Compare commits

...

108 Commits

Author SHA1 Message Date
Sebastian.W
0004ec8be3 fix(autogptq): do not use_triton with qwen-vl (#1985)
* Enhance autogptq backend to support VL models

* update dependencies for autogptq

* remove redundant auto-gptq dependency

* Convert base64 to image_url for Qwen-VL model

* implemented model inference for qwen-vl

* remove user prompt from generated answer

* fixed write image error

* fixed use_triton issue when loading Qwen-VL model

---------

Co-authored-by: Binghua Wu <bingwu@estee.com>
2024-04-11 12:33:58 +02:00
Ettore Di Giacinto
d692b2c32a ci: push latest images for dockerhub (#1984)
Fixes: #1983

Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2024-04-10 10:31:59 +02:00
LocalAI [bot]
7e2f8bb408 ⬆️ Update ggerganov/whisper.cpp (#1980)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-04-10 09:08:00 +02:00
LocalAI [bot]
951e39d36c ⬆️ Update ggerganov/llama.cpp (#1979)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-04-10 09:07:41 +02:00
LocalAI [bot]
aeb3f835ae ⬆️ Update docs version mudler/LocalAI (#1978)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-04-10 09:07:21 +02:00
Ettore Di Giacinto
cc3d601836 ci: fixup latest image push
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2024-04-09 09:49:11 +02:00
Ettore Di Giacinto
2bbb221fb1 tests(petals): temp disable 2024-04-08 21:28:59 +00:00
LocalAI [bot]
195be10050 ⬆️ Update ggerganov/llama.cpp (#1973)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-04-08 23:26:52 +02:00
fakezeta
a38618db02 fix regression #1971 (#1972)
fixes regression #1971 introduced by intel_extension_for_transformers==1.4
2024-04-08 22:33:51 +02:00
LocalAI [bot]
efcca15d3f ⬆️ Update ggerganov/llama.cpp (#1970)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-04-08 08:38:47 +02:00
LocalAI [bot]
a153b628c2 ⬆️ Update ggerganov/whisper.cpp (#1969)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-04-08 08:38:17 +02:00
Ettore Di Giacinto
f36d86ba6d fix(hermes-2-pro-mistral): correct dashes in template to suppress newlines (#1966)
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2024-04-07 18:23:47 +02:00
Ettore Di Giacinto
74492a81c7 doc(quickstart): fix typo
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2024-04-07 11:06:35 +02:00
LocalAI [bot]
ed13782986 ⬆️ Update ggerganov/llama.cpp (#1964)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-04-07 10:32:10 +02:00
Ettore Di Giacinto
8342553214 fix(llama.cpp): set better defaults for llama.cpp (#1961)
fix(defaults): set better defaults for llama.cpp

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2024-04-06 22:56:45 +02:00
LocalAI [bot]
8aa5f5a660 ⬆️ Update ggerganov/llama.cpp (#1960)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-04-06 19:15:25 +00:00
LocalAI [bot]
b2d9e3f704 ⬆️ Update ggerganov/llama.cpp (#1959)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-04-05 08:41:55 +02:00
LocalAI [bot]
f744e1f931 ⬆️ Update ggerganov/whisper.cpp (#1958)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-04-05 08:41:35 +02:00
cryptk
b85dad0286 feat: first pass at improving logging (#1956)
Signed-off-by: Chris Jowett <421501+cryptk@users.noreply.github.com>
2024-04-04 09:24:22 +02:00
LocalAI [bot]
3851b51d98 ⬆️ Update ggerganov/llama.cpp (#1953)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-04-04 00:27:57 +02:00
Ettore Di Giacinto
ff77d3bc22 fix(seed): generate random seed per-request if -1 is set (#1952)
* fix(seed): generate random seed per-request if -1 is set

Also update ci with new workflows and allow the aio tests to run with an
api key

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* docs(openvino): Add OpenVINO example

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

---------

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2024-04-03 22:25:47 +02:00
Ettore Di Giacinto
93cfec3c32 ci: correctly tag latest and aio images 2024-04-03 11:30:23 +02:00
Ettore Di Giacinto
89560ef87f fix(ci): manually tag latest images (#1948)
fix(ci): manually tag images

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2024-04-02 19:25:46 +02:00
Ettore Di Giacinto
9bc209ba73 fix(welcome): stable model list (#1949) 2024-04-02 19:25:32 +02:00
Ettore Di Giacinto
84e0dc3246 fix(hermes-2-pro-mistral): correct stopwords (#1947)
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2024-04-02 15:38:00 +02:00
LocalAI [bot]
4d4d76114d ⬆️ Update ggerganov/llama.cpp (#1941)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-04-02 09:16:04 +02:00
cryptk
86bc5f1350 fix: use exec in entrypoint scripts to fix signal handling (#1943) 2024-04-02 09:15:44 +02:00
Ettore Di Giacinto
e8f02c083f fix(functions): respect when selected from string (#1940)
* fix(functions): respect when selected from string

* fix(toolschoice): decode both string and objects
2024-04-01 19:39:54 +02:00
Ettore Di Giacinto
ebb1fcedea fix(hermes-2-pro-mistral): add stopword for toolcall (#1939)
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2024-04-01 11:48:35 +02:00
LocalAI [bot]
66f90f8dc1 ⬆️ Update ggerganov/llama.cpp (#1937)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-04-01 08:59:23 +02:00
Ettore Di Giacinto
3c778b538a Update phi-2-orange.yaml
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2024-03-31 13:06:41 +02:00
Ettore Di Giacinto
35290e146b fix(grammar): respect JSONmode and grammar from user input (#1935)
* fix(grammar): Fix JSON mode and custom grammar

* tests(aio): add jsonmode test

* tests(aio): add functioncall test

* fix(aio): use hermes-2-pro-mistral as llm for CPU profile

* add phi-2-orange
2024-03-31 13:04:09 +02:00
LocalAI [bot]
784657a652 ⬆️ Update ggerganov/llama.cpp (#1934)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-03-31 00:27:38 +01:00
LocalAI [bot]
831efa8893 ⬆️ Update ggerganov/whisper.cpp (#1933)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-03-31 00:27:16 +01:00
Ettore Di Giacinto
957f428fd5 fix(tools): correctly render tools response in templates (#1932)
* fix(tools): allow to correctly display both Functions and Tools

* models(hermes-2-pro): correctly display function results
2024-03-30 19:02:07 +01:00
Ettore Di Giacinto
61e5e6bc36 fix(swagger): do not specify a host (#1930)
In this way the requests are redirected to the host used by the client
to perform the request.
2024-03-30 12:04:41 +01:00
Ettore Di Giacinto
eab4a91a9b fix(aio): correctly detect intel systems (#1931)
Also rename SIZE to PROFILE
2024-03-30 12:04:32 +01:00
LocalAI [bot]
2bba62ca4d ⬆️ Update ggerganov/llama.cpp (#1928)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-03-29 22:52:01 +00:00
Ettore Di Giacinto
bcdc83b46d Update quickstart.md
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2024-03-29 23:00:06 +01:00
Ettore Di Giacinto
92fbdfd06f feat(swagger): update (#1929) 2024-03-29 22:48:58 +01:00
cryptk
93702e39d4 feat(build): adjust number of parallel make jobs (#1915)
* feat(build): adjust number of parallel make jobs

* fix: update make on MacOS from brew to support --output-sync argument

* fix: cache grpc with version as part of key to improve validity of cache hits

* fix: use gmake for tests-apple to use the updated GNU make version

* fix: actually use the new make version for tests-apple

* feat: parallelize tests-extra

* feat: attempt to cache grpc build for docker images

* fix: don't quote GRPC version

* fix: don't cache go modules, we have limited cache space, better used elsewhere

* fix: release with the same version of go that we test with

* fix: don't fail on exporting cache layers

* fix: remove deprecated BUILD_GRPC docker arg from Makefile
2024-03-29 22:32:40 +01:00
LocalAI [bot]
a7fc89c207 ⬆️ Update ggerganov/whisper.cpp (#1927)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-03-29 22:29:50 +01:00
Ettore Di Giacinto
123a5a2e16 feat(swagger): Add swagger API doc (#1926)
* makefile(build): add minimal and api build target

* feat(swagger): Add swagger
2024-03-29 22:29:33 +01:00
LocalAI [bot]
ab2f403dd0 ⬆️ Update ggerganov/whisper.cpp (#1924)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-03-29 00:13:59 +01:00
LocalAI [bot]
b9c5e14e2c ⬆️ Update ggerganov/llama.cpp (#1923)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-03-29 00:13:38 +01:00
Ettore Di Giacinto
bf65ed6eb8 feat(webui): add partials, show backends associated to models (#1922)
* feat(webui): add partials, show backends associated to models

* fix(auth): put assistant and backend under auth
2024-03-28 21:52:52 +01:00
Ettore Di Giacinto
4e79294f97 Update README.md
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2024-03-28 19:52:40 +01:00
Ettore Di Giacinto
8477e8fac3 Update quickstart.md
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2024-03-28 18:28:30 +01:00
Ettore Di Giacinto
13ccd2afef docs(aio-usage): update docs to show examples (#1921)
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2024-03-28 18:16:58 +01:00
Ettore Di Giacinto
23b833d171 Update run-other-models.md
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2024-03-28 12:42:37 +01:00
LocalAI [bot]
07c49ee4b8 ⬆️ Update ggerganov/whisper.cpp (#1914)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-03-27 22:53:13 +00:00
LocalAI [bot]
07c4bdda7c ⬆️ Update ggerganov/llama.cpp (#1913)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-03-27 21:57:59 +00:00
Ettore Di Giacinto
2266d8263c Update README.md 2024-03-27 22:48:46 +01:00
Ettore Di Giacinto
160eb48b2b Update quickstart.md 2024-03-27 22:47:59 +01:00
cryptk
0c0efc871c fix(build): better CI logging and correct some build failure modes in Makefile (#1899)
* feat: group make output by target when running parallelized builds in CI

* fix: quote GO_TAGS in makefile to fix handling of whitespace in value

* fix: set CPATH to find opencv2 in it's commonly installed location

* fix: add missing go mod dropreplace for go-llama.cpp

* chore: remove opencv symlink from github workflows
2024-03-27 21:12:19 +01:00
Gianluca Boiano
7ef5f3b473 ⬆️ Update M0Rf30/go-tiny-dream (#1911) 2024-03-27 21:12:04 +01:00
Ettore Di Giacinto
66ee4afb95 feat(welcome): add simple welcome page (#1912)
* feat(welcome): add simple welcome page

* feat(api): add 404 handling
2024-03-27 21:10:58 +01:00
Ettore Di Giacinto
93f0b7ae03 update hot topics
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2024-03-27 18:17:12 +01:00
fakezeta
8210ffcb6c feat: Token Stream support for Transformer, fix: missing package for OpenVINO (#1908)
* Streaming working

* Small fix for regression on CUDA and XPU

* use pip version of optimum[openvino]

* Update backend/python/transformers/transformers_server.py

Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>

* Token streaming support

fix optimum[openvino] package in install.sh

* Token Streaming support

---------

Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
Co-authored-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2024-03-27 17:50:35 +01:00
fakezeta
e7cbe32601 feat: Openvino runtime for transformer backend and streaming support for Openvino and CUDA (#1892)
* fixes #1775 and #1774

Add BitsAndBytes Quantization and fixes embedding on CUDA devices

* Manage 4bit and 8 bit quantization

Manage different BitsAndBytes options with the quantization: parameter in yaml

* fix compilation errors on non CUDA environment

* OpenVINO draft

First draft of OpenVINO integration in transformer backend

* first working implementation

* Streaming working

* Small fix for regression on CUDA and XPU

* use pip version of optimum[openvino]

* Update backend/python/transformers/transformers_server.py

Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>

---------

Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
Co-authored-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2024-03-26 23:31:43 +00:00
LocalAI [bot]
b500ceaf73 ⬆️ Update ggerganov/llama.cpp (#1904)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-03-26 23:21:54 +00:00
LocalAI [bot]
d3c283ac19 ⬆️ Update docs version mudler/LocalAI (#1903)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-03-26 22:56:42 +01:00
Ettore Di Giacinto
607586e0b7 fix: downgrade torch (#1902)
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2024-03-26 22:56:02 +01:00
Steven Christou
2d7913b3be feat(assistant): Assistant and AssistantFiles api (#1803)
* Initial implementation of assistants api

* Move load/save configs to utils

* Save assistant and assistantfiles config to disk.

* Add tsets for assistant api

* Fix models path spelling mistake.

* Remove personal go.mod information

---------

Co-authored-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2024-03-26 18:54:35 +01:00
Sebastian.W
b7ffe66219 Enhance autogptq backend to support VL models (#1860)
* Enhance autogptq backend to support VL models

* update dependencies for autogptq

* remove redundant auto-gptq dependency

* Convert base64 to image_url for Qwen-VL model

* implemented model inference for qwen-vl

* remove user prompt from generated answer

* fixed write image error

---------

Co-authored-by: Binghua Wu <bingwu@estee.com>
2024-03-26 18:48:14 +01:00
Ettore Di Giacinto
e58410fa99 feat(aio): add intel profile (#1901)
* feat(aio): add intel profile

* docs: clarify AIO images features
2024-03-26 18:45:25 +01:00
LocalAI [bot]
1395e505cd ⬆️ Update ggerganov/llama.cpp (#1897)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-03-26 00:34:10 +01:00
LocalAI [bot]
42a4c86dca ⬆️ Update ggerganov/whisper.cpp (#1896)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-03-26 00:33:46 +01:00
Ettore Di Giacinto
c9adc5680c fix(aio): make image-gen for GPU functional, update docs (#1895)
* readme: update quickstart

* aio(gpu): fix dreamshaper

* tests(aio): allow to run tests also against an endpoint

* docs: split content

* tests: less verbosity

---------

Co-authored-by: Dave <dave@gray101.com>
2024-03-25 21:04:32 +00:00
Enrico Ros
08c7b17298 Fix NVIDIA VRAM detection on WSL2 environments (#1894)
* NVIDIA VRAM detection on WSL2 environments

More robust single NVIDIA GPU memory detection, following the
improved NVIDIA WSL2 detection patch yesterday #1891.

Tested and working on WSL2, Linux.

Signed-off-by: Enrico Ros <enrico.ros@gmail.com>

* Update aio/entrypoint.sh

Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>

---------

Signed-off-by: Enrico Ros <enrico.ros@gmail.com>
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
Co-authored-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2024-03-25 18:36:18 +01:00
Enrico Ros
5e12382524 NVIDIA GPU detection support for WSL2 environments (#1891)
This change makes the assumption that "Microsoft Corporation Device 008e"
is an NVIDIA CUDA device. If this is not the case, please update the
hardware detection script here.

Signed-off-by: Enrico Ros <enrico.ros@gmail.com>
Co-authored-by: Dave <dave@gray101.com>
2024-03-25 08:32:40 +01:00
Ettore Di Giacinto
6cf99527f8 docs(aio): Add All-in-One images docs (#1887)
* docs(aio): Add AIO images docs

* add image generation link to quickstart

* while reviewing I noticed this one link was missing, so quickly adding it.

Signed-off-by: Dave <dave@gray101.com>
Co-authored-by: Dave <dave@gray101.com>
2024-03-25 02:01:30 +00:00
LocalAI [bot]
3e293f1465 ⬆️ Update ggerganov/llama.cpp (#1889)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-03-24 21:12:18 +00:00
LocalAI [bot]
0106c58181 ⬆️ Update ggerganov/llama.cpp (#1885)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-03-24 14:54:01 +01:00
Ettore Di Giacinto
bd25d8049c fix(watchdog): use ShutdownModel instead of StopModel (#1882)
Fixes #1760
2024-03-23 16:19:57 +01:00
Ettore Di Giacinto
49cec7fd61 ci(aio): add latest tag images (#1884)
Tangentially also fixes #1868
2024-03-23 16:08:32 +01:00
Ettore Di Giacinto
d9456f2a23 ci(aio): publish hipblas and Intel GPU images (#1883)
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2024-03-23 15:54:14 +01:00
Ettore Di Giacinto
8495750cb8 Update release.yml
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2024-03-23 15:22:26 +01:00
Ettore Di Giacinto
1f501cc1ef Update README.md
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2024-03-23 10:42:14 +01:00
LocalAI [bot]
a922119c41 ⬆️ Update ggerganov/llama.cpp (#1881)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-03-23 09:23:28 +01:00
Richard Palethorpe
643d85d2cc feat(stores): Vector store backend (#1795)
Add simple vector store backend

Signed-off-by: Richard Palethorpe <io@richiejp.com>
2024-03-22 21:14:04 +01:00
Ettore Di Giacinto
4b1ee0c170 feat(aio): add tests, update model definitions (#1880) 2024-03-22 21:13:11 +01:00
Ettore Di Giacinto
3bec467a91 feat(models): add phi-2-chat, llava-1.6, bakllava, cerbero (#1879) 2024-03-22 21:12:48 +01:00
Ettore Di Giacinto
600152df23 fix(config): pass by config options, respect defaults (#1878)
This bug had the unpleasant effect that it ignored defaults passed by
the CLI. For instance threads could be changed only via model config
file.
2024-03-22 20:55:11 +01:00
LocalAI [bot]
dd84c29a3d ⬆️ Update ggerganov/whisper.cpp (#1875)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-03-22 09:14:56 +01:00
LocalAI [bot]
07468c8786 ⬆️ Update ggerganov/llama.cpp (#1874)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-03-22 09:14:42 +01:00
Ettore Di Giacinto
418ba02025 ci: fix typo
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2024-03-22 09:14:17 +01:00
Ettore Di Giacinto
abc9360dc6 feat(aio): entrypoint, update workflows (#1872) 2024-03-21 22:09:04 +01:00
Sebastian
743095b7d8 docs(mac): improve documentation for mac build (#1873)
* docs(mac): Improve documentation for mac build

- added documentation to build from current master
- added troubleshooting information

Signed-off-by: Sebastian <tauven@gmail.com>

* docs(max): fix typo

Signed-off-by: Sebastian <tauven@gmail.com>

---------

Signed-off-by: Sebastian <tauven@gmail.com>
2024-03-21 22:08:33 +01:00
Ettore Di Giacinto
3cf64d1e7e Update README.md
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2024-03-21 08:57:41 +01:00
Ettore Di Giacinto
e533dcf506 feat(functions/aio): all-in-one images, function template enhancements (#1862)
* feat(startup): allow to specify models from local files

* feat(aio): add Dockerfile, make targets, aio profiles

* feat(template): add Function and LastMessage

* add hermes2-pro-mistral

* update hermes2 definition

* feat(template): add sprig

* feat(template): expose FunctionCall

* feat(aio): switch llm for text
2024-03-21 01:12:20 +01:00
LocalAI [bot]
eeaf8c7ccd ⬆️ Update ggerganov/whisper.cpp (#1867)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-03-20 22:26:29 +00:00
LocalAI [bot]
7e34dfdae7 ⬆️ Update ggerganov/llama.cpp (#1866)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-03-20 22:13:29 +00:00
LocalAI [bot]
e4bf51d5bd ⬆️ Update ggerganov/llama.cpp (#1864)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-03-20 09:05:53 +01:00
LocalAI [bot]
ead61bf9d5 ⬆️ Update ggerganov/llama.cpp (#1857)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-03-19 00:03:17 +00:00
LocalAI [bot]
b12a205320 ⬆️ Update docs version mudler/LocalAI (#1856)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-03-19 00:44:45 +01:00
LocalAI [bot]
621541a92f ⬆️ Update ggerganov/whisper.cpp (#1508)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-03-19 00:44:23 +01:00
Dave
ed5734ae25 test/fix: OSX Test Repair (#1843)
* test with gguf instead of ggml. Updates testPrompt to match? Adds debugging line to Dockerfile that I've found helpful recently.

* fix testPrompt slightly

* Sad Experiment: Test GH runner without metal?

* break apart CGO_LDFLAGS

* switch runner

* upstream llama.cpp disables Metal on Github CI!

* missed a dir from clean-tests

* CGO_LDFLAGS

* tmate failure + NO_ACCELERATE

* whisper.cpp has a metal fix

* do the exact opposite of the name of this branch, but keep it around for unrelated fixes?

* add back newlines

* add tmate to linux for testing

* update fixtures

* timeout for tmate
2024-03-18 19:19:43 +01:00
Ettore Di Giacinto
a046dcac5e fix(config-watcher): start only if config-directory exists (#1854)
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2024-03-18 19:14:48 +01:00
Ettore Di Giacinto
843f93e1ab fix(config): default to debug=false if not set (#1853) 2024-03-18 18:59:39 +01:00
Ettore Di Giacinto
fa9e330fc6 fix(llama.cpp): fix eos without cache (#1852) 2024-03-18 18:59:24 +01:00
Ettore Di Giacinto
b202bfaaa0 deps(whisper.cpp): update, fix cublas build (#1846)
fix(whisper.cpp): Add stubs and -lcuda
2024-03-18 15:56:53 +01:00
LocalAI [bot]
0eb0ac7dd0 ⬆️ Update ggerganov/llama.cpp (#1848)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-03-18 08:57:58 +01:00
LocalAI [bot]
d2b83d8357 ⬆️ Update docs version mudler/LocalAI (#1847)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-03-17 23:08:32 +01:00
Ettore Di Giacinto
88b65f63d0 fix(go-llama): use llama-cpp as default (#1849)
* fix(go-llama): use llama-cpp as default

Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>

* fix(backends): drop obsoleted lines

---------

Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2024-03-17 23:08:22 +01:00
cryptk
020ce29cd8 fix(make): allow to parallelize jobs (#1845)
* fix: clean up Makefile dependencies to allow for parallel builds

* refactor: remove old unused backend from Makefile

* fix: finish removing legacy backend, update piper

* fix: I broke llama... I fixed llama

* feat: give the tests and builds a few threads

* fix: ensure libraries are replaced before build, add dropreplace target

* Fix image build workflows
2024-03-17 15:39:20 +01:00
Chakib Benziane
801b481beb fixes #1051: handle openai presence and request penalty parameters (#1817)
* fix request debugging, disable marshalling of context fields

Signed-off-by: blob42 <contact@blob42.xyz>

* merge frequency_penalty request parm with config

Signed-off-by: blob42 <contact@blob42.xyz>

* openai: add presence_penalty parameter

Signed-off-by: blob42 <contact@blob42.xyz>

---------

Signed-off-by: blob42 <contact@blob42.xyz>
2024-03-17 09:43:20 +01:00
LocalAI [bot]
8967ed1601 ⬆️ Update ggerganov/llama.cpp (#1840)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-03-16 11:25:41 +00:00
133 changed files with 10042 additions and 1149 deletions

View File

@@ -3,4 +3,4 @@ models
examples/chatbot-ui/models
examples/rwkv/models
examples/**/models
Dockerfile
Dockerfile*

31
.editorconfig Normal file
View File

@@ -0,0 +1,31 @@
root = true
[*]
indent_style = space
indent_size = 2
end_of_line = lf
charset = utf-8
trim_trailing_whitespace = true
insert_final_newline = true
[*.go]
indent_style = tab
[Makefile]
indent_style = tab
[*.proto]
indent_size = 2
[*.py]
indent_size = 4
[*.js]
indent_size = 2
[*.yaml]
indent_size = 2
[*.md]
trim_trailing_whitespace = false

19
.github/labeler.yml vendored Normal file
View File

@@ -0,0 +1,19 @@
enhancements:
- head-branch: ['^feature', 'feature']
kind/documentation:
- any:
- changed-files:
- any-glob-to-any-file: 'docs/*'
- changed-files:
- any-glob-to-any-file: '*.md'
examples:
- any:
- changed-files:
- any-glob-to-any-file: 'examples/*'
ci:
- any:
- changed-files:
- any-glob-to-any-file: '.github/*'

12
.github/release.yml vendored
View File

@@ -12,13 +12,23 @@ changelog:
- title: "Bug fixes :bug:"
labels:
- bug
- regression
- title: Exciting New Features 🎉
labels:
- Semver-Minor
- enhancement
- ux
- roadmap
- title: 🧠 Models
labels:
- area/ai-model
- title: 📖 Documentation and examples
labels:
- kind/documentation
- examples
- title: 👒 Dependencies
labels:
- dependencies
- title: Other Changes
labels:
- "*"
- "*"

View File

@@ -22,6 +22,7 @@ jobs:
platforms: ${{ matrix.platforms }}
runs-on: ${{ matrix.runs-on }}
base-image: ${{ matrix.base-image }}
makeflags: ${{ matrix.makeflags }}
secrets:
dockerUsername: ${{ secrets.DOCKERHUB_USERNAME }}
dockerPassword: ${{ secrets.DOCKERHUB_PASSWORD }}
@@ -41,6 +42,7 @@ jobs:
image-type: 'extras'
runs-on: 'arc-runner-set'
base-image: "ubuntu:22.04"
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'cublas'
cuda-major-version: "12"
cuda-minor-version: "1"
@@ -51,6 +53,7 @@ jobs:
image-type: 'extras'
runs-on: 'arc-runner-set'
base-image: "ubuntu:22.04"
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'hipblas'
platforms: 'linux/amd64'
tag-latest: 'false'
@@ -59,6 +62,7 @@ jobs:
image-type: 'extras'
base-image: "rocm/dev-ubuntu-22.04:6.0-complete"
runs-on: 'arc-runner-set'
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'sycl_f16'
platforms: 'linux/amd64'
tag-latest: 'false'
@@ -67,6 +71,7 @@ jobs:
ffmpeg: 'true'
image-type: 'extras'
runs-on: 'arc-runner-set'
makeflags: "--jobs=3 --output-sync=target"
core-image-build:
uses: ./.github/workflows/image_build.yml
with:
@@ -80,6 +85,7 @@ jobs:
platforms: ${{ matrix.platforms }}
runs-on: ${{ matrix.runs-on }}
base-image: ${{ matrix.base-image }}
makeflags: ${{ matrix.makeflags }}
secrets:
dockerUsername: ${{ secrets.DOCKERHUB_USERNAME }}
dockerPassword: ${{ secrets.DOCKERHUB_PASSWORD }}
@@ -96,6 +102,7 @@ jobs:
image-type: 'core'
runs-on: 'ubuntu-latest'
base-image: "ubuntu:22.04"
makeflags: "--jobs=5 --output-sync=target"
- build-type: 'sycl_f16'
platforms: 'linux/amd64'
tag-latest: 'false'
@@ -104,6 +111,7 @@ jobs:
ffmpeg: 'true'
image-type: 'core'
runs-on: 'arc-runner-set'
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'cublas'
cuda-major-version: "12"
cuda-minor-version: "1"
@@ -113,4 +121,5 @@ jobs:
ffmpeg: 'true'
image-type: 'core'
runs-on: 'ubuntu-latest'
base-image: "ubuntu:22.04"
base-image: "ubuntu:22.04"
makeflags: "--jobs=5 --output-sync=target"

View File

@@ -26,6 +26,10 @@ jobs:
platforms: ${{ matrix.platforms }}
runs-on: ${{ matrix.runs-on }}
base-image: ${{ matrix.base-image }}
aio: ${{ matrix.aio }}
makeflags: ${{ matrix.makeflags }}
latest-image: ${{ matrix.latest-image }}
latest-image-aio: ${{ matrix.latest-image-aio }}
secrets:
dockerUsername: ${{ secrets.DOCKERHUB_USERNAME }}
dockerPassword: ${{ secrets.DOCKERHUB_PASSWORD }}
@@ -47,14 +51,16 @@ jobs:
image-type: 'extras'
runs-on: 'arc-runner-set'
base-image: "ubuntu:22.04"
makeflags: "--jobs=3 --output-sync=target"
- build-type: ''
platforms: 'linux/amd64'
tag-latest: 'false'
tag-latest: 'auto'
tag-suffix: '-ffmpeg'
ffmpeg: 'true'
image-type: 'extras'
runs-on: 'arc-runner-set'
base-image: "ubuntu:22.04"
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'cublas'
cuda-major-version: "11"
cuda-minor-version: "7"
@@ -65,6 +71,7 @@ jobs:
image-type: 'extras'
runs-on: 'arc-runner-set'
base-image: "ubuntu:22.04"
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'cublas'
cuda-major-version: "12"
cuda-minor-version: "1"
@@ -75,26 +82,35 @@ jobs:
image-type: 'extras'
runs-on: 'arc-runner-set'
base-image: "ubuntu:22.04"
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'cublas'
cuda-major-version: "11"
cuda-minor-version: "7"
platforms: 'linux/amd64'
tag-latest: 'false'
tag-latest: 'auto'
tag-suffix: '-cublas-cuda11-ffmpeg'
ffmpeg: 'true'
image-type: 'extras'
runs-on: 'arc-runner-set'
base-image: "ubuntu:22.04"
aio: "-aio-gpu-nvidia-cuda-11"
latest-image: 'latest-gpu-nvidia-cuda-11'
latest-image-aio: 'latest-aio-gpu-nvidia-cuda-11'
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'cublas'
cuda-major-version: "12"
cuda-minor-version: "1"
platforms: 'linux/amd64'
tag-latest: 'false'
tag-latest: 'auto'
tag-suffix: '-cublas-cuda12-ffmpeg'
ffmpeg: 'true'
image-type: 'extras'
runs-on: 'arc-runner-set'
base-image: "ubuntu:22.04"
aio: "-aio-gpu-nvidia-cuda-12"
latest-image: 'latest-gpu-nvidia-cuda-12'
latest-image-aio: 'latest-aio-gpu-nvidia-cuda-12'
makeflags: "--jobs=3 --output-sync=target"
- build-type: ''
#platforms: 'linux/amd64,linux/arm64'
platforms: 'linux/amd64'
@@ -104,14 +120,19 @@ jobs:
image-type: 'extras'
base-image: "ubuntu:22.04"
runs-on: 'arc-runner-set'
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'hipblas'
platforms: 'linux/amd64'
tag-latest: 'false'
tag-latest: 'auto'
tag-suffix: '-hipblas-ffmpeg'
ffmpeg: 'true'
image-type: 'extras'
aio: "-aio-gpu-hipblas"
base-image: "rocm/dev-ubuntu-22.04:6.0-complete"
latest-image: 'latest-gpu-hipblas'
latest-image-aio: 'latest-aio-gpu-hipblas'
runs-on: 'arc-runner-set'
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'hipblas'
platforms: 'linux/amd64'
tag-latest: 'false'
@@ -120,22 +141,31 @@ jobs:
image-type: 'extras'
base-image: "rocm/dev-ubuntu-22.04:6.0-complete"
runs-on: 'arc-runner-set'
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'sycl_f16'
platforms: 'linux/amd64'
tag-latest: 'false'
tag-latest: 'auto'
base-image: "intel/oneapi-basekit:2024.0.1-devel-ubuntu22.04"
tag-suffix: '-sycl-f16-ffmpeg'
ffmpeg: 'true'
image-type: 'extras'
runs-on: 'arc-runner-set'
aio: "-aio-gpu-intel-f16"
latest-image: 'latest-gpu-intel-f16'
latest-image-aio: 'latest-aio-gpu-intel-f16'
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'sycl_f32'
platforms: 'linux/amd64'
tag-latest: 'false'
tag-latest: 'auto'
base-image: "intel/oneapi-basekit:2024.0.1-devel-ubuntu22.04"
tag-suffix: '-sycl-f32-ffmpeg'
ffmpeg: 'true'
image-type: 'extras'
runs-on: 'arc-runner-set'
aio: "-aio-gpu-intel-f32"
latest-image: 'latest-gpu-intel-f32'
latest-image-aio: 'latest-aio-gpu-intel-f32'
makeflags: "--jobs=3 --output-sync=target"
# Core images
- build-type: 'sycl_f16'
platforms: 'linux/amd64'
@@ -145,6 +175,7 @@ jobs:
ffmpeg: 'false'
image-type: 'core'
runs-on: 'arc-runner-set'
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'sycl_f32'
platforms: 'linux/amd64'
tag-latest: 'false'
@@ -153,6 +184,7 @@ jobs:
ffmpeg: 'false'
image-type: 'core'
runs-on: 'arc-runner-set'
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'sycl_f16'
platforms: 'linux/amd64'
tag-latest: 'false'
@@ -161,6 +193,7 @@ jobs:
ffmpeg: 'true'
image-type: 'core'
runs-on: 'arc-runner-set'
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'sycl_f32'
platforms: 'linux/amd64'
tag-latest: 'false'
@@ -169,6 +202,7 @@ jobs:
ffmpeg: 'true'
image-type: 'core'
runs-on: 'arc-runner-set'
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'hipblas'
platforms: 'linux/amd64'
tag-latest: 'false'
@@ -177,6 +211,7 @@ jobs:
image-type: 'core'
base-image: "rocm/dev-ubuntu-22.04:6.0-complete"
runs-on: 'arc-runner-set'
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'hipblas'
platforms: 'linux/amd64'
tag-latest: 'false'
@@ -185,6 +220,7 @@ jobs:
image-type: 'core'
base-image: "rocm/dev-ubuntu-22.04:6.0-complete"
runs-on: 'arc-runner-set'
makeflags: "--jobs=3 --output-sync=target"
core-image-build:
uses: ./.github/workflows/image_build.yml
@@ -198,7 +234,11 @@ jobs:
cuda-minor-version: ${{ matrix.cuda-minor-version }}
platforms: ${{ matrix.platforms }}
runs-on: ${{ matrix.runs-on }}
aio: ${{ matrix.aio }}
base-image: ${{ matrix.base-image }}
makeflags: ${{ matrix.makeflags }}
latest-image: ${{ matrix.latest-image }}
latest-image-aio: ${{ matrix.latest-image-aio }}
secrets:
dockerUsername: ${{ secrets.DOCKERHUB_USERNAME }}
dockerPassword: ${{ secrets.DOCKERHUB_PASSWORD }}
@@ -209,12 +249,16 @@ jobs:
include:
- build-type: ''
platforms: 'linux/amd64'
tag-latest: 'false'
tag-latest: 'auto'
tag-suffix: '-ffmpeg-core'
ffmpeg: 'true'
image-type: 'core'
base-image: "ubuntu:22.04"
runs-on: 'ubuntu-latest'
aio: "-aio-cpu"
latest-image: 'latest-cpu'
latest-image-aio: 'latest-aio-cpu'
makeflags: "--jobs=5 --output-sync=target"
- build-type: 'cublas'
cuda-major-version: "11"
cuda-minor-version: "7"
@@ -225,6 +269,7 @@ jobs:
image-type: 'core'
base-image: "ubuntu:22.04"
runs-on: 'ubuntu-latest'
makeflags: "--jobs=5 --output-sync=target"
- build-type: 'cublas'
cuda-major-version: "12"
cuda-minor-version: "1"
@@ -235,6 +280,7 @@ jobs:
image-type: 'core'
base-image: "ubuntu:22.04"
runs-on: 'ubuntu-latest'
makeflags: "--jobs=5 --output-sync=target"
- build-type: 'cublas'
cuda-major-version: "11"
cuda-minor-version: "7"
@@ -245,6 +291,7 @@ jobs:
image-type: 'core'
runs-on: 'ubuntu-latest'
base-image: "ubuntu:22.04"
makeflags: "--jobs=5 --output-sync=target"
- build-type: 'cublas'
cuda-major-version: "12"
cuda-minor-version: "1"
@@ -255,3 +302,4 @@ jobs:
image-type: 'core'
runs-on: 'ubuntu-latest'
base-image: "ubuntu:22.04"
makeflags: "--jobs=5 --output-sync=target"

View File

@@ -29,6 +29,14 @@ on:
description: 'Tag latest'
default: ''
type: string
latest-image:
description: 'Tag latest'
default: ''
type: string
latest-image-aio:
description: 'Tag latest'
default: ''
type: string
tag-suffix:
description: 'Tag suffix'
default: ''
@@ -46,6 +54,16 @@ on:
required: true
default: ''
type: string
makeflags:
description: 'Make Flags'
required: false
default: '--jobs=3 --output-sync=target'
type: string
aio:
description: 'AIO Image Name'
required: false
default: ''
type: string
secrets:
dockerUsername:
required: true
@@ -69,6 +87,7 @@ jobs:
&& sudo apt-get install -y git
- name: Checkout
uses: actions/checkout@v4
- name: Release space from worker
if: inputs.runs-on == 'ubuntu-latest'
run: |
@@ -110,6 +129,7 @@ jobs:
sudo rm -rf "/usr/local/share/boost" || true
sudo rm -rf "$AGENT_TOOLSDIRECTORY" || true
df -h
- name: Docker meta
id: meta
uses: docker/metadata-action@v5
@@ -125,6 +145,34 @@ jobs:
latest=${{ inputs.tag-latest }}
suffix=${{ inputs.tag-suffix }}
- name: Docker meta AIO (quay.io)
if: inputs.aio != ''
id: meta_aio
uses: docker/metadata-action@v5
with:
images: |
quay.io/go-skynet/local-ai
tags: |
type=ref,event=branch
type=semver,pattern={{raw}}
flavor: |
latest=${{ inputs.tag-latest }}
suffix=${{ inputs.aio }}
- name: Docker meta AIO (dockerhub)
if: inputs.aio != ''
id: meta_aio_dockerhub
uses: docker/metadata-action@v5
with:
images: |
localai/localai
tags: |
type=ref,event=branch
type=semver,pattern={{raw}}
flavor: |
latest=${{ inputs.tag-latest }}
suffix=${{ inputs.aio }}
- name: Set up QEMU
uses: docker/setup-qemu-action@master
with:
@@ -149,6 +197,25 @@ jobs:
username: ${{ secrets.quayUsername }}
password: ${{ secrets.quayPassword }}
- name: Cache GRPC
uses: docker/build-push-action@v5
with:
builder: ${{ steps.buildx.outputs.name }}
build-args: |
IMAGE_TYPE=${{ inputs.image-type }}
BASE_IMAGE=${{ inputs.base-image }}
MAKEFLAGS=${{ inputs.makeflags }}
GRPC_VERSION=v1.58.0
context: .
file: ./Dockerfile
cache-from: type=gha
cache-to: type=gha,ignore-error=true
target: grpc
platforms: ${{ inputs.platforms }}
push: false
tags: ${{ steps.meta.outputs.tags }}
labels: ${{ steps.meta.outputs.labels }}
- name: Build and push
uses: docker/build-push-action@v5
with:
@@ -160,12 +227,79 @@ jobs:
FFMPEG=${{ inputs.ffmpeg }}
IMAGE_TYPE=${{ inputs.image-type }}
BASE_IMAGE=${{ inputs.base-image }}
MAKEFLAGS=${{ inputs.makeflags }}
context: .
file: ./Dockerfile
cache-from: type=gha
platforms: ${{ inputs.platforms }}
push: ${{ github.event_name != 'pull_request' }}
tags: ${{ steps.meta.outputs.tags }}
labels: ${{ steps.meta.outputs.labels }}
- name: Inspect image
if: github.event_name != 'pull_request'
run: |
docker pull localai/localai:${{ steps.meta.outputs.version }}
docker image inspect localai/localai:${{ steps.meta.outputs.version }}
docker pull quay.io/go-skynet/local-ai:${{ steps.meta.outputs.version }}
docker image inspect quay.io/go-skynet/local-ai:${{ steps.meta.outputs.version }}
- name: Build and push AIO image
if: inputs.aio != ''
uses: docker/build-push-action@v5
with:
builder: ${{ steps.buildx.outputs.name }}
build-args: |
BASE_IMAGE=quay.io/go-skynet/local-ai:${{ steps.meta.outputs.version }}
MAKEFLAGS=${{ inputs.makeflags }}
context: .
file: ./Dockerfile.aio
platforms: ${{ inputs.platforms }}
push: ${{ github.event_name != 'pull_request' }}
tags: ${{ steps.meta_aio.outputs.tags }}
labels: ${{ steps.meta_aio.outputs.labels }}
- name: Build and push AIO image (dockerhub)
if: inputs.aio != ''
uses: docker/build-push-action@v5
with:
builder: ${{ steps.buildx.outputs.name }}
build-args: |
BASE_IMAGE=localai/localai:${{ steps.meta.outputs.version }}
MAKEFLAGS=${{ inputs.makeflags }}
context: .
file: ./Dockerfile.aio
platforms: ${{ inputs.platforms }}
push: ${{ github.event_name != 'pull_request' }}
tags: ${{ steps.meta_aio_dockerhub.outputs.tags }}
labels: ${{ steps.meta_aio_dockerhub.outputs.labels }}
- name: Latest tag
# run this on branches, when it is a tag and there is a latest-image defined
if: github.event_name != 'pull_request' && inputs.latest-image != '' && github.ref_type == 'tag'
run: |
docker pull localai/localai:${{ steps.meta.outputs.version }}
docker tag localai/localai:${{ steps.meta.outputs.version }} localai/localai:${{ inputs.latest-image }}
docker push localai/localai:${{ inputs.latest-image }}
docker pull quay.io/go-skynet/local-ai:${{ steps.meta.outputs.version }}
docker tag quay.io/go-skynet/local-ai:${{ steps.meta.outputs.version }} quay.io/go-skynet/local-ai:${{ inputs.latest-image }}
docker push quay.io/go-skynet/local-ai:${{ inputs.latest-image }}
- name: Latest AIO tag
# run this on branches, when it is a tag and there is a latest-image defined
if: github.event_name != 'pull_request' && inputs.latest-image-aio != '' && github.ref_type == 'tag'
run: |
docker pull localai/localai:${{ steps.meta_aio_dockerhub.outputs.version }}
docker tag localai/localai:${{ steps.meta_aio_dockerhub.outputs.version }} localai/localai:${{ inputs.latest-image-aio }}
docker push localai/localai:${{ inputs.latest-image-aio }}
docker pull quay.io/go-skynet/local-ai:${{ steps.meta_aio.outputs.version }}
docker tag quay.io/go-skynet/local-ai:${{ steps.meta_aio.outputs.version }} quay.io/go-skynet/local-ai:${{ inputs.latest-image-aio }}
docker push quay.io/go-skynet/local-ai:${{ inputs.latest-image-aio }}
- name: job summary
run: |
echo "Built image: ${{ steps.meta.outputs.labels }}" >> $GITHUB_STEP_SUMMARY
- name: job summary(AIO)
if: inputs.aio != ''
run: |
echo "Built image: ${{ steps.meta_aio.outputs.labels }}" >> $GITHUB_STEP_SUMMARY

12
.github/workflows/labeler.yml vendored Normal file
View File

@@ -0,0 +1,12 @@
name: "Pull Request Labeler"
on:
- pull_request_target
jobs:
labeler:
permissions:
contents: read
pull-requests: write
runs-on: ubuntu-latest
steps:
- uses: actions/labeler@v5

View File

@@ -2,6 +2,9 @@ name: Build and Release
on: push
env:
GRPC_VERSION: v1.58.0
permissions:
contents: write
@@ -32,7 +35,8 @@ jobs:
submodules: true
- uses: actions/setup-go@v4
with:
go-version: '>=1.21.0'
go-version: '1.21.x'
cache: false
- name: Dependencies
run: |
sudo apt-get update
@@ -54,17 +58,17 @@ jobs:
uses: actions/cache@v3
with:
path: grpc
key: ${{ runner.os }}-grpc
key: ${{ runner.os }}-grpc-${{ env.GRPC_VERSION }}
- name: Build grpc
if: steps.cache-grpc.outputs.cache-hit != 'true'
run: |
git clone --recurse-submodules -b v1.58.0 --depth 1 --shallow-submodules https://github.com/grpc/grpc && \
git clone --recurse-submodules -b ${{ env.GRPC_VERSION }} --depth 1 --shallow-submodules https://github.com/grpc/grpc && \
cd grpc && mkdir -p cmake/build && cd cmake/build && cmake -DgRPC_INSTALL=ON \
-DgRPC_BUILD_TESTS=OFF \
../.. && sudo make -j12
../.. && sudo make --jobs 5 --output-sync=target
- name: Install gRPC
run: |
cd grpc && cd cmake/build && sudo make -j12 install
cd grpc && cd cmake/build && sudo make --jobs 5 --output-sync=target install
- name: Build
id: build
env:
@@ -98,11 +102,11 @@ jobs:
submodules: true
- uses: actions/setup-go@v4
with:
go-version: '>=1.21.0'
go-version: '1.21.x'
cache: false
- name: Dependencies
run: |
sudo apt-get install -y --no-install-recommends libopencv-dev
sudo ln -s /usr/include/opencv4/opencv2 /usr/include/opencv2
- name: Build stablediffusion
run: |
make backend-assets/grpc/stablediffusion
@@ -136,7 +140,8 @@ jobs:
submodules: true
- uses: actions/setup-go@v4
with:
go-version: '>=1.21.0'
go-version: '1.21.x'
cache: false
- name: Dependencies
run: |
brew install protobuf grpc

27
.github/workflows/secscan.yaml vendored Normal file
View File

@@ -0,0 +1,27 @@
name: "Security Scan"
# Run workflow each time code is pushed to your repository and on a schedule.
# The scheduled workflow runs every at 00:00 on Sunday UTC time.
on:
push:
schedule:
- cron: '0 0 * * 0'
jobs:
tests:
runs-on: ubuntu-latest
env:
GO111MODULE: on
steps:
- name: Checkout Source
uses: actions/checkout@v3
- name: Run Gosec Security Scanner
uses: securego/gosec@master
with:
# we let the report trigger content trigger a failure using the GitHub Security features.
args: '-no-fail -fmt sarif -out results.sarif ./...'
- name: Upload SARIF file
uses: github/codeql-action/upload-sarif@v2
with:
# Path to SARIF file relative to the root of the repository
sarif_file: results.sarif

View File

@@ -33,15 +33,15 @@ jobs:
sudo apt-get update && \
sudo apt-get install -y conda
sudo apt-get install -y ca-certificates cmake curl patch
sudo apt-get install -y libopencv-dev && sudo ln -s /usr/include/opencv4/opencv2 /usr/include/opencv2
sudo apt-get install -y libopencv-dev
sudo rm -rfv /usr/bin/conda || true
- name: Test transformers
run: |
export PATH=$PATH:/opt/conda/bin
make -C backend/python/transformers
make -C backend/python/transformers test
make --jobs=5 --output-sync=target -C backend/python/transformers
make --jobs=5 --output-sync=target -C backend/python/transformers test
tests-sentencetransformers:
runs-on: ubuntu-latest
@@ -62,15 +62,15 @@ jobs:
sudo apt-get update && \
sudo apt-get install -y conda
sudo apt-get install -y ca-certificates cmake curl patch
sudo apt-get install -y libopencv-dev && sudo ln -s /usr/include/opencv4/opencv2 /usr/include/opencv2
sudo apt-get install -y libopencv-dev
sudo rm -rfv /usr/bin/conda || true
- name: Test sentencetransformers
run: |
export PATH=$PATH:/opt/conda/bin
make -C backend/python/sentencetransformers
make -C backend/python/sentencetransformers test
make --jobs=5 --output-sync=target -C backend/python/sentencetransformers
make --jobs=5 --output-sync=target -C backend/python/sentencetransformers test
tests-diffusers:
runs-on: ubuntu-latest
@@ -91,15 +91,15 @@ jobs:
sudo apt-get update && \
sudo apt-get install -y conda
sudo apt-get install -y ca-certificates cmake curl patch
sudo apt-get install -y libopencv-dev && sudo ln -s /usr/include/opencv4/opencv2 /usr/include/opencv2
sudo apt-get install -y libopencv-dev
sudo rm -rfv /usr/bin/conda || true
- name: Test diffusers
run: |
export PATH=$PATH:/opt/conda/bin
make -C backend/python/diffusers
make -C backend/python/diffusers test
make --jobs=5 --output-sync=target -C backend/python/diffusers
make --jobs=5 --output-sync=target -C backend/python/diffusers test
tests-transformers-musicgen:
@@ -121,46 +121,46 @@ jobs:
sudo apt-get update && \
sudo apt-get install -y conda
sudo apt-get install -y ca-certificates cmake curl patch
sudo apt-get install -y libopencv-dev && sudo ln -s /usr/include/opencv4/opencv2 /usr/include/opencv2
sudo apt-get install -y libopencv-dev
sudo rm -rfv /usr/bin/conda || true
- name: Test transformers-musicgen
run: |
export PATH=$PATH:/opt/conda/bin
make -C backend/python/transformers-musicgen
make -C backend/python/transformers-musicgen test
make --jobs=5 --output-sync=target -C backend/python/transformers-musicgen
make --jobs=5 --output-sync=target -C backend/python/transformers-musicgen test
tests-petals:
runs-on: ubuntu-latest
steps:
- name: Clone
uses: actions/checkout@v4
with:
submodules: true
- name: Dependencies
run: |
sudo apt-get update
sudo apt-get install build-essential ffmpeg
curl https://repo.anaconda.com/pkgs/misc/gpgkeys/anaconda.asc | gpg --dearmor > conda.gpg && \
sudo install -o root -g root -m 644 conda.gpg /usr/share/keyrings/conda-archive-keyring.gpg && \
gpg --keyring /usr/share/keyrings/conda-archive-keyring.gpg --no-default-keyring --fingerprint 34161F5BF5EB1D4BFBBB8F0A8AEB4F8B29D82806 && \
sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" > /etc/apt/sources.list.d/conda.list' && \
sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" | tee -a /etc/apt/sources.list.d/conda.list' && \
sudo apt-get update && \
sudo apt-get install -y conda
sudo apt-get install -y ca-certificates cmake curl patch
sudo apt-get install -y libopencv-dev && sudo ln -s /usr/include/opencv4/opencv2 /usr/include/opencv2
# tests-petals:
# runs-on: ubuntu-latest
# steps:
# - name: Clone
# uses: actions/checkout@v4
# with:
# submodules: true
# - name: Dependencies
# run: |
# sudo apt-get update
# sudo apt-get install build-essential ffmpeg
# curl https://repo.anaconda.com/pkgs/misc/gpgkeys/anaconda.asc | gpg --dearmor > conda.gpg && \
# sudo install -o root -g root -m 644 conda.gpg /usr/share/keyrings/conda-archive-keyring.gpg && \
# gpg --keyring /usr/share/keyrings/conda-archive-keyring.gpg --no-default-keyring --fingerprint 34161F5BF5EB1D4BFBBB8F0A8AEB4F8B29D82806 && \
# sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" > /etc/apt/sources.list.d/conda.list' && \
# sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" | tee -a /etc/apt/sources.list.d/conda.list' && \
# sudo apt-get update && \
# sudo apt-get install -y conda
# sudo apt-get install -y ca-certificates cmake curl patch
# sudo apt-get install -y libopencv-dev
sudo rm -rfv /usr/bin/conda || true
# sudo rm -rfv /usr/bin/conda || true
- name: Test petals
run: |
export PATH=$PATH:/opt/conda/bin
make -C backend/python/petals
make -C backend/python/petals test
# - name: Test petals
# run: |
# export PATH=$PATH:/opt/conda/bin
# make --jobs=5 --output-sync=target -C backend/python/petals
# make --jobs=5 --output-sync=target -C backend/python/petals test
@@ -223,15 +223,15 @@ jobs:
# sudo apt-get update && \
# sudo apt-get install -y conda
# sudo apt-get install -y ca-certificates cmake curl patch
# sudo apt-get install -y libopencv-dev && sudo ln -s /usr/include/opencv4/opencv2 /usr/include/opencv2
# sudo apt-get install -y libopencv-dev
# sudo rm -rfv /usr/bin/conda || true
# - name: Test bark
# run: |
# export PATH=$PATH:/opt/conda/bin
# make -C backend/python/bark
# make -C backend/python/bark test
# make --jobs=5 --output-sync=target -C backend/python/bark
# make --jobs=5 --output-sync=target -C backend/python/bark test
# Below tests needs GPU. Commented out for now
@@ -255,13 +255,13 @@ jobs:
# sudo apt-get update && \
# sudo apt-get install -y conda
# sudo apt-get install -y ca-certificates cmake curl patch
# sudo apt-get install -y libopencv-dev && sudo ln -s /usr/include/opencv4/opencv2 /usr/include/opencv2
# sudo apt-get install -y libopencv-dev
# sudo rm -rfv /usr/bin/conda || true
# - name: Test vllm
# run: |
# export PATH=$PATH:/opt/conda/bin
# make -C backend/python/vllm
# make -C backend/python/vllm test
# make --jobs=5 --output-sync=target -C backend/python/vllm
# make --jobs=5 --output-sync=target -C backend/python/vllm test
tests-vallex:
runs-on: ubuntu-latest
steps:
@@ -281,13 +281,13 @@ jobs:
sudo apt-get update && \
sudo apt-get install -y conda
sudo apt-get install -y ca-certificates cmake curl patch
sudo apt-get install -y libopencv-dev && sudo ln -s /usr/include/opencv4/opencv2 /usr/include/opencv2
sudo apt-get install -y libopencv-dev
sudo rm -rfv /usr/bin/conda || true
- name: Test vall-e-x
run: |
export PATH=$PATH:/opt/conda/bin
make -C backend/python/vall-e-x
make -C backend/python/vall-e-x test
make --jobs=5 --output-sync=target -C backend/python/vall-e-x
make --jobs=5 --output-sync=target -C backend/python/vall-e-x test
tests-coqui:
runs-on: ubuntu-latest
@@ -313,5 +313,5 @@ jobs:
- name: Test coqui
run: |
export PATH=$PATH:/opt/conda/bin
make -C backend/python/coqui
make -C backend/python/coqui test
make --jobs=5 --output-sync=target -C backend/python/coqui
make --jobs=5 --output-sync=target -C backend/python/coqui test

View File

@@ -9,6 +9,9 @@ on:
tags:
- '*'
env:
GRPC_VERSION: v1.58.0
concurrency:
group: ci-tests-${{ github.head_ref || github.ref }}-${{ github.repository }}
cancel-in-progress: true
@@ -60,6 +63,7 @@ jobs:
uses: actions/setup-go@v4
with:
go-version: ${{ matrix.go-version }}
cache: false
# You can test your matrix by printing the current Go version
- name: Display Go version
run: go version
@@ -75,7 +79,7 @@ jobs:
sudo apt-get update && \
sudo apt-get install -y conda
sudo apt-get install -y ca-certificates cmake curl patch
sudo apt-get install -y libopencv-dev && sudo ln -s /usr/include/opencv4/opencv2 /usr/include/opencv2
sudo apt-get install -y libopencv-dev
sudo rm -rfv /usr/bin/conda || true
PATH=$PATH:/opt/conda/bin make -C backend/python/sentencetransformers
@@ -91,23 +95,79 @@ jobs:
uses: actions/cache@v3
with:
path: grpc
key: ${{ runner.os }}-grpc
key: ${{ runner.os }}-grpc-${{ env.GRPC_VERSION }}
- name: Build grpc
if: steps.cache-grpc.outputs.cache-hit != 'true'
run: |
git clone --recurse-submodules -b v1.58.0 --depth 1 --shallow-submodules https://github.com/grpc/grpc && \
git clone --recurse-submodules -b ${{ env.GRPC_VERSION }} --depth 1 --jobs 5 --shallow-submodules https://github.com/grpc/grpc && \
cd grpc && mkdir -p cmake/build && cd cmake/build && cmake -DgRPC_INSTALL=ON \
-DgRPC_BUILD_TESTS=OFF \
../.. && sudo make -j12
../.. && sudo make --jobs 5
- name: Install gRPC
run: |
cd grpc && cd cmake/build && sudo make -j12 install
cd grpc && cd cmake/build && sudo make --jobs 5 install
- name: Test
run: |
GO_TAGS="stablediffusion tts" make test
GO_TAGS="stablediffusion tts" make --jobs 5 --output-sync=target test
- name: Setup tmate session if tests fail
if: ${{ failure() }}
uses: mxschmitt/action-tmate@v3
timeout-minutes: 5
tests-aio-container:
runs-on: ubuntu-latest
steps:
- name: Release space from worker
run: |
echo "Listing top largest packages"
pkgs=$(dpkg-query -Wf '${Installed-Size}\t${Package}\t${Status}\n' | awk '$NF == "installed"{print $1 "\t" $2}' | sort -nr)
head -n 30 <<< "${pkgs}"
echo
df -h
echo
sudo apt-get remove -y '^llvm-.*|^libllvm.*' || true
sudo apt-get remove --auto-remove android-sdk-platform-tools || true
sudo apt-get purge --auto-remove android-sdk-platform-tools || true
sudo rm -rf /usr/local/lib/android
sudo apt-get remove -y '^dotnet-.*|^aspnetcore-.*' || true
sudo rm -rf /usr/share/dotnet
sudo apt-get remove -y '^mono-.*' || true
sudo apt-get remove -y '^ghc-.*' || true
sudo apt-get remove -y '.*jdk.*|.*jre.*' || true
sudo apt-get remove -y 'php.*' || true
sudo apt-get remove -y hhvm powershell firefox monodoc-manual msbuild || true
sudo apt-get remove -y '^google-.*' || true
sudo apt-get remove -y azure-cli || true
sudo apt-get remove -y '^mongo.*-.*|^postgresql-.*|^mysql-.*|^mssql-.*' || true
sudo apt-get remove -y '^gfortran-.*' || true
sudo apt-get autoremove -y
sudo apt-get clean
echo
echo "Listing top largest packages"
pkgs=$(dpkg-query -Wf '${Installed-Size}\t${Package}\t${Status}\n' | awk '$NF == "installed"{print $1 "\t" $2}' | sort -nr)
head -n 30 <<< "${pkgs}"
echo
sudo rm -rfv build || true
df -h
- name: Clone
uses: actions/checkout@v4
with:
submodules: true
- name: Build images
run: |
docker build --build-arg FFMPEG=true --build-arg IMAGE_TYPE=core --build-arg MAKEFLAGS="--jobs=5 --output-sync=target" -t local-ai:tests -f Dockerfile .
BASE_IMAGE=local-ai:tests DOCKER_AIO_IMAGE=local-ai-aio:test make docker-aio
- name: Test
run: |
LOCALAI_MODELS_DIR=$PWD/models LOCALAI_IMAGE_TAG=test LOCALAI_IMAGE=local-ai-aio \
make run-e2e-aio
- name: Setup tmate session if tests fail
if: ${{ failure() }}
uses: mxschmitt/action-tmate@v3
timeout-minutes: 5
tests-apple:
runs-on: macOS-latest
runs-on: macOS-14
strategy:
matrix:
go-version: ['1.21.x']
@@ -120,14 +180,21 @@ jobs:
uses: actions/setup-go@v4
with:
go-version: ${{ matrix.go-version }}
cache: false
# You can test your matrix by printing the current Go version
- name: Display Go version
run: go version
- name: Dependencies
run: |
brew install protobuf grpc
brew install protobuf grpc make
- name: Test
run: |
export C_INCLUDE_PATH=/usr/local/include
export CPLUS_INCLUDE_PATH=/usr/local/include
CMAKE_ARGS="-DLLAMA_F16C=OFF -DLLAMA_AVX512=OFF -DLLAMA_AVX2=OFF -DLLAMA_FMA=OFF" make test
# Used to run the newer GNUMake version from brew that supports --output-sync
export PATH="/opt/homebrew/opt/make/libexec/gnubin:$PATH"
BUILD_TYPE="GITHUB_CI_HAS_BROKEN_METAL" CMAKE_ARGS="-DLLAMA_F16C=OFF -DLLAMA_AVX512=OFF -DLLAMA_AVX2=OFF -DLLAMA_FMA=OFF" make --jobs 4 --output-sync=target test
- name: Setup tmate session if tests fail
if: ${{ failure() }}
uses: mxschmitt/action-tmate@v3
timeout-minutes: 5

5
.vscode/extensions.json vendored Normal file
View File

@@ -0,0 +1,5 @@
{
"recommendations": [
"golang.go"
]
}

View File

@@ -63,7 +63,9 @@ WORKDIR /build
RUN test -n "$TARGETARCH" \
|| (echo 'warn: missing $TARGETARCH, either set this `ARG` manually, or run using `docker buildkit`')
# Extras requirements
###################################
###################################
FROM requirements-core as requirements-extras
RUN curl https://repo.anaconda.com/pkgs/misc/gpgkeys/anaconda.asc | gpg --dearmor > conda.gpg && \
@@ -88,13 +90,40 @@ RUN if [ ! -e /usr/bin/python ]; then \
###################################
###################################
FROM ${BASE_IMAGE} as grpc
ARG MAKEFLAGS
ARG GRPC_VERSION=v1.58.0
ENV MAKEFLAGS=${MAKEFLAGS}
WORKDIR /build
RUN apt-get update && \
apt-get install -y g++ cmake git && \
apt-get clean && \
rm -rf /var/lib/apt/lists/*
RUN git clone --recurse-submodules --jobs 4 -b ${GRPC_VERSION} --depth 1 --shallow-submodules https://github.com/grpc/grpc
RUN cd grpc && \
mkdir -p cmake/build && \
cd cmake/build && \
cmake -DgRPC_INSTALL=ON -DgRPC_BUILD_TESTS=OFF ../.. && \
make
###################################
###################################
FROM requirements-${IMAGE_TYPE} as builder
ARG GO_TAGS="stablediffusion tts"
ARG GRPC_BACKENDS
ARG BUILD_GRPC=true
ARG MAKEFLAGS
ENV GRPC_BACKENDS=${GRPC_BACKENDS}
ENV GO_TAGS=${GO_TAGS}
ENV MAKEFLAGS=${MAKEFLAGS}
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
ENV NVIDIA_REQUIRE_CUDA="cuda>=${CUDA_MAJOR_VERSION}.0"
ENV NVIDIA_VISIBLE_DEVICES=all
@@ -103,6 +132,7 @@ WORKDIR /build
COPY . .
COPY .git .
RUN echo "GO_TAGS: $GO_TAGS"
RUN make prepare
# If we are building with clblas support, we need the libraries for the builds
@@ -115,12 +145,9 @@ RUN if [ "${BUILD_TYPE}" = "clblas" ]; then \
# stablediffusion does not tolerate a newer version of abseil, build it first
RUN GRPC_BACKENDS=backend-assets/grpc/stablediffusion make build
RUN if [ "${BUILD_GRPC}" = "true" ]; then \
git clone --recurse-submodules -b v1.58.0 --depth 1 --shallow-submodules https://github.com/grpc/grpc && \
cd grpc && mkdir -p cmake/build && cd cmake/build && cmake -DgRPC_INSTALL=ON \
-DgRPC_BUILD_TESTS=OFF \
../.. && make -j12 install \
; fi
COPY --from=grpc /build/grpc ./grpc/
RUN cd /build/grpc/cmake/build && make install
# Rebuild with defaults backends
RUN make build
@@ -139,10 +166,12 @@ ARG FFMPEG
ARG BUILD_TYPE
ARG TARGETARCH
ARG IMAGE_TYPE=extras
ARG MAKEFLAGS
ENV BUILD_TYPE=${BUILD_TYPE}
ENV REBUILD=false
ENV HEALTHCHECK_ENDPOINT=http://localhost:8080/readyz
ENV MAKEFLAGS=${MAKEFLAGS}
ARG CUDA_MAJOR_VERSION=11
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
@@ -171,7 +200,7 @@ WORKDIR /build
COPY . .
COPY --from=builder /build/sources ./sources/
COPY --from=builder /build/grpc ./grpc/
COPY --from=grpc /build/grpc ./grpc/
RUN make prepare-sources && cd /build/grpc/cmake/build && make install && rm -rf grpc
@@ -186,43 +215,43 @@ COPY --from=builder /build/backend-assets/grpc/stablediffusion ./backend-assets/
## Duplicated from Makefile to avoid having a big layer that's hard to push
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
make -C backend/python/autogptq \
make -C backend/python/autogptq \
; fi
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
make -C backend/python/bark \
make -C backend/python/bark \
; fi
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
make -C backend/python/diffusers \
make -C backend/python/diffusers \
; fi
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
make -C backend/python/vllm \
make -C backend/python/vllm \
; fi
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
make -C backend/python/mamba \
make -C backend/python/mamba \
; fi
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
make -C backend/python/sentencetransformers \
make -C backend/python/sentencetransformers \
; fi
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
make -C backend/python/transformers \
make -C backend/python/transformers \
; fi
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
make -C backend/python/vall-e-x \
make -C backend/python/vall-e-x \
; fi
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
make -C backend/python/exllama \
make -C backend/python/exllama \
; fi
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
make -C backend/python/exllama2 \
make -C backend/python/exllama2 \
; fi
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
make -C backend/python/petals \
make -C backend/python/petals \
; fi
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
make -C backend/python/transformers-musicgen \
make -C backend/python/transformers-musicgen \
; fi
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
make -C backend/python/coqui \
make -C backend/python/coqui \
; fi
# Make sure the models directory exists
@@ -231,6 +260,7 @@ RUN mkdir -p /build/models
# Define the health check command
HEALTHCHECK --interval=1m --timeout=10m --retries=10 \
CMD curl -f $HEALTHCHECK_ENDPOINT || exit 1
VOLUME /build/models
EXPOSE 8080
ENTRYPOINT [ "/build/entrypoint.sh" ]

8
Dockerfile.aio Normal file
View File

@@ -0,0 +1,8 @@
ARG BASE_IMAGE=ubuntu:22.04
FROM ${BASE_IMAGE}
RUN apt-get update && apt-get install -y pciutils && apt-get clean
COPY aio/ /aio
ENTRYPOINT [ "/aio/entrypoint.sh" ]

299
Makefile
View File

@@ -4,11 +4,8 @@ GOVET=$(GOCMD) vet
BINARY_NAME=local-ai
# llama.cpp versions
GOLLAMA_VERSION?=6a8041ef6b46d4712afc3ae791d1c2d73da0ad1c
GOLLAMA_STABLE_VERSION?=50cee7712066d9e38306eccadcfbb44ea87df4b7
CPPLLAMA_VERSION?=4755afd1cbd40d93c017e5b98c39796f52345314
GOLLAMA_STABLE_VERSION?=2b57a8ae43e4699d3dc5d1496a1ccd42922993be
CPPLLAMA_VERSION?=1b67731e184e27a465b8c5476061294a4af668ea
# gpt4all version
GPT4ALL_REPO?=https://github.com/nomic-ai/gpt4all
@@ -19,7 +16,7 @@ RWKV_REPO?=https://github.com/donomii/go-rwkv.cpp
RWKV_VERSION?=661e7ae26d442f5cfebd2a0881b44e8c55949ec6
# whisper.cpp version
WHISPER_CPP_VERSION?=37a709f6558c6d9783199e2b8cbb136e1c41d346
WHISPER_CPP_VERSION?=8f253ef3af1c62c04316ba4afa7145fc4d701a8c
# bert.cpp version
BERT_VERSION?=6abe312cded14042f6b7c3cd8edf082713334a4d
@@ -31,13 +28,14 @@ PIPER_VERSION?=9d0100873a7dbb0824dfea40e8cec70a1b110759
STABLEDIFFUSION_VERSION?=362df9da29f882dbf09ade61972d16a1f53c3485
# tinydream version
TINYDREAM_VERSION?=772a9c0d9aaf768290e63cca3c904fe69faf677a
TINYDREAM_VERSION?=22a12a4bc0ac5455856f28f3b771331a551a4293
export BUILD_TYPE?=
export STABLE_BUILD_TYPE?=$(BUILD_TYPE)
export CMAKE_ARGS?=
CGO_LDFLAGS?=
CGO_LDFLAGS_WHISPER?=
CUDA_LIBPATH?=/usr/local/cuda/lib64/
GO_TAGS?=
BUILD_ID?=git
@@ -72,7 +70,7 @@ UNAME_S := $(shell uname -s)
endif
ifeq ($(OS),Darwin)
CGO_LDFLAGS += -lcblas -framework Accelerate
ifeq ($(OSX_SIGNING_IDENTITY),)
OSX_SIGNING_IDENTITY := $(shell security find-identity -v -p codesigning | grep '"' | head -n 1 | sed -E 's/.*"(.*)"/\1/')
endif
@@ -83,6 +81,12 @@ ifeq ($(OS),Darwin)
# disable metal if on Darwin and any other value is explicitly passed.
else ifneq ($(BUILD_TYPE),metal)
CMAKE_ARGS+=-DLLAMA_METAL=OFF
export LLAMA_NO_ACCELERATE=1
endif
ifeq ($(BUILD_TYPE),metal)
# -lcblas removed: it seems to always be listed as a duplicate flag.
CGO_LDFLAGS += -framework Accelerate
endif
endif
@@ -91,10 +95,12 @@ ifeq ($(BUILD_TYPE),openblas)
export WHISPER_OPENBLAS=1
endif
ifeq ($(BUILD_TYPE),cublas)
CGO_LDFLAGS+=-lcublas -lcudart -L$(CUDA_LIBPATH)
export LLAMA_CUBLAS=1
export WHISPER_CUBLAS=1
CGO_LDFLAGS_WHISPER+=-L$(CUDA_LIBPATH)/stubs/ -lcuda
endif
ifeq ($(BUILD_TYPE),hipblas)
@@ -148,12 +154,12 @@ endif
ALL_GRPC_BACKENDS=backend-assets/grpc/langchain-huggingface
ALL_GRPC_BACKENDS+=backend-assets/grpc/bert-embeddings
ALL_GRPC_BACKENDS+=backend-assets/grpc/llama
ALL_GRPC_BACKENDS+=backend-assets/grpc/llama-cpp
ALL_GRPC_BACKENDS+=backend-assets/grpc/llama-ggml
ALL_GRPC_BACKENDS+=backend-assets/grpc/gpt4all
ALL_GRPC_BACKENDS+=backend-assets/grpc/rwkv
ALL_GRPC_BACKENDS+=backend-assets/grpc/whisper
ALL_GRPC_BACKENDS+=backend-assets/grpc/local-store
ALL_GRPC_BACKENDS+=$(OPTIONAL_GRPC)
GRPC_BACKENDS?=$(ALL_GRPC_BACKENDS) $(OPTIONAL_GRPC)
@@ -168,40 +174,41 @@ ifeq ($(BUILD_API_ONLY),true)
GRPC_BACKENDS=
endif
.PHONY: all test build vendor
.PHONY: all test build vendor get-sources prepare-sources prepare
all: help
## GPT4ALL
sources/gpt4all:
git clone --recurse-submodules $(GPT4ALL_REPO) sources/gpt4all
cd sources/gpt4all && git checkout -b build $(GPT4ALL_VERSION) && git submodule update --init --recursive --depth 1
## go-piper
sources/go-piper:
git clone --recurse-submodules https://github.com/mudler/go-piper sources/go-piper
cd sources/go-piper && git checkout -b build $(PIPER_VERSION) && git submodule update --init --recursive --depth 1
## BERT embeddings
sources/go-bert:
git clone --recurse-submodules https://github.com/go-skynet/go-bert.cpp sources/go-bert
cd sources/go-bert && git checkout -b build $(BERT_VERSION) && git submodule update --init --recursive --depth 1
## stable diffusion
sources/go-stable-diffusion:
git clone --recurse-submodules https://github.com/mudler/go-stable-diffusion sources/go-stable-diffusion
cd sources/go-stable-diffusion && git checkout -b build $(STABLEDIFFUSION_VERSION) && git submodule update --init --recursive --depth 1
sources/go-bert/libgobert.a: sources/go-bert
$(MAKE) -C sources/go-bert libgobert.a
sources/go-stable-diffusion/libstablediffusion.a:
$(MAKE) -C sources/go-stable-diffusion libstablediffusion.a
## go-llama-ggml
sources/go-llama-ggml:
git clone --recurse-submodules https://github.com/go-skynet/go-llama.cpp sources/go-llama-ggml
cd sources/go-llama-ggml && git checkout -b build $(GOLLAMA_STABLE_VERSION) && git submodule update --init --recursive --depth 1
## tiny-dream
sources/go-tiny-dream:
git clone --recurse-submodules https://github.com/M0Rf30/go-tiny-dream sources/go-tiny-dream
cd sources/go-tiny-dream && git checkout -b build $(TINYDREAM_VERSION) && git submodule update --init --recursive --depth 1
sources/go-llama-ggml/libbinding.a: sources/go-llama-ggml
$(MAKE) -C sources/go-llama-ggml BUILD_TYPE=$(STABLE_BUILD_TYPE) libbinding.a
sources/go-tiny-dream/libtinydream.a:
$(MAKE) -C sources/go-tiny-dream libtinydream.a
## go-piper
sources/go-piper:
git clone --recurse-submodules https://github.com/mudler/go-piper sources/go-piper
cd sources/go-piper && git checkout -b build $(PIPER_VERSION) && git submodule update --init --recursive --depth 1
sources/go-piper/libpiper_binding.a: sources/go-piper
$(MAKE) -C sources/go-piper libpiper_binding.a example/main piper.o
## GPT4ALL
sources/gpt4all:
git clone --recurse-submodules $(GPT4ALL_REPO) sources/gpt4all
cd sources/gpt4all && git checkout -b build $(GPT4ALL_VERSION) && git submodule update --init --recursive --depth 1
sources/gpt4all/gpt4all-bindings/golang/libgpt4all.a: sources/gpt4all
$(MAKE) -C sources/gpt4all/gpt4all-bindings/golang/ libgpt4all.a
## RWKV
sources/go-rwkv:
@@ -211,23 +218,23 @@ sources/go-rwkv:
sources/go-rwkv/librwkv.a: sources/go-rwkv
cd sources/go-rwkv && cd rwkv.cpp && cmake . -DRWKV_BUILD_SHARED_LIBRARY=OFF && cmake --build . && cp librwkv.a ..
sources/go-bert/libgobert.a: sources/go-bert
$(MAKE) -C sources/go-bert libgobert.a
## stable diffusion
sources/go-stable-diffusion:
git clone --recurse-submodules https://github.com/mudler/go-stable-diffusion sources/go-stable-diffusion
cd sources/go-stable-diffusion && git checkout -b build $(STABLEDIFFUSION_VERSION) && git submodule update --init --recursive --depth 1
backend-assets/gpt4all: sources/gpt4all/gpt4all-bindings/golang/libgpt4all.a
mkdir -p backend-assets/gpt4all
@cp sources/gpt4all/gpt4all-bindings/golang/buildllm/*.so backend-assets/gpt4all/ || true
@cp sources/gpt4all/gpt4all-bindings/golang/buildllm/*.dylib backend-assets/gpt4all/ || true
@cp sources/gpt4all/gpt4all-bindings/golang/buildllm/*.dll backend-assets/gpt4all/ || true
sources/go-stable-diffusion/libstablediffusion.a: sources/go-stable-diffusion
CPATH="$(CPATH):/usr/include/opencv4" $(MAKE) -C sources/go-stable-diffusion libstablediffusion.a
backend-assets/espeak-ng-data: sources/go-piper
mkdir -p backend-assets/espeak-ng-data
$(MAKE) -C sources/go-piper piper.o
@cp -rf sources/go-piper/piper-phonemize/pi/share/espeak-ng-data/. backend-assets/espeak-ng-data
## tiny-dream
sources/go-tiny-dream:
git clone --recurse-submodules https://github.com/M0Rf30/go-tiny-dream sources/go-tiny-dream
cd sources/go-tiny-dream && git checkout -b build $(TINYDREAM_VERSION) && git submodule update --init --recursive --depth 1
sources/gpt4all/gpt4all-bindings/golang/libgpt4all.a: sources/gpt4all
$(MAKE) -C sources/gpt4all/gpt4all-bindings/golang/ libgpt4all.a
sources/go-tiny-dream/libtinydream.a: sources/go-tiny-dream
$(MAKE) -C sources/go-tiny-dream libtinydream.a
## whisper
sources/whisper.cpp:
git clone https://github.com/ggerganov/whisper.cpp.git sources/whisper.cpp
cd sources/whisper.cpp && git checkout -b build $(WHISPER_CPP_VERSION) && git submodule update --init --recursive --depth 1
@@ -235,47 +242,35 @@ sources/whisper.cpp:
sources/whisper.cpp/libwhisper.a: sources/whisper.cpp
cd sources/whisper.cpp && make libwhisper.a
sources/go-llama:
git clone --recurse-submodules https://github.com/go-skynet/go-llama.cpp sources/go-llama
cd sources/go-llama && git checkout -b build $(GOLLAMA_VERSION) && git submodule update --init --recursive --depth 1
sources/go-llama-ggml:
git clone --recurse-submodules https://github.com/go-skynet/go-llama.cpp sources/go-llama-ggml
cd sources/go-llama-ggml && git checkout -b build $(GOLLAMA_STABLE_VERSION) && git submodule update --init --recursive --depth 1
sources/go-llama/libbinding.a: sources/go-llama
$(MAKE) -C sources/go-llama BUILD_TYPE=$(BUILD_TYPE) libbinding.a
sources/go-llama-ggml/libbinding.a: sources/go-llama-ggml
$(MAKE) -C sources/go-llama-ggml BUILD_TYPE=$(STABLE_BUILD_TYPE) libbinding.a
sources/go-piper/libpiper_binding.a: sources/go-piper
$(MAKE) -C sources/go-piper libpiper_binding.a example/main
backend/cpp/llama/llama.cpp:
LLAMA_VERSION=$(CPPLLAMA_VERSION) $(MAKE) -C backend/cpp/llama llama.cpp
get-sources: backend/cpp/llama/llama.cpp sources/go-llama sources/go-llama-ggml sources/gpt4all sources/go-piper sources/go-rwkv sources/whisper.cpp sources/go-bert sources/go-stable-diffusion sources/go-tiny-dream
touch $@
get-sources: sources/go-llama-ggml sources/gpt4all sources/go-piper sources/go-rwkv sources/whisper.cpp sources/go-bert sources/go-stable-diffusion sources/go-tiny-dream
replace:
$(GOCMD) mod edit -replace github.com/nomic-ai/gpt4all/gpt4all-bindings/golang=$(CURDIR)/sources/gpt4all/gpt4all-bindings/golang
$(GOCMD) mod edit -replace github.com/donomii/go-rwkv.cpp=$(CURDIR)/sources/go-rwkv
$(GOCMD) mod edit -replace github.com/ggerganov/whisper.cpp=$(CURDIR)/sources/whisper.cpp
$(GOCMD) mod edit -replace github.com/ggerganov/whisper.cpp/bindings/go=$(CURDIR)/sources/whisper.cpp/bindings/go
$(GOCMD) mod edit -replace github.com/go-skynet/go-bert.cpp=$(CURDIR)/sources/go-bert
$(GOCMD) mod edit -replace github.com/mudler/go-stable-diffusion=$(CURDIR)/sources/go-stable-diffusion
$(GOCMD) mod edit -replace github.com/M0Rf30/go-tiny-dream=$(CURDIR)/sources/go-tiny-dream
$(GOCMD) mod edit -replace github.com/mudler/go-piper=$(CURDIR)/sources/go-piper
$(GOCMD) mod edit -replace github.com/mudler/go-stable-diffusion=$(CURDIR)/sources/go-stable-diffusion
$(GOCMD) mod edit -replace github.com/nomic-ai/gpt4all/gpt4all-bindings/golang=$(CURDIR)/sources/gpt4all/gpt4all-bindings/golang
dropreplace:
$(GOCMD) mod edit -dropreplace github.com/donomii/go-rwkv.cpp
$(GOCMD) mod edit -dropreplace github.com/ggerganov/whisper.cpp
$(GOCMD) mod edit -dropreplace github.com/ggerganov/whisper.cpp/bindings/go
$(GOCMD) mod edit -dropreplace github.com/go-skynet/go-bert.cpp
$(GOCMD) mod edit -dropreplace github.com/M0Rf30/go-tiny-dream
$(GOCMD) mod edit -dropreplace github.com/mudler/go-piper
$(GOCMD) mod edit -dropreplace github.com/mudler/go-stable-diffusion
$(GOCMD) mod edit -dropreplace github.com/nomic-ai/gpt4all/gpt4all-bindings/golang
$(GOCMD) mod edit -dropreplace github.com/go-skynet/go-llama.cpp
prepare-sources: get-sources replace
$(GOCMD) mod download
touch $@
## GENERIC
rebuild: ## Rebuilds the project
$(GOCMD) clean -cache
$(MAKE) -C sources/go-llama clean
$(MAKE) -C sources/go-llama-ggml clean
$(MAKE) -C sources/gpt4all/gpt4all-bindings/golang/ clean
$(MAKE) -C sources/go-rwkv clean
@@ -287,7 +282,6 @@ rebuild: ## Rebuilds the project
$(MAKE) build
prepare: prepare-sources $(OPTIONAL_TARGETS)
touch $@
clean: ## Remove build related file
$(GOCMD) clean -cache
@@ -298,16 +292,27 @@ clean: ## Remove build related file
rm -rf backend-assets
$(MAKE) -C backend/cpp/grpc clean
$(MAKE) -C backend/cpp/llama clean
$(MAKE) dropreplace
clean-tests:
rm -rf test-models
rm -rf test-dir
rm -rf core/http/backend-assets
## Build:
build: backend-assets grpcs prepare ## Build the project
build: prepare backend-assets grpcs ## Build the project
$(info ${GREEN}I local-ai build info:${RESET})
$(info ${GREEN}I BUILD_TYPE: ${YELLOW}$(BUILD_TYPE)${RESET})
$(info ${GREEN}I GO_TAGS: ${YELLOW}$(GO_TAGS)${RESET})
$(info ${GREEN}I LD_FLAGS: ${YELLOW}$(LD_FLAGS)${RESET})
CGO_LDFLAGS="$(CGO_LDFLAGS)" $(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o $(BINARY_NAME) ./
build-minimal:
BUILD_GRPC_FOR_BACKEND_LLAMA=true GRPC_BACKENDS=backend-assets/grpc/llama-cpp GO_TAGS=none $(MAKE) build
build-api:
BUILD_GRPC_FOR_BACKEND_LLAMA=true BUILD_API_ONLY=true GO_TAGS=none $(MAKE) build
dist: build
mkdir -p release
cp $(BINARY_NAME) release/$(BINARY_NAME)-$(BUILD_ID)-$(OS)-$(ARCH)
@@ -319,10 +324,10 @@ osx-signed: build
run: prepare ## run local-ai
CGO_LDFLAGS="$(CGO_LDFLAGS)" $(GOCMD) run ./
test-models/testmodel:
test-models/testmodel.ggml:
mkdir test-models
mkdir test-dir
wget -q https://huggingface.co/TheBloke/orca_mini_3B-GGML/resolve/main/orca-mini-3b.ggmlv3.q4_0.bin -O test-models/testmodel
wget -q https://huggingface.co/TheBloke/orca_mini_3B-GGML/resolve/main/orca-mini-3b.ggmlv3.q4_0.bin -O test-models/testmodel.ggml
wget -q https://huggingface.co/ggerganov/whisper.cpp/resolve/main/ggml-base.en.bin -O test-models/whisper-en
wget -q https://huggingface.co/mudler/all-MiniLM-L6-v2/resolve/main/ggml-model-q4_0.bin -O test-models/bert
wget -q https://cdn.openai.com/whisper/draft-20220913a/micro-machines.wav -O test-dir/audio.wav
@@ -334,9 +339,9 @@ prepare-test: grpcs
cp -rf backend-assets core/http
cp tests/models_fixtures/* test-models
test: prepare test-models/testmodel grpcs
test: prepare test-models/testmodel.ggml grpcs
@echo 'Running tests'
export GO_TAGS="tts stablediffusion"
export GO_TAGS="tts stablediffusion debug"
$(MAKE) prepare-test
HUGGINGFACE_GRPC=$(abspath ./)/backend/python/sentencetransformers/run.sh TEST_DIR=$(abspath ./)/test-dir/ FIXTURES=$(abspath ./)/tests/fixtures CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models \
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="!gpt4all && !llama && !llama-gguf" --flake-attempts $(TEST_FLAKES) --fail-fast -v -r $(TEST_PATHS)
@@ -350,12 +355,16 @@ prepare-e2e:
mkdir -p $(TEST_DIR)
cp -rfv $(abspath ./tests/e2e-fixtures)/gpu.yaml $(TEST_DIR)/gpu.yaml
test -e $(TEST_DIR)/ggllm-test-model.bin || wget -q https://huggingface.co/TheBloke/CodeLlama-7B-Instruct-GGUF/resolve/main/codellama-7b-instruct.Q2_K.gguf -O $(TEST_DIR)/ggllm-test-model.bin
docker build --build-arg BUILD_GRPC=true --build-arg GRPC_BACKENDS="$(GRPC_BACKENDS)" --build-arg IMAGE_TYPE=core --build-arg BUILD_TYPE=$(BUILD_TYPE) --build-arg CUDA_MAJOR_VERSION=11 --build-arg CUDA_MINOR_VERSION=7 --build-arg FFMPEG=true -t localai-tests .
docker build --build-arg GRPC_BACKENDS="$(GRPC_BACKENDS)" --build-arg IMAGE_TYPE=core --build-arg BUILD_TYPE=$(BUILD_TYPE) --build-arg CUDA_MAJOR_VERSION=11 --build-arg CUDA_MINOR_VERSION=7 --build-arg FFMPEG=true -t localai-tests .
run-e2e-image:
ls -liah $(abspath ./tests/e2e-fixtures)
docker run -p 5390:8080 -e MODELS_PATH=/models -e THREADS=1 -e DEBUG=true -d --rm -v $(TEST_DIR):/models --gpus all --name e2e-tests-$(RANDOM) localai-tests
run-e2e-aio:
@echo 'Running e2e AIO tests'
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --flake-attempts 5 -v -r ./tests/e2e-aio
test-e2e:
@echo 'Running e2e tests'
BUILD_TYPE=$(BUILD_TYPE) \
@@ -386,6 +395,11 @@ test-stablediffusion: prepare-test
TEST_DIR=$(abspath ./)/test-dir/ FIXTURES=$(abspath ./)/tests/fixtures CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models \
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="stablediffusion" --flake-attempts 1 -v -r $(TEST_PATHS)
test-stores: backend-assets/grpc/local-store
mkdir -p tests/integration/backend-assets/grpc
cp -f backend-assets/grpc/local-store tests/integration/backend-assets/grpc/
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="stores" --flake-attempts 1 -v -r tests/integration
test-container:
docker build --target requirements -t local-ai-test-container .
docker run -ti --rm --entrypoint /bin/bash -ti -v $(abspath ./):/build local-ai-test-container
@@ -454,39 +468,55 @@ ifeq ($(BUILD_API_ONLY),true)
touch backend-assets/keep
endif
backend-assets/grpc:
backend-assets/espeak-ng-data: sources/go-piper sources/go-piper/libpiper_binding.a
mkdir -p backend-assets/espeak-ng-data
@cp -rf sources/go-piper/piper-phonemize/pi/share/espeak-ng-data/. backend-assets/espeak-ng-data
backend-assets/gpt4all: sources/gpt4all sources/gpt4all/gpt4all-bindings/golang/libgpt4all.a
mkdir -p backend-assets/gpt4all
@cp sources/gpt4all/gpt4all-bindings/golang/buildllm/*.so backend-assets/gpt4all/ || true
@cp sources/gpt4all/gpt4all-bindings/golang/buildllm/*.dylib backend-assets/gpt4all/ || true
@cp sources/gpt4all/gpt4all-bindings/golang/buildllm/*.dll backend-assets/gpt4all/ || true
backend-assets/grpc: replace
mkdir -p backend-assets/grpc
backend-assets/grpc/llama: backend-assets/grpc sources/go-llama/libbinding.a
$(GOCMD) mod edit -replace github.com/go-skynet/go-llama.cpp=$(CURDIR)/sources/go-llama
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(CURDIR)/sources/go-llama LIBRARY_PATH=$(CURDIR)/sources/go-llama \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/llama ./backend/go/llm/llama/
# TODO: every binary should have its own folder instead, so can have different implementations
backend-assets/grpc/bert-embeddings: sources/go-bert sources/go-bert/libgobert.a backend-assets/grpc
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(CURDIR)/sources/go-bert LIBRARY_PATH=$(CURDIR)/sources/go-bert \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/bert-embeddings ./backend/go/llm/bert/
backend-assets/grpc/gpt4all: sources/gpt4all sources/gpt4all/gpt4all-bindings/golang/libgpt4all.a backend-assets/gpt4all backend-assets/grpc
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(CURDIR)/sources/gpt4all/gpt4all-bindings/golang/ LIBRARY_PATH=$(CURDIR)/sources/gpt4all/gpt4all-bindings/golang/ \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/gpt4all ./backend/go/llm/gpt4all/
backend-assets/grpc/langchain-huggingface: backend-assets/grpc
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/langchain-huggingface ./backend/go/llm/langchain/
backend/cpp/llama/llama.cpp:
LLAMA_VERSION=$(CPPLLAMA_VERSION) $(MAKE) -C backend/cpp/llama llama.cpp
## BACKEND CPP LLAMA START
# Sets the variables in case it has to build the gRPC locally.
INSTALLED_PACKAGES=$(CURDIR)/backend/cpp/grpc/installed_packages
INSTALLED_LIB_CMAKE=$(INSTALLED_PACKAGES)/lib/cmake
ADDED_CMAKE_ARGS=-Dabsl_DIR=${INSTALLED_LIB_CMAKE}/absl \
-DProtobuf_DIR=${INSTALLED_LIB_CMAKE}/protobuf \
-Dutf8_range_DIR=${INSTALLED_LIB_CMAKE}/utf8_range \
-DgRPC_DIR=${INSTALLED_LIB_CMAKE}/grpc \
-DCMAKE_CXX_STANDARD_INCLUDE_DIRECTORIES=${INSTALLED_PACKAGES}/include
-DProtobuf_DIR=${INSTALLED_LIB_CMAKE}/protobuf \
-Dutf8_range_DIR=${INSTALLED_LIB_CMAKE}/utf8_range \
-DgRPC_DIR=${INSTALLED_LIB_CMAKE}/grpc \
-DCMAKE_CXX_STANDARD_INCLUDE_DIRECTORIES=${INSTALLED_PACKAGES}/include
backend/cpp/llama/grpc-server:
# Conditionally build grpc for the llama backend to use if needed
ifdef BUILD_GRPC_FOR_BACKEND_LLAMA
$(MAKE) -C backend/cpp/grpc build
export _PROTOBUF_PROTOC=${INSTALLED_PACKAGES}/bin/proto && \
export _GRPC_CPP_PLUGIN_EXECUTABLE=${INSTALLED_PACKAGES}/bin/grpc_cpp_plugin && \
export PATH="${INSTALLED_PACKAGES}/bin:${PATH}" && \
CMAKE_ARGS="${CMAKE_ARGS} ${ADDED_CMAKE_ARGS}" LLAMA_VERSION=$(CPPLLAMA_VERSION) $(MAKE) -C backend/cpp/llama grpc-server
_PROTOBUF_PROTOC=${INSTALLED_PACKAGES}/bin/proto \
_GRPC_CPP_PLUGIN_EXECUTABLE=${INSTALLED_PACKAGES}/bin/grpc_cpp_plugin \
PATH="${INSTALLED_PACKAGES}/bin:${PATH}" \
CMAKE_ARGS="${CMAKE_ARGS} ${ADDED_CMAKE_ARGS}" \
LLAMA_VERSION=$(CPPLLAMA_VERSION) \
$(MAKE) -C backend/cpp/llama grpc-server
else
echo "BUILD_GRPC_FOR_BACKEND_LLAMA is not defined."
LLAMA_VERSION=$(CPPLLAMA_VERSION) $(MAKE) -C backend/cpp/llama grpc-server
endif
## BACKEND CPP LLAMA END
##
backend-assets/grpc/llama-cpp: backend-assets/grpc backend/cpp/llama/grpc-server
cp -rfv backend/cpp/llama/grpc-server backend-assets/grpc/llama-cpp
# TODO: every binary should have its own folder instead, so can have different metal implementations
@@ -494,49 +524,38 @@ ifeq ($(BUILD_TYPE),metal)
cp backend/cpp/llama/llama.cpp/build/bin/default.metallib backend-assets/grpc/
endif
backend-assets/grpc/llama-ggml: backend-assets/grpc sources/go-llama-ggml/libbinding.a
backend-assets/grpc/llama-ggml: sources/go-llama-ggml sources/go-llama-ggml/libbinding.a backend-assets/grpc
$(GOCMD) mod edit -replace github.com/go-skynet/go-llama.cpp=$(CURDIR)/sources/go-llama-ggml
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(CURDIR)/sources/go-llama-ggml LIBRARY_PATH=$(CURDIR)/sources/go-llama-ggml \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/llama-ggml ./backend/go/llm/llama-ggml/
backend-assets/grpc/gpt4all: backend-assets/grpc backend-assets/gpt4all sources/gpt4all/gpt4all-bindings/golang/libgpt4all.a
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(CURDIR)/sources/gpt4all/gpt4all-bindings/golang/ LIBRARY_PATH=$(CURDIR)/sources/gpt4all/gpt4all-bindings/golang/ \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/gpt4all ./backend/go/llm/gpt4all/
backend-assets/grpc/rwkv: backend-assets/grpc sources/go-rwkv/librwkv.a
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(CURDIR)/sources/go-rwkv LIBRARY_PATH=$(CURDIR)/sources/go-rwkv \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/rwkv ./backend/go/llm/rwkv
backend-assets/grpc/bert-embeddings: backend-assets/grpc sources/go-bert/libgobert.a
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(CURDIR)/sources/go-bert LIBRARY_PATH=$(CURDIR)/sources/go-bert \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/bert-embeddings ./backend/go/llm/bert/
backend-assets/grpc/langchain-huggingface: backend-assets/grpc
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/langchain-huggingface ./backend/go/llm/langchain/
backend-assets/grpc/stablediffusion: backend-assets/grpc
if [ ! -f backend-assets/grpc/stablediffusion ]; then \
$(MAKE) sources/go-stable-diffusion; \
$(MAKE) sources/go-stable-diffusion/libstablediffusion.a; \
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(CURDIR)/sources/go-stable-diffusion/ LIBRARY_PATH=$(CURDIR)/sources/go-stable-diffusion/ \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/stablediffusion ./backend/go/image/stablediffusion; \
fi
backend-assets/grpc/tinydream: backend-assets/grpc sources/go-tiny-dream/libtinydream.a
CGO_LDFLAGS="$(CGO_LDFLAGS)" LIBRARY_PATH=$(CURDIR)/go-tiny-dream \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/tinydream ./backend/go/image/tinydream
backend-assets/grpc/piper: backend-assets/grpc backend-assets/espeak-ng-data sources/go-piper/libpiper_binding.a
backend-assets/grpc/piper: sources/go-piper sources/go-piper/libpiper_binding.a backend-assets/grpc backend-assets/espeak-ng-data
CGO_CXXFLAGS="$(PIPER_CGO_CXXFLAGS)" CGO_LDFLAGS="$(PIPER_CGO_LDFLAGS)" LIBRARY_PATH=$(CURDIR)/sources/go-piper \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/piper ./backend/go/tts/
backend-assets/grpc/whisper: backend-assets/grpc sources/whisper.cpp/libwhisper.a
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(CURDIR)/sources/whisper.cpp LIBRARY_PATH=$(CURDIR)/sources/whisper.cpp \
backend-assets/grpc/rwkv: sources/go-rwkv sources/go-rwkv/librwkv.a backend-assets/grpc
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(CURDIR)/sources/go-rwkv LIBRARY_PATH=$(CURDIR)/sources/go-rwkv \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/rwkv ./backend/go/llm/rwkv
backend-assets/grpc/stablediffusion: sources/go-stable-diffusion sources/go-stable-diffusion/libstablediffusion.a backend-assets/grpc
CGO_LDFLAGS="$(CGO_LDFLAGS)" CPATH="$(CPATH):$(CURDIR)/sources/go-stable-diffusion/:/usr/include/opencv4" LIBRARY_PATH=$(CURDIR)/sources/go-stable-diffusion/ \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/stablediffusion ./backend/go/image/stablediffusion
backend-assets/grpc/tinydream: sources/go-tiny-dream sources/go-tiny-dream/libtinydream.a backend-assets/grpc
CGO_LDFLAGS="$(CGO_LDFLAGS)" LIBRARY_PATH=$(CURDIR)/go-tiny-dream \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/tinydream ./backend/go/image/tinydream
backend-assets/grpc/whisper: sources/whisper.cpp sources/whisper.cpp/libwhisper.a backend-assets/grpc
CGO_LDFLAGS="$(CGO_LDFLAGS) $(CGO_LDFLAGS_WHISPER)" C_INCLUDE_PATH=$(CURDIR)/sources/whisper.cpp LIBRARY_PATH=$(CURDIR)/sources/whisper.cpp \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/whisper ./backend/go/transcribe/
backend-assets/grpc/local-store: backend-assets/grpc
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/local-store ./backend/go/stores/
grpcs: prepare $(GRPC_BACKENDS)
DOCKER_IMAGE?=local-ai
DOCKER_AIO_IMAGE?=local-ai-aio
IMAGE_TYPE?=core
BASE_IMAGE?=ubuntu:22.04
@@ -544,15 +563,28 @@ docker:
docker build \
--build-arg BASE_IMAGE=$(BASE_IMAGE) \
--build-arg IMAGE_TYPE=$(IMAGE_TYPE) \
--build-arg GO_TAGS=$(GO_TAGS) \
--build-arg GO_TAGS="$(GO_TAGS)" \
--build-arg MAKEFLAGS="$(DOCKER_MAKEFLAGS)" \
--build-arg BUILD_TYPE=$(BUILD_TYPE) \
-t $(DOCKER_IMAGE) .
docker-aio:
@echo "Building AIO image with base $(BASE_IMAGE) as $(DOCKER_AIO_IMAGE)"
docker build \
--build-arg BASE_IMAGE=$(BASE_IMAGE) \
--build-arg MAKEFLAGS="$(DOCKER_MAKEFLAGS)" \
-t $(DOCKER_AIO_IMAGE) -f Dockerfile.aio .
docker-aio-all:
$(MAKE) docker-aio DOCKER_AIO_SIZE=cpu
$(MAKE) docker-aio DOCKER_AIO_SIZE=cpu
docker-image-intel:
docker build \
--build-arg BASE_IMAGE=intel/oneapi-basekit:2024.0.1-devel-ubuntu22.04 \
--build-arg IMAGE_TYPE=$(IMAGE_TYPE) \
--build-arg GO_TAGS="none" \
--build-arg MAKEFLAGS="$(DOCKER_MAKEFLAGS)" \
--build-arg BUILD_TYPE=sycl_f32 -t $(DOCKER_IMAGE) .
docker-image-intel-xpu:
@@ -560,4 +592,9 @@ docker-image-intel-xpu:
--build-arg BASE_IMAGE=intel/oneapi-basekit:2024.0.1-devel-ubuntu22.04 \
--build-arg IMAGE_TYPE=$(IMAGE_TYPE) \
--build-arg GO_TAGS="none" \
--build-arg BUILD_TYPE=sycl_f32 -t $(DOCKER_IMAGE) .
--build-arg MAKEFLAGS="$(DOCKER_MAKEFLAGS)" \
--build-arg BUILD_TYPE=sycl_f32 -t $(DOCKER_IMAGE) .
.PHONY: swagger
swagger:
swag init -g core/http/api.go --output swagger

View File

@@ -20,14 +20,14 @@
</a>
</p>
[<img src="https://img.shields.io/badge/dockerhub-images-important.svg?logo=Docker">](https://hub.docker.com/r/localai/localai)
[<img src="https://img.shields.io/badge/quay.io-images-important.svg?">](https://quay.io/repository/go-skynet/local-ai?tab=tags&tag=latest)
> :bulb: Get help - [❓FAQ](https://localai.io/faq/) [💭Discussions](https://github.com/go-skynet/LocalAI/discussions) [:speech_balloon: Discord](https://discord.gg/uJAeKSAGDy) [:book: Documentation website](https://localai.io/)
>
> [💻 Quickstart](https://localai.io/basics/getting_started/) [📣 News](https://localai.io/basics/news/) [ 🛫 Examples ](https://github.com/go-skynet/LocalAI/tree/master/examples/) [ 🖼️ Models ](https://localai.io/models/) [ 🚀 Roadmap ](https://github.com/mudler/LocalAI/issues?q=is%3Aissue+is%3Aopen+label%3Aroadmap)
[![tests](https://github.com/go-skynet/LocalAI/actions/workflows/test.yml/badge.svg)](https://github.com/go-skynet/LocalAI/actions/workflows/test.yml)[![Build and Release](https://github.com/go-skynet/LocalAI/actions/workflows/release.yaml/badge.svg)](https://github.com/go-skynet/LocalAI/actions/workflows/release.yaml)[![build container images](https://github.com/go-skynet/LocalAI/actions/workflows/image.yml/badge.svg)](https://github.com/go-skynet/LocalAI/actions/workflows/image.yml)[![Bump dependencies](https://github.com/go-skynet/LocalAI/actions/workflows/bump_deps.yaml/badge.svg)](https://github.com/go-skynet/LocalAI/actions/workflows/bump_deps.yaml)[![Artifact Hub](https://img.shields.io/endpoint?url=https://artifacthub.io/badge/repository/localai)](https://artifacthub.io/packages/search?repo=localai)
<p align="center">
<a href="https://hub.docker.com/r/localai/localai" target="blank">
<img src="https://img.shields.io/badge/dockerhub-images-important.svg?logo=Docker" alt="LocalAI Docker hub"/>
</a>
<a href="https://quay.io/repository/go-skynet/local-ai?tab=tags&tag=latest" target="blank">
<img src="https://img.shields.io/badge/quay.io-images-important.svg?" alt="LocalAI Quay.io"/>
</a>
</p>
<p align="center">
<a href="https://twitter.com/LocalAI_API" target="blank">
@@ -36,20 +36,27 @@
<a href="https://discord.gg/uJAeKSAGDy" target="blank">
<img src="https://dcbadge.vercel.app/api/server/uJAeKSAGDy?style=flat-square&theme=default-inverted" alt="Join LocalAI Discord Community"/>
</a>
</p>
**LocalAI** is the free, Open Source OpenAI alternative. LocalAI act as a drop-in replacement REST API thats compatible with OpenAI API specifications for local inferencing. It allows you to run LLMs, generate images, audio (and not only) locally or on-prem with consumer grade hardware, supporting multiple model families. Does not require GPU.
> :bulb: Get help - [❓FAQ](https://localai.io/faq/) [💭Discussions](https://github.com/go-skynet/LocalAI/discussions) [:speech_balloon: Discord](https://discord.gg/uJAeKSAGDy) [:book: Documentation website](https://localai.io/)
>
> [💻 Quickstart](https://localai.io/basics/getting_started/) [📣 News](https://localai.io/basics/news/) [ 🛫 Examples ](https://github.com/go-skynet/LocalAI/tree/master/examples/) [ 🖼️ Models ](https://localai.io/models/) [ 🚀 Roadmap ](https://github.com/mudler/LocalAI/issues?q=is%3Aissue+is%3Aopen+label%3Aroadmap)
[![tests](https://github.com/go-skynet/LocalAI/actions/workflows/test.yml/badge.svg)](https://github.com/go-skynet/LocalAI/actions/workflows/test.yml)[![Build and Release](https://github.com/go-skynet/LocalAI/actions/workflows/release.yaml/badge.svg)](https://github.com/go-skynet/LocalAI/actions/workflows/release.yaml)[![build container images](https://github.com/go-skynet/LocalAI/actions/workflows/image.yml/badge.svg)](https://github.com/go-skynet/LocalAI/actions/workflows/image.yml)[![Bump dependencies](https://github.com/go-skynet/LocalAI/actions/workflows/bump_deps.yaml/badge.svg)](https://github.com/go-skynet/LocalAI/actions/workflows/bump_deps.yaml)[![Artifact Hub](https://img.shields.io/endpoint?url=https://artifacthub.io/badge/repository/localai)](https://artifacthub.io/packages/search?repo=localai)
**LocalAI** is the free, Open Source OpenAI alternative. LocalAI act as a drop-in replacement REST API thats compatible with OpenAI (Elevenlabs, Anthropic... ) API specifications for local AI inferencing. It allows you to run LLMs, generate images, audio (and not only) locally or on-prem with consumer grade hardware, supporting multiple model families. Does not require GPU.
## 🔥🔥 Hot topics / Roadmap
[Roadmap](https://github.com/mudler/LocalAI/issues?q=is%3Aissue+is%3Aopen+label%3Aroadmap)
- Parallel function calling: https://github.com/mudler/LocalAI/pull/1726
- Landing page: https://github.com/mudler/LocalAI/pull/1922
- Openvino support: https://github.com/mudler/LocalAI/pull/1892
- Vector store: https://github.com/mudler/LocalAI/pull/1795
- All-in-one container image: https://github.com/mudler/LocalAI/issues/1855
- Parallel function calling: https://github.com/mudler/LocalAI/pull/1726 / Tools API support: https://github.com/mudler/LocalAI/pull/1715
- Upload file API: https://github.com/mudler/LocalAI/pull/1703
- Tools API support: https://github.com/mudler/LocalAI/pull/1715
- LLaVa 1.6: https://github.com/mudler/LocalAI/pull/1714
- ROCm container images: https://github.com/mudler/LocalAI/pull/1595
- Intel GPU support (sycl, transformers, diffusers): https://github.com/mudler/LocalAI/issues/1653
- Deprecation of old backends: https://github.com/mudler/LocalAI/issues/1651
- ROCm container images: https://github.com/mudler/LocalAI/pull/1595 / Intel GPU support (sycl, transformers, diffusers): https://github.com/mudler/LocalAI/issues/1653
- Mamba support: https://github.com/mudler/LocalAI/pull/1589
- Start and share models with config file: https://github.com/mudler/LocalAI/pull/1522
- 🐸 Coqui: https://github.com/mudler/LocalAI/pull/1489
@@ -66,10 +73,14 @@ If you want to help and contribute, issues up for grabs: https://github.com/mudl
## 💻 [Getting started](https://localai.io/basics/getting_started/index.html)
For a detailed step-by-step introduction, refer to the [Getting Started](https://localai.io/basics/getting_started/index.html) guide. For those in a hurry, here's a straightforward one-liner to launch a LocalAI instance with [phi-2](https://huggingface.co/microsoft/phi-2) using `docker`:
For a detailed step-by-step introduction, refer to the [Getting Started](https://localai.io/basics/getting_started/index.html) guide.
```
docker run -ti -p 8080:8080 localai/localai:v2.9.0-ffmpeg-core phi-2
For those in a hurry, here's a straightforward one-liner to launch a LocalAI AIO(All-in-one) Image using `docker`:
```bash
docker run -ti --name local-ai -p 8080:8080 localai/localai:latest-aio-cpu
# or, if you have an Nvidia GPU:
# docker run -ti --name local-ai -p 8080:8080 --gpus all localai/localai:latest-aio-gpu-nvidia-cuda-12
```
## 🚀 [Features](https://localai.io/features/)

5
aio/cpu/README.md Normal file
View File

@@ -0,0 +1,5 @@
## AIO CPU size
Use this image with CPU-only.
Please keep using only C++ backends so the base image is as small as possible (without CUDA, cuDNN, python, etc).

12
aio/cpu/embeddings.yaml Normal file
View File

@@ -0,0 +1,12 @@
name: text-embedding-ada-002
backend: bert-embeddings
parameters:
model: huggingface://mudler/all-MiniLM-L6-v2/ggml-model-q4_0.bin
usage: |
You can test this model with curl like this:
curl http://localhost:8080/embeddings -X POST -H "Content-Type: application/json" -d '{
"input": "Your text string goes here",
"model": "text-embedding-ada-002"
}'

62
aio/cpu/image-gen.yaml Normal file
View File

@@ -0,0 +1,62 @@
name: stablediffusion
backend: stablediffusion
parameters:
model: stablediffusion_assets
license: "BSD-3"
urls:
- https://github.com/EdVince/Stable-Diffusion-NCNN
- https://github.com/EdVince/Stable-Diffusion-NCNN/blob/main/LICENSE
description: |
Stable Diffusion in NCNN with c++, supported txt2img and img2img
download_files:
- filename: "stablediffusion_assets/AutoencoderKL-256-256-fp16-opt.param"
sha256: "18ca4b66685e21406bcf64c484b3b680b4949900415536d599cc876579c85c82"
uri: "https://raw.githubusercontent.com/EdVince/Stable-Diffusion-NCNN/main/x86/linux/assets/AutoencoderKL-256-256-fp16-opt.param"
- filename: "stablediffusion_assets/AutoencoderKL-512-512-fp16-opt.param"
sha256: "cf45f63aacf3dbbab0f59ed92a6f2c14d9a1801314631cd3abe91e3c85639a20"
uri: "https://raw.githubusercontent.com/EdVince/Stable-Diffusion-NCNN/main/x86/linux/assets/AutoencoderKL-512-512-fp16-opt.param"
- filename: "stablediffusion_assets/AutoencoderKL-base-fp16.param"
sha256: "0254a056dce61b0c27dc9ec1b78b53bcf55315c540f55f051eb841aa992701ba"
uri: "https://raw.githubusercontent.com/EdVince/Stable-Diffusion-NCNN/main/x86/linux/assets/AutoencoderKL-base-fp16.param"
- filename: "stablediffusion_assets/AutoencoderKL-encoder-512-512-fp16.bin"
sha256: "ddcb79a9951b9f91e05e087739ed69da2c1c4ae30ba4168cce350b49d617c9fa"
uri: "https://github.com/EdVince/Stable-Diffusion-NCNN/releases/download/naifu/AutoencoderKL-encoder-512-512-fp16.bin"
- filename: "stablediffusion_assets/AutoencoderKL-fp16.bin"
sha256: "f02e71f80e70252734724bbfaed5c4ddd3a8ed7e61bb2175ff5f53099f0e35dd"
uri: "https://github.com/EdVince/Stable-Diffusion-NCNN/releases/download/naifu/AutoencoderKL-fp16.bin"
- filename: "stablediffusion_assets/FrozenCLIPEmbedder-fp16.bin"
sha256: "1c9a12f4e1dd1b295a388045f7f28a2352a4d70c3dc96a542189a3dd7051fdd6"
uri: "https://github.com/EdVince/Stable-Diffusion-NCNN/releases/download/naifu/FrozenCLIPEmbedder-fp16.bin"
- filename: "stablediffusion_assets/FrozenCLIPEmbedder-fp16.param"
sha256: "471afbe678dd1fd3fe764ef9c6eccaccb0a7d7e601f27b462aa926b20eb368c9"
uri: "https://raw.githubusercontent.com/EdVince/Stable-Diffusion-NCNN/main/x86/linux/assets/FrozenCLIPEmbedder-fp16.param"
- filename: "stablediffusion_assets/log_sigmas.bin"
sha256: "a2089f8aa4c61f9c200feaec541ab3f5c94233b28deb6d5e8bcd974fa79b68ac"
uri: "https://github.com/EdVince/Stable-Diffusion-NCNN/raw/main/x86/linux/assets/log_sigmas.bin"
- filename: "stablediffusion_assets/UNetModel-256-256-MHA-fp16-opt.param"
sha256: "a58c380229f09491776df837b7aa7adffc0a87821dc4708b34535da2e36e3da1"
uri: "https://raw.githubusercontent.com/EdVince/Stable-Diffusion-NCNN/main/x86/linux/assets/UNetModel-256-256-MHA-fp16-opt.param"
- filename: "stablediffusion_assets/UNetModel-512-512-MHA-fp16-opt.param"
sha256: "f12034067062827bd7f43d1d21888d1f03905401acf6c6eea22be23c259636fa"
uri: "https://raw.githubusercontent.com/EdVince/Stable-Diffusion-NCNN/main/x86/linux/assets/UNetModel-512-512-MHA-fp16-opt.param"
- filename: "stablediffusion_assets/UNetModel-base-MHA-fp16.param"
sha256: "696f6975de49f4325b53ce32aff81861a6d6c07cd9ce3f0aae2cc405350af38d"
uri: "https://raw.githubusercontent.com/EdVince/Stable-Diffusion-NCNN/main/x86/linux/assets/UNetModel-base-MHA-fp16.param"
- filename: "stablediffusion_assets/UNetModel-MHA-fp16.bin"
sha256: "d618918d011bfc1f644c0f2a33bf84931bd53b28a98492b0a8ed6f3a818852c3"
uri: "https://github.com/EdVince/Stable-Diffusion-NCNN/releases/download/naifu/UNetModel-MHA-fp16.bin"
- filename: "stablediffusion_assets/vocab.txt"
sha256: "e30e57b6f1e47616982ef898d8922be24e535b4fa3d0110477b3a6f02ebbae7d"
uri: "https://raw.githubusercontent.com/EdVince/Stable-Diffusion-NCNN/main/x86/linux/assets/vocab.txt"
usage: |
curl http://localhost:8080/v1/images/generations \
-H "Content-Type: application/json" \
-d '{
"prompt": "<positive prompt>|<negative prompt>",
"step": 25,
"size": "512x512"
}'

View File

@@ -0,0 +1,18 @@
name: whisper-1
backend: whisper
parameters:
model: ggml-whisper-base.bin
usage: |
## example audio file
wget --quiet --show-progress -O gb1.ogg https://upload.wikimedia.org/wikipedia/commons/1/1f/George_W_Bush_Columbia_FINAL.ogg
## Send the example audio file to the transcriptions endpoint
curl http://localhost:8080/v1/audio/transcriptions \
-H "Content-Type: multipart/form-data" \
-F file="@$PWD/gb1.ogg" -F model="whisper-1"
download_files:
- filename: "ggml-whisper-base.bin"
sha256: "60ed5bc3dd14eea856493d334349b405782ddcaf0028d4b5df4088345fba2efe"
uri: "https://huggingface.co/ggerganov/whisper.cpp/resolve/main/ggml-base.bin"

View File

@@ -0,0 +1,15 @@
name: tts-1
download_files:
- filename: voice-en-us-amy-low.tar.gz
uri: https://github.com/rhasspy/piper/releases/download/v0.0.2/voice-en-us-amy-low.tar.gz
parameters:
model: en-us-amy-low.onnx
usage: |
To test if this model works as expected, you can use the following curl command:
curl http://localhost:8080/tts -H "Content-Type: application/json" -d '{
"model":"voice-en-us-amy-low",
"input": "Hi, this is a test."
}'

53
aio/cpu/text-to-text.yaml Normal file
View File

@@ -0,0 +1,53 @@
name: gpt-4
mmap: true
parameters:
model: huggingface://NousResearch/Hermes-2-Pro-Mistral-7B-GGUF/Hermes-2-Pro-Mistral-7B.Q2_K.gguf
template:
chat_message: |
<|im_start|>{{if eq .RoleName "assistant"}}assistant{{else if eq .RoleName "system"}}system{{else if eq .RoleName "tool"}}tool{{else if eq .RoleName "user"}}user{{end}}
{{- if .FunctionCall }}<tool_call>{{end}}
{{- if eq .RoleName "tool" }}<tool_result>{{end }}
{{- if .Content}}
{{.Content}}
{{- end }}
{{- if .FunctionCall}}{{toJson .FunctionCall}}{{end }}
{{- if .FunctionCall }}</tool_call>{{end }}
{{- if eq .RoleName "tool" }}</tool_result>{{end }}
<|im_end|>
# https://huggingface.co/NousResearch/Hermes-2-Pro-Mistral-7B-GGUF#prompt-format-for-function-calling
function: |
<|im_start|>system
You are a function calling AI model. You are provided with function signatures within <tools></tools> XML tags. You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions. Here are the available tools:
<tools>
{{range .Functions}}
{'type': 'function', 'function': {'name': '{{.Name}}', 'description': '{{.Description}}', 'parameters': {{toJson .Parameters}} }}
{{end}}
</tools>
Use the following pydantic model json schema for each tool call you will make:
{'title': 'FunctionCall', 'type': 'object', 'properties': {'arguments': {'title': 'Arguments', 'type': 'object'}, 'name': {'title': 'Name', 'type': 'string'}}, 'required': ['arguments', 'name']}
For each function call return a json object with function name and arguments within <tool_call></tool_call> XML tags as follows:
<tool_call>
{'arguments': <args-dict>, 'name': <function-name>}
</tool_call>
<|im_end|>
{{.Input -}}
<|im_start|>assistant
<tool_call>
chat: |
{{.Input -}}
<|im_start|>assistant
completion: |
{{.Input}}
context_size: 4096
f16: true
stopwords:
- <|im_end|>
- <dummy32000>
- "\n</tool_call>"
- "\n\n\n"
usage: |
curl http://localhost:8080/v1/chat/completions -H "Content-Type: application/json" -d '{
"model": "gpt-4",
"messages": [{"role": "user", "content": "How are you doing?", "temperature": 0.1}]
}'

31
aio/cpu/vision.yaml Normal file
View File

@@ -0,0 +1,31 @@
backend: llama-cpp
context_size: 4096
f16: true
mmap: true
name: gpt-4-vision-preview
roles:
user: "USER:"
assistant: "ASSISTANT:"
system: "SYSTEM:"
mmproj: bakllava-mmproj.gguf
parameters:
model: bakllava.gguf
template:
chat: |
A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.
{{.Input}}
ASSISTANT:
download_files:
- filename: bakllava.gguf
uri: huggingface://mys/ggml_bakllava-1/ggml-model-q4_k.gguf
- filename: bakllava-mmproj.gguf
uri: huggingface://mys/ggml_bakllava-1/mmproj-model-f16.gguf
usage: |
curl http://localhost:8080/v1/chat/completions -H "Content-Type: application/json" -d '{
"model": "gpt-4-vision-preview",
"messages": [{"role": "user", "content": [{"type":"text", "text": "What is in the image?"}, {"type": "image_url", "image_url": {"url": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg" }}], "temperature": 0.9}]}'

138
aio/entrypoint.sh Executable file
View File

@@ -0,0 +1,138 @@
#!/bin/bash
echo "===> LocalAI All-in-One (AIO) container starting..."
GPU_ACCELERATION=false
GPU_VENDOR=""
function check_intel() {
if lspci | grep -E 'VGA|3D' | grep -iq intel; then
echo "Intel GPU detected"
if [ -d /opt/intel ]; then
GPU_ACCELERATION=true
GPU_VENDOR=intel
else
echo "Intel GPU detected, but Intel GPU drivers are not installed. GPU acceleration will not be available."
fi
fi
}
function check_nvidia_wsl() {
if lspci | grep -E 'VGA|3D' | grep -iq "Microsoft Corporation Device 008e"; then
# We make the assumption this WSL2 cars is NVIDIA, then check for nvidia-smi
# Make sure the container was run with `--gpus all` as the only required parameter
echo "NVIDIA GPU detected via WSL2"
# nvidia-smi should be installed in the container
if nvidia-smi; then
GPU_ACCELERATION=true
GPU_VENDOR=nvidia
else
echo "NVIDIA GPU detected via WSL2, but nvidia-smi is not installed. GPU acceleration will not be available."
fi
fi
}
function check_amd() {
if lspci | grep -E 'VGA|3D' | grep -iq amd; then
echo "AMD GPU detected"
# Check if ROCm is installed
if [ -d /opt/rocm ]; then
GPU_ACCELERATION=true
GPU_VENDOR=amd
else
echo "AMD GPU detected, but ROCm is not installed. GPU acceleration will not be available."
fi
fi
}
function check_nvidia() {
if lspci | grep -E 'VGA|3D' | grep -iq nvidia; then
echo "NVIDIA GPU detected"
# nvidia-smi should be installed in the container
if nvidia-smi; then
GPU_ACCELERATION=true
GPU_VENDOR=nvidia
else
echo "NVIDIA GPU detected, but nvidia-smi is not installed. GPU acceleration will not be available."
fi
fi
}
function check_metal() {
if system_profiler SPDisplaysDataType | grep -iq 'Metal'; then
echo "Apple Metal supported GPU detected"
GPU_ACCELERATION=true
GPU_VENDOR=apple
fi
}
function detect_gpu() {
case "$(uname -s)" in
Linux)
check_nvidia
check_amd
check_intel
check_nvidia_wsl
;;
Darwin)
check_metal
;;
esac
}
function detect_gpu_size() {
# Attempting to find GPU memory size for NVIDIA GPUs
if [ "$GPU_ACCELERATION" = true ] && [ "$GPU_VENDOR" = "nvidia" ]; then
echo "NVIDIA GPU detected. Attempting to find memory size..."
# Using head -n 1 to get the total memory of the 1st NVIDIA GPU detected.
# If handling multiple GPUs is required in the future, this is the place to do it
nvidia_sm=$(nvidia-smi --query-gpu=memory.total --format=csv,noheader,nounits | head -n 1)
if [ ! -z "$nvidia_sm" ]; then
echo "Total GPU Memory: $nvidia_sm MiB"
# if bigger than 8GB, use 16GB
#if [ "$nvidia_sm" -gt 8192 ]; then
# GPU_SIZE=gpu-16g
#else
GPU_SIZE=gpu-8g
#fi
else
echo "Unable to determine NVIDIA GPU memory size. Falling back to CPU."
GPU_SIZE=gpu-8g
fi
elif [ "$GPU_ACCELERATION" = true ] && [ "$GPU_VENDOR" = "intel" ]; then
GPU_SIZE=intel
# Default to a generic GPU size until we implement GPU size detection for non NVIDIA GPUs
elif [ "$GPU_ACCELERATION" = true ]; then
echo "Non-NVIDIA GPU detected. Specific GPU memory size detection is not implemented."
GPU_SIZE=gpu-8g
# default to cpu if GPU_SIZE is not set
else
echo "GPU acceleration is not enabled or supported. Defaulting to CPU."
GPU_SIZE=cpu
fi
}
function check_vars() {
if [ -z "$MODELS" ]; then
echo "MODELS environment variable is not set. Please set it to a comma-separated list of model YAML files to load."
exit 1
fi
if [ -z "$PROFILE" ]; then
echo "PROFILE environment variable is not set. Please set it to one of the following: cpu, gpu-8g, gpu-16g, apple"
exit 1
fi
}
detect_gpu
detect_gpu_size
PROFILE="${PROFILE:-$GPU_SIZE}" # default to cpu
export MODELS="${MODELS:-/aio/${PROFILE}/embeddings.yaml,/aio/${PROFILE}/text-to-speech.yaml,/aio/${PROFILE}/image-gen.yaml,/aio/${PROFILE}/text-to-text.yaml,/aio/${PROFILE}/speech-to-text.yaml,/aio/${PROFILE}/vision.yaml}"
check_vars
echo "===> Starting LocalAI[$PROFILE] with the following models: $MODELS"
exec /build/entrypoint.sh "$@"

View File

@@ -0,0 +1,12 @@
name: text-embedding-ada-002
backend: sentencetransformers
parameters:
model: all-MiniLM-L6-v2
usage: |
You can test this model with curl like this:
curl http://localhost:8080/embeddings -X POST -H "Content-Type: application/json" -d '{
"input": "Your text string goes here",
"model": "text-embedding-ada-002"
}'

25
aio/gpu-8g/image-gen.yaml Normal file
View File

@@ -0,0 +1,25 @@
name: stablediffusion
parameters:
model: DreamShaper_8_pruned.safetensors
backend: diffusers
step: 25
f16: true
diffusers:
pipeline_type: StableDiffusionPipeline
cuda: true
enable_parameters: "negative_prompt,num_inference_steps"
scheduler_type: "k_dpmpp_2m"
download_files:
- filename: DreamShaper_8_pruned.safetensors
uri: huggingface://Lykon/DreamShaper/DreamShaper_8_pruned.safetensors
usage: |
curl http://localhost:8080/v1/images/generations \
-H "Content-Type: application/json" \
-d '{
"prompt": "<positive prompt>|<negative prompt>",
"step": 25,
"size": "512x512"
}'

View File

@@ -0,0 +1,18 @@
name: whisper-1
backend: whisper
parameters:
model: ggml-whisper-base.bin
usage: |
## example audio file
wget --quiet --show-progress -O gb1.ogg https://upload.wikimedia.org/wikipedia/commons/1/1f/George_W_Bush_Columbia_FINAL.ogg
## Send the example audio file to the transcriptions endpoint
curl http://localhost:8080/v1/audio/transcriptions \
-H "Content-Type: multipart/form-data" \
-F file="@$PWD/gb1.ogg" -F model="whisper-1"
download_files:
- filename: "ggml-whisper-base.bin"
sha256: "60ed5bc3dd14eea856493d334349b405782ddcaf0028d4b5df4088345fba2efe"
uri: "https://huggingface.co/ggerganov/whisper.cpp/resolve/main/ggml-base.bin"

View File

@@ -0,0 +1,15 @@
name: tts-1
download_files:
- filename: voice-en-us-amy-low.tar.gz
uri: https://github.com/rhasspy/piper/releases/download/v0.0.2/voice-en-us-amy-low.tar.gz
parameters:
model: en-us-amy-low.onnx
usage: |
To test if this model works as expected, you can use the following curl command:
curl http://localhost:8080/tts -H "Content-Type: application/json" -d '{
"model":"tts-1",
"input": "Hi, this is a test."
}'

View File

@@ -0,0 +1,53 @@
name: gpt-4
mmap: true
parameters:
model: huggingface://NousResearch/Hermes-2-Pro-Mistral-7B-GGUF/Hermes-2-Pro-Mistral-7B.Q6_K.gguf
template:
chat_message: |
<|im_start|>{{if eq .RoleName "assistant"}}assistant{{else if eq .RoleName "system"}}system{{else if eq .RoleName "tool"}}tool{{else if eq .RoleName "user"}}user{{end}}
{{- if .FunctionCall }}<tool_call>{{end}}
{{- if eq .RoleName "tool" }}<tool_result>{{end }}
{{- if .Content}}
{{.Content}}
{{- end }}
{{- if .FunctionCall}}{{toJson .FunctionCall}}{{end }}
{{- if .FunctionCall }}</tool_call>{{end }}
{{- if eq .RoleName "tool" }}</tool_result>{{end }}
<|im_end|>
# https://huggingface.co/NousResearch/Hermes-2-Pro-Mistral-7B-GGUF#prompt-format-for-function-calling
function: |
<|im_start|>system
You are a function calling AI model. You are provided with function signatures within <tools></tools> XML tags. You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions. Here are the available tools:
<tools>
{{range .Functions}}
{'type': 'function', 'function': {'name': '{{.Name}}', 'description': '{{.Description}}', 'parameters': {{toJson .Parameters}} }}
{{end}}
</tools>
Use the following pydantic model json schema for each tool call you will make:
{'title': 'FunctionCall', 'type': 'object', 'properties': {'arguments': {'title': 'Arguments', 'type': 'object'}, 'name': {'title': 'Name', 'type': 'string'}}, 'required': ['arguments', 'name']}
For each function call return a json object with function name and arguments within <tool_call></tool_call> XML tags as follows:
<tool_call>
{'arguments': <args-dict>, 'name': <function-name>}
</tool_call>
<|im_end|>
{{.Input -}}
<|im_start|>assistant
<tool_call>
chat: |
{{.Input -}}
<|im_start|>assistant
completion: |
{{.Input}}
context_size: 4096
f16: true
stopwords:
- <|im_end|>
- <dummy32000>
- "\n</tool_call>"
- "\n\n\n"
usage: |
curl http://localhost:8080/v1/chat/completions -H "Content-Type: application/json" -d '{
"model": "gpt-4",
"messages": [{"role": "user", "content": "How are you doing?", "temperature": 0.1}]
}'

35
aio/gpu-8g/vision.yaml Normal file
View File

@@ -0,0 +1,35 @@
backend: llama-cpp
context_size: 4096
f16: true
mmap: true
name: gpt-4-vision-preview
roles:
user: "USER:"
assistant: "ASSISTANT:"
system: "SYSTEM:"
mmproj: llava-v1.6-7b-mmproj-f16.gguf
parameters:
model: llava-v1.6-mistral-7b.Q5_K_M.gguf
temperature: 0.2
top_k: 40
top_p: 0.95
seed: -1
template:
chat: |
A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.
{{.Input}}
ASSISTANT:
download_files:
- filename: llava-v1.6-mistral-7b.Q5_K_M.gguf
uri: huggingface://cjpais/llava-1.6-mistral-7b-gguf/llava-v1.6-mistral-7b.Q5_K_M.gguf
- filename: llava-v1.6-7b-mmproj-f16.gguf
uri: huggingface://cjpais/llava-1.6-mistral-7b-gguf/mmproj-model-f16.gguf
usage: |
curl http://localhost:8080/v1/chat/completions -H "Content-Type: application/json" -d '{
"model": "gpt-4-vision-preview",
"messages": [{"role": "user", "content": [{"type":"text", "text": "What is in the image?"}, {"type": "image_url", "image_url": {"url": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg" }}], "temperature": 0.9}]}'

12
aio/intel/embeddings.yaml Normal file
View File

@@ -0,0 +1,12 @@
name: text-embedding-ada-002
backend: sentencetransformers
parameters:
model: all-MiniLM-L6-v2
usage: |
You can test this model with curl like this:
curl http://localhost:8080/embeddings -X POST -H "Content-Type: application/json" -d '{
"input": "Your text string goes here",
"model": "text-embedding-ada-002"
}'

20
aio/intel/image-gen.yaml Normal file
View File

@@ -0,0 +1,20 @@
name: stablediffusion
parameters:
model: runwayml/stable-diffusion-v1-5
backend: diffusers
step: 25
f16: true
diffusers:
pipeline_type: StableDiffusionPipeline
cuda: true
enable_parameters: "negative_prompt,num_inference_steps"
scheduler_type: "k_dpmpp_2m"
usage: |
curl http://localhost:8080/v1/images/generations \
-H "Content-Type: application/json" \
-d '{
"prompt": "<positive prompt>|<negative prompt>",
"step": 25,
"size": "512x512"
}'

View File

@@ -0,0 +1,18 @@
name: whisper-1
backend: whisper
parameters:
model: ggml-whisper-base.bin
usage: |
## example audio file
wget --quiet --show-progress -O gb1.ogg https://upload.wikimedia.org/wikipedia/commons/1/1f/George_W_Bush_Columbia_FINAL.ogg
## Send the example audio file to the transcriptions endpoint
curl http://localhost:8080/v1/audio/transcriptions \
-H "Content-Type: multipart/form-data" \
-F file="@$PWD/gb1.ogg" -F model="whisper-1"
download_files:
- filename: "ggml-whisper-base.bin"
sha256: "60ed5bc3dd14eea856493d334349b405782ddcaf0028d4b5df4088345fba2efe"
uri: "https://huggingface.co/ggerganov/whisper.cpp/resolve/main/ggml-base.bin"

View File

@@ -0,0 +1,15 @@
name: tts-1
download_files:
- filename: voice-en-us-amy-low.tar.gz
uri: https://github.com/rhasspy/piper/releases/download/v0.0.2/voice-en-us-amy-low.tar.gz
parameters:
model: en-us-amy-low.onnx
usage: |
To test if this model works as expected, you can use the following curl command:
curl http://localhost:8080/tts -H "Content-Type: application/json" -d '{
"model":"tts-1",
"input": "Hi, this is a test."
}'

View File

@@ -0,0 +1,53 @@
name: gpt-4
mmap: false
f16: false
parameters:
model: huggingface://NousResearch/Hermes-2-Pro-Mistral-7B-GGUF/Hermes-2-Pro-Mistral-7B.Q6_K.gguf
template:
chat_message: |
<|im_start|>{{if eq .RoleName "assistant"}}assistant{{else if eq .RoleName "system"}}system{{else if eq .RoleName "tool"}}tool{{else if eq .RoleName "user"}}user{{end}}
{{- if .FunctionCall }}<tool_call>{{end}}
{{- if eq .RoleName "tool" }}<tool_result>{{end }}
{{- if .Content}}
{{.Content}}
{{- end }}
{{- if .FunctionCall}}{{toJson .FunctionCall}}{{end }}
{{- if .FunctionCall }}</tool_call>{{end }}
{{- if eq .RoleName "tool" }}</tool_result>{{end }}
<|im_end|>
# https://huggingface.co/NousResearch/Hermes-2-Pro-Mistral-7B-GGUF#prompt-format-for-function-calling
function: |
<|im_start|>system
You are a function calling AI model. You are provided with function signatures within <tools></tools> XML tags. You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions. Here are the available tools:
<tools>
{{range .Functions}}
{'type': 'function', 'function': {'name': '{{.Name}}', 'description': '{{.Description}}', 'parameters': {{toJson .Parameters}} }}
{{end}}
</tools>
Use the following pydantic model json schema for each tool call you will make:
{'title': 'FunctionCall', 'type': 'object', 'properties': {'arguments': {'title': 'Arguments', 'type': 'object'}, 'name': {'title': 'Name', 'type': 'string'}}, 'required': ['arguments', 'name']}
For each function call return a json object with function name and arguments within <tool_call></tool_call> XML tags as follows:
<tool_call>
{'arguments': <args-dict>, 'name': <function-name>}
</tool_call>
<|im_end|>
{{.Input -}}
<|im_start|>assistant
<tool_call>
chat: |
{{.Input -}}
<|im_start|>assistant
completion: |
{{.Input}}
context_size: 4096
stopwords:
- <|im_end|>
- "\n</tool_call>"
- <dummy32000>
- "\n\n\n"
usage: |
curl http://localhost:8080/v1/chat/completions -H "Content-Type: application/json" -d '{
"model": "gpt-4",
"messages": [{"role": "user", "content": "How are you doing?", "temperature": 0.1}]
}'

35
aio/intel/vision.yaml Normal file
View File

@@ -0,0 +1,35 @@
backend: llama-cpp
context_size: 4096
mmap: false
f16: false
name: gpt-4-vision-preview
roles:
user: "USER:"
assistant: "ASSISTANT:"
system: "SYSTEM:"
mmproj: llava-v1.6-7b-mmproj-f16.gguf
parameters:
model: llava-v1.6-mistral-7b.Q5_K_M.gguf
temperature: 0.2
top_k: 40
top_p: 0.95
seed: -1
template:
chat: |
A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.
{{.Input}}
ASSISTANT:
download_files:
- filename: llava-v1.6-mistral-7b.Q5_K_M.gguf
uri: huggingface://cjpais/llava-1.6-mistral-7b-gguf/llava-v1.6-mistral-7b.Q5_K_M.gguf
- filename: llava-v1.6-7b-mmproj-f16.gguf
uri: huggingface://cjpais/llava-1.6-mistral-7b-gguf/mmproj-model-f16.gguf
usage: |
curl http://localhost:8080/v1/chat/completions -H "Content-Type: application/json" -d '{
"model": "gpt-4-vision-preview",
"messages": [{"role": "user", "content": [{"type":"text", "text": "What is in the image?"}, {"type": "image_url", "image_url": {"url": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg" }}], "temperature": 0.9}]}'

View File

@@ -18,6 +18,48 @@ service Backend {
rpc TTS(TTSRequest) returns (Result) {}
rpc TokenizeString(PredictOptions) returns (TokenizationResponse) {}
rpc Status(HealthMessage) returns (StatusResponse) {}
rpc StoresSet(StoresSetOptions) returns (Result) {}
rpc StoresDelete(StoresDeleteOptions) returns (Result) {}
rpc StoresGet(StoresGetOptions) returns (StoresGetResult) {}
rpc StoresFind(StoresFindOptions) returns (StoresFindResult) {}
}
message StoresKey {
repeated float Floats = 1;
}
message StoresValue {
bytes Bytes = 1;
}
message StoresSetOptions {
repeated StoresKey Keys = 1;
repeated StoresValue Values = 2;
}
message StoresDeleteOptions {
repeated StoresKey Keys = 1;
}
message StoresGetOptions {
repeated StoresKey Keys = 1;
}
message StoresGetResult {
repeated StoresKey Keys = 1;
repeated StoresValue Values = 2;
}
message StoresFindOptions {
StoresKey Key = 1;
int32 TopK = 2;
}
message StoresFindResult {
repeated StoresKey Keys = 1;
repeated StoresValue Values = 2;
repeated float Similarities = 3;
}
message HealthMessage {}
@@ -121,7 +163,7 @@ message ModelOptions {
bool NoMulMatQ = 37;
string DraftModel = 39;
string AudioPath = 38;
// vllm
@@ -213,4 +255,4 @@ message StatusResponse {
}
State state = 1;
MemoryUsageData memory = 2;
}
}

View File

@@ -48,7 +48,7 @@ $(INSTALLED_PACKAGES): grpc_build
$(GRPC_REPO):
git clone --depth $(GIT_CLONE_DEPTH) -b $(TAG_LIB_GRPC) $(GIT_REPO_LIB_GRPC) $(GRPC_REPO)/grpc
cd $(GRPC_REPO)/grpc && git submodule update --init --recursive --depth $(GIT_CLONE_DEPTH)
cd $(GRPC_REPO)/grpc && git submodule update --jobs 2 --init --recursive --depth $(GIT_CLONE_DEPTH)
$(GRPC_BUILD): $(GRPC_REPO)
mkdir -p $(GRPC_BUILD)

View File

@@ -19,6 +19,11 @@ else ifeq ($(BUILD_TYPE),clblas)
else ifeq ($(BUILD_TYPE),hipblas)
CMAKE_ARGS+=-DLLAMA_HIPBLAS=ON
# If it's OSX, DO NOT embed the metal library - -DLLAMA_METAL_EMBED_LIBRARY=ON requires further investigation
# But if it's OSX without metal, disable it here
else ifeq ($(OS),darwin)
ifneq ($(BUILD_TYPE),metal)
CMAKE_ARGS+=-DLLAMA_METAL=OFF
endif
endif
ifeq ($(BUILD_TYPE),sycl_f16)
@@ -36,7 +41,7 @@ llama.cpp:
fi
cd llama.cpp && git checkout -b build $(LLAMA_VERSION) && git submodule update --init --recursive --depth 1
llama.cpp/examples/grpc-server:
llama.cpp/examples/grpc-server: llama.cpp
mkdir -p llama.cpp/examples/grpc-server
cp -r $(abspath ./)/CMakeLists.txt llama.cpp/examples/grpc-server/
cp -r $(abspath ./)/grpc-server.cpp llama.cpp/examples/grpc-server/

View File

@@ -1084,7 +1084,7 @@ struct llama_server_context
slot.has_next_token = false;
}
if (!slot.cache_tokens.empty() && result.tok == llama_token_eos(model))
if (result.tok == llama_token_eos(model))
{
slot.stopped_eos = true;
slot.has_next_token = false;

View File

@@ -0,0 +1,14 @@
//go:build debug
// +build debug
package main
import (
"github.com/rs/zerolog/log"
)
func assert(cond bool, msg string) {
if !cond {
log.Fatal().Stack().Msg(msg)
}
}

26
backend/go/stores/main.go Normal file
View File

@@ -0,0 +1,26 @@
package main
// Note: this is started internally by LocalAI and a server is allocated for each store
import (
"flag"
"os"
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
"github.com/rs/zerolog"
"github.com/rs/zerolog/log"
)
var (
addr = flag.String("addr", "localhost:50051", "the address to connect to")
)
func main() {
log.Logger = log.Output(zerolog.ConsoleWriter{Out: os.Stderr})
flag.Parse()
if err := grpc.StartServer(*addr, NewStore()); err != nil {
panic(err)
}
}

View File

@@ -0,0 +1,7 @@
//go:build !debug
// +build !debug
package main
func assert(cond bool, msg string) {
}

507
backend/go/stores/store.go Normal file
View File

@@ -0,0 +1,507 @@
package main
// This is a wrapper to statisfy the GRPC service interface
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
import (
"container/heap"
"fmt"
"math"
"slices"
"github.com/go-skynet/LocalAI/pkg/grpc/base"
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
"github.com/rs/zerolog/log"
)
type Store struct {
base.SingleThread
// The sorted keys
keys [][]float32
// The sorted values
values [][]byte
// If for every K it holds that ||k||^2 = 1, then we can use the normalized distance functions
// TODO: Should we normalize incoming keys if they are not instead?
keysAreNormalized bool
// The first key decides the length of the keys
keyLen int
}
// TODO: Only used for sorting using Go's builtin implementation. The interfaces are columnar because
// that's theoretically best for memory layout and cache locality, but this isn't optimized yet.
type Pair struct {
Key []float32
Value []byte
}
func NewStore() *Store {
return &Store{
keys: make([][]float32, 0),
values: make([][]byte, 0),
keysAreNormalized: true,
keyLen: -1,
}
}
func compareSlices(k1, k2 []float32) int {
assert(len(k1) == len(k2), fmt.Sprintf("compareSlices: len(k1) = %d, len(k2) = %d", len(k1), len(k2)))
return slices.Compare(k1, k2)
}
func hasKey(unsortedSlice [][]float32, target []float32) bool {
return slices.ContainsFunc(unsortedSlice, func(k []float32) bool {
return compareSlices(k, target) == 0
})
}
func findInSortedSlice(sortedSlice [][]float32, target []float32) (int, bool) {
return slices.BinarySearchFunc(sortedSlice, target, func(k, t []float32) int {
return compareSlices(k, t)
})
}
func isSortedPairs(kvs []Pair) bool {
for i := 1; i < len(kvs); i++ {
if compareSlices(kvs[i-1].Key, kvs[i].Key) > 0 {
return false
}
}
return true
}
func isSortedKeys(keys [][]float32) bool {
for i := 1; i < len(keys); i++ {
if compareSlices(keys[i-1], keys[i]) > 0 {
return false
}
}
return true
}
func sortIntoKeySlicese(keys []*pb.StoresKey) [][]float32 {
ks := make([][]float32, len(keys))
for i, k := range keys {
ks[i] = k.Floats
}
slices.SortFunc(ks, compareSlices)
assert(len(ks) == len(keys), fmt.Sprintf("len(ks) = %d, len(keys) = %d", len(ks), len(keys)))
assert(isSortedKeys(ks), "keys are not sorted")
return ks
}
func (s *Store) Load(opts *pb.ModelOptions) error {
return nil
}
// Sort the incoming kvs and merge them with the existing sorted kvs
func (s *Store) StoresSet(opts *pb.StoresSetOptions) error {
if len(opts.Keys) == 0 {
return fmt.Errorf("no keys to add")
}
if len(opts.Keys) != len(opts.Values) {
return fmt.Errorf("len(keys) = %d, len(values) = %d", len(opts.Keys), len(opts.Values))
}
if s.keyLen == -1 {
s.keyLen = len(opts.Keys[0].Floats)
} else {
if len(opts.Keys[0].Floats) != s.keyLen {
return fmt.Errorf("Try to add key with length %d when existing length is %d", len(opts.Keys[0].Floats), s.keyLen)
}
}
kvs := make([]Pair, len(opts.Keys))
for i, k := range opts.Keys {
if s.keysAreNormalized && !isNormalized(k.Floats) {
s.keysAreNormalized = false
var sample []float32
if len(s.keys) > 5 {
sample = k.Floats[:5]
} else {
sample = k.Floats
}
log.Debug().Msgf("Key is not normalized: %v", sample)
}
kvs[i] = Pair{
Key: k.Floats,
Value: opts.Values[i].Bytes,
}
}
slices.SortFunc(kvs, func(a, b Pair) int {
return compareSlices(a.Key, b.Key)
})
assert(len(kvs) == len(opts.Keys), fmt.Sprintf("len(kvs) = %d, len(opts.Keys) = %d", len(kvs), len(opts.Keys)))
assert(isSortedPairs(kvs), "keys are not sorted")
l := len(kvs) + len(s.keys)
merge_ks := make([][]float32, 0, l)
merge_vs := make([][]byte, 0, l)
i, j := 0, 0
for {
if i+j >= l {
break
}
if i >= len(kvs) {
merge_ks = append(merge_ks, s.keys[j])
merge_vs = append(merge_vs, s.values[j])
j++
continue
}
if j >= len(s.keys) {
merge_ks = append(merge_ks, kvs[i].Key)
merge_vs = append(merge_vs, kvs[i].Value)
i++
continue
}
c := compareSlices(kvs[i].Key, s.keys[j])
if c < 0 {
merge_ks = append(merge_ks, kvs[i].Key)
merge_vs = append(merge_vs, kvs[i].Value)
i++
} else if c > 0 {
merge_ks = append(merge_ks, s.keys[j])
merge_vs = append(merge_vs, s.values[j])
j++
} else {
merge_ks = append(merge_ks, kvs[i].Key)
merge_vs = append(merge_vs, kvs[i].Value)
i++
j++
}
}
assert(len(merge_ks) == l, fmt.Sprintf("len(merge_ks) = %d, l = %d", len(merge_ks), l))
assert(isSortedKeys(merge_ks), "merge keys are not sorted")
s.keys = merge_ks
s.values = merge_vs
return nil
}
func (s *Store) StoresDelete(opts *pb.StoresDeleteOptions) error {
if len(opts.Keys) == 0 {
return fmt.Errorf("no keys to delete")
}
if len(opts.Keys) == 0 {
return fmt.Errorf("no keys to add")
}
if s.keyLen == -1 {
s.keyLen = len(opts.Keys[0].Floats)
} else {
if len(opts.Keys[0].Floats) != s.keyLen {
return fmt.Errorf("Trying to delete key with length %d when existing length is %d", len(opts.Keys[0].Floats), s.keyLen)
}
}
ks := sortIntoKeySlicese(opts.Keys)
l := len(s.keys) - len(ks)
merge_ks := make([][]float32, 0, l)
merge_vs := make([][]byte, 0, l)
tail_ks := s.keys
tail_vs := s.values
for _, k := range ks {
j, found := findInSortedSlice(tail_ks, k)
if found {
merge_ks = append(merge_ks, tail_ks[:j]...)
merge_vs = append(merge_vs, tail_vs[:j]...)
tail_ks = tail_ks[j+1:]
tail_vs = tail_vs[j+1:]
} else {
assert(!hasKey(s.keys, k), fmt.Sprintf("Key exists, but was not found: t=%d, %v", len(tail_ks), k))
}
log.Debug().Msgf("Delete: found = %v, t = %d, j = %d, len(merge_ks) = %d, len(merge_vs) = %d", found, len(tail_ks), j, len(merge_ks), len(merge_vs))
}
merge_ks = append(merge_ks, tail_ks...)
merge_vs = append(merge_vs, tail_vs...)
assert(len(merge_ks) <= len(s.keys), fmt.Sprintf("len(merge_ks) = %d, len(s.keys) = %d", len(merge_ks), len(s.keys)))
s.keys = merge_ks
s.values = merge_vs
assert(len(s.keys) >= l, fmt.Sprintf("len(s.keys) = %d, l = %d", len(s.keys), l))
assert(isSortedKeys(s.keys), "keys are not sorted")
assert(func() bool {
for _, k := range ks {
if _, found := findInSortedSlice(s.keys, k); found {
return false
}
}
return true
}(), "Keys to delete still present")
if len(s.keys) != l {
log.Debug().Msgf("Delete: Some keys not found: len(s.keys) = %d, l = %d", len(s.keys), l)
}
return nil
}
func (s *Store) StoresGet(opts *pb.StoresGetOptions) (pb.StoresGetResult, error) {
pbKeys := make([]*pb.StoresKey, 0, len(opts.Keys))
pbValues := make([]*pb.StoresValue, 0, len(opts.Keys))
ks := sortIntoKeySlicese(opts.Keys)
if len(s.keys) == 0 {
log.Debug().Msgf("Get: No keys in store")
}
if s.keyLen == -1 {
s.keyLen = len(opts.Keys[0].Floats)
} else {
if len(opts.Keys[0].Floats) != s.keyLen {
return pb.StoresGetResult{}, fmt.Errorf("Try to get a key with length %d when existing length is %d", len(opts.Keys[0].Floats), s.keyLen)
}
}
tail_k := s.keys
tail_v := s.values
for i, k := range ks {
j, found := findInSortedSlice(tail_k, k)
if found {
pbKeys = append(pbKeys, &pb.StoresKey{
Floats: k,
})
pbValues = append(pbValues, &pb.StoresValue{
Bytes: tail_v[j],
})
tail_k = tail_k[j+1:]
tail_v = tail_v[j+1:]
} else {
assert(!hasKey(s.keys, k), fmt.Sprintf("Key exists, but was not found: i=%d, %v", i, k))
}
}
if len(pbKeys) != len(opts.Keys) {
log.Debug().Msgf("Get: Some keys not found: len(pbKeys) = %d, len(opts.Keys) = %d, len(s.Keys) = %d", len(pbKeys), len(opts.Keys), len(s.keys))
}
return pb.StoresGetResult{
Keys: pbKeys,
Values: pbValues,
}, nil
}
func isNormalized(k []float32) bool {
var sum float32
for _, v := range k {
sum += v
}
return sum == 1.0
}
// TODO: This we could replace with handwritten SIMD code
func normalizedCosineSimilarity(k1, k2 []float32) float32 {
assert(len(k1) == len(k2), fmt.Sprintf("normalizedCosineSimilarity: len(k1) = %d, len(k2) = %d", len(k1), len(k2)))
var dot float32
for i := 0; i < len(k1); i++ {
dot += k1[i] * k2[i]
}
assert(dot >= -1 && dot <= 1, fmt.Sprintf("dot = %f", dot))
// 2.0 * (1.0 - dot) would be the Euclidean distance
return dot
}
type PriorityItem struct {
Similarity float32
Key []float32
Value []byte
}
type PriorityQueue []*PriorityItem
func (pq PriorityQueue) Len() int { return len(pq) }
func (pq PriorityQueue) Less(i, j int) bool {
// Inverted because the most similar should be at the top
return pq[i].Similarity < pq[j].Similarity
}
func (pq PriorityQueue) Swap(i, j int) {
pq[i], pq[j] = pq[j], pq[i]
}
func (pq *PriorityQueue) Push(x any) {
item := x.(*PriorityItem)
*pq = append(*pq, item)
}
func (pq *PriorityQueue) Pop() any {
old := *pq
n := len(old)
item := old[n-1]
*pq = old[0 : n-1]
return item
}
func (s *Store) StoresFindNormalized(opts *pb.StoresFindOptions) (pb.StoresFindResult, error) {
tk := opts.Key.Floats
top_ks := make(PriorityQueue, 0, int(opts.TopK))
heap.Init(&top_ks)
for i, k := range s.keys {
sim := normalizedCosineSimilarity(tk, k)
heap.Push(&top_ks, &PriorityItem{
Similarity: sim,
Key: k,
Value: s.values[i],
})
if top_ks.Len() > int(opts.TopK) {
heap.Pop(&top_ks)
}
}
similarities := make([]float32, top_ks.Len())
pbKeys := make([]*pb.StoresKey, top_ks.Len())
pbValues := make([]*pb.StoresValue, top_ks.Len())
for i := top_ks.Len() - 1; i >= 0; i-- {
item := heap.Pop(&top_ks).(*PriorityItem)
similarities[i] = item.Similarity
pbKeys[i] = &pb.StoresKey{
Floats: item.Key,
}
pbValues[i] = &pb.StoresValue{
Bytes: item.Value,
}
}
return pb.StoresFindResult{
Keys: pbKeys,
Values: pbValues,
Similarities: similarities,
}, nil
}
func cosineSimilarity(k1, k2 []float32, mag1 float64) float32 {
assert(len(k1) == len(k2), fmt.Sprintf("cosineSimilarity: len(k1) = %d, len(k2) = %d", len(k1), len(k2)))
var dot, mag2 float64
for i := 0; i < len(k1); i++ {
dot += float64(k1[i] * k2[i])
mag2 += float64(k2[i] * k2[i])
}
sim := float32(dot / (mag1 * math.Sqrt(mag2)))
assert(sim >= -1 && sim <= 1, fmt.Sprintf("sim = %f", sim))
return sim
}
func (s *Store) StoresFindFallback(opts *pb.StoresFindOptions) (pb.StoresFindResult, error) {
tk := opts.Key.Floats
top_ks := make(PriorityQueue, 0, int(opts.TopK))
heap.Init(&top_ks)
var mag1 float64
for _, v := range tk {
mag1 += float64(v * v)
}
mag1 = math.Sqrt(mag1)
for i, k := range s.keys {
dist := cosineSimilarity(tk, k, mag1)
heap.Push(&top_ks, &PriorityItem{
Similarity: dist,
Key: k,
Value: s.values[i],
})
if top_ks.Len() > int(opts.TopK) {
heap.Pop(&top_ks)
}
}
similarities := make([]float32, top_ks.Len())
pbKeys := make([]*pb.StoresKey, top_ks.Len())
pbValues := make([]*pb.StoresValue, top_ks.Len())
for i := top_ks.Len() - 1; i >= 0; i-- {
item := heap.Pop(&top_ks).(*PriorityItem)
similarities[i] = item.Similarity
pbKeys[i] = &pb.StoresKey{
Floats: item.Key,
}
pbValues[i] = &pb.StoresValue{
Bytes: item.Value,
}
}
return pb.StoresFindResult{
Keys: pbKeys,
Values: pbValues,
Similarities: similarities,
}, nil
}
func (s *Store) StoresFind(opts *pb.StoresFindOptions) (pb.StoresFindResult, error) {
tk := opts.Key.Floats
if len(tk) != s.keyLen {
return pb.StoresFindResult{}, fmt.Errorf("Try to find key with length %d when existing length is %d", len(tk), s.keyLen)
}
if opts.TopK < 1 {
return pb.StoresFindResult{}, fmt.Errorf("opts.TopK = %d, must be >= 1", opts.TopK)
}
if s.keyLen == -1 {
s.keyLen = len(opts.Key.Floats)
} else {
if len(opts.Key.Floats) != s.keyLen {
return pb.StoresFindResult{}, fmt.Errorf("Try to add key with length %d when existing length is %d", len(opts.Key.Floats), s.keyLen)
}
}
if s.keysAreNormalized && isNormalized(tk) {
return s.StoresFindNormalized(opts)
} else {
if s.keysAreNormalized {
var sample []float32
if len(s.keys) > 5 {
sample = tk[:5]
} else {
sample = tk
}
log.Debug().Msgf("Trying to compare non-normalized key with normalized keys: %v", sample)
}
return s.StoresFindFallback(opts)
}
}

View File

@@ -5,12 +5,14 @@ import signal
import sys
import os
import time
import base64
import grpc
import backend_pb2
import backend_pb2_grpc
from auto_gptq import AutoGPTQForCausalLM
from transformers import AutoTokenizer
from transformers import AutoTokenizer, AutoModelForCausalLM
from transformers import TextGenerationPipeline
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
@@ -28,9 +30,18 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
if request.Device != "":
device = request.Device
tokenizer = AutoTokenizer.from_pretrained(request.Model, use_fast=request.UseFastTokenizer)
# support loading local model files
model_path = os.path.join(os.environ.get('MODELS_PATH', './'), request.Model)
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True, trust_remote_code=request.TrustRemoteCode)
model = AutoGPTQForCausalLM.from_quantized(request.Model,
# support model `Qwen/Qwen-VL-Chat-Int4`
if "qwen-vl" in request.Model.lower():
self.model_name = "Qwen-VL-Chat"
model = AutoModelForCausalLM.from_pretrained(model_path,
trust_remote_code=request.TrustRemoteCode,
device_map="auto").eval()
else:
model = AutoGPTQForCausalLM.from_quantized(model_path,
model_basename=request.ModelBaseName,
use_safetensors=True,
trust_remote_code=request.TrustRemoteCode,
@@ -55,6 +66,11 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
if request.TopP != 0.0:
top_p = request.TopP
prompt_images = self.recompile_vl_prompt(request)
compiled_prompt = prompt_images[0]
print(f"Prompt: {compiled_prompt}", file=sys.stderr)
# Implement Predict RPC
pipeline = TextGenerationPipeline(
model=self.model,
@@ -64,10 +80,17 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
top_p=top_p,
repetition_penalty=penalty,
)
t = pipeline(request.Prompt)[0]["generated_text"]
# Remove prompt from response if present
if request.Prompt in t:
t = t.replace(request.Prompt, "")
t = pipeline(compiled_prompt)[0]["generated_text"]
print(f"generated_text: {t}", file=sys.stderr)
if compiled_prompt in t:
t = t.replace(compiled_prompt, "")
# house keeping. Remove the image files from /tmp folder
for img_path in prompt_images[1]:
try:
os.remove(img_path)
except Exception as e:
print(f"Error removing image file: {img_path}, {e}", file=sys.stderr)
return backend_pb2.Result(message=bytes(t, encoding='utf-8'))
@@ -78,6 +101,24 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
# Not implemented yet
return self.Predict(request, context)
def recompile_vl_prompt(self, request):
prompt = request.Prompt
image_paths = []
if "qwen-vl" in self.model_name.lower():
# request.Images is an array which contains base64 encoded images. Iterate the request.Images array, decode and save each image to /tmp folder with a random filename.
# Then, save the image file paths to an array "image_paths".
# read "request.Prompt", replace "[img-%d]" with the image file paths in the order they appear in "image_paths". Save the new prompt to "prompt".
for i, img in enumerate(request.Images):
timestamp = str(int(time.time() * 1000)) # Generate timestamp
img_path = f"/tmp/vl-{timestamp}.jpg" # Use timestamp in filename
with open(img_path, "wb") as f:
f.write(base64.b64decode(img))
image_paths.append(img_path)
prompt = prompt.replace(f"[img-{i}]", "<img>" + img_path + "</img>,")
else:
prompt = request.Prompt
return (prompt, image_paths)
def serve(address):
server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS))

View File

@@ -1,3 +1,7 @@
####
# Attention! This file is abandoned.
# Please use the ../common-env/transformers/transformers.yml file to manage dependencies.
###
name: autogptq
channels:
- defaults
@@ -24,12 +28,12 @@ dependencies:
- xz=5.4.2=h5eee18b_0
- zlib=1.2.13=h5eee18b_0
- pip:
- accelerate==0.23.0
- accelerate==0.27.0
- aiohttp==3.8.5
- aiosignal==1.3.1
- async-timeout==4.0.3
- attrs==23.1.0
- auto-gptq==0.4.2
- auto-gptq==0.7.1
- certifi==2023.7.22
- charset-normalizer==3.3.0
- datasets==2.14.5
@@ -59,6 +63,7 @@ dependencies:
- nvidia-nccl-cu12==2.18.1
- nvidia-nvjitlink-cu12==12.2.140
- nvidia-nvtx-cu12==12.1.105
- optimum==1.17.1
- packaging==23.2
- pandas==2.1.1
- peft==0.5.0
@@ -75,9 +80,11 @@ dependencies:
- six==1.16.0
- sympy==1.12
- tokenizers==0.14.0
- torch==2.1.0
- tqdm==4.66.1
- torch==2.2.1
- torchvision==0.17.1
- transformers==4.34.0
- transformers_stream_generator==0.0.5
- triton==2.1.0
- typing-extensions==4.8.0
- tzdata==2023.3

View File

@@ -25,7 +25,7 @@ if [ -d "/opt/intel" ]; then
# Intel GPU: If the directory exists, we assume we are using the intel image
# (no conda env)
# https://github.com/intel/intel-extension-for-pytorch/issues/538
pip install intel-extension-for-transformers datasets sentencepiece tiktoken neural_speed
pip install intel-extension-for-transformers datasets sentencepiece tiktoken neural_speed optimum[openvino]
fi
if [ "$PIP_CACHE_PURGE" = true ] ; then

View File

@@ -24,10 +24,11 @@ dependencies:
- xz=5.4.2=h5eee18b_0
- zlib=1.2.13=h5eee18b_0
- pip:
- accelerate==0.23.0
- accelerate==0.27.0
- aiohttp==3.8.5
- aiosignal==1.3.1
- async-timeout==4.0.3
- auto-gptq==0.7.1
- attrs==23.1.0
- bark==0.1.5
- bitsandbytes==0.43.0
@@ -69,6 +70,7 @@ dependencies:
- nvidia-nccl-cu12==2.18.1
- nvidia-nvjitlink-cu12==12.2.140
- nvidia-nvtx-cu12==12.1.105
- optimum==1.17.1
- packaging==23.2
- pandas
- peft==0.5.0
@@ -88,6 +90,7 @@ dependencies:
- sympy==1.12
- tokenizers
- torch==2.1.2
- torchvision==0.16.2
- torchaudio==2.1.2
- tqdm==4.66.1
- triton==2.1.0
@@ -95,7 +98,6 @@ dependencies:
- tzdata==2023.3
- urllib3==1.26.17
- xxhash==3.4.1
- auto-gptq==0.6.0
- yarl==1.9.2
- soundfile
- langid
@@ -116,5 +118,6 @@ dependencies:
- vocos
- vllm==0.3.2
- transformers>=4.38.2 # Updated Version
- transformers_stream_generator==0.0.5
- xformers==0.0.23.post1
prefix: /opt/conda/envs/transformers

View File

@@ -26,7 +26,8 @@ dependencies:
- pip:
- --pre
- --extra-index-url https://download.pytorch.org/whl/nightly/
- accelerate==0.23.0
- accelerate==0.27.0
- auto-gptq==0.7.1
- aiohttp==3.8.5
- aiosignal==1.3.1
- async-timeout==4.0.3
@@ -82,7 +83,6 @@ dependencies:
- triton==2.1.0
- typing-extensions==4.8.0
- tzdata==2023.3
- auto-gptq==0.6.0
- urllib3==1.26.17
- xxhash==3.4.1
- yarl==1.9.2
@@ -90,6 +90,7 @@ dependencies:
- langid
- wget
- unidecode
- optimum==1.17.1
- pyopenjtalk-prebuilt
- pypinyin
- inflect
@@ -105,5 +106,6 @@ dependencies:
- vocos
- vllm==0.3.2
- transformers>=4.38.2 # Updated Version
- transformers_stream_generator==0.0.5
- xformers==0.0.23.post1
prefix: /opt/conda/envs/transformers

View File

@@ -24,15 +24,17 @@ dependencies:
- xz=5.4.2=h5eee18b_0
- zlib=1.2.13=h5eee18b_0
- pip:
- accelerate==0.23.0
- accelerate==0.27.0
- aiohttp==3.8.5
- aiosignal==1.3.1
- auto-gptq==0.7.1
- async-timeout==4.0.3
- attrs==23.1.0
- bark==0.1.5
- boto3==1.28.61
- botocore==1.31.61
- certifi==2023.7.22
- coloredlogs==15.0.1
- TTS==0.22.0
- charset-normalizer==3.3.0
- datasets==2.14.5
@@ -47,6 +49,7 @@ dependencies:
- funcy==2.0
- grpcio==1.59.0
- huggingface-hub
- humanfriendly==10.0
- idna==3.4
- jinja2==3.1.2
- jmespath==1.0.1
@@ -56,6 +59,10 @@ dependencies:
- multiprocess==0.70.15
- networkx
- numpy==1.26.0
- onnx==1.15.0
- openvino==2024.0.0
- openvino-telemetry==2023.2.1
- optimum[openvino]==1.17.1
- packaging==23.2
- pandas
- peft==0.5.0
@@ -75,12 +82,12 @@ dependencies:
- sympy==1.12
- tokenizers
- torch==2.1.2
- torchvision==0.16.2
- torchaudio==2.1.2
- tqdm==4.66.1
- triton==2.1.0
- typing-extensions==4.8.0
- tzdata==2023.3
- auto-gptq==0.6.0
- urllib3==1.26.17
- xxhash==3.4.1
- yarl==1.9.2
@@ -103,5 +110,6 @@ dependencies:
- vocos
- vllm==0.3.2
- transformers>=4.38.2 # Updated Version
- transformers_stream_generator==0.0.5
- xformers==0.0.23.post1
prefix: /opt/conda/envs/transformers

View File

@@ -8,6 +8,8 @@ import argparse
import signal
import sys
import os
from threading import Thread
import asyncio
import time
import backend_pb2
@@ -17,13 +19,12 @@ import grpc
import torch
import torch.cuda
XPU=os.environ.get("XPU", "0") == "1"
if XPU:
import intel_extension_for_pytorch as ipex
from intel_extension_for_transformers.transformers.modeling import AutoModelForCausalLM
from transformers import AutoTokenizer, AutoModel, set_seed
from transformers import AutoTokenizer, AutoModel, set_seed, TextIteratorStreamer
else:
from transformers import AutoTokenizer, AutoModel, AutoModelForCausalLM, set_seed, BitsAndBytesConfig
from transformers import AutoTokenizer, AutoModel, AutoModelForCausalLM, set_seed, BitsAndBytesConfig, TextIteratorStreamer
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
@@ -81,6 +82,7 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
compute=torch.bfloat16
self.CUDA = request.CUDA
self.OV=False
device_map="cpu"
@@ -105,23 +107,61 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
bnb_4bit_compute_dtype = None,
load_in_8bit=True,
)
try:
if request.Type == "AutoModelForCausalLM":
if XPU:
if quantization == "xpu_4bit":
import intel_extension_for_pytorch as ipex
from intel_extension_for_transformers.transformers.modeling import AutoModelForCausalLM
device_map="xpu"
compute=torch.float16
if request.Quantization == "xpu_4bit":
xpu_4bit = True
self.model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=request.TrustRemoteCode,
device_map="xpu", load_in_4bit=xpu_4bit)
xpu_8bit = False
elif request.Quantization == "xpu_8bit":
xpu_4bit = False
xpu_8bit = True
else:
xpu_4bit = False
xpu_8bit = False
self.model = AutoModelForCausalLM.from_pretrained(model_name,
trust_remote_code=request.TrustRemoteCode,
use_safetensors=True,
device_map=device_map,
load_in_4bit=xpu_4bit,
load_in_8bit=xpu_8bit,
torch_dtype=compute)
else:
self.model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=request.TrustRemoteCode, use_safetensors=True, quantization_config=quantization, device_map=device_map, torch_dtype=compute)
self.model = AutoModelForCausalLM.from_pretrained(model_name,
trust_remote_code=request.TrustRemoteCode,
use_safetensors=True,
quantization_config=quantization,
device_map=device_map,
torch_dtype=compute)
elif request.Type == "OVModelForCausalLM":
from optimum.intel.openvino import OVModelForCausalLM
from openvino.runtime import Core
if "GPU" in Core().available_devices:
device_map="GPU"
else:
device_map="CPU"
self.model = OVModelForCausalLM.from_pretrained(model_name,
compile=True,
device=device_map)
self.OV = True
else:
self.model = AutoModel.from_pretrained(model_name, trust_remote_code=request.TrustRemoteCode, use_safetensors=True, quantization_config=quantization, device_map=device_map, torch_dtype=compute)
self.model = AutoModel.from_pretrained(model_name,
trust_remote_code=request.TrustRemoteCode,
use_safetensors=True,
quantization_config=quantization,
device_map=device_map,
torch_dtype=compute)
self.tokenizer = AutoTokenizer.from_pretrained(model_name, use_safetensors=True)
self.XPU = False
if XPU:
if XPU and self.OV == False:
self.XPU = True
try:
print("Optimizing model", model_name, "to XPU.", file=sys.stderr)
@@ -130,6 +170,7 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
print("Not using XPU:", err, file=sys.stderr)
except Exception as err:
print("Error:", err, file=sys.stderr)
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
# Implement your logic here for the LoadModel service
# Replace this with your desired response
@@ -167,7 +208,72 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
print("Embeddings:", sentence_embeddings, file=sys.stderr)
return backend_pb2.EmbeddingResult(embeddings=sentence_embeddings[0])
def Predict(self, request, context):
async def _predict(self, request, context, streaming=False):
set_seed(request.Seed)
if request.TopP == 0:
request.TopP = 0.9
max_tokens = 200
if request.Tokens > 0:
max_tokens = request.Tokens
inputs = self.tokenizer(request.Prompt, return_tensors="pt")
if self.CUDA:
inputs = inputs.to("cuda")
if XPU and self.OV == False:
inputs = inputs.to("xpu")
streaming = False
if streaming:
streamer=TextIteratorStreamer(self.tokenizer,
skip_prompt=True,
skip_special_tokens=True)
config=dict(inputs,
max_new_tokens=max_tokens,
temperature=request.Temperature,
top_p=request.TopP,
top_k=request.TopK,
do_sample=True,
attention_mask=inputs["attention_mask"],
eos_token_id=self.tokenizer.eos_token_id,
pad_token_id=self.tokenizer.eos_token_id,
streamer=streamer)
thread=Thread(target=self.model.generate, kwargs=config)
thread.start()
generated_text = ""
try:
for new_text in streamer:
generated_text += new_text
yield backend_pb2.Reply(message=bytes(new_text, encoding='utf-8'))
finally:
thread.join()
else:
if XPU and self.OV == False:
outputs = self.model.generate(inputs["input_ids"],
max_new_tokens=max_tokens,
temperature=request.Temperature,
top_p=request.TopP,
top_k=request.TopK,
do_sample=True,
pad_token=self.tokenizer.eos_token_id)
else:
outputs = self.model.generate(inputs["input_ids"],
max_new_tokens=max_tokens,
temperature=request.Temperature,
top_p=request.TopP,
top_k=request.TopK,
do_sample=True,
attention_mask=inputs["attention_mask"],
eos_token_id=self.tokenizer.eos_token_id,
pad_token_id=self.tokenizer.eos_token_id)
generated_text = self.tokenizer.batch_decode(outputs[:, inputs["input_ids"].shape[1]:], skip_special_tokens=True)[0]
if streaming:
return
yield backend_pb2.Reply(message=bytes(generated_text, encoding='utf-8'))
async def Predict(self, request, context):
"""
Generates text based on the given prompt and sampling parameters.
@@ -178,26 +284,11 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
Returns:
backend_pb2.Reply: The predict result.
"""
set_seed(request.Seed)
if request.TopP == 0:
request.TopP = 0.9
gen = self._predict(request, context, streaming=False)
res = await gen.__anext__()
return res
max_tokens = 200
if request.Tokens > 0:
max_tokens = request.Tokens
inputs = self.tokenizer(request.Prompt, return_tensors="pt").input_ids
if self.CUDA:
inputs = inputs.to("cuda")
if XPU:
inputs = inputs.to("xpu")
outputs = self.model.generate(inputs,max_new_tokens=max_tokens, temperature=request.Temperature, top_p=request.TopP, do_sample=True, pad_token_id=self.tokenizer.eos_token_id)
generated_text = self.tokenizer.batch_decode(outputs[:, inputs.shape[1]:], skip_special_tokens=True)[0]
return backend_pb2.Reply(message=bytes(generated_text, encoding='utf-8'))
def PredictStream(self, request, context):
async def PredictStream(self, request, context):
"""
Generates text based on the given prompt and sampling parameters, and streams the results.
@@ -208,31 +299,33 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
Returns:
backend_pb2.Result: The predict stream result.
"""
yield self.Predict(request, context)
iterations = self._predict(request, context, streaming=True)
try:
async for iteration in iterations:
yield iteration
finally:
await iterations.aclose()
def serve(address):
server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS))
async def serve(address):
# Start asyncio gRPC server
server = grpc.aio.server(migration_thread_pool=futures.ThreadPoolExecutor(max_workers=MAX_WORKERS))
# Add the servicer to the server
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
# Bind the server to the address
server.add_insecure_port(address)
server.start()
# Gracefully shutdown the server on SIGTERM or SIGINT
loop = asyncio.get_event_loop()
for sig in (signal.SIGINT, signal.SIGTERM):
loop.add_signal_handler(
sig, lambda: asyncio.ensure_future(server.stop(5))
)
# Start the server
await server.start()
print("Server started. Listening on: " + address, file=sys.stderr)
# Define the signal handler function
def signal_handler(sig, frame):
print("Received termination signal. Shutting down...")
server.stop(0)
sys.exit(0)
# Set the signal handlers for SIGINT and SIGTERM
signal.signal(signal.SIGINT, signal_handler)
signal.signal(signal.SIGTERM, signal_handler)
try:
while True:
time.sleep(_ONE_DAY_IN_SECONDS)
except KeyboardInterrupt:
server.stop(0)
# Wait for the server to be terminated
await server.wait_for_termination()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run the gRPC server.")
@@ -241,4 +334,4 @@ if __name__ == "__main__":
)
args = parser.parse_args()
serve(args.addr)
asyncio.run(serve(args.addr))

View File

@@ -1,6 +1,7 @@
package backend
import (
"math/rand"
"os"
"path/filepath"
@@ -33,12 +34,20 @@ func modelOpts(c config.BackendConfig, so *config.ApplicationConfig, opts []mode
return opts
}
func getSeed(c config.BackendConfig) int32 {
seed := int32(*c.Seed)
if seed == config.RAND_SEED {
seed = rand.Int31()
}
return seed
}
func gRPCModelOpts(c config.BackendConfig) *pb.ModelOptions {
b := 512
if c.Batch != 0 {
b = c.Batch
}
return &pb.ModelOptions{
CUDA: c.CUDA || c.Diffusers.CUDA,
SchedulerType: c.Diffusers.SchedulerType,
@@ -54,7 +63,7 @@ func gRPCModelOpts(c config.BackendConfig) *pb.ModelOptions {
CLIPSkip: int32(c.Diffusers.ClipSkip),
ControlNet: c.Diffusers.ControlNet,
ContextSize: int32(*c.ContextSize),
Seed: int32(*c.Seed),
Seed: getSeed(c),
NBatch: int32(b),
NoMulMatQ: c.NoMulMatQ,
DraftModel: c.DraftModel,
@@ -129,13 +138,13 @@ func gRPCPredictOpts(c config.BackendConfig, modelPath string) *pb.PredictOption
NKeep: int32(c.Keep),
Batch: int32(c.Batch),
IgnoreEOS: c.IgnoreEOS,
Seed: int32(*c.Seed),
Seed: getSeed(c),
FrequencyPenalty: float32(c.FrequencyPenalty),
MLock: *c.MMlock,
MMap: *c.MMap,
MainGPU: c.MainGPU,
TensorSplit: c.TensorSplit,
TailFreeSamplingZ: float32(c.TFZ),
TypicalP: float32(c.TypicalP),
TailFreeSamplingZ: float32(*c.TFZ),
TypicalP: float32(*c.TypicalP),
}
}

23
core/backend/stores.go Normal file
View File

@@ -0,0 +1,23 @@
package backend
import (
"github.com/go-skynet/LocalAI/core/config"
"github.com/go-skynet/LