompatibleWith(&system.SystemState{GPUVendor: system.Nvidia, VRAM: 8 * 1024 * 1024 * 1024})).To(BeTrue())
Expect(cpuBackend.IsCompatibleWith(&system.SystemState{GPUVendor: system.AMD, VRAM: 8 * 1024 * 1024 * 1024})).To(BeTrue())
})
})
Context("Darwin/Metal backends", func() {
When("running on darwin", func() {
BeforeEach(func() {
if runtime.GOOS != "darwin" {
Skip("Skipping darwin-specific tests on non-darwin system")
}
})
It("should be compatible for MLX backend", func() {
mlxBackend := &GalleryBackend{
Metadata: Metadata{
Name: "mlx",
},
URI: "quay.io/go-skynet/local-ai-backends:latest-metal-darwin-arm64-mlx",
}
Expect(mlxBackend.IsCompatibleWith(&system.SystemState{})).To(BeTrue())
})
It("should be compatible for metal-llama-cpp backend", func() {
metalBackend := &GalleryBackend{
Metadata: Metadata{
Name: "metal-llama-cpp",
},
URI: "quay.io/go-skynet/local-ai-backends:latest-metal-darwin-arm64-llama-cpp",
}
Expect(metalBackend.IsCompatibleWith(&system.SystemState{})).To(BeTrue())
})
})
When("running on non-darwin", func() {
BeforeEach(func() {
if runtime.GOOS == "darwin" {
Skip("Skipping non-darwin-specific tests on darwin system")
}
})
It("should NOT be compatible for MLX backend", func() {
mlxBackend := &GalleryBackend{
Metadata: Metadata{
Name: "mlx",
},
URI: "quay.io/go-skynet/local-ai-backends:latest-metal-darwin-arm64-mlx",
}
Expect(mlxBackend.IsCompatibleWith(&system.SystemState{})).To(BeFalse())
})
It("should NOT be compatible for metal-llama-cpp backend", func() {
metalBackend := &GalleryBackend{
Metadata: Metadata{
Name: "metal-llama-cpp",
},
URI: "quay.io/go-skynet/local-ai-backends:latest-metal-darwin-arm64-llama-cpp",
}
Expect(metalBackend.IsCompatibleWith(&system.SystemState{})).To(BeFalse())
})
})
})
Context("NVIDIA/CUDA backends", func() {
When("running on non-darwin", func() {
BeforeEach(func() {
if runtime.GOOS == "darwin" {
Skip("Skipping CUDA tests on darwin system")
}
})
It("should NOT be compatible without nvidia GPU", func() {
cudaBackend := &GalleryBackend{
Metadata: Metadata{
Name: "cuda12-llama-cpp",
},
URI: "quay.io/go-skynet/local-ai-backends:latest-gpu-nvidia-cuda-12-llama-cpp",
}
Expect(cudaBackend.IsCompatibleWith(&system.SystemState{})).To(BeFalse())
Expect(cudaBackend.IsCompatibleWith(&system.SystemState{GPUVendor: system.AMD, VRAM: 8 * 1024 * 1024 * 1024})).To(BeFalse())
})
It("should be compatible with nvidia GPU", func() {
cudaBackend := &GalleryBackend{
Metadata: Metadata{
Name: "cuda12-llama-cpp",
},
URI: "quay.io/go-skynet/local-ai-backends:latest-gpu-nvidia-cuda-12-llama-cpp",
}
Expect(cudaBackend.IsCompatibleWith(&system.SystemState{GPUVendor: system.Nvidia, VRAM: 8 * 1024 * 1024 * 1024})).To(BeTrue())
})
It("should be compatible with cuda13 backend on nvidia GPU", func() {
cuda13Backend := &GalleryBackend{
Metadata: Metadata{
Name: "cuda13-llama-cpp",
},
URI: "quay.io/go-skynet/local-ai-backends:latest-gpu-nvidia-cuda-13-llama-cpp",
}
Expect(cuda13Backend.IsCompatibleWith(&system.SystemState{GPUVendor: system.Nvidia, VRAM: 8 * 1024 * 1024 * 1024})).To(BeTrue())
})
})
})
Context("AMD/ROCm backends", func() {
When("running on non-darwin", func() {
BeforeEach(func() {
if runtime.GOOS == "darwin" {
Skip("Skipping AMD/ROCm tests on darwin system")
}
})
It("should NOT be compatible without AMD GPU", func() {
rocmBackend := &GalleryBackend{
Metadata: Metadata{
Name: "rocm-llama-cpp",
},
URI: "quay.io/go-skynet/local-ai-backends:latest-gpu-rocm-hipblas-llama-cpp",
}
Expect(rocmBackend.IsCompatibleWith(&system.SystemState{})).To(BeFalse())
Expect(rocmBackend.IsCompatibleWith(&system.SystemState{GPUVendor: system.Nvidia, VRAM: 8 * 1024 * 1024 * 1024})).To(BeFalse())
})
It("should be compatible with AMD GPU", func() {
rocmBackend := &GalleryBackend{
Metadata: Metadata{
Name: "rocm-llama-cpp",
},
URI: "quay.io/go-skynet/local-ai-backends:latest-gpu-rocm-hipblas-llama-cpp",
}
Expect(rocmBackend.IsCompatibleWith(&system.SystemState{GPUVendor: system.AMD, VRAM: 8 * 1024 * 1024 * 1024})).To(BeTrue())
})
It("should be compatible with hipblas backend on AMD GPU", func() {
hipBackend := &GalleryBackend{
Metadata: Metadata{
Name: "hip-llama-cpp",
},
URI: "quay.io/go-skynet/local-ai-backends:latest-gpu-hip-llama-cpp",
}
Expect(hipBackend.IsCompatibleWith(&system.SystemState{GPUVendor: system.AMD, VRAM: 8 * 1024 * 1024 * 1024})).To(BeTrue())
})
})
})
Context("Intel/SYCL backends", func() {
When("running on non-darwin", func() {
BeforeEach(func() {
if runtime.GOOS == "darwin" {
Skip("Skipping Intel/SYCL tests on darwin system")
}
})
It("should NOT be compatible without Intel GPU", func() {
intelBackend := &GalleryBackend{
Metadata: Metadata{
Name: "intel-sycl-f16-llama-cpp",
},
URI: "quay.io/go-skynet/local-ai-backends:latest-gpu-intel-sycl-f16-llama-cpp",
}
Expect(intelBackend.IsCompatibleWith(&system.SystemState{})).To(BeFalse())
Expect(intelBackend.IsCompatibleWith(&system.SystemState{GPUVendor: system.Nvidia, VRAM: 8 * 1024 * 1024 * 1024})).To(BeFalse())
})
It("should be compatible with Intel GPU", func() {
intelBackend := &GalleryBackend{
Metadata: Metadata{
Name: "intel-sycl-f16-llama-cpp",
},
URI: "quay.io/go-skynet/local-ai-backends:latest-gpu-intel-sycl-f16-llama-cpp",
}
Expect(intelBackend.IsCompatibleWith(&system.SystemState{GPUVendor: system.Intel, VRAM: 8 * 1024 * 1024 * 1024})).To(BeTrue())
})
It("should be compatible with intel-sycl-f32 backend on Intel GPU", func() {
intelF32Backend := &GalleryBackend{
Metadata: Metadata{
Name: "intel-sycl-f32-llama-cpp",
},
URI: "quay.io/go-skynet/local-ai-backends:latest-gpu-intel-sycl-f32-llama-cpp",
}
Expect(intelF32Backend.IsCompatibleWith(&system.SystemState{GPUVendor: system.Intel, VRAM: 8 * 1024 * 1024 * 1024})).To(BeTrue())
})
It("should be compatible with intel-transformers backend on Intel GPU", func() {
intelTransformersBackend := &GalleryBackend{
Metadata: Metadata{
Name: "intel-transformers",
},
URI: "quay.io/go-skynet/local-ai-backends:latest-intel-transformers",
}
Expect(intelTransformersBackend.IsCompatibleWith(&system.SystemState{GPUVendor: system.Intel, VRAM: 8 * 1024 * 1024 * 1024})).To(BeTrue())
})
})
})
Context("Vulkan backends", func() {
It("should be compatible on CPU-only systems", func() {
// Vulkan backends don't have a specific GPU vendor requirement in the current logic
// They are compatible if no other GPU-specific pattern matches
vulkanBackend := &GalleryBackend{
Metadata: Metadata{
Name: "vulkan-llama-cpp",
},
URI: "quay.io/go-skynet/local-ai-backends:latest-gpu-vulkan-llama-cpp",
}
// Vulkan doesn't have vendor-specific filtering in current implementation
Expect(vulkanBackend.IsCompatibleWith(&system.SystemState{})).To(BeTrue())
})
})
})
It("should find best backend from meta based on system capabilities", func() {
metaBackend := &GalleryBackend{

View File

@@ -226,6 +226,16 @@ func AvailableGalleryModels(galleries []config.Gallery, systemState *system.Syst
// List available backends
func AvailableBackends(galleries []config.Gallery, systemState *system.SystemState) (GalleryElements[*GalleryBackend], error) {
return availableBackendsWithFilter(galleries, systemState, true)
}
// AvailableBackendsUnfiltered returns all available backends without filtering by system capability.
func AvailableBackendsUnfiltered(galleries []config.Gallery, systemState *system.SystemState) (GalleryElements[*GalleryBackend], error) {
return availableBackendsWithFilter(galleries, systemState, false)
}
// availableBackendsWithFilter is a helper function that lists available backends with optional filtering.
func availableBackendsWithFilter(galleries []config.Gallery, systemState *system.SystemState, filterByCapability bool) (GalleryElements[*GalleryBackend], error) {
var backends []*GalleryBackend
systemBackends, err := ListSystemBackends(systemState)
@@ -241,7 +251,17 @@ func AvailableBackends(galleries []config.Gallery, systemState *system.SystemSta
if err != nil {
return nil, err
}
backends = append(backends, galleryBackends...)
// Filter backends by system capability if requested
if filterByCapability {
for _, backend := range galleryBackends {
if backend.IsCompatibleWith(systemState) {
backends = append(backends, backend)
}
}
} else {
backends = append(backends, galleryBackends...)
}
}
return backends, nil

View File

@@ -108,7 +108,15 @@ func API(application *application.Application) (*echo.Echo, error) {
req := c.Request()
res := c.Response()
err := next(c)
xlog.Info("HTTP request", "method", req.Method, "path", req.URL.Path, "status", res.Status)
// Fix for #7989: Reduce log verbosity of Web UI polling
// If the path is /api/operations and the request was successful (200),
// we log it at DEBUG level (hidden by default) instead of INFO.
if req.URL.Path == "/api/operations" && res.Status == 200 {
xlog.Debug("HTTP request", "method", req.Method, "path", req.URL.Path, "status", res.Status)
} else {
xlog.Info("HTTP request", "method", req.Method, "path", req.URL.Path, "status", res.Status)
}
return err
}
})
@@ -205,6 +213,7 @@ func API(application *application.Application) (*echo.Echo, error) {
routes.RegisterLocalAIRoutes(e, requestExtractor, application.ModelConfigLoader(), application.ModelLoader(), application.ApplicationConfig(), application.GalleryService(), opcache, application.TemplatesEvaluator(), application)
routes.RegisterOpenAIRoutes(e, requestExtractor, application)
routes.RegisterAnthropicRoutes(e, requestExtractor, application)
if !application.ApplicationConfig().DisableWebUI {
routes.RegisterUIAPIRoutes(e, application.ModelConfigLoader(), application.ModelLoader(), application.ApplicationConfig(), application.GalleryService(), opcache, application)
routes.RegisterUIRoutes(e, application.ModelConfigLoader(), application.ModelLoader(), application.ApplicationConfig(), application.GalleryService())

View File

@@ -0,0 +1,537 @@
package anthropic
import (
"encoding/json"
"fmt"
"github.com/google/uuid"
"github.com/labstack/echo/v4"
"github.com/mudler/LocalAI/core/backend"
"github.com/mudler/LocalAI/core/config"
"github.com/mudler/LocalAI/core/http/middleware"
"github.com/mudler/LocalAI/core/schema"
"github.com/mudler/LocalAI/core/templates"
"github.com/mudler/LocalAI/pkg/functions"
"github.com/mudler/LocalAI/pkg/model"
"github.com/mudler/xlog"
)
// MessagesEndpoint is the Anthropic Messages API endpoint
// https://docs.anthropic.com/claude/reference/messages_post
// @Summary Generate a message response for the given messages and model.
// @Param request body schema.AnthropicRequest true "query params"
// @Success 200 {object} schema.AnthropicResponse "Response"
// @Router /v1/messages [post]
func MessagesEndpoint(cl *config.ModelConfigLoader, ml *model.ModelLoader, evaluator *templates.Evaluator, appConfig *config.ApplicationConfig) echo.HandlerFunc {
return func(c echo.Context) error {
id := uuid.New().String()
input, ok := c.Get(middleware.CONTEXT_LOCALS_KEY_LOCALAI_REQUEST).(*schema.AnthropicRequest)
if !ok || input.Model == "" {
return sendAnthropicError(c, 400, "invalid_request_error", "model is required")
}
cfg, ok := c.Get(middleware.CONTEXT_LOCALS_KEY_MODEL_CONFIG).(*config.ModelConfig)
if !ok || cfg == nil {
return sendAnthropicError(c, 400, "invalid_request_error", "model configuration not found")
}
if input.MaxTokens <= 0 {
return sendAnthropicError(c, 400, "invalid_request_error", "max_tokens is required and must be greater than 0")
}
xlog.Debug("Anthropic Messages endpoint configuration read", "config", cfg)
// Convert Anthropic messages to OpenAI format for internal processing
openAIMessages := convertAnthropicToOpenAIMessages(input)
// Convert Anthropic tools to internal Functions format
funcs, shouldUseFn := convertAnthropicTools(input, cfg)
// Create an OpenAI-compatible request for internal processing
openAIReq := &schema.OpenAIRequest{
PredictionOptions: schema.PredictionOptions{
BasicModelRequest: schema.BasicModelRequest{Model: input.Model},
Temperature: input.Temperature,
TopK: input.TopK,
TopP: input.TopP,
Maxtokens: &input.MaxTokens,
},
Messages: openAIMessages,
Stream: input.Stream,
Context: input.Context,
Cancel: input.Cancel,
}
// Set stop sequences
if len(input.StopSequences) > 0 {
openAIReq.Stop = input.StopSequences
}
// Merge config settings
if input.Temperature != nil {
cfg.Temperature = input.Temperature
}
if input.TopK != nil {
cfg.TopK = input.TopK
}
if input.TopP != nil {
cfg.TopP = input.TopP
}
cfg.Maxtokens = &input.MaxTokens
if len(input.StopSequences) > 0 {
cfg.StopWords = append(cfg.StopWords, input.StopSequences...)
}
// Template the prompt with tools if available
predInput := evaluator.TemplateMessages(*openAIReq, openAIReq.Messages, cfg, funcs, shouldUseFn)
xlog.Debug("Anthropic Messages - Prompt (after templating)", "prompt", predInput)
if input.Stream {
return handleAnthropicStream(c, id, input, cfg, ml, predInput, openAIReq, funcs, shouldUseFn)
}
return handleAnthropicNonStream(c, id, input, cfg, ml, predInput, openAIReq, funcs, shouldUseFn)
}
}
func handleAnthropicNonStream(c echo.Context, id string, input *schema.AnthropicRequest, cfg *config.ModelConfig, ml *model.ModelLoader, predInput string, openAIReq *schema.OpenAIRequest, funcs functions.Functions, shouldUseFn bool) error {
images := []string{}
for _, m := range openAIReq.Messages {
images = append(images, m.StringImages...)
}
predFunc, err := backend.ModelInference(
input.Context, predInput, openAIReq.Messages, images, nil, nil, ml, cfg, nil, nil, nil, "", "", nil, nil, nil)
if err != nil {
xlog.Error("Anthropic model inference failed", "error", err)
return sendAnthropicError(c, 500, "api_error", fmt.Sprintf("model inference failed: %v", err))
}
prediction, err := predFunc()
if err != nil {
xlog.Error("Anthropic prediction failed", "error", err)
return sendAnthropicError(c, 500, "api_error", fmt.Sprintf("prediction failed: %v", err))
}
result := backend.Finetune(*cfg, predInput, prediction.Response)
// Check if the result contains tool calls
toolCalls := functions.ParseFunctionCall(result, cfg.FunctionsConfig)
var contentBlocks []schema.AnthropicContentBlock
var stopReason string
if shouldUseFn && len(toolCalls) > 0 {
// Model wants to use tools
stopReason = "tool_use"
for _, tc := range toolCalls {
// Parse arguments as JSON
var inputArgs map[string]interface{}
if err := json.Unmarshal([]byte(tc.Arguments), &inputArgs); err != nil {
xlog.Warn("Failed to parse tool call arguments as JSON", "error", err, "args", tc.Arguments)
inputArgs = map[string]interface{}{"raw": tc.Arguments}
}
contentBlocks = append(contentBlocks, schema.AnthropicContentBlock{
Type: "tool_use",
ID: fmt.Sprintf("toolu_%s_%d", id, len(contentBlocks)),
Name: tc.Name,
Input: inputArgs,
})
}
// Add any text content before the tool calls
textContent := functions.ParseTextContent(result, cfg.FunctionsConfig)
if textContent != "" {
// Prepend text block
contentBlocks = append([]schema.AnthropicContentBlock{{Type: "text", Text: textContent}}, contentBlocks...)
}
} else {
// Normal text response
stopReason = "end_turn"
contentBlocks = []schema.AnthropicContentBlock{
{Type: "text", Text: result},
}
}
resp := &schema.AnthropicResponse{
ID: fmt.Sprintf("msg_%s", id),
Type: "message",
Role: "assistant",
Model: input.Model,
StopReason: &stopReason,
Content: contentBlocks,
Usage: schema.AnthropicUsage{
InputTokens: prediction.Usage.Prompt,
OutputTokens: prediction.Usage.Completion,
},
}
if respData, err := json.Marshal(resp); err == nil {
xlog.Debug("Anthropic Response", "response", string(respData))
}
return c.JSON(200, resp)
}
func handleAnthropicStream(c echo.Context, id string, input *schema.AnthropicRequest, cfg *config.ModelConfig, ml *model.ModelLoader, predInput string, openAIReq *schema.OpenAIRequest, funcs functions.Functions, shouldUseFn bool) error {
c.Response().Header().Set("Content-Type", "text/event-stream")
c.Response().Header().Set("Cache-Control", "no-cache")
c.Response().Header().Set("Connection", "keep-alive")
// Create OpenAI messages for inference
openAIMessages := openAIReq.Messages
images := []string{}
for _, m := range openAIMessages {
images = append(images, m.StringImages...)
}
// Send message_start event
messageStart := schema.AnthropicStreamEvent{
Type: "message_start",
Message: &schema.AnthropicStreamMessage{
ID: fmt.Sprintf("msg_%s", id),
Type: "message",
Role: "assistant",
Content: []schema.AnthropicContentBlock{},
Model: input.Model,
Usage: schema.AnthropicUsage{InputTokens: 0, OutputTokens: 0},
},
}
sendAnthropicSSE(c, messageStart)
// Track accumulated content for tool call detection
accumulatedContent := ""
currentBlockIndex := 0
inToolCall := false
toolCallsEmitted := 0
// Send initial content_block_start event
contentBlockStart := schema.AnthropicStreamEvent{
Type: "content_block_start",
Index: currentBlockIndex,
ContentBlock: &schema.AnthropicContentBlock{Type: "text", Text: ""},
}
sendAnthropicSSE(c, contentBlockStart)
// Stream content deltas
tokenCallback := func(token string, usage backend.TokenUsage) bool {
accumulatedContent += token
// If we're using functions, try to detect tool calls incrementally
if shouldUseFn {
cleanedResult := functions.CleanupLLMResult(accumulatedContent, cfg.FunctionsConfig)
// Try parsing for tool calls
toolCalls := functions.ParseFunctionCall(cleanedResult, cfg.FunctionsConfig)
// If we detected new tool calls and haven't emitted them yet
if len(toolCalls) > toolCallsEmitted {
// Stop the current text block if we were in one
if !inToolCall && currentBlockIndex == 0 {
sendAnthropicSSE(c, schema.AnthropicStreamEvent{
Type: "content_block_stop",
Index: currentBlockIndex,
})
currentBlockIndex++
inToolCall = true
}
// Emit new tool calls
for i := toolCallsEmitted; i < len(toolCalls); i++ {
tc := toolCalls[i]
// Send content_block_start for tool_use
sendAnthropicSSE(c, schema.AnthropicStreamEvent{
Type: "content_block_start",
Index: currentBlockIndex,
ContentBlock: &schema.AnthropicContentBlock{
Type: "tool_use",
ID: fmt.Sprintf("toolu_%s_%d", id, i),
Name: tc.Name,
},
})
// Send input_json_delta with the arguments
sendAnthropicSSE(c, schema.AnthropicStreamEvent{
Type: "content_block_delta",
Index: currentBlockIndex,
Delta: &schema.AnthropicStreamDelta{
Type: "input_json_delta",
PartialJSON: tc.Arguments,
},
})
// Send content_block_stop
sendAnthropicSSE(c, schema.AnthropicStreamEvent{
Type: "content_block_stop",
Index: currentBlockIndex,
})
currentBlockIndex++
}
toolCallsEmitted = len(toolCalls)
return true
}
}
// Send regular text delta if not in tool call mode
if !inToolCall {
delta := schema.AnthropicStreamEvent{
Type: "content_block_delta",
Index: 0,
Delta: &schema.AnthropicStreamDelta{
Type: "text_delta",
Text: token,
},
}
sendAnthropicSSE(c, delta)
}
return true
}
predFunc, err := backend.ModelInference(
input.Context, predInput, openAIMessages, images, nil, nil, ml, cfg, nil, nil, tokenCallback, "", "", nil, nil, nil)
if err != nil {
xlog.Error("Anthropic stream model inference failed", "error", err)
return sendAnthropicError(c, 500, "api_error", fmt.Sprintf("model inference failed: %v", err))
}
prediction, err := predFunc()
if err != nil {
xlog.Error("Anthropic stream prediction failed", "error", err)
return sendAnthropicError(c, 500, "api_error", fmt.Sprintf("prediction failed: %v", err))
}
// Send content_block_stop event for last block if we didn't close it yet
if !inToolCall {
contentBlockStop := schema.AnthropicStreamEvent{
Type: "content_block_stop",
Index: 0,
}
sendAnthropicSSE(c, contentBlockStop)
}
// Determine stop reason
stopReason := "end_turn"
if toolCallsEmitted > 0 {
stopReason = "tool_use"
}
// Send message_delta event with stop_reason
messageDelta := schema.AnthropicStreamEvent{
Type: "message_delta",
Delta: &schema.AnthropicStreamDelta{
StopReason: &stopReason,
},
Usage: &schema.AnthropicUsage{
OutputTokens: prediction.Usage.Completion,
},
}
sendAnthropicSSE(c, messageDelta)
// Send message_stop event
messageStop := schema.AnthropicStreamEvent{
Type: "message_stop",
}
sendAnthropicSSE(c, messageStop)
return nil
}
func sendAnthropicSSE(c echo.Context, event schema.AnthropicStreamEvent) {
data, err := json.Marshal(event)
if err != nil {
xlog.Error("Failed to marshal SSE event", "error", err)
return
}
fmt.Fprintf(c.Response().Writer, "event: %s\ndata: %s\n\n", event.Type, string(data))
c.Response().Flush()
}
func sendAnthropicError(c echo.Context, statusCode int, errorType, message string) error {
resp := schema.AnthropicErrorResponse{
Type: "error",
Error: schema.AnthropicError{
Type: errorType,
Message: message,
},
}
return c.JSON(statusCode, resp)
}
func convertAnthropicToOpenAIMessages(input *schema.AnthropicRequest) []schema.Message {
var messages []schema.Message
// Add system message if present
if input.System != "" {
messages = append(messages, schema.Message{
Role: "system",
StringContent: input.System,
Content: input.System,
})
}
// Convert Anthropic messages to OpenAI format
for _, msg := range input.Messages {
openAIMsg := schema.Message{
Role: msg.Role,
}
// Handle content (can be string or array of content blocks)
switch content := msg.Content.(type) {
case string:
openAIMsg.StringContent = content
openAIMsg.Content = content
case []interface{}:
// Handle array of content blocks
var textContent string
var stringImages []string
var toolCalls []schema.ToolCall
toolCallIndex := 0
for _, block := range content {
if blockMap, ok := block.(map[string]interface{}); ok {
blockType, _ := blockMap["type"].(string)
switch blockType {
case "text":
if text, ok := blockMap["text"].(string); ok {
textContent += text
}
case "image":
// Handle image content
if source, ok := blockMap["source"].(map[string]interface{}); ok {
if sourceType, ok := source["type"].(string); ok && sourceType == "base64" {
if data, ok := source["data"].(string); ok {
mediaType, _ := source["media_type"].(string)
// Format as data URI
dataURI := fmt.Sprintf("data:%s;base64,%s", mediaType, data)
stringImages = append(stringImages, dataURI)
}
}
}
case "tool_use":
// Convert tool_use to ToolCall format
toolID, _ := blockMap["id"].(string)
toolName, _ := blockMap["name"].(string)
toolInput := blockMap["input"]
// Serialize input to JSON string
inputJSON, err := json.Marshal(toolInput)
if err != nil {
xlog.Warn("Failed to marshal tool input", "error", err)
inputJSON = []byte("{}")
}
toolCalls = append(toolCalls, schema.ToolCall{
Index: toolCallIndex,
ID: toolID,
Type: "function",
FunctionCall: schema.FunctionCall{
Name: toolName,
Arguments: string(inputJSON),
},
})
toolCallIndex++
case "tool_result":
// Convert tool_result to a message with role "tool"
// This is handled by creating a separate message after this block
// For now, we'll add it as text content
toolUseID, _ := blockMap["tool_use_id"].(string)
isError := false
if isErrorPtr, ok := blockMap["is_error"].(*bool); ok && isErrorPtr != nil {
isError = *isErrorPtr
}
var resultText string
if resultContent, ok := blockMap["content"]; ok {
switch rc := resultContent.(type) {
case string:
resultText = rc
case []interface{}:
// Array of content blocks
for _, cb := range rc {
if cbMap, ok := cb.(map[string]interface{}); ok {
if cbMap["type"] == "text" {
if text, ok := cbMap["text"].(string); ok {
resultText += text
}
}
}
}
}
}
// Add tool result as a tool role message
// We need to handle this differently - create a new message
if msg.Role == "user" {
// Store tool result info for creating separate message
prefix := ""
if isError {
prefix = "Error: "
}
textContent += fmt.Sprintf("\n[Tool Result for %s]: %s%s", toolUseID, prefix, resultText)
}
}
}
}
openAIMsg.StringContent = textContent
openAIMsg.Content = textContent
openAIMsg.StringImages = stringImages
// Add tool calls if present
if len(toolCalls) > 0 {
openAIMsg.ToolCalls = toolCalls
}
}
messages = append(messages, openAIMsg)
}
return messages
}
// convertAnthropicTools converts Anthropic tools to internal Functions format
func convertAnthropicTools(input *schema.AnthropicRequest, cfg *config.ModelConfig) (functions.Functions, bool) {
if len(input.Tools) == 0 {
return nil, false
}
var funcs functions.Functions
for _, tool := range input.Tools {
f := functions.Function{
Name: tool.Name,
Description: tool.Description,
Parameters: tool.InputSchema,
}
funcs = append(funcs, f)
}
// Handle tool_choice
if input.ToolChoice != nil {
switch tc := input.ToolChoice.(type) {
case string:
// "auto", "any", or "none"
if tc == "any" {
// Force the model to use one of the tools
cfg.SetFunctionCallString("required")
} else if tc == "none" {
// Don't use tools
return nil, false
}
// "auto" is the default - let model decide
case map[string]interface{}:
// Specific tool selection: {"type": "tool", "name": "tool_name"}
if tcType, ok := tc["type"].(string); ok && tcType == "tool" {
if name, ok := tc["name"].(string); ok {
// Force specific tool
cfg.SetFunctionCallString(name)
}
}
}
}
return funcs, len(funcs) > 0 && cfg.ShouldUseFunctions()
}

