Compare commits

..

24 Commits

Author SHA1 Message Date
Ettore Di Giacinto
f3e170b79f debu2 2024-07-22 12:21:55 +02:00
Ettore Di Giacinto
84ab2f3d11 debug
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2024-07-22 10:17:41 +02:00
Ettore Di Giacinto
19282af059 models(gallery): add calme-2.4-llama3-70b (#2942)
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2024-07-21 22:01:15 +02:00
Ettore Di Giacinto
9c0c11e8a0 models(gallery): add StellarDong-72b (#2941)
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2024-07-21 21:57:30 +02:00
Ettore Di Giacinto
3f7eddb039 models(gallery): add calme-2.8-qwen2-7b (#2940)
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2024-07-21 21:51:52 +02:00
Ettore Di Giacinto
77ad49333a models(gallery): add calme-2.3-phi3-4b (#2939)
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2024-07-21 21:45:04 +02:00
Ettore Di Giacinto
ef5e8326c8 models(gallery): add celestev1.2 (#2937)
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2024-07-21 10:31:44 +02:00
LocalAI [bot]
86509e6002 chore: ⬆️ Update ggerganov/llama.cpp (#2936)
⬆️ Update ggerganov/llama.cpp

Signed-off-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: mudler <2420543+mudler@users.noreply.github.com>
2024-07-20 21:35:21 +00:00
LocalAI [bot]
8667a67695 docs: ⬆️ update docs version mudler/LocalAI (#2935)
⬆️ Update docs version mudler/LocalAI

Signed-off-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: mudler <2420543+mudler@users.noreply.github.com>
2024-07-20 21:33:54 +00:00
Ettore Di Giacinto
f505d7ab3f models(gallery): add archangel_sft_pythia2-8b (#2933)
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2024-07-20 16:17:34 +02:00
Ettore Di Giacinto
450dbed820 models(gallery): add suzume-orpo (#2932)
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2024-07-20 16:16:29 +02:00
Ettore Di Giacinto
46b86f7e6e models(gallery): add tulu 8b and 70b (#2931)
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2024-07-20 16:03:44 +02:00
Ettore Di Giacinto
0ee1f8c1cf ci(Makefile): enable p2p on cross-arm64 builds (#2928)
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2024-07-20 10:43:34 +02:00
Ettore Di Giacinto
87bd831aba docs: add federation (#2929)
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2024-07-20 10:43:18 +02:00
Ettore Di Giacinto
f9f83791d1 ci(release): run also on tags
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2024-07-20 09:15:48 +02:00
LocalAI [bot]
e75f73bf73 chore: ⬆️ Update ggerganov/llama.cpp (#2927)
⬆️ Update ggerganov/llama.cpp

Signed-off-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: mudler <2420543+mudler@users.noreply.github.com>
2024-07-19 22:10:26 +00:00
LocalAI [bot]
bd277162c7 docs: ⬆️ update docs version mudler/LocalAI (#2926)
⬆️ Update docs version mudler/LocalAI

Signed-off-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: mudler <2420543+mudler@users.noreply.github.com>
2024-07-19 21:56:58 +00:00
Ettore Di Giacinto
f19ee465d2 ci: disable comment-pr until it's fixed
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2024-07-19 19:00:36 +02:00
Ettore Di Giacinto
7b85ff7280 models(gallery): add celestev1 (#2925)
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2024-07-19 18:43:30 +02:00
Ettore Di Giacinto
134cb993c2 models(gallery): add emo-2b (#2924)
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2024-07-19 18:36:11 +02:00
Ettore Di Giacinto
2cf28f3c01 models(gallery): add gemma-2b-translation-v0.150 (#2923)
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2024-07-19 18:31:27 +02:00
Ettore Di Giacinto
18c0f4718d models(gallery): add einstein-v4-7b (#2922)
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2024-07-19 15:20:15 +02:00
Ettore Di Giacinto
f878b63ee4 models(gallery): add qwen2-wukong-7b (#2921)
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2024-07-19 09:48:05 +02:00
Ettore Di Giacinto
6eaa01db15 models(gallery): add phillama-3.8b-v0.1 (#2920)
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2024-07-19 09:42:45 +02:00
10 changed files with 415 additions and 39 deletions

View File

@@ -4,6 +4,8 @@ on:
push:
branches:
- master
tags:
- 'v*'
pull_request:
env:

View File

@@ -8,7 +8,7 @@ DETECT_LIBS?=true
# llama.cpp versions
GOLLAMA_REPO?=https://github.com/go-skynet/go-llama.cpp
GOLLAMA_VERSION?=2b57a8ae43e4699d3dc5d1496a1ccd42922993be
CPPLLAMA_VERSION?=705b7ecf60e667ced57c15d67aa86865e3cc7aa7
CPPLLAMA_VERSION?=07283b1a90e1320aae4762c7e03c879043910252
# gpt4all version
GPT4ALL_REPO?=https://github.com/nomic-ai/gpt4all
@@ -377,6 +377,7 @@ build: prepare backend-assets grpcs ## Build the project
$(info ${GREEN}I BUILD_TYPE: ${YELLOW}$(BUILD_TYPE)${RESET})
$(info ${GREEN}I GO_TAGS: ${YELLOW}$(GO_TAGS)${RESET})
$(info ${GREEN}I LD_FLAGS: ${YELLOW}$(LD_FLAGS)${RESET})
ls -liah backend-assets/grpc
ifneq ($(BACKEND_LIBS),)
$(MAKE) backend-assets/lib
cp -f $(BACKEND_LIBS) backend-assets/lib/
@@ -421,7 +422,7 @@ else
endif
dist-cross-linux-arm64:
CMAKE_ARGS="$(CMAKE_ARGS) -DGGML_NATIVE=off" GRPC_BACKENDS="backend-assets/grpc/llama-cpp-fallback backend-assets/grpc/llama-cpp-grpc backend-assets/util/llama-cpp-rpc-server" \
CMAKE_ARGS="$(CMAKE_ARGS) -DGGML_NATIVE=off" GRPC_BACKENDS="backend-assets/grpc/llama-cpp-fallback backend-assets/grpc/llama-cpp-grpc backend-assets/util/llama-cpp-rpc-server" GO_TAGS="p2p" \
STATIC=true $(MAKE) build
mkdir -p release
# if BUILD_ID is empty, then we don't append it to the binary name

View File

@@ -201,7 +201,7 @@ func ChatEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, startup
}
switch {
case config.FunctionsConfig.GrammarConfig.EnableGrammar && shouldUseFn:
case !config.FunctionsConfig.GrammarConfig.NoGrammar && shouldUseFn:
noActionGrammar := functions.Function{
Name: noActionName,
Description: noActionDescription,

View File

@@ -5,17 +5,65 @@ weight = 15
url = "/features/distribute/"
+++
This functionality enables LocalAI to distribute inference requests across multiple worker nodes, improving efficiency and performance. Nodes are automatically discovered and connect via p2p by using a shared token which makes sure the communication is secure and private between the nodes of the network.
LocalAI supports two modes of distributed inferencing via p2p:
- **Federated Mode**: Requests are shared between the cluster and routed to a single worker node in the network based on the load balancer's decision.
- **Worker Mode**: Requests are processed by all the workers which contributes to the final inference result (by sharing the model weights).
## Usage
Starting LocalAI with `--p2p` generates a shared token for connecting multiple instances: and that's all you need to create AI clusters, eliminating the need for intricate network setups.
Simply navigate to the "Swarm" section in the WebUI and follow the on-screen instructions.
For fully shared instances, initiate LocalAI with --p2p --federated and adhere to the Swarm section's guidance. This feature, while still experimental, offers a tech preview quality experience.
### Federated mode
Federated mode allows to launch multiple LocalAI instances and connect them together in a federated network. This mode is useful when you want to distribute the load of the inference across multiple nodes, but you want to have a single point of entry for the API. In the Swarm section of the WebUI, you can see the instructions to connect multiple instances together.
![346663124-1d2324fd-8b55-4fa2-9856-721a467969c2](https://github.com/user-attachments/assets/19ebd44a-20ff-412c-b92f-cfb8efbe4b21)
To start a LocalAI server in federated mode, run:
```bash
local-ai run --p2p --federated
```
This will generate a token that you can use to connect other LocalAI instances to the network or others can use to join the network. If you already have a token, you can specify it using the `TOKEN` environment variable.
To start a load balanced server that routes the requests to the network, run with the `TOKEN`:
```bash
local-ai federated
```
To see all the available options, run `local-ai federated --help`.
The instructions are displayed in the "Swarm" section of the WebUI, guiding you through the process of connecting multiple instances.
### Workers mode
{{% alert note %}}
This feature is available exclusively with llama-cpp compatible models.
This feature was introduced in [LocalAI pull request #2324](https://github.com/mudler/LocalAI/pull/2324) and is based on the upstream work in [llama.cpp pull request #6829](https://github.com/ggerganov/llama.cpp/pull/6829).
{{% /alert %}}
This functionality enables LocalAI to distribute inference requests across multiple worker nodes, improving efficiency and performance.
To connect multiple workers to a single LocalAI instance, start first a server in p2p mode:
## Usage
```bash
local-ai run --p2p
```
### Starting Workers
And navigate the WebUI to the "Swarm" section to see the instructions to connect multiple workers to the network.
![346663124-1d2324fd-8b55-4fa2-9856-721a467969c2](https://github.com/user-attachments/assets/b8cadddf-a467-49cf-a1ed-8850de95366d)
### Without P2P
To start workers for distributing the computational load, run:
@@ -23,48 +71,27 @@ To start workers for distributing the computational load, run:
local-ai worker llama-cpp-rpc <listening_address> <listening_port>
```
Alternatively, you can build the RPC server following the llama.cpp [README](https://github.com/ggerganov/llama.cpp/blob/master/examples/rpc/README.md), which is compatible with LocalAI.
### Starting LocalAI
To start the LocalAI server, which handles API requests, specify the worker addresses using the `LLAMACPP_GRPC_SERVERS` environment variable:
And you can specify the address of the workers when starting LocalAI with the `LLAMACPP_GRPC_SERVERS` environment variable:
```bash
LLAMACPP_GRPC_SERVERS="address1:port,address2:port" local-ai run
```
The workload on the LocalAI server will then be distributed across the specified nodes.
## Peer-to-Peer Networking
Alternatively, you can build the RPC workers/server following the llama.cpp [README](https://github.com/ggerganov/llama.cpp/blob/master/examples/rpc/README.md), which is compatible with LocalAI.
![output](https://github.com/mudler/LocalAI/assets/2420543/8ca277cf-c208-4562-8929-808b2324b584)
## Manual example (worker)
Workers can also connect to each other in a peer-to-peer network, distributing the workload in a decentralized manner.
A shared token between the server and the workers is required for communication within the peer-to-peer network. This feature supports both local network (using mDNS discovery) and DHT for communication across different networks.
The token is automatically generated when starting the server with the `--p2p` flag. Workers can be started with the token using `local-ai worker p2p-llama-cpp-rpc` and specifying the token via the environment variable `TOKEN` or with the `--token` argument.
A network is established between the server and workers using DHT and mDNS discovery protocols. The llama.cpp RPC server is automatically started and exposed to the peer-to-peer network, allowing the API server to connect.
When the HTTP server starts, it discovers workers in the network and creates port forwards to the local service. Llama.cpp is configured to use these services. For more details on the implementation, refer to [LocalAI pull request #2343](https://github.com/mudler/LocalAI/pull/2343).
### Usage
Use the WebUI to guide you in the process of starting new workers. This example shows the manual steps to highlight the process.
1. Start the server with `--p2p`:
```bash
./local-ai run --p2p
# 1:02AM INF loading environment variables from file envFile=.env
# 1:02AM INF Setting logging to info
# 1:02AM INF P2P mode enabled
# 1:02AM INF No token provided, generating one
# 1:02AM INF Generated Token:
# XXXXXXXXXXX
# 1:02AM INF Press a button to proceed
# Get the token in the Swarm section of the WebUI
```
Copy the displayed token and press Enter.
Copy the token from the WebUI or via API call (e.g., `curl http://localhost:8000/p2p/token`) and save it for later use.
To reuse the same token later, restart the server with `--p2ptoken` or `P2P_TOKEN`.
@@ -93,12 +120,14 @@ The server logs should indicate that new workers are being discovered.
3. Start inference as usual on the server initiated in step 1.
![output](https://github.com/mudler/LocalAI/assets/2420543/8ca277cf-c208-4562-8929-808b2324b584)
## Notes
- If running in p2p mode with container images, make sure you start the container with `--net host` or `network_mode: host` in the docker-compose file.
- Only a single model is supported currently.
- Ensure the server detects new workers before starting inference. Currently, additional workers cannot be added once inference has begun.
- For more details on the implementation, refer to [LocalAI pull request #2343](https://github.com/mudler/LocalAI/pull/2343)
## Environment Variables

View File

@@ -1,3 +1,3 @@
{
"version": "v2.18.1"
"version": "v2.19.1"
}

View File

@@ -24,6 +24,33 @@
- filename: DeepSeek-Coder-V2-Lite-Instruct-Q4_K_M.gguf
sha256: 50ec78036433265965ed1afd0667c00c71c12aa70bcf383be462cb8e159db6c0
uri: huggingface://LoneStriker/DeepSeek-Coder-V2-Lite-Instruct-GGUF/DeepSeek-Coder-V2-Lite-Instruct-Q4_K_M.gguf
- name: "archangel_sft_pythia2-8b"
url: "github:mudler/LocalAI/gallery/tuluv2.yaml@master"
icon: https://gist.github.com/assets/29318529/fe2d8391-dbd1-4b7e-9dc4-7cb97e55bc06
license: apache-2.0
urls:
- https://huggingface.co/ContextualAI/archangel_sft_pythia2-8b
- https://huggingface.co/RichardErkhov/ContextualAI_-_archangel_sft_pythia2-8b-gguf
- https://github.com/ContextualAI/HALOs
description: |
datasets:
- stanfordnlp/SHP
- Anthropic/hh-rlhf
- OpenAssistant/oasst1
This repo contains the model checkpoints for:
- model family pythia2-8b
- optimized with the loss SFT
- aligned using the SHP, Anthropic HH and Open Assistant datasets.
Please refer to our [code repository](https://github.com/ContextualAI/HALOs) or [blog](https://contextual.ai/better-cheaper-faster-llm-alignment-with-kto/) which contains intructions for training your own HALOs and links to our model cards.
overrides:
parameters:
model: archangel_sft_pythia2-8b.Q4_K_M.gguf
files:
- filename: archangel_sft_pythia2-8b.Q4_K_M.gguf
sha256: a47782c55ef2b39b19644213720a599d9849511a73c9ebb0c1de749383c0a0f8
uri: huggingface://RichardErkhov/ContextualAI_-_archangel_sft_pythia2-8b-gguf/archangel_sft_pythia2-8b.Q4_K_M.gguf
- &qwen2
## Start QWEN2
url: "github:mudler/LocalAI/gallery/chatml.yaml@master"
@@ -202,6 +229,54 @@
- filename: Qwen2-7B-Instruct-v0.8.Q4_K_M.gguf
sha256: 8c1b3efe9fa6ae1b37942ef26473cb4e0aed0f8038b60d4b61e5bffb61e49b7e
uri: huggingface://MaziyarPanahi/Qwen2-7B-Instruct-v0.8-GGUF/Qwen2-7B-Instruct-v0.8.Q4_K_M.gguf
- !!merge <<: *qwen2
name: "qwen2-wukong-7b"
icon: https://cdn-uploads.huggingface.co/production/uploads/655dc641accde1bbc8b41aec/xOe1Nb3S9Nb53us7_Ja3s.jpeg
urls:
- https://huggingface.co/bartowski/Qwen2-Wukong-7B-GGUF
description: |
Qwen2-Wukong-7B is a dealigned chat finetune of the original fantastic Qwen2-7B model by the Qwen team.
This model was trained on the teknium OpenHeremes-2.5 dataset and some supplementary datasets from Cognitive Computations
This model was trained for 3 epochs with a custom FA2 implementation for AMD cards.
overrides:
parameters:
model: Qwen2-Wukong-7B-Q4_K_M.gguf
files:
- filename: Qwen2-Wukong-7B-Q4_K_M.gguf
sha256: 6b8ca6649c33fc84d4892ebcff1214f0b34697aced784f0d6d32e284a15943ad
uri: huggingface://bartowski/Qwen2-Wukong-7B-GGUF/Qwen2-Wukong-7B-Q4_K_M.gguf
- !!merge <<: *qwen2
name: "calme-2.8-qwen2-7b"
icon: https://huggingface.co/MaziyarPanahi/calme-2.8-qwen2-7b/resolve/main/qwen2-fine-tunes-maziyar-panahi.webp
urls:
- https://huggingface.co/MaziyarPanahi/calme-2.8-qwen2-7b
- https://huggingface.co/MaziyarPanahi/calme-2.8-qwen2-7b-GGUF
description: |
This is a fine-tuned version of the Qwen/Qwen2-7B model. It aims to improve the base model across all benchmarks.
overrides:
parameters:
model: Qwen2-7B-Instruct-v0.8.Q4_K_M.gguf
files:
- filename: Qwen2-7B-Instruct-v0.8.Q4_K_M.gguf
sha256: 8c1b3efe9fa6ae1b37942ef26473cb4e0aed0f8038b60d4b61e5bffb61e49b7e
uri: huggingface://MaziyarPanahi/calme-2.8-qwen2-7b-GGUF/Qwen2-7B-Instruct-v0.8.Q4_K_M.gguf
- !!merge <<: *qwen2
name: "stellardong-72b-i1"
icon: https://huggingface.co/smelborp/StellarDong-72b/resolve/main/stellardong.png
urls:
- https://huggingface.co/smelborp/StellarDong-72b
- https://huggingface.co/mradermacher/StellarDong-72b-i1-GGUF
description: |
Magnum + Nova = you won't believe how stellar this dong is!!
overrides:
parameters:
model: StellarDong-72b.i1-Q4_K_M.gguf
files:
- filename: StellarDong-72b.i1-Q4_K_M.gguf
sha256: 4c5012f0a034f40a044904891343ade2594f29c28a8a9d8052916de4dc5a61df
uri: huggingface://mradermacher/StellarDong-72b-i1-GGUF/StellarDong-72b.i1-Q4_K_M.gguf
- &mistral03
## START Mistral
url: "github:mudler/LocalAI/gallery/mistral-0.3.yaml@master"
@@ -264,6 +339,31 @@
- filename: Mahou-1.3d-mistral-7B.i1-Q4_K_M.gguf
sha256: 8272f050e36d612ab282e095cb4e775e2c818e7096f8d522314d256923ef6da9
uri: huggingface://mradermacher/Mahou-1.3d-mistral-7B-i1-GGUF/Mahou-1.3d-mistral-7B.i1-Q4_K_M.gguf
- name: "einstein-v4-7b"
url: "github:mudler/LocalAI/gallery/chatml.yaml@master"
icon: https://cdn-uploads.huggingface.co/production/uploads/6468ce47e134d050a58aa89c/U0zyXVGj-O8a7KP3BvPue.png
urls:
- https://huggingface.co/Weyaxi/Einstein-v4-7B
- https://huggingface.co/mradermacher/Einstein-v4-7B-GGUF
tags:
- llm
- gguf
- gpu
- mistral
- cpu
description: |
🔬 Einstein-v4-7B
This model is a full fine-tuned version of mistralai/Mistral-7B-v0.1 on diverse datasets.
This model is finetuned using 7xRTX3090 + 1xRTXA6000 using axolotl.
overrides:
parameters:
model: Einstein-v4-7B.Q4_K_M.gguf
files:
- filename: Einstein-v4-7B.Q4_K_M.gguf
sha256: 78bd573de2a9eb3c6e213132858164e821145f374fcaa4b19dfd6502c05d990d
uri: huggingface://mradermacher/Einstein-v4-7B-GGUF/Einstein-v4-7B.Q4_K_M.gguf
- &mudler
### START mudler's LocalAI specific-models
url: "github:mudler/LocalAI/gallery/mudler.yaml@master"
@@ -594,6 +694,76 @@
- filename: Big-Tiger-Gemma-27B-v1c-Q4_K_M.gguf
sha256: c5fc5605d36ae280c1c908c9b4bcb12b28abbe2692f317edeb83ab1104657fe5
uri: huggingface://TheDrummer/Big-Tiger-Gemma-27B-v1-GGUF/Big-Tiger-Gemma-27B-v1c-Q4_K_M.gguf
- !!merge <<: *gemma
name: "gemma-2b-translation-v0.150"
urls:
- https://huggingface.co/lemon-mint/gemma-2b-translation-v0.150
- https://huggingface.co/RichardErkhov/lemon-mint_-_gemma-2b-translation-v0.150-gguf
description: |
Original model: lemon-mint/gemma-ko-1.1-2b-it
Evaluation metrics: Eval Loss, Train Loss, lr, optimizer, lr_scheduler_type.
Prompt Template:
<bos><start_of_turn>user
Translate into Korean: [input text]<end_of_turn>
<start_of_turn>model
[translated text in Korean]<eos>
<bos><start_of_turn>user
Translate into English: [Korean text]<end_of_turn>
<start_of_turn>model
[translated text in English]<eos>
Model features:
* Developed by: lemon-mint
* Model type: Gemma
* Languages (NLP): English
* License: Gemma Terms of Use
* Finetuned from model: lemon-mint/gemma-ko-1.1-2b-it
overrides:
parameters:
model: gemma-2b-translation-v0.150.Q4_K_M.gguf
files:
- filename: gemma-2b-translation-v0.150.Q4_K_M.gguf
sha256: dcde67b83168d2e7ca835cf9a7a4dcf38b41b9cefe3cbc997c71d2741c08cd25
uri: huggingface://RichardErkhov/lemon-mint_-_gemma-2b-translation-v0.150-gguf/gemma-2b-translation-v0.150.Q4_K_M.gguf
- !!merge <<: *gemma
name: "emo-2b"
urls:
- https://huggingface.co/OEvortex/EMO-2B
- https://huggingface.co/RichardErkhov/OEvortex_-_EMO-2B-gguf
description: |
EMO-2B: Emotionally Intelligent Conversational AI
Overview:
EMO-2B is a state-of-the-art conversational AI model with 2.5 billion parameters, designed to engage in emotionally resonant dialogue. Building upon the success of EMO-1.5B, this model has been further fine-tuned on an extensive corpus of emotional narratives, enabling it to perceive and respond to the emotional undertones of user inputs with exceptional empathy and emotional intelligence.
Key Features:
- Advanced Emotional Intelligence: With its increased capacity, EMO-2B demonstrates an even deeper understanding and generation of emotional language, allowing for more nuanced and contextually appropriate emotional responses.
- Enhanced Contextual Awareness: The model considers an even broader context within conversations, accounting for subtle emotional cues and providing emotionally resonant responses tailored to the specific situation.
- Empathetic and Supportive Dialogue: EMO-2B excels at active listening, validating emotions, offering compassionate advice, and providing emotional support, making it an ideal companion for users seeking empathy and understanding.
- Dynamic Persona Adaptation: The model can dynamically adapt its persona, communication style, and emotional responses to match the user's emotional state, ensuring a highly personalized and tailored conversational experience.
Use Cases:
EMO-2B is well-suited for a variety of applications where emotional intelligence and empathetic communication are crucial, such as:
- Mental health support chatbots
- Emotional support companions
- Personalized coaching and motivation
- Narrative storytelling and interactive fiction
- Customer service and support (for emotionally sensitive contexts)
Limitations and Ethical Considerations:
While EMO-2B is designed to provide emotionally intelligent and empathetic responses, it is important to note that it is an AI system and cannot replicate the depth and nuance of human emotional intelligence. Users should be aware that the model's responses, while emotionally supportive, should not be considered a substitute for professional mental health support or counseling.
Additionally, as with any language model, EMO-2B may reflect biases present in its training data. Users should exercise caution and critical thinking when interacting with the model, and report any concerning or inappropriate responses.
overrides:
parameters:
model: EMO-2B.Q4_K_M.gguf
files:
- filename: EMO-2B.Q4_K_M.gguf
sha256: 608bffc0e9012bc7f9a94b714f4932e2826cc122dbac59b586e4baa2ee0fdca5
uri: huggingface://RichardErkhov/OEvortex_-_EMO-2B-gguf/EMO-2B.Q4_K_M.gguf
- &llama3
url: "github:mudler/LocalAI/gallery/llama3-instruct.yaml@master"
icon: https://cdn-uploads.huggingface.co/production/uploads/642cc1c253e76b4c2286c58e/aJJxKus1wP5N-euvHEUq7.png
@@ -3016,6 +3186,106 @@
- filename: L3-15B-EtherealMaid-t0.0001.i1-Q4_K_M.gguf
sha256: 2911be6be8e0fd4184998d452410ba847491b4ab71a928749de87cafb0e13757
uri: huggingface://mradermacher/L3-15B-EtherealMaid-t0.0001-i1-GGUF/L3-15B-EtherealMaid-t0.0001.i1-Q4_K_M.gguf
- !!merge <<: *llama3
name: "l3-8b-celeste-v1"
icon: https://cdn-uploads.huggingface.co/production/uploads/630cf5d14ca0a22768bbe10c/Zv__LDTO-nHvpuxPcCgUU.webp
urls:
- https://huggingface.co/nothingiisreal/L3-8B-Celeste-v1
- https://huggingface.co/bartowski/L3-8B-Celeste-v1-GGUF
description: |
Trained on LLaMA 3 8B Instruct at 8K context using Reddit Writing Prompts, Opus 15K Instruct an c2 logs cleaned.
This is a roleplay model any instruction following capabilities outside roleplay contexts are coincidental.
overrides:
parameters:
model: L3-8B-Celeste-v1-Q4_K_M.gguf
files:
- filename: L3-8B-Celeste-v1-Q4_K_M.gguf
sha256: ed5277719965fb6bbcce7d16742e3bac4a8d5b8f52133261a3402a480cd65317
uri: huggingface://bartowski/L3-8B-Celeste-v1-GGUF/L3-8B-Celeste-v1-Q4_K_M.gguf
- !!merge <<: *llama3
name: "l3-8b-celeste-v1.2"
icon: https://cdn-uploads.huggingface.co/production/uploads/630cf5d14ca0a22768bbe10c/Zv__LDTO-nHvpuxPcCgUU.webp
urls:
- https://huggingface.co/mudler/L3-8B-Celeste-V1.2-Q4_K_M-GGUF
description: |
Trained on LLaMA 3 8B Instruct at 8K context using Reddit Writing Prompts, Opus 15K Instruct an c2 logs cleaned.
This is a roleplay model any instruction following capabilities outside roleplay contexts are coincidental.
overrides:
parameters:
model: l3-8b-celeste-v1.2-q4_k_m.gguf
files:
- filename: l3-8b-celeste-v1.2-q4_k_m.gguf
sha256: 7752204c0e9f627ff5726eb69bb6114974cafbc934a993ad019abfba62002783
uri: huggingface://mudler/L3-8B-Celeste-V1.2-Q4_K_M-GGUF/l3-8b-celeste-v1.2-q4_k_m.gguf
- !!merge <<: *llama3
name: "llama-3-tulu-2-8b-i1"
icon: https://huggingface.co/datasets/allenai/blog-images/resolve/main/tulu-v2/Tulu%20V2%20banner.png
urls:
- https://huggingface.co/allenai/llama-3-tulu-2-8b
- https://huggingface.co/mradermacher/llama-3-tulu-2-8b-i1-GGUF
description: |
Tulu is a series of language models that are trained to act as helpful assistants. Llama 3 Tulu V2 8B is a fine-tuned version of Llama 3 that was trained on a mix of publicly available, synthetic and human datasets.
overrides:
parameters:
model: llama-3-tulu-2-8b.i1-Q4_K_M.gguf
files:
- filename: llama-3-tulu-2-8b.i1-Q4_K_M.gguf
sha256: f859c22bfa64f461e9ffd973dc7ad6a78bb98b1dda6f49abfa416a4022b7e333
uri: huggingface://mradermacher/llama-3-tulu-2-8b-i1-GGUF/llama-3-tulu-2-8b.i1-Q4_K_M.gguf
- !!merge <<: *llama3
name: "llama-3-tulu-2-dpo-70b-i1"
icon: https://huggingface.co/datasets/allenai/blog-images/resolve/main/tulu-v2/Tulu%20V2%20banner.png
urls:
- https://huggingface.co/allenai/llama-3-tulu-2-dpo-70b
- https://huggingface.co/mradermacher/llama-3-tulu-2-dpo-70b-i1-GGUF
description: |
Tulu is a series of language models that are trained to act as helpful assistants. Llama 3 Tulu V2 8B is a fine-tuned version of Llama 3 that was trained on a mix of publicly available, synthetic and human datasets.
overrides:
parameters:
model: llama-3-tulu-2-dpo-70b.i1-Q4_K_M.gguf
files:
- filename: llama-3-tulu-2-dpo-70b.i1-Q4_K_M.gguf
sha256: fc309bbdf1e2bdced954c4c8dc1f9a885c547017ee5e750bfde645af89e3d3a5
uri: huggingface://mradermacher/llama-3-tulu-2-dpo-70b-i1-GGUF/llama-3-tulu-2-dpo-70b.i1-Q4_K_M.gguf
- !!merge <<: *llama3
license: cc-by-nc-4.0
name: "suzume-llama-3-8b-multilingual-orpo-borda-top25"
icon: https://cdn-uploads.huggingface.co/production/uploads/64b63f8ad57e02621dc93c8b/kWQSu02YfgYdUQqv4s5lq.png
urls:
- https://huggingface.co/lightblue/suzume-llama-3-8B-multilingual-orpo-borda-top25
- https://huggingface.co/RichardErkhov/lightblue_-_suzume-llama-3-8B-multilingual-orpo-borda-top25-gguf
description: |
This is Suzume ORPO, an ORPO trained fine-tune of the lightblue/suzume-llama-3-8B-multilingual model using our lightblue/mitsu dataset.
We have trained several versions of this model using ORPO and so recommend that you use the best performing model from our tests, lightblue/suzume-llama-3-8B-multilingual-orpo-borda-half.
Note that this model has a non-commerical license as we used the Command R and Command R+ models to generate our training data for this model (lightblue/mitsu).
We are currently working on a developing a commerically usable model, so stay tuned for that!
overrides:
parameters:
model: suzume-llama-3-8B-multilingual-orpo-borda-top25.Q4_K_M.gguf
files:
- filename: suzume-llama-3-8B-multilingual-orpo-borda-top25.Q4_K_M.gguf
sha256: ef75a02c5f38e14a8873c7989188dac6974851b4654279fe1921d2c8018cc388
uri: huggingface://RichardErkhov/lightblue_-_suzume-llama-3-8B-multilingual-orpo-borda-top25-gguf/suzume-llama-3-8B-multilingual-orpo-borda-top25.Q4_K_M.gguf
- !!merge <<: *llama3
name: "calme-2.4-llama3-70b"
icon: https://huggingface.co/MaziyarPanahi/calme-2.4-llama3-70b/resolve/main/llama-3-merges.webp
urls:
- https://huggingface.co/MaziyarPanahi/calme-2.4-llama3-70b
- https://huggingface.co/mradermacher/calme-2.4-llama3-70b-GGUF
description: |
This model is a fine-tune (DPO) of meta-llama/Meta-Llama-3-70B-Instruct model.
overrides:
parameters:
model: calme-2.4-llama3-70b.Q4_K_M.gguf
files:
- filename: calme-2.4-llama3-70b.Q4_K_M.gguf
sha256: 0b44ac8a88395dfc60f1b9d3cfffc0ffef74ec0a302e610ef91fc787187568f2
uri: huggingface://mradermacher/calme-2.4-llama3-70b-GGUF/calme-2.4-llama3-70b.Q4_K_M.gguf
- &command-R
### START Command-r
url: "github:mudler/LocalAI/gallery/command-r.yaml@master"
@@ -3260,6 +3530,38 @@
- filename: Phi-3.1-mini-4k-instruct-Q4_K_M.gguf
sha256: 39458b227a4be763b7eb39d306d240c3d45205e3f8b474ec7bdca7bba0158e69
uri: huggingface://bartowski/Phi-3.1-mini-4k-instruct-GGUF/Phi-3.1-mini-4k-instruct-Q4_K_M.gguf
- !!merge <<: *phi-3
name: "phillama-3.8b-v0.1"
icon: https://cdn-uploads.huggingface.co/production/uploads/657eb5b256c9c67605a6e8b5/f96pPiJQb3puzbPYNknG2.png
urls:
- https://huggingface.co/RichardErkhov/raincandy-u_-_phillama-3.8b-v0.1-gguf
description: |
The description of the LLM model is:
Phillama is a model based on Phi-3-mini and trained on Llama-generated dataset raincandy-u/Dextromethorphan-10k to make it more "llama-like". Also, this model is converted into Llama format, so it will work with any Llama-2/3 workflow. The model aims to generate text with a specific "llama-like" style and is suited for text-generation tasks.
overrides:
parameters:
model: phillama-3.8b-v0.1.Q4_K_M.gguf
files:
- filename: phillama-3.8b-v0.1.Q4_K_M.gguf
sha256: da537d352b7aae54bbad0d2cff3e3a1b0e1dc1e1d25bec3aae1d05cf4faee7a2
uri: huggingface://RichardErkhov/raincandy-u_-_phillama-3.8b-v0.1-gguf/phillama-3.8b-v0.1.Q4_K_M.gguf
- !!merge <<: *llama3
name: "calme-2.3-phi3-4b"
icon: https://huggingface.co/MaziyarPanahi/calme-2.1-phi3-4b/resolve/main/phi-3-instruct.webp
urls:
- https://huggingface.co/MaziyarPanahi/calme-2.3-phi3-4b
- https://huggingface.co/MaziyarPanahi/calme-2.3-phi3-4b-GGUF
description: |
MaziyarPanahi/calme-2.1-phi3-4b
This model is a fine-tune (DPO) of microsoft/Phi-3-mini-4k-instruct model.
overrides:
parameters:
model: Phi-3-mini-4k-instruct-v0.3.Q4_K_M.gguf
files:
- filename: Phi-3-mini-4k-instruct-v0.3.Q4_K_M.gguf
sha256: 3a23e1052369c080afb925882bd814cbea5ec859894655a7434c3d49e43a6127
uri: huggingface://MaziyarPanahi/calme-2.3-phi3-4b-GGUF/Phi-3-mini-4k-instruct-v0.3.Q4_K_M.gguf
- &hermes-2-pro-mistral
### START Hermes
url: "github:mudler/LocalAI/gallery/hermes-2-pro-mistral.yaml@master"

View File

@@ -10,8 +10,7 @@ config_file: |-
- <|end_of_text|>
function:
grammar:
enable: true
return_name_in_function_response: true
template:
chat: |

43
gallery/tuluv2.yaml Normal file
View File

@@ -0,0 +1,43 @@
---
name: "tuluv2"
config_file: |
mmap: true
template:
chat_message: |
<|{{ .RoleName }}|>
{{ if .FunctionCall -}}
Function call:
{{ else if eq .RoleName "tool" -}}
Function response:
{{ end -}}
{{ if .Content -}}
{{.Content }}
{{ end -}}
{{ if .FunctionCall -}}
{{toJson .FunctionCall}}
{{ end -}}
function: |
<|{{ .RoleName }}|>
{{ if .FunctionCall -}}
Function call:
{{ else if eq .RoleName "tool" -}}
Function response:
{{ end -}}
{{ if .Content -}}
{{.Content }}
{{ end -}}
{{ if .FunctionCall -}}
{{toJson .FunctionCall}}
{{ end -}}
chat: |
{{.Input -}}
<|assistant|>
completion: |
{{.Input}}
context_size: 4096
f16: true
stopwords:
- '<|im_end|>'
- '<dummy32000>'
- '<|endoftext|>'

View File

@@ -25,8 +25,8 @@ type GrammarConfig struct {
// In this way if the LLM selects a free string, it won't be mixed necessarly with JSON objects
NoMixedFreeString bool `yaml:"no_mixed_free_string"`
// EnableGrammar disables the grammar parsing and parses the responses directly from the LLM
EnableGrammar bool `yaml:"enable"`
// NoGrammar disables the grammar parsing and parses the responses directly from the LLM
NoGrammar bool `yaml:"disable"`
// Prefix is the suffix to append to the grammar when being generated
// This is useful when models prepend a tag before returning JSON