Compare commits

...

41 Commits

Author SHA1 Message Date
Ettore Di Giacinto
a1d5462ad0 Stores to chromem (WIP)
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2025-01-21 10:35:01 +01:00
Ettore Di Giacinto
2f09aa1b85 chore(model gallery): add sd-3.5-large-ggml (#4647)
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2025-01-20 19:04:23 +01:00
Gianluca Boiano
a396040886 chore(model gallery): remove dead icons and update LLAVA and DeepSeek ones (#4645)
* chore(model gallery): update icons and add LLAVA ones

Signed-off-by: Gianluca Boiano <morf3089@gmail.com>

* chore(model gallery): fix all complains related to yamllint

Signed-off-by: Gianluca Boiano <morf3089@gmail.com>

---------

Signed-off-by: Gianluca Boiano <morf3089@gmail.com>
2025-01-20 16:13:19 +01:00
Ettore Di Giacinto
aeb1dca52e chore(model gallery): add l3.3-prikol-70b-v0.2 (#4643)
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2025-01-20 11:03:35 +01:00
Ettore Di Giacinto
83a8d90c52 chore(model gallery): add l3.3-70b-magnum-v4-se (#4642)
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2025-01-20 10:50:29 +01:00
Ettore Di Giacinto
adebd557ce chore(model gallery): add wayfarer-12b (#4641)
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2025-01-20 10:45:10 +01:00
Gianluca Boiano
0c0e015b38 chore(model gallery): update icons and add missing ones (#4639)
* chore(model gallery): uniform github URLs for icons

Signed-off-by: Gianluca Boiano <morf3089@gmail.com>

* chore(model gallery): add icons to phi models

Signed-off-by: Gianluca Boiano <morf3089@gmail.com>

* chore(model gallery): add icons to QwenLM models

Signed-off-by: Gianluca Boiano <morf3089@gmail.com>

* chore(model gallery): update icon for Arcee org

Signed-off-by: Gianluca Boiano <morf3089@gmail.com>

* chore(model gallery): update icon for Meta org

Signed-off-by: Gianluca Boiano <morf3089@gmail.com>

* chore(model gallery): update icon url for OpenCoder org

Signed-off-by: Gianluca Boiano <morf3089@gmail.com>

* chore(model gallery): add icon for RWKV org

Signed-off-by: Gianluca Boiano <morf3089@gmail.com>

* chore(model gallery): add icon for IBM-granite org

Signed-off-by: Gianluca Boiano <morf3089@gmail.com>

* chore(model gallery): add icon for OpenBMB org

Signed-off-by: Gianluca Boiano <morf3089@gmail.com>

* chore(model gallery): add icon for KatanemoLabs org

Signed-off-by: Gianluca Boiano <morf3089@gmail.com>

* chore(model gallery): update icon for Meta-Llama-3.1-8B-Instruct-abliterated

Signed-off-by: Gianluca Boiano <morf3089@gmail.com>

* chore(model gallery): update icon for hermes-3-llama-3.1-8b-lorablated

Signed-off-by: Gianluca Boiano <morf3089@gmail.com>

* chore(model gallery): add icon for Google org

Signed-off-by: Gianluca Boiano <morf3089@gmail.com>

---------

Signed-off-by: Gianluca Boiano <morf3089@gmail.com>
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
Co-authored-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2025-01-20 10:40:46 +01:00
Gianluca Boiano
390bb3f58b fix(model gallery): minicpm-v-2.6 is based on qwen2 (#4638)
Signed-off-by: Gianluca Boiano <morf3089@gmail.com>
2025-01-20 10:35:05 +01:00
Gianluca Boiano
30739d94a4 chore(model gallery): add InternLM3-8b-Q4_K_M (#4637)
chore(model gallery): add InternLM3-8b-Q4_K_M

Signed-off-by: Gianluca Boiano <morf3089@gmail.com>
2025-01-20 10:34:19 +01:00
LocalAI [bot]
83e2dd5dff chore: ⬆️ Update ggerganov/llama.cpp to 92bc493917d43b83e592349e138b54c90b1c3ea7 (#4640)
⬆️ Update ggerganov/llama.cpp

Signed-off-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: mudler <2420543+mudler@users.noreply.github.com>
2025-01-19 22:34:32 +00:00
Ettore Di Giacinto
f496d0113b chore(deps): pin numba
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2025-01-19 09:07:56 +01:00
LocalAI [bot]
a752183fb5 chore: ⬆️ Update ggerganov/llama.cpp to a1649cc13f89946322358f92ea268ae1b7b5096c (#4635)
⬆️ Update ggerganov/llama.cpp

Signed-off-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: mudler <2420543+mudler@users.noreply.github.com>
2025-01-19 08:38:33 +01:00
LocalAI [bot]
296b97925f chore: ⬆️ Update leejet/stable-diffusion.cpp to 5eb15ef4d022bef4a391de4f5f6556e81fbb5024 (#4636)
⬆️ Update leejet/stable-diffusion.cpp

Signed-off-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: mudler <2420543+mudler@users.noreply.github.com>
2025-01-18 22:21:27 +00:00
Gianluca Boiano
d0cc3047dc chore(model gallery): add MiniCPM-V-2.6-8b-q4_K_M (#4633)
Signed-off-by: Gianluca Boiano <morf3089@gmail.com>
2025-01-18 18:36:05 +01:00
Gianluca Boiano
032a33de49 chore: remove deprecated tinydream backend (#4631)
Signed-off-by: Gianluca Boiano <morf3089@gmail.com>
2025-01-18 18:35:30 +01:00
Ettore Di Giacinto
1e9bf19c8d feat(transformers): merge sentencetransformers backend (#4624)
* merge sentencetransformers

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* Add alias to silently redirect sentencetransformers to transformers

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* Add alias also for transformers-musicgen

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* Drop from makefile

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* Move tests from sentencetransformers

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* Remove sentencetransformers

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* Remove tests from CI (part of transformers)

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* Do not always try to load the tokenizer

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* Adapt tests

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* Fix typo

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* Tiny adjustments

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

---------

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2025-01-18 18:30:30 +01:00
Gianluca Boiano
4bd8434ae0 fix(docs): add missing -core suffix to sycl images (#4630)
Signed-off-by: Gianluca Boiano <morf3089@gmail.com>
2025-01-18 15:47:49 +01:00
Ettore Di Giacinto
958f6eb722 chore(llama.cpp): update dependency (#4628)
Update to '3edfa7d3753c29e44b964c0ff424d2ea8d5fdee6' and adapt to upstream changes

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2025-01-18 11:55:13 +01:00
mintyleaf
96306a39a0 chore(docs): extra-Usage and Machine-Tag docs (#4627)
Rename LocalAI-Extra-Usage -> Extra-Usage, add MACHINE_TAG as cli flag option, add docs about extra-usage and machine-tag

Signed-off-by: mintyleaf <mintyleafdev@gmail.com>
2025-01-18 08:58:38 +01:00
LocalAI [bot]
895cd7c76a feat(swagger): update swagger (#4625)
Signed-off-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: mudler <2420543+mudler@users.noreply.github.com>
2025-01-18 08:57:49 +01:00
dependabot[bot]
cbdbe59f16 chore(deps): Bump scipy from 1.14.0 to 1.15.1 in /backend/python/transformers (#4621)
chore(deps): Bump scipy in /backend/python/transformers

Bumps [scipy](https://github.com/scipy/scipy) from 1.14.0 to 1.15.1.
- [Release notes](https://github.com/scipy/scipy/releases)
- [Commits](https://github.com/scipy/scipy/compare/v1.14.0...v1.15.1)

---
updated-dependencies:
- dependency-name: scipy
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2025-01-17 22:14:11 +00:00
Ettore Di Giacinto
ee7904f170 feat(transformers): add support to OuteTTS (#4622)
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2025-01-17 19:33:25 +01:00
Ettore Di Giacinto
a761e01944 chore: alias transformers-musicgen to transformers (#4623)
chore: alias transformers-muscigen to transformers

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2025-01-17 18:16:17 +01:00
mintyleaf
96f8ec0402 feat: add machine tag and inference timings (#4577)
* Add machine tag option, add extraUsage option, grpc-server -> proto -> endpoint extraUsage data is broken for now

Signed-off-by: mintyleaf <mintyleafdev@gmail.com>

* remove redurant timing fields, fix not working timings output

Signed-off-by: mintyleaf <mintyleafdev@gmail.com>

* use middleware for Machine-Tag only if tag is specified

Signed-off-by: mintyleaf <mintyleafdev@gmail.com>

---------

Signed-off-by: mintyleaf <mintyleafdev@gmail.com>
2025-01-17 17:05:58 +01:00
Ettore Di Giacinto
8027fdf1c7 feat(transformers): merge musicgen functionalities to a single backend (#4620)
* feat(transformers): merge musicgen functionalities to a single backend

So we optimize space

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* specify type in tests

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* Some adaptations for the MusicgenForConditionalGeneration type

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

---------

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2025-01-17 17:01:16 +01:00
Ettore Di Giacinto
212c8e1a6d Update README.md
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2025-01-17 15:11:10 +01:00
LocalAI [bot]
78533d7230 chore: ⬆️ Update ggerganov/llama.cpp to 4dbc8b9cb71876e005724f4e8f73a3544646bcf5 (#4618)
⬆️ Update ggerganov/llama.cpp

Signed-off-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: mudler <2420543+mudler@users.noreply.github.com>
2025-01-17 10:25:04 +01:00
Ettore Di Giacinto
b5eeb5c5ab ci(arm64): run in parallel
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2025-01-17 10:24:15 +01:00
Ettore Di Giacinto
b147ad0596 ci: try to build for arm64
Try to use the free arm64 runners from Github:
https://github.blog/changelog/2025-01-16-linux-arm64-hosted-runners-now-available-for-free-in-public-repositories-public-preview/

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2025-01-17 10:14:26 +01:00
Ettore Di Giacinto
7d0ac1ea3f chore(vall-e-x): Drop backend (#4619)
There are many new architectures that are SOTA and replaces vall-e-x
nowadays.

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2025-01-17 09:35:10 +01:00
Ettore Di Giacinto
d08d97bebf chore(model gallery): fix typo
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2025-01-16 22:26:55 +01:00
Ettore Di Giacinto
acb2eb23c8 feat(tts): Add Kokoro backend (#4616)
* feat(kokoro): Add new TTS backend

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* Add kokoro to images

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* Support combined voices

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* Ignore pt and onnx

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* Add plbert and istfnet

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

---------

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2025-01-16 22:23:09 +01:00
Ettore Di Giacinto
de4aa9fb1d chore(model gallery): add vikhr-qwen-2.5-1.5b-instruct (#4615)
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2025-01-16 10:09:25 +01:00
Ettore Di Giacinto
560ba6f25e chore(model gallery): add drt-o1-14b (#4614)
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2025-01-16 10:04:44 +01:00
Ettore Di Giacinto
8131ddd878 chore(model gallery): add uwu-7b-instruct (#4613)
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2025-01-16 09:58:14 +01:00
LocalAI [bot]
26c3deb673 chore: ⬆️ Update ggerganov/llama.cpp to adc5dd92e8aea98f5e7ac84f6e1bc15de35130b5 (#4612)
⬆️ Update ggerganov/llama.cpp

Signed-off-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: mudler <2420543+mudler@users.noreply.github.com>
2025-01-16 00:08:52 +00:00
Ettore Di Giacinto
6d20497d45 chore(model gallery): add lb-reranker-0.5b-v1.0 (#4611)
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2025-01-15 15:54:12 +01:00
Ettore Di Giacinto
482c6b8be4 chore(model gallery): add l3.3-ms-nevoria-70b (#4610)
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2025-01-15 15:51:50 +01:00
Ettore Di Giacinto
5bba5edf45 chore(model gallery): add qwerus-7b (#4609)
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2025-01-15 15:46:45 +01:00
Ettore Di Giacinto
792b866727 Update README.md
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2025-01-15 15:46:27 +01:00
LocalAI [bot]
f053f7bde2 chore: ⬆️ Update ggerganov/llama.cpp to b4d92a59a20eea400d8dd30844a339b76210daa0 (#4606)
⬆️ Update ggerganov/llama.cpp

Signed-off-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: mudler <2420543+mudler@users.noreply.github.com>
2025-01-14 22:16:33 +00:00
116 changed files with 2195 additions and 1891 deletions

View File

@@ -16,7 +16,7 @@ headers {
body:json {
{
"backend": "transformers-musicgen",
"backend": "transformers",
"model": "facebook/musicgen-small",
"input": "80s Synths playing Jazz"
}

View File

@@ -81,14 +81,6 @@ updates:
directory: "/backend/python/transformers"
schedule:
interval: "weekly"
- package-ecosystem: "pip"
directory: "/backend/python/transformers-musicgen"
schedule:
interval: "weekly"
- package-ecosystem: "pip"
directory: "/backend/python/vall-e-x"
schedule:
interval: "weekly"
- package-ecosystem: "pip"
directory: "/backend/python/vllm"
schedule:

View File

@@ -362,43 +362,43 @@ jobs:
base-image: "ubuntu:22.04"
skip-drivers: 'false'
makeflags: "--jobs=4 --output-sync=target"
# parallel-builds:
# uses: ./.github/workflows/image_build.yml
# with:
# tag-latest: ${{ matrix.tag-latest }}
# tag-suffix: ${{ matrix.tag-suffix }}
# ffmpeg: ${{ matrix.ffmpeg }}
# image-type: ${{ matrix.image-type }}
# build-type: ${{ matrix.build-type }}
# cuda-major-version: ${{ matrix.cuda-major-version }}
# cuda-minor-version: ${{ matrix.cuda-minor-version }}
# platforms: ${{ matrix.platforms }}
# runs-on: ${{ matrix.runs-on }}
# aio: ${{ matrix.aio }}
# base-image: ${{ matrix.base-image }}
# grpc-base-image: ${{ matrix.grpc-base-image }}
# makeflags: ${{ matrix.makeflags }}
# latest-image: ${{ matrix.latest-image }}
# latest-image-aio: ${{ matrix.latest-image-aio }}
# skip-drivers: ${{ matrix.skip-drivers }}
# secrets:
# dockerUsername: ${{ secrets.DOCKERHUB_USERNAME }}
# dockerPassword: ${{ secrets.DOCKERHUB_PASSWORD }}
# quayUsername: ${{ secrets.LOCALAI_REGISTRY_USERNAME }}
# quayPassword: ${{ secrets.LOCALAI_REGISTRY_PASSWORD }}
# strategy:
# matrix:
# include:
# - build-type: 'cublas'
# cuda-major-version: "12"
# cuda-minor-version: "0"
# platforms: 'linux/arm64'
# tag-latest: 'false'
# tag-suffix: '-nvidia-l4t-arm64-core'
# latest-image: 'latest-nvidia-l4t-arm64-core'
# ffmpeg: 'true'
# image-type: 'core'
# base-image: "nvcr.io/nvidia/l4t-jetpack:r36.4.0"
# runs-on: 'self-hosted'
# makeflags: "--jobs=4 --output-sync=target"
# skip-drivers: 'true'
gh-runner:
uses: ./.github/workflows/image_build.yml
with:
tag-latest: ${{ matrix.tag-latest }}
tag-suffix: ${{ matrix.tag-suffix }}
ffmpeg: ${{ matrix.ffmpeg }}
image-type: ${{ matrix.image-type }}
build-type: ${{ matrix.build-type }}
cuda-major-version: ${{ matrix.cuda-major-version }}
cuda-minor-version: ${{ matrix.cuda-minor-version }}
platforms: ${{ matrix.platforms }}
runs-on: ${{ matrix.runs-on }}
aio: ${{ matrix.aio }}
base-image: ${{ matrix.base-image }}
grpc-base-image: ${{ matrix.grpc-base-image }}
makeflags: ${{ matrix.makeflags }}
latest-image: ${{ matrix.latest-image }}
latest-image-aio: ${{ matrix.latest-image-aio }}
skip-drivers: ${{ matrix.skip-drivers }}
secrets:
dockerUsername: ${{ secrets.DOCKERHUB_USERNAME }}
dockerPassword: ${{ secrets.DOCKERHUB_PASSWORD }}
quayUsername: ${{ secrets.LOCALAI_REGISTRY_USERNAME }}
quayPassword: ${{ secrets.LOCALAI_REGISTRY_PASSWORD }}
strategy:
matrix:
include:
- build-type: 'cublas'
cuda-major-version: "12"
cuda-minor-version: "0"
platforms: 'linux/arm64'
tag-latest: 'false'
tag-suffix: '-nvidia-l4t-arm64-core'
latest-image: 'latest-nvidia-l4t-arm64-core'
ffmpeg: 'true'
image-type: 'core'
base-image: "nvcr.io/nvidia/l4t-jetpack:r36.4.0"
runs-on: 'ubuntu-24.04-arm'
makeflags: "--jobs=4 --output-sync=target"
skip-drivers: 'true'

View File

@@ -35,30 +35,6 @@ jobs:
run: |
make --jobs=5 --output-sync=target -C backend/python/transformers
make --jobs=5 --output-sync=target -C backend/python/transformers test
tests-sentencetransformers:
runs-on: ubuntu-latest
steps:
- name: Clone
uses: actions/checkout@v4
with:
submodules: true
- name: Dependencies
run: |
sudo apt-get update
sudo apt-get install build-essential ffmpeg
# Install UV
curl -LsSf https://astral.sh/uv/install.sh | sh
sudo apt-get install -y ca-certificates cmake curl patch python3-pip
sudo apt-get install -y libopencv-dev
pip install --user --no-cache-dir grpcio-tools==1.64.1
- name: Test sentencetransformers
run: |
make --jobs=5 --output-sync=target -C backend/python/sentencetransformers
make --jobs=5 --output-sync=target -C backend/python/sentencetransformers test
tests-rerankers:
runs-on: ubuntu-latest
steps:
@@ -153,27 +129,27 @@ jobs:
make --jobs=5 --output-sync=target -C backend/python/openvoice
make --jobs=5 --output-sync=target -C backend/python/openvoice test
tests-transformers-musicgen:
runs-on: ubuntu-latest
steps:
- name: Clone
uses: actions/checkout@v4
with:
submodules: true
- name: Dependencies
run: |
sudo apt-get update
sudo apt-get install build-essential ffmpeg
# Install UV
curl -LsSf https://astral.sh/uv/install.sh | sh
sudo apt-get install -y ca-certificates cmake curl patch python3-pip
sudo apt-get install -y libopencv-dev
pip install --user --no-cache-dir grpcio-tools==1.64.1
# tests-transformers-musicgen:
# runs-on: ubuntu-latest
# steps:
# - name: Clone
# uses: actions/checkout@v4
# with:
# submodules: true
# - name: Dependencies
# run: |
# sudo apt-get update
# sudo apt-get install build-essential ffmpeg
# # Install UV
# curl -LsSf https://astral.sh/uv/install.sh | sh
# sudo apt-get install -y ca-certificates cmake curl patch python3-pip
# sudo apt-get install -y libopencv-dev
# pip install --user --no-cache-dir grpcio-tools==1.64.1
- name: Test transformers-musicgen
run: |
make --jobs=5 --output-sync=target -C backend/python/transformers-musicgen
make --jobs=5 --output-sync=target -C backend/python/transformers-musicgen test
# - name: Test transformers-musicgen
# run: |
# make --jobs=5 --output-sync=target -C backend/python/transformers-musicgen
# make --jobs=5 --output-sync=target -C backend/python/transformers-musicgen test
# tests-bark:
# runs-on: ubuntu-latest
@@ -260,26 +236,6 @@ jobs:
# run: |
# make --jobs=5 --output-sync=target -C backend/python/vllm
# make --jobs=5 --output-sync=target -C backend/python/vllm test
tests-vallex:
runs-on: ubuntu-latest
steps:
- name: Clone
uses: actions/checkout@v4
with:
submodules: true
- name: Dependencies
run: |
sudo apt-get update
sudo apt-get install build-essential ffmpeg
# Install UV
curl -LsSf https://astral.sh/uv/install.sh | sh
sudo apt-get install -y ca-certificates cmake curl patch python3-pip
sudo apt-get install -y libopencv-dev
pip install --user --no-cache-dir grpcio-tools==1.64.1
- name: Test vall-e-x
run: |
make --jobs=5 --output-sync=target -C backend/python/vall-e-x
make --jobs=5 --output-sync=target -C backend/python/vall-e-x test
tests-coqui:
runs-on: ubuntu-latest

View File

@@ -100,8 +100,7 @@ jobs:
# The python3-grpc-tools package in 22.04 is too old
pip install --user grpcio-tools
sudo rm -rfv /usr/bin/conda || true
PATH=$PATH:/opt/conda/bin make -C backend/python/sentencetransformers
make -C backend/python/transformers
# Pre-build piper before we start tests in order to have shared libraries in place
make sources/go-piper && \

View File

@@ -15,7 +15,7 @@ ARG TARGETARCH
ARG TARGETVARIANT
ENV DEBIAN_FRONTEND=noninteractive
ENV EXTERNAL_GRPC_BACKENDS="coqui:/build/backend/python/coqui/run.sh,huggingface-embeddings:/build/backend/python/sentencetransformers/run.sh,transformers:/build/backend/python/transformers/run.sh,sentencetransformers:/build/backend/python/sentencetransformers/run.sh,rerankers:/build/backend/python/rerankers/run.sh,autogptq:/build/backend/python/autogptq/run.sh,bark:/build/backend/python/bark/run.sh,diffusers:/build/backend/python/diffusers/run.sh,openvoice:/build/backend/python/openvoice/run.sh,vall-e-x:/build/backend/python/vall-e-x/run.sh,vllm:/build/backend/python/vllm/run.sh,mamba:/build/backend/python/mamba/run.sh,exllama2:/build/backend/python/exllama2/run.sh,transformers-musicgen:/build/backend/python/transformers-musicgen/run.sh,parler-tts:/build/backend/python/parler-tts/run.sh"
ENV EXTERNAL_GRPC_BACKENDS="coqui:/build/backend/python/coqui/run.sh,transformers:/build/backend/python/transformers/run.sh,rerankers:/build/backend/python/rerankers/run.sh,autogptq:/build/backend/python/autogptq/run.sh,bark:/build/backend/python/bark/run.sh,diffusers:/build/backend/python/diffusers/run.sh,openvoice:/build/backend/python/openvoice/run.sh,kokoro:/build/backend/python/kokoro/run.sh,vllm:/build/backend/python/vllm/run.sh,mamba:/build/backend/python/mamba/run.sh,exllama2:/build/backend/python/exllama2/run.sh,parler-tts:/build/backend/python/parler-tts/run.sh"
RUN apt-get update && \
@@ -436,6 +436,10 @@ SHELL ["/bin/bash", "-c"]
# Splitting the backends into more groups with fewer items results in a larger image, but a smaller size for the largest layer
# Splitting the backends into fewer groups with more items results in a smaller image, but a larger size for the largest layer
RUN if [[ ( "${IMAGE_TYPE}" == "extras ")]]; then \
apt-get -qq -y install espeak-ng \
; fi
RUN if [[ ( "${EXTRA_BACKENDS}" =~ "coqui" || -z "${EXTRA_BACKENDS}" ) && "$IMAGE_TYPE" == "extras" ]]; then \
make -C backend/python/coqui \
; fi && \
@@ -444,20 +448,14 @@ RUN if [[ ( "${EXTRA_BACKENDS}" =~ "coqui" || -z "${EXTRA_BACKENDS}" ) && "$IMAG
; fi && \
if [[ ( "${EXTRA_BACKENDS}" =~ "diffusers" || -z "${EXTRA_BACKENDS}" ) && "$IMAGE_TYPE" == "extras" ]]; then \
make -C backend/python/diffusers \
; fi && \
if [[ ( "${EXTRA_BACKENDS}" =~ "transformers-musicgen" || -z "${EXTRA_BACKENDS}" ) && "$IMAGE_TYPE" == "extras" ]]; then \
make -C backend/python/transformers-musicgen \
; fi
RUN if [[ ( "${EXTRA_BACKENDS}" =~ "vall-e-x" || -z "${EXTRA_BACKENDS}" ) && "$IMAGE_TYPE" == "extras" ]]; then \
make -C backend/python/vall-e-x \
RUN if [[ ( "${EXTRA_BACKENDS}" =~ "kokoro" || -z "${EXTRA_BACKENDS}" ) && "$IMAGE_TYPE" == "extras" ]]; then \
make -C backend/python/kokoro \
; fi && \
if [[ ( "${EXTRA_BACKENDS}" =~ "openvoice" || -z "${EXTRA_BACKENDS}" ) && "$IMAGE_TYPE" == "extras" ]]; then \
make -C backend/python/openvoice \
; fi && \
if [[ ( "${EXTRA_BACKENDS}" =~ "sentencetransformers" || -z "${EXTRA_BACKENDS}" ) && "$IMAGE_TYPE" == "extras" ]]; then \
make -C backend/python/sentencetransformers \
; fi && \
if [[ ( "${EXTRA_BACKENDS}" =~ "exllama2" || -z "${EXTRA_BACKENDS}" ) && "$IMAGE_TYPE" == "extras" ]]; then \
make -C backend/python/exllama2 \
; fi && \

View File

@@ -8,7 +8,7 @@ DETECT_LIBS?=true
# llama.cpp versions
GOLLAMA_REPO?=https://github.com/go-skynet/go-llama.cpp
GOLLAMA_VERSION?=2b57a8ae43e4699d3dc5d1496a1ccd42922993be
CPPLLAMA_VERSION?=504af20ee4eae72080a56d59d744f6774f7901ce
CPPLLAMA_VERSION?=92bc493917d43b83e592349e138b54c90b1c3ea7
# whisper.cpp version
WHISPER_REPO?=https://github.com/ggerganov/whisper.cpp
@@ -22,17 +22,13 @@ PIPER_VERSION?=e10ca041a885d4a8f3871d52924b47792d5e5aa0
STABLEDIFFUSION_REPO?=https://github.com/mudler/go-stable-diffusion
STABLEDIFFUSION_VERSION?=4a3cd6aeae6f66ee57eae9a0075f8c58c3a6a38f
# tinydream version
TINYDREAM_REPO?=https://github.com/M0Rf30/go-tiny-dream
TINYDREAM_VERSION?=c04fa463ace9d9a6464313aa5f9cd0f953b6c057
# bark.cpp
BARKCPP_REPO?=https://github.com/PABannier/bark.cpp.git
BARKCPP_VERSION?=v1.0.0
# stablediffusion.cpp (ggml)
STABLEDIFFUSION_GGML_REPO?=https://github.com/leejet/stable-diffusion.cpp
STABLEDIFFUSION_GGML_VERSION?=dcf91f9e0f2cbf9da472ee2a556751ed4bab2d2a
STABLEDIFFUSION_GGML_VERSION?=5eb15ef4d022bef4a391de4f5f6556e81fbb5024
ONNX_VERSION?=1.20.0
ONNX_ARCH?=x64
@@ -188,11 +184,6 @@ ifeq ($(findstring stablediffusion,$(GO_TAGS)),stablediffusion)
OPTIONAL_GRPC+=backend-assets/grpc/stablediffusion
endif
ifeq ($(findstring tinydream,$(GO_TAGS)),tinydream)
# OPTIONAL_TARGETS+=go-tiny-dream/libtinydream.a
OPTIONAL_GRPC+=backend-assets/grpc/tinydream
endif
ifeq ($(findstring tts,$(GO_TAGS)),tts)
# OPTIONAL_TARGETS+=go-piper/libpiper_binding.a
# OPTIONAL_TARGETS+=backend-assets/espeak-ng-data
@@ -327,19 +318,6 @@ else
mv backend-assets/lib/libonnxruntime.so.$(ONNX_VERSION) backend-assets/lib/libonnxruntime.so.1
endif
## tiny-dream
sources/go-tiny-dream:
mkdir -p sources/go-tiny-dream
cd sources/go-tiny-dream && \
git init && \
git remote add origin $(TINYDREAM_REPO) && \
git fetch origin && \
git checkout $(TINYDREAM_VERSION) && \
git submodule update --init --recursive --depth 1 --single-branch
sources/go-tiny-dream/libtinydream.a: sources/go-tiny-dream
$(MAKE) -C sources/go-tiny-dream libtinydream.a
## whisper
sources/whisper.cpp:
mkdir -p sources/whisper.cpp
@@ -353,12 +331,11 @@ sources/whisper.cpp:
sources/whisper.cpp/libwhisper.a: sources/whisper.cpp
cd sources/whisper.cpp && $(MAKE) libwhisper.a libggml.a
get-sources: sources/go-llama.cpp sources/go-piper sources/stablediffusion-ggml.cpp sources/bark.cpp sources/whisper.cpp sources/go-stable-diffusion sources/go-tiny-dream backend/cpp/llama/llama.cpp
get-sources: sources/go-llama.cpp sources/go-piper sources/stablediffusion-ggml.cpp sources/bark.cpp sources/whisper.cpp sources/go-stable-diffusion backend/cpp/llama/llama.cpp
replace:
$(GOCMD) mod edit -replace github.com/ggerganov/whisper.cpp=$(CURDIR)/sources/whisper.cpp
$(GOCMD) mod edit -replace github.com/ggerganov/whisper.cpp/bindings/go=$(CURDIR)/sources/whisper.cpp/bindings/go
$(GOCMD) mod edit -replace github.com/M0Rf30/go-tiny-dream=$(CURDIR)/sources/go-tiny-dream
$(GOCMD) mod edit -replace github.com/mudler/go-piper=$(CURDIR)/sources/go-piper
$(GOCMD) mod edit -replace github.com/mudler/go-stable-diffusion=$(CURDIR)/sources/go-stable-diffusion
$(GOCMD) mod edit -replace github.com/go-skynet/go-llama.cpp=$(CURDIR)/sources/go-llama.cpp
@@ -366,7 +343,6 @@ replace:
dropreplace:
$(GOCMD) mod edit -dropreplace github.com/ggerganov/whisper.cpp
$(GOCMD) mod edit -dropreplace github.com/ggerganov/whisper.cpp/bindings/go
$(GOCMD) mod edit -dropreplace github.com/M0Rf30/go-tiny-dream
$(GOCMD) mod edit -dropreplace github.com/mudler/go-piper
$(GOCMD) mod edit -dropreplace github.com/mudler/go-stable-diffusion
$(GOCMD) mod edit -dropreplace github.com/go-skynet/go-llama.cpp
@@ -381,7 +357,6 @@ rebuild: ## Rebuilds the project
$(MAKE) -C sources/whisper.cpp clean
$(MAKE) -C sources/go-stable-diffusion clean
$(MAKE) -C sources/go-piper clean
$(MAKE) -C sources/go-tiny-dream clean
$(MAKE) build
prepare: prepare-sources $(OPTIONAL_TARGETS)
@@ -497,7 +472,7 @@ test: prepare test-models/testmodel.ggml grpcs
@echo 'Running tests'
export GO_TAGS="tts stablediffusion debug"
$(MAKE) prepare-test
HUGGINGFACE_GRPC=$(abspath ./)/backend/python/sentencetransformers/run.sh TEST_DIR=$(abspath ./)/test-dir/ FIXTURES=$(abspath ./)/tests/fixtures CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models \
HUGGINGFACE_GRPC=$(abspath ./)/backend/python/transformers/run.sh TEST_DIR=$(abspath ./)/test-dir/ FIXTURES=$(abspath ./)/tests/fixtures CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models \
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="!llama && !llama-gguf" --flake-attempts $(TEST_FLAKES) --fail-fast -v -r $(TEST_PATHS)
$(MAKE) test-llama
$(MAKE) test-llama-gguf
@@ -583,10 +558,10 @@ protogen-go-clean:
$(RM) bin/*
.PHONY: protogen-python
protogen-python: autogptq-protogen bark-protogen coqui-protogen diffusers-protogen exllama2-protogen mamba-protogen rerankers-protogen sentencetransformers-protogen transformers-protogen parler-tts-protogen transformers-musicgen-protogen vall-e-x-protogen vllm-protogen openvoice-protogen
protogen-python: autogptq-protogen bark-protogen coqui-protogen diffusers-protogen exllama2-protogen mamba-protogen rerankers-protogen transformers-protogen parler-tts-protogen kokoro-protogen vllm-protogen openvoice-protogen
.PHONY: protogen-python-clean
protogen-python-clean: autogptq-protogen-clean bark-protogen-clean coqui-protogen-clean diffusers-protogen-clean exllama2-protogen-clean mamba-protogen-clean sentencetransformers-protogen-clean rerankers-protogen-clean transformers-protogen-clean transformers-musicgen-protogen-clean parler-tts-protogen-clean vall-e-x-protogen-clean vllm-protogen-clean openvoice-protogen-clean
protogen-python-clean: autogptq-protogen-clean bark-protogen-clean coqui-protogen-clean diffusers-protogen-clean exllama2-protogen-clean mamba-protogen-clean rerankers-protogen-clean transformers-protogen-clean parler-tts-protogen-clean kokoro-protogen-clean vllm-protogen-clean openvoice-protogen-clean
.PHONY: autogptq-protogen
autogptq-protogen:
@@ -644,14 +619,6 @@ rerankers-protogen:
rerankers-protogen-clean:
$(MAKE) -C backend/python/rerankers protogen-clean
.PHONY: sentencetransformers-protogen
sentencetransformers-protogen:
$(MAKE) -C backend/python/sentencetransformers protogen
.PHONY: sentencetransformers-protogen-clean
sentencetransformers-protogen-clean:
$(MAKE) -C backend/python/sentencetransformers protogen-clean
.PHONY: transformers-protogen
transformers-protogen:
$(MAKE) -C backend/python/transformers protogen
@@ -668,21 +635,13 @@ parler-tts-protogen:
parler-tts-protogen-clean:
$(MAKE) -C backend/python/parler-tts protogen-clean
.PHONY: transformers-musicgen-protogen
transformers-musicgen-protogen:
$(MAKE) -C backend/python/transformers-musicgen protogen
.PHONY: kokoro-protogen
kokoro-protogen:
$(MAKE) -C backend/python/kokoro protogen
.PHONY: transformers-musicgen-protogen-clean
transformers-musicgen-protogen-clean:
$(MAKE) -C backend/python/transformers-musicgen protogen-clean
.PHONY: vall-e-x-protogen
vall-e-x-protogen:
$(MAKE) -C backend/python/vall-e-x protogen
.PHONY: vall-e-x-protogen-clean
vall-e-x-protogen-clean:
$(MAKE) -C backend/python/vall-e-x protogen-clean
.PHONY: kokoro-protogen-clean
kokoro-protogen-clean:
$(MAKE) -C backend/python/kokoro protogen-clean
.PHONY: openvoice-protogen
openvoice-protogen:
@@ -709,12 +668,10 @@ prepare-extra-conda-environments: protogen-python
$(MAKE) -C backend/python/diffusers
$(MAKE) -C backend/python/vllm
$(MAKE) -C backend/python/mamba
$(MAKE) -C backend/python/sentencetransformers
$(MAKE) -C backend/python/rerankers
$(MAKE) -C backend/python/transformers
$(MAKE) -C backend/python/transformers-musicgen
$(MAKE) -C backend/python/parler-tts
$(MAKE) -C backend/python/vall-e-x
$(MAKE) -C backend/python/kokoro
$(MAKE) -C backend/python/openvoice
$(MAKE) -C backend/python/exllama2
@@ -873,13 +830,6 @@ ifneq ($(UPX),)
$(UPX) backend-assets/grpc/silero-vad
endif
backend-assets/grpc/tinydream: sources/go-tiny-dream sources/go-tiny-dream/libtinydream.a backend-assets/grpc
CGO_LDFLAGS="$(CGO_LDFLAGS)" LIBRARY_PATH=$(CURDIR)/go-tiny-dream \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/tinydream ./backend/go/image/tinydream
ifneq ($(UPX),)
$(UPX) backend-assets/grpc/tinydream
endif
backend-assets/grpc/whisper: sources/whisper.cpp sources/whisper.cpp/libwhisper.a backend-assets/grpc
CGO_LDFLAGS="$(CGO_LDFLAGS) $(CGO_LDFLAGS_WHISPER)" C_INCLUDE_PATH="$(CURDIR)/sources/whisper.cpp/include:$(CURDIR)/sources/whisper.cpp/ggml/include" LIBRARY_PATH=$(CURDIR)/sources/whisper.cpp \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/whisper ./backend/go/transcribe/whisper

View File

@@ -92,19 +92,15 @@ local-ai run oci://localai/phi-2:latest
## 📰 Latest project news
- Jan 2025: LocalAI model release: https://huggingface.co/mudler/LocalAI-functioncall-phi-4-v0.3, SANA support in diffusers: https://github.com/mudler/LocalAI/pull/4603
- Dec 2024: stablediffusion.cpp backend (ggml) added ( https://github.com/mudler/LocalAI/pull/4289 )
- Nov 2024: Bark.cpp backend added ( https://github.com/mudler/LocalAI/pull/4287 )
- Nov 2024: Voice activity detection models (**VAD**) added to the API: https://github.com/mudler/LocalAI/pull/4204
- Oct 2024: examples moved to [LocalAI-examples](https://github.com/mudler/LocalAI-examples)
- Aug 2024: 🆕 FLUX-1, [P2P Explorer](https://explorer.localai.io)
- July 2024: 🔥🔥 🆕 P2P Dashboard, LocalAI Federated mode and AI Swarms: https://github.com/mudler/LocalAI/pull/2723
- June 2024: 🆕 You can browse now the model gallery without LocalAI! Check out https://models.localai.io
- June 2024: Support for models from OCI registries: https://github.com/mudler/LocalAI/pull/2628
- July 2024: 🔥🔥 🆕 P2P Dashboard, LocalAI Federated mode and AI Swarms: https://github.com/mudler/LocalAI/pull/2723. P2P Global community pools: https://github.com/mudler/LocalAI/issues/3113
- May 2024: 🔥🔥 Decentralized P2P llama.cpp: https://github.com/mudler/LocalAI/pull/2343 (peer2peer llama.cpp!) 👉 Docs https://localai.io/features/distribute/
- May 2024: 🔥🔥 Openvoice: https://github.com/mudler/LocalAI/pull/2334
- May 2024: 🆕 Function calls without grammars and mixed mode: https://github.com/mudler/LocalAI/pull/2328
- May 2024: 🔥🔥 Distributed inferencing: https://github.com/mudler/LocalAI/pull/2324
- May 2024: Chat, TTS, and Image generation in the WebUI: https://github.com/mudler/LocalAI/pull/2222
- April 2024: Reranker API: https://github.com/mudler/LocalAI/pull/2121
Roadmap items: [List of issues](https://github.com/mudler/LocalAI/issues?q=is%3Aissue+is%3Aopen+label%3Aroadmap)
@@ -113,12 +109,10 @@ Roadmap items: [List of issues](https://github.com/mudler/LocalAI/issues?q=is%3A
- Multimodal with vLLM and Video understanding: https://github.com/mudler/LocalAI/pull/3729
- Realtime API https://github.com/mudler/LocalAI/issues/3714
- 🔥🔥 Distributed, P2P Global community pools: https://github.com/mudler/LocalAI/issues/3113
- WebUI improvements: https://github.com/mudler/LocalAI/issues/2156
- Backends v2: https://github.com/mudler/LocalAI/issues/1126
- Improving UX v2: https://github.com/mudler/LocalAI/issues/1373
- Assistant API: https://github.com/mudler/LocalAI/issues/1273
- Moderation endpoint: https://github.com/mudler/LocalAI/issues/999
- Vulkan: https://github.com/mudler/LocalAI/issues/1647
- Anthropic API: https://github.com/mudler/LocalAI/issues/1808

View File

@@ -21,8 +21,7 @@ service Backend {
rpc Status(HealthMessage) returns (StatusResponse) {}
rpc StoresSet(StoresSetOptions) returns (Result) {}
rpc StoresDelete(StoresDeleteOptions) returns (Result) {}
rpc StoresGet(StoresGetOptions) returns (StoresGetResult) {}
rpc StoresReset(StoresResetOptions) returns (Result) {}
rpc StoresFind(StoresFindOptions) returns (StoresFindResult) {}
rpc Rerank(RerankRequest) returns (RerankResult) {}
@@ -78,19 +77,10 @@ message StoresSetOptions {
repeated StoresValue Values = 2;
}
message StoresDeleteOptions {
message StoresResetOptions {
repeated StoresKey Keys = 1;
}
message StoresGetOptions {
repeated StoresKey Keys = 1;
}
message StoresGetResult {
repeated StoresKey Keys = 1;
repeated StoresValue Values = 2;
}
message StoresFindOptions {
StoresKey Key = 1;
int32 TopK = 2;
@@ -159,6 +149,8 @@ message Reply {
bytes message = 1;
int32 tokens = 2;
int32 prompt_tokens = 3;
double timing_prompt_processing = 4;
double timing_token_generation = 5;
}
message ModelOptions {
@@ -348,4 +340,4 @@ message StatusResponse {
message Message {
string role = 1;
string content = 2;
}
}

View File

@@ -134,6 +134,32 @@ static std::string tokens_to_output_formatted_string(const llama_context *ctx, c
return out;
}
// Adds an RPC server
// https://github.com/ggerganov/llama.cpp/compare/4dbc8b9cb71876e005724f4e8f73a3544646bcf5..3edfa7d3753c29e44b964c0ff424d2ea8d5fdee6
static void add_rpc_devices(std::string servers) {
auto rpc_servers = string_split<std::string>(servers, ',');
if (rpc_servers.empty()) {
throw std::invalid_argument("no RPC servers specified");
}
ggml_backend_reg_t rpc_reg = ggml_backend_reg_by_name("RPC");
if (!rpc_reg) {
throw std::invalid_argument("failed to find RPC backend");
}
typedef ggml_backend_dev_t (*ggml_backend_rpc_add_device_t)(const char * endpoint);
ggml_backend_rpc_add_device_t ggml_backend_rpc_add_device_fn = (ggml_backend_rpc_add_device_t) ggml_backend_reg_get_proc_address(rpc_reg, "ggml_backend_rpc_add_device");
if (!ggml_backend_rpc_add_device_fn) {
throw std::invalid_argument("failed to find RPC device add function");
}
for (const auto & server : rpc_servers) {
ggml_backend_dev_t dev = ggml_backend_rpc_add_device_fn(server.c_str());
if (dev) {
ggml_backend_device_register(dev);
} else {
throw std::invalid_argument("failed to register RPC device");
}
}
}
// convert a vector of completion_token_output to json
static json probs_vector_to_json(const llama_context *ctx, const std::vector<completion_token_output> &probs)
{
@@ -2282,7 +2308,7 @@ static void params_parse(const backend::ModelOptions* request,
const char *llama_grpc_servers = std::getenv("LLAMACPP_GRPC_SERVERS");
if (llama_grpc_servers != NULL) {
params.rpc_servers = std::string(llama_grpc_servers);
add_rpc_devices(std::string(llama_grpc_servers));
}
// TODO: Add yarn
@@ -2408,6 +2434,13 @@ public:
int32_t tokens_evaluated = result.result_json.value("tokens_evaluated", 0);
reply.set_prompt_tokens(tokens_evaluated);
if (result.result_json.contains("timings")) {
double timing_prompt_processing = result.result_json.at("timings").value("prompt_ms", 0.0);
reply.set_timing_prompt_processing(timing_prompt_processing);
double timing_token_generation = result.result_json.at("timings").value("predicted_ms", 0.0);
reply.set_timing_token_generation(timing_token_generation);
}
// Log Request Correlation Id
LOG_VERBOSE("correlation:", {
{ "id", data["correlation_id"] }
@@ -2448,6 +2481,13 @@ public:
reply->set_prompt_tokens(tokens_evaluated);
reply->set_tokens(tokens_predicted);
reply->set_message(completion_text);
if (result.result_json.contains("timings")) {
double timing_prompt_processing = result.result_json.at("timings").value("prompt_ms", 0.0);
reply->set_timing_prompt_processing(timing_prompt_processing);
double timing_token_generation = result.result_json.at("timings").value("predicted_ms", 0.0);
reply->set_timing_token_generation(timing_token_generation);
}
}
else
{

View File

@@ -1,21 +0,0 @@
package main
// Note: this is started internally by LocalAI and a server is allocated for each model
import (
"flag"
grpc "github.com/mudler/LocalAI/pkg/grpc"
)
var (
addr = flag.String("addr", "localhost:50051", "the address to connect to")
)
func main() {
flag.Parse()
if err := grpc.StartServer(*addr, &Image{}); err != nil {
panic(err)
}
}

View File

@@ -1,32 +0,0 @@
package main
// This is a wrapper to statisfy the GRPC service interface
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
import (
"github.com/mudler/LocalAI/pkg/grpc/base"
pb "github.com/mudler/LocalAI/pkg/grpc/proto"
"github.com/mudler/LocalAI/pkg/tinydream"
)
type Image struct {
base.SingleThread
tinydream *tinydream.TinyDream
}
func (image *Image) Load(opts *pb.ModelOptions) error {
var err error
// Note: the Model here is a path to a directory containing the model files
image.tinydream, err = tinydream.New(opts.ModelFile)
return err
}
func (image *Image) GenerateImage(opts *pb.GenerateImageRequest) error {
return image.tinydream.GenerateImage(
int(opts.Height),
int(opts.Width),
int(opts.Step),
int(opts.Seed),
opts.PositivePrompt,
opts.NegativePrompt,
opts.Dst)
}

View File

@@ -4,101 +4,36 @@ package main
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
import (
"container/heap"
"context"
"fmt"
"math"
"slices"
"runtime"
"github.com/mudler/LocalAI/pkg/grpc/base"
pb "github.com/mudler/LocalAI/pkg/grpc/proto"
chromem "github.com/philippgille/chromem-go"
"github.com/rs/zerolog/log"
)
type Store struct {
base.SingleThread
// The sorted keys
keys [][]float32
// The sorted values
values [][]byte
// If for every K it holds that ||k||^2 = 1, then we can use the normalized distance functions
// TODO: Should we normalize incoming keys if they are not instead?
keysAreNormalized bool
// The first key decides the length of the keys
keyLen int
}
// TODO: Only used for sorting using Go's builtin implementation. The interfaces are columnar because
// that's theoretically best for memory layout and cache locality, but this isn't optimized yet.
type Pair struct {
Key []float32
Value []byte
*chromem.DB
*chromem.Collection
}
func NewStore() *Store {
return &Store{
keys: make([][]float32, 0),
values: make([][]byte, 0),
keysAreNormalized: true,
keyLen: -1,
}
}
func compareSlices(k1, k2 []float32) int {
assert(len(k1) == len(k2), fmt.Sprintf("compareSlices: len(k1) = %d, len(k2) = %d", len(k1), len(k2)))
return slices.Compare(k1, k2)
}
func hasKey(unsortedSlice [][]float32, target []float32) bool {
return slices.ContainsFunc(unsortedSlice, func(k []float32) bool {
return compareSlices(k, target) == 0
})
}
func findInSortedSlice(sortedSlice [][]float32, target []float32) (int, bool) {
return slices.BinarySearchFunc(sortedSlice, target, func(k, t []float32) int {
return compareSlices(k, t)
})
}
func isSortedPairs(kvs []Pair) bool {
for i := 1; i < len(kvs); i++ {
if compareSlices(kvs[i-1].Key, kvs[i].Key) > 0 {
return false
}
}
return true
}
func isSortedKeys(keys [][]float32) bool {
for i := 1; i < len(keys); i++ {
if compareSlices(keys[i-1], keys[i]) > 0 {
return false
}
}
return true
}
func sortIntoKeySlicese(keys []*pb.StoresKey) [][]float32 {
ks := make([][]float32, len(keys))
for i, k := range keys {
ks[i] = k.Floats
}
slices.SortFunc(ks, compareSlices)
assert(len(ks) == len(keys), fmt.Sprintf("len(ks) = %d, len(keys) = %d", len(ks), len(keys)))
assert(isSortedKeys(ks), "keys are not sorted")
return ks
return &Store{}
}
func (s *Store) Load(opts *pb.ModelOptions) error {
db := chromem.NewDB()
collection, err := db.CreateCollection("all-documents", nil, nil)
if err != nil {
return err
}
s.DB = db
s.Collection = collection
return nil
}
@@ -111,156 +46,25 @@ func (s *Store) StoresSet(opts *pb.StoresSetOptions) error {
if len(opts.Keys) != len(opts.Values) {
return fmt.Errorf("len(keys) = %d, len(values) = %d", len(opts.Keys), len(opts.Values))
}
if s.keyLen == -1 {
s.keyLen = len(opts.Keys[0].Floats)
} else {
if len(opts.Keys[0].Floats) != s.keyLen {
return fmt.Errorf("Try to add key with length %d when existing length is %d", len(opts.Keys[0].Floats), s.keyLen)
}
}
kvs := make([]Pair, len(opts.Keys))
docs := []chromem.Document{}
for i, k := range opts.Keys {
if s.keysAreNormalized && !isNormalized(k.Floats) {
s.keysAreNormalized = false
var sample []float32
if len(s.keys) > 5 {
sample = k.Floats[:5]
} else {
sample = k.Floats
}
log.Debug().Msgf("Key is not normalized: %v", sample)
}
kvs[i] = Pair{
Key: k.Floats,
Value: opts.Values[i].Bytes,
}
docs = append(docs, chromem.Document{
ID: k.String(),
Content: opts.Values[i].String(),
})
}
slices.SortFunc(kvs, func(a, b Pair) int {
return compareSlices(a.Key, b.Key)
})
assert(len(kvs) == len(opts.Keys), fmt.Sprintf("len(kvs) = %d, len(opts.Keys) = %d", len(kvs), len(opts.Keys)))
assert(isSortedPairs(kvs), "keys are not sorted")
l := len(kvs) + len(s.keys)
merge_ks := make([][]float32, 0, l)
merge_vs := make([][]byte, 0, l)
i, j := 0, 0
for {
if i+j >= l {
break
}
if i >= len(kvs) {
merge_ks = append(merge_ks, s.keys[j])
merge_vs = append(merge_vs, s.values[j])
j++
continue
}
if j >= len(s.keys) {
merge_ks = append(merge_ks, kvs[i].Key)
merge_vs = append(merge_vs, kvs[i].Value)
i++
continue
}
c := compareSlices(kvs[i].Key, s.keys[j])
if c < 0 {
merge_ks = append(merge_ks, kvs[i].Key)
merge_vs = append(merge_vs, kvs[i].Value)
i++
} else if c > 0 {
merge_ks = append(merge_ks, s.keys[j])
merge_vs = append(merge_vs, s.values[j])
j++
} else {
merge_ks = append(merge_ks, kvs[i].Key)
merge_vs = append(merge_vs, kvs[i].Value)
i++
j++
}
}
assert(len(merge_ks) == l, fmt.Sprintf("len(merge_ks) = %d, l = %d", len(merge_ks), l))
assert(isSortedKeys(merge_ks), "merge keys are not sorted")
s.keys = merge_ks
s.values = merge_vs
return nil
return s.Collection.AddDocuments(context.Background(), docs, runtime.NumCPU())
}
func (s *Store) StoresDelete(opts *pb.StoresDeleteOptions) error {
if len(opts.Keys) == 0 {
return fmt.Errorf("no keys to delete")
func (s *Store) StoresReset(opts *pb.StoresResetOptions) error {
err := s.DB.DeleteCollection("all-documents")
if err != nil {
return err
}
if len(opts.Keys) == 0 {
return fmt.Errorf("no keys to add")
}
if s.keyLen == -1 {
s.keyLen = len(opts.Keys[0].Floats)
} else {
if len(opts.Keys[0].Floats) != s.keyLen {
return fmt.Errorf("Trying to delete key with length %d when existing length is %d", len(opts.Keys[0].Floats), s.keyLen)
}
}
ks := sortIntoKeySlicese(opts.Keys)
l := len(s.keys) - len(ks)
merge_ks := make([][]float32, 0, l)
merge_vs := make([][]byte, 0, l)
tail_ks := s.keys
tail_vs := s.values
for _, k := range ks {
j, found := findInSortedSlice(tail_ks, k)
if found {
merge_ks = append(merge_ks, tail_ks[:j]...)
merge_vs = append(merge_vs, tail_vs[:j]...)
tail_ks = tail_ks[j+1:]
tail_vs = tail_vs[j+1:]
} else {
assert(!hasKey(s.keys, k), fmt.Sprintf("Key exists, but was not found: t=%d, %v", len(tail_ks), k))
}
log.Debug().Msgf("Delete: found = %v, t = %d, j = %d, len(merge_ks) = %d, len(merge_vs) = %d", found, len(tail_ks), j, len(merge_ks), len(merge_vs))
}
merge_ks = append(merge_ks, tail_ks...)
merge_vs = append(merge_vs, tail_vs...)
assert(len(merge_ks) <= len(s.keys), fmt.Sprintf("len(merge_ks) = %d, len(s.keys) = %d", len(merge_ks), len(s.keys)))
s.keys = merge_ks
s.values = merge_vs
assert(len(s.keys) >= l, fmt.Sprintf("len(s.keys) = %d, l = %d", len(s.keys), l))
assert(isSortedKeys(s.keys), "keys are not sorted")
assert(func() bool {
for _, k := range ks {
if _, found := findInSortedSlice(s.keys, k); found {
return false
}
}
return true
}(), "Keys to delete still present")
if len(s.keys) != l {
log.Debug().Msgf("Delete: Some keys not found: len(s.keys) = %d, l = %d", len(s.keys), l)
}
return nil
s.Collection, err = s.CreateCollection("all-documents", nil, nil)
return err
}
func (s *Store) StoresGet(opts *pb.StoresGetOptions) (pb.StoresGetResult, error) {

View File

@@ -0,0 +1,20 @@
.DEFAULT_GOAL := install
.PHONY: install
install:
bash install.sh
$(MAKE) protogen
.PHONY: protogen
protogen: backend_pb2_grpc.py backend_pb2.py
.PHONY: protogen-clean
protogen-clean:
$(RM) backend_pb2_grpc.py backend_pb2.py
backend_pb2_grpc.py backend_pb2.py:
bash protogen.sh
.PHONY: clean
clean: protogen-clean
rm -rf venv __pycache__

View File

@@ -1,6 +1,6 @@
#!/usr/bin/env python3
"""
Extra gRPC server for HuggingFace SentenceTransformer models.
Extra gRPC server for Kokoro models.
"""
from concurrent import futures
@@ -8,15 +8,17 @@ import argparse
import signal
import sys
import os
import time
import backend_pb2
import backend_pb2_grpc
import soundfile as sf
import grpc
from sentence_transformers import SentenceTransformer
from models import build_model
from kokoro import generate
import torch
SAMPLE_RATE = 22050
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
# If MAX_WORKERS are specified in the environment use it, otherwise default to 1
@@ -55,42 +57,57 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
"""
model_name = request.Model
try:
self.model = SentenceTransformer(model_name, trust_remote_code=request.TrustRemoteCode)
device = "cuda:0" if torch.cuda.is_available() else "cpu"
self.MODEL = build_model(request.ModelFile, device)
options = request.Options
# Find the voice from the options, options are a list of strings in this form optname:optvalue:
VOICE_NAME = None
for opt in options:
if opt.startswith("voice:"):
VOICE_NAME = opt.split(":")[1]
break
if VOICE_NAME is None:
return backend_pb2.Result(success=False, message=f"No voice specified in options")
MODELPATH = request.ModelPath
# If voice name contains a plus, split it and load the two models and combine them
if "+" in VOICE_NAME:
voice1, voice2 = VOICE_NAME.split("+")
voice1 = torch.load(f'{MODELPATH}/{voice1}.pt', weights_only=True).to(device)
voice2 = torch.load(f'{MODELPATH}/{voice2}.pt', weights_only=True).to(device)
self.VOICEPACK = torch.mean(torch.stack([voice1, voice2]), dim=0)
else:
self.VOICEPACK = torch.load(f'{MODELPATH}/{VOICE_NAME}.pt', weights_only=True).to(device)
self.VOICE_NAME = VOICE_NAME
print(f'Loaded voice: {VOICE_NAME}')
except Exception as err:
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
# Implement your logic here for the LoadModel service
# Replace this with your desired response
return backend_pb2.Result(message="Model loaded successfully", success=True)
def Embedding(self, request, context):
"""
A gRPC method that calculates embeddings for a given sentence.
Args:
request: An EmbeddingRequest object that contains the request parameters.
context: A grpc.ServicerContext object that provides information about the RPC.
Returns:
An EmbeddingResult object that contains the calculated embeddings.
"""
# Implement your logic here for the Embedding service
# Replace this with your desired response
print("Calculated embeddings for: " + request.Embeddings, file=sys.stderr)
sentence_embeddings = self.model.encode(request.Embeddings)
return backend_pb2.EmbeddingResult(embeddings=sentence_embeddings)
def TTS(self, request, context):
model_name = request.model
if model_name == "":
return backend_pb2.Result(success=False, message="request.model is required")
try:
audio, out_ps = generate(self.MODEL, request.text, self.VOICEPACK, lang=self.VOICE_NAME)
print(out_ps)
sf.write(request.dst, audio, SAMPLE_RATE)
except Exception as err:
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
return backend_pb2.Result(success=True)
def serve(address):
server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS))
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
server.add_insecure_port(address)
server.start()
print("Server started. Listening on: " + address, file=sys.stderr)
print("[Kokoro] Server started. Listening on: " + address, file=sys.stderr)
# Define the signal handler function
def signal_handler(sig, frame):
print("Received termination signal. Shutting down...")
print("[Kokoro] Received termination signal. Shutting down...")
server.stop(0)
sys.exit(0)
@@ -110,5 +127,5 @@ if __name__ == "__main__":
"--addr", default="localhost:50051", help="The address to bind the server to."
)
args = parser.parse_args()
print(f"[Kokoro] startup: {args}", file=sys.stderr)
serve(args.addr)

View File

@@ -0,0 +1,524 @@
# https://huggingface.co/hexgrad/Kokoro-82M/blob/main/istftnet.py
# https://github.com/yl4579/StyleTTS2/blob/main/Modules/istftnet.py
from scipy.signal import get_window
from torch.nn import Conv1d, ConvTranspose1d
from torch.nn.utils import weight_norm, remove_weight_norm
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
# https://github.com/yl4579/StyleTTS2/blob/main/Modules/utils.py
def init_weights(m, mean=0.0, std=0.01):
classname = m.__class__.__name__
if classname.find("Conv") != -1:
m.weight.data.normal_(mean, std)
def get_padding(kernel_size, dilation=1):
return int((kernel_size*dilation - dilation)/2)
LRELU_SLOPE = 0.1
class AdaIN1d(nn.Module):
def __init__(self, style_dim, num_features):
super().__init__()
self.norm = nn.InstanceNorm1d(num_features, affine=False)
self.fc = nn.Linear(style_dim, num_features*2)
def forward(self, x, s):
h = self.fc(s)
h = h.view(h.size(0), h.size(1), 1)
gamma, beta = torch.chunk(h, chunks=2, dim=1)
return (1 + gamma) * self.norm(x) + beta
class AdaINResBlock1(torch.nn.Module):
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5), style_dim=64):
super(AdaINResBlock1, self).__init__()
self.convs1 = nn.ModuleList([
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
padding=get_padding(kernel_size, dilation[0]))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
padding=get_padding(kernel_size, dilation[1]))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
padding=get_padding(kernel_size, dilation[2])))
])
self.convs1.apply(init_weights)
self.convs2 = nn.ModuleList([
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
padding=get_padding(kernel_size, 1))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
padding=get_padding(kernel_size, 1))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
padding=get_padding(kernel_size, 1)))
])
self.convs2.apply(init_weights)
self.adain1 = nn.ModuleList([
AdaIN1d(style_dim, channels),
AdaIN1d(style_dim, channels),
AdaIN1d(style_dim, channels),
])
self.adain2 = nn.ModuleList([
AdaIN1d(style_dim, channels),
AdaIN1d(style_dim, channels),
AdaIN1d(style_dim, channels),
])
self.alpha1 = nn.ParameterList([nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs1))])
self.alpha2 = nn.ParameterList([nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs2))])
def forward(self, x, s):
for c1, c2, n1, n2, a1, a2 in zip(self.convs1, self.convs2, self.adain1, self.adain2, self.alpha1, self.alpha2):
xt = n1(x, s)
xt = xt + (1 / a1) * (torch.sin(a1 * xt) ** 2) # Snake1D
xt = c1(xt)
xt = n2(xt, s)
xt = xt + (1 / a2) * (torch.sin(a2 * xt) ** 2) # Snake1D
xt = c2(xt)
x = xt + x
return x
def remove_weight_norm(self):
for l in self.convs1:
remove_weight_norm(l)
for l in self.convs2:
remove_weight_norm(l)
class TorchSTFT(torch.nn.Module):
def __init__(self, filter_length=800, hop_length=200, win_length=800, window='hann'):
super().__init__()
self.filter_length = filter_length
self.hop_length = hop_length
self.win_length = win_length
self.window = torch.from_numpy(get_window(window, win_length, fftbins=True).astype(np.float32))
def transform(self, input_data):
forward_transform = torch.stft(
input_data,
self.filter_length, self.hop_length, self.win_length, window=self.window.to(input_data.device),
return_complex=True)
return torch.abs(forward_transform), torch.angle(forward_transform)
def inverse(self, magnitude, phase):
inverse_transform = torch.istft(
magnitude * torch.exp(phase * 1j),
self.filter_length, self.hop_length, self.win_length, window=self.window.to(magnitude.device))
return inverse_transform.unsqueeze(-2) # unsqueeze to stay consistent with conv_transpose1d implementation
def forward(self, input_data):
self.magnitude, self.phase = self.transform(input_data)
reconstruction = self.inverse(self.magnitude, self.phase)
return reconstruction
class SineGen(torch.nn.Module):
""" Definition of sine generator
SineGen(samp_rate, harmonic_num = 0,
sine_amp = 0.1, noise_std = 0.003,
voiced_threshold = 0,
flag_for_pulse=False)
samp_rate: sampling rate in Hz
harmonic_num: number of harmonic overtones (default 0)
sine_amp: amplitude of sine-wavefrom (default 0.1)
noise_std: std of Gaussian noise (default 0.003)
voiced_thoreshold: F0 threshold for U/V classification (default 0)
flag_for_pulse: this SinGen is used inside PulseGen (default False)
Note: when flag_for_pulse is True, the first time step of a voiced
segment is always sin(np.pi) or cos(0)
"""
def __init__(self, samp_rate, upsample_scale, harmonic_num=0,
sine_amp=0.1, noise_std=0.003,
voiced_threshold=0,
flag_for_pulse=False):
super(SineGen, self).__init__()
self.sine_amp = sine_amp
self.noise_std = noise_std
self.harmonic_num = harmonic_num
self.dim = self.harmonic_num + 1
self.sampling_rate = samp_rate
self.voiced_threshold = voiced_threshold
self.flag_for_pulse = flag_for_pulse
self.upsample_scale = upsample_scale
def _f02uv(self, f0):
# generate uv signal
uv = (f0 > self.voiced_threshold).type(torch.float32)
return uv
def _f02sine(self, f0_values):
""" f0_values: (batchsize, length, dim)
where dim indicates fundamental tone and overtones
"""
# convert to F0 in rad. The interger part n can be ignored
# because 2 * np.pi * n doesn't affect phase
rad_values = (f0_values / self.sampling_rate) % 1
# initial phase noise (no noise for fundamental component)
rand_ini = torch.rand(f0_values.shape[0], f0_values.shape[2], \
device=f0_values.device)
rand_ini[:, 0] = 0
rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
# instantanouse phase sine[t] = sin(2*pi \sum_i=1 ^{t} rad)
if not self.flag_for_pulse:
# # for normal case
# # To prevent torch.cumsum numerical overflow,
# # it is necessary to add -1 whenever \sum_k=1^n rad_value_k > 1.
# # Buffer tmp_over_one_idx indicates the time step to add -1.
# # This will not change F0 of sine because (x-1) * 2*pi = x * 2*pi
# tmp_over_one = torch.cumsum(rad_values, 1) % 1
# tmp_over_one_idx = (padDiff(tmp_over_one)) < 0
# cumsum_shift = torch.zeros_like(rad_values)
# cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
# phase = torch.cumsum(rad_values, dim=1) * 2 * np.pi
rad_values = torch.nn.functional.interpolate(rad_values.transpose(1, 2),
scale_factor=1/self.upsample_scale,
mode="linear").transpose(1, 2)
# tmp_over_one = torch.cumsum(rad_values, 1) % 1
# tmp_over_one_idx = (padDiff(tmp_over_one)) < 0
# cumsum_shift = torch.zeros_like(rad_values)
# cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
phase = torch.cumsum(rad_values, dim=1) * 2 * np.pi
phase = torch.nn.functional.interpolate(phase.transpose(1, 2) * self.upsample_scale,
scale_factor=self.upsample_scale, mode="linear").transpose(1, 2)
sines = torch.sin(phase)
else:
# If necessary, make sure that the first time step of every
# voiced segments is sin(pi) or cos(0)
# This is used for pulse-train generation
# identify the last time step in unvoiced segments
uv = self._f02uv(f0_values)
uv_1 = torch.roll(uv, shifts=-1, dims=1)
uv_1[:, -1, :] = 1
u_loc = (uv < 1) * (uv_1 > 0)
# get the instantanouse phase
tmp_cumsum = torch.cumsum(rad_values, dim=1)
# different batch needs to be processed differently
for idx in range(f0_values.shape[0]):
temp_sum = tmp_cumsum[idx, u_loc[idx, :, 0], :]
temp_sum[1:, :] = temp_sum[1:, :] - temp_sum[0:-1, :]
# stores the accumulation of i.phase within
# each voiced segments
tmp_cumsum[idx, :, :] = 0
tmp_cumsum[idx, u_loc[idx, :, 0], :] = temp_sum
# rad_values - tmp_cumsum: remove the accumulation of i.phase
# within the previous voiced segment.
i_phase = torch.cumsum(rad_values - tmp_cumsum, dim=1)
# get the sines
sines = torch.cos(i_phase * 2 * np.pi)
return sines
def forward(self, f0):
""" sine_tensor, uv = forward(f0)
input F0: tensor(batchsize=1, length, dim=1)
f0 for unvoiced steps should be 0
output sine_tensor: tensor(batchsize=1, length, dim)
output uv: tensor(batchsize=1, length, 1)
"""
f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim,
device=f0.device)
# fundamental component
fn = torch.multiply(f0, torch.FloatTensor([[range(1, self.harmonic_num + 2)]]).to(f0.device))
# generate sine waveforms
sine_waves = self._f02sine(fn) * self.sine_amp
# generate uv signal
# uv = torch.ones(f0.shape)
# uv = uv * (f0 > self.voiced_threshold)
uv = self._f02uv(f0)
# noise: for unvoiced should be similar to sine_amp
# std = self.sine_amp/3 -> max value ~ self.sine_amp
# . for voiced regions is self.noise_std
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
noise = noise_amp * torch.randn_like(sine_waves)
# first: set the unvoiced part to 0 by uv
# then: additive noise
sine_waves = sine_waves * uv + noise
return sine_waves, uv, noise
class SourceModuleHnNSF(torch.nn.Module):
""" SourceModule for hn-nsf
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
add_noise_std=0.003, voiced_threshod=0)
sampling_rate: sampling_rate in Hz
harmonic_num: number of harmonic above F0 (default: 0)
sine_amp: amplitude of sine source signal (default: 0.1)
add_noise_std: std of additive Gaussian noise (default: 0.003)
note that amplitude of noise in unvoiced is decided
by sine_amp
voiced_threshold: threhold to set U/V given F0 (default: 0)
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
F0_sampled (batchsize, length, 1)
Sine_source (batchsize, length, 1)
noise_source (batchsize, length 1)
uv (batchsize, length, 1)
"""
def __init__(self, sampling_rate, upsample_scale, harmonic_num=0, sine_amp=0.1,
add_noise_std=0.003, voiced_threshod=0):
super(SourceModuleHnNSF, self).__init__()
self.sine_amp = sine_amp
self.noise_std = add_noise_std
# to produce sine waveforms
self.l_sin_gen = SineGen(sampling_rate, upsample_scale, harmonic_num,
sine_amp, add_noise_std, voiced_threshod)
# to merge source harmonics into a single excitation
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
self.l_tanh = torch.nn.Tanh()
def forward(self, x):
"""
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
F0_sampled (batchsize, length, 1)
Sine_source (batchsize, length, 1)
noise_source (batchsize, length 1)
"""
# source for harmonic branch
with torch.no_grad():
sine_wavs, uv, _ = self.l_sin_gen(x)
sine_merge = self.l_tanh(self.l_linear(sine_wavs))
# source for noise branch, in the same shape as uv
noise = torch.randn_like(uv) * self.sine_amp / 3
return sine_merge, noise, uv
def padDiff(x):
return F.pad(F.pad(x, (0,0,-1,1), 'constant', 0) - x, (0,0,0,-1), 'constant', 0)
class Generator(torch.nn.Module):
def __init__(self, style_dim, resblock_kernel_sizes, upsample_rates, upsample_initial_channel, resblock_dilation_sizes, upsample_kernel_sizes, gen_istft_n_fft, gen_istft_hop_size):
super(Generator, self).__init__()
self.num_kernels = len(resblock_kernel_sizes)
self.num_upsamples = len(upsample_rates)
resblock = AdaINResBlock1
self.m_source = SourceModuleHnNSF(
sampling_rate=24000,
upsample_scale=np.prod(upsample_rates) * gen_istft_hop_size,
harmonic_num=8, voiced_threshod=10)
self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates) * gen_istft_hop_size)
self.noise_convs = nn.ModuleList()
self.noise_res = nn.ModuleList()
self.ups = nn.ModuleList()
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
self.ups.append(weight_norm(
ConvTranspose1d(upsample_initial_channel//(2**i), upsample_initial_channel//(2**(i+1)),
k, u, padding=(k-u)//2)))
self.resblocks = nn.ModuleList()
for i in range(len(self.ups)):
ch = upsample_initial_channel//(2**(i+1))
for j, (k, d) in enumerate(zip(resblock_kernel_sizes,resblock_dilation_sizes)):
self.resblocks.append(resblock(ch, k, d, style_dim))
c_cur = upsample_initial_channel // (2 ** (i + 1))
if i + 1 < len(upsample_rates): #
stride_f0 = np.prod(upsample_rates[i + 1:])
self.noise_convs.append(Conv1d(
gen_istft_n_fft + 2, c_cur, kernel_size=stride_f0 * 2, stride=stride_f0, padding=(stride_f0+1) // 2))
self.noise_res.append(resblock(c_cur, 7, [1,3,5], style_dim))
else:
self.noise_convs.append(Conv1d(gen_istft_n_fft + 2, c_cur, kernel_size=1))
self.noise_res.append(resblock(c_cur, 11, [1,3,5], style_dim))
self.post_n_fft = gen_istft_n_fft
self.conv_post = weight_norm(Conv1d(ch, self.post_n_fft + 2, 7, 1, padding=3))
self.ups.apply(init_weights)
self.conv_post.apply(init_weights)
self.reflection_pad = torch.nn.ReflectionPad1d((1, 0))
self.stft = TorchSTFT(filter_length=gen_istft_n_fft, hop_length=gen_istft_hop_size, win_length=gen_istft_n_fft)
def forward(self, x, s, f0):
with torch.no_grad():
f0 = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t
har_source, noi_source, uv = self.m_source(f0)
har_source = har_source.transpose(1, 2).squeeze(1)
har_spec, har_phase = self.stft.transform(har_source)
har = torch.cat([har_spec, har_phase], dim=1)
for i in range(self.num_upsamples):
x = F.leaky_relu(x, LRELU_SLOPE)
x_source = self.noise_convs[i](har)
x_source = self.noise_res[i](x_source, s)
x = self.ups[i](x)
if i == self.num_upsamples - 1:
x = self.reflection_pad(x)
x = x + x_source
xs = None
for j in range(self.num_kernels):
if xs is None:
xs = self.resblocks[i*self.num_kernels+j](x, s)
else:
xs += self.resblocks[i*self.num_kernels+j](x, s)
x = xs / self.num_kernels
x = F.leaky_relu(x)
x = self.conv_post(x)
spec = torch.exp(x[:,:self.post_n_fft // 2 + 1, :])
phase = torch.sin(x[:, self.post_n_fft // 2 + 1:, :])
return self.stft.inverse(spec, phase)
def fw_phase(self, x, s):
for i in range(self.num_upsamples):
x = F.leaky_relu(x, LRELU_SLOPE)
x = self.ups[i](x)
xs = None
for j in range(self.num_kernels):
if xs is None:
xs = self.resblocks[i*self.num_kernels+j](x, s)
else:
xs += self.resblocks[i*self.num_kernels+j](x, s)
x = xs / self.num_kernels
x = F.leaky_relu(x)
x = self.reflection_pad(x)
x = self.conv_post(x)
spec = torch.exp(x[:,:self.post_n_fft // 2 + 1, :])
phase = torch.sin(x[:, self.post_n_fft // 2 + 1:, :])
return spec, phase
def remove_weight_norm(self):
print('Removing weight norm...')
for l in self.ups:
remove_weight_norm(l)
for l in self.resblocks:
l.remove_weight_norm()
remove_weight_norm(self.conv_pre)
remove_weight_norm(self.conv_post)
class AdainResBlk1d(nn.Module):
def __init__(self, dim_in, dim_out, style_dim=64, actv=nn.LeakyReLU(0.2),
upsample='none', dropout_p=0.0):
super().__init__()
self.actv = actv
self.upsample_type = upsample
self.upsample = UpSample1d(upsample)
self.learned_sc = dim_in != dim_out
self._build_weights(dim_in, dim_out, style_dim)
self.dropout = nn.Dropout(dropout_p)
if upsample == 'none':
self.pool = nn.Identity()
else:
self.pool = weight_norm(nn.ConvTranspose1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1, output_padding=1))
def _build_weights(self, dim_in, dim_out, style_dim):
self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1))
self.conv2 = weight_norm(nn.Conv1d(dim_out, dim_out, 3, 1, 1))
self.norm1 = AdaIN1d(style_dim, dim_in)
self.norm2 = AdaIN1d(style_dim, dim_out)
if self.learned_sc:
self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False))
def _shortcut(self, x):
x = self.upsample(x)
if self.learned_sc:
x = self.conv1x1(x)
return x
def _residual(self, x, s):
x = self.norm1(x, s)
x = self.actv(x)
x = self.pool(x)
x = self.conv1(self.dropout(x))
x = self.norm2(x, s)
x = self.actv(x)
x = self.conv2(self.dropout(x))
return x
def forward(self, x, s):
out = self._residual(x, s)
out = (out + self._shortcut(x)) / np.sqrt(2)
return out
class UpSample1d(nn.Module):
def __init__(self, layer_type):
super().__init__()
self.layer_type = layer_type
def forward(self, x):
if self.layer_type == 'none':
return x
else:
return F.interpolate(x, scale_factor=2, mode='nearest')
class Decoder(nn.Module):
def __init__(self, dim_in=512, F0_channel=512, style_dim=64, dim_out=80,
resblock_kernel_sizes = [3,7,11],
upsample_rates = [10, 6],
upsample_initial_channel=512,
resblock_dilation_sizes=[[1,3,5], [1,3,5], [1,3,5]],
upsample_kernel_sizes=[20, 12],
gen_istft_n_fft=20, gen_istft_hop_size=5):
super().__init__()
self.decode = nn.ModuleList()
self.encode = AdainResBlk1d(dim_in + 2, 1024, style_dim)
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 512, style_dim, upsample=True))
self.F0_conv = weight_norm(nn.Conv1d(1, 1, kernel_size=3, stride=2, groups=1, padding=1))
self.N_conv = weight_norm(nn.Conv1d(1, 1, kernel_size=3, stride=2, groups=1, padding=1))
self.asr_res = nn.Sequential(
weight_norm(nn.Conv1d(512, 64, kernel_size=1)),
)
self.generator = Generator(style_dim, resblock_kernel_sizes, upsample_rates,
upsample_initial_channel, resblock_dilation_sizes,
upsample_kernel_sizes, gen_istft_n_fft, gen_istft_hop_size)
def forward(self, asr, F0_curve, N, s):
F0 = self.F0_conv(F0_curve.unsqueeze(1))
N = self.N_conv(N.unsqueeze(1))
x = torch.cat([asr, F0, N], axis=1)
x = self.encode(x, s)
asr_res = self.asr_res(asr)
res = True
for block in self.decode:
if res:
x = torch.cat([x, asr_res, F0, N], axis=1)
x = block(x, s)
if block.upsample_type != "none":
res = False
x = self.generator(x, s, F0_curve)
return x

View File

@@ -0,0 +1,166 @@
# https://huggingface.co/hexgrad/Kokoro-82M/blob/main/kokoro.py
import phonemizer
import re
import torch
import numpy as np
def split_num(num):
num = num.group()
if '.' in num:
return num
elif ':' in num:
h, m = [int(n) for n in num.split(':')]
if m == 0:
return f"{h} o'clock"
elif m < 10:
return f'{h} oh {m}'
return f'{h} {m}'
year = int(num[:4])
if year < 1100 or year % 1000 < 10:
return num
left, right = num[:2], int(num[2:4])
s = 's' if num.endswith('s') else ''
if 100 <= year % 1000 <= 999:
if right == 0:
return f'{left} hundred{s}'
elif right < 10:
return f'{left} oh {right}{s}'
return f'{left} {right}{s}'
def flip_money(m):
m = m.group()
bill = 'dollar' if m[0] == '$' else 'pound'
if m[-1].isalpha():
return f'{m[1:]} {bill}s'
elif '.' not in m:
s = '' if m[1:] == '1' else 's'
return f'{m[1:]} {bill}{s}'
b, c = m[1:].split('.')
s = '' if b == '1' else 's'
c = int(c.ljust(2, '0'))
coins = f"cent{'' if c == 1 else 's'}" if m[0] == '$' else ('penny' if c == 1 else 'pence')
return f'{b} {bill}{s} and {c} {coins}'
def point_num(num):
a, b = num.group().split('.')
return ' point '.join([a, ' '.join(b)])
def normalize_text(text):
text = text.replace(chr(8216), "'").replace(chr(8217), "'")
text = text.replace('«', chr(8220)).replace('»', chr(8221))
text = text.replace(chr(8220), '"').replace(chr(8221), '"')
text = text.replace('(', '«').replace(')', '»')
for a, b in zip('、。!,:;?', ',.!,:;?'):
text = text.replace(a, b+' ')
text = re.sub(r'[^\S \n]', ' ', text)
text = re.sub(r' +', ' ', text)
text = re.sub(r'(?<=\n) +(?=\n)', '', text)
text = re.sub(r'\bD[Rr]\.(?= [A-Z])', 'Doctor', text)
text = re.sub(r'\b(?:Mr\.|MR\.(?= [A-Z]))', 'Mister', text)
text = re.sub(r'\b(?:Ms\.|MS\.(?= [A-Z]))', 'Miss', text)
text = re.sub(r'\b(?:Mrs\.|MRS\.(?= [A-Z]))', 'Mrs', text)
text = re.sub(r'\betc\.(?! [A-Z])', 'etc', text)
text = re.sub(r'(?i)\b(y)eah?\b', r"\1e'a", text)
text = re.sub(r'\d*\.\d+|\b\d{4}s?\b|(?<!:)\b(?:[1-9]|1[0-2]):[0-5]\d\b(?!:)', split_num, text)
text = re.sub(r'(?<=\d),(?=\d)', '', text)
text = re.sub(r'(?i)[$£]\d+(?:\.\d+)?(?: hundred| thousand| (?:[bm]|tr)illion)*\b|[$£]\d+\.\d\d?\b', flip_money, text)
text = re.sub(r'\d*\.\d+', point_num, text)
text = re.sub(r'(?<=\d)-(?=\d)', ' to ', text)
text = re.sub(r'(?<=\d)S', ' S', text)
text = re.sub(r"(?<=[BCDFGHJ-NP-TV-Z])'?s\b", "'S", text)
text = re.sub(r"(?<=X')S\b", 's', text)
text = re.sub(r'(?:[A-Za-z]\.){2,} [a-z]', lambda m: m.group().replace('.', '-'), text)
text = re.sub(r'(?i)(?<=[A-Z])\.(?=[A-Z])', '-', text)
return text.strip()
def get_vocab():
_pad = "$"
_punctuation = ';:,.!?¡¿—…"«»“” '
_letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'
_letters_ipa = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'"
symbols = [_pad] + list(_punctuation) + list(_letters) + list(_letters_ipa)
dicts = {}
for i in range(len((symbols))):
dicts[symbols[i]] = i
return dicts
VOCAB = get_vocab()
def tokenize(ps):
return [i for i in map(VOCAB.get, ps) if i is not None]
phonemizers = dict(
a=phonemizer.backend.EspeakBackend(language='en-us', preserve_punctuation=True, with_stress=True),
b=phonemizer.backend.EspeakBackend(language='en-gb', preserve_punctuation=True, with_stress=True),
)
def phonemize(text, lang, norm=True):
if norm:
text = normalize_text(text)
ps = phonemizers[lang].phonemize([text])
ps = ps[0] if ps else ''
# https://en.wiktionary.org/wiki/kokoro#English
ps = ps.replace('kəkˈoːɹoʊ', 'kˈoʊkəɹoʊ').replace('kəkˈɔːɹəʊ', 'kˈəʊkəɹəʊ')
ps = ps.replace('ʲ', 'j').replace('r', 'ɹ').replace('x', 'k').replace('ɬ', 'l')
ps = re.sub(r'(?<=[a-zɹː])(?=hˈʌndɹɪd)', ' ', ps)
ps = re.sub(r' z(?=[;:,.!?¡¿—…"«»“” ]|$)', 'z', ps)
if lang == 'a':
ps = re.sub(r'(?<=nˈaɪn)ti(?!ː)', 'di', ps)
ps = ''.join(filter(lambda p: p in VOCAB, ps))
return ps.strip()
def length_to_mask(lengths):
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
mask = torch.gt(mask+1, lengths.unsqueeze(1))
return mask
@torch.no_grad()
def forward(model, tokens, ref_s, speed):
device = ref_s.device
tokens = torch.LongTensor([[0, *tokens, 0]]).to(device)
input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device)
text_mask = length_to_mask(input_lengths).to(device)
bert_dur = model.bert(tokens, attention_mask=(~text_mask).int())
d_en = model.bert_encoder(bert_dur).transpose(-1, -2)
s = ref_s[:, 128:]
d = model.predictor.text_encoder(d_en, s, input_lengths, text_mask)
x, _ = model.predictor.lstm(d)
duration = model.predictor.duration_proj(x)
duration = torch.sigmoid(duration).sum(axis=-1) / speed
pred_dur = torch.round(duration).clamp(min=1).long()
pred_aln_trg = torch.zeros(input_lengths, pred_dur.sum().item())
c_frame = 0
for i in range(pred_aln_trg.size(0)):
pred_aln_trg[i, c_frame:c_frame + pred_dur[0,i].item()] = 1
c_frame += pred_dur[0,i].item()
en = d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device)
F0_pred, N_pred = model.predictor.F0Ntrain(en, s)
t_en = model.text_encoder(tokens, input_lengths, text_mask)
asr = t_en @ pred_aln_trg.unsqueeze(0).to(device)
return model.decoder(asr, F0_pred, N_pred, ref_s[:, :128]).squeeze().cpu().numpy()
def generate(model, text, voicepack, lang='a', speed=1, ps=None):
ps = ps or phonemize(text, lang)
tokens = tokenize(ps)
if not tokens:
return None
elif len(tokens) > 510:
tokens = tokens[:510]
print('Truncated to 510 tokens')
ref_s = voicepack[len(tokens)]
out = forward(model, tokens, ref_s, speed)
ps = ''.join(next(k for k, v in VOCAB.items() if i == v) for i in tokens)
return out, ps
def generate_full(model, text, voicepack, lang='a', speed=1, ps=None):
ps = ps or phonemize(text, lang)
tokens = tokenize(ps)
if not tokens:
return None
outs = []
loop_count = len(tokens)//510 + (1 if len(tokens) % 510 != 0 else 0)
for i in range(loop_count):
ref_s = voicepack[len(tokens[i*510:(i+1)*510])]
out = forward(model, tokens[i*510:(i+1)*510], ref_s, speed)
outs.append(out)
outs = np.concatenate(outs)
ps = ''.join(next(k for k, v in VOCAB.items() if i == v) for i in tokens)
return outs, ps

View File

@@ -0,0 +1,373 @@
# https://github.com/yl4579/StyleTTS2/blob/main/models.py
# https://huggingface.co/hexgrad/Kokoro-82M/blob/main/models.py
from istftnet import AdaIN1d, Decoder
from munch import Munch
from pathlib import Path
from plbert import load_plbert
from torch.nn.utils import weight_norm, spectral_norm
import json
import numpy as np
import os
import os.path as osp
import torch
import torch.nn as nn
import torch.nn.functional as F
class LinearNorm(torch.nn.Module):
def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'):
super(LinearNorm, self).__init__()
self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias)
torch.nn.init.xavier_uniform_(
self.linear_layer.weight,
gain=torch.nn.init.calculate_gain(w_init_gain))
def forward(self, x):
return self.linear_layer(x)
class LayerNorm(nn.Module):
def __init__(self, channels, eps=1e-5):
super().__init__()
self.channels = channels
self.eps = eps
self.gamma = nn.Parameter(torch.ones(channels))
self.beta = nn.Parameter(torch.zeros(channels))
def forward(self, x):
x = x.transpose(1, -1)
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
return x.transpose(1, -1)
class TextEncoder(nn.Module):
def __init__(self, channels, kernel_size, depth, n_symbols, actv=nn.LeakyReLU(0.2)):
super().__init__()
self.embedding = nn.Embedding(n_symbols, channels)
padding = (kernel_size - 1) // 2
self.cnn = nn.ModuleList()
for _ in range(depth):
self.cnn.append(nn.Sequential(
weight_norm(nn.Conv1d(channels, channels, kernel_size=kernel_size, padding=padding)),
LayerNorm(channels),
actv,
nn.Dropout(0.2),
))
# self.cnn = nn.Sequential(*self.cnn)
self.lstm = nn.LSTM(channels, channels//2, 1, batch_first=True, bidirectional=True)
def forward(self, x, input_lengths, m):
x = self.embedding(x) # [B, T, emb]
x = x.transpose(1, 2) # [B, emb, T]
m = m.to(input_lengths.device).unsqueeze(1)
x.masked_fill_(m, 0.0)
for c in self.cnn:
x = c(x)
x.masked_fill_(m, 0.0)
x = x.transpose(1, 2) # [B, T, chn]
input_lengths = input_lengths.cpu().numpy()
x = nn.utils.rnn.pack_padded_sequence(
x, input_lengths, batch_first=True, enforce_sorted=False)
self.lstm.flatten_parameters()
x, _ = self.lstm(x)
x, _ = nn.utils.rnn.pad_packed_sequence(
x, batch_first=True)
x = x.transpose(-1, -2)
x_pad = torch.zeros([x.shape[0], x.shape[1], m.shape[-1]])
x_pad[:, :, :x.shape[-1]] = x
x = x_pad.to(x.device)
x.masked_fill_(m, 0.0)
return x
def inference(self, x):
x = self.embedding(x)
x = x.transpose(1, 2)
x = self.cnn(x)
x = x.transpose(1, 2)
self.lstm.flatten_parameters()
x, _ = self.lstm(x)
return x
def length_to_mask(self, lengths):
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
mask = torch.gt(mask+1, lengths.unsqueeze(1))
return mask
class UpSample1d(nn.Module):
def __init__(self, layer_type):
super().__init__()
self.layer_type = layer_type
def forward(self, x):
if self.layer_type == 'none':
return x
else:
return F.interpolate(x, scale_factor=2, mode='nearest')
class AdainResBlk1d(nn.Module):
def __init__(self, dim_in, dim_out, style_dim=64, actv=nn.LeakyReLU(0.2),
upsample='none', dropout_p=0.0):
super().__init__()
self.actv = actv
self.upsample_type = upsample
self.upsample = UpSample1d(upsample)
self.learned_sc = dim_in != dim_out
self._build_weights(dim_in, dim_out, style_dim)
self.dropout = nn.Dropout(dropout_p)
if upsample == 'none':
self.pool = nn.Identity()
else:
self.pool = weight_norm(nn.ConvTranspose1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1, output_padding=1))
def _build_weights(self, dim_in, dim_out, style_dim):
self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1))
self.conv2 = weight_norm(nn.Conv1d(dim_out, dim_out, 3, 1, 1))
self.norm1 = AdaIN1d(style_dim, dim_in)
self.norm2 = AdaIN1d(style_dim, dim_out)
if self.learned_sc:
self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False))
def _shortcut(self, x):
x = self.upsample(x)
if self.learned_sc:
x = self.conv1x1(x)
return x
def _residual(self, x, s):
x = self.norm1(x, s)
x = self.actv(x)
x = self.pool(x)
x = self.conv1(self.dropout(x))
x = self.norm2(x, s)
x = self.actv(x)
x = self.conv2(self.dropout(x))
return x
def forward(self, x, s):
out = self._residual(x, s)
out = (out + self._shortcut(x)) / np.sqrt(2)
return out
class AdaLayerNorm(nn.Module):
def __init__(self, style_dim, channels, eps=1e-5):
super().__init__()
self.channels = channels
self.eps = eps
self.fc = nn.Linear(style_dim, channels*2)
def forward(self, x, s):
x = x.transpose(-1, -2)
x = x.transpose(1, -1)
h = self.fc(s)
h = h.view(h.size(0), h.size(1), 1)
gamma, beta = torch.chunk(h, chunks=2, dim=1)
gamma, beta = gamma.transpose(1, -1), beta.transpose(1, -1)
x = F.layer_norm(x, (self.channels,), eps=self.eps)
x = (1 + gamma) * x + beta
return x.transpose(1, -1).transpose(-1, -2)
class ProsodyPredictor(nn.Module):
def __init__(self, style_dim, d_hid, nlayers, max_dur=50, dropout=0.1):
super().__init__()
self.text_encoder = DurationEncoder(sty_dim=style_dim,
d_model=d_hid,
nlayers=nlayers,
dropout=dropout)
self.lstm = nn.LSTM(d_hid + style_dim, d_hid // 2, 1, batch_first=True, bidirectional=True)
self.duration_proj = LinearNorm(d_hid, max_dur)
self.shared = nn.LSTM(d_hid + style_dim, d_hid // 2, 1, batch_first=True, bidirectional=True)
self.F0 = nn.ModuleList()
self.F0.append(AdainResBlk1d(d_hid, d_hid, style_dim, dropout_p=dropout))
self.F0.append(AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True, dropout_p=dropout))
self.F0.append(AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim, dropout_p=dropout))
self.N = nn.ModuleList()
self.N.append(AdainResBlk1d(d_hid, d_hid, style_dim, dropout_p=dropout))
self.N.append(AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True, dropout_p=dropout))
self.N.append(AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim, dropout_p=dropout))
self.F0_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0)
self.N_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0)
def forward(self, texts, style, text_lengths, alignment, m):
d = self.text_encoder(texts, style, text_lengths, m)
batch_size = d.shape[0]
text_size = d.shape[1]
# predict duration
input_lengths = text_lengths.cpu().numpy()
x = nn.utils.rnn.pack_padded_sequence(
d, input_lengths, batch_first=True, enforce_sorted=False)
m = m.to(text_lengths.device).unsqueeze(1)
self.lstm.flatten_parameters()
x, _ = self.lstm(x)
x, _ = nn.utils.rnn.pad_packed_sequence(
x, batch_first=True)
x_pad = torch.zeros([x.shape[0], m.shape[-1], x.shape[-1]])
x_pad[:, :x.shape[1], :] = x
x = x_pad.to(x.device)
duration = self.duration_proj(nn.functional.dropout(x, 0.5, training=self.training))
en = (d.transpose(-1, -2) @ alignment)
return duration.squeeze(-1), en
def F0Ntrain(self, x, s):
x, _ = self.shared(x.transpose(-1, -2))
F0 = x.transpose(-1, -2)
for block in self.F0:
F0 = block(F0, s)
F0 = self.F0_proj(F0)
N = x.transpose(-1, -2)
for block in self.N:
N = block(N, s)
N = self.N_proj(N)
return F0.squeeze(1), N.squeeze(1)
def length_to_mask(self, lengths):
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
mask = torch.gt(mask+1, lengths.unsqueeze(1))
return mask
class DurationEncoder(nn.Module):
def __init__(self, sty_dim, d_model, nlayers, dropout=0.1):
super().__init__()
self.lstms = nn.ModuleList()
for _ in range(nlayers):
self.lstms.append(nn.LSTM(d_model + sty_dim,
d_model // 2,
num_layers=1,
batch_first=True,
bidirectional=True,
dropout=dropout))
self.lstms.append(AdaLayerNorm(sty_dim, d_model))
self.dropout = dropout
self.d_model = d_model
self.sty_dim = sty_dim
def forward(self, x, style, text_lengths, m):
masks = m.to(text_lengths.device)
x = x.permute(2, 0, 1)
s = style.expand(x.shape[0], x.shape[1], -1)
x = torch.cat([x, s], axis=-1)
x.masked_fill_(masks.unsqueeze(-1).transpose(0, 1), 0.0)
x = x.transpose(0, 1)
input_lengths = text_lengths.cpu().numpy()
x = x.transpose(-1, -2)
for block in self.lstms:
if isinstance(block, AdaLayerNorm):
x = block(x.transpose(-1, -2), style).transpose(-1, -2)
x = torch.cat([x, s.permute(1, -1, 0)], axis=1)
x.masked_fill_(masks.unsqueeze(-1).transpose(-1, -2), 0.0)
else:
x = x.transpose(-1, -2)
x = nn.utils.rnn.pack_padded_sequence(
x, input_lengths, batch_first=True, enforce_sorted=False)
block.flatten_parameters()
x, _ = block(x)
x, _ = nn.utils.rnn.pad_packed_sequence(
x, batch_first=True)
x = F.dropout(x, p=self.dropout, training=self.training)
x = x.transpose(-1, -2)
x_pad = torch.zeros([x.shape[0], x.shape[1], m.shape[-1]])
x_pad[:, :, :x.shape[-1]] = x
x = x_pad.to(x.device)
return x.transpose(-1, -2)
def inference(self, x, style):
x = self.embedding(x.transpose(-1, -2)) * np.sqrt(self.d_model)
style = style.expand(x.shape[0], x.shape[1], -1)
x = torch.cat([x, style], axis=-1)
src = self.pos_encoder(x)
output = self.transformer_encoder(src).transpose(0, 1)
return output
def length_to_mask(self, lengths):
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
mask = torch.gt(mask+1, lengths.unsqueeze(1))
return mask
# https://github.com/yl4579/StyleTTS2/blob/main/utils.py
def recursive_munch(d):
if isinstance(d, dict):
return Munch((k, recursive_munch(v)) for k, v in d.items())
elif isinstance(d, list):
return [recursive_munch(v) for v in d]
else:
return d
def build_model(path, device):
config = Path(__file__).parent / 'config.json'
assert config.exists(), f'Config path incorrect: config.json not found at {config}'
with open(config, 'r') as r:
args = recursive_munch(json.load(r))
assert args.decoder.type == 'istftnet', f'Unknown decoder type: {args.decoder.type}'
decoder = Decoder(dim_in=args.hidden_dim, style_dim=args.style_dim, dim_out=args.n_mels,
resblock_kernel_sizes = args.decoder.resblock_kernel_sizes,
upsample_rates = args.decoder.upsample_rates,
upsample_initial_channel=args.decoder.upsample_initial_channel,
resblock_dilation_sizes=args.decoder.resblock_dilation_sizes,
upsample_kernel_sizes=args.decoder.upsample_kernel_sizes,
gen_istft_n_fft=args.decoder.gen_istft_n_fft, gen_istft_hop_size=args.decoder.gen_istft_hop_size)
text_encoder = TextEncoder(channels=args.hidden_dim, kernel_size=5, depth=args.n_layer, n_symbols=args.n_token)
predictor = ProsodyPredictor(style_dim=args.style_dim, d_hid=args.hidden_dim, nlayers=args.n_layer, max_dur=args.max_dur, dropout=args.dropout)
bert = load_plbert()
bert_encoder = nn.Linear(bert.config.hidden_size, args.hidden_dim)
for parent in [bert, bert_encoder, predictor, decoder, text_encoder]:
for child in parent.children():
if isinstance(child, nn.RNNBase):
child.flatten_parameters()
model = Munch(
bert=bert.to(device).eval(),
bert_encoder=bert_encoder.to(device).eval(),
predictor=predictor.to(device).eval(),
decoder=decoder.to(device).eval(),
text_encoder=text_encoder.to(device).eval(),
)
for key, state_dict in torch.load(path, map_location='cpu', weights_only=True)['net'].items():
assert key in model, key
try:
model[key].load_state_dict(state_dict)
except:
state_dict = {k[7:]: v for k, v in state_dict.items()}
model[key].load_state_dict(state_dict, strict=False)
return model

View File

@@ -0,0 +1,16 @@
# https://huggingface.co/hexgrad/Kokoro-82M/blob/main/plbert.py
# https://github.com/yl4579/StyleTTS2/blob/main/Utils/PLBERT/util.py
from transformers import AlbertConfig, AlbertModel
class CustomAlbert(AlbertModel):
def forward(self, *args, **kwargs):
# Call the original forward method
outputs = super().forward(*args, **kwargs)
# Only return the last_hidden_state
return outputs.last_hidden_state
def load_plbert():
plbert_config = {'vocab_size': 178, 'hidden_size': 768, 'num_attention_heads': 12, 'intermediate_size': 2048, 'max_position_embeddings': 512, 'num_hidden_layers': 12, 'dropout': 0.1}
albert_base_configuration = AlbertConfig(**plbert_config)
bert = CustomAlbert(albert_base_configuration)
return bert

View File

@@ -0,0 +1,6 @@
#!/bin/bash
set -e
source $(dirname $0)/../common/libbackend.sh
python3 -m grpc_tools.protoc -I../.. --python_out=. --grpc_python_out=. backend.proto

View File

@@ -0,0 +1,2 @@
torch==2.4.1
transformers

View File

@@ -1,4 +1,3 @@
--extra-index-url https://download.pytorch.org/whl/cu118
accelerate
torch==2.4.1+cu118
torchaudio==2.4.1+cu118
transformers

View File

@@ -0,0 +1,2 @@
torch==2.4.1
transformers

View File

@@ -1,5 +1,3 @@
--extra-index-url https://download.pytorch.org/whl/rocm6.0
torch==2.4.1+rocm6.0
accelerate
sentence-transformers==3.3.1
transformers

View File

@@ -1,8 +1,5 @@
--extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
intel-extension-for-pytorch==2.3.110+xpu
transformers
oneccl_bind_pt==2.3.100+xpu
accelerate
torch==2.3.1+cxx11.abi
optimum[openvino]
setuptools
oneccl_bind_pt==2.3.100+xpu
transformers

View File

@@ -0,0 +1,7 @@
grpcio==1.69.0
protobuf
phonemizer
scipy
munch
setuptools
soundfile

View File

@@ -1,31 +0,0 @@
.PHONY: sentencetransformers
sentencetransformers: protogen
bash ./install.sh
.PHONY: run
run: protogen
@echo "Running sentencetransformers..."
bash run.sh
@echo "sentencetransformers run."
# It is not working well by using command line. It only6 works with IDE like VSCode.
.PHONY: test
test: protogen
@echo "Testing sentencetransformers..."
bash test.sh
@echo "sentencetransformers tested."
.PHONY: protogen
protogen: backend_pb2_grpc.py backend_pb2.py
.PHONY: protogen-clean
protogen-clean:
$(RM) backend_pb2_grpc.py backend_pb2.py
backend_pb2_grpc.py backend_pb2.py:
python3 -m grpc_tools.protoc -I../.. --python_out=. --grpc_python_out=. backend.proto
.PHONY: clean
clean: protogen-clean
rm -rf venv __pycache__

View File

@@ -1,5 +0,0 @@
# Creating a separate environment for the sentencetransformers project
```
make sentencetransformers
```

View File

@@ -1,6 +0,0 @@
torch==2.4.1
accelerate
transformers
bitsandbytes
sentence-transformers==3.3.1
transformers

View File

@@ -1,5 +0,0 @@
--extra-index-url https://download.pytorch.org/whl/cu118
torch==2.4.1+cu118
accelerate
sentence-transformers==3.3.1
transformers

View File

@@ -1,4 +0,0 @@
torch==2.4.1
accelerate
sentence-transformers==3.3.1
transformers

View File

@@ -1,9 +0,0 @@
--extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
intel-extension-for-pytorch==2.3.110+xpu
torch==2.3.1+cxx11.abi
oneccl_bind_pt==2.3.100+xpu
optimum[openvino]
setuptools
accelerate
sentence-transformers==3.3.1
transformers

View File

@@ -1,5 +0,0 @@
grpcio==1.69.0
protobuf
certifi
datasets
einops

View File

@@ -1,81 +0,0 @@
"""
A test script to test the gRPC service
"""
import unittest
import subprocess
import time
import backend_pb2
import backend_pb2_grpc
import grpc
class TestBackendServicer(unittest.TestCase):
"""
TestBackendServicer is the class that tests the gRPC service
"""
def setUp(self):
"""
This method sets up the gRPC service by starting the server
"""
self.service = subprocess.Popen(["python3", "backend.py", "--addr", "localhost:50051"])
time.sleep(10)
def tearDown(self) -> None:
"""
This method tears down the gRPC service by terminating the server
"""
self.service.kill()
self.service.wait()
def test_server_startup(self):
"""
This method tests if the server starts up successfully
"""
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.Health(backend_pb2.HealthMessage())
self.assertEqual(response.message, b'OK')
except Exception as err:
print(err)
self.fail("Server failed to start")
finally:
self.tearDown()
def test_load_model(self):
"""
This method tests if the model is loaded successfully
"""
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.LoadModel(backend_pb2.ModelOptions(Model="bert-base-nli-mean-tokens"))
self.assertTrue(response.success)
self.assertEqual(response.message, "Model loaded successfully")
except Exception as err:
print(err)
self.fail("LoadModel service failed")
finally:
self.tearDown()
def test_embedding(self):
"""
This method tests if the embeddings are generated successfully
"""
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.LoadModel(backend_pb2.ModelOptions(Model="bert-base-nli-mean-tokens"))
self.assertTrue(response.success)
embedding_request = backend_pb2.PredictOptions(Embeddings="This is a test sentence.")
embedding_response = stub.Embedding(embedding_request)
self.assertIsNotNone(embedding_response.embeddings)
except Exception as err:
print(err)
self.fail("Embedding service failed")
finally:
self.tearDown()

View File

@@ -1,29 +0,0 @@
.PHONY: transformers-musicgen
transformers-musicgen: protogen
bash install.sh
.PHONY: run
run: protogen
@echo "Running transformers..."
bash run.sh
@echo "transformers run."
.PHONY: test
test: protogen
@echo "Testing transformers..."
bash test.sh
@echo "transformers tested."
.PHONY: protogen
protogen: backend_pb2_grpc.py backend_pb2.py
.PHONY: protogen-clean
protogen-clean:
$(RM) backend_pb2_grpc.py backend_pb2.py
backend_pb2_grpc.py backend_pb2.py:
python3 -m grpc_tools.protoc -I../.. --python_out=. --grpc_python_out=. backend.proto
.PHONY: clean
clean: protogen-clean
rm -rf venv __pycache__

View File

@@ -1,5 +0,0 @@
# Creating a separate environment for the transformers project
```
make transformers-musicgen
```

View File

@@ -1,176 +0,0 @@
#!/usr/bin/env python3
"""
Extra gRPC server for MusicgenForConditionalGeneration models.
"""
from concurrent import futures
import argparse
import signal
import sys
import os
import time
import backend_pb2
import backend_pb2_grpc
import grpc
from scipy.io import wavfile
from transformers import AutoProcessor, MusicgenForConditionalGeneration
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
# If MAX_WORKERS are specified in the environment use it, otherwise default to 1
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1'))
# Implement the BackendServicer class with the service methods
class BackendServicer(backend_pb2_grpc.BackendServicer):
"""
A gRPC servicer for the backend service.
This class implements the gRPC methods for the backend service, including Health, LoadModel, and Embedding.
"""
def Health(self, request, context):
"""
A gRPC method that returns the health status of the backend service.
Args:
request: A HealthRequest object that contains the request parameters.
context: A grpc.ServicerContext object that provides information about the RPC.
Returns:
A Reply object that contains the health status of the backend service.
"""
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
def LoadModel(self, request, context):
"""
A gRPC method that loads a model into memory.
Args:
request: A LoadModelRequest object that contains the request parameters.
context: A grpc.ServicerContext object that provides information about the RPC.
Returns:
A Result object that contains the result of the LoadModel operation.
"""
model_name = request.Model
try:
self.processor = AutoProcessor.from_pretrained(model_name)
self.model = MusicgenForConditionalGeneration.from_pretrained(model_name)
except Exception as err:
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
return backend_pb2.Result(message="Model loaded successfully", success=True)
def SoundGeneration(self, request, context):
model_name = request.model
if model_name == "":
return backend_pb2.Result(success=False, message="request.model is required")
try:
self.processor = AutoProcessor.from_pretrained(model_name)
self.model = MusicgenForConditionalGeneration.from_pretrained(model_name)
inputs = None
if request.text == "":
inputs = self.model.get_unconditional_inputs(num_samples=1)
elif request.HasField('src'):
# TODO SECURITY CODE GOES HERE LOL
# WHO KNOWS IF THIS WORKS???
sample_rate, wsamples = wavfile.read('path_to_your_file.wav')
if request.HasField('src_divisor'):
wsamples = wsamples[: len(wsamples) // request.src_divisor]
inputs = self.processor(
audio=wsamples,
sampling_rate=sample_rate,
text=[request.text],
padding=True,
return_tensors="pt",
)
else:
inputs = self.processor(
text=[request.text],
padding=True,
return_tensors="pt",
)
tokens = 256
if request.HasField('duration'):
tokens = int(request.duration * 51.2) # 256 tokens = 5 seconds, therefore 51.2 tokens is one second
guidance = 3.0
if request.HasField('temperature'):
guidance = request.temperature
dosample = True
if request.HasField('sample'):
dosample = request.sample
audio_values = self.model.generate(**inputs, do_sample=dosample, guidance_scale=guidance, max_new_tokens=tokens)
print("[transformers-musicgen] SoundGeneration generated!", file=sys.stderr)
sampling_rate = self.model.config.audio_encoder.sampling_rate
wavfile.write(request.dst, rate=sampling_rate, data=audio_values[0, 0].numpy())
print("[transformers-musicgen] SoundGeneration saved to", request.dst, file=sys.stderr)
print("[transformers-musicgen] SoundGeneration for", file=sys.stderr)
print("[transformers-musicgen] SoundGeneration requested tokens", tokens, file=sys.stderr)
print(request, file=sys.stderr)
except Exception as err:
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
return backend_pb2.Result(success=True)
# The TTS endpoint is older, and provides fewer features, but exists for compatibility reasons
def TTS(self, request, context):
model_name = request.model
if model_name == "":
return backend_pb2.Result(success=False, message="request.model is required")
try:
self.processor = AutoProcessor.from_pretrained(model_name)
self.model = MusicgenForConditionalGeneration.from_pretrained(model_name)
inputs = self.processor(
text=[request.text],
padding=True,
return_tensors="pt",
)
tokens = 512 # No good place to set the "length" in TTS, so use 10s as a sane default
audio_values = self.model.generate(**inputs, max_new_tokens=tokens)
print("[transformers-musicgen] TTS generated!", file=sys.stderr)
sampling_rate = self.model.config.audio_encoder.sampling_rate
write_wav(request.dst, rate=sampling_rate, data=audio_values[0, 0].numpy())
print("[transformers-musicgen] TTS saved to", request.dst, file=sys.stderr)
print("[transformers-musicgen] TTS for", file=sys.stderr)
print(request, file=sys.stderr)
except Exception as err:
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
return backend_pb2.Result(success=True)
def serve(address):
server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS))
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
server.add_insecure_port(address)
server.start()
print("[transformers-musicgen] Server started. Listening on: " + address, file=sys.stderr)
# Define the signal handler function
def signal_handler(sig, frame):
print("[transformers-musicgen] Received termination signal. Shutting down...")
server.stop(0)
sys.exit(0)
# Set the signal handlers for SIGINT and SIGTERM
signal.signal(signal.SIGINT, signal_handler)
signal.signal(signal.SIGTERM, signal_handler)
try:
while True:
time.sleep(_ONE_DAY_IN_SECONDS)
except KeyboardInterrupt:
server.stop(0)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run the gRPC server.")
parser.add_argument(
"--addr", default="localhost:50051", help="The address to bind the server to."
)
args = parser.parse_args()
print(f"[transformers-musicgen] startup: {args}", file=sys.stderr)
serve(args.addr)

View File

@@ -1,14 +0,0 @@
#!/bin/bash
set -e
source $(dirname $0)/../common/libbackend.sh
# This is here because the Intel pip index is broken and returns 200 status codes for every package name, it just doesn't return any package links.
# This makes uv think that the package exists in the Intel pip index, and by default it stops looking at other pip indexes once it finds a match.
# We need uv to continue falling through to the pypi default index to find optimum[openvino] in the pypi index
# the --upgrade actually allows us to *downgrade* torch to the version provided in the Intel pip index
if [ "x${BUILD_PROFILE}" == "xintel" ]; then
EXTRA_PIP_INSTALL_FLAGS+=" --upgrade --index-strategy=unsafe-first-match"
fi
installRequirements

View File

@@ -1,3 +0,0 @@
transformers
accelerate
torch==2.4.1

View File

@@ -1,4 +0,0 @@
--extra-index-url https://download.pytorch.org/whl/cu118
transformers
accelerate
torch==2.4.1+cu118

View File

@@ -1,3 +0,0 @@
transformers
accelerate
torch==2.4.1

View File

@@ -1,4 +0,0 @@
--extra-index-url https://download.pytorch.org/whl/rocm6.0
transformers
accelerate
torch==2.4.1+rocm6.0

View File

@@ -1,4 +0,0 @@
grpcio==1.69.0
protobuf
scipy==1.14.0
certifi

View File

@@ -1,4 +0,0 @@
#!/bin/bash
source $(dirname $0)/../common/libbackend.sh
startBackend $@

View File

@@ -1,100 +0,0 @@
"""
A test script to test the gRPC service
"""
import unittest
import subprocess
import time
import backend_pb2
import backend_pb2_grpc
import grpc
class TestBackendServicer(unittest.TestCase):
"""
TestBackendServicer is the class that tests the gRPC service
"""
def setUp(self):
"""
This method sets up the gRPC service by starting the server
"""
self.service = subprocess.Popen(["python3", "backend.py", "--addr", "localhost:50051"])
time.sleep(10)
def tearDown(self) -> None:
"""
This method tears down the gRPC service by terminating the server
"""
self.service.terminate()
self.service.wait()
def test_server_startup(self):
"""
This method tests if the server starts up successfully
"""
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.Health(backend_pb2.HealthMessage())
self.assertEqual(response.message, b'OK')
except Exception as err:
print(err)
self.fail("Server failed to start")
finally:
self.tearDown()
def test_load_model(self):
"""
This method tests if the model is loaded successfully
"""
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.LoadModel(backend_pb2.ModelOptions(Model="facebook/musicgen-small"))
self.assertTrue(response.success)
self.assertEqual(response.message, "Model loaded successfully")
except Exception as err:
print(err)
self.fail("LoadModel service failed")
finally:
self.tearDown()
def test_tts(self):
"""
This method tests if TTS is generated successfully
"""
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.LoadModel(backend_pb2.ModelOptions(Model="facebook/musicgen-small"))
self.assertTrue(response.success)
tts_request = backend_pb2.TTSRequest(text="80s TV news production music hit for tonight's biggest story")
tts_response = stub.TTS(tts_request)
self.assertIsNotNone(tts_response)
except Exception as err:
print(err)
self.fail("TTS service failed")
finally:
self.tearDown()
def test_sound_generation(self):
"""
This method tests if SoundGeneration is generated successfully
"""
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.LoadModel(backend_pb2.ModelOptions(Model="facebook/musicgen-small"))
self.assertTrue(response.success)
sg_request = backend_pb2.SoundGenerationRequest(text="80s TV news production music hit for tonight's biggest story")
sg_response = stub.SoundGeneration(sg_request)
self.assertIsNotNone(sg_response)
except Exception as err:
print(err)
self.fail("SoundGeneration service failed")
finally:
self.tearDown()

View File

@@ -1,6 +0,0 @@
#!/bin/bash
set -e
source $(dirname $0)/../common/libbackend.sh
runUnittests

View File

@@ -22,6 +22,10 @@ import torch.cuda
XPU=os.environ.get("XPU", "0") == "1"
from transformers import AutoTokenizer, AutoModel, set_seed, TextIteratorStreamer, StoppingCriteriaList, StopStringCriteria
from transformers import AutoProcessor, MusicgenForConditionalGeneration
from scipy.io import wavfile
import outetts
from sentence_transformers import SentenceTransformer
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
@@ -85,10 +89,13 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
self.CUDA = torch.cuda.is_available()
self.OV=False
self.OuteTTS=False
self.SentenceTransformer = False
device_map="cpu"
quantization = None
autoTokenizer = True
if self.CUDA:
from transformers import BitsAndBytesConfig, AutoModelForCausalLM
@@ -191,6 +198,53 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
export=True,
device=device_map)
self.OV = True
elif request.Type == "MusicgenForConditionalGeneration":
autoTokenizer = False
self.processor = AutoProcessor.from_pretrained(model_name)
self.model = MusicgenForConditionalGeneration.from_pretrained(model_name)
elif request.Type == "OuteTTS":
autoTokenizer = False
options = request.Options
MODELNAME = "OuteAI/OuteTTS-0.3-1B"
TOKENIZER = "OuteAI/OuteTTS-0.3-1B"
VERSION = "0.3"
SPEAKER = "en_male_1"
for opt in options:
if opt.startswith("tokenizer:"):
TOKENIZER = opt.split(":")[1]
break
if opt.startswith("version:"):
VERSION = opt.split(":")[1]
break
if opt.startswith("speaker:"):
SPEAKER = opt.split(":")[1]
break
if model_name != "":
MODELNAME = model_name
# Configure the model
model_config = outetts.HFModelConfig_v2(
model_path=MODELNAME,
tokenizer_path=TOKENIZER
)
# Initialize the interface
self.interface = outetts.InterfaceHF(model_version=VERSION, cfg=model_config)
self.OuteTTS = True
self.interface.print_default_speakers()
if request.AudioPath:
if os.path.isabs(request.AudioPath):
self.AudioPath = request.AudioPath
else:
self.AudioPath = os.path.join(request.ModelPath, request.AudioPath)
self.speaker = self.interface.create_speaker(audio_path=self.AudioPath)
else:
self.speaker = self.interface.load_default_speaker(name=SPEAKER)
elif request.Type == "SentenceTransformer":
autoTokenizer = False
self.model = SentenceTransformer(model_name, trust_remote_code=request.TrustRemoteCode)
self.SentenceTransformer = True
else:
print("Automodel", file=sys.stderr)
self.model = AutoModel.from_pretrained(model_name,
@@ -201,19 +255,22 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
torch_dtype=compute)
if request.ContextSize > 0:
self.max_tokens = request.ContextSize
else:
elif hasattr(self.model, 'config') and hasattr(self.model.config, 'max_position_embeddings'):
self.max_tokens = self.model.config.max_position_embeddings
else:
self.max_tokens = 512
self.tokenizer = AutoTokenizer.from_pretrained(model_name, use_safetensors=True)
self.XPU = False
if autoTokenizer:
self.tokenizer = AutoTokenizer.from_pretrained(model_name, use_safetensors=True)
self.XPU = False
if XPU and self.OV == False:
self.XPU = True
try:
print("Optimizing model", model_name, "to XPU.", file=sys.stderr)
self.model = ipex.optimize_transformers(self.model, inplace=True, dtype=torch.float16, device="xpu")
except Exception as err:
print("Not using XPU:", err, file=sys.stderr)
if XPU and self.OV == False:
self.XPU = True
try:
print("Optimizing model", model_name, "to XPU.", file=sys.stderr)
self.model = ipex.optimize_transformers(self.model, inplace=True, dtype=torch.float16, device="xpu")
except Exception as err:
print("Not using XPU:", err, file=sys.stderr)
except Exception as err:
print("Error:", err, file=sys.stderr)
@@ -239,18 +296,26 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
max_length = 512
if request.Tokens != 0:
max_length = request.Tokens
encoded_input = self.tokenizer(request.Embeddings, padding=True, truncation=True, max_length=max_length, return_tensors="pt")
# Create word embeddings
if self.CUDA:
encoded_input = encoded_input.to("cuda")
embeds = None
with torch.no_grad():
model_output = self.model(**encoded_input)
if self.SentenceTransformer:
print("Calculated embeddings for: " + request.Embeddings, file=sys.stderr)
embeds = self.model.encode(request.Embeddings)
else:
encoded_input = self.tokenizer(request.Embeddings, padding=True, truncation=True, max_length=max_length, return_tensors="pt")
# Pool to get sentence embeddings; i.e. generate one 1024 vector for the entire sentence
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
return backend_pb2.EmbeddingResult(embeddings=sentence_embeddings[0])
# Create word embeddings
if self.CUDA:
encoded_input = encoded_input.to("cuda")
with torch.no_grad():
model_output = self.model(**encoded_input)
# Pool to get sentence embeddings; i.e. generate one 1024 vector for the entire sentence
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
embeds = sentence_embeddings[0]
return backend_pb2.EmbeddingResult(embeddings=embeds)
async def _predict(self, request, context, streaming=False):
set_seed(request.Seed)
@@ -380,6 +445,114 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
finally:
await iterations.aclose()
def SoundGeneration(self, request, context):
model_name = request.model
try:
if self.processor is None:
if model_name == "":
return backend_pb2.Result(success=False, message="request.model is required")
self.processor = AutoProcessor.from_pretrained(model_name)
if self.model is None:
if model_name == "":
return backend_pb2.Result(success=False, message="request.model is required")
self.model = MusicgenForConditionalGeneration.from_pretrained(model_name)
inputs = None
if request.text == "":
inputs = self.model.get_unconditional_inputs(num_samples=1)
elif request.HasField('src'):
# TODO SECURITY CODE GOES HERE LOL
# WHO KNOWS IF THIS WORKS???
sample_rate, wsamples = wavfile.read('path_to_your_file.wav')
if request.HasField('src_divisor'):
wsamples = wsamples[: len(wsamples) // request.src_divisor]
inputs = self.processor(
audio=wsamples,
sampling_rate=sample_rate,
text=[request.text],
padding=True,
return_tensors="pt",
)
else:
inputs = self.processor(
text=[request.text],
padding=True,
return_tensors="pt",
)
tokens = 256
if request.HasField('duration'):
tokens = int(request.duration * 51.2) # 256 tokens = 5 seconds, therefore 51.2 tokens is one second
guidance = 3.0
if request.HasField('temperature'):
guidance = request.temperature
dosample = True
if request.HasField('sample'):
dosample = request.sample
audio_values = self.model.generate(**inputs, do_sample=dosample, guidance_scale=guidance, max_new_tokens=tokens)
print("[transformers-musicgen] SoundGeneration generated!", file=sys.stderr)
sampling_rate = self.model.config.audio_encoder.sampling_rate
wavfile.write(request.dst, rate=sampling_rate, data=audio_values[0, 0].numpy())
print("[transformers-musicgen] SoundGeneration saved to", request.dst, file=sys.stderr)
print("[transformers-musicgen] SoundGeneration for", file=sys.stderr)
print("[transformers-musicgen] SoundGeneration requested tokens", tokens, file=sys.stderr)
print(request, file=sys.stderr)
except Exception as err:
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
return backend_pb2.Result(success=True)
def OuteTTS(self, request, context):
try:
print("[OuteTTS] generating TTS", file=sys.stderr)
gen_cfg = outetts.GenerationConfig(
text="Speech synthesis is the artificial production of human speech.",
temperature=0.1,
repetition_penalty=1.1,
max_length=self.max_tokens,
speaker=self.speaker,
# voice_characteristics="upbeat enthusiasm, friendliness, clarity, professionalism, and trustworthiness"
)
output = self.interface.generate(config=gen_cfg)
print("[OuteTTS] Generated TTS", file=sys.stderr)
output.save(request.dst)
print("[OuteTTS] TTS done", file=sys.stderr)
except Exception as err:
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
return backend_pb2.Result(success=True)
# The TTS endpoint is older, and provides fewer features, but exists for compatibility reasons
def TTS(self, request, context):
if self.OuteTTS:
return self.OuteTTS(request, context)
model_name = request.model
try:
if self.processor is None:
if model_name == "":
return backend_pb2.Result(success=False, message="request.model is required")
self.processor = AutoProcessor.from_pretrained(model_name)
if self.model is None:
if model_name == "":
return backend_pb2.Result(success=False, message="request.model is required")
self.model = MusicgenForConditionalGeneration.from_pretrained(model_name)
inputs = self.processor(
text=[request.text],
padding=True,
return_tensors="pt",
)
tokens = self.max_tokens # No good place to set the "length" in TTS, so use 10s as a sane default
audio_values = self.model.generate(**inputs, max_new_tokens=tokens)
print("[transformers-musicgen] TTS generated!", file=sys.stderr)
sampling_rate = self.model.config.audio_encoder.sampling_rate
wavfile.write(request.dst, rate=sampling_rate, data=audio_values[0, 0].numpy())
print("[transformers-musicgen] TTS saved to", request.dst, file=sys.stderr)
print("[transformers-musicgen] TTS for", file=sys.stderr)
print(request, file=sys.stderr)
except Exception as err:
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
return backend_pb2.Result(success=True)
async def serve(address):
# Start asyncio gRPC server
server = grpc.aio.server(migration_thread_pool=futures.ThreadPoolExecutor(max_workers=MAX_WORKERS))

View File

@@ -1,4 +1,8 @@
torch==2.4.1
llvmlite==0.43.0
numba==0.60.0
accelerate
transformers
bitsandbytes
bitsandbytes
outetts
sentence-transformers==3.3.1

View File

@@ -1,5 +1,9 @@
--extra-index-url https://download.pytorch.org/whl/cu118
torch==2.4.1+cu118
llvmlite==0.43.0
numba==0.60.0
accelerate
transformers
bitsandbytes
bitsandbytes
outetts
sentence-transformers==3.3.1

View File

@@ -1,4 +1,8 @@
torch==2.4.1
accelerate
llvmlite==0.43.0
numba==0.60.0
transformers
bitsandbytes
bitsandbytes
outetts
sentence-transformers==3.3.1

View File

@@ -2,4 +2,9 @@
torch==2.4.1+rocm6.0
accelerate
transformers
bitsandbytes
llvmlite==0.43.0
numba==0.60.0
bitsandbytes
outetts
bitsandbytes
sentence-transformers==3.3.1

View File

@@ -3,5 +3,9 @@ intel-extension-for-pytorch==2.3.110+xpu
torch==2.3.1+cxx11.abi
oneccl_bind_pt==2.3.100+xpu
optimum[openvino]
llvmlite==0.43.0
numba==0.60.0
intel-extension-for-transformers
bitsandbytes
bitsandbytes
outetts
sentence-transformers==3.3.1

View File

@@ -1,4 +1,6 @@
grpcio==1.69.0
protobuf
certifi
setuptools
setuptools
scipy==1.15.1
numpy>=2.0.0

View File

@@ -19,6 +19,7 @@ class TestBackendServicer(unittest.TestCase):
This method sets up the gRPC service by starting the server
"""
self.service = subprocess.Popen(["python3", "backend.py", "--addr", "localhost:50051"])
time.sleep(10)
def tearDown(self) -> None:
"""
@@ -31,7 +32,6 @@ class TestBackendServicer(unittest.TestCase):
"""
This method tests if the server starts up successfully
"""
time.sleep(10)
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
@@ -48,7 +48,6 @@ class TestBackendServicer(unittest.TestCase):
"""
This method tests if the model is loaded successfully
"""
time.sleep(10)
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
@@ -66,7 +65,6 @@ class TestBackendServicer(unittest.TestCase):
"""
This method tests if the embeddings are generated successfully
"""
time.sleep(10)
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
@@ -80,5 +78,96 @@ class TestBackendServicer(unittest.TestCase):
except Exception as err:
print(err)
self.fail("Embedding service failed")
finally:
self.tearDown()
def test_audio_load_model(self):
"""
This method tests if the model is loaded successfully
"""
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.LoadModel(backend_pb2.ModelOptions(Model="facebook/musicgen-small",Type="MusicgenForConditionalGeneration"))
self.assertTrue(response.success)
self.assertEqual(response.message, "Model loaded successfully")
except Exception as err:
print(err)
self.fail("LoadModel service failed")
finally:
self.tearDown()
def test_tts(self):
"""
This method tests if TTS is generated successfully
"""
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.LoadModel(backend_pb2.ModelOptions(Model="facebook/musicgen-small",Type="MusicgenForConditionalGeneration"))
self.assertTrue(response.success)
tts_request = backend_pb2.TTSRequest(text="80s TV news production music hit for tonight's biggest story")
tts_response = stub.TTS(tts_request)
self.assertIsNotNone(tts_response)
except Exception as err:
print(err)
self.fail("TTS service failed")
finally:
self.tearDown()
def test_sound_generation(self):
"""
This method tests if SoundGeneration is generated successfully
"""
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.LoadModel(backend_pb2.ModelOptions(Model="facebook/musicgen-small",Type="MusicgenForConditionalGeneration"))
self.assertTrue(response.success)
sg_request = backend_pb2.SoundGenerationRequest(text="80s TV news production music hit for tonight's biggest story")
sg_response = stub.SoundGeneration(sg_request)
self.assertIsNotNone(sg_response)
except Exception as err:
print(err)
self.fail("SoundGeneration service failed")
finally:
self.tearDown()
def test_embed_load_model(self):
"""
This method tests if the model is loaded successfully
"""
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.LoadModel(backend_pb2.ModelOptions(Model="bert-base-nli-mean-tokens",Type="SentenceTransformer"))
self.assertTrue(response.success)
self.assertEqual(response.message, "Model loaded successfully")
except Exception as err:
print(err)
self.fail("LoadModel service failed")
finally:
self.tearDown()
def test_sentencetransformers_embedding(self):
"""
This method tests if the embeddings are generated successfully
"""
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.LoadModel(backend_pb2.ModelOptions(Model="bert-base-nli-mean-tokens",Type="SentenceTransformer"))
self.assertTrue(response.success)
embedding_request = backend_pb2.PredictOptions(Embeddings="This is a test sentence.")
embedding_response = stub.Embedding(embedding_request)
self.assertIsNotNone(embedding_response.embeddings)
except Exception as err:
print(err)
self.fail("Embedding service failed")
finally:
self.tearDown()

View File

@@ -1 +0,0 @@
source

View File

@@ -1,33 +0,0 @@
ifneq (,$(findstring sycl,$(BUILD_TYPE)))
export SKIP_CONDA=1
endif
.PHONY: ttsvalle
ttsvalle: protogen
bash install.sh
.PHONY: run
run: protogen
@echo "Running ttsvalle..."
bash run.sh
@echo "ttsvalle run."
.PHONY: test
test: protogen
@echo "Testing valle..."
bash test.sh
@echo "valle tested."
.PHONY: protogen
protogen: backend_pb2_grpc.py backend_pb2.py
.PHONY: protogen-clean
protogen-clean:
$(RM) backend_pb2_grpc.py backend_pb2.py
backend_pb2_grpc.py backend_pb2.py:
python3 -m grpc_tools.protoc -I../.. --python_out=. --grpc_python_out=. backend.proto
.PHONY: clean
clean: protogen-clean
rm -rf source venv __pycache__

View File

@@ -1,5 +0,0 @@
# Creating a separate environment for the ttsvalle project
```
make ttsvalle
```

View File

@@ -1,141 +0,0 @@
#!/usr/bin/env python3
from concurrent import futures
import argparse
import signal
import sys
import os
import time
import backend_pb2
import backend_pb2_grpc
import grpc
from utils.generation import SAMPLE_RATE, generate_audio, preload_models
from scipy.io.wavfile import write as write_wav
from utils.prompt_making import make_prompt
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
# If MAX_WORKERS are specified in the environment use it, otherwise default to 1
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1'))
# Implement the BackendServicer class with the service methods
class BackendServicer(backend_pb2_grpc.BackendServicer):
"""
gRPC servicer for backend services.
"""
def Health(self, request, context):
"""
Health check service.
Args:
request: A backend_pb2.HealthRequest instance.
context: A grpc.ServicerContext instance.
Returns:
A backend_pb2.Reply instance with message "OK".
"""
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
def LoadModel(self, request, context):
"""
Load model service.
Args:
request: A backend_pb2.LoadModelRequest instance.
context: A grpc.ServicerContext instance.
Returns:
A backend_pb2.Result instance with message "Model loaded successfully" and success=True if successful.
A backend_pb2.Result instance with success=False and error message if unsuccessful.
"""
model_name = request.Model
try:
print("Preparing models, please wait", file=sys.stderr)
# download and load all models
preload_models()
self.clonedVoice = False
# Assume directory from request.ModelFile.
# Only if request.LoraAdapter it's not an absolute path
if request.AudioPath and request.ModelFile != "" and not os.path.isabs(request.AudioPath):
# get base path of modelFile
modelFileBase = os.path.dirname(request.ModelFile)
# modify LoraAdapter to be relative to modelFileBase
request.AudioPath = os.path.join(modelFileBase, request.AudioPath)
if request.AudioPath != "":
print("Generating model", file=sys.stderr)
make_prompt(name=model_name, audio_prompt_path=request.AudioPath)
self.clonedVoice = True
### Use given transcript
##make_prompt(name=model_name, audio_prompt_path="paimon_prompt.wav",
## transcript="Just, what was that? Paimon thought we were gonna get eaten.")
except Exception as err:
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
# Implement your logic here for the LoadModel service
# Replace this with your desired response
return backend_pb2.Result(message="Model loaded successfully", success=True)
def TTS(self, request, context):
"""
Text-to-speech service.
Args:
request: A backend_pb2.TTSRequest instance.
context: A grpc.ServicerContext instance.
Returns:
A backend_pb2.Result instance with success=True if successful.
A backend_pb2.Result instance with success=False and error message if unsuccessful.
"""
model = request.model
print(request, file=sys.stderr)
try:
audio_array = None
if model != "":
if self.clonedVoice:
model = os.path.basename(request.model)
audio_array = generate_audio(request.text, prompt=model)
else:
audio_array = generate_audio(request.text)
print("saving to", request.dst, file=sys.stderr)
# save audio to disk
write_wav(request.dst, SAMPLE_RATE, audio_array)
print("saved to", request.dst, file=sys.stderr)
print("tts for", file=sys.stderr)
print(request, file=sys.stderr)
except Exception as err:
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
return backend_pb2.Result(success=True)
def serve(address):
server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS))
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
server.add_insecure_port(address)
server.start()
print("Server started. Listening on: " + address, file=sys.stderr)
# Define the signal handler function
def signal_handler(sig, frame):
print("Received termination signal. Shutting down...")
server.stop(0)
sys.exit(0)
# Set the signal handlers for SIGINT and SIGTERM
signal.signal(signal.SIGINT, signal_handler)
signal.signal(signal.SIGTERM, signal_handler)
try:
while True:
time.sleep(_ONE_DAY_IN_SECONDS)
except KeyboardInterrupt:
server.stop(0)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run the gRPC server.")
parser.add_argument(
"--addr", default="localhost:50051", help="The address to bind the server to."
)
args = parser.parse_args()
serve(args.addr)

View File

@@ -1,22 +0,0 @@
#!/bin/bash
set -e
VALL_E_X_VERSION=3faaf8ccadb154d63b38070caf518ce9309ea0f4
source $(dirname $0)/../common/libbackend.sh
# This is here because the Intel pip index is broken and returns 200 status codes for every package name, it just doesn't return any package links.
# This makes uv think that the package exists in the Intel pip index, and by default it stops looking at other pip indexes once it finds a match.
# We need uv to continue falling through to the pypi default index to find optimum[openvino] in the pypi index
# the --upgrade actually allows us to *downgrade* torch to the version provided in the Intel pip index
if [ "x${BUILD_PROFILE}" == "xintel" ]; then
EXTRA_PIP_INSTALL_FLAGS+=" --upgrade --index-strategy=unsafe-first-match"
fi
installRequirements
git clone https://github.com/Plachtaa/VALL-E-X.git ${MY_DIR}/source
pushd ${MY_DIR}/source && git checkout -b build ${VALL_E_X_VERSION} && popd
uv pip install ${BUILD_ISOLATION_FLAG} --requirement ${MY_DIR}/source/requirements.txt
cp -v ./*py $MY_DIR/source/

View File

@@ -1,3 +0,0 @@
accelerate
torch==2.4.1
torchaudio==2.4.1

View File

@@ -1,3 +0,0 @@
accelerate
torch==2.4.1
torchaudio==2.4.1

View File

@@ -1,4 +0,0 @@
--extra-index-url https://download.pytorch.org/whl/rocm6.0
accelerate
torch==2.3.0+rocm6.0
torchaudio==2.3.0+rocm6.0

View File

@@ -1,7 +0,0 @@
--extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
intel-extension-for-pytorch==2.3.110+xpu
accelerate
torch==2.3.1+cxx11.abi
torchaudio==2.3.1+cxx11.abi
optimum[openvino]
oneccl_bind_pt==2.3.100+xpu

View File

@@ -1,4 +0,0 @@
grpcio==1.69.0
protobuf
certifi
setuptools

View File

@@ -1,6 +0,0 @@
#!/bin/bash
BACKEND_FILE="${MY_DIR}/source/backend.py"
source $(dirname $0)/../common/libbackend.sh
startBackend $@

View File

@@ -1,81 +0,0 @@
"""
A test script to test the gRPC service
"""
import unittest
import subprocess
import time
import backend_pb2
import backend_pb2_grpc
import grpc
class TestBackendServicer(unittest.TestCase):
"""
TestBackendServicer is the class that tests the gRPC service
"""
def setUp(self):
"""
This method sets up the gRPC service by starting the server
"""
self.service = subprocess.Popen(["python3", "backend.py", "--addr", "localhost:50051"])
time.sleep(10)
def tearDown(self) -> None:
"""
This method tears down the gRPC service by terminating the server
"""
self.service.terminate()
self.service.wait()
def test_server_startup(self):
"""
This method tests if the server starts up successfully
"""
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.Health(backend_pb2.HealthMessage())
self.assertEqual(response.message, b'OK')
except Exception as err:
print(err)
self.fail("Server failed to start")
finally:
self.tearDown()
def test_load_model(self):
"""
This method tests if the model is loaded successfully
"""
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.LoadModel(backend_pb2.ModelOptions(Model="dingzhen"))
self.assertTrue(response.success)
self.assertEqual(response.message, "Model loaded successfully")
except Exception as err:
print(err)
self.fail("LoadModel service failed")
finally:
self.tearDown()
def test_tts(self):
"""
This method tests if the embeddings are generated successfully
"""
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.LoadModel(backend_pb2.ModelOptions(Model="dingzhen"))
self.assertTrue(response.success)
tts_request = backend_pb2.TTSRequest(text="80s TV news production music hit for tonight's biggest story")
tts_response = stub.TTS(tts_request)
self.assertIsNotNone(tts_response)
except Exception as err:
print(err)
self.fail("TTS service failed")
finally:
self.tearDown()

View File

@@ -1,7 +0,0 @@
#!/bin/bash
set -e
TEST_FILE="./source/test.py"
source $(dirname $0)/../common/libbackend.sh
runUnittests

View File

@@ -27,8 +27,10 @@ type LLMResponse struct {
}
type TokenUsage struct {
Prompt int
Completion int
Prompt int
Completion int
TimingPromptProcessing float64
TimingTokenGeneration float64
}
func ModelInference(ctx context.Context, s string, messages []schema.Message, images, videos, audios []string, loader *model.ModelLoader, c config.BackendConfig, o *config.ApplicationConfig, tokenCallback func(string, TokenUsage) bool) (func() (LLMResponse, error), error) {
@@ -123,6 +125,8 @@ func ModelInference(ctx context.Context, s string, messages []schema.Message, im
tokenUsage.Prompt = int(reply.PromptTokens)
tokenUsage.Completion = int(reply.Tokens)
tokenUsage.TimingTokenGeneration = reply.TimingTokenGeneration
tokenUsage.TimingPromptProcessing = reply.TimingPromptProcessing
for len(partialRune) > 0 {
r, size := utf8.DecodeRune(partialRune)
@@ -157,6 +161,10 @@ func ModelInference(ctx context.Context, s string, messages []schema.Message, im
if tokenUsage.Completion == 0 {
tokenUsage.Completion = int(reply.Tokens)
}
tokenUsage.TimingTokenGeneration = reply.TimingTokenGeneration
tokenUsage.TimingPromptProcessing = reply.TimingPromptProcessing
return LLMResponse{
Response: string(reply.Message),
Usage: tokenUsage,

View File

@@ -140,7 +140,7 @@ func grpcModelOpts(c config.BackendConfig) *pb.ModelOptions {
NBatch: int32(b),
NoMulMatQ: c.NoMulMatQ,
DraftModel: c.DraftModel,
AudioPath: c.VallE.AudioPath,
AudioPath: c.AudioPath,
Quantization: c.Quantization,
LoadFormat: c.LoadFormat,
GPUMemoryUtilization: c.GPUMemoryUtilization,

View File

@@ -70,6 +70,7 @@ type RunCMD struct {
WatchdogBusyTimeout string `env:"LOCALAI_WATCHDOG_BUSY_TIMEOUT,WATCHDOG_BUSY_TIMEOUT" default:"5m" help:"Threshold beyond which a busy backend should be stopped" group:"backends"`
Federated bool `env:"LOCALAI_FEDERATED,FEDERATED" help:"Enable federated instance" group:"federated"`
DisableGalleryEndpoint bool `env:"LOCALAI_DISABLE_GALLERY_ENDPOINT,DISABLE_GALLERY_ENDPOINT" help:"Disable the gallery endpoints" group:"api"`
MachineTag string `env:"LOCALAI_MACHINE_TAG,MACHINE_TAG" help:"Add Machine-Tag header to each response which is useful to track the machine in the P2P network" group:"api"`
LoadToMemory []string `env:"LOCALAI_LOAD_TO_MEMORY,LOAD_TO_MEMORY" help:"A list of models to load into memory at startup" group:"models"`
}
@@ -107,6 +108,7 @@ func (r *RunCMD) Run(ctx *cliContext.Context) error {
config.WithHttpGetExemptedEndpoints(r.HttpGetExemptedEndpoints),
config.WithP2PNetworkID(r.Peer2PeerNetworkID),
config.WithLoadToMemory(r.LoadToMemory),
config.WithMachineTag(r.MachineTag),
}
if r.DisableMetricsEndpoint {

View File

@@ -65,6 +65,8 @@ type ApplicationConfig struct {
ModelsURL []string
WatchDogBusyTimeout, WatchDogIdleTimeout time.Duration
MachineTag string
}
type AppOption func(*ApplicationConfig)
@@ -94,6 +96,12 @@ func WithModelPath(path string) AppOption {
}
}
func WithMachineTag(tag string) AppOption {
return func(o *ApplicationConfig) {
o.MachineTag = tag
}
}
func WithCors(b bool) AppOption {
return func(o *ApplicationConfig) {
o.CORS = b

View File

@@ -21,8 +21,7 @@ type TTSConfig struct {
// Voice wav path or id
Voice string `yaml:"voice"`
// Vall-e-x
VallE VallE `yaml:"vall-e"`
AudioPath string `yaml:"audio_path"`
}
type BackendConfig struct {
@@ -82,10 +81,6 @@ type File struct {
URI downloader.URI `yaml:"uri" json:"uri"`
}
type VallE struct {
AudioPath string `yaml:"audio_path"`
}
type FeatureFlag map[string]*bool
func (ff FeatureFlag) Enabled(s string) bool {
@@ -520,7 +515,7 @@ func (c *BackendConfig) GuessUsecases(u BackendConfigUsecases) bool {
}
}
if (u & FLAG_IMAGE) == FLAG_IMAGE {
imageBackends := []string{"diffusers", "tinydream", "stablediffusion"}
imageBackends := []string{"diffusers", "stablediffusion"}
if !slices.Contains(imageBackends, c.Backend) {
return false
}

View File

@@ -89,6 +89,14 @@ func API(application *application.Application) (*fiber.App, error) {
router.Use(middleware.StripPathPrefix())
if application.ApplicationConfig().MachineTag != "" {
router.Use(func(c *fiber.Ctx) error {
c.Response().Header.Set("Machine-Tag", application.ApplicationConfig().MachineTag)
return c.Next()
})
}
router.Hooks().OnListen(func(listenData fiber.ListenData) error {
scheme := "http"
if listenData.TLS {

View File

@@ -822,7 +822,7 @@ var _ = Describe("API test", func() {
application, err := application.New(
append(commonOpts,
config.WithExternalBackend("huggingface", os.Getenv("HUGGINGFACE_GRPC")),
config.WithExternalBackend("transformers", os.Getenv("HUGGINGFACE_GRPC")),
config.WithContext(c),
config.WithModelPath(modelPath),
)...)
@@ -1000,7 +1000,7 @@ var _ = Describe("API test", func() {
}
}
deleteBody := schema.StoresDelete{
deleteBody := schema.StoresReset{
Keys: [][]float32{
{0.1, 0.2, 0.3},
},

View File

@@ -36,9 +36,9 @@ func StoresSetEndpoint(sl *model.ModelLoader, appConfig *config.ApplicationConfi
}
}
func StoresDeleteEndpoint(sl *model.ModelLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
func StoresResetEndpoint(sl *model.ModelLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
input := new(schema.StoresDelete)
input := new(schema.StoresReset)
if err := c.BodyParser(input); err != nil {
return err
@@ -49,7 +49,7 @@ func StoresDeleteEndpoint(sl *model.ModelLoader, appConfig *config.ApplicationCo
return err
}
if err := store.DeleteCols(c.Context(), sb, input.Keys); err != nil {
if _, err := sb.StoresReset(c.Context(), nil); err != nil {
return err
}
@@ -57,37 +57,6 @@ func StoresDeleteEndpoint(sl *model.ModelLoader, appConfig *config.ApplicationCo
}
}
func StoresGetEndpoint(sl *model.ModelLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
input := new(schema.StoresGet)
if err := c.BodyParser(input); err != nil {
return err
}
sb, err := backend.StoreBackend(sl, appConfig, input.Store)
if err != nil {
return err
}
keys, vals, err := store.GetCols(c.Context(), sb, input.Keys)
if err != nil {
return err
}
res := schema.StoresGetResponse{
Keys: keys,
Values: make([]string, len(vals)),
}
for i, v := range vals {
res.Values[i] = string(v)
}
return c.JSON(res)
}
}
func StoresFindEndpoint(sl *model.ModelLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
input := new(schema.StoresFind)

View File

@@ -24,7 +24,6 @@ import (
// @Router /tts [post]
func TTSEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
input := new(schema.TTSRequest)
// Get input data from the request body

View File

@@ -19,7 +19,6 @@ import (
// @Router /vad [post]
func VADEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
input := new(schema.VADRequest)
// Get input data from the request body

View File

@@ -30,7 +30,7 @@ func ChatEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, evaluat
var id, textContentToReturn string
var created int
process := func(s string, req *schema.OpenAIRequest, config *config.BackendConfig, loader *model.ModelLoader, responses chan schema.OpenAIResponse) {
process := func(s string, req *schema.OpenAIRequest, config *config.BackendConfig, loader *model.ModelLoader, responses chan schema.OpenAIResponse, extraUsage bool) {
initialMessage := schema.OpenAIResponse{
ID: id,
Created: created,
@@ -40,18 +40,24 @@ func ChatEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, evaluat
}
responses <- initialMessage
ComputeChoices(req, s, config, startupOptions, loader, func(s string, c *[]schema.Choice) {}, func(s string, usage backend.TokenUsage) bool {
ComputeChoices(req, s, config, startupOptions, loader, func(s string, c *[]schema.Choice) {}, func(s string, tokenUsage backend.TokenUsage) bool {
usage := schema.OpenAIUsage{
PromptTokens: tokenUsage.Prompt,
CompletionTokens: tokenUsage.Completion,
TotalTokens: tokenUsage.Prompt + tokenUsage.Completion,
}
if extraUsage {
usage.TimingTokenGeneration = tokenUsage.TimingTokenGeneration
usage.TimingPromptProcessing = tokenUsage.TimingPromptProcessing
}
resp := schema.OpenAIResponse{
ID: id,
Created: created,
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
Choices: []schema.Choice{{Delta: &schema.Message{Content: &s}, Index: 0}},
Object: "chat.completion.chunk",
Usage: schema.OpenAIUsage{
PromptTokens: usage.Prompt,
CompletionTokens: usage.Completion,
TotalTokens: usage.Prompt + usage.Completion,
},
Usage: usage,
}
responses <- resp
@@ -59,7 +65,7 @@ func ChatEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, evaluat
})
close(responses)
}
processTools := func(noAction string, prompt string, req *schema.OpenAIRequest, config *config.BackendConfig, loader *model.ModelLoader, responses chan schema.OpenAIResponse) {
processTools := func(noAction string, prompt string, req *schema.OpenAIRequest, config *config.BackendConfig, loader *model.ModelLoader, responses chan schema.OpenAIResponse, extraUsage bool) {
result := ""
_, tokenUsage, _ := ComputeChoices(req, prompt, config, startupOptions, loader, func(s string, c *[]schema.Choice) {}, func(s string, usage backend.TokenUsage) bool {
result += s
@@ -90,6 +96,15 @@ func ChatEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, evaluat
log.Error().Err(err).Msg("error handling question")
return
}
usage := schema.OpenAIUsage{
PromptTokens: tokenUsage.Prompt,
CompletionTokens: tokenUsage.Completion,
TotalTokens: tokenUsage.Prompt + tokenUsage.Completion,
}
if extraUsage {
usage.TimingTokenGeneration = tokenUsage.TimingTokenGeneration
usage.TimingPromptProcessing = tokenUsage.TimingPromptProcessing
}
resp := schema.OpenAIResponse{
ID: id,
@@ -97,11 +112,7 @@ func ChatEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, evaluat
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
Choices: []schema.Choice{{Delta: &schema.Message{Content: &result}, Index: 0}},
Object: "chat.completion.chunk",
Usage: schema.OpenAIUsage{
PromptTokens: tokenUsage.Prompt,
CompletionTokens: tokenUsage.Completion,
TotalTokens: tokenUsage.Prompt + tokenUsage.Completion,
},
Usage: usage,
}
responses <- resp
@@ -170,6 +181,9 @@ func ChatEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, evaluat
}
c.Set("X-Correlation-ID", correlationID)
// Opt-in extra usage flag
extraUsage := c.Get("Extra-Usage", "") != ""
modelFile, input, err := readRequest(c, cl, ml, startupOptions, true)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
@@ -319,9 +333,9 @@ func ChatEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, evaluat
responses := make(chan schema.OpenAIResponse)
if !shouldUseFn {
go process(predInput, input, config, ml, responses)
go process(predInput, input, config, ml, responses, extraUsage)
} else {
go processTools(noActionName, predInput, input, config, ml, responses)
go processTools(noActionName, predInput, input, config, ml, responses, extraUsage)
}
c.Context().SetBodyStreamWriter(fasthttp.StreamWriter(func(w *bufio.Writer) {
@@ -449,6 +463,15 @@ func ChatEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, evaluat
if err != nil {
return err
}
usage := schema.OpenAIUsage{
PromptTokens: tokenUsage.Prompt,
CompletionTokens: tokenUsage.Completion,
TotalTokens: tokenUsage.Prompt + tokenUsage.Completion,
}
if extraUsage {
usage.TimingTokenGeneration = tokenUsage.TimingTokenGeneration
usage.TimingPromptProcessing = tokenUsage.TimingPromptProcessing
}
resp := &schema.OpenAIResponse{
ID: id,
@@ -456,11 +479,7 @@ func ChatEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, evaluat
Model: input.Model, // we have to return what the user sent here, due to OpenAI spec.
Choices: result,
Object: "chat.completion",
Usage: schema.OpenAIUsage{
PromptTokens: tokenUsage.Prompt,
CompletionTokens: tokenUsage.Completion,
TotalTokens: tokenUsage.Prompt + tokenUsage.Completion,
},
Usage: usage,
}
respData, _ := json.Marshal(resp)
log.Debug().Msgf("Response: %s", respData)

View File

@@ -30,8 +30,17 @@ func CompletionEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, e
id := uuid.New().String()
created := int(time.Now().Unix())
process := func(s string, req *schema.OpenAIRequest, config *config.BackendConfig, loader *model.ModelLoader, responses chan schema.OpenAIResponse) {
ComputeChoices(req, s, config, appConfig, loader, func(s string, c *[]schema.Choice) {}, func(s string, usage backend.TokenUsage) bool {
process := func(s string, req *schema.OpenAIRequest, config *config.BackendConfig, loader *model.ModelLoader, responses chan schema.OpenAIResponse, extraUsage bool) {
ComputeChoices(req, s, config, appConfig, loader, func(s string, c *[]schema.Choice) {}, func(s string, tokenUsage backend.TokenUsage) bool {
usage := schema.OpenAIUsage{
PromptTokens: tokenUsage.Prompt,
CompletionTokens: tokenUsage.Completion,
TotalTokens: tokenUsage.Prompt + tokenUsage.Completion,
}
if extraUsage {
usage.TimingTokenGeneration = tokenUsage.TimingTokenGeneration
usage.TimingPromptProcessing = tokenUsage.TimingPromptProcessing
}
resp := schema.OpenAIResponse{
ID: id,
Created: created,
@@ -43,11 +52,7 @@ func CompletionEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, e
},
},
Object: "text_completion",
Usage: schema.OpenAIUsage{
PromptTokens: usage.Prompt,
CompletionTokens: usage.Completion,
TotalTokens: usage.Prompt + usage.Completion,
},
Usage: usage,
}
log.Debug().Msgf("Sending goroutine: %s", s)
@@ -60,6 +65,10 @@ func CompletionEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, e
return func(c *fiber.Ctx) error {
// Add Correlation
c.Set("X-Correlation-ID", id)
// Opt-in extra usage flag
extraUsage := c.Get("Extra-Usage", "") != ""
modelFile, input, err := readRequest(c, cl, ml, appConfig, true)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
@@ -113,7 +122,7 @@ func CompletionEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, e
responses := make(chan schema.OpenAIResponse)
go process(predInput, input, config, ml, responses)
go process(predInput, input, config, ml, responses, extraUsage)
c.Context().SetBodyStreamWriter(fasthttp.StreamWriter(func(w *bufio.Writer) {
@@ -170,11 +179,20 @@ func CompletionEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, e
return err
}
totalTokenUsage.Prompt += tokenUsage.Prompt
totalTokenUsage.Completion += tokenUsage.Completion
totalTokenUsage.TimingTokenGeneration += tokenUsage.TimingTokenGeneration
totalTokenUsage.TimingPromptProcessing += tokenUsage.TimingPromptProcessing
result = append(result, r...)
}
usage := schema.OpenAIUsage{
PromptTokens: totalTokenUsage.Prompt,
CompletionTokens: totalTokenUsage.Completion,
TotalTokens: totalTokenUsage.Prompt + totalTokenUsage.Completion,
}
if extraUsage {
usage.TimingTokenGeneration = totalTokenUsage.TimingTokenGeneration
usage.TimingPromptProcessing = totalTokenUsage.TimingPromptProcessing
}
resp := &schema.OpenAIResponse{
ID: id,
@@ -182,11 +200,7 @@ func CompletionEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, e
Model: input.Model, // we have to return what the user sent here, due to OpenAI spec.
Choices: result,
Object: "text_completion",
Usage: schema.OpenAIUsage{
PromptTokens: totalTokenUsage.Prompt,
CompletionTokens: totalTokenUsage.Completion,
TotalTokens: totalTokenUsage.Prompt + totalTokenUsage.Completion,
},
Usage: usage,
}
jsonResult, _ := json.Marshal(resp)

View File

@@ -25,6 +25,9 @@ import (
func EditEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, evaluator *templates.Evaluator, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
// Opt-in extra usage flag
extraUsage := c.Get("Extra-Usage", "") != ""
modelFile, input, err := readRequest(c, cl, ml, appConfig, true)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
@@ -61,8 +64,20 @@ func EditEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, evaluat
totalTokenUsage.Prompt += tokenUsage.Prompt
totalTokenUsage.Completion += tokenUsage.Completion
totalTokenUsage.TimingTokenGeneration += tokenUsage.TimingTokenGeneration
totalTokenUsage.TimingPromptProcessing += tokenUsage.TimingPromptProcessing
result = append(result, r...)
}
usage := schema.OpenAIUsage{
PromptTokens: totalTokenUsage.Prompt,
CompletionTokens: totalTokenUsage.Completion,
TotalTokens: totalTokenUsage.Prompt + totalTokenUsage.Completion,
}
if extraUsage {
usage.TimingTokenGeneration = totalTokenUsage.TimingTokenGeneration
usage.TimingPromptProcessing = totalTokenUsage.TimingPromptProcessing
}
id := uuid.New().String()
created := int(time.Now().Unix())
@@ -72,11 +87,7 @@ func EditEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, evaluat
Model: input.Model, // we have to return what the user sent here, due to OpenAI spec.
Choices: result,
Object: "edit",
Usage: schema.OpenAIUsage{
PromptTokens: totalTokenUsage.Prompt,
CompletionTokens: totalTokenUsage.Completion,
TotalTokens: totalTokenUsage.Prompt + totalTokenUsage.Completion,
},
Usage: usage,
}
jsonResult, _ := json.Marshal(resp)

View File

@@ -130,8 +130,6 @@ func ImageEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, appCon
switch config.Backend {
case "stablediffusion":
config.Backend = model.StableDiffusionBackend
case "tinydream":
config.Backend = model.TinyDreamBackend
case "":
config.Backend = model.StableDiffusionBackend
}

View File

@@ -52,6 +52,8 @@ func ComputeChoices(
tokenUsage.Prompt += prediction.Usage.Prompt
tokenUsage.Completion += prediction.Usage.Completion
tokenUsage.TimingPromptProcessing += prediction.Usage.TimingPromptProcessing
tokenUsage.TimingTokenGeneration += prediction.Usage.TimingTokenGeneration
finetunedResponse := backend.Finetune(*config, predInput, prediction.Response)
cb(finetunedResponse, &result)

View File

@@ -12,7 +12,7 @@ import (
// @Summary List and describe the various models available in the API.
// @Success 200 {object} schema.ModelsDataResponse "Response"
// @Router /v1/models [get]
func ListModelsEndpoint(bcl *config.BackendConfigLoader, ml *model.ModelLoader) func(ctx *fiber.Ctx) error {
func ListModelsEndpoint(bcl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *config.ApplicationConfig) func(ctx *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
// If blank, no filter is applied.
filter := c.Query("filter")

View File

@@ -39,8 +39,7 @@ func RegisterLocalAIRoutes(router *fiber.App,
// Stores
sl := model.NewModelLoader("")
router.Post("/stores/set", localai.StoresSetEndpoint(sl, appConfig))
router.Post("/stores/delete", localai.StoresDeleteEndpoint(sl, appConfig))
router.Post("/stores/get", localai.StoresGetEndpoint(sl, appConfig))
router.Post("/stores/reset", localai.StoresDeleteEndpoint(sl, appConfig))
router.Post("/stores/find", localai.StoresFindEndpoint(sl, appConfig))
if !appConfig.DisableMetrics {

View File

@@ -130,6 +130,6 @@ func RegisterOpenAIRoutes(app *fiber.App,
}
// List models
app.Get("/v1/models", openai.ListModelsEndpoint(application.BackendLoader(), application.ModelLoader()))
app.Get("/models", openai.ListModelsEndpoint(application.BackendLoader(), application.ModelLoader()))
app.Get("/v1/models", openai.ListModelsEndpoint(application.BackendLoader(), application.ModelLoader(), application.ApplicationConfig()))
app.Get("/models", openai.ListModelsEndpoint(application.BackendLoader(), application.ModelLoader(), application.ApplicationConfig()))
}

View File

@@ -47,21 +47,8 @@ type StoresSet struct {
Values []string `json:"values" yaml:"values"`
}
type StoresDelete struct {
type StoresReset struct {
Store string `json:"store,omitempty" yaml:"store,omitempty"`
Keys [][]float32 `json:"keys"`
}
type StoresGet struct {
Store string `json:"store,omitempty" yaml:"store,omitempty"`
Keys [][]float32 `json:"keys" yaml:"keys"`
}
type StoresGetResponse struct {
Keys [][]float32 `json:"keys" yaml:"keys"`
Values []string `json:"values" yaml:"values"`
}
type StoresFind struct {

View File

@@ -23,6 +23,9 @@ type OpenAIUsage struct {
PromptTokens int `json:"prompt_tokens"`
CompletionTokens int `json:"completion_tokens"`
TotalTokens int `json:"total_tokens"`
// Extra timing data, disabled by default as is't not a part of OpenAI specification
TimingPromptProcessing float64 `json:"timing_prompt_processing,omitempty"`
TimingTokenGeneration float64 `json:"timing_token_generation,omitempty"`
}
type Item struct {

View File

@@ -520,6 +520,7 @@ In the help text below, BASEPATH is the location that local-ai is being executed
| --upload-limit | 15 | Default upload-limit in MB | $LOCALAI_UPLOAD_LIMIT |
| --api-keys | API-KEYS,... | List of API Keys to enable API authentication. When this is set, all the requests must be authenticated with one of these API keys | $LOCALAI_API_KEY |
| --disable-welcome | | Disable welcome pages | $LOCALAI_DISABLE_WELCOME |
| --machine-tag | | If not empty - put that string to Machine-Tag header in each response. Useful to track response from different machines using multiple P2P federated nodes | $LOCALAI_MACHINE_TAG |
#### Backend Flags
| Parameter | Default | Description | Environment Variable |
@@ -553,6 +554,34 @@ LOCALAI_MODELS_PATH=/mnt/storage/localai/models
LOCALAI_F16=true
```
### Request headers
You can use 'Extra-Usage' request header key presence ('Extra-Usage: true') to receive inference timings in milliseconds extending default OpenAI response model in the usage field:
```
...
{
"id": "...",
"created": ...,
"model": "...",
"choices": [
{
...
},
...
],
"object": "...",
"usage": {
"prompt_tokens": ...,
"completion_tokens": ...,
"total_tokens": ...,
// Extra-Usage header key will include these two float fields:
"timing_prompt_processing: ...,
"timing_token_generation": ...,
},
}
...
```
### Extra backends
LocalAI can be extended with extra backends. The backends are implemented as `gRPC` services and can be written in any language. The container images that are built and published on [quay.io](https://quay.io/repository/go-skynet/local-ai?tab=tags) contain a set of images split in core and extra. By default Images bring all the dependencies and backends supported by LocalAI (we call those `extra` images). The `-core` images instead bring only the strictly necessary dependencies to run LocalAI without only a core set of backends.
@@ -616,4 +645,4 @@ Note that, for llama.cpp you need to set accordingly `LLAMACPP_PARALLEL` to the
LocalAI will automatically discover the CPU flagset available in your host and will use the most optimized version of the backends.
If you want to disable this behavior, you can set `DISABLE_AUTODETECT` to `true` in the environment variables.
If you want to disable this behavior, you can set `DISABLE_AUTODETECT` to `true` in the environment variables.

View File

@@ -88,7 +88,7 @@ Here is the list of the variables available that can be used to customize the bu
| Variable | Default | Description |
| ---------------------| ------- | ----------- |
| `BUILD_TYPE` | None | Build type. Available: `cublas`, `openblas`, `clblas`, `metal`,`hipblas`, `sycl_f16`, `sycl_f32` |
| `GO_TAGS` | `tts stablediffusion` | Go tags. Available: `stablediffusion`, `tts`, `tinydream` |
| `GO_TAGS` | `tts stablediffusion` | Go tags. Available: `stablediffusion`, `tts` |
| `CLBLAST_DIR` | | Specify a CLBlast directory |
| `CUDA_LIBPATH` | | Specify a CUDA library path |
| `BUILD_API_ONLY` | false | Set to true to build only the API (no backends will be built) |
@@ -202,7 +202,7 @@ make build
**Requirements**: OpenCV, Gomp
Image generation requires `GO_TAGS=stablediffusion` or `GO_TAGS=tinydream` to be set during build:
Image generation requires `GO_TAGS=stablediffusion` to be set during build:
```
make GO_TAGS=stablediffusion build

View File

@@ -16,7 +16,7 @@ For GPU Acceleration support for Nvidia video graphic cards, use the Nvidia/CUDA
**Available Images Types**:
- Images ending with `-core` are smaller images without predownload python dependencies. Use these images if you plan to use `llama.cpp`, `stablediffusion-ncn`, `tinydream` or `rwkv` backends - if you are not sure which one to use, do **not** use these images.
- Images ending with `-core` are smaller images without predownload python dependencies. Use these images if you plan to use `llama.cpp`, `stablediffusion-ncn` or `rwkv` backends - if you are not sure which one to use, do **not** use these images.
- Images containing the `aio` tag are all-in-one images with all the features enabled, and come with an opinionated set of configuration.
- FFMpeg is **not** included in the default images due to [its licensing](https://www.ffmpeg.org/legal.html). If you need FFMpeg, use the images ending with `-ffmpeg`. Note that `ffmpeg` is needed in case of using `audio-to-text` LocalAI's features.
- If using old and outdated CPUs and no GPUs you might need to set `REBUILD` to `true` as environment variable along with options to disable the flags which your CPU does not support, however note that inference will perform poorly and slow. See also [flagset compatibility]({{%relref "docs/getting-started/build#cpu-flagset-compatibility" %}}).
@@ -197,7 +197,7 @@ Images with `core` in the tag are smaller and do not contain any python dependen
| --- | --- |-------------------------------------------------------------|
| Latest images from the branch (development) | `quay.io/go-skynet/local-ai:master-sycl-f16` | `localai/localai:master-sycl-f16` |
| Latest tag | `quay.io/go-skynet/local-ai:latest-gpu-intel-f16` | `localai/localai:latest-gpu-intel-f16` |
| Versioned image | `quay.io/go-skynet/local-ai:{{< version >}}-sycl-f16` | `localai/localai:{{< version >}}-sycl-f16` |
| Versioned image | `quay.io/go-skynet/local-ai:{{< version >}}-sycl-f16-core` | `localai/localai:{{< version >}}-sycl-f16-core` |
| Versioned image including FFMpeg| `quay.io/go-skynet/local-ai:{{< version >}}-sycl-f16-ffmpeg` | `localai/localai:{{< version >}}-sycl-f16-ffmpeg` |
| Versioned image including FFMpeg, no python | `quay.io/go-skynet/local-ai:{{< version >}}-sycl-f16-ffmpeg-core` | `localai/localai:{{< version >}}-sycl-f16-ffmpeg-core` |
@@ -209,7 +209,7 @@ Images with `core` in the tag are smaller and do not contain any python dependen
| --- | --- |-------------------------------------------------------------|
| Latest images from the branch (development) | `quay.io/go-skynet/local-ai:master-sycl-f32` | `localai/localai:master-sycl-f32` |
| Latest tag | `quay.io/go-skynet/local-ai:latest-gpu-intel-f32` | `localai/localai:latest-gpu-intel-f32` |
| Versioned image | `quay.io/go-skynet/local-ai:{{< version >}}-sycl-f32` | `localai/localai:{{< version >}}-sycl-f32` |
| Versioned image | `quay.io/go-skynet/local-ai:{{< version >}}-sycl-f32-core` | `localai/localai:{{< version >}}-sycl-f32-core` |
| Versioned image including FFMpeg| `quay.io/go-skynet/local-ai:{{< version >}}-sycl-f32-ffmpeg` | `localai/localai:{{< version >}}-sycl-f32-ffmpeg` |
| Versioned image including FFMpeg, no python | `quay.io/go-skynet/local-ai:{{< version >}}-sycl-f32-ffmpeg-core` | `localai/localai:{{< version >}}-sycl-f32-ffmpeg-core` |

View File

@@ -32,7 +32,7 @@ LocalAI will attempt to automatically load models which are not explicitly confi
| `mamba` | Mamba models architecture | yes | GPT | no | no | CPU/CUDA |
| `exllama2` | GPTQ | yes | GPT only | no | no | N/A |
| `transformers-musicgen` | | no | Audio generation | no | no | N/A |
| [tinydream](https://github.com/symisc/tiny-dream#tiny-dreaman-embedded-header-only-stable-diffusion-inference-c-librarypixlabiotiny-dream) | stablediffusion | no | Image | no | no | N/A |
| stablediffusion | no | Image | no | no | N/A |
| `coqui` | Coqui | no | Audio generation and Voice cloning | no | no | CPU/CUDA |
| `openvoice` | Open voice | no | Audio generation and Voice cloning | no | no | CPU/CUDA |
| `parler-tts` | Open voice | no | Audio generation and Voice cloning | no | no | CPU/CUDA |

View File

@@ -2,6 +2,7 @@
- &phi4
url: "github:mudler/LocalAI/gallery/phi-4-chat.yaml@master"
name: "phi-4"
icon: https://avatars.githubusercontent.com/u/6154722
license: mit
tags:
- llm
@@ -189,7 +190,7 @@
- https://huggingface.co/Nitral-AI/NightWing3-10B-v0.1
- https://huggingface.co/bartowski/NightWing3-10B-v0.1-GGUF
description: |
Base model: (Falcon3-10B)
Base model: (Falcon3-10B)
overrides:
parameters:
model: NightWing3-10B-v0.1-Q4_K_M.gguf
@@ -224,7 +225,7 @@
uri: huggingface://bartowski/INTELLECT-1-Instruct-GGUF/INTELLECT-1-Instruct-Q4_K_M.gguf
- &llama33
url: "github:mudler/LocalAI/gallery/llama3.1-instruct.yaml@master"
icon: https://cdn-uploads.huggingface.co/production/uploads/642cc1c253e76b4c2286c58e/aJJxKus1wP5N-euvHEUq7.png
icon: https://avatars.githubusercontent.com/u/153379578
license: llama3.3
description: |
The Meta Llama 3.3 multilingual large language model (LLM) is a pretrained and instruction tuned generative model in 70B (text in/text out). The Llama 3.3 instruction tuned text only model is optimized for multilingual dialogue use cases and outperform many of the available open source and closed chat models on common industry benchmarks.
@@ -401,9 +402,64 @@
- filename: Negative-Anubis-70B-v1-Q4_K_M.gguf
sha256: ac088da9ca70fffaa70c876fbada9fc5a02e7d6049ef68f16b11a9c3256f2510
uri: huggingface://bartowski/Negative-Anubis-70B-v1-GGUF/Negative-Anubis-70B-v1-Q4_K_M.gguf
- !!merge <<: *llama33
name: "l3.3-ms-nevoria-70b"
icon: https://cdn-uploads.huggingface.co/production/uploads/64545af5ec40bbbd01242ca6/dtlCF4LbekmDD2y3LNpdH.jpeg
urls:
- https://huggingface.co/Steelskull/L3.3-MS-Nevoria-70b
- https://huggingface.co/bartowski/L3.3-MS-Nevoria-70b-GGUF
description: |
This model was created as I liked the storytelling of EVA, the prose and details of scenes from EURYALE and Anubis, enhanced with Negative_LLAMA to kill off the positive bias with a touch of nemotron sprinkeled in.
The choice to use the lorablated model as a base was intentional - while it might seem counterintuitive, this approach creates unique interactions between the weights, similar to what was achieved in the original Astoria model and Astoria V2 model . Rather than simply removing refusals, this "weight twisting" effect that occurs when subtracting the lorablated base model from the other models during the merge process creates an interesting balance in the final model's behavior. While this approach differs from traditional sequential application of components, it was chosen for its unique characteristics in the model's responses.
overrides:
parameters:
model: L3.3-MS-Nevoria-70b-Q4_K_M.gguf
files:
- filename: L3.3-MS-Nevoria-70b-Q4_K_M.gguf
sha256: e8b0763f263089a19d4b112b7ed5085cc5f1ed9ca49c5085baa8d51f4ded1f94
uri: huggingface://bartowski/L3.3-MS-Nevoria-70b-GGUF/L3.3-MS-Nevoria-70b-Q4_K_M.gguf
- !!merge <<: *llama33
name: "l3.3-70b-magnum-v4-se"
urls:
- https://huggingface.co/Doctor-Shotgun/L3.3-70B-Magnum-v4-SE
- https://huggingface.co/bartowski/L3.3-70B-Magnum-v4-SE-GGUF
description: |
The Magnum v4 series is complete, but here's something a little extra I wanted to tack on as I wasn't entirely satisfied with the results of v4 72B. "SE" for Special Edition - this model is finetuned from meta-llama/Llama-3.3-70B-Instruct as an rsLoRA adapter. The dataset is a slightly revised variant of the v4 data with some elements of the v2 data re-introduced.
The objective, as with the other Magnum models, is to emulate the prose style and quality of the Claude 3 Sonnet/Opus series of models on a local scale, so don't be surprised to see "Claude-isms" in its output.
overrides:
parameters:
model: L3.3-70B-Magnum-v4-SE-Q4_K_M.gguf
files:
- filename: L3.3-70B-Magnum-v4-SE-Q4_K_M.gguf
sha256: 9724a6364a42caa3d5a1687258eb329c9af6cbb2ce01c8dd556c1a222a2e0352
uri: huggingface://bartowski/L3.3-70B-Magnum-v4-SE-GGUF/L3.3-70B-Magnum-v4-SE-Q4_K_M.gguf
- !!merge <<: *llama33
name: "l3.3-prikol-70b-v0.2"
icon: https://files.catbox.moe/x9t3zo.png
urls:
- https://huggingface.co/Nohobby/L3.3-Prikol-70B-v0.2
- https://huggingface.co/bartowski/L3.3-Prikol-70B-v0.2-GGUF
description: |
A merge of some Llama 3.3 models because um uh yeah
Went extra schizo on the recipe, hoping for an extra fun result, and... Well, I guess it's an overall improvement over the previous revision. It's a tiny bit smarter, has even more distinct swipes and nice dialogues, but for some reason it's damn sloppy.
I've published the second step of this merge as a separate model, and I'd say the results are more interesting, but not as usable as this one. https://huggingface.co/Nohobby/AbominationSnowPig
Prompt format: Llama3 OR Llama3 Context and ChatML Instruct. It actually works a bit better this way
overrides:
parameters:
model: L3.3-Prikol-70B-v0.2-Q4_K_M.gguf
files:
- filename: L3.3-Prikol-70B-v0.2-Q4_K_M.gguf
sha256: fc0ff514efbc0b67981c2bf1423d5a2e1b8801e4266ba0c653ea148414fe5ffc
uri: huggingface://bartowski/L3.3-Prikol-70B-v0.2-GGUF/L3.3-Prikol-70B-v0.2-Q4_K_M.gguf
- &rwkv
url: "github:mudler/LocalAI/gallery/rwkv.yaml@master"
name: "rwkv-6-world-7b"
icon: https://avatars.githubusercontent.com/u/132652788
license: apache-2.0
urls:
- https://huggingface.co/RWKV/rwkv-6-world-7b
@@ -426,6 +482,7 @@
uri: huggingface://bartowski/rwkv-6-world-7b-GGUF/rwkv-6-world-7b-Q4_K_M.gguf
- &qwen25coder
name: "qwen2.5-coder-14b"
icon: https://avatars.githubusercontent.com/u/141221163
url: "github:mudler/LocalAI/gallery/chatml.yaml@master"
license: apache-2.0
tags:
@@ -611,7 +668,7 @@
uri: huggingface://mraWdermacher/Qwen2.5-Coder-32B-Instruct-Uncensored-i1-GGUF/Qwen2.5-Coder-32B-Instruct-Uncensored.i1-Q4_K_M.gguf
- &opencoder
name: "opencoder-8b-base"
icon: https://github.com/OpenCoder-llm/opencoder-llm.github.io/blob/main/static/images/opencoder_icon.jpg?raw=true
icon: https://avatars.githubusercontent.com/u/186387526
url: "github:mudler/LocalAI/gallery/codellama.yaml@master"
urls:
- https://huggingface.co/infly/OpenCoder-8B-Base
@@ -677,6 +734,7 @@
uri: huggingface://QuantFactory/OpenCoder-1.5B-Instruct-GGUF/OpenCoder-1.5B-Instruct.Q4_K_M.gguf
- &granite3
name: "granite-3.0-1b-a400m-instruct"
icon: https://avatars.githubusercontent.com/u/167822367
urls:
- https://huggingface.co/ibm-granite/granite-3.0-1b-a400m-instruct
- https://huggingface.co/QuantFactory/granite-3.0-1b-a400m-instruct-GGUF
@@ -761,10 +819,9 @@
- filename: salamandra-7b-instruct.Q4_K_M-f32.gguf
sha256: bac8e8c1d1d9d53cbdb148b8ff9ad378ddb392429207099e85b5aae3a43bff3d
uri: huggingface://cstr/salamandra-7b-instruct-GGUF/salamandra-7b-instruct.Q4_K_M-f32.gguf
- &llama32
## llama3.2
- &llama32 ## llama3.2
url: "github:mudler/LocalAI/gallery/llama3.1-instruct.yaml@master"
icon: https://cdn-uploads.huggingface.co/production/uploads/642cc1c253e76b4c2286c58e/aJJxKus1wP5N-euvHEUq7.png
icon: https://avatars.githubusercontent.com/u/153379578
license: llama3.2
description: |
The Meta Llama 3.2 collection of multilingual large language models (LLMs) is a collection of pretrained and instruction-tuned generative models in 1B and 3B sizes (text in/text out). The Llama 3.2 instruction-tuned text only models are optimized for multilingual dialogue use cases, including agentic retrieval and summarization tasks. They outperform many of the available open source and closed chat models on common industry benchmarks.
@@ -933,7 +990,6 @@
uri: huggingface://mradermacher/Llama-3.2-3B-Reasoning-Time-GGUF/Llama-3.2-3B-Reasoning-Time.Q4_K_M.gguf
- !!merge <<: *llama32
name: "llama-3.2-sun-2.5b-chat"
icon: https://i.ibb.co/PF0TdMJ/imagine-image-9a56cee7-0f4f-4cc2-b265-a5b8d04f266b.png
urls:
- https://huggingface.co/meditsolutions/Llama-3.2-SUN-2.5B-chat
- https://huggingface.co/mradermacher/Llama-3.2-SUN-2.5B-chat-GGUF
@@ -965,7 +1021,6 @@
uri: huggingface://mradermacher/Llama-3.2-SUN-2.5B-chat-GGUF/Llama-3.2-SUN-2.5B-chat.Q4_K_M.gguf
- !!merge <<: *llama32
name: "llama-3.2-3b-instruct-uncensored"
icon: https://i.imgur.com/JOePyAN.png
urls:
- https://huggingface.co/bartowski/Llama-3.2-3B-Instruct-uncensored-GGUF
- https://huggingface.co/chuanli11/Llama-3.2-3B-Instruct-uncensored
@@ -1299,9 +1354,9 @@
- filename: FineMath-Llama-3B-Q4_K_M.gguf
sha256: 16c73b5cf2a417a7e1608bcc9469f1461fc3e759ce04a3a337f48df977dc158c
uri: huggingface://bartowski/FineMath-Llama-3B-GGUF/FineMath-Llama-3B-Q4_K_M.gguf
- &qwen25
## Qwen2.5
- &qwen25 ## Qwen2.5
name: "qwen2.5-14b-instruct"
icon: https://avatars.githubusercontent.com/u/141221163
url: "github:mudler/LocalAI/gallery/chatml.yaml@master"
license: apache-2.0
description: |
@@ -1591,6 +1646,7 @@
uri: huggingface://bartowski/qwen2.5-7b-ins-v3-GGUF/qwen2.5-7b-ins-v3-Q4_K_M.gguf
- !!merge <<: *qwen25
name: "supernova-medius"
icon: https://avatars.githubusercontent.com/u/126496414
urls:
- https://huggingface.co/arcee-ai/SuperNova-Medius-GGUF
description: |
@@ -1745,7 +1801,7 @@
uri: huggingface://bartowski/TheBeagle-v2beta-32B-MGS-GGUF/TheBeagle-v2beta-32B-MGS-Q4_K_M.gguf
- !!merge <<: *qwen25
name: "meraj-mini"
icon: https://i.ibb.co/CmPSSpq/Screenshot-2024-10-06-at-9-45-06-PM.png
icon: https://avatars.githubusercontent.com/u/126496414
urls:
- https://huggingface.co/arcee-ai/Meraj-Mini
- https://huggingface.co/QuantFactory/Meraj-Mini-GGUF
@@ -2125,7 +2181,6 @@
sha256: 42cf7a96784dc8f25c61c2404620c3e6548a024caa8dff6e435d7c86400d7ab8
uri: huggingface://mradermacher/Qwen2.5-7B-nerd-uncensored-v1.7-GGUF/Qwen2.5-7B-nerd-uncensored-v1.7.Q4_K_M.gguf
- !!merge <<: *qwen25
icon: https://i.imgur.com/OxX2Usi.png
name: "evathene-v1.0"
urls:
- https://huggingface.co/sophosympatheia/Evathene-v1.0
@@ -2375,7 +2430,7 @@
uri: huggingface://QuantFactory/Math-IIO-7B-Instruct-GGUF/Math-IIO-7B-Instruct.Q4_K_M.gguf
- !!merge <<: *qwen25
name: "virtuoso-small"
icon: https://i.ibb.co/pXD6Bcv/SW2-U-g-QQLSH1-ZAbxhs-Iu-A.webp
icon: https://avatars.githubusercontent.com/u/126496414
urls:
- https://huggingface.co/arcee-ai/Virtuoso-Small-GGUF
description: |
@@ -2484,7 +2539,6 @@
sha256: 91907f29746625a62885793475956220b81d8a5a34b53686a1acd1d03fd403ea
uri: huggingface://bartowski/72B-Qwen2.5-Kunou-v1-GGUF/72B-Qwen2.5-Kunou-v1-Q4_K_M.gguf
- !!merge <<: *qwen25
icon: https://i.imgur.com/OxX2Usi.png
name: "evathene-v1.3"
urls:
- https://huggingface.co/sophosympatheia/Evathene-v1.3
@@ -2653,6 +2707,7 @@
- cpu
- function-calling
name: "arch-function-1.5b"
icon: https://avatars.githubusercontent.com/u/112724757
uri: "github:mudler/LocalAI/gallery/arch-function.yaml@master"
urls:
- https://huggingface.co/katanemolabs/Arch-Function-1.5B
@@ -3092,7 +3147,7 @@
uri: huggingface://bartowski/Rombos-Qwen2.5-Writer-32b-GGUF/Rombos-Qwen2.5-Writer-32b-Q4_K_M.gguf
- !!merge <<: *qwen25
name: "sky-t1-32b-preview"
icon: https://raw.githubusercontent.com/NovaSky-AI/novasky-ai.github.io/main/assets/images/blue-bird-wider.jpeg
icon: https://github.com/NovaSky-AI/novasky-ai.github.io/raw/main/assets/images/blue-bird-wider.jpeg
urls:
- https://huggingface.co/NovaSky-AI/Sky-T1-32B-Preview
- https://huggingface.co/bartowski/Sky-T1-32B-Preview-GGUF
@@ -3138,8 +3193,88 @@
- filename: steiner-32b-preview-Q4_K_M.gguf
sha256: 1d7bf6d6dc8db8c81b3e71dc89756cd23417bb0a645b7dcdd1f9457781a88652
uri: huggingface://bartowski/steiner-32b-preview-GGUF/steiner-32b-preview-Q4_K_M.gguf
- &smollm
## SmolLM
- !!merge <<: *qwen25
name: "qwerus-7b"
urls:
- https://huggingface.co/mlabonne/Qwerus-7B
- https://huggingface.co/bartowski/Qwerus-7B-GGUF
description: |
Qwerus-7B is a merge of the following models using LazyMergekit:
PRIME-RL/Eurus-2-7B-PRIME
Qwen/Qwen2.5-7B-Instruct
overrides:
parameters:
model: Qwerus-7B-Q4_K_M.gguf
files:
- filename: Qwerus-7B-Q4_K_M.gguf
sha256: 3676629e8092a59f523393e6eb5072727f5213a9e03b7b81141f05a33743e20c
uri: huggingface://bartowski/Qwerus-7B-GGUF/Qwerus-7B-Q4_K_M.gguf
- !!merge <<: *qwen25
name: "lb-reranker-0.5b-v1.0"
urls:
- https://huggingface.co/lightblue/lb-reranker-0.5B-v1.0
- https://huggingface.co/bartowski/lb-reranker-0.5B-v1.0-GGUF
description: |
The LB Reranker has been trained to determine the relatedness of a given query to a piece of text, therefore allowing it to be used as a ranker or reranker in various retrieval-based tasks.
This model is fine-tuned from a Qwen/Qwen2.5-0.5B-Instruct model checkpoint and was trained for roughly 5.5 hours using the 8 x L20 instance (ecs.gn8is-8x.32xlarge) on Alibaba Cloud.
The training data for this model can be found at lightblue/reranker_continuous_filt_max7_train and the code for generating this data as well as running the training of the model can be found on our Github repo.
Trained on data in over 95 languages, this model is applicable to a broad range of use cases.
This model has three main benefits over comparable rerankers.
It has shown slightly higher performance on evaluation benchmarks.
It has been trained on more languages than any previous model.
It is a simple Causal LM model trained to output a string between "1" and "7".
This last point means that this model can be used natively with many widely available inference packages, including vLLM and LMDeploy. This in turns allows our reranker to benefit from improvements to inference as and when these packages release them.
Update: We have also found that this model works pretty well as a code snippet reranker too (P@1 of 96%)! See our Colab for more details.
overrides:
parameters:
model: lb-reranker-0.5B-v1.0-Q4_K_M.gguf
files:
- filename: lb-reranker-0.5B-v1.0-Q4_K_M.gguf
sha256: 43568150de5136da15c996bbf4d1a78cc6580515c40f0ef9a8c90b0542228ab3
uri: huggingface://bartowski/lb-reranker-0.5B-v1.0-GGUF/lb-reranker-0.5B-v1.0-Q4_K_M.gguf
- !!merge <<: *qwen25
name: "uwu-7b-instruct"
urls:
- https://huggingface.co/qingy2024/UwU-7B-Instruct
- https://huggingface.co/bartowski/UwU-7B-Instruct-GGUF
description: |
Small QwQ, full-finetuned on FineQwQ-142K. Unlike my previous models, this one is a general-purpose reasoning machine!
overrides:
parameters:
model: UwU-7B-Instruct-Q4_K_M.gguf
files:
- filename: UwU-7B-Instruct-Q4_K_M.gguf
sha256: 279b2ba20d51bb155c8dd497cf49e0c28407b1822c75de88cfd83d13fd14a59f
uri: huggingface://bartowski/UwU-7B-Instruct-GGUF/UwU-7B-Instruct-Q4_K_M.gguf
- !!merge <<: *qwen25
name: "drt-o1-14b"
urls:
- https://huggingface.co/Krystalan/DRT-o1-14B
- https://huggingface.co/bartowski/DRT-o1-14B-GGUF
description: |
This repository contains the resources for our paper "DRT-o1: Optimized Deep Reasoning Translation via Long Chain-of-Thought"
In this work, we introduce DRT-o1, an attempt to bring the success of long thought reasoning to neural machine translation (MT). To this end,
🌟 We mine English sentences with similes or metaphors from existing literature books, which are suitable for translation via long thought.
🌟 We propose a designed multi-agent framework with three agents (i.e., a translator, an advisor and an evaluator) to synthesize the MT samples with long thought. There are 22,264 synthesized samples in total.
🌟 We train DRT-o1-8B, DRT-o1-7B and DRT-o1-14B using Llama-3.1-8B-Instruct, Qwen2.5-7B-Instruct and Qwen2.5-14B-Instruct as backbones.
Our goal is not to achieve competitive performance with OpenAIs O1 in neural machine translation (MT). Instead, we explore technical routes to bring the success of long thought to MT. To this end, we introduce DRT-o1, a byproduct of our exploration, and we hope it could facilitate the corresponding research in this direction.
overrides:
parameters:
model: DRT-o1-14B-Q4_K_M.gguf
files:
- filename: DRT-o1-14B-Q4_K_M.gguf
sha256: 9619ca984cf4ce8e4f69bcde831de17b2ce05dd89536e3130608877521e3d328
uri: huggingface://bartowski/DRT-o1-14B-GGUF/DRT-o1-14B-Q4_K_M.gguf
- &smollm ## SmolLM
url: "github:mudler/LocalAI/gallery/chatml.yaml@master"
name: "smollm-1.7b-instruct"
icon: https://huggingface.co/datasets/HuggingFaceTB/images/resolve/main/banner_smol.png
@@ -3183,10 +3318,23 @@
- filename: smollm2-1.7b-instruct-q4_k_m.gguf
sha256: decd2598bc2c8ed08c19adc3c8fdd461ee19ed5708679d1c54ef54a5a30d4f33
uri: huggingface://HuggingFaceTB/SmolLM2-1.7B-Instruct-GGUF/smollm2-1.7b-instruct-q4_k_m.gguf
- &llama31
## LLama3.1
- !!merge <<: *qwen25
name: "vikhr-qwen-2.5-1.5b-instruct"
urls:
- https://huggingface.co/Vikhrmodels/Vikhr-Qwen-2.5-1.5B-Instruct
- https://huggingface.co/QuantFactory/Vikhr-Qwen-2.5-1.5B-Instruct-GGUF
description: |
Instructive model based on Qwen-2.5-1.5B-Instruct, trained on the Russian-language dataset GrandMaster-PRO-MAX. Designed for high-efficiency text processing in Russian and English, delivering precise responses and fast task execution.
overrides:
parameters:
model: Vikhr-Qwen-2.5-1.5B-Instruct.Q4_K_M.gguf
files:
- filename: Vikhr-Qwen-2.5-1.5B-Instruct.Q4_K_M.gguf
sha256: eaeac314e30b461413bc1cc819cdc0cd6a79265711fd0b8268702960a082c7bd
uri: huggingface://QuantFactory/Vikhr-Qwen-2.5-1.5B-Instruct-GGUF/Vikhr-Qwen-2.5-1.5B-Instruct.Q4_K_M.gguf
- &llama31 ## LLama3.1
url: "github:mudler/LocalAI/gallery/llama3.1-instruct.yaml@master"
icon: https://cdn-uploads.huggingface.co/production/uploads/642cc1c253e76b4c2286c58e/aJJxKus1wP5N-euvHEUq7.png
icon: https://avatars.githubusercontent.com/u/153379578
name: "meta-llama-3.1-8b-instruct"
license: llama3.1
description: |
@@ -3275,7 +3423,7 @@
sha256: 6d175432f66d10dfed9737f73a5073d513d18e1ee7bd4b9cf2a59deb359f36ff
- !!merge <<: *llama31
name: "meta-llama-3.1-8b-instruct-abliterated"
icon: https://i.imgur.com/KhorYYG.png
icon: https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/AsTgL8VCgMHgobq4cr46b.png
urls:
- https://huggingface.co/mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated
- https://huggingface.co/mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated-GGUF
@@ -3304,7 +3452,7 @@
uri: huggingface://mmnga/Llama-3.1-70B-Japanese-Instruct-2407-gguf/Llama-3.1-70B-Japanese-Instruct-2407-Q4_K_M.gguf
- !!merge <<: *llama31
name: "openbuddy-llama3.1-8b-v22.1-131k"
icon: https://raw.githubusercontent.com/OpenBuddy/OpenBuddy/main/media/demo.png
icon: https://github.com/OpenBuddy/OpenBuddy/raw/main/media/demo.png
urls:
- https://huggingface.co/sunnyyy/openbuddy-llama3.1-8b-v22.1-131k-Q4_K_M-GGUF
description: |
@@ -3480,7 +3628,7 @@
sha256: 6557c5d5091f2507d19ab1f8bfb9ceb4e1536a755ab70f148b18aeb33741580f
uri: huggingface://mradermacher/Llama-3.1-Techne-RP-8b-v1-GGUF/Llama-3.1-Techne-RP-8b-v1.Q4_K_M.gguf
- !!merge <<: *llama31
icon: https://i.ibb.co/9hwFrvL/BLMs-Wkx-NQf-W-46-FZDg-ILhg.jpg
icon: https://avatars.githubusercontent.com/u/126496414
name: "llama-spark"
urls:
- https://huggingface.co/arcee-ai/Llama-Spark
@@ -3598,7 +3746,6 @@
- !!merge <<: *llama31
name: "llama-3.1-supernova-lite-reflection-v1.0-i1"
url: "github:mudler/LocalAI/gallery/llama3.1-reflective.yaml@master"
icon: https://i.ibb.co/r072p7j/eopi-ZVu-SQ0-G-Cav78-Byq-Tg.png
urls:
- https://huggingface.co/SE6446/Llama-3.1-SuperNova-Lite-Reflection-V1.0
- https://huggingface.co/mradermacher/Llama-3.1-SuperNova-Lite-Reflection-V1.0-i1-GGUF
@@ -3613,7 +3760,7 @@
uri: huggingface://mradermacher/Llama-3.1-SuperNova-Lite-Reflection-V1.0-i1-GGUF/Llama-3.1-SuperNova-Lite-Reflection-V1.0.i1-Q4_K_M.gguf
- !!merge <<: *llama31
name: "llama-3.1-supernova-lite"
icon: https://i.ibb.co/r072p7j/eopi-ZVu-SQ0-G-Cav78-Byq-Tg.png
icon: https://avatars.githubusercontent.com/u/126496414
urls:
- https://huggingface.co/arcee-ai/Llama-3.1-SuperNova-Lite
- https://huggingface.co/arcee-ai/Llama-3.1-SuperNova-Lite-GGUF
@@ -4127,6 +4274,7 @@
uri: huggingface://mradermacher/Hermes-3-Llama-3.1-70B-lorablated-GGUF/Hermes-3-Llama-3.1-70B-lorablated.Q4_K_M.gguf
- !!merge <<: *llama31
name: "hermes-3-llama-3.1-8b-lorablated"
icon: https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/4Hbw5n68jKUSBQeTqQIeT.png
urls:
- https://huggingface.co/mlabonne/Hermes-3-Llama-3.1-8B-lorablated-GGUF
description: |
@@ -4335,7 +4483,6 @@
sha256: 27b10c3ca4507e8bf7d305d60e5313b54ef5fffdb43a03f36223d19d906e39f3
uri: huggingface://mradermacher/L3.1-70Blivion-v0.1-rc1-70B-i1-GGUF/L3.1-70Blivion-v0.1-rc1-70B.i1-Q4_K_M.gguf
- !!merge <<: *llama31
icon: https://i.imgur.com/sdN0Aqg.jpeg
name: "llama-3.1-hawkish-8b"
urls:
- https://huggingface.co/mukaj/Llama-3.1-Hawkish-8B
@@ -5072,11 +5219,10 @@
- filename: Dolphin3.0-Llama3.1-8B-Q4_K_M.gguf
sha256: 268390e07edd407ad93ea21a868b7ae995b5950e01cad0db9e1802ae5049d405
uri: huggingface://bartowski/Dolphin3.0-Llama3.1-8B-GGUF/Dolphin3.0-Llama3.1-8B-Q4_K_M.gguf
- &deepseek
## Deepseek
- &deepseek ## Deepseek
url: "github:mudler/LocalAI/gallery/deepseek.yaml@master"
name: "deepseek-coder-v2-lite-instruct"
icon: "https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/logo.svg?raw=true"
icon: "https://avatars.githubusercontent.com/u/148330874"
license: deepseek
description: |
DeepSeek-Coder-V2, an open-source Mixture-of-Experts (MoE) code language model that achieves performance comparable to GPT4-Turbo in code-specific tasks. Specifically, DeepSeek-Coder-V2 is further pre-trained from DeepSeek-Coder-V2-Base with 6 trillion tokens sourced from a high-quality and multi-source corpus. Through this continued pre-training, DeepSeek-Coder-V2 substantially enhances the coding and mathematical reasoning capabilities of DeepSeek-Coder-V2-Base, while maintaining comparable performance in general language tasks. Compared to DeepSeek-Coder, DeepSeek-Coder-V2 demonstrates significant advancements in various aspects of code-related tasks, as well as reasoning and general capabilities. Additionally, DeepSeek-Coder-V2 expands its support for programming languages from 86 to 338, while extending the context length from 16K to 128K.
@@ -5138,10 +5284,10 @@
- filename: archangel_sft_pythia2-8b.Q4_K_M.gguf
sha256: a47782c55ef2b39b19644213720a599d9849511a73c9ebb0c1de749383c0a0f8
uri: huggingface://RichardErkhov/ContextualAI_-_archangel_sft_pythia2-8b-gguf/archangel_sft_pythia2-8b.Q4_K_M.gguf
- &qwen2
## Start QWEN2
- &qwen2 ## Start QWEN2
url: "github:mudler/LocalAI/gallery/chatml.yaml@master"
name: "qwen2-7b-instruct"
icon: https://avatars.githubusercontent.com/u/141221163
license: apache-2.0
description: |
Qwen2 is the new series of Qwen large language models. For Qwen2, we release a number of base language models and instruction-tuned language models ranging from 0.5 to 72 billion parameters, including a Mixture-of-Experts model. This repo contains the instruction-tuned 7B Qwen2 model.
@@ -5248,7 +5394,7 @@
uri: huggingface://bartowski/Einstein-v7-Qwen2-7B-GGUF/Einstein-v7-Qwen2-7B-Q4_K_M.gguf
- !!merge <<: *qwen2
name: "arcee-spark"
icon: https://i.ibb.co/80ssNWS/o-Vdk-Qx-ARNmzr-Pi1h-Efj-SA.webp
icon: https://avatars.githubusercontent.com/u/126496414
description: |
Arcee Spark is a powerful 7B parameter language model that punches well above its weight class. Initialized from Qwen2, this model underwent a sophisticated training process:
@@ -5286,7 +5432,7 @@
uri: huggingface://Hercules-5.0-Qwen2-7B-Q4_K_M.gguf/Hercules-5.0-Qwen2-7B-Q4_K_M.gguf
- !!merge <<: *qwen2
name: "arcee-agent"
icon: https://i.ibb.co/CBHmTDn/136719a5-6d8a-4654-a618-46eabc788953.jpg
icon: https://avatars.githubusercontent.com/u/126496414
description: |
Arcee Agent is a cutting-edge 7B parameter language model specifically designed for function calling and tool use. Initialized from Qwen2-7B, it rivals the performance of much larger models while maintaining efficiency and speed. This model is particularly suited for developers, researchers, and businesses looking to implement sophisticated AI-driven solutions without the computational overhead of larger language models. Compute for training Arcee-Agent was provided by CrusoeAI. Arcee-Agent was trained using Spectrum.
urls:
@@ -5471,8 +5617,34 @@
- filename: marco-o1-uncensored.Q4_K_M.gguf
sha256: ad0440270a7254098f90779744d3e5b34fe49b7baf97c819909ba9c5648cc0d9
uri: huggingface://QuantFactory/marco-o1-uncensored-GGUF/marco-o1-uncensored.Q4_K_M.gguf
- &mistral03
## START Mistral
- !!merge <<: *qwen2
name: "minicpm-v-2_6"
license: apache-2.0
icon: https://avatars.githubusercontent.com/u/89920203
urls:
- https://huggingface.co/openbmb/MiniCPM-V-2_6-gguf
- https://huggingface.co/openbmb/MiniCPM-V-2_6
description: |
MiniCPM-V 2.6 is the latest and most capable model in the MiniCPM-V series. The model is built on SigLip-400M and Qwen2-7B with a total of 8B parameters
tags:
- llm
- multimodal
- gguf
- gpu
- qwen2
- cpu
overrides:
mmproj: minicpm-v-2_6-mmproj-f16.gguf
parameters:
model: minicpm-v-2_6-Q4_K_M.gguf
files:
- filename: minicpm-v-2_6-Q4_K_M.gguf
sha256: 3a4078d53b46f22989adbf998ce5a3fd090b6541f112d7e936eb4204a04100b1
uri: huggingface://openbmb/MiniCPM-V-2_6-gguf/ggml-model-Q4_K_M.gguf
- filename: minicpm-v-2_6-mmproj-f16.gguf
sha256: f8a805e9e62085805c69c427287acefc284932eb4abfe6e1b1ce431d27e2f4e0
uri: huggingface://openbmb/MiniCPM-V-2_6-gguf/mmproj-model-f16.gguf
- &mistral03 ## START Mistral
url: "github:mudler/LocalAI/gallery/mistral-0.3.yaml@master"
name: "mistral-7b-instruct-v0.3"
icon: https://cdn-avatars.huggingface.co/v1/production/uploads/62dac1c7a8ead43d20e3e17a/wrLf5yaGC6ng4XME70w6Z.png
@@ -5980,7 +6152,6 @@
- !!merge <<: *mistral03
name: "mn-12b-mag-mell-r1-iq-arm-imatrix"
url: "github:mudler/LocalAI/gallery/chatml.yaml@master"
icon: "https://i.imgur.com/wjyAaTO.png"
urls:
- https://huggingface.co/inflatebot/MN-12B-Mag-Mell-R1
- https://huggingface.co/Lewdiculous/MN-12B-Mag-Mell-R1-GGUF-IQ-ARM-Imatrix
@@ -6077,8 +6248,35 @@
- filename: Nera_Noctis-12B-Q4_K_M.gguf
sha256: 0662a9a847adde046e6255c15d5a677ebf09ab00841547c8963668d14baf00ff
uri: huggingface://bartowski/Nera_Noctis-12B-GGUF/Nera_Noctis-12B-Q4_K_M.gguf
- &mudler
### START mudler's LocalAI specific-models
- !!merge <<: *mistral03
name: "wayfarer-12b"
url: "github:mudler/LocalAI/gallery/chatml.yaml@master"
icon: https://huggingface.co/LatitudeGames/Wayfarer-12B/resolve/main/wayfarer.jpg
urls:
- https://huggingface.co/LatitudeGames/Wayfarer-12B
- https://huggingface.co/bartowski/Wayfarer-12B-GGUF
description: |
Weve heard over and over from AI Dungeon players that modern AI models are too nice, never letting them fail or die. While it may be good for a chatbot to be nice and helpful, great stories and games arent all rainbows and unicorns. They have conflict, tension, and even death. These create real stakes and consequences for characters and the journeys they go on.
Similarly, great games need opposition. You must be able to fail, die, and may even have to start over. This makes games more fun!
However, the vast majority of AI models, through alignment RLHF, have been trained away from darkness, violence, or conflict, preventing them from fulfilling this role. To give our players better options, we decided to train our own model to fix these issues.
Wayfarer is an adventure role-play model specifically trained to give players a challenging and dangerous experience. We thought they would like it, but since releasing it on AI Dungeon, players have reacted even more positively than we expected.
Because they loved it so much, weve decided to open-source the model so anyone can experience unforgivingly brutal AI adventures! Anyone can download the model to run locally.
Or if you want to easily try this model for free, you can do so at https://aidungeon.com.
We plan to continue improving and open-sourcing similar models, so please share any and all feedback on how we can improve model behavior. Below we share more details on how Wayfarer was created.
overrides:
parameters:
model: Wayfarer-12B-Q4_K_M.gguf
files:
- filename: Wayfarer-12B-Q4_K_M.gguf
sha256: 6cd9f290c820c64854fcdcfd312b066447acc2f63abe2e2e71af9bc4f1946c08
uri: huggingface://bartowski/Wayfarer-12B-GGUF/Wayfarer-12B-Q4_K_M.gguf
- &mudler ### START mudler's LocalAI specific-models
url: "github:mudler/LocalAI/gallery/mudler.yaml@master"
name: "LocalAI-llama3-8b-function-call-v0.2"
icon: "https://cdn-uploads.huggingface.co/production/uploads/647374aa7ff32a81ac6d35d4/us5JKi9z046p8K-cn_M0w.webp"
@@ -6123,8 +6321,7 @@
- filename: Mirai-Nova-Llama3-LocalAI-8B-v0.1-q4_k_m.bin
sha256: 579cbb229f9c11d0330759ff4733102d2491615a4c61289e26c09d1b3a583fec
uri: huggingface://mudler/Mirai-Nova-Llama3-LocalAI-8B-v0.1-GGUF/Mirai-Nova-Llama3-LocalAI-8B-v0.1-q4_k_m.bin
- &parler-tts
### START parler-tts
- &parler-tts ### START parler-tts
url: "github:mudler/LocalAI/gallery/parler-tts.yaml@master"
name: parler-tts-mini-v0.1
overrides:
@@ -6141,8 +6338,7 @@
- cpu
- text-to-speech
- python
- &rerankers
### START rerankers
- &rerankers ### START rerankers
url: "github:mudler/LocalAI/gallery/rerankers.yaml@master"
name: cross-encoder
parameters:
@@ -6182,6 +6378,7 @@
- &gemma
url: "github:mudler/LocalAI/gallery/gemma.yaml@master"
name: "gemma-2b"
icon: https://avatars.githubusercontent.com/u/1342004
license: gemma
urls:
- https://ai.google.dev/gemma/docs
@@ -6897,7 +7094,7 @@
uri: huggingface://bartowski/GWQ-9B-Preview2-GGUF/GWQ-9B-Preview2-Q4_K_M.gguf
- &llama3
url: "github:mudler/LocalAI/gallery/llama3-instruct.yaml@master"
icon: https://cdn-uploads.huggingface.co/production/uploads/642cc1c253e76b4c2286c58e/aJJxKus1wP5N-euvHEUq7.png
icon: https://avatars.githubusercontent.com/u/153379578
name: "llama3-8b-instruct"
license: llama3
description: |
@@ -7064,10 +7261,9 @@
name: "l3-8b-stheno-v3.1"
urls:
- https://huggingface.co/Sao10K/L3-8B-Stheno-v3.1
icon: https://w.forfun.com/fetch/cb/cba2205390e517bea1ea60ca0b491af4.jpeg
description: |
- A model made for 1-on-1 Roleplay ideally, but one that is able to handle scenarios, RPGs and storywriting fine.
- Uncensored during actual roleplay scenarios. # I do not care for zero-shot prompting like what some people do. It is uncensored enough in actual usecases.
- Uncensored during actual roleplay scenarios. # I do not care for zero-shot prompting like what some people do. It is uncensored enough in actual usecases.
- I quite like the prose and style for this model.
overrides:
parameters:
@@ -7858,7 +8054,6 @@
urls:
- https://huggingface.co/bartowski/New-Dawn-Llama-3-70B-32K-v1.0-GGUF
- https://huggingface.co/sophosympatheia/New-Dawn-Llama-3-70B-32K-v1.0
icon: https://imgur.com/tKzncGo.png
description: |
This model is a multi-level SLERP merge of several Llama 3 70B variants. See the merge recipe below for details. I extended the context window for this model out to 32K by snagging some layers from abacusai/Smaug-Llama-3-70B-Instruct-32K using a technique similar to what I used for Midnight Miqu, which was further honed by jukofyork.
This model is uncensored. You are responsible for whatever you do with it.
@@ -8210,7 +8405,8 @@
- filename: dolphin-2.9.2-Phi-3-Medium-abliterated-Q4_K_M.gguf
sha256: 566331c2efe87725310aacb709ca15088a0063fa0ddc14a345bf20d69982156b
uri: huggingface://bartowski/dolphin-2.9.2-Phi-3-Medium-abliterated-GGUF/dolphin-2.9.2-Phi-3-Medium-abliterated-Q4_K_M.gguf
- url: "github:mudler/LocalAI/gallery/chatml.yaml@master"
- !!merge <<: *llama3
url: "github:mudler/LocalAI/gallery/chatml.yaml@master"
name: "llama-3-8b-instruct-dpo-v0.3-32k"
license: llama3
urls:
@@ -8364,7 +8560,7 @@
urls:
- https://huggingface.co/arcee-ai/Llama-3-SEC-Chat-GGUF
- https://huggingface.co/arcee-ai/Llama-3-SEC-Chat
icon: https://i.ibb.co/kHtBmDN/w8m6-X4-HCQRa-IR86ar-Cm5gg.webp
icon: https://avatars.githubusercontent.com/u/126496414
tags:
- llama3
- gguf
@@ -8394,10 +8590,9 @@
- filename: Copus-2x8B.i1-Q4_K_M.gguf
sha256: 685da1ba49e203e8f491105585143d76044286d4b4687bed37d325f6b55501e5
uri: huggingface://mradermacher/Copus-2x8B-i1-GGUF/Copus-2x8B.i1-Q4_K_M.gguf
- &yi-chat
### Start Yi
- &yi-chat ### Start Yi
url: "github:mudler/LocalAI/gallery/chatml.yaml@master"
icon: "https://raw.githubusercontent.com/01-ai/Yi/main/assets/img/Yi_logo_icon_light.svg"
icon: "https://github.com/01-ai/Yi/raw/main/assets/img/Yi_logo_icon_light.svg"
name: "yi-1.5-9b-chat"
license: apache-2.0
urls:
@@ -8606,8 +8801,7 @@
- filename: Fimbulvetr-11B-v2-Q4_K_M-imat.gguf
sha256: 3f309b59508342536a70edd6c4be6cf4f2cb97f2e32cbc79ad2ab3f4c02933a4
uri: huggingface://Lewdiculous/Fimbulvetr-11B-v2-GGUF-IQ-Imatrix/Fimbulvetr-11B-v2-Q4_K_M-imat.gguf
- &noromaid
### Start noromaid
- &noromaid ### Start noromaid
url: "github:mudler/LocalAI/gallery/noromaid.yaml@master"
name: "noromaid-13b-0.4-DPO"
icon: https://cdn-uploads.huggingface.co/production/uploads/630dfb008df86f1e5becadc3/VKX2Z2yjZX5J8kXzgeCYO.png
@@ -8627,8 +8821,7 @@
- filename: Noromaid-13B-0.4-DPO.q4_k_m.gguf
sha256: cb28e878d034fae3d0b43326c5fc1cfb4ab583b17c56e41d6ce023caec03c1c1
uri: huggingface://NeverSleep/Noromaid-13B-0.4-DPO-GGUF/Noromaid-13B-0.4-DPO.q4_k_m.gguf
- &wizardlm2
### START Vicuna based
- &wizardlm2 ### START Vicuna based
url: "github:mudler/LocalAI/gallery/wizardlm2.yaml@master"
name: "wizardlm2-7b"
description: |
@@ -8683,8 +8876,9 @@
- filename: moondream2-mmproj-f16.gguf
sha256: 4cc1cb3660d87ff56432ebeb7884ad35d67c48c7b9f6b2856f305e39c38eed8f
uri: huggingface://moondream/moondream2-gguf/moondream2-mmproj-f16.gguf
- &llava
### START LLaVa
- &llava ### START LLaVa
name: "llava-1.6-vicuna"
icon: https://github.com/lobehub/lobe-icons/raw/master/packages/static-png/dark/llava-color.png
url: "github:mudler/LocalAI/gallery/llava.yaml@master"
license: apache-2.0
description: |
@@ -8698,7 +8892,6 @@
- gpu
- llama2
- cpu
name: "llava-1.6-vicuna"
overrides:
mmproj: mmproj-vicuna7b-f16.gguf
parameters:
@@ -9026,7 +9219,7 @@
urls:
- https://huggingface.co/BAAI/Bunny-Llama-3-8B-V-gguf
description: |
Bunny is a family of lightweight but powerful multimodal models. It offers multiple plug-and-play vision encoders, like EVA-CLIP, SigLIP and language backbones, including Llama-3-8B, Phi-1.5, StableLM-2, Qwen1.5, MiniCPM and Phi-2. To compensate for the decrease in model size, we construct more informative training data by curated selection from a broader data source.
Bunny is a family of lightweight but powerful multimodal models. It offers multiple plug-and-play vision encoders, like EVA-CLIP, SigLIP and language backbones, including Llama-3-8B, Phi-1.5, StableLM-2, Qwen1.5, and Phi-2. To compensate for the decrease in model size, we construct more informative training data by curated selection from a broader data source.
We provide Bunny-Llama-3-8B-V, which is built upon SigLIP and Llama-3-8B-Instruct. More details about this model can be found in GitHub.
icon: https://huggingface.co/BAAI/Bunny-Llama-3-8B-V-gguf/resolve/main/icon.png
@@ -9075,6 +9268,7 @@
uri: huggingface://xtuner/llava-llama-3-8b-v1_1-gguf/llava-llama-3-8b-v1_1-mmproj-f16.gguf
- !!merge <<: *llama3
name: "minicpm-llama3-v-2_5"
icon: https://avatars.githubusercontent.com/u/89920203
urls:
- https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5-gguf
- https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5
@@ -9165,7 +9359,6 @@
June 18, 2024 Update, After extensive testing of the intermediate checkpoints, significant progress has been made.
The model is slowly — I mean, really slowly — unlearning its alignment. By significantly lowering the learning rate, I was able to visibly observe deep behavioral changes, this process is taking longer than anticipated, but it's going to be worth it. Estimated time to completion: 4 more days.. I'm pleased to report that in several tests, the model not only maintained its intelligence but actually showed a slight improvement, especially in terms of common sense. An intermediate checkpoint of this model was used to create invisietch/EtherealRainbow-v0.3-rc7, with promising results. Currently, it seems like I'm on the right track. I hope this model will serve as a solid foundation for further merges, whether for role-playing (RP) or for uncensoring. This approach also allows us to save on actual fine-tuning, thereby reducing our carbon footprint. The merge process takes just a few minutes of CPU time, instead of days of GPU work.
June 20, 2024 Update, Unaligning was partially successful, and the results are decent, but I am not fully satisfied. I decided to bite the bullet, and do a full finetune, god have mercy on my GPUs. I am also releasing the intermediate checkpoint of this model.
icon: https://i.imgur.com/Kpk1PgZ.png
overrides:
parameters:
model: LLAMA-3_8B_Unaligned_Alpha-Q4_K_M.gguf
@@ -9191,7 +9384,6 @@
uri: huggingface://bartowski/L3-8B-Lunaris-v1-GGUF/L3-8B-Lunaris-v1-Q4_K_M.gguf
- !!merge <<: *llama3
name: "llama-3_8b_unaligned_alpha_rp_soup-i1"
icon: https://i.imgur.com/pXcjpoV.png
urls:
- https://huggingface.co/SicariusSicariiStuff/LLAMA-3_8B_Unaligned_Alpha_RP_Soup
- https://huggingface.co/mradermacher/LLAMA-3_8B_Unaligned_Alpha_RP_Soup-i1-GGUF
@@ -9541,8 +9733,7 @@
- filename: Freyja-v4.95-maldv-7b-NON-FICTION.i1-Q4_K_M.gguf
sha256: cdc0f4de6df2ba120835fbd25c2a0ae2af8548f46d2c40c7a018c51c3d19e0c0
uri: huggingface://mradermacher/Freyja-v4.95-maldv-7b-NON-FICTION-i1-GGUF/Freyja-v4.95-maldv-7b-NON-FICTION.i1-Q4_K_M.gguf
- &chatml
### ChatML
- &chatml ### ChatML
url: "github:mudler/LocalAI/gallery/chatml.yaml@master"
name: "una-thepitbull-21.4b-v2"
license: afl-3.0
@@ -9590,7 +9781,6 @@
sha256: 9c90f3a65332a03a6cbb563eee19c7586d9544f646ff9f33f7f1904b3d415ae2
uri: huggingface://nold/HelpingAI-9B-GGUF/HelpingAI-9B_Q4_K_M.gguf
- url: "github:mudler/LocalAI/gallery/chatml-hercules.yaml@master"
icon: "https://tse3.mm.bing.net/th/id/OIG1.vnrl3xpEcypR3McLW63q?pid=ImgGn"
urls:
- https://huggingface.co/Locutusque/Llama-3-Hercules-5.0-8B
- https://huggingface.co/bartowski/Llama-3-Hercules-5.0-8B-GGUF
@@ -9828,8 +10018,7 @@
- filename: Triangulum-10B.Q4_K_M.gguf
sha256: dd071f99edf6b166044bf229cdeec19419c4c348e3fc3d6587cfcc55e6fb85fa
uri: huggingface://mradermacher/Triangulum-10B-GGUF/Triangulum-10B.Q4_K_M.gguf
- &command-R
### START Command-r
- &command-R ### START Command-r
url: "github:mudler/LocalAI/gallery/command-r.yaml@master"
name: "command-r-v01:q1_s"
license: "cc-by-nc-4.0"
@@ -9884,8 +10073,7 @@
- filename: "aya-23-35B-Q4_K_M.gguf"
sha256: "57824768c1a945e21e028c8e9a29b39adb4838d489f5865c82601ab9ad98065d"
uri: "huggingface://bartowski/aya-23-35B-GGUF/aya-23-35B-Q4_K_M.gguf"
- &phi-2-chat
### START Phi-2
- &phi-2-chat ### START Phi-2
url: "github:mudler/LocalAI/gallery/phi-2-chat.yaml@master"
license: mit
description: |
@@ -9914,6 +10102,7 @@
- llama2
- cpu
name: "phi-2-chat:Q8_0"
icon: https://avatars.githubusercontent.com/u/6154722
overrides:
parameters:
model: phi-2-layla-v1-chatml-Q8_0.gguf
@@ -9960,7 +10149,7 @@
urls:
- https://huggingface.co/internlm/internlm2_5-7b-chat-1m
- https://huggingface.co/bartowski/internlm2_5-7b-chat-1m-GGUF
icon: https://github.com/InternLM/InternLM/assets/22529082/b9788105-8892-4398-8b47-b513a292378e
icon: https://avatars.githubusercontent.com/u/135356492
tags:
- internlm2
- gguf
@@ -9981,10 +10170,35 @@
- filename: internlm2_5-7b-chat-1m-Q4_K_M.gguf
uri: huggingface://bartowski/internlm2_5-7b-chat-1m-GGUF/internlm2_5-7b-chat-1m-Q4_K_M.gguf
sha256: 10d5e18a4125f9d4d74a9284a21e0c820b150af06dee48665e54ff6e1be3a564
- &phi-3
### START Phi-3
### Internlm3
- name: "internlm3-8b-instruct"
url: "github:mudler/LocalAI/gallery/chatml.yaml@master"
urls:
- https://huggingface.co/internlm/internlm3-8b-instruct
- https://huggingface.co/bartowski/internlm3-8b-instruct-GGUF
icon: https://avatars.githubusercontent.com/u/135356492
tags:
- internlm3
- gguf
- cpu
- gpu
description: |
InternLM3 has open-sourced an 8-billion parameter instruction model, InternLM3-8B-Instruct, designed for general-purpose usage and advanced reasoning. The model has the following characteristics:
Enhanced performance at reduced cost: State-of-the-art performance on reasoning and knowledge-intensive tasks surpass models like Llama3.1-8B and Qwen2.5-7B.
Deep thinking capability: InternLM3 supports both the deep thinking mode for solving complicated reasoning tasks via the long chain-of-thought and the normal response mode for fluent user interactions.
overrides:
parameters:
model: internlm3-8b-instruct-Q4_K_M.gguf
files:
- filename: internlm3-8b-instruct-Q4_K_M.gguf
uri: huggingface://bartowski/internlm3-8b-instruct-GGUF/internlm3-8b-instruct-Q4_K_M.gguf
sha256: 2a9644687318e8659c9cf9b40730d5cc2f5af06f786a50439c7c51359b23896e
- &phi-3 ### START Phi-3
url: "github:mudler/LocalAI/gallery/phi-3-chat.yaml@master"
name: "phi-3-mini-4k-instruct"
icon: https://avatars.githubusercontent.com/u/6154722
license: mit
description: |
The Phi-3-Mini-4K-Instruct is a 3.8B parameters, lightweight, state-of-the-art open model trained with the Phi-3 datasets that includes both synthetic data and the filtered publicly available websites data with a focus on high-quality and reasoning dense properties. The model belongs to the Phi-3 family with the Mini version in two variants 4K and 128K which is the context length (in tokens) it can support. The model has underwent a post-training process that incorporates both supervised fine-tuning and direct preference optimization to ensure precise instruction adherence and robust safety measures. When assessed against benchmarks testing common sense, language understanding, math, code, long context and logical reasoning, Phi-3 Mini-4K-Instruct showcased a robust and state-of-the-art performance among models with less than 13 billion parameters.
@@ -10181,8 +10395,7 @@
- filename: Phi-3.5-MoE-instruct-Q4_K_M.gguf
sha256: 43e91bb720869bd8a92d8eb86bc3c74a52c49cf61642ca709b3d7bb89644df36
uri: huggingface://bartowski/Phi-3.5-MoE-instruct-GGUF/Phi-3.5-MoE-instruct-Q4_K_M.gguf
- &hermes-2-pro-mistral
### START Hermes
- &hermes-2-pro-mistral ### START Hermes
url: "github:mudler/LocalAI/gallery/hermes-2-pro-mistral.yaml@master"
name: "hermes-2-pro-mistral"
icon: https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/ggO2sBDJ8Bhc6w-zwTx5j.png
@@ -10518,8 +10731,7 @@
- filename: "galatolo-Q4_K.gguf"
sha256: "ca0cfd5a9ad40dc16416aa3a277015d0299b62c0803b67f5709580042202c172"
uri: "huggingface://galatolo/cerbero-7b-gguf/ggml-model-Q4_K.gguf"
- &codellama
### START Codellama
- &codellama ### START Codellama
url: "github:mudler/LocalAI/gallery/codellama.yaml@master"
name: "codellama-7b"
license: llama2
@@ -10650,8 +10862,7 @@
- filename: "llm-compiler-7b-ftd.Q4_K.gguf"
uri: "huggingface://legraphista/llm-compiler-7b-ftd-IMat-GGUF/llm-compiler-7b-ftd.Q4_K.gguf"
sha256: d862dd18ed335413787d0ad196522a9902a3c10a6456afdab8721822cb0ddde8
- &openvino
### START OpenVINO
- &openvino ### START OpenVINO
url: "github:mudler/LocalAI/gallery/openvino.yaml@master"
name: "openvino-llama-3-8b-instruct-ov-int8"
license: llama3
@@ -10765,8 +10976,7 @@
- gpu
- embedding
- cpu
- &sentencentransformers
### START Embeddings
- &sentencentransformers ### START Embeddings
description: |
This framework provides an easy method to compute dense vector representations for sentences, paragraphs, and images. The models are based on transformer networks like BERT / RoBERTa / XLM-RoBERTa etc. and achieve state-of-the-art performance in various tasks. Text is embedded in vector space such that similar text are closer and can efficiently be found using cosine similarity.
urls:
@@ -10781,8 +10991,7 @@
overrides:
parameters:
model: all-MiniLM-L6-v2
- &dreamshaper
### START Image generation
- &dreamshaper ### START Image generation
name: dreamshaper
icon: https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/dd9b038c-bd15-43ab-86ab-66e145ad7ff2/width=450/26072158-132340247-8k%20portrait%20of%20beautiful%20cyborg%20with%20brown%20hair,%20intricate,%20elegant,%20highly%20detailed,%20majestic,%20digital%20photography,%20art%20by%20artg_ed.jpeg
license: other
@@ -10819,6 +11028,36 @@
- sd-3
- gpu
url: "github:mudler/LocalAI/gallery/stablediffusion3.yaml@master"
- name: sd-3.5-large-ggml
license: stabilityai-ai-community
url: "github:mudler/LocalAI/gallery/sd-ggml.yaml@master"
description: |
Stable Diffusion 3.5 Large is a Multimodal Diffusion Transformer (MMDiT) text-to-image model that features improved performance in image quality, typography, complex prompt understanding, and resource-efficiency.
urls:
- https://huggingface.co/stabilityai/stable-diffusion-3.5-large
- https://huggingface.co/second-state/stable-diffusion-3.5-large-GGUF
tags:
- text-to-image
- flux
- gpu
- cpu
icon: https://huggingface.co/stabilityai/stable-diffusion-3.5-large/media/main/sd3.5_large_demo.png
overrides:
parameters:
model: sd3.5_large-Q4_0.gguf
files:
- filename: "sd3.5_large-Q4_0.gguf"
sha256: "c79ed6cdaa7decaca6b05ccc636b956b37c47de9b104c56315ca8ed086347b00"
uri: "huggingface://second-state/stable-diffusion-3.5-large-GGUF/sd3.5_large-Q4_0.gguf"
- filename: clip_g.safetensors
sha256: ec310df2af79c318e24d20511b601a591ca8cd4f1fce1d8dff822a356bcdb1f4
uri: huggingface://second-state/stable-diffusion-3.5-large-GGUF/clip_g.safetensors
- filename: clip_l.safetensors
sha256: 660c6f5b1abae9dc498ac2d21e1347d2abdb0cf6c0c0c8576cd796491d9a6cdd
uri: huggingface://second-state/stable-diffusion-3.5-large-GGUF/clip_l.safetensors
- filename: t5xxl-Q5_0.gguf
sha256: f4df16c641a05c4a6ca717068ba3ee312875000f6fac0efbd152915553b5fc3e
uri: huggingface://second-state/stable-diffusion-3.5-large-GGUF/t5xxl-Q5_0.gguf
- &flux
name: flux.1-dev
license: flux-1-dev-non-commercial-license
@@ -10894,8 +11133,7 @@
- filename: t5xxl_fp16.safetensors
sha256: 6e480b09fae049a72d2a8c5fbccb8d3e92febeb233bbe9dfe7256958a9167635
uri: https://huggingface.co/comfyanonymous/flux_text_encoders/resolve/main/t5xxl_fp16.safetensors
- &whisper
## Whisper
- &whisper ## Whisper
url: "github:mudler/LocalAI/gallery/whisper-base.yaml@master"
name: "whisper-1"
license: "MIT"
@@ -11075,17 +11313,7 @@
description: |
Stable Diffusion in NCNN with c++, supported txt2img and img2img
name: stablediffusion-cpp
## Tiny Dream
- url: github:mudler/LocalAI/gallery/tinydream.yaml@master
name: tinydream
license: "BSD-3"
urls:
- https://github.com/symisc/tiny-dream
- https://github.com/symisc/tiny-dream/blob/main/LICENSE
description: |
An embedded, Header Only, Stable Diffusion C++ implementation
- &piper
## Piper TTS
- &piper ## Piper TTS
url: github:mudler/LocalAI/gallery/piper.yaml@master
name: voice-en-us-kathleen-low
icon: https://github.com/rhasspy/piper/raw/master/etc/logo.png

12
gallery/sd-ggml.yaml Normal file
View File

@@ -0,0 +1,12 @@
---
name: "sd-ggml"
config_file: |
backend: stablediffusion-ggml
step: 25
cfg_scale: 4.5
options:
- "clip_l_path:clip_l.safetensors"
- "clip_g_path:clip_g.safetensors"
- "t5xxl_path:t5xxl-Q5_0.gguf"
- "sampler:euler"

View File

@@ -1,37 +0,0 @@
---
name: "tinydream"
config_file: |
name: tinydream
backend: tinydream
parameters:
model: tinydream_assets
files:
- filename: "tinydream_assets/AutoencoderKL-fp16.bin"
sha256: "f02e71f80e70252734724bbfaed5c4ddd3a8ed7e61bb2175ff5f53099f0e35dd"
uri: "https://github.com/M0Rf30/tiny-dream-bins/releases/download/1.0/AutoencoderKL-fp16.bin"
- filename: "tinydream_assets/AutoencoderKL-fp16.param"
sha256: "0254a056dce61b0c27dc9ec1b78b53bcf55315c540f55f051eb841aa992701ba"
uri: "https://github.com/M0Rf30/tiny-dream-bins/releases/download/1.0/AutoencoderKL-fp16.param"
- filename: "tinydream_assets/FrozenCLIPEmbedder-fp16.bin"
sha256: "1c9a12f4e1dd1b295a388045f7f28a2352a4d70c3dc96a542189a3dd7051fdd6"
uri: "https://github.com/M0Rf30/tiny-dream-bins/releases/download/1.0/FrozenCLIPEmbedder-fp16.bin"
- filename: "tinydream_assets/FrozenCLIPEmbedder-fp16.param"
sha256: "471afbe678dd1fd3fe764ef9c6eccaccb0a7d7e601f27b462aa926b20eb368c9"
uri: "https://github.com/M0Rf30/tiny-dream-bins/releases/download/1.0/FrozenCLIPEmbedder-fp16.param"
- filename: "tinydream_assets/RealESRGAN_x4plus_anime.bin"
sha256: "fe01c269cfd10cdef8e018ab66ebe750cf79c7af4d1f9c16c737e1295229bacc"
uri: "https://github.com/M0Rf30/tiny-dream-bins/releases/download/1.0/RealESRGAN_x4plus_anime.bin"
- filename: "tinydream_assets/RealESRGAN_x4plus_anime.param"
sha256: "2b8fb6e0ae4d2d85704ca08c119a2f5ea40add4f2ecd512eb7f4cd44b6127ed4"
uri: "https://github.com/M0Rf30/tiny-dream-bins/releases/download/1.0/RealESRGAN_x4plus_anime.param"
- filename: "tinydream_assets/UNetModel-fp16.bin"
sha256: "d618918d011bfc1f644c0f2a33bf84931bd53b28a98492b0a8ed6f3a818852c3"
uri: "https://github.com/M0Rf30/tiny-dream-bins/releases/download/1.0/UNetModel-fp16.bin"
- filename: "tinydream_assets/UNetModel-fp16.param"
sha256: "696f6975de49f4325b53ce32aff81861a6d6c07cd9ce3f0aae2cc405350af38d"
uri: "https://github.com/M0Rf30/tiny-dream-bins/releases/download/1.0/UNetModel-fp16.param"
- filename: "tinydream_assets/vocab.txt"
sha256: "e30e57b6f1e47616982ef898d8922be24e535b4fa3d0110477b3a6f02ebbae7d"
uri: "https://github.com/M0Rf30/tiny-dream-bins/releases/download/1.0/vocab.txt"

2
go.mod
View File

@@ -6,7 +6,6 @@ toolchain go1.23.1
require (
dario.cat/mergo v1.0.1
github.com/M0Rf30/go-tiny-dream v0.0.0-20240425104733-c04fa463ace9
github.com/Masterminds/sprig/v3 v3.3.0
github.com/alecthomas/kong v0.9.0
github.com/census-instrumentation/opencensus-proto v0.4.1
@@ -94,6 +93,7 @@ require (
github.com/modern-go/reflect2 v1.0.2 // indirect
github.com/munnerz/goautoneg v0.0.0-20191010083416-a7dc8b61c822 // indirect
github.com/nikolalohinski/gonja/v2 v2.3.2 // indirect
github.com/philippgille/chromem-go v0.7.0 // indirect
github.com/pion/datachannel v1.5.10 // indirect
github.com/pion/dtls/v2 v2.2.12 // indirect
github.com/pion/ice/v2 v2.3.37 // indirect

4
go.sum
View File

@@ -27,8 +27,6 @@ github.com/BurntSushi/toml v0.3.1/go.mod h1:xHWCNGjB5oqiDr8zfno3MHue2Ht5sIBksp03
github.com/BurntSushi/toml v1.2.1/go.mod h1:CxXYINrC8qIiEnFrOxCa7Jy5BFHlXnUU2pbicEuybxQ=
github.com/KyleBanks/depth v1.2.1 h1:5h8fQADFrWtarTdtDudMmGsC7GPbOAu6RVB3ffsVFHc=
github.com/KyleBanks/depth v1.2.1/go.mod h1:jzSb9d0L43HxTQfT+oSA1EEp2q+ne2uh6XgeJcm8brE=
github.com/M0Rf30/go-tiny-dream v0.0.0-20240425104733-c04fa463ace9 h1:ASsbvw7wQPldWpwKdmYRszJ2A8Cj3oJDr4zO0DiXvN4=
github.com/M0Rf30/go-tiny-dream v0.0.0-20240425104733-c04fa463ace9/go.mod h1:UOf2Mb/deUri5agct5OJ4SLWjhI+kZKbsUVUeRb24I0=
github.com/Masterminds/goutils v1.1.1 h1:5nUrii3FMTL5diU80unEVvNevw1nH4+ZV4DSLVJLSYI=
github.com/Masterminds/goutils v1.1.1/go.mod h1:8cTjp+g8YejhMuvIA5y2vz3BpJxksy863GQaJW2MFNU=
github.com/Masterminds/semver/v3 v3.3.0 h1:B8LGeaivUe71a5qox1ICM/JLl0NqZSW5CHyL+hmvYS0=
@@ -613,6 +611,8 @@ github.com/phayes/freeport v0.0.0-20220201140144-74d24b5ae9f5 h1:Ii+DKncOVM8Cu1H
github.com/phayes/freeport v0.0.0-20220201140144-74d24b5ae9f5/go.mod h1:iIss55rKnNBTvrwdmkUpLnDpZoAHvWaiq5+iMmen4AE=
github.com/philhofer/fwd v1.1.2 h1:bnDivRJ1EWPjUIRXV5KfORO897HTbpFAQddBdE8t7Gw=
github.com/philhofer/fwd v1.1.2/go.mod h1:qkPdfjR2SIEbspLqpe1tO4n5yICnr2DY7mqEx2tUTP0=
github.com/philippgille/chromem-go v0.7.0 h1:4jfvfyKymjKNfGxBUhHUcj1kp7B17NL/I1P+vGh1RvY=
github.com/philippgille/chromem-go v0.7.0/go.mod h1:hTd+wGEm/fFPQl7ilfCwQXkgEUxceYh86iIdoKMolPo=
github.com/pierrec/lz4/v4 v4.1.2 h1:qvY3YFXRQE/XB8MlLzJH7mSzBs74eA2gg52YTk6jUPM=
github.com/pierrec/lz4/v4 v4.1.2/go.mod h1:gZWDp/Ze/IJXGXf23ltt2EXimqmTUXEy0GFuRQyBid4=
github.com/pion/datachannel v1.5.8 h1:ph1P1NsGkazkjrvyMfhRBUAWMxugJjq2HfQifaOoSNo=

View File

@@ -46,8 +46,7 @@ type Backend interface {
Status(ctx context.Context) (*pb.StatusResponse, error)
StoresSet(ctx context.Context, in *pb.StoresSetOptions, opts ...grpc.CallOption) (*pb.Result, error)
StoresDelete(ctx context.Context, in *pb.StoresDeleteOptions, opts ...grpc.CallOption) (*pb.Result, error)
StoresGet(ctx context.Context, in *pb.StoresGetOptions, opts ...grpc.CallOption) (*pb.StoresGetResult, error)
StoresReset(ctx context.Context, in *pb.StoresResetOptions, opts ...grpc.CallOption) (*pb.Result, error)
StoresFind(ctx context.Context, in *pb.StoresFindOptions, opts ...grpc.CallOption) (*pb.StoresFindResult, error)
Rerank(ctx context.Context, in *pb.RerankRequest, opts ...grpc.CallOption) (*pb.RerankResult, error)

Some files were not shown because too many files have changed in this diff Show More