View File

@@ -3,6 +3,7 @@ package openai
import (
"encoding/json"
"fmt"
"strings"
"time"
"github.com/google/uuid"
@@ -34,11 +35,54 @@ func ChatEndpoint(cl *config.ModelConfigLoader, ml *model.ModelLoader, evaluator
Created: created,
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
Choices: []schema.Choice{{Delta: &schema.Message{Role: "assistant"}, Index: 0, FinishReason: nil}},
Object: "chat.completion.chunk",
}
responses <- initialMessage
// Track accumulated content for reasoning extraction
accumulatedContent := ""
lastEmittedReasoning := ""
lastEmittedCleanedContent := ""
_, _, err := ComputeChoices(req, s, config, cl, startupOptions, loader, func(s string, c *[]schema.Choice) {}, func(s string, tokenUsage backend.TokenUsage) bool {
accumulatedContent += s
// Extract reasoning from accumulated content
currentReasoning, cleanedContent := functions.ExtractReasoning(accumulatedContent)
// Calculate new reasoning delta (what we haven't emitted yet)
var reasoningDelta *string
if currentReasoning != lastEmittedReasoning {
// Extract only the new part
if len(currentReasoning) > len(lastEmittedReasoning) && strings.HasPrefix(currentReasoning, lastEmittedReasoning) {
newReasoning := currentReasoning[len(lastEmittedReasoning):]
reasoningDelta = &newReasoning
lastEmittedReasoning = currentReasoning
} else if currentReasoning != "" {
// If reasoning changed in a non-append way, emit the full current reasoning
reasoningDelta = &currentReasoning
lastEmittedReasoning = currentReasoning
}
}
// Calculate content delta from cleaned content
var deltaContent string
if len(cleanedContent) > len(lastEmittedCleanedContent) && strings.HasPrefix(cleanedContent, lastEmittedCleanedContent) {
deltaContent = cleanedContent[len(lastEmittedCleanedContent):]
lastEmittedCleanedContent = cleanedContent
} else if cleanedContent != lastEmittedCleanedContent {
// If cleaned content changed but not in a simple append, extract delta from cleaned content
// This handles cases where thinking tags are removed mid-stream
if lastEmittedCleanedContent == "" {
deltaContent = cleanedContent
lastEmittedCleanedContent = cleanedContent
} else {
// Content changed in non-append way, use the new cleaned content
deltaContent = cleanedContent
lastEmittedCleanedContent = cleanedContent
}
}
// Only emit content if there's actual content (not just thinking tags)
// If deltaContent is empty, we still emit the response but with empty content
usage := schema.OpenAIUsage{
PromptTokens: tokenUsage.Prompt,
CompletionTokens: tokenUsage.Completion,
@@ -49,11 +93,20 @@ func ChatEndpoint(cl *config.ModelConfigLoader, ml *model.ModelLoader, evaluator
usage.TimingPromptProcessing = tokenUsage.TimingPromptProcessing
}
delta := &schema.Message{}
// Only include content if there's actual content (not just thinking tags)
if deltaContent != "" {
delta.Content = &deltaContent
}
if reasoningDelta != nil && *reasoningDelta != "" {
delta.Reasoning = reasoningDelta
}
resp := schema.OpenAIResponse{
ID: id,
Created: created,
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
Choices: []schema.Choice{{Delta: &schema.Message{Content: &s}, Index: 0, FinishReason: nil}},
Choices: []schema.Choice{{Delta: delta, Index: 0, FinishReason: nil}},
Object: "chat.completion.chunk",
Usage: usage,
}
@@ -176,6 +229,10 @@ func ChatEndpoint(cl *config.ModelConfigLoader, ml *model.ModelLoader, evaluator
if err != nil {
return err
}
// Extract reasoning before processing tool calls
reasoning, cleanedResult := functions.ExtractReasoning(result)
result = cleanedResult
textContentToReturn = functions.ParseTextContent(result, config.FunctionsConfig)
result = functions.CleanupLLMResult(result, config.FunctionsConfig)
functionResults := functions.ParseFunctionCall(result, config.FunctionsConfig)
@@ -208,11 +265,20 @@ func ChatEndpoint(cl *config.ModelConfigLoader, ml *model.ModelLoader, evaluator
usage.TimingPromptProcessing = tokenUsage.TimingPromptProcessing
}
var deltaReasoning *string
if reasoning != "" {
deltaReasoning = &reasoning
}
delta := &schema.Message{Content: &result}
if deltaReasoning != nil {
delta.Reasoning = deltaReasoning
}
resp := schema.OpenAIResponse{
ID: id,
Created: created,
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
Choices: []schema.Choice{{Delta: &schema.Message{Content: &result}, Index: 0, FinishReason: nil}},
Choices: []schema.Choice{{Delta: delta, Index: 0, FinishReason: nil}},
Object: "chat.completion.chunk",
Usage: usage,
}
@@ -553,10 +619,18 @@ func ChatEndpoint(cl *config.ModelConfigLoader, ml *model.ModelLoader, evaluator
default:
tokenCallback := func(s string, c *[]schema.Choice) {
// Extract reasoning from the response
reasoning, cleanedS := functions.ExtractReasoning(s)
s = cleanedS
if !shouldUseFn {
// no function is called, just reply and use stop as finish reason
stopReason := FinishReasonStop
*c = append(*c, schema.Choice{FinishReason: &stopReason, Index: 0, Message: &schema.Message{Role: "assistant", Content: &s}})
message := &schema.Message{Role: "assistant", Content: &s}
if reasoning != "" {
message.Reasoning = &reasoning
}
*c = append(*c, schema.Choice{FinishReason: &stopReason, Index: 0, Message: message})
return
}
@@ -575,9 +649,13 @@ func ChatEndpoint(cl *config.ModelConfigLoader, ml *model.ModelLoader, evaluator
}
stopReason := FinishReasonStop
message := &schema.Message{Role: "assistant", Content: &result}
if reasoning != "" {
message.Reasoning = &reasoning
}
*c = append(*c, schema.Choice{
FinishReason: &stopReason,
Message: &schema.Message{Role: "assistant", Content: &result}})
Message: message})
default:
toolCallsReason := FinishReasonToolCalls
toolChoice := schema.Choice{
@@ -586,6 +664,9 @@ func ChatEndpoint(cl *config.ModelConfigLoader, ml *model.ModelLoader, evaluator
Role: "assistant",
},
}
if reasoning != "" {
toolChoice.Message.Reasoning = &reasoning
}
for _, ss := range results {
name, args := ss.Name, ss.Arguments
@@ -606,16 +687,20 @@ func ChatEndpoint(cl *config.ModelConfigLoader, ml *model.ModelLoader, evaluator
} else {
// otherwise we return more choices directly (deprecated)
functionCallReason := FinishReasonFunctionCall
message := &schema.Message{
Role: "assistant",
Content: &textContentToReturn,
FunctionCall: map[string]interface{}{
"name": name,
"arguments": args,
},
}
if reasoning != "" {
message.Reasoning = &reasoning
}
*c = append(*c, schema.Choice{
FinishReason: &functionCallReason,
Message: &schema.Message{
Role: "assistant",
Content: &textContentToReturn,
FunctionCall: map[string]interface{}{
"name": name,
"arguments": args,
},
},
Message: message,
})
}
}

View File

@@ -0,0 +1,108 @@
package routes
import (
"context"
"fmt"
"net/http"
"github.com/google/uuid"
"github.com/labstack/echo/v4"
"github.com/mudler/LocalAI/core/application"
"github.com/mudler/LocalAI/core/config"
"github.com/mudler/LocalAI/core/http/endpoints/anthropic"
"github.com/mudler/LocalAI/core/http/middleware"
"github.com/mudler/LocalAI/core/schema"
"github.com/mudler/xlog"
)
func RegisterAnthropicRoutes(app *echo.Echo,
re *middleware.RequestExtractor,
application *application.Application) {
// Anthropic Messages API endpoint
messagesHandler := anthropic.MessagesEndpoint(
application.ModelConfigLoader(),
application.ModelLoader(),
application.TemplatesEvaluator(),
application.ApplicationConfig(),
)
messagesMiddleware := []echo.MiddlewareFunc{
middleware.TraceMiddleware(application),
re.BuildFilteredFirstAvailableDefaultModel(config.BuildUsecaseFilterFn(config.FLAG_CHAT)),
re.SetModelAndConfig(func() schema.LocalAIRequest { return new(schema.AnthropicRequest) }),
setAnthropicRequestContext(application.ApplicationConfig()),
}
// Main Anthropic endpoint
app.POST("/v1/messages", messagesHandler, messagesMiddleware...)
// Also support without version prefix for compatibility
app.POST("/messages", messagesHandler, messagesMiddleware...)
}
// setAnthropicRequestContext sets up the context and cancel function for Anthropic requests
func setAnthropicRequestContext(appConfig *config.ApplicationConfig) echo.MiddlewareFunc {
return func(next echo.HandlerFunc) echo.HandlerFunc {
return func(c echo.Context) error {
input, ok := c.Get(middleware.CONTEXT_LOCALS_KEY_LOCALAI_REQUEST).(*schema.AnthropicRequest)
if !ok || input.Model == "" {
return echo.NewHTTPError(http.StatusBadRequest, "model is required")
}
cfg, ok := c.Get(middleware.CONTEXT_LOCALS_KEY_MODEL_CONFIG).(*config.ModelConfig)
if !ok || cfg == nil {
return echo.NewHTTPError(http.StatusBadRequest, "model configuration not found")
}
// Extract or generate the correlation ID
// Anthropic uses x-request-id header
correlationID := c.Request().Header.Get("x-request-id")
if correlationID == "" {
correlationID = uuid.New().String()
}
c.Response().Header().Set("x-request-id", correlationID)
// Set up context with cancellation
reqCtx := c.Request().Context()
c1, cancel := context.WithCancel(appConfig.Context)
// Cancel when request context is cancelled (client disconnects)
go func() {
select {
case <-reqCtx.Done():
cancel()
case <-c1.Done():
// Already cancelled
}
}()
// Add the correlation ID to the new context
ctxWithCorrelationID := context.WithValue(c1, middleware.CorrelationIDKey, correlationID)
input.Context = ctxWithCorrelationID
input.Cancel = cancel
if cfg.Model == "" {
xlog.Debug("replacing empty cfg.Model with input value", "input.Model", input.Model)
cfg.Model = input.Model
}
c.Set(middleware.CONTEXT_LOCALS_KEY_LOCALAI_REQUEST, input)
c.Set(middleware.CONTEXT_LOCALS_KEY_MODEL_CONFIG, cfg)
// Log the Anthropic API version if provided
anthropicVersion := c.Request().Header.Get("anthropic-version")
if anthropicVersion != "" {
xlog.Debug("Anthropic API version", "version", anthropicVersion)
}
// Validate max_tokens is provided
if input.MaxTokens <= 0 {
return echo.NewHTTPError(http.StatusBadRequest, fmt.Sprintf("max_tokens is required and must be greater than 0"))
}
return next(c)
}
}
}

View File

@@ -219,7 +219,7 @@ func RegisterUIRoutes(app *echo.Echo,
return c.Render(200, "views/chat", summary)
})
app.GET("/text2image/:model", func(c echo.Context) error {
app.GET("/image/:model", func(c echo.Context) error {
modelConfigs := cl.GetAllModelsConfigs()
modelsWithoutConfig, _ := services.ListModels(cl, ml, config.NoFilterFn, services.LOOSE_ONLY)
@@ -233,10 +233,10 @@ func RegisterUIRoutes(app *echo.Echo,
}
// Render index
return c.Render(200, "views/text2image", summary)
return c.Render(200, "views/image", summary)
})
app.GET("/text2image", func(c echo.Context) error {
app.GET("/image", func(c echo.Context) error {
modelConfigs := cl.GetAllModelsConfigs()
modelsWithoutConfig, _ := services.ListModels(cl, ml, config.NoFilterFn, services.LOOSE_ONLY)
@@ -266,7 +266,7 @@ func RegisterUIRoutes(app *echo.Echo,
}
// Render index
return c.Render(200, "views/text2image", summary)
return c.Render(200, "views/image", summary)
})
app.GET("/tts/:model", func(c echo.Context) error {
@@ -318,6 +318,56 @@ func RegisterUIRoutes(app *echo.Echo,
return c.Render(200, "views/tts", summary)
})
app.GET("/video/:model", func(c echo.Context) error {
modelConfigs := cl.GetAllModelsConfigs()
modelsWithoutConfig, _ := services.ListModels(cl, ml, config.NoFilterFn, services.LOOSE_ONLY)
summary := map[string]interface{}{
"Title": "LocalAI - Generate videos with " + c.Param("model"),
"BaseURL": middleware.BaseURL(c),
"ModelsConfig": modelConfigs,
"ModelsWithoutConfig": modelsWithoutConfig,
"Model": c.Param("model"),
"Version": internal.PrintableVersion(),
}
// Render index
return c.Render(200, "views/video", summary)
})
app.GET("/video", func(c echo.Context) error {
modelConfigs := cl.GetAllModelsConfigs()
modelsWithoutConfig, _ := services.ListModels(cl, ml, config.NoFilterFn, services.LOOSE_ONLY)
if len(modelConfigs)+len(modelsWithoutConfig) == 0 {
// If no model is available redirect to the index which suggests how to install models
return c.Redirect(302, middleware.BaseURL(c))
}
modelThatCanBeUsed := ""
title := "LocalAI - Generate videos"
for _, b := range modelConfigs {
if b.HasUsecases(config.FLAG_VIDEO) {
modelThatCanBeUsed = b.Name
title = "LocalAI - Generate videos with " + modelThatCanBeUsed
break
}
}
summary := map[string]interface{}{
"Title": title,
"BaseURL": middleware.BaseURL(c),
"ModelsConfig": modelConfigs,
"ModelsWithoutConfig": modelsWithoutConfig,
"Model": modelThatCanBeUsed,
"Version": internal.PrintableVersion(),
}
// Render index
return c.Render(200, "views/video", summary)
})
// Traces UI
app.GET("/traces", func(c echo.Context) error {
summary := map[string]interface{}{

View File

@@ -617,6 +617,12 @@ func RegisterUIAPIRoutes(app *echo.Echo, cl *config.ModelConfigLoader, ml *model
installedBackendsCount = len(installedBackends)
}
// Get the detected system capability
detectedCapability := ""
if appConfig.SystemState != nil {
detectedCapability = appConfig.SystemState.DetectedCapability()
}
return c.JSON(200, map[string]interface{}{
"backends": backendsJSON,
"repositories": appConfig.BackendGalleries,
@@ -629,6 +635,7 @@ func RegisterUIAPIRoutes(app *echo.Echo, cl *config.ModelConfigLoader, ml *model
"totalPages": totalPages,
"prevPage": prevPage,
"nextPage": nextPage,
"systemCapability": detectedCapability,
})
})

View File

@@ -1368,6 +1368,7 @@ async function promptGPT(systemPrompt, input) {
let lastAssistantMessageIndex = -1;
let lastThinkingMessageIndex = -1;
let lastThinkingScrollTime = 0;
let hasReasoningFromAPI = false; // Track if we're receiving reasoning from API (skip tag-based detection)
const THINKING_SCROLL_THROTTLE = 200; // Throttle scrolling to every 200ms
try {
@@ -1401,19 +1402,24 @@ async function promptGPT(systemPrompt, input) {
// Handle different event types
switch (eventData.type) {
case "reasoning":
hasReasoningFromAPI = true; // Mark that we're receiving reasoning from API
if (eventData.content) {
// Insert reasoning before assistant message if it exists
const currentChat = chatStore.getChat(chatId);
if (!currentChat) break; // Chat was deleted
const isMCPMode = currentChat.mcpMode || false;
const shouldExpand = !isMCPMode; // Expanded in non-MCP mode, collapsed in MCP mode
// Insert thinking before assistant message if it exists (always use "thinking" role)
if (lastAssistantMessageIndex >= 0 && targetHistory[lastAssistantMessageIndex]?.role === "assistant") {
targetHistory.splice(lastAssistantMessageIndex, 0, {
role: "reasoning",
role: "thinking",
content: eventData.content,
html: DOMPurify.sanitize(marked.parse(eventData.content)),
image: [],
audio: [],
expanded: false // Reasoning is always collapsed
expanded: shouldExpand
});
lastAssistantMessageIndex++; // Adjust index since we inserted
// Scroll smoothly after adding reasoning
// Scroll smoothly after adding thinking
setTimeout(() => {
const chatContainer = document.getElementById('chat');
if (chatContainer) {
@@ -1425,7 +1431,7 @@ async function promptGPT(systemPrompt, input) {
}, 100);
} else {
// No assistant message yet, just add normally
chatStore.add("reasoning", eventData.content, null, null, chatId);
chatStore.add("thinking", eventData.content, null, null, chatId);
}
}
break;
@@ -1491,14 +1497,17 @@ async function promptGPT(systemPrompt, input) {
// Only update display if this is the active chat (interval will handle it)
// Don't call updateTokensPerSecond here to avoid unnecessary updates
// Check for thinking tags in the chunk (incremental detection)
if (contentChunk.includes("<thinking>") || contentChunk.includes("<think>")) {
isThinking = true;
thinkingContent = "";
lastThinkingMessageIndex = -1;
}
if (contentChunk.includes("</thinking>") || contentChunk.includes("</think>")) {
// Only check for thinking tags if we're NOT receiving reasoning from API
// This prevents duplicate thinking/reasoning messages
if (!hasReasoningFromAPI) {
// Check for thinking tags in the chunk (incremental detection)
if (contentChunk.includes("<thinking>") || contentChunk.includes("<think>")) {
isThinking = true;
thinkingContent = "";
lastThinkingMessageIndex = -1;
}
if (contentChunk.includes("</thinking>") || contentChunk.includes("</think>")) {
isThinking = false;
// When closing tag is detected, process the accumulated thinking content
if (thinkingContent.trim()) {
@@ -1552,10 +1561,11 @@ async function promptGPT(systemPrompt, input) {
}
thinkingContent = "";
}
}
}
// Handle content based on thinking state
if (isThinking) {
// Handle content based on thinking state (only if not receiving reasoning from API)
if (!hasReasoningFromAPI && isThinking) {
thinkingContent += contentChunk;
const currentChat = chatStore.getChat(chatId);
if (!currentChat) break; // Chat was deleted
@@ -1637,7 +1647,10 @@ async function promptGPT(systemPrompt, input) {
// Process any thinking tags that might be in the accumulated content
// This handles cases where tags are split across chunks
const { regularContent: processedRegular, thinkingContent: processedThinking } = processThinkingTags(regularContent);
// Only process if we're NOT receiving reasoning from API (to avoid duplicates)
const { regularContent: processedRegular, thinkingContent: processedThinking } = hasReasoningFromAPI
? { regularContent: regularContent, thinkingContent: "" }
: processThinkingTags(regularContent);
// Update or create assistant message with processed regular content
const currentChat = chatStore.getChat(chatId);
@@ -1645,10 +1658,10 @@ async function promptGPT(systemPrompt, input) {
const request = activeRequests.get(chatId);
const requestModel = request?.model || null;
if (lastAssistantMessageIndex === -1) {
if (processedRegular && processedRegular.trim()) {
chatStore.add("assistant", processedRegular, null, null, chatId, requestModel);
lastAssistantMessageIndex = targetHistory.length - 1;
}
// Create assistant message if we have any content (even if empty string after processing)
// This ensures the message is created and can be updated with more content later
chatStore.add("assistant", processedRegular || "", null, null, chatId, requestModel);
lastAssistantMessageIndex = targetHistory.length - 1;
} else {
const lastMessage = targetHistory[lastAssistantMessageIndex];
if (lastMessage && lastMessage.role === "assistant") {
@@ -1686,7 +1699,10 @@ async function promptGPT(systemPrompt, input) {
if (assistantContentBuffer.length > 0) {
const regularContent = assistantContentBuffer.join("");
// Process any remaining thinking tags that might be in the buffer
const { regularContent: processedRegular, thinkingContent: processedThinking } = processThinkingTags(regularContent);
// Only process if we're NOT receiving reasoning from API (to avoid duplicates)
const { regularContent: processedRegular, thinkingContent: processedThinking } = hasReasoningFromAPI
? { regularContent: regularContent, thinkingContent: "" }
: processThinkingTags(regularContent);
const currentChat = chatStore.getChat(chatId);
if (!currentChat) {
@@ -1719,23 +1735,26 @@ async function promptGPT(systemPrompt, input) {
}
// Then update or create assistant message
// Always create/update assistant message if we have any content
if (lastAssistantMessageIndex !== -1) {
const lastMessage = targetHistory[lastAssistantMessageIndex];
if (lastMessage && lastMessage.role === "assistant") {
lastMessage.content = (lastMessage.content || "") + (processedRegular || "");
lastMessage.html = DOMPurify.sanitize(marked.parse(lastMessage.content));
}
} else if (processedRegular && processedRegular.trim()) {
} else {
// Create assistant message (even if empty, so it can be updated with more content)
const request = activeRequests.get(chatId);
const requestModel = request?.model || null;
chatStore.add("assistant", processedRegular, null, null, chatId, requestModel);
chatStore.add("assistant", processedRegular || "", null, null, chatId, requestModel);
lastAssistantMessageIndex = targetHistory.length - 1;
}
}
// Final thinking content flush if any data remains (from incremental detection)
// Only process if we're NOT receiving reasoning from API (to avoid duplicates)
const finalChat = chatStore.getChat(chatId);
if (finalChat && thinkingContent.trim() && lastThinkingMessageIndex === -1) {
if (finalChat && !hasReasoningFromAPI && thinkingContent.trim() && lastThinkingMessageIndex === -1) {
const finalHistory = finalChat.history;
// Extract thinking content if tags are present
const thinkingMatch = thinkingContent.match(/<(?:thinking|redacted_reasoning)>(.*?)<\/(?:thinking|redacted_reasoning)>/s);
@@ -1891,9 +1910,13 @@ async function promptGPT(systemPrompt, input) {
let buffer = "";
let contentBuffer = [];
let thinkingContent = "";
let reasoningContent = ""; // Track reasoning from API reasoning field
let isThinking = false;
let lastThinkingMessageIndex = -1;
let lastReasoningMessageIndex = -1; // Track reasoning message separately
let lastAssistantMessageIndex = -1; // Track assistant message for reasoning placement
let lastThinkingScrollTime = 0;
let hasReasoningFromAPI = false; // Track if we're receiving reasoning from API (skip tag-based detection)
const THINKING_SCROLL_THROTTLE = 200; // Throttle scrolling to every 200ms
try {
@@ -1929,30 +1952,100 @@ async function promptGPT(systemPrompt, input) {
chatStore.updateTokenUsage(jsonData.usage, chatId);
}
const token = jsonData.choices[0].delta.content;
const token = jsonData.choices?.[0]?.delta?.content;
const reasoningDelta = jsonData.choices?.[0]?.delta?.reasoning;
if (token) {
// Check for thinking tags
if (token.includes("<thinking>") || token.includes("<think>")) {
isThinking = true;
thinkingContent = "";
lastThinkingMessageIndex = -1;
// Handle reasoning from API reasoning field - always use "thinking" role
if (reasoningDelta && reasoningDelta.trim() !== "") {
hasReasoningFromAPI = true; // Mark that we're receiving reasoning from API
reasoningContent += reasoningDelta;
const currentChat = chatStore.getChat(chatId);
if (!currentChat) {
// Chat was deleted, skip this line
return;
}
if (token.includes("</thinking>") || token.includes("</think>")) {
isThinking = false;
if (thinkingContent.trim()) {
// Only add the final thinking message if we don't already have one
if (lastThinkingMessageIndex === -1) {
chatStore.add("thinking", thinkingContent, null, null, chatId);
const isMCPMode = currentChat.mcpMode || false;
const shouldExpand = !isMCPMode; // Expanded in non-MCP mode, collapsed in MCP mode
// Only create/update thinking message if we have actual content
if (reasoningContent.trim() !== "") {
// Update or create thinking message (always use "thinking" role, not "reasoning")
if (lastReasoningMessageIndex === -1) {
// Find the last assistant message index to insert thinking before it
const targetHistory = currentChat.history;
const assistantIndex = targetHistory.length - 1;
if (assistantIndex >= 0 && targetHistory[assistantIndex]?.role === "assistant") {
// Insert thinking before assistant message
targetHistory.splice(assistantIndex, 0, {
role: "thinking",
content: reasoningContent,
html: DOMPurify.sanitize(marked.parse(reasoningContent)),
image: [],
audio: [],
expanded: shouldExpand
});
lastReasoningMessageIndex = assistantIndex;
lastAssistantMessageIndex = assistantIndex + 1; // Adjust for inserted thinking
} else {
// No assistant message yet, just add normally
chatStore.add("thinking", reasoningContent, null, null, chatId);
lastReasoningMessageIndex = currentChat.history.length - 1;
}
} else {
// Update existing thinking message
const targetHistory = currentChat.history;
if (lastReasoningMessageIndex >= 0 && lastReasoningMessageIndex < targetHistory.length) {
const thinkingMessage = targetHistory[lastReasoningMessageIndex];
if (thinkingMessage && thinkingMessage.role === "thinking") {
thinkingMessage.content = reasoningContent;
thinkingMessage.html = DOMPurify.sanitize(marked.parse(reasoningContent));
}
}
}
return;
}
// Scroll when reasoning is updated (throttled)
const now = Date.now();
if (now - lastThinkingScrollTime > THINKING_SCROLL_THROTTLE) {
lastThinkingScrollTime = now;
setTimeout(() => {
const chatContainer = document.getElementById('chat');
if (chatContainer) {
chatContainer.scrollTo({
top: chatContainer.scrollHeight,
behavior: 'smooth'
});
}
scrollThinkingBoxToBottom();
}, 100);
}
}
// Handle content based on thinking state
if (isThinking) {
thinkingContent += token;
if (token && token.trim() !== "") {
// Only check for thinking tags if we're NOT receiving reasoning from API
// This prevents duplicate thinking/reasoning messages
if (!hasReasoningFromAPI) {
// Check for thinking tags (legacy support - models that output tags directly)
if (token.includes("<thinking>") || token.includes("<think>")) {
isThinking = true;
thinkingContent = "";
lastThinkingMessageIndex = -1;
return;
}
if (token.includes("</thinking>") || token.includes("</think>")) {
isThinking = false;
if (thinkingContent.trim()) {
// Only add the final thinking message if we don't already have one
if (lastThinkingMessageIndex === -1) {
chatStore.add("thinking", thinkingContent, null, null, chatId);
}
}
return;
}
// Handle content based on thinking state
if (isThinking) {
thinkingContent += token;
// Count tokens for rate calculation (per chat)
const request = activeRequests.get(chatId);
if (request) {
@@ -1995,7 +2088,42 @@ async function promptGPT(systemPrompt, input) {
}, 100);
}
} else {
// Not in thinking state, add to content buffer
contentBuffer.push(token);
// Track assistant message index for reasoning placement
if (lastAssistantMessageIndex === -1) {
const currentChat = chatStore.getChat(chatId);
if (currentChat) {
const targetHistory = currentChat.history;
// Find or create assistant message index
for (let i = targetHistory.length - 1; i >= 0; i--) {
if (targetHistory[i].role === "assistant") {
lastAssistantMessageIndex = i;
break;
}
}
// If no assistant message yet, it will be created when we flush contentBuffer
}
}
}
} else {
// Receiving reasoning from API, just add token to content buffer
contentBuffer.push(token);
// Track assistant message index for reasoning placement
if (lastAssistantMessageIndex === -1) {
const currentChat = chatStore.getChat(chatId);
if (currentChat) {
const targetHistory = currentChat.history;
// Find or create assistant message index
for (let i = targetHistory.length - 1; i >= 0; i--) {
if (targetHistory[i].role === "assistant") {
lastAssistantMessageIndex = i;
break;
}
}
// If no assistant message yet, it will be created when we flush contentBuffer
}
}
}
}
} catch (error) {
@@ -2007,6 +2135,17 @@ async function promptGPT(systemPrompt, input) {
// Efficiently update the chat in batch
if (contentBuffer.length > 0) {
addToChat(contentBuffer.join(""));
// Update assistant message index after adding content
const currentChat = chatStore.getChat(chatId);
if (currentChat) {
const targetHistory = currentChat.history;
for (let i = targetHistory.length - 1; i >= 0; i--) {
if (targetHistory[i].role === "assistant") {
lastAssistantMessageIndex = i;
break;
}
}
}
contentBuffer = [];
// Scroll when assistant content is updated (this will also show thinking messages above)
setTimeout(() => {
@@ -2025,7 +2164,30 @@ async function promptGPT(systemPrompt, input) {
if (contentBuffer.length > 0) {
addToChat(contentBuffer.join(""));
}
// Final reasoning flush if any data remains - always use "thinking" role
const finalChat = chatStore.getChat(chatId);
if (finalChat && reasoningContent.trim() && lastReasoningMessageIndex === -1) {
const isMCPMode = finalChat.mcpMode || false;
const shouldExpand = !isMCPMode;
const targetHistory = finalChat.history;
// Find assistant message to insert before
const assistantIndex = targetHistory.length - 1;
if (assistantIndex >= 0 && targetHistory[assistantIndex]?.role === "assistant") {
targetHistory.splice(assistantIndex, 0, {
role: "thinking",
content: reasoningContent,
html: DOMPurify.sanitize(marked.parse(reasoningContent)),
image: [],
audio: [],
expanded: shouldExpand
});
} else {
chatStore.add("thinking", reasoningContent, null, null, chatId);
}
}
// Final thinking content flush (legacy tag-based thinking)
if (finalChat && thinkingContent.trim() && lastThinkingMessageIndex === -1) {
chatStore.add("thinking", thinkingContent, null, null, chatId);
}

300
core/http/static/video.js Normal file
View File

@@ -0,0 +1,300 @@
// Helper function to convert file to base64
function fileToBase64(file) {
return new Promise((resolve, reject) => {
const reader = new FileReader();
reader.onload = () => {
// Remove data:image/...;base64, prefix if present
const base64 = reader.result.split(',')[1] || reader.result;
resolve(base64);
};
reader.onerror = reject;
reader.readAsDataURL(file);
});
}
function genVideo(event) {
event.preventDefault();
promptVideo();
}
async function promptVideo() {
const loader = document.getElementById("loader");
const input = document.getElementById("input");
const generateBtn = document.getElementById("generate-btn");
const resultDiv = document.getElementById("result");
const resultPlaceholder = document.getElementById("result-placeholder");
// Show loader and disable form
loader.classList.remove("hidden");
if (resultPlaceholder) {
resultPlaceholder.style.display = "none";
}
input.disabled = true;
generateBtn.disabled = true;
// Store the prompt for later restoration
const prompt = input.value.trim();
if (!prompt) {
alert("Please enter a prompt");
loader.classList.add("hidden");
if (resultPlaceholder) {
resultPlaceholder.style.display = "flex";
}
input.disabled = false;
generateBtn.disabled = false;
return;
}
// Collect all form values
const model = document.getElementById("video-model").value;
const size = document.getElementById("video-size").value;
const negativePrompt = document.getElementById("negative-prompt").value.trim();
// Parse size into width and height
const sizeParts = size.split("x");
let width = 512;
let height = 512;
if (sizeParts.length === 2) {
width = parseInt(sizeParts[0]) || 512;
height = parseInt(sizeParts[1]) || 512;
}
// Video-specific parameters
const secondsInput = document.getElementById("video-seconds").value.trim();
const seconds = secondsInput ? secondsInput : undefined;
const fpsInput = document.getElementById("video-fps").value.trim();
const fps = fpsInput ? parseInt(fpsInput) : 16;
const framesInput = document.getElementById("video-frames").value.trim();
const numFrames = framesInput ? parseInt(framesInput) : undefined;
// Advanced parameters
const stepInput = document.getElementById("video-steps").value.trim();
const step = stepInput ? parseInt(stepInput) : undefined;
const seedInput = document.getElementById("video-seed").value.trim();
const seed = seedInput ? parseInt(seedInput) : undefined;
const cfgScaleInput = document.getElementById("video-cfg-scale").value.trim();
const cfgScale = cfgScaleInput ? parseFloat(cfgScaleInput) : undefined;
// Prepare request body
const requestBody = {
model: model,
prompt: prompt,
width: width,
height: height,
fps: fps,
};
if (negativePrompt) {
requestBody.negative_prompt = negativePrompt;
}
if (seconds !== undefined) {
requestBody.seconds = seconds;
}
if (numFrames !== undefined) {
requestBody.num_frames = numFrames;
}
if (step !== undefined) {
requestBody.step = step;
}
if (seed !== undefined) {
requestBody.seed = seed;
}
if (cfgScale !== undefined) {
requestBody.cfg_scale = cfgScale;
}
// Handle file inputs
try {
// Start image (for img2video)
const startImageInput = document.getElementById("start-image");
if (startImageInput.files.length > 0) {
const base64 = await fileToBase64(startImageInput.files[0]);
requestBody.start_image = base64;
}
// End image
const endImageInput = document.getElementById("end-image");
if (endImageInput.files.length > 0) {
const base64 = await fileToBase64(endImageInput.files[0]);
requestBody.end_image = base64;
}
} catch (error) {
console.error("Error processing image files:", error);
resultDiv.innerHTML = '<p class="text-xs text-red-500 p-2">Error processing image files: ' + error.message + '</p>';
loader.classList.add("hidden");
if (resultPlaceholder) {
resultPlaceholder.style.display = "none";
}
input.disabled = false;
generateBtn.disabled = false;
return;
}
// Make API request
try {
const response = await fetch("v1/videos/generations", {
method: "POST",
headers: {
"Content-Type": "application/json",
},
body: JSON.stringify(requestBody),
});
const json = await response.json();
if (json.error) {
// Display error
resultDiv.innerHTML = '<p class="text-xs text-red-500 p-2">Error: ' + json.error.message + '</p>';
loader.classList.add("hidden");
if (resultPlaceholder) {
resultPlaceholder.style.display = "none";
}
input.disabled = false;
generateBtn.disabled = false;
return;
}
// Clear result div and hide placeholder
resultDiv.innerHTML = '';
if (resultPlaceholder) {
resultPlaceholder.style.display = "none";
}
// Display generated video
if (json.data && json.data.length > 0) {
json.data.forEach((item, index) => {
const videoContainer = document.createElement("div");
videoContainer.className = "flex flex-col";
// Create video element
const video = document.createElement("video");
video.controls = true;
video.className = "w-full h-auto rounded-lg";
video.preload = "metadata";
if (item.url) {
video.src = item.url;
} else if (item.b64_json) {
video.src = "data:video/mp4;base64," + item.b64_json;
} else {
return; // Skip invalid items
}
videoContainer.appendChild(video);
// Create caption container
const captionDiv = document.createElement("div");
captionDiv.className = "mt-2 p-2 bg-[var(--color-bg-secondary)] rounded-lg text-xs";
// Prompt caption
const promptCaption = document.createElement("p");
promptCaption.className = "text-[var(--color-text-primary)] mb-1.5 break-words";
promptCaption.innerHTML = '<strong>Prompt:</strong> ' + escapeHtml(prompt);
captionDiv.appendChild(promptCaption);
// Negative prompt if provided
if (negativePrompt) {
const negativeCaption = document.createElement("p");
negativeCaption.className = "text-[var(--color-text-secondary)] mb-1.5 break-words";
negativeCaption.innerHTML = '<strong>Negative Prompt:</strong> ' + escapeHtml(negativePrompt);
captionDiv.appendChild(negativeCaption);
}
// Generation details
const detailsDiv = document.createElement("div");
detailsDiv.className = "flex flex-wrap gap-3 text-[10px] text-[var(--color-text-secondary)] mt-1.5";
detailsDiv.innerHTML = `
<span><strong>Size:</strong> ${width}x${height}</span>
${fps ? `<span><strong>FPS:</strong> ${fps}</span>` : ''}
${numFrames !== undefined ? `<span><strong>Frames:</strong> ${numFrames}</span>` : ''}
${seconds !== undefined ? `<span><strong>Duration:</strong> ${seconds}s</span>` : ''}
${step !== undefined ? `<span><strong>Steps:</strong> ${step}</span>` : ''}
${seed !== undefined ? `<span><strong>Seed:</strong> ${seed}</span>` : ''}
${cfgScale !== undefined ? `<span><strong>CFG Scale:</strong> ${cfgScale}</span>` : ''}
`;
captionDiv.appendChild(detailsDiv);
// Copy prompt button
const copyBtn = document.createElement("button");
copyBtn.className = "mt-1.5 px-2 py-0.5 text-[10px] bg-[var(--color-primary)] text-white rounded hover:opacity-80";
copyBtn.innerHTML = '<i class="fas fa-copy mr-1"></i>Copy Prompt';
copyBtn.onclick = () => {
navigator.clipboard.writeText(prompt).then(() => {
copyBtn.innerHTML = '<i class="fas fa-check mr-1"></i>Copied!';
setTimeout(() => {
copyBtn.innerHTML = '<i class="fas fa-copy mr-1"></i>Copy Prompt';
}, 2000);
});
};
captionDiv.appendChild(copyBtn);
videoContainer.appendChild(captionDiv);
resultDiv.appendChild(videoContainer);
});
// Hide placeholder when videos are displayed
if (resultPlaceholder) {
resultPlaceholder.style.display = "none";
}
} else {
resultDiv.innerHTML = '<p class="text-xs text-[var(--color-text-secondary)] p-2">No videos were generated.</p>';
if (resultPlaceholder) {
resultPlaceholder.style.display = "none";
}
}
} catch (error) {
console.error("Error generating video:", error);
resultDiv.innerHTML = '<p class="text-xs text-red-500 p-2">Error: ' + error.message + '</p>';
if (resultPlaceholder) {
resultPlaceholder.style.display = "none";
}
} finally {
// Hide loader and re-enable form
loader.classList.add("hidden");
input.disabled = false;
generateBtn.disabled = false;
input.focus();
}
}
// Helper function to escape HTML
function escapeHtml(text) {
const div = document.createElement("div");
div.textContent = text;
return div.innerHTML;
}
// Initialize
document.addEventListener("DOMContentLoaded", function() {
const input = document.getElementById("input");
const form = document.getElementById("genvideo");
if (input) {
input.focus();
}
if (form) {
form.addEventListener("submit", genVideo);
}
// Handle Enter key press in the prompt input (but allow Shift+Enter for new lines)
if (input) {
input.addEventListener("keydown", function(event) {
if (event.key === "Enter" && !event.shiftKey) {
event.preventDefault();
genVideo(event);
}
});
}
// Hide loader initially
const loader = document.getElementById("loader");
if (loader) {
loader.classList.add("hidden");
}
});

View File

@@ -54,6 +54,11 @@
<span class="font-semibold text-cyan-300" x-text="installedBackends"></span>
<span class="text-[#94A3B8] ml-1">installed</span>
</a>
<div class="flex items-center bg-[#101827] rounded-lg px-4 py-2 border border-[#38BDF8]/30">
<i class="fas fa-microchip text-[#38BDF8] mr-2"></i>
<span class="text-[#94A3B8] mr-1">Capability:</span>
<span class="font-semibold text-[#38BDF8]" x-text="systemCapability"></span>
</div>
<a href="https://localai.io/backends/" target="_blank" class="btn-primary">
<i class="fas fa-info-circle mr-2"></i>
<span>Documentation</span>
@@ -588,6 +593,7 @@ function backendsGallery() {
totalPages: 1,
availableBackends: 0,
installedBackends: 0,
systemCapability: '',
selectedBackend: null,
jobProgress: {},
notifications: [],
@@ -683,6 +689,7 @@ function backendsGallery() {
this.totalPages = data.totalPages || 1;
this.availableBackends = data.availableBackends || 0;
this.installedBackends = data.installedBackends || 0;
this.systemCapability = data.systemCapability || 'default';
} catch (error) {
console.error('Error fetching backends:', error);
} finally {

View File

@@ -41,7 +41,7 @@ SOFTWARE.
__chatContextSize = {{ .ContextSize }};
{{ end }}
// Store gallery configs for header icon display
// Store gallery configs for header icon display and model info modal
window.__galleryConfigs = {};
{{ $allGalleryConfigs:=.GalleryConfig }}
{{ range $modelName, $galleryConfig := $allGalleryConfigs }}
@@ -49,6 +49,16 @@ SOFTWARE.
{{ if $galleryConfig.Icon }}
window.__galleryConfigs["{{$modelName}}"].Icon = "{{$galleryConfig.Icon}}";
{{ end }}
{{ if $galleryConfig.Description }}
window.__galleryConfigs["{{$modelName}}"].Description = {{ printf "%q" $galleryConfig.Description }};
{{ end }}
{{ if $galleryConfig.URLs }}
window.__galleryConfigs["{{$modelName}}"].URLs = [
{{ range $idx, $url := $galleryConfig.URLs }}
{{ if $idx }},{{ end }}{{ printf "%q" $url }}
{{ end }}
];
{{ end }}
{{ end }}
// Function to initialize store
@@ -326,10 +336,10 @@ SOFTWARE.
c += DOMPurify.sanitize(marked.parse(line));
});
}
// Set expanded state: thinking is expanded by default in non-MCP mode, collapsed in MCP mode
// Reasoning, tool_call, and tool_result are always collapsed by default
// Set expanded state: thinking and reasoning are expanded by default in non-MCP mode, collapsed in MCP mode
// tool_call and tool_result are always collapsed by default
const isMCPMode = chat.mcpMode || false;
const shouldExpand = (role === "thinking" && !isMCPMode) || false;
const shouldExpand = ((role === "thinking" || role === "reasoning") && !isMCPMode) || false;
chat.history.push({ role, content, html: c, image, audio, expanded: shouldExpand, model: messageModel });
// Auto-name chat from first user message
@@ -497,6 +507,11 @@ SOFTWARE.
activeChat.model = modelName;
activeChat.updatedAt = Date.now();
// Update model info modal with new model
if (window.updateModelInfoModal) {
window.updateModelInfoModal(modelName);
}
// Get context size from data attribute
let contextSize = null;
if (selectedOption.dataset.contextSize) {
@@ -536,18 +551,23 @@ SOFTWARE.
}
// Update model selector to reflect the change (ensure it stays in sync)
// Note: We don't dispatch a change event here to avoid infinite loop
// The selector is already updated via user interaction or programmatic change
const modelSelector = document.getElementById('modelSelector');
if (modelSelector) {
// Find and select the option matching the model
const optionValue = 'chat/' + modelName;
for (let i = 0; i < modelSelector.options.length; i++) {
if (modelSelector.options[i].value === optionValue) {
modelSelector.selectedIndex = i;
// Only update if it's different to avoid unnecessary updates
if (modelSelector.selectedIndex !== i) {
modelSelector.selectedIndex = i;
}
break;
}
}
// Trigger Alpine reactivity by dispatching change event
modelSelector.dispatchEvent(new Event('change', { bubbles: true }));
// Don't dispatch change event here - it would cause infinite recursion
// The selector is already in sync with the model
}
// Trigger MCP availability check in Alpine component
@@ -603,27 +623,52 @@ SOFTWARE.
<div class="flex items-center justify-between gap-2">
<label class="text-xs font-medium text-[var(--color-text-secondary)] uppercase tracking-wide flex-shrink-0">Model</label>
<div class="flex items-center gap-1 flex-shrink-0">
{{ if $model }}
{{ $galleryConfig:= index $allGalleryConfigs $model}}
{{ if $galleryConfig }}
<button
data-twe-ripple-init
data-twe-ripple-color="light"
class="text-[var(--color-text-secondary)] hover:text-[var(--color-primary)] transition-colors text-xs p-1 rounded hover:bg-[var(--color-bg-primary)]"
data-modal-target="model-info-modal"
data-modal-toggle="model-info-modal"
title="Model Information">
<i class="fas fa-info-circle"></i>
</button>
{{ end }}
{{ end }}
{{ if $model }}
<a href="/models/edit/{{$model}}"
class="text-[var(--color-text-secondary)] hover:text-[var(--color-warning)] transition-colors text-xs p-1 rounded hover:bg-[var(--color-bg-primary)]"
title="Edit Model Configuration">
<i class="fas fa-edit"></i>
</a>
{{ end }}
<!-- Info button - reactive to active chat model -->
<template x-if="$store.chat.activeChat() && $store.chat.activeChat().model && window.__galleryConfigs && window.__galleryConfigs[$store.chat.activeChat().model]">
<button
data-twe-ripple-init
data-twe-ripple-color="light"
class="text-[var(--color-text-secondary)] hover:text-[var(--color-primary)] transition-colors text-xs p-1 rounded hover:bg-[var(--color-bg-primary)]"
data-modal-target="model-info-modal"
data-modal-toggle="model-info-modal"
:data-model-name="$store.chat.activeChat().model"
@click="if (window.updateModelInfoModal) { window.updateModelInfoModal($store.chat.activeChat().model, true); }"
title="Model Information">
<i class="fas fa-info-circle"></i>
</button>
</template>
<!-- Fallback info button for initial model from server -->
<template x-if="(!$store.chat.activeChat() || !$store.chat.activeChat().model) && window.__galleryConfigs && window.__galleryConfigs['{{$model}}']">
<button
data-twe-ripple-init
data-twe-ripple-color="light"
class="text-[var(--color-text-secondary)] hover:text-[var(--color-primary)] transition-colors text-xs p-1 rounded hover:bg-[var(--color-bg-primary)]"
data-modal-target="model-info-modal"
data-modal-toggle="model-info-modal"
data-model-name="{{$model}}"
@click="if (window.updateModelInfoModal) { window.updateModelInfoModal('{{$model}}', true); }"
title="Model Information">
<i class="fas fa-info-circle"></i>
</button>
</template>
<!-- Edit button - reactive to active chat model -->
<template x-if="$store.chat.activeChat() && $store.chat.activeChat().model">
<a :href="'/models/edit/' + $store.chat.activeChat().model"
class="text-[var(--color-text-secondary)] hover:text-[var(--color-warning)] transition-colors text-xs p-1 rounded hover:bg-[var(--color-bg-primary)]"
title="Edit Model Configuration">
<i class="fas fa-edit"></i>
</a>
</template>
<!-- Fallback edit button for initial model from server -->
<template x-if="!$store.chat.activeChat() || !$store.chat.activeChat().model">
{{ if $model }}
<a href="/models/edit/{{$model}}"
class="text-[var(--color-text-secondary)] hover:text-[var(--color-warning)] transition-colors text-xs p-1 rounded hover:bg-[var(--color-bg-primary)]"
title="Edit Model Configuration">
<i class="fas fa-edit"></i>
</a>
{{ end }}
</template>
</div>
</div>
<select
@@ -1488,17 +1533,14 @@ SOFTWARE.
</div>
</div>
<!-- Modal moved outside of sidebar to appear in center of page -->
{{ if $model }}
{{ $galleryConfig:= index $allGalleryConfigs $model}}
{{ if $galleryConfig }}
<div id="model-info-modal" tabindex="-1" aria-hidden="true" class="hidden overflow-y-auto overflow-x-hidden fixed top-0 right-0 left-0 z-50 flex justify-center items-center w-full md:inset-0 h-[calc(100%-1rem)] max-h-full">
<!-- Modal moved outside of sidebar to appear in center of page - Always available, content updated dynamically -->
<div id="model-info-modal" tabindex="-1" aria-hidden="true" class="hidden overflow-y-auto overflow-x-hidden fixed top-0 right-0 left-0 z-50 flex justify-center items-center w-full h-full md:inset-0 max-h-full" style="padding: 1rem;">
<div class="relative p-4 w-full max-w-2xl max-h-full">
<div class="relative p-4 w-full max-w-2xl max-h-full bg-white rounded-lg shadow dark:bg-gray-700">
<!-- Header -->
<div class="flex items-center justify-between p-4 md:p-5 border-b rounded-t dark:border-gray-600">
<h3 class="text-xl font-semibold text-gray-900 dark:text-white">{{ $model }}</h3>
<button class="text-gray-400 bg-transparent hover:bg-gray-200 hover:text-gray-900 rounded-lg text-sm w-8 h-8 ms-auto inline-flex justify-center items-center dark:hover:bg-gray-600 dark:hover:text-white" data-modal-hide="model-info-modal">
<h3 id="model-info-modal-title" class="text-xl font-semibold text-gray-900 dark:text-white">{{ if $model }}{{ $model }}{{ end }}</h3>
<button class="text-gray-400 bg-transparent hover:bg-gray-200 hover:text-gray-900 rounded-lg text-sm w-8 h-8 ms-auto inline-flex justify-center items-center dark:hover:bg-gray-600 dark:hover:text-white" data-modal-hide="model-info-modal" @click="if (window.closeModelInfoModal) { window.closeModelInfoModal(); }">
<svg class="w-3 h-3" aria-hidden="true" xmlns="http://www.w3.org/2000/svg" fill="none" viewBox="0 0 14 14">
<path stroke="currentColor" stroke-linecap="round" stroke-linejoin="round" stroke-width="2" d="m1 1 6 6m0 0 6 6M7 7l6-6M7 7l-6 6"/>
</svg>
@@ -1509,29 +1551,24 @@ SOFTWARE.
<!-- Body -->
<div class="p-4 md:p-5 space-y-4">
<div class="flex justify-center items-center">
{{ if $galleryConfig.Icon }}<img class="lazy rounded-t-lg max-h-48 max-w-96 object-cover mt-3 entered loaded" src="{{$galleryConfig.Icon}}" loading="lazy"/>{{end}}
<img id="model-info-modal-icon" class="lazy rounded-t-lg max-h-48 max-w-96 object-cover mt-3 entered loaded" style="display: none;" loading="lazy"/>
</div>
<div id="model-info-description" class="text-base leading-relaxed text-gray-500 dark:text-gray-400 break-words max-w-full">{{ $galleryConfig.Description }}</div>
<div id="model-info-description" class="text-base leading-relaxed text-gray-500 dark:text-gray-400 break-words max-w-full"></div>
<hr>
<p class="text-sm font-semibold text-gray-900 dark:text-white">Links</p>
<ul>
{{range $galleryConfig.URLs}}
<li><a href="{{ . }}" target="_blank">{{ . }}</a></li>
{{end}}
<ul id="model-info-links">
</ul>
</div>
<!-- Footer -->
<div class="flex items-center p-4 md:p-5 border-t border-gray-200 rounded-b dark:border-gray-600">
<button data-modal-hide="model-info-modal" class="py-2.5 px-5 ms-3 text-sm font-medium text-gray-900 focus:outline-none bg-white rounded-lg border border-gray-200 hover:bg-gray-100 hover:text-blue-700 focus:z-10 focus:ring-4 focus:ring-gray-100 dark:focus:ring-gray-700 dark:bg-gray-800 dark:text-gray-400 dark:border-gray-600 dark:hover:text-white dark:hover:bg-gray-700">
<button data-modal-hide="model-info-modal" class="py-2.5 px-5 ms-3 text-sm font-medium text-gray-900 focus:outline-none bg-white rounded-lg border border-gray-200 hover:bg-gray-100 hover:text-blue-700 focus:z-10 focus:ring-4 focus:ring-gray-100 dark:focus:ring-gray-700 dark:bg-gray-800 dark:text-gray-400 dark:border-gray-600 dark:hover:text-white dark:hover:bg-gray-700" @click="if (window.closeModelInfoModal) { window.closeModelInfoModal(); }">
Close
</button>
</div>
</div>
</div>
</div>
{{ end }}
{{ end }}
<!-- Alpine store initialization and utilities -->
<script>
@@ -1742,10 +1779,20 @@ SOFTWARE.
});
// Also listen for click events on modal toggle buttons
document.querySelectorAll('[data-modal-toggle="model-info-modal"]').forEach(button => {
button.addEventListener('click', () => {
// Use event delegation to handle dynamically created buttons
document.addEventListener('click', (e) => {
const button = e.target.closest('[data-modal-toggle="model-info-modal"]');
if (button) {
// Update modal with current model before showing
if (window.Alpine && window.Alpine.store("chat")) {
const activeChat = window.Alpine.store("chat").activeChat();
const modelName = activeChat ? activeChat.model : (button.dataset.modelName || (document.getElementById("chat-model") ? document.getElementById("chat-model").value : null));
if (modelName && window.updateModelInfoModal) {
window.updateModelInfoModal(modelName, true);
}
}
setTimeout(processMarkdown, 300);
});
}
});
// Process on initial load if libraries are ready
@@ -1786,12 +1833,176 @@ SOFTWARE.
syncModelSelectorOnLoad();
}
// Function to update model info modal with current model
// Set openModal to true to actually open the modal, false to just update content
window.updateModelInfoModal = function(modelName, openModal = false) {
if (!modelName) {
return;
}
if (!window.__galleryConfigs) {
return;
}
const galleryConfig = window.__galleryConfigs[modelName];
// Check if galleryConfig exists and has at least one property
if (!galleryConfig || Object.keys(galleryConfig).length === 0) {
// Still update the modal title even if no config, so user can see which model they clicked
const titleEl = document.getElementById('model-info-modal-title');
if (titleEl) {
titleEl.textContent = modelName;
}
// Show message that no info is available
const descEl = document.getElementById('model-info-description');
if (descEl) {
descEl.textContent = 'No additional information available for this model.';
}
const linksEl = document.getElementById('model-info-links');
if (linksEl) {
linksEl.innerHTML = '';
}
const iconEl = document.getElementById('model-info-modal-icon');
if (iconEl) {
iconEl.style.display = 'none';
}
// Only open the modal if explicitly requested
if (openModal) {
const modalElement = document.getElementById('model-info-modal');
if (modalElement) {
modalElement.classList.remove('hidden');
modalElement.setAttribute('aria-hidden', 'false');
// Add backdrop
let backdrop = document.querySelector('.modal-backdrop');
if (!backdrop) {
backdrop = document.createElement('div');
backdrop.className = 'modal-backdrop fixed inset-0 bg-gray-900 bg-opacity-50 dark:bg-opacity-80 z-40';
document.body.appendChild(backdrop);
backdrop.addEventListener('click', () => {
closeModelInfoModal();
});
}
}
}
return;
}
// Update modal title
const titleEl = document.getElementById('model-info-modal-title');
if (titleEl) {
titleEl.textContent = modelName;
}
// Update icon
const iconEl = document.getElementById('model-info-modal-icon');
if (iconEl) {
if (galleryConfig.Icon) {
iconEl.src = galleryConfig.Icon;
iconEl.style.display = 'block';
} else {
iconEl.style.display = 'none';
}
}
// Update description
const descEl = document.getElementById('model-info-description');
if (descEl) {
descEl.textContent = galleryConfig.Description || 'No description available.';
}
// Update links
const linksEl = document.getElementById('model-info-links');
if (linksEl && galleryConfig.URLs && Array.isArray(galleryConfig.URLs) && galleryConfig.URLs.length > 0) {
linksEl.innerHTML = '';
galleryConfig.URLs.forEach(url => {
const li = document.createElement('li');
const a = document.createElement('a');
a.href = url;
a.target = '_blank';
a.textContent = url;
li.appendChild(a);
linksEl.appendChild(li);
});
} else if (linksEl) {
linksEl.innerHTML = '<li>No links available</li>';
}
// Only open the modal if explicitly requested
if (openModal) {
const modalElement = document.getElementById('model-info-modal');
if (modalElement) {
// Ensure positioning classes are present (they might have been removed)
if (!modalElement.classList.contains('flex')) {
modalElement.classList.add('flex');
}
if (!modalElement.classList.contains('justify-center')) {
modalElement.classList.add('justify-center');
}
if (!modalElement.classList.contains('items-center')) {
modalElement.classList.add('items-center');
}
// Ensure fixed positioning
if (!modalElement.classList.contains('fixed')) {
modalElement.classList.add('fixed');
}
// Ensure full width and height
if (!modalElement.classList.contains('w-full')) {
modalElement.classList.add('w-full');
}
if (!modalElement.classList.contains('h-full')) {
modalElement.classList.add('h-full');
}
// Ensure padding is set
if (!modalElement.style.padding) {
modalElement.style.padding = '1rem';
}
// Remove hidden class if present
modalElement.classList.remove('hidden');
// Set aria-hidden to false
modalElement.setAttribute('aria-hidden', 'false');
// Add backdrop if needed
let backdrop = document.querySelector('.modal-backdrop');
if (!backdrop) {
backdrop = document.createElement('div');
backdrop.className = 'modal-backdrop fixed inset-0 bg-gray-900 bg-opacity-50 dark:bg-opacity-80 z-40';
document.body.appendChild(backdrop);
backdrop.addEventListener('click', () => {
window.closeModelInfoModal();
});
}
}
}
};
// Function to close the model info modal
window.closeModelInfoModal = function() {
const modalElement = document.getElementById('model-info-modal');
if (modalElement) {
modalElement.classList.add('hidden');
modalElement.setAttribute('aria-hidden', 'true');
}
const backdrop = document.querySelector('.modal-backdrop');
if (backdrop) {
backdrop.remove();
}
};
// Also sync after Alpine initializes (in case it runs after DOMContentLoaded)
function initializeModelInfo() {
syncModelSelectorOnLoad();
// Initialize model info modal content with current model (but don't open it)
if (window.updateModelInfoModal && window.Alpine && window.Alpine.store("chat")) {
const activeChat = window.Alpine.store("chat").activeChat();
const modelName = activeChat ? activeChat.model : (document.getElementById("chat-model") ? document.getElementById("chat-model").value : null);
if (modelName) {
window.updateModelInfoModal(modelName, false); // false = don't open, just update content
}
}
}
if (window.Alpine) {
Alpine.nextTick(syncModelSelectorOnLoad);
Alpine.nextTick(initializeModelInfo);
} else {
document.addEventListener('alpine:init', () => {
Alpine.nextTick(syncModelSelectorOnLoad);
Alpine.nextTick(initializeModelInfo);
});
}
</script>

View File

@@ -28,19 +28,19 @@
{{ $cfg := . }}
{{ range .KnownUsecaseStrings }}
{{ if eq . "FLAG_IMAGE" }}
<option value="text2image/{{$cfg.Name}}" {{ if eq $cfg.Name $model }} selected {{end}} class="bg-[var(--color-bg-primary)] text-[var(--color-text-primary)]">{{$cfg.Name}}</option>
<option value="image/{{$cfg.Name}}" {{ if eq $cfg.Name $model }} selected {{end}} class="bg-[var(--color-bg-primary)] text-[var(--color-text-primary)]">{{$cfg.Name}}</option>
{{ end }}
{{ end }}
{{ end }}
{{ range .ModelsWithoutConfig }}
<option value="text2image/{{.}}" {{ if eq . $model }} selected {{ end }} class="bg-[var(--color-bg-primary)] text-[var(--color-text-primary)]">{{.}}</option>
<option value="image/{{.}}" {{ if eq . $model }} selected {{ end }} class="bg-[var(--color-bg-primary)] text-[var(--color-text-primary)]">{{.}}</option>
{{end}}
</select>
</div>
<div class="relative">
<input id="image-model" type="hidden" value="{{.Model}}">
<form id="genimage" action="text2image/{{.Model}}" method="get">
<form id="genimage" action="image/{{.Model}}" method="get">
<!-- Basic Settings -->
<div class="space-y-2">
<!-- Prompt -->
@@ -326,4 +326,4 @@
</script>
</body>
</html>
</html>

View File

@@ -315,7 +315,7 @@
</a>
{{ end }}
{{ if eq . "FLAG_IMAGE" }}
<a href="text2image/{{$backendCfg.Name}}" class="inline-flex items-center px-1.5 py-0.5 rounded text-[10px] font-medium bg-[var(--color-success)]/10 text-green-300 hover:bg-[var(--color-success)]/20 transition-colors" title="Image">
<a href="image/{{$backendCfg.Name}}" class="inline-flex items-center px-1.5 py-0.5 rounded text-[10px] font-medium bg-[var(--color-success)]/10 text-green-300 hover:bg-[var(--color-success)]/20 transition-colors" title="Image">
<i class="fas fa-image text-[8px] mr-1"></i>Image
</a>
{{ end }}

View File

@@ -25,7 +25,7 @@
<a href="chat/" class="text-[var(--color-text-secondary)] hover:text-[var(--color-text-primary)] px-2 py-2 rounded-lg transition duration-300 ease-in-out hover:bg-[var(--color-bg-secondary)] flex items-center group text-sm">
<i class="fa-solid fa-comments text-[var(--color-primary)] mr-1.5 text-sm group-hover:scale-110 transition-transform"></i>Chat
</a>
<a href="text2image/" class="text-[var(--color-text-secondary)] hover:text-[var(--color-text-primary)] px-2 py-2 rounded-lg transition duration-300 ease-in-out hover:bg-[var(--color-bg-secondary)] flex items-center group text-sm">
<a href="image/" class="text-[var(--color-text-secondary)] hover:text-[var(--color-text-primary)] px-2 py-2 rounded-lg transition duration-300 ease-in-out hover:bg-[var(--color-bg-secondary)] flex items-center group text-sm">
<i class="fas fa-image text-[var(--color-primary)] mr-1.5 text-sm group-hover:scale-110 transition-transform"></i>Images
</a>
<a href="tts/" class="text-[var(--color-text-secondary)] hover:text-[var(--color-text-primary)] px-2 py-2 rounded-lg transition duration-300 ease-in-out hover:bg-[var(--color-bg-secondary)] flex items-center group text-sm">
@@ -85,7 +85,7 @@
<a href="chat/" class="block text-[var(--color-text-secondary)] hover:text-[var(--color-text-primary)] hover:bg-[var(--color-bg-secondary)] px-3 py-2 rounded-lg transition duration-300 ease-in-out flex items-center text-sm">
<i class="fa-solid fa-comments text-[var(--color-primary)] mr-3 w-5 text-center text-sm"></i>Chat
</a>
<a href="text2image/" class="block text-[var(--color-text-secondary)] hover:text-[var(--color-text-primary)] hover:bg-[var(--color-bg-secondary)] px-3 py-2 rounded-lg transition duration-300 ease-in-out flex items-center text-sm">
<a href="image/" class="block text-[var(--color-text-secondary)] hover:text-[var(--color-text-primary)] hover:bg-[var(--color-bg-secondary)] px-3 py-2 rounded-lg transition duration-300 ease-in-out flex items-center text-sm">
<i class="fas fa-image text-[var(--color-primary)] mr-3 w-5 text-center text-sm"></i>Images
</a>
<a href="tts/" class="block text-[var(--color-text-secondary)] hover:text-[var(--color-text-primary)] hover:bg-[var(--color-bg-secondary)] px-3 py-2 rounded-lg transition duration-300 ease-in-out flex items-center text-sm">

315
core/http/views/video.html Normal file
View File

@@ -0,0 +1,315 @@
<!DOCTYPE html>
<html lang="en">
{{template "views/partials/head" .}}
<script defer src="static/video.js"></script>
<body class="bg-[var(--color-bg-primary)] text-[var(--color-text-primary)] flex flex-col h-screen">
<div class="flex flex-col flex-1 overflow-hidden">
{{template "views/partials/navbar" .}}
<div class="flex flex-1 overflow-hidden">
<!-- Two Column Layout: Settings on Left, Preview on Right -->
<div class="flex flex-col lg:flex-row flex-1 gap-4 p-4 overflow-hidden">
<!-- Left Column: Generation Settings -->
<div class="flex-shrink-0 lg:w-1/4 flex flex-col min-h-0">
<div class="card p-3 space-y-3 overflow-y-auto flex-1">
<!-- Model Selection - Compact -->
<div class="space-y-1.5">
<div class="flex items-center justify-between gap-2">
<label class="text-xs font-medium text-[var(--color-text-secondary)] uppercase tracking-wide flex-shrink-0">Model</label>
</div>
<select x-data="{ link : '' }" x-model="link" x-init="$watch('link', value => window.location = link)"
id="model-select"
class="input w-full p-1.5 text-xs"
>
<option value="" disabled class="text-[var(--color-text-secondary)]">Select a model</option>
{{ $model:=.Model}}
{{ range .ModelsConfig }}
{{ $cfg := . }}
{{ range .KnownUsecaseStrings }}
{{ if eq . "FLAG_VIDEO" }}
<option value="video/{{$cfg.Name}}" {{ if eq $cfg.Name $model }} selected {{end}} class="bg-[var(--color-bg-primary)] text-[var(--color-text-primary)]">{{$cfg.Name}}</option>
{{ end }}
{{ end }}
{{ end }}
{{ range .ModelsWithoutConfig }}
<option value="video/{{.}}" {{ if eq . $model }} selected {{ end }} class="bg-[var(--color-bg-primary)] text-[var(--color-text-primary)]">{{.}}</option>
{{end}}
</select>
</div>
<div class="relative">
<input id="video-model" type="hidden" value="{{.Model}}">
<form id="genvideo" action="video/{{.Model}}" method="get">
<!-- Basic Settings -->
<div class="space-y-2">
<!-- Prompt -->
<div class="space-y-1">
<label for="input" class="block text-xs font-medium text-[var(--color-text-secondary)] uppercase tracking-wide">
<i class="fas fa-magic mr-1.5 text-[var(--color-primary)]"></i>Prompt
</label>
<textarea
id="input"
name="input"
placeholder="Describe the video you want to generate..."
autocomplete="off"
rows="3"
class="input w-full p-1.5 text-xs resize-y"
required
></textarea>
</div>
<!-- Negative Prompt -->
<div class="space-y-1">
<label for="negative-prompt" class="block text-xs font-medium text-[var(--color-text-secondary)] uppercase tracking-wide">
<i class="fas fa-ban mr-1.5 text-[var(--color-primary)]"></i>Negative Prompt
</label>
<textarea
id="negative-prompt"
name="negative-prompt"
placeholder="Things to avoid in the video..."
rows="2"
class="input w-full p-1.5 text-xs resize-y"
></textarea>
</div>
<!-- Size Selection with Presets -->
<div class="space-y-1">
<label for="video-size" class="block text-xs font-medium text-[var(--color-text-secondary)] uppercase tracking-wide">
<i class="fas fa-expand-arrows-alt mr-1.5 text-[var(--color-primary)]"></i>Video Size
</label>
<div class="flex flex-wrap gap-1.5 mb-1.5">
<button type="button" class="size-preset px-2 py-0.5 text-[10px] rounded border border-[var(--color-border)] hover:bg-[var(--color-bg-secondary)]" data-size="256x256">256×256</button>
<button type="button" class="size-preset px-2 py-0.5 text-[10px] rounded border border-[var(--color-border)] hover:bg-[var(--color-bg-secondary)]" data-size="512x512">512×512</button>
<button type="button" class="size-preset px-2 py-0.5 text-[10px] rounded border border-[var(--color-border)] hover:bg-[var(--color-bg-secondary)]" data-size="768x768">768×768</button>
<button type="button" class="size-preset px-2 py-0.5 text-[10px] rounded border border-[var(--color-border)] hover:bg-[var(--color-bg-secondary)]" data-size="1024x1024">1024×1024</button>
</div>
<input
type="text"
id="video-size"
value="512x512"
placeholder="e.g., 256x256, 512x512, 1024x1024"
class="input p-1.5 text-xs w-full"
/>
</div>
<!-- Video Duration / FPS / Frames -->
<div class="space-y-1">
<label for="video-seconds" class="block text-xs font-medium text-[var(--color-text-secondary)] uppercase tracking-wide">
<i class="fas fa-clock mr-1.5 text-[var(--color-primary)]"></i>Duration (seconds)
</label>
<input
type="number"
id="video-seconds"
name="seconds"
min="1"
max="60"
placeholder="Leave empty for default"
class="input p-1.5 text-xs w-full"
/>
</div>
<div class="space-y-1">
<label for="video-fps" class="block text-xs font-medium text-[var(--color-text-secondary)] uppercase tracking-wide">
<i class="fas fa-film mr-1.5 text-[var(--color-primary)]"></i>FPS
</label>
<input
type="number"
id="video-fps"
name="fps"
min="1"
max="60"
value="16"
placeholder="Frames per second"
class="input p-1.5 text-xs w-full"
/>
</div>
<div class="space-y-1">
<label for="video-frames" class="block text-xs font-medium text-[var(--color-text-secondary)] uppercase tracking-wide">
<i class="fas fa-images mr-1.5 text-[var(--color-primary)]"></i>Number of Frames
</label>
<input
type="number"
id="video-frames"
name="num_frames"
min="1"
max="500"
placeholder="Leave empty for default"
class="input p-1.5 text-xs w-full"
/>
</div>
</div>
<!-- Advanced Settings (Collapsible) -->
<div class="space-y-2">
<button type="button" id="advanced-toggle" class="w-full flex items-center justify-between px-2 py-1.5 text-xs rounded text-[var(--color-text-secondary)] hover:text-[var(--color-text-primary)] hover:bg-[var(--color-bg-secondary)] transition-colors">
<span><i class="fa-solid fa-sliders mr-1.5 text-[var(--color-primary)]"></i> Advanced Settings</span>
<i class="fas fa-chevron-down text-[10px]" id="advanced-chevron"></i>
</button>
<div id="advanced-settings" class="hidden p-2 bg-[var(--color-bg-secondary)] border border-[var(--color-primary-border)]/20 rounded pl-4 border-l-2 border-[var(--color-bg-secondary)] space-y-2">
<!-- Steps -->
<div class="space-y-1">
<label for="video-steps" class="block text-xs text-[var(--color-text-secondary)]">
<i class="fas fa-step-forward mr-1.5 text-[var(--color-primary)]"></i>Steps
</label>
<input
type="number"
id="video-steps"
name="step"
min="1"
max="100"
placeholder="Leave empty for default"
class="input p-1.5 text-xs w-full"
/>
</div>
<!-- Seed -->
<div class="space-y-1">
<label for="video-seed" class="block text-xs text-[var(--color-text-secondary)]">
<i class="fas fa-seedling mr-1.5 text-[var(--color-primary)]"></i>Seed
</label>
<input
type="number"
id="video-seed"
name="seed"
min="0"
placeholder="Leave empty for random"
class="input p-1.5 text-xs w-full"
/>
</div>
<!-- CFG Scale -->
<div class="space-y-1">
<label for="video-cfg-scale" class="block text-xs text-[var(--color-text-secondary)]">
<i class="fas fa-sliders-h mr-1.5 text-[var(--color-primary)]"></i>CFG Scale
</label>
<input
type="number"
id="video-cfg-scale"
name="cfg_scale"
min="0"
max="20"
step="0.1"
placeholder="Leave empty for default"
class="input p-1.5 text-xs w-full"
/>
</div>
</div>
</div>
<!-- Image Inputs (Collapsible) -->
<div class="space-y-2">
<button type="button" id="image-inputs-toggle" class="w-full flex items-center justify-between px-2 py-1.5 text-xs rounded text-[var(--color-text-secondary)] hover:text-[var(--color-text-primary)] hover:bg-[var(--color-bg-secondary)] transition-colors">
<span><i class="fa-solid fa-image mr-1.5 text-[var(--color-primary)]"></i> Image Inputs</span>
<i class="fas fa-chevron-down text-[10px]" id="image-inputs-chevron"></i>
</button>
<div id="image-inputs-settings" class="hidden p-2 bg-[var(--color-bg-secondary)] border border-[var(--color-primary-border)]/20 rounded pl-4 border-l-2 border-[var(--color-bg-secondary)] space-y-2">
<!-- Start Image (img2video) -->
<div class="space-y-1">
<label for="start-image" class="block text-xs text-[var(--color-text-secondary)]">
<i class="fas fa-play-circle mr-1.5 text-[var(--color-primary)]"></i>Start Image (img2video)
</label>
<input
type="file"
id="start-image"
name="start_image"
accept="image/*"
class="input p-1.5 text-xs w-full"
/>
</div>
<!-- End Image -->
<div class="space-y-1">
<label for="end-image" class="block text-xs text-[var(--color-text-secondary)]">
<i class="fas fa-stop-circle mr-1.5 text-[var(--color-primary)]"></i>End Image
</label>
<input
type="file"
id="end-image"
name="end_image"
accept="image/*"
class="input p-1.5 text-xs w-full"
/>
</div>
</div>
</div>
<!-- Submit Button -->
<div>
<button
type="submit"
id="generate-btn"
class="w-full px-2 py-1.5 text-xs rounded text-[var(--color-bg-primary)] bg-[var(--color-primary)] hover:bg-[var(--color-primary)]/90 transition-colors font-medium"
>
<i class="fas fa-video mr-1.5"></i>Generate Video
</button>
</div>
</form>
</div>
</div>
</div>
<!-- Right Column: Video Preview -->
<div class="flex-grow lg:w-3/4 flex flex-col min-h-0">
<div class="relative flex-1 min-h-0 overflow-y-auto">
<!-- Loading Animation -->
<div id="loader" class="hidden absolute inset-0 flex items-center justify-center bg-[var(--color-bg-primary)]/80 rounded-xl z-10">
<div class="text-center">
<svg class="animate-spin h-10 w-10 text-[var(--color-primary)] mx-auto mb-3" xmlns="http://www.w3.org/2000/svg" fill="none" viewBox="0 0 24 24">
<circle class="opacity-25" cx="12" cy="12" r="10" stroke="currentColor" stroke-width="4"></circle>
<path class="opacity-75" fill="currentColor" d="M4 12a8 8 0 018-8V0C5.373 0 0 5.373 0 12h4zm2 5.291A7.962 7.962 0 014 12H0c0 3.042 1.135 5.824 3 7.938l3-2.647z"></path>
</svg>
<p class="text-xs text-[var(--color-text-secondary)]">Generating video...</p>
</div>
</div>
<!-- Placeholder when no videos -->
<div id="result-placeholder" class="min-h-[400px] flex items-center justify-center flex-shrink-0">
<p class="text-xs text-[var(--color-text-secondary)] italic text-center">Your generated videos will appear here</p>
</div>
<!-- Results container -->
<div id="result" class="grid grid-cols-1 gap-4 pb-4"></div>
</div>
</div>
</div>
</div>
</div>
<script>
// Collapsible sections
document.getElementById('advanced-toggle').addEventListener('click', function() {
const settings = document.getElementById('advanced-settings');
const chevron = document.getElementById('advanced-chevron');
settings.classList.toggle('hidden');
chevron.classList.toggle('fa-chevron-down');
chevron.classList.toggle('fa-chevron-up');
});
document.getElementById('image-inputs-toggle').addEventListener('click', function() {
const settings = document.getElementById('image-inputs-settings');
const chevron = document.getElementById('image-inputs-chevron');
settings.classList.toggle('hidden');
chevron.classList.toggle('fa-chevron-down');
chevron.classList.toggle('fa-chevron-up');
});
// Size preset buttons
document.querySelectorAll('.size-preset').forEach(button => {
button.addEventListener('click', function() {
const size = this.getAttribute('data-size');
document.getElementById('video-size').value = size;
// Update active state
document.querySelectorAll('.size-preset').forEach(btn => {
btn.classList.remove('bg-[var(--color-primary)]', 'text-white');
});
this.classList.add('bg-[var(--color-primary)]', 'text-white');
});
});
// Set initial active size preset
document.querySelector('.size-preset[data-size="512x512"]').classList.add('bg-[var(--color-primary)]', 'text-white');
</script>
</body>
</html>

176
core/schema/anthropic.go Normal file
View File

@@ -0,0 +1,176 @@
package schema
import (
"context"
"encoding/json"
)
// AnthropicRequest represents a request to the Anthropic Messages API
// https://docs.anthropic.com/claude/reference/messages_post
type AnthropicRequest struct {
Model string `json:"model"`
Messages []AnthropicMessage `json:"messages"`
MaxTokens int `json:"max_tokens"`
Metadata map[string]string `json:"metadata,omitempty"`
StopSequences []string `json:"stop_sequences,omitempty"`
Stream bool `json:"stream,omitempty"`
System string `json:"system,omitempty"`
Temperature *float64 `json:"temperature,omitempty"`
TopK *int `json:"top_k,omitempty"`
TopP *float64 `json:"top_p,omitempty"`
Tools []AnthropicTool `json:"tools,omitempty"`
ToolChoice interface{} `json:"tool_choice,omitempty"`
// Internal fields for request handling
Context context.Context `json:"-"`
Cancel context.CancelFunc `json:"-"`
}
// ModelName implements the LocalAIRequest interface
func (ar *AnthropicRequest) ModelName(s *string) string {
if s != nil {
ar.Model = *s
}
return ar.Model
}
// AnthropicTool represents a tool definition in the Anthropic format
type AnthropicTool struct {
Name string `json:"name"`
Description string `json:"description,omitempty"`
InputSchema map[string]interface{} `json:"input_schema"`
}
// AnthropicMessage represents a message in the Anthropic format
type AnthropicMessage struct {
Role string `json:"role"`
Content interface{} `json:"content"`
}
// AnthropicContentBlock represents a content block in an Anthropic message
type AnthropicContentBlock struct {
Type string `json:"type"`
Text string `json:"text,omitempty"`
Source *AnthropicImageSource `json:"source,omitempty"`
ID string `json:"id,omitempty"`
Name string `json:"name,omitempty"`
Input map[string]interface{} `json:"input,omitempty"`
ToolUseID string `json:"tool_use_id,omitempty"`
Content interface{} `json:"content,omitempty"`
IsError *bool `json:"is_error,omitempty"`
}
// AnthropicImageSource represents an image source in Anthropic format
type AnthropicImageSource struct {
Type string `json:"type"`
MediaType string `json:"media_type"`
Data string `json:"data"`
}
// AnthropicResponse represents a response from the Anthropic Messages API
type AnthropicResponse struct {
ID string `json:"id"`
Type string `json:"type"`
Role string `json:"role"`
Content []AnthropicContentBlock `json:"content"`
Model string `json:"model"`
StopReason *string `json:"stop_reason"`
StopSequence *string `json:"stop_sequence,omitempty"`
Usage AnthropicUsage `json:"usage"`
}
// AnthropicUsage represents token usage in Anthropic format
type AnthropicUsage struct {
InputTokens int `json:"input_tokens"`
OutputTokens int `json:"output_tokens"`
}
// AnthropicStreamEvent represents a streaming event from the Anthropic API
type AnthropicStreamEvent struct {
Type string `json:"type"`
Index int `json:"index,omitempty"`
ContentBlock *AnthropicContentBlock `json:"content_block,omitempty"`
Delta *AnthropicStreamDelta `json:"delta,omitempty"`
Message *AnthropicStreamMessage `json:"message,omitempty"`
Usage *AnthropicUsage `json:"usage,omitempty"`
}
// AnthropicStreamDelta represents the delta in a streaming response
type AnthropicStreamDelta struct {
Type string `json:"type,omitempty"`
Text string `json:"text,omitempty"`
PartialJSON string `json:"partial_json,omitempty"`
StopReason *string `json:"stop_reason,omitempty"`
StopSequence *string `json:"stop_sequence,omitempty"`
}
// AnthropicStreamMessage represents the message object in streaming events
type AnthropicStreamMessage struct {
ID string `json:"id"`
Type string `json:"type"`
Role string `json:"role"`
Content []AnthropicContentBlock `json:"content"`
Model string `json:"model"`
StopReason *string `json:"stop_reason"`
StopSequence *string `json:"stop_sequence,omitempty"`
Usage AnthropicUsage `json:"usage"`
}
// AnthropicErrorResponse represents an error response from the Anthropic API
type AnthropicErrorResponse struct {
Type string `json:"type"`
Error AnthropicError `json:"error"`
}
// AnthropicError represents an error in the Anthropic format
type AnthropicError struct {
Type string `json:"type"`
Message string `json:"message"`
}
// GetStringContent extracts the string content from an AnthropicMessage
// Content can be either a string or an array of content blocks
func (m *AnthropicMessage) GetStringContent() string {
switch content := m.Content.(type) {
case string:
return content
case []interface{}:
var result string
for _, block := range content {
if blockMap, ok := block.(map[string]interface{}); ok {
if blockMap["type"] == "text" {
if text, ok := blockMap["text"].(string); ok {
result += text
}
}
}
}
return result
}
return ""
}
// GetContentBlocks extracts content blocks from an AnthropicMessage
func (m *AnthropicMessage) GetContentBlocks() []AnthropicContentBlock {
switch content := m.Content.(type) {
case string:
return []AnthropicContentBlock{{Type: "text", Text: content}}
case []interface{}:
var blocks []AnthropicContentBlock
for _, block := range content {
if blockMap, ok := block.(map[string]interface{}); ok {
cb := AnthropicContentBlock{}
data, err := json.Marshal(blockMap)
if err != nil {
continue
}
if err := json.Unmarshal(data, &cb); err != nil {
continue
}
blocks = append(blocks, cb)
}
}
return blocks
}
return nil
}

View File

@@ -0,0 +1,216 @@
package schema_test
import (
"encoding/json"
"github.com/mudler/LocalAI/core/schema"
. "github.com/onsi/ginkgo/v2"
. "github.com/onsi/gomega"
)
var _ = Describe("Anthropic Schema", func() {
Describe("AnthropicRequest", func() {
It("should unmarshal a valid request", func() {
jsonData := `{
"model": "claude-3-sonnet-20240229",
"max_tokens": 1024,
"messages": [
{"role": "user", "content": "Hello, world!"}
],
"system": "You are a helpful assistant.",
"temperature": 0.7
}`
var req schema.AnthropicRequest
err := json.Unmarshal([]byte(jsonData), &req)
Expect(err).ToNot(HaveOccurred())
Expect(req.Model).To(Equal("claude-3-sonnet-20240229"))
Expect(req.MaxTokens).To(Equal(1024))
Expect(len(req.Messages)).To(Equal(1))
Expect(req.System).To(Equal("You are a helpful assistant."))
Expect(*req.Temperature).To(Equal(0.7))
})
It("should unmarshal a request with tools", func() {
jsonData := `{
"model": "claude-3-sonnet-20240229",
"max_tokens": 1024,
"messages": [
{"role": "user", "content": "What's the weather?"}
],
"tools": [
{
"name": "get_weather",
"description": "Get the current weather",
"input_schema": {
"type": "object",
"properties": {
"location": {"type": "string"}
}
}
}
],
"tool_choice": {"type": "tool", "name": "get_weather"}
}`
var req schema.AnthropicRequest
err := json.Unmarshal([]byte(jsonData), &req)
Expect(err).ToNot(HaveOccurred())
Expect(len(req.Tools)).To(Equal(1))
Expect(req.Tools[0].Name).To(Equal("get_weather"))
Expect(req.Tools[0].Description).To(Equal("Get the current weather"))
Expect(req.ToolChoice).ToNot(BeNil())
})
It("should implement LocalAIRequest interface", func() {
req := &schema.AnthropicRequest{Model: "test-model"}
Expect(req.ModelName(nil)).To(Equal("test-model"))
newModel := "new-model"
Expect(req.ModelName(&newModel)).To(Equal("new-model"))
Expect(req.Model).To(Equal("new-model"))
})
})
Describe("AnthropicMessage", func() {
It("should get string content from string content", func() {
msg := schema.AnthropicMessage{
Role: "user",
Content: "Hello, world!",
}
Expect(msg.GetStringContent()).To(Equal("Hello, world!"))
})
It("should get string content from array content", func() {
msg := schema.AnthropicMessage{
Role: "user",
Content: []interface{}{
map[string]interface{}{"type": "text", "text": "Hello, "},
map[string]interface{}{"type": "text", "text": "world!"},
},
}
Expect(msg.GetStringContent()).To(Equal("Hello, world!"))
})
It("should get content blocks from string content", func() {
msg := schema.AnthropicMessage{
Role: "user",
Content: "Hello, world!",
}
blocks := msg.GetContentBlocks()
Expect(len(blocks)).To(Equal(1))
Expect(blocks[0].Type).To(Equal("text"))
Expect(blocks[0].Text).To(Equal("Hello, world!"))
})
It("should get content blocks from array content", func() {
msg := schema.AnthropicMessage{
Role: "user",
Content: []interface{}{
map[string]interface{}{"type": "text", "text": "Hello"},
map[string]interface{}{"type": "image", "source": map[string]interface{}{"type": "base64", "data": "abc123"}},
},
}
blocks := msg.GetContentBlocks()
Expect(len(blocks)).To(Equal(2))
Expect(blocks[0].Type).To(Equal("text"))
Expect(blocks[0].Text).To(Equal("Hello"))
})
})
Describe("AnthropicResponse", func() {
It("should marshal a valid response", func() {
stopReason := "end_turn"
resp := schema.AnthropicResponse{
ID: "msg_123",
Type: "message",
Role: "assistant",
Model: "claude-3-sonnet-20240229",
StopReason: &stopReason,
Content: []schema.AnthropicContentBlock{
{Type: "text", Text: "Hello!"},
},
Usage: schema.AnthropicUsage{
InputTokens: 10,
OutputTokens: 5,
},
}
data, err := json.Marshal(resp)
Expect(err).ToNot(HaveOccurred())
var result map[string]interface{}
err = json.Unmarshal(data, &result)
Expect(err).ToNot(HaveOccurred())
Expect(result["id"]).To(Equal("msg_123"))
Expect(result["type"]).To(Equal("message"))
Expect(result["role"]).To(Equal("assistant"))
Expect(result["stop_reason"]).To(Equal("end_turn"))
})
It("should marshal a response with tool use", func() {
stopReason := "tool_use"
resp := schema.AnthropicResponse{
ID: "msg_123",
Type: "message",
Role: "assistant",
Model: "claude-3-sonnet-20240229",
StopReason: &stopReason,
Content: []schema.AnthropicContentBlock{
{
Type: "tool_use",
ID: "toolu_123",
Name: "get_weather",
Input: map[string]interface{}{
"location": "San Francisco",
},
},
},
Usage: schema.AnthropicUsage{
InputTokens: 10,
OutputTokens: 5,
},
}
data, err := json.Marshal(resp)
Expect(err).ToNot(HaveOccurred())
var result map[string]interface{}
err = json.Unmarshal(data, &result)
Expect(err).ToNot(HaveOccurred())
Expect(result["stop_reason"]).To(Equal("tool_use"))
content := result["content"].([]interface{})
Expect(len(content)).To(Equal(1))
toolUse := content[0].(map[string]interface{})
Expect(toolUse["type"]).To(Equal("tool_use"))
Expect(toolUse["id"]).To(Equal("toolu_123"))
Expect(toolUse["name"]).To(Equal("get_weather"))
})
})
Describe("AnthropicErrorResponse", func() {
It("should marshal an error response", func() {
resp := schema.AnthropicErrorResponse{
Type: "error",
Error: schema.AnthropicError{
Type: "invalid_request_error",
Message: "max_tokens is required",
},
}
data, err := json.Marshal(resp)
Expect(err).ToNot(HaveOccurred())
var result map[string]interface{}
err = json.Unmarshal(data, &result)
Expect(err).ToNot(HaveOccurred())
Expect(result["type"]).To(Equal("error"))
errorObj := result["error"].(map[string]interface{})
Expect(errorObj["type"]).To(Equal("invalid_request_error"))
Expect(errorObj["message"]).To(Equal("max_tokens is required"))
})
})
})

View File

@@ -27,6 +27,9 @@ type Message struct {
FunctionCall interface{} `json:"function_call,omitempty" yaml:"function_call,omitempty"`
ToolCalls []ToolCall `json:"tool_calls,omitempty" yaml:"tool_call,omitempty"`
// Reasoning content extracted from <thinking>...</thinking> tags
Reasoning *string `json:"reasoning,omitempty" yaml:"reasoning,omitempty"`
}
type ToolCall struct {
@@ -78,8 +81,8 @@ func (messages Messages) ToProto() []*proto.Message {
}
}
// Note: tool_call_id and reasoning_content are not in schema.Message yet
// They may need to be added to schema.Message if needed in the future
// Note: tool_call_id is not in schema.Message yet
// Reasoning field is now available in schema.Message but not yet in proto.Message
}
return protoMessages
}

View File

@@ -164,6 +164,57 @@ curl http://localhost:8080/tts -H "Content-Type: application/json" -d '{
}' | aplay
```
### Pocket TTS
[Pocket TTS](https://github.com/kyutai-labs/pocket-tts) is a lightweight text-to-speech model designed to run efficiently on CPUs. It supports voice cloning through HuggingFace voice URLs or local audio files.
#### Setup
Install the `pocket-tts` model in the Model gallery or run `local-ai run models install pocket-tts`.
#### Usage
Use the tts endpoint by specifying the pocket-tts backend:
```
curl http://localhost:8080/tts -H "Content-Type: application/json" -d '{
"model": "pocket-tts",
"input":"Hello world, this is a test."
}' | aplay
```
#### Voice cloning
Pocket TTS supports voice cloning through built-in voice names, HuggingFace URLs, or local audio files. You can configure a model with a specific voice:
```yaml
name: pocket-tts
backend: pocket-tts
tts:
voice: "azelma" # Built-in voice name
# Or use HuggingFace URL: "hf://kyutai/tts-voices/alba-mackenna/casual.wav"
# Or use local file path: "path/to/voice.wav"
# Available built-in voices: alba, marius, javert, jean, fantine, cosette, eponine, azelma
```
You can also pre-load a default voice for faster first generation:
```yaml
name: pocket-tts
backend: pocket-tts
options:
- "default_voice:azelma" # Pre-load this voice when model loads
```
Then you can use the model:
```
curl http://localhost:8080/tts -H "Content-Type: application/json" -d '{
"model": "pocket-tts",
"input":"Hello world, this is a test."
}' | aplay
```
### Vall-E-X
[VALL-E-X](https://github.com/Plachtaa/VALL-E-X) is an open source implementation of Microsoft's VALL-E X zero-shot TTS model.

View File

@@ -20,7 +20,7 @@ Choose the installation method that best suits your needs:
1. **[Docker](docker/)** ⭐ **Recommended** - Works on all platforms, easiest setup
2. **[macOS](macos/)** - Download and install the DMG application
3. **[Linux](linux/)** - Install on Linux using the one-liner script or binaries
3. **[Linux](linux/)** - Install on Linux using binaries (install.sh script currently has issues - see [issue #8032](https://github.com/mudler/LocalAI/issues/8032))
4. **[Kubernetes](kubernetes/)** - Deploy LocalAI on Kubernetes clusters
5. **[Build from Source](build/)** - Build LocalAI from source code
@@ -36,6 +36,6 @@ This will start LocalAI. The API will be available at `http://localhost:8080`. F
For other platforms:
- **macOS**: Download the [DMG](macos/)
- **Linux**: Use the `curl https://localai.io/install.sh | sh` [one-liner](linux/)
- **Linux**: See the [Linux installation guide](linux/) for installation options. **Note:** The `install.sh` script is currently experiencing issues - see [issue #8032](https://github.com/mudler/LocalAI/issues/8032) for details.
For detailed instructions, see the [Docker installation guide](docker/).

View File

@@ -6,7 +6,11 @@ url: '/installation/linux/'
---
## One-Line Installer (Recommended)
## One-Line Installer
{{% notice warning %}}
**The `install.sh` script is currently experiencing issues and may produce broken or misconfigured installations. Please use alternative installation methods (Docker or manual binary installation) until [issue #8032](https://github.com/mudler/LocalAI/issues/8032) is resolved.**
{{% /notice %}}
The fastest way to install LocalAI on Linux is with the installation script:

View File

@@ -97,7 +97,7 @@ For more information on VRAM management, see [VRAM and Memory Management]({{%rel
| `--opaque-errors` | `false` | If true, all error responses are replaced with blank 500 errors. This is intended only for hardening against information leaks and is normally not recommended | `$LOCALAI_OPAQUE_ERRORS` |
| `--use-subtle-key-comparison` | `false` | If true, API Key validation comparisons will be performed using constant-time comparisons rather than simple equality. This trades off performance on each request for resilience against timing attacks | `$LOCALAI_SUBTLE_KEY_COMPARISON` |
| `--disable-api-key-requirement-for-http-get` | `false` | If true, a valid API key is not required to issue GET requests to portions of the web UI. This should only be enabled in secure testing environments | `$LOCALAI_DISABLE_API_KEY_REQUIREMENT_FOR_HTTP_GET` |
| `--http-get-exempted-endpoints` | `^/$,^/browse/?$,^/talk/?$,^/p2p/?$,^/chat/?$,^/text2image/?$,^/tts/?$,^/static/.*$,^/swagger.*$` | If `--disable-api-key-requirement-for-http-get` is overridden to true, this is the list of endpoints to exempt. Only adjust this in case of a security incident or as a result of a personal security posture review | `$LOCALAI_HTTP_GET_EXEMPTED_ENDPOINTS` |
| `--http-get-exempted-endpoints` | `^/$,^/browse/?$,^/talk/?$,^/p2p/?$,^/chat/?$,^/image/?$,^/text2image/?$,^/tts/?$,^/static/.*$,^/swagger.*$` | If `--disable-api-key-requirement-for-http-get` is overridden to true, this is the list of endpoints to exempt. Only adjust this in case of a security incident or as a result of a personal security posture review | `$LOCALAI_HTTP_GET_EXEMPTED_ENDPOINTS` |
## P2P Flags

View File

@@ -42,6 +42,7 @@ LocalAI will attempt to automatically load models which are not explicitly confi
| [silero-vad](https://github.com/snakers4/silero-vad) with [Golang bindings](https://github.com/streamer45/silero-vad-go) | Silero VAD | no | Voice Activity Detection | no | no | CPU |
| [neutts](https://github.com/neuphonic/neuttsair) | NeuTTSAir | no | Text-to-speech with voice cloning | no | no | CUDA 12/13, ROCm, CPU |
| [vibevoice](https://github.com/microsoft/VibeVoice) | VibeVoice-Realtime | no | Real-time text-to-speech with voice cloning | no | no | CUDA 12/13, ROCm, Intel, CPU |
| [pocket-tts](https://github.com/kyutai-labs/pocket-tts) | Pocket TTS | no | Lightweight CPU-based text-to-speech with voice cloning | no | no | CUDA 12/13, ROCm, Intel, CPU |
| [mlx-audio](https://github.com/Blaizzy/mlx-audio) | MLX | no | Text-tospeech | no | no | Metal (Apple Silicon) |
## Image & Video Generation

View File

@@ -1,4 +1,56 @@
---
- name: "qwen3-vl-reranker-8b"
url: "github:mudler/LocalAI/gallery/virtual.yaml@master"
urls:
- https://huggingface.co/mradermacher/Qwen3-VL-Reranker-8B-GGUF
description: |
**Model Name:** Qwen3-VL-Reranker-8B
**Base Model:** Qwen/Qwen3-VL-Reranker-8B
**Description:**
A high-performance multimodal reranking model for state-of-the-art cross-modal search. It supports 30+ languages and handles text, images, screenshots, videos, and mixed modalities. With 8B parameters and a 32K context length, it refines retrieval results by combining embedding vectors with precise relevance scores. Optimized for efficiency, it supports quantized versions (e.g., Q8_0, Q4_K_M) and is ideal for applications requiring accurate multimodal content matching.
**Key Features:**
- **Multimodal**: Text, images, videos, and mixed content.
- **Language Support**: 30+ languages.
- **Quantization**: Available in Q8_0 (best quality), Q4_K_M (fast, recommended), and lower-precision options.
- **Performance**: Outperforms base models in retrieval tasks (e.g., JinaVDR, ViDoRe v3).
- **Use Case**: Enhances search pipelines by refining embeddings with precise relevance scores.
**Downloads:**
- [GGUF Files](https://huggingface.co/mradermacher/Qwen3-VL-Reranker-8B-GGUF) (e.g., `Qwen3-VL-Reranker-8B.Q8_0.gguf`).
**Usage:**
- Requires `transformers`, `qwen-vl-utils`, and `torch`.
- Example: `from scripts.qwen3_vl_reranker import Qwen3VLReranker; model = Qwen3VLReranker(...)`
**Citation:**
@article{qwen3vlembedding, ...}
This description emphasizes its capabilities, efficiency, and versatility for multimodal search tasks.
overrides:
parameters:
model: llama-cpp/models/Qwen3-VL-Reranker-8B.Q4_K_M.gguf
name: Qwen3-VL-Reranker-8B-GGUF
backend: llama-cpp
template:
use_tokenizer_template: true
known_usecases:
- chat
function:
grammar:
disable: true
mmproj: llama-cpp/mmproj/Qwen3-VL-Reranker-8B.mmproj-f16.gguf
description: Imported from https://huggingface.co/mradermacher/Qwen3-VL-Reranker-8B-GGUF
options:
- use_jinja:true
files:
- filename: llama-cpp/models/Qwen3-VL-Reranker-8B.Q4_K_M.gguf
sha256: f73e62ea68abf741c3e713af823cfb4d2fd2ca35c8b68277b87b4b3d8570b66d
uri: https://huggingface.co/mradermacher/Qwen3-VL-Reranker-8B-GGUF/resolve/main/Qwen3-VL-Reranker-8B.Q4_K_M.gguf
- filename: llama-cpp/mmproj/Qwen3-VL-Reranker-8B.mmproj-f16.gguf
sha256: 15cd9bd4882dae771344f0ac204fce07de91b47c1438ada3861dfc817403c31e
uri: https://huggingface.co/mradermacher/Qwen3-VL-Reranker-8B-GGUF/resolve/main/Qwen3-VL-Reranker-8B.mmproj-f16.gguf
- name: "liquidai.lfm2-2.6b-transcript"
url: "github:mudler/LocalAI/gallery/virtual.yaml@master"
urls:
@@ -426,6 +478,16 @@
- filename: voices/streaming_model/en-Davis_man.pt
uri: https://raw.githubusercontent.com/microsoft/VibeVoice/main/demo/voices/streaming_model/en-Davis_man.pt
sha256: 67561d63bfa2153616e4c02fd967007c182593fc53738a6ad94bf5f84e8832ac
- &pocket-tts
url: "github:mudler/LocalAI/gallery/pocket-tts.yaml@master"
icon: https://avatars.githubusercontent.com/u/6154722?s=200&v=4
license: mit
tags:
- text-to-speech
- TTS
name: "pocket-tts"
urls:
- https://github.com/kyutai-labs/pocket-tts
- &qwen3vl
url: "github:mudler/LocalAI/gallery/qwen3.yaml@master"
icon: https://cdn-avatars.huggingface.co/v1/production/uploads/620760a26e3b7210c2ff1943/-s1gyJfvbE1RgO5iBeNOi.png
@@ -1185,6 +1247,63 @@
cuda: true
pipeline_type: QwenImageEditPipeline
enable_parameters: num_inference_steps,image
- &ltx2
name: "ltx-2"
url: "github:mudler/LocalAI/gallery/virtual.yaml@master"
urls:
- https://huggingface.co/Lightricks/LTX-2
license: ltx-2-community-license-agreement
tags:
- diffusers
- gpu
- image-to-video
- video-generation
- audio-video
description: |
**LTX-2** is a DiT-based audio-video foundation model designed to generate synchronized video and audio within a single model. It brings together the core building blocks of modern video generation, with open weights and a focus on practical, local execution.
**Key Features:**
- **Joint Audio-Video Generation**: Generates synchronized video and audio in a single model
- **Image-to-Video**: Converts static images into dynamic videos with matching audio
- **High Quality**: Produces realistic video with natural motion and synchronized audio
- **Open Weights**: Available under the LTX-2 Community License Agreement
**Model Details:**
- **Model Type**: Diffusion-based audio-video foundation model
- **Architecture**: DiT (Diffusion Transformer) based
- **Developed by**: Lightricks
- **Paper**: [LTX-2: Efficient Joint Audio-Visual Foundation Model](https://arxiv.org/abs/2601.03233)
**Usage Tips:**
- Width & height settings must be divisible by 32
- Frame count must be divisible by 8 + 1 (e.g., 9, 17, 25, 33, 41, 49, 57, 65, 73, 81, 89, 97, 105, 113, 121)
- Recommended settings: width=768, height=512, num_frames=121, frame_rate=24.0
- For best results, use detailed prompts describing motion and scene dynamics
**Limitations:**
- This model is not intended or able to provide factual information
- Prompt following is heavily influenced by the prompting-style
- When generating audio without speech, the audio may be of lower quality
**Citation:**
```bibtex
@article{hacohen2025ltx2,
title={LTX-2: Efficient Joint Audio-Visual Foundation Model},
author={HaCohen, Yoav and Brazowski, Benny and Chiprut, Nisan and others},
journal={arXiv preprint arXiv:2601.03233},
year={2025}
}
```
overrides:
backend: diffusers
low_vram: true
parameters:
model: Lightricks/LTX-2
diffusers:
cuda: true
pipeline_type: LTX2ImageToVideoPipeline
options:
- torch_dtype:bf16
- &gptoss
name: "gpt-oss-20b"
url: "github:mudler/LocalAI/gallery/harmony.yaml@master"

34
gallery/pocket-tts.yaml Normal file
View File

@@ -0,0 +1,34 @@
---
name: localai
config_file: |-
name: pocket-tts
backend: pocket-tts
description: |
Pocket TTS is a lightweight text-to-speech model designed to run efficiently on CPUs.
This model supports voice cloning through HuggingFace voice URLs or local audio files.
parameters:
model: ""
# TTS configuration
tts:
# Voice selection - can be:
# 1. Built-in voice name (e.g., "alba", "marius", "javert", "jean", "fantine", "cosette", "eponine", "azelma")
# 2. HuggingFace URL (e.g., "hf://kyutai/tts-voices/alba-mackenna/casual.wav")
# 3. Local file path (relative to model directory or absolute)
# voice: "azelma"
# Alternative: use audio_path to specify a voice file directly
# audio_path: "hf://kyutai/tts-voices/alba-mackenna/casual.wav"
known_usecases:
- tts
# Backend-specific options
# These are passed as "key:value" strings to the backend
options:
# Default voice to pre-load (optional)
# Can be a voice name or HuggingFace URL
# If set, this voice will be loaded when the model loads for faster first generation
- "default_voice:azelma"
# - "default_voice:hf://kyutai/tts-voices/alba-mackenna/casual.wav"

19
go.mod
View File

@@ -6,9 +6,10 @@ toolchain go1.24.5
require (
dario.cat/mergo v1.0.2
fyne.io/fyne/v2 v2.7.1
fyne.io/fyne/v2 v2.7.2
github.com/Masterminds/sprig/v3 v3.3.0
github.com/alecthomas/kong v1.13.0
github.com/anthropics/anthropic-sdk-go v1.19.0
github.com/charmbracelet/glamour v0.10.0
github.com/containerd/containerd v1.7.30
github.com/ebitengine/purego v0.9.1
@@ -19,7 +20,7 @@ require (
github.com/gofrs/flock v0.13.0
github.com/google/go-containerregistry v0.20.7
github.com/google/uuid v1.6.0
github.com/gpustack/gguf-parser-go v0.22.1
github.com/gpustack/gguf-parser-go v0.23.1
github.com/hpcloud/tail v1.0.0
github.com/ipfs/go-log v1.0.5
github.com/jaypipes/ghw v0.21.2
@@ -33,11 +34,11 @@ require (
github.com/modelcontextprotocol/go-sdk v1.2.0
github.com/mudler/cogito v0.7.2
github.com/mudler/edgevpn v0.31.1
github.com/mudler/go-processmanager v0.0.0-20240820160718-8b802d3ecf82
github.com/mudler/go-processmanager v0.1.0
github.com/mudler/memory v0.0.0-20251216220809-d1256471a6c2
github.com/mudler/xlog v0.0.5
github.com/onsi/ginkgo/v2 v2.27.3
github.com/onsi/gomega v1.38.3
github.com/onsi/ginkgo/v2 v2.27.5
github.com/onsi/gomega v1.39.0
github.com/otiai10/copy v1.14.1
github.com/otiai10/openaigo v1.7.0
github.com/phayes/freeport v0.0.0-20220201140144-74d24b5ae9f5
@@ -67,12 +68,16 @@ require (
github.com/ghodss/yaml v1.0.0 // indirect
github.com/labstack/gommon v0.4.2 // indirect
github.com/swaggo/files/v2 v2.0.2 // indirect
github.com/tidwall/gjson v1.18.0 // indirect
github.com/tidwall/match v1.1.1 // indirect
github.com/tidwall/pretty v1.2.1 // indirect
github.com/tidwall/sjson v1.2.5 // indirect
github.com/valyala/fasttemplate v1.2.2 // indirect
google.golang.org/protobuf v1.36.10 // indirect
)
require (
fyne.io/systray v1.11.1-0.20250603113521-ca66a66d8b58 // indirect
fyne.io/systray v1.12.0 // indirect
github.com/BurntSushi/toml v1.5.0 // indirect
github.com/charmbracelet/colorprofile v0.2.3-0.20250311203215-f60798e515dc // indirect
github.com/charmbracelet/lipgloss v1.1.1-0.20250404203927-76690c660834 // indirect
@@ -319,7 +324,7 @@ require (
golang.org/x/exp v0.0.0-20250606033433-dcc06ee1d476 // indirect
golang.org/x/mod v0.30.0 // indirect
golang.org/x/sync v0.19.0 // indirect
golang.org/x/sys v0.39.0 // indirect
golang.org/x/sys v0.40.0 // indirect
golang.org/x/term v0.38.0 // indirect
golang.org/x/text v0.32.0 // indirect
golang.org/x/tools v0.39.0 // indirect

32
go.sum
View File

@@ -8,10 +8,10 @@ dmitri.shuralyov.com/app/changes v0.0.0-20180602232624-0a106ad413e3/go.mod h1:Yl
dmitri.shuralyov.com/html/belt v0.0.0-20180602232347-f7d459c86be0/go.mod h1:JLBrvjyP0v+ecvNYvCpyZgu5/xkfAUhi6wJj28eUfSU=
dmitri.shuralyov.com/service/change v0.0.0-20181023043359-a85b471d5412/go.mod h1:a1inKt/atXimZ4Mv927x+r7UpyzRUf4emIoiiSC2TN4=
dmitri.shuralyov.com/state v0.0.0-20180228185332-28bcc343414c/go.mod h1:0PRwlb0D6DFvNNtx+9ybjezNCa8XF0xaYcETyp6rHWU=
fyne.io/fyne/v2 v2.7.1 h1:ja7rNHWWEooha4XBIZNnPP8tVFwmTfwMJdpZmLxm2Zc=
fyne.io/fyne/v2 v2.7.1/go.mod h1:xClVlrhxl7D+LT+BWYmcrW4Nf+dJTvkhnPgji7spAwE=
fyne.io/systray v1.11.1-0.20250603113521-ca66a66d8b58 h1:eA5/u2XRd8OUkoMqEv3IBlFYSruNlXD8bRHDiqm0VNI=
fyne.io/systray v1.11.1-0.20250603113521-ca66a66d8b58/go.mod h1:RVwqP9nYMo7h5zViCBHri2FgjXF7H2cub7MAq4NSoLs=
fyne.io/fyne/v2 v2.7.2 h1:XiNpWkn0PzX43ZCjbb0QYGg1RCxVbugwfVgikWZBCMw=
fyne.io/fyne/v2 v2.7.2/go.mod h1:PXbqY3mQmJV3J1NRUR2VbVgUUx3vgvhuFJxyjRK/4Ug=
fyne.io/systray v1.12.0 h1:CA1Kk0e2zwFlxtc02L3QFSiIbxJ/P0n582YrZHT7aTM=
fyne.io/systray v1.12.0/go.mod h1:RVwqP9nYMo7h5zViCBHri2FgjXF7H2cub7MAq4NSoLs=
git.apache.org/thrift.git v0.0.0-20180902110319-2566ecd5d999/go.mod h1:fPE2ZNJGynbRyZ4dJvy6G277gSllfV2HJqblrnkyeyg=
github.com/AdaLogics/go-fuzz-headers v0.0.0-20240806141605-e8a1dd7889d6 h1:He8afgbRMd7mFxO99hRNu+6tazq8nFF9lIwo9JFroBk=
github.com/AdaLogics/go-fuzz-headers v0.0.0-20240806141605-e8a1dd7889d6/go.mod h1:8o94RPi1/7XTJvwPpRSzSUedZrtlirdB3r9Z20bi2f8=
@@ -44,6 +44,8 @@ github.com/andybalholm/brotli v1.0.1/go.mod h1:loMXtMfwqflxFJPmdbJO0a3KNoPuLBgiu
github.com/andybalholm/brotli v1.2.0 h1:ukwgCxwYrmACq68yiUqwIWnGY0cTPox/M94sVwToPjQ=
github.com/andybalholm/brotli v1.2.0/go.mod h1:rzTDkvFWvIrjDXZHkuS16NPggd91W3kUSvPlQ1pLaKY=
github.com/anmitsu/go-shlex v0.0.0-20161002113705-648efa622239/go.mod h1:2FmKhYUyUczH0OGQWaF5ceTx0UBShxjsH6f8oGKYe2c=
github.com/anthropics/anthropic-sdk-go v1.19.0 h1:mO6E+ffSzLRvR/YUH9KJC0uGw0uV8GjISIuzem//3KE=
github.com/anthropics/anthropic-sdk-go v1.19.0/go.mod h1:WTz31rIUHUHqai2UslPpw5CwXrQP3geYBioRV4WOLvE=
github.com/aymanbagabas/go-osc52/v2 v2.0.1 h1:HwpRHbFMcZLEVr42D4p7XBqjyuxQH5SMiErDT4WkJ2k=
github.com/aymanbagabas/go-osc52/v2 v2.0.1/go.mod h1:uYgXzlJ7ZpABp8OJ+exZzJJhRNQ2ASbcXHWsFqH8hp8=
github.com/aymanbagabas/go-udiff v0.2.0 h1:TK0fH4MteXUDspT88n8CKzvK0X9O2xu9yQjWpi6yML8=
@@ -290,8 +292,8 @@ github.com/gorilla/css v1.0.1 h1:ntNaBIghp6JmvWnxbZKANoLyuXTPZ4cAMlo6RyhlbO8=
github.com/gorilla/css v1.0.1/go.mod h1:BvnYkspnSzMmwRK+b8/xgNPLiIuNZr6vbZBTPQ2A3b0=
github.com/gorilla/websocket v1.5.3 h1:saDtZ6Pbx/0u+bgYQ3q96pZgCzfhKXGPqt7kZ72aNNg=
github.com/gorilla/websocket v1.5.3/go.mod h1:YR8l580nyteQvAITg2hZ9XVh4b55+EU/adAjf1fMHhE=
github.com/gpustack/gguf-parser-go v0.22.1 h1:FRnEDWqT0Rcplr/R9ctCRSN2+3DhVsf6dnR5/i9JA4E=
github.com/gpustack/gguf-parser-go v0.22.1/go.mod h1:y4TwTtDqFWTK+xvprOjRUh+dowgU2TKCX37vRKvGiZ0=
github.com/gpustack/gguf-parser-go v0.23.1 h1:0U7DOrsi7ryx2L/dlMy+BSQ5bJV4AuMEIgGBs4RK46A=
github.com/gpustack/gguf-parser-go v0.23.1/go.mod h1:y4TwTtDqFWTK+xvprOjRUh+dowgU2TKCX37vRKvGiZ0=
github.com/gregjones/httpcache v0.0.0-20180305231024-9cad4c3443a7/go.mod h1:FecbI9+v66THATjSRHfNgh1IVFe/9kFxbXtjV0ctIMA=
github.com/grpc-ecosystem/grpc-gateway v1.5.0/go.mod h1:RSKVYQBd5MCa4OVpNdGskqpgL2+G+NZTnrVHpWWfpdw=
github.com/grpc-ecosystem/grpc-gateway v1.16.0 h1:gmcG1KaJ57LophUzW0Hy8NmPhnMZb4M0+kPpLofRdBo=
@@ -511,8 +513,8 @@ github.com/mudler/edgevpn v0.31.1 h1:7qegiDWd0kAg6ljhNHxqvp8hbo/6BbzSdbb7/2WZfiY
github.com/mudler/edgevpn v0.31.1/go.mod h1:ftV5B0nKFzm4R8vR80UYnCb2nf7lxCRgAALxUEEgCf8=
github.com/mudler/go-piper v0.0.0-20241023091659-2494246fd9fc h1:RxwneJl1VgvikiX28EkpdAyL4yQVnJMrbquKospjHyA=
github.com/mudler/go-piper v0.0.0-20241023091659-2494246fd9fc/go.mod h1:O7SwdSWMilAWhBZMK9N9Y/oBDyMMzshE3ju8Xkexwig=
github.com/mudler/go-processmanager v0.0.0-20240820160718-8b802d3ecf82 h1:FVT07EI8njvsD4tC2Hw8Xhactp5AWhsQWD4oTeQuSAU=
github.com/mudler/go-processmanager v0.0.0-20240820160718-8b802d3ecf82/go.mod h1:Urp7LG5jylKoDq0663qeBh0pINGcRl35nXdKx82PSoU=
github.com/mudler/go-processmanager v0.1.0 h1:fcSKgF9U/a1Z7KofAFeZnke5YseadCI5GqL9oT0LS3E=
github.com/mudler/go-processmanager v0.1.0/go.mod h1:h6kmHUZeafr+k5hRYpGLMzJFH4hItHffgpRo2QIkP+o=
github.com/mudler/memory v0.0.0-20251216220809-d1256471a6c2 h1:+WHsL/j6EWOMUiMVIOJNKOwSKiQt/qDPc9fePCf87fA=
github.com/mudler/memory v0.0.0-20251216220809-d1256471a6c2/go.mod h1:EA8Ashhd56o32qN7ouPKFSRUs/Z+LrRCF4v6R2Oarm8=
github.com/mudler/water v0.0.0-20250808092830-dd90dcf09025 h1:WFLP5FHInarYGXi6B/Ze204x7Xy6q/I4nCZnWEyPHK0=
@@ -559,10 +561,10 @@ github.com/nxadm/tail v1.4.8 h1:nPr65rt6Y5JFSKQO7qToXr7pePgD6Gwiw05lkbyAQTE=
github.com/nxadm/tail v1.4.8/go.mod h1:+ncqLTQzXmGhMZNUePPaPqPvBxHAIsmXswZKocGu+AU=
github.com/onsi/ginkgo v1.16.5 h1:8xi0RTUf59SOSfEtZMvwTvXYMzG4gV23XVHOZiXNtnE=
github.com/onsi/ginkgo v1.16.5/go.mod h1:+E8gABHa3K6zRBolWtd+ROzc/U5bkGt0FwiG042wbpU=
github.com/onsi/ginkgo/v2 v2.27.3 h1:ICsZJ8JoYafeXFFlFAG75a7CxMsJHwgKwtO+82SE9L8=
github.com/onsi/ginkgo/v2 v2.27.3/go.mod h1:ArE1D/XhNXBXCBkKOLkbsb2c81dQHCRcF5zwn/ykDRo=
github.com/onsi/gomega v1.38.3 h1:eTX+W6dobAYfFeGC2PV6RwXRu/MyT+cQguijutvkpSM=
github.com/onsi/gomega v1.38.3/go.mod h1:ZCU1pkQcXDO5Sl9/VVEGlDyp+zm0m1cmeG5TOzLgdh4=
github.com/onsi/ginkgo/v2 v2.27.5 h1:ZeVgZMx2PDMdJm/+w5fE/OyG6ILo1Y3e+QX4zSR0zTE=
github.com/onsi/ginkgo/v2 v2.27.5/go.mod h1:ArE1D/XhNXBXCBkKOLkbsb2c81dQHCRcF5zwn/ykDRo=
github.com/onsi/gomega v1.39.0 h1:y2ROC3hKFmQZJNFeGAMeHZKkjBL65mIZcvrLQBF9k6Q=
github.com/onsi/gomega v1.39.0/go.mod h1:ZCU1pkQcXDO5Sl9/VVEGlDyp+zm0m1cmeG5TOzLgdh4=
github.com/opencontainers/go-digest v1.0.0 h1:apOUWs51W5PlhuyGyz9FCeeBIOUDA/6nW8Oi/yOhh5U=
github.com/opencontainers/go-digest v1.0.0/go.mod h1:0JzlMkj0TRzQZfJkVvzbP0HBR3IKzErnv2BNG4W4MAM=
github.com/opencontainers/image-spec v1.1.1 h1:y0fUlFfIZhPF1W537XOLg0/fcx6zcHCJwooC2xJA040=
@@ -762,10 +764,12 @@ github.com/swaggo/swag v1.16.6/go.mod h1:ngP2etMK5a0P3QBizic5MEwpRmluJZPHjXcMoj4
github.com/tarm/serial v0.0.0-20180830185346-98f6abe2eb07/go.mod h1:kDXzergiv9cbyO7IOYJZWg1U88JhDg3PB6klq9Hg2pA=
github.com/testcontainers/testcontainers-go v0.40.0 h1:pSdJYLOVgLE8YdUY2FHQ1Fxu+aMnb6JfVz1mxk7OeMU=
github.com/testcontainers/testcontainers-go v0.40.0/go.mod h1:FSXV5KQtX2HAMlm7U3APNyLkkap35zNLxukw9oBi/MY=
github.com/tidwall/gjson v1.14.2/go.mod h1:/wbyibRr2FHMks5tjHJ5F8dMZh3AcwJEMf5vlfC0lxk=
github.com/tidwall/gjson v1.18.0 h1:FIDeeyB800efLX89e5a8Y0BNH+LOngJyGrIWxG2FKQY=
github.com/tidwall/gjson v1.18.0/go.mod h1:/wbyibRr2FHMks5tjHJ5F8dMZh3AcwJEMf5vlfC0lxk=
github.com/tidwall/match v1.1.1 h1:+Ho715JplO36QYgwN9PGYNhgZvoUSc9X2c80KVTi+GA=
github.com/tidwall/match v1.1.1/go.mod h1:eRSPERbgtNPcGhD8UCthc6PmLEQXEWd3PRB5JTxsfmM=
github.com/tidwall/pretty v1.2.0/go.mod h1:ITEVvHYasfjBbM0u2Pg8T2nJnzm8xPwvNhhsoaGGjNU=
github.com/tidwall/pretty v1.2.1 h1:qjsOFOWWQl+N3RsoF5/ssm1pHmJJwhjlSbZ51I6wMl4=
github.com/tidwall/pretty v1.2.1/go.mod h1:ITEVvHYasfjBbM0u2Pg8T2nJnzm8xPwvNhhsoaGGjNU=
github.com/tidwall/sjson v1.2.5 h1:kLy8mja+1c9jlljvWTlSazM7cKDRfJuR/bOJhcY5NcY=
@@ -974,8 +978,8 @@ golang.org/x/sys v0.8.0/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.10.0/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.11.0/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.16.0/go.mod h1:/VUhepiaJMQUp4+oa/7Zr1D23ma6VTLIYjOOTFZPUcA=
golang.org/x/sys v0.39.0 h1:CvCKL8MeisomCi6qNZ+wbb0DN9E5AATixKsvNtMoMFk=
golang.org/x/sys v0.39.0/go.mod h1:OgkHotnGiDImocRcuBABYBEXf8A9a87e/uXjp9XT3ks=
golang.org/x/sys v0.40.0 h1:DBZZqJ2Rkml6QMQsZywtnjnnGvHza6BTfYFWY9kjEWQ=
golang.org/x/sys v0.40.0/go.mod h1:OgkHotnGiDImocRcuBABYBEXf8A9a87e/uXjp9XT3ks=
golang.org/x/telemetry v0.0.0-20251111182119-bc8e575c7b54 h1:E2/AqCUMZGgd73TQkxUMcMla25GB9i/5HOdLr+uH7Vo=
golang.org/x/telemetry v0.0.0-20251111182119-bc8e575c7b54/go.mod h1:hKdjCMrbv9skySur+Nek8Hd0uJ0GuxJIoIX2payrIdQ=
golang.org/x/term v0.0.0-20201126162022-7de9c90e9dd1/go.mod h1:bj7SfCRtBDWHUb9snDiAeCFNEtKQo2Wmx5Cou7ajbmo=

View File

@@ -1492,7 +1492,7 @@ func ParseFunctionCall(llmresult string, functionConfig FunctionsConfig) []FuncC
results := []FuncCallResults{}
llmResults := []string{}
returnResult := func(results []string) (result []FuncCallResults, e error) {
extractJSON := func(results []string) (result []FuncCallResults, e error) {
// As we have to change the result before processing, we can't stream the answer token-by-token (yet?)
result = make([]FuncCallResults, 0)
@@ -1593,7 +1593,7 @@ func ParseFunctionCall(llmresult string, functionConfig FunctionsConfig) []FuncC
if len(llmResults) == 0 {
llmResults = append(llmResults, llmresult)
}
results, _ = returnResult(llmResults)
results, _ = extractJSON(llmResults)
}
// Determine which XML format to use (if any)
@@ -1632,8 +1632,16 @@ func ParseFunctionCall(llmresult string, functionConfig FunctionsConfig) []FuncC
// But skip if JSONRegexMatch or ResponseRegex was used (they already extracted the content)
xmlResults, err := ParseXML(llmresult, xmlFormat)
if err == nil && len(xmlResults) > 0 {
xlog.Debug("Found additional XML tool calls alongside JSON", "xml_count", len(xmlResults))
results = append(results, xmlResults...)
// Check if JSON is inside XML tags, if so, skip it
for _, result := range xmlResults {
jsonResults, _ := extractJSON([]string{result.Name})
if len(jsonResults) > 0 {
xlog.Debug("Found valid JSON inside XML tags, skipping XML parsing", "json_count", len(jsonResults))
} else {
xlog.Debug("Found additional XML tool calls alongside JSON", "xml_count", len(xmlResults))
results = append(results, xmlResults...)
}
}
}
}

View File

@@ -820,6 +820,23 @@ Final text`
Expect(results[0].Name).To(Equal("first"))
Expect(results[1].Name).To(Equal("second"))
})
It("should not duplicate parse JSON inside tool_call tags", func() {
// This test reproduces a bug where JSON inside <tool_call> tags
// gets parsed twice: once as JSON (correctly) and once as XML (incorrectly)
// The XML parser should not run when JSON parsing already found valid results
input := `<tool_call>
{"name": "get_current_weather", "arguments": {"location": "Beijing", "unit": "celsius"}}
</tool_call>`
results := ParseFunctionCall(input, functionConfig)
// Should only have 1 result, not 2 (one correct + one malformed)
Expect(results).To(HaveLen(1), "Should not create duplicate entries when JSON is inside XML tags")
Expect(results[0].Name).To(Equal("get_current_weather"))
Expect(results[0].Arguments).To(Equal(`{"location":"Beijing","unit":"celsius"}`))
// Verify the name is not the entire JSON object (which would indicate malformed XML parsing)
Expect(results[0].Name).NotTo(ContainSubstring(`{"name"`), "Function name should not contain JSON object")
})
})
Context("Iterative Parser (ChatMsgParser)", func() {

114
pkg/functions/reasoning.go Normal file
View File

@@ -0,0 +1,114 @@
package functions
import (
"strings"
)
// ExtractReasoning extracts reasoning content from thinking tags and returns
// both the extracted reasoning and the cleaned content (with tags removed).
// It handles <thinking>...</thinking> and <think>...</think> tags.
// Multiple reasoning blocks are concatenated with newlines.
func ExtractReasoning(content string) (reasoning string, cleanedContent string) {
if content == "" {
return "", content
}
var reasoningParts []string
var cleanedParts []string
remaining := content
// Define tag pairs to look for
tagPairs := []struct {
start string
end string
}{
{"<thinking>", "</thinking>"},
{"<think>", "</think>"},
}
// Track the last position we've processed
lastPos := 0
for {
// Find the earliest tag start
earliestStart := -1
earliestEnd := -1
isUnclosed := false
var matchedTag struct {
start string
end string
}
for _, tagPair := range tagPairs {
startIdx := strings.Index(remaining[lastPos:], tagPair.start)
if startIdx == -1 {
continue
}
startIdx += lastPos
// Find the corresponding end tag
endIdx := strings.Index(remaining[startIdx+len(tagPair.start):], tagPair.end)
if endIdx == -1 {
// Unclosed tag - extract what we have
if earliestStart == -1 || startIdx < earliestStart {
earliestStart = startIdx
earliestEnd = len(remaining)
isUnclosed = true
matchedTag = tagPair
}
continue
}
endIdx += startIdx + len(tagPair.start)
// Found a complete tag pair
if earliestStart == -1 || startIdx < earliestStart {
earliestStart = startIdx
earliestEnd = endIdx + len(tagPair.end)
isUnclosed = false
matchedTag = tagPair
}
}
if earliestStart == -1 {
// No more tags found, add remaining content
if lastPos < len(remaining) {
cleanedParts = append(cleanedParts, remaining[lastPos:])
}
break
}
// Add content before the tag
if earliestStart > lastPos {
cleanedParts = append(cleanedParts, remaining[lastPos:earliestStart])
}
// Extract reasoning content
reasoningStart := earliestStart + len(matchedTag.start)
// For unclosed tags, earliestEnd is already at the end of the string
// For closed tags, earliestEnd points to after the closing tag, so we subtract the end tag length
var reasoningEnd int
if isUnclosed {
// Unclosed tag - extract everything to the end
reasoningEnd = len(remaining)
} else {
// Closed tag - exclude the end tag
reasoningEnd = earliestEnd - len(matchedTag.end)
}
if reasoningEnd > reasoningStart {
reasoningContent := strings.TrimSpace(remaining[reasoningStart:reasoningEnd])
if reasoningContent != "" {
reasoningParts = append(reasoningParts, reasoningContent)
}
}
// Move past this tag
lastPos = earliestEnd
}
// Combine reasoning parts
reasoning = strings.Join(reasoningParts, "\n\n")
// Combine cleaned content parts
cleanedContent = strings.Join(cleanedParts, "")
return reasoning, cleanedContent
}

View File

@@ -0,0 +1,261 @@
package functions_test
import (
"strings"
. "github.com/mudler/LocalAI/pkg/functions"
. "github.com/onsi/ginkgo/v2"
. "github.com/onsi/gomega"
)
var _ = Describe("ExtractReasoning", func() {
Context("when content has no reasoning tags", func() {
It("should return empty reasoning and original content", func() {
content := "This is regular content without any tags."
reasoning, cleaned := ExtractReasoning(content)
Expect(reasoning).To(BeEmpty())
Expect(cleaned).To(Equal(content))
})
It("should handle empty string", func() {
content := ""
reasoning, cleaned := ExtractReasoning(content)
Expect(reasoning).To(BeEmpty())
Expect(cleaned).To(BeEmpty())
})
It("should handle content with only whitespace", func() {
content := " \n\t "
reasoning, cleaned := ExtractReasoning(content)
Expect(reasoning).To(BeEmpty())
Expect(cleaned).To(Equal(content))
})
})
Context("when content has <thinking> tags", func() {
It("should extract reasoning from single thinking block", func() {
content := "Some text <thinking>This is my reasoning</thinking> More text"
reasoning, cleaned := ExtractReasoning(content)
Expect(reasoning).To(Equal("This is my reasoning"))
Expect(cleaned).To(Equal("Some text More text"))
})
It("should extract reasoning and preserve surrounding content", func() {
content := "Before <thinking>Reasoning here</thinking> After"
reasoning, cleaned := ExtractReasoning(content)
Expect(reasoning).To(Equal("Reasoning here"))
Expect(cleaned).To(Equal("Before After"))
})
It("should handle thinking block at the start", func() {
content := "<thinking>Start reasoning</thinking> Regular content"
reasoning, cleaned := ExtractReasoning(content)
Expect(reasoning).To(Equal("Start reasoning"))
Expect(cleaned).To(Equal(" Regular content"))
})
It("should handle thinking block at the end", func() {
content := "Regular content <thinking>End reasoning</thinking>"
reasoning, cleaned := ExtractReasoning(content)
Expect(reasoning).To(Equal("End reasoning"))
Expect(cleaned).To(Equal("Regular content "))
})
It("should handle only thinking block", func() {
content := "<thinking>Only reasoning</thinking>"
reasoning, cleaned := ExtractReasoning(content)
Expect(reasoning).To(Equal("Only reasoning"))
Expect(cleaned).To(BeEmpty())
})
It("should trim whitespace from reasoning content", func() {
content := "Text <thinking> \n Reasoning with spaces \n </thinking> More"
reasoning, cleaned := ExtractReasoning(content)
Expect(reasoning).To(Equal("Reasoning with spaces"))
Expect(cleaned).To(Equal("Text More"))
})
})
Context("when content has <think> tags", func() {
It("should extract reasoning from redacted_reasoning block", func() {
content := "Text <think>Redacted reasoning</think> More"
reasoning, cleaned := ExtractReasoning(content)
Expect(reasoning).To(Equal("Redacted reasoning"))
Expect(cleaned).To(Equal("Text More"))
})
It("should handle redacted_reasoning with multiline content", func() {
content := "Before <think>Line 1\nLine 2\nLine 3</think> After"
reasoning, cleaned := ExtractReasoning(content)
Expect(reasoning).To(Equal("Line 1\nLine 2\nLine 3"))
Expect(cleaned).To(Equal("Before After"))
})
It("should handle redacted_reasoning with complex content", func() {
content := "Start <think>Complex reasoning\nwith\nmultiple\nlines</think> End"
reasoning, cleaned := ExtractReasoning(content)
Expect(reasoning).To(Equal("Complex reasoning\nwith\nmultiple\nlines"))
Expect(cleaned).To(Equal("Start End"))
})
})
Context("when content has multiple reasoning blocks", func() {
It("should concatenate multiple thinking blocks with newlines", func() {
content := "Text <thinking>First</thinking> Middle <thinking>Second</thinking> End"
reasoning, cleaned := ExtractReasoning(content)
Expect(reasoning).To(Equal("First\n\nSecond"))
Expect(cleaned).To(Equal("Text Middle End"))
})
It("should handle multiple different tag types", func() {
content := "A <thinking>One</thinking> B <think>Two</think> C <think>Three</think> D"
reasoning, cleaned := ExtractReasoning(content)
Expect(reasoning).To(ContainSubstring("One"))
Expect(reasoning).To(ContainSubstring("Two"))
Expect(reasoning).To(ContainSubstring("Three"))
Expect(cleaned).To(Equal("A B C D"))
})
It("should handle nested tags correctly (extracts first match)", func() {
content := "Text <thinking>Outer <think>Inner</think></thinking> More"
reasoning, cleaned := ExtractReasoning(content)
// Should extract the outer thinking block
Expect(reasoning).To(ContainSubstring("Outer"))
Expect(reasoning).To(ContainSubstring("Inner"))
Expect(cleaned).To(Equal("Text More"))
})
})
Context("when content has unclosed reasoning tags", func() {
It("should extract unclosed thinking block", func() {
content := "Text <thinking>Unclosed reasoning"
reasoning, cleaned := ExtractReasoning(content)
Expect(reasoning).To(Equal("Unclosed reasoning"))
Expect(cleaned).To(Equal("Text "))
})
It("should extract unclosed think block", func() {
content := "Before <think>Incomplete"
reasoning, cleaned := ExtractReasoning(content)
Expect(reasoning).To(Equal("Incomplete"))
Expect(cleaned).To(Equal("Before "))
})
It("should extract unclosed redacted_reasoning block", func() {
content := "Start <think>Partial reasoning content"
reasoning, cleaned := ExtractReasoning(content)
Expect(reasoning).To(Equal("Partial reasoning content"))
Expect(cleaned).To(Equal("Start "))
})
It("should handle unclosed tag at the end", func() {
content := "Regular content <thinking>Unclosed at end"
reasoning, cleaned := ExtractReasoning(content)
Expect(reasoning).To(Equal("Unclosed at end"))
Expect(cleaned).To(Equal("Regular content "))
})
})
Context("when content has empty reasoning blocks", func() {
It("should ignore empty thinking block", func() {
content := "Text <thinking></thinking> More"
reasoning, cleaned := ExtractReasoning(content)
Expect(reasoning).To(BeEmpty())
Expect(cleaned).To(Equal("Text More"))
})
It("should ignore thinking block with only whitespace", func() {
content := "Text <thinking> \n\t </thinking> More"
reasoning, cleaned := ExtractReasoning(content)
Expect(reasoning).To(BeEmpty())
Expect(cleaned).To(Equal("Text More"))
})
})
Context("when content has reasoning tags with special characters", func() {
It("should handle reasoning with newlines", func() {
content := "Before <thinking>Line 1\nLine 2\nLine 3</thinking> After"
reasoning, cleaned := ExtractReasoning(content)
Expect(reasoning).To(Equal("Line 1\nLine 2\nLine 3"))
Expect(cleaned).To(Equal("Before After"))
})
It("should handle reasoning with code blocks", func() {
content := "Text <thinking>Reasoning with ```code``` blocks</thinking> More"
reasoning, cleaned := ExtractReasoning(content)
Expect(reasoning).To(Equal("Reasoning with ```code``` blocks"))
Expect(cleaned).To(Equal("Text More"))
})
It("should handle reasoning with JSON", func() {
content := "Before <think>{\"key\": \"value\"}</think> After"
reasoning, cleaned := ExtractReasoning(content)
Expect(reasoning).To(Equal("{\"key\": \"value\"}"))
Expect(cleaned).To(Equal("Before After"))
})
It("should handle reasoning with HTML-like content", func() {
content := "Text <thinking>Reasoning with <tags> inside</thinking> More"
reasoning, cleaned := ExtractReasoning(content)
Expect(reasoning).To(Equal("Reasoning with <tags> inside"))
Expect(cleaned).To(Equal("Text More"))
})
})
Context("when content has reasoning mixed with regular content", func() {
It("should preserve content order correctly", func() {
content := "Start <thinking>Reasoning</thinking> Middle <think>More reasoning</think> End"
reasoning, cleaned := ExtractReasoning(content)
Expect(reasoning).To(ContainSubstring("Reasoning"))
Expect(reasoning).To(ContainSubstring("More reasoning"))
Expect(cleaned).To(Equal("Start Middle End"))
})
It("should handle reasoning in the middle of a sentence", func() {
content := "This is a <thinking>reasoning</thinking> sentence."
reasoning, cleaned := ExtractReasoning(content)
Expect(reasoning).To(Equal("reasoning"))
Expect(cleaned).To(Equal("This is a sentence."))
})
})
Context("edge cases", func() {
It("should handle content with only opening tag", func() {
content := "<thinking>"
reasoning, cleaned := ExtractReasoning(content)
Expect(reasoning).To(BeEmpty())
Expect(cleaned).To(Equal(""))
})
It("should handle content with only closing tag", func() {
content := "</thinking>"
reasoning, cleaned := ExtractReasoning(content)
Expect(reasoning).To(BeEmpty())
Expect(cleaned).To(Equal("</thinking>"))
})
It("should handle mismatched tags", func() {
content := "<thinking>Content</think>"
reasoning, cleaned := ExtractReasoning(content)
// Should extract unclosed thinking block
Expect(reasoning).To(ContainSubstring("Content"))
Expect(cleaned).To(Equal(""))
})
It("should handle very long reasoning content", func() {
longReasoning := strings.Repeat("This is reasoning content. ", 100)
content := "Text <thinking>" + longReasoning + "</thinking> More"
reasoning, cleaned := ExtractReasoning(content)
// TrimSpace is applied, so we need to account for that
Expect(reasoning).To(Equal(strings.TrimSpace(longReasoning)))
Expect(cleaned).To(Equal("Text More"))
})
It("should handle reasoning with unicode characters", func() {
content := "Text <thinking>Reasoning with 中文 and emoji 🧠</thinking> More"
reasoning, cleaned := ExtractReasoning(content)
Expect(reasoning).To(Equal("Reasoning with 中文 and emoji 🧠"))
Expect(cleaned).To(Equal("Text More"))
})
})
})

View File

@@ -24,8 +24,6 @@ func (ml *ModelLoader) deleteProcess(s string) error {
return fmt.Errorf("model %s not found", s)
}
defer delete(ml.models, s)
retries := 1
for model.GRPC(false, ml.wd).IsBusy() {
xlog.Debug("Model busy. Waiting.", "model", s)
@@ -48,6 +46,7 @@ func (ml *ModelLoader) deleteProcess(s string) error {
if process == nil {
xlog.Error("No process", "model", s)
// Nothing to do as there is no process
delete(ml.models, s)
return nil
}
@@ -56,6 +55,10 @@ func (ml *ModelLoader) deleteProcess(s string) error {
xlog.Error("(deleteProcess) error while deleting process", "error", err, "model", s)
}
if err == nil {
delete(ml.models, s)
}
return err
}

View File

@@ -12,15 +12,17 @@ import (
)
const (
// Public constants - used by tests and external packages
Nvidia = "nvidia"
AMD = "amd"
Intel = "intel"
// Private constants - only used within this package
defaultCapability = "default"
nvidiaL4T = "nvidia-l4t"
darwinX86 = "darwin-x86"
metal = "metal"
nvidia = "nvidia"
amd = "amd"
intel = "intel"
vulkan = "vulkan"
vulkan = "vulkan"
nvidiaCuda13 = "nvidia-cuda-13"
nvidiaCuda12 = "nvidia-cuda-12"
@@ -30,6 +32,16 @@ const (
capabilityEnv = "LOCALAI_FORCE_META_BACKEND_CAPABILITY"
capabilityRunFileEnv = "LOCALAI_FORCE_META_BACKEND_CAPABILITY_RUN_FILE"
defaultRunFile = "/run/localai/capability"
// Backend detection tokens (private)
backendTokenDarwin = "darwin"
backendTokenMLX = "mlx"
backendTokenMetal = "metal"
backendTokenL4T = "l4t"
backendTokenCUDA = "cuda"
backendTokenROCM = "rocm"
backendTokenHIP = "hip"
backendTokenSYCL = "sycl"
)
var (
@@ -96,7 +108,7 @@ func (s *SystemState) getSystemCapabilities() string {
// If arm64 on linux and a nvidia gpu is detected, we will return nvidia-l4t
if runtime.GOOS == "linux" && runtime.GOARCH == "arm64" {
if s.GPUVendor == nvidia {
if s.GPUVendor == Nvidia {
xlog.Info("Using nvidia-l4t capability (arm64 on linux)", "env", capabilityEnv)
if cuda13DirExists {
return nvidiaL4TCuda13
@@ -131,7 +143,6 @@ func (s *SystemState) getSystemCapabilities() string {
return s.GPUVendor
}
// BackendPreferenceTokens returns a list of substrings that represent the preferred
// backend implementation order for the current system capability. Callers can use
// these tokens to select the most appropriate concrete backend among multiple
@@ -139,19 +150,76 @@ func (s *SystemState) getSystemCapabilities() string {
func (s *SystemState) BackendPreferenceTokens() []string {
capStr := strings.ToLower(s.getSystemCapabilities())
switch {
case strings.HasPrefix(capStr, nvidia):
return []string{"cuda", "vulkan", "cpu"}
case strings.HasPrefix(capStr, amd):
return []string{"rocm", "hip", "vulkan", "cpu"}
case strings.HasPrefix(capStr, intel):
return []string{"sycl", intel, "cpu"}
case strings.HasPrefix(capStr, Nvidia):
return []string{backendTokenCUDA, vulkan, "cpu"}
case strings.HasPrefix(capStr, AMD):
return []string{backendTokenROCM, backendTokenHIP, vulkan, "cpu"}
case strings.HasPrefix(capStr, Intel):
return []string{backendTokenSYCL, Intel, "cpu"}
case strings.HasPrefix(capStr, metal):
return []string{"metal", "cpu"}
return []string{backendTokenMetal, "cpu"}
case strings.HasPrefix(capStr, darwinX86):
return []string{"darwin-x86", "cpu"}
case strings.HasPrefix(capStr, vulkan):
return []string{"vulkan", "cpu"}
return []string{vulkan, "cpu"}
default:
return []string{"cpu"}
}
}
// DetectedCapability returns the detected system capability string.
// This can be used by the UI to display what capability was detected.
func (s *SystemState) DetectedCapability() string {
return s.getSystemCapabilities()
}
// IsBackendCompatible checks if a backend (identified by name and URI) is compatible
// with the current system capability. This function uses getSystemCapabilities to ensure
// consistency with capability detection (including VRAM checks, environment overrides, etc.).
func (s *SystemState) IsBackendCompatible(name, uri string) bool {
combined := strings.ToLower(name + " " + uri)
capability := s.getSystemCapabilities()
// Check for darwin/macOS-specific backends (mlx, metal, darwin)
isDarwinBackend := strings.Contains(combined, backendTokenDarwin) ||
strings.Contains(combined, backendTokenMLX) ||
strings.Contains(combined, backendTokenMetal)
if isDarwinBackend {
// Darwin backends require the system to be running on darwin with metal or darwin-x86 capability
return capability == metal || capability == darwinX86
}
// Check for NVIDIA L4T-specific backends (arm64 Linux with NVIDIA GPU)
// This must be checked before the general NVIDIA check as L4T backends
// may also contain "cuda" or "nvidia" in their names
isL4TBackend := strings.Contains(combined, backendTokenL4T)
if isL4TBackend {
return strings.HasPrefix(capability, nvidiaL4T)
}
// Check for NVIDIA/CUDA-specific backends (non-L4T)
isNvidiaBackend := strings.Contains(combined, backendTokenCUDA) ||
strings.Contains(combined, Nvidia)
if isNvidiaBackend {
// NVIDIA backends are compatible with nvidia, nvidia-cuda-12, nvidia-cuda-13, and l4t capabilities
return strings.HasPrefix(capability, Nvidia)
}
// Check for AMD/ROCm-specific backends
isAMDBackend := strings.Contains(combined, backendTokenROCM) ||
strings.Contains(combined, backendTokenHIP) ||
strings.Contains(combined, AMD)
if isAMDBackend {
return capability == AMD
}
// Check for Intel/SYCL-specific backends
isIntelBackend := strings.Contains(combined, backendTokenSYCL) ||
strings.Contains(combined, Intel)
if isIntelBackend {
return capability == Intel
}
// CPU backends are always compatible
return true
}

View File

@@ -148,10 +148,10 @@ package_cuda_libs() {
done
# Copy CUDA target directory for runtime compilation support
if [ -d "/usr/local/cuda/targets" ]; then
mkdir -p "$TARGET_LIB_DIR/../cuda"
cp -arfL /usr/local/cuda/targets "$TARGET_LIB_DIR/../cuda/" 2>/dev/null || true
fi
# if [ -d "/usr/local/cuda/targets" ]; then
# mkdir -p "$TARGET_LIB_DIR/../cuda"
# cp -arfL /usr/local/cuda/targets "$TARGET_LIB_DIR/../cuda/" 2>/dev/null || true
# fi
echo "CUDA libraries packaged successfully"
}

View File

@@ -1198,6 +1198,30 @@ const docTemplate = `{
}
}
},
"/v1/messages": {
"post": {
"summary": "Generate a message response for the given messages and model.",
"parameters": [
{
"description": "query params",
"name": "request",
"in": "body",
"required": true,
"schema": {
"$ref": "#/definitions/schema.AnthropicRequest"
}
}
],
"responses": {
"200": {
"description": "Response",
"schema": {
"$ref": "#/definitions/schema.AnthropicResponse"
}
}
}
}
},
"/v1/models": {
"get": {
"summary": "List and describe the various models available in the API.",
@@ -1739,6 +1763,169 @@ const docTemplate = `{
}
}
},
"schema.AnthropicContentBlock": {
"type": "object",
"properties": {
"content": {},
"id": {
"type": "string"
},
"input": {
"type": "object",
"additionalProperties": true
},
"is_error": {
"type": "boolean"
},
"name": {
"type": "string"
},
"source": {
"$ref": "#/definitions/schema.AnthropicImageSource"
},
"text": {
"type": "string"
},
"tool_use_id": {
"type": "string"
},
"type": {
"type": "string"
}
}
},
"schema.AnthropicImageSource": {
"type": "object",
"properties": {
"data": {
"type": "string"
},
"media_type": {
"type": "string"
},
"type": {
"type": "string"
}
}
},
"schema.AnthropicMessage": {
"type": "object",
"properties": {
"content": {},
"role": {
"type": "string"
}
}
},
"schema.AnthropicRequest": {
"type": "object",
"properties": {
"max_tokens": {
"type": "integer"
},
"messages": {
"type": "array",
"items": {
"$ref": "#/definitions/schema.AnthropicMessage"
}
},
"metadata": {
"type": "object",
"additionalProperties": {
"type": "string"
}
},
"model": {
"type": "string"
},
"stop_sequences": {
"type": "array",
"items": {
"type": "string"
}
},
"stream": {
"type": "boolean"
},
"system": {
"type": "string"
},
"temperature": {
"type": "number"
},
"tool_choice": {},
"tools": {
"type": "array",
"items": {
"$ref": "#/definitions/schema.AnthropicTool"
}
},
"top_k": {
"type": "integer"
},
"top_p": {
"type": "number"
}
}
},
"schema.AnthropicResponse": {
"type": "object",
"properties": {
"content": {
"type": "array",
"items": {
"$ref": "#/definitions/schema.AnthropicContentBlock"
}
},
"id": {
"type": "string"
},
"model": {
"type": "string"
},
"role": {
"type": "string"
},
"stop_reason": {
"type": "string"
},
"stop_sequence": {
"type": "string"
},
"type": {
"type": "string"
},
"usage": {
"$ref": "#/definitions/schema.AnthropicUsage"
}
}
},
"schema.AnthropicTool": {
"type": "object",
"properties": {
"description": {
"type": "string"
},
"input_schema": {
"type": "object",
"additionalProperties": true
},
"name": {
"type": "string"
}
}
},
"schema.AnthropicUsage": {
"type": "object",
"properties": {
"input_tokens": {
"type": "integer"
},
"output_tokens": {
"type": "integer"
}
}
},
"schema.BackendMonitorRequest": {
"type": "object",
"properties": {
@@ -2229,6 +2416,10 @@ const docTemplate = `{
"description": "The message name (used for tools calls)",
"type": "string"
},
"reasoning": {
"description": "Reasoning content extracted from \u003cthinking\u003e...\u003c/thinking\u003e tags",
"type": "string"
},
"role": {
"description": "The message role",
"type": "string"

View File

@@ -1191,6 +1191,30 @@
}
}
},
"/v1/messages": {
"post": {
"summary": "Generate a message response for the given messages and model.",
"parameters": [
{
"description": "query params",
"name": "request",
"in": "body",
"required": true,
"schema": {
"$ref": "#/definitions/schema.AnthropicRequest"
}
}
],
"responses": {
"200": {
"description": "Response",
"schema": {
"$ref": "#/definitions/schema.AnthropicResponse"
}
}
}
}
},
"/v1/models": {
"get": {
"summary": "List and describe the various models available in the API.",
@@ -1732,6 +1756,169 @@
}
}
},
"schema.AnthropicContentBlock": {
"type": "object",
"properties": {
"content": {},
"id": {
"type": "string"
},
"input": {
"type": "object",
"additionalProperties": true
},
"is_error": {
"type": "boolean"
},
"name": {
"type": "string"
},
"source": {
"$ref": "#/definitions/schema.AnthropicImageSource"
},
"text": {
"type": "string"
},
"tool_use_id": {
"type": "string"
},
"type": {
"type": "string"
}
}
},
"schema.AnthropicImageSource": {
"type": "object",
"properties": {
"data": {
"type": "string"
},
"media_type": {
"type": "string"
},
"type": {
"type": "string"
}
}
},
"schema.AnthropicMessage": {
"type": "object",
"properties": {
"content": {},
"role": {
"type": "string"
}
}
},
"schema.AnthropicRequest": {
"type": "object",
"properties": {
"max_tokens": {
"type": "integer"
},
"messages": {
"type": "array",
"items": {
"$ref": "#/definitions/schema.AnthropicMessage"
}
},
"metadata": {
"type": "object",
"additionalProperties": {
"type": "string"
}
},
"model": {
"type": "string"
},
"stop_sequences": {
"type": "array",
"items": {
"type": "string"
}
},
"stream": {
"type": "boolean"
},
"system": {
"type": "string"
},
"temperature": {
"type": "number"
},
"tool_choice": {},
"tools": {
"type": "array",
"items": {
"$ref": "#/definitions/schema.AnthropicTool"
}
},
"top_k": {
"type": "integer"
},
"top_p": {
"type": "number"
}
}
},
"schema.AnthropicResponse": {
"type": "object",
"properties": {
"content": {
"type": "array",
"items": {
"$ref": "#/definitions/schema.AnthropicContentBlock"
}
},
"id": {
"type": "string"
},
"model": {
"type": "string"
},
"role": {
"type": "string"
},
"stop_reason": {
"type": "string"
},
"stop_sequence": {
"type": "string"
},
"type": {
"type": "string"
},
"usage": {
"$ref": "#/definitions/schema.AnthropicUsage"
}
}
},
"schema.AnthropicTool": {
"type": "object",
"properties": {
"description": {
"type": "string"
},
"input_schema": {
"type": "object",
"additionalProperties": true
},
"name": {
"type": "string"
}
}
},
"schema.AnthropicUsage": {
"type": "object",
"properties": {
"input_tokens": {
"type": "integer"
},
"output_tokens": {
"type": "integer"
}
}
},
"schema.BackendMonitorRequest": {
"type": "object",
"properties": {
@@ -2222,6 +2409,10 @@
"description": "The message name (used for tools calls)",
"type": "string"
},
"reasoning": {
"description": "Reasoning content extracted from \u003cthinking\u003e...\u003c/thinking\u003e tags",
"type": "string"
},
"role": {
"description": "The message role",
"type": "string"

View File

@@ -239,6 +239,114 @@ definitions:
start:
type: number
type: object
schema.AnthropicContentBlock:
properties:
content: {}
id:
type: string
input:
additionalProperties: true
type: object
is_error:
type: boolean
name:
type: string
source:
$ref: '#/definitions/schema.AnthropicImageSource'
text:
type: string
tool_use_id:
type: string
type:
type: string
type: object
schema.AnthropicImageSource:
properties:
data:
type: string
media_type:
type: string
type:
type: string
type: object
schema.AnthropicMessage:
properties:
content: {}
role:
type: string
type: object
schema.AnthropicRequest:
properties:
max_tokens:
type: integer
messages:
items:
$ref: '#/definitions/schema.AnthropicMessage'
type: array
metadata:
additionalProperties:
type: string
type: object
model:
type: string
stop_sequences:
items:
type: string
type: array
stream:
type: boolean
system:
type: string
temperature:
type: number
tool_choice: {}
tools:
items:
$ref: '#/definitions/schema.AnthropicTool'
type: array
top_k:
type: integer
top_p:
type: number
type: object
schema.AnthropicResponse:
properties:
content:
items:
$ref: '#/definitions/schema.AnthropicContentBlock'
type: array
id:
type: string
model:
type: string
role:
type: string
stop_reason:
type: string
stop_sequence:
type: string
type:
type: string
usage:
$ref: '#/definitions/schema.AnthropicUsage'
type: object
schema.AnthropicTool:
properties:
description:
type: string
input_schema:
additionalProperties: true
type: object
name:
type: string
type: object
schema.AnthropicUsage:
properties:
input_tokens:
type: integer
output_tokens:
type: integer
type: object
schema.BackendMonitorRequest:
properties:
model:
@@ -573,6 +681,9 @@ definitions:
name:
description: The message name (used for tools calls)
type: string
reasoning:
description: Reasoning content extracted from <thinking>...</thinking> tags
type: string
role:
description: The message role
type: string
@@ -1813,6 +1924,21 @@ paths:
schema:
$ref: '#/definitions/schema.OpenAIResponse'
summary: Stream MCP chat completions with reasoning, tool calls, and results
/v1/messages:
post:
parameters:
- description: query params
in: body
name: request
required: true
schema:
$ref: '#/definitions/schema.AnthropicRequest'
responses:
"200":
description: Response
schema:
$ref: '#/definitions/schema.AnthropicResponse'
summary: Generate a message response for the given messages and model.
/v1/models:
get:
responses:

View File

@@ -0,0 +1,375 @@
package e2e_test
import (
"context"
"github.com/anthropics/anthropic-sdk-go"
"github.com/anthropics/anthropic-sdk-go/option"
. "github.com/onsi/ginkgo/v2"
. "github.com/onsi/gomega"
)
var _ = Describe("Anthropic API E2E test", func() {
var client anthropic.Client
Context("API with Anthropic SDK", func() {
BeforeEach(func() {
// Create Anthropic client pointing to LocalAI
client = anthropic.NewClient(
option.WithBaseURL(localAIURL),
option.WithAPIKey("test-api-key"), // LocalAI doesn't require a real API key
)
// Wait for API to be ready by attempting a simple request
Eventually(func() error {
_, err := client.Messages.New(context.TODO(), anthropic.MessageNewParams{
Model: "gpt-4",
MaxTokens: 10,
Messages: []anthropic.MessageParam{
anthropic.NewUserMessage(anthropic.NewTextBlock("Hi")),
},
})
return err
}, "2m").ShouldNot(HaveOccurred())
})
Context("Non-streaming responses", func() {
It("generates a response for a simple message", func() {
message, err := client.Messages.New(context.TODO(), anthropic.MessageNewParams{
Model: "gpt-4",
MaxTokens: 1024,
Messages: []anthropic.MessageParam{
anthropic.NewUserMessage(anthropic.NewTextBlock("How much is 2+2? Reply with just the number.")),
},
})
Expect(err).ToNot(HaveOccurred())
Expect(message.Content).ToNot(BeEmpty())
// Role is a constant type that defaults to "assistant"
Expect(string(message.Role)).To(Equal("assistant"))
Expect(message.StopReason).To(Equal(anthropic.MessageStopReasonEndTurn))
Expect(string(message.Type)).To(Equal("message"))
// Check that content contains text block with expected answer
Expect(len(message.Content)).To(BeNumerically(">=", 1))
textBlock := message.Content[0]
Expect(string(textBlock.Type)).To(Equal("text"))
Expect(textBlock.Text).To(Or(ContainSubstring("4"), ContainSubstring("four")))
})
It("handles system prompts", func() {
message, err := client.Messages.New(context.TODO(), anthropic.MessageNewParams{
Model: "gpt-4",
MaxTokens: 1024,
System: []anthropic.TextBlockParam{
{Text: "You are a helpful assistant. Always respond in uppercase letters."},
},
Messages: []anthropic.MessageParam{
anthropic.NewUserMessage(anthropic.NewTextBlock("Say hello")),
},
})
Expect(err).ToNot(HaveOccurred())
Expect(message.Content).ToNot(BeEmpty())
Expect(len(message.Content)).To(BeNumerically(">=", 1))
})
It("returns usage information", func() {
message, err := client.Messages.New(context.TODO(), anthropic.MessageNewParams{
Model: "gpt-4",
MaxTokens: 100,
Messages: []anthropic.MessageParam{
anthropic.NewUserMessage(anthropic.NewTextBlock("Hello")),
},
})
Expect(err).ToNot(HaveOccurred())
Expect(message.Usage.InputTokens).To(BeNumerically(">", 0))
Expect(message.Usage.OutputTokens).To(BeNumerically(">", 0))
})
})
Context("Streaming responses", func() {
It("streams tokens for a simple message", func() {
stream := client.Messages.NewStreaming(context.TODO(), anthropic.MessageNewParams{
Model: "gpt-4",
MaxTokens: 1024,
Messages: []anthropic.MessageParam{
anthropic.NewUserMessage(anthropic.NewTextBlock("Count from 1 to 5")),
},
})
message := anthropic.Message{}
eventCount := 0
hasContentDelta := false
for stream.Next() {
event := stream.Current()
err := message.Accumulate(event)
Expect(err).ToNot(HaveOccurred())
eventCount++
// Check for content block delta events
switch event.AsAny().(type) {
case anthropic.ContentBlockDeltaEvent:
hasContentDelta = true
}
}
Expect(stream.Err()).ToNot(HaveOccurred())
Expect(eventCount).To(BeNumerically(">", 0))
Expect(hasContentDelta).To(BeTrue())
// Check accumulated message
Expect(message.Content).ToNot(BeEmpty())
// Role is a constant type that defaults to "assistant"
Expect(string(message.Role)).To(Equal("assistant"))
})
It("streams with system prompt", func() {
stream := client.Messages.NewStreaming(context.TODO(), anthropic.MessageNewParams{
Model: "gpt-4",
MaxTokens: 1024,
System: []anthropic.TextBlockParam{
{Text: "You are a helpful assistant."},
},
Messages: []anthropic.MessageParam{
anthropic.NewUserMessage(anthropic.NewTextBlock("Say hello")),
},
})
message := anthropic.Message{}
for stream.Next() {
event := stream.Current()
err := message.Accumulate(event)
Expect(err).ToNot(HaveOccurred())
}
Expect(stream.Err()).ToNot(HaveOccurred())
Expect(message.Content).ToNot(BeEmpty())
})
})
Context("Tool calling", func() {
It("handles tool calls in non-streaming mode", func() {
message, err := client.Messages.New(context.TODO(), anthropic.MessageNewParams{
Model: "gpt-4",
MaxTokens: 1024,
Messages: []anthropic.MessageParam{
anthropic.NewUserMessage(anthropic.NewTextBlock("What's the weather like in San Francisco?")),
},
Tools: []anthropic.ToolParam{
{
Name: "get_weather",
Description: anthropic.F("Get the current weather in a given location"),
InputSchema: anthropic.F(map[string]interface{}{
"type": "object",
"properties": map[string]interface{}{
"location": map[string]interface{}{
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
},
"required": []string{"location"},
}),
},
},
})
Expect(err).ToNot(HaveOccurred())
Expect(message.Content).ToNot(BeEmpty())
// The model must use tools - find the tool use in the response
hasToolUse := false
for _, block := range message.Content {
if block.Type == anthropic.ContentBlockTypeToolUse {
hasToolUse = true
Expect(block.Name).To(Equal("get_weather"))
Expect(block.ID).ToNot(BeEmpty())
// Verify that input contains location
inputMap, ok := block.Input.(map[string]interface{})
Expect(ok).To(BeTrue())
_, hasLocation := inputMap["location"]
Expect(hasLocation).To(BeTrue())
}
}
// Model must have called the tool
Expect(hasToolUse).To(BeTrue(), "Model should have called the get_weather tool")
Expect(message.StopReason).To(Equal(anthropic.MessageStopReasonToolUse))
})
It("handles tool_choice parameter", func() {
message, err := client.Messages.New(context.TODO(), anthropic.MessageNewParams{
Model: "gpt-4",
MaxTokens: 1024,
Messages: []anthropic.MessageParam{
anthropic.NewUserMessage(anthropic.NewTextBlock("Tell me about the weather")),
},
Tools: []anthropic.ToolParam{
{
Name: "get_weather",
Description: anthropic.F("Get the current weather"),
InputSchema: anthropic.F(map[string]interface{}{
"type": "object",
"properties": map[string]interface{}{
"location": map[string]interface{}{
"type": "string",
},
},
}),
},
},
ToolChoice: anthropic.F[anthropic.ToolChoiceUnionParam](
anthropic.ToolChoiceAutoParam{
Type: anthropic.F(anthropic.ToolChoiceAutoTypeAuto),
},
),
})
Expect(err).ToNot(HaveOccurred())
Expect(message.Content).ToNot(BeEmpty())
})
It("handles tool results in messages", func() {
// First, make a request that should trigger a tool call
firstMessage, err := client.Messages.New(context.TODO(), anthropic.MessageNewParams{
Model: "gpt-4",
MaxTokens: 1024,
Messages: []anthropic.MessageParam{
anthropic.NewUserMessage(anthropic.NewTextBlock("What's the weather in SF?")),
},
Tools: []anthropic.ToolParam{
{
Name: "get_weather",
Description: anthropic.F("Get weather"),
InputSchema: anthropic.F(map[string]interface{}{
"type": "object",
"properties": map[string]interface{}{
"location": map[string]interface{}{"type": "string"},
},
}),
},
},
})
Expect(err).ToNot(HaveOccurred())
// Find the tool use block - model must call the tool
var toolUseID string
var toolUseName string
for _, block := range firstMessage.Content {
if block.Type == anthropic.ContentBlockTypeToolUse {
toolUseID = block.ID
toolUseName = block.Name
break
}
}
// Model must have called the tool
Expect(toolUseID).ToNot(BeEmpty(), "Model should have called the get_weather tool")
// Send back a tool result and verify it's handled correctly
secondMessage, err := client.Messages.New(context.TODO(), anthropic.MessageNewParams{
Model: "gpt-4",
MaxTokens: 1024,
Messages: []anthropic.MessageParam{
anthropic.NewUserMessage(anthropic.NewTextBlock("What's the weather in SF?")),
anthropic.NewAssistantMessage(firstMessage.Content...),
anthropic.NewUserMessage(
anthropic.NewToolResultBlock(toolUseID, "Sunny, 72°F", false),
),
},
Tools: []anthropic.ToolParam{
{
Name: toolUseName,
Description: anthropic.F("Get weather"),
InputSchema: anthropic.F(map[string]interface{}{
"type": "object",
"properties": map[string]interface{}{
"location": map[string]interface{}{"type": "string"},
},
}),
},
},
})
Expect(err).ToNot(HaveOccurred())
Expect(secondMessage.Content).ToNot(BeEmpty())
})
It("handles tool calls in streaming mode", func() {
stream := client.Messages.NewStreaming(context.TODO(), anthropic.MessageNewParams{
Model: "gpt-4",
MaxTokens: 1024,
Messages: []anthropic.MessageParam{
anthropic.NewUserMessage(anthropic.NewTextBlock("What's the weather like in San Francisco?")),
},
Tools: []anthropic.ToolParam{
{
Name: "get_weather",
Description: anthropic.F("Get the current weather in a given location"),
InputSchema: anthropic.F(map[string]interface{}{
"type": "object",
"properties": map[string]interface{}{
"location": map[string]interface{}{
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
},
"required": []string{"location"},
}),
},
},
})
message := anthropic.Message{}
eventCount := 0
hasToolUseBlock := false
hasContentBlockStart := false
hasContentBlockDelta := false
hasContentBlockStop := false
for stream.Next() {
event := stream.Current()
err := message.Accumulate(event)
Expect(err).ToNot(HaveOccurred())
eventCount++
// Check for different event types related to tool use
switch e := event.AsAny().(type) {
case anthropic.ContentBlockStartEvent:
hasContentBlockStart = true
if e.ContentBlock.Type == anthropic.ContentBlockTypeToolUse {
hasToolUseBlock = true
}
case anthropic.ContentBlockDeltaEvent:
hasContentBlockDelta = true
case anthropic.ContentBlockStopEvent:
hasContentBlockStop = true
}
}
Expect(stream.Err()).ToNot(HaveOccurred())
Expect(eventCount).To(BeNumerically(">", 0))
// Verify streaming events were emitted
Expect(hasContentBlockStart).To(BeTrue(), "Should have content_block_start event")
Expect(hasContentBlockDelta).To(BeTrue(), "Should have content_block_delta event")
Expect(hasContentBlockStop).To(BeTrue(), "Should have content_block_stop event")
// Check accumulated message has tool use
Expect(message.Content).ToNot(BeEmpty())
// Model must have called the tool
foundToolUse := false
for _, block := range message.Content {
if block.Type == anthropic.ContentBlockTypeToolUse {
foundToolUse = true
Expect(block.Name).To(Equal("get_weather"))
Expect(block.ID).ToNot(BeEmpty())
}
}
Expect(foundToolUse).To(BeTrue(), "Model should have called the get_weather tool in streaming mode")
Expect(message.StopReason).To(Equal(anthropic.MessageStopReasonToolUse))
})
})
})
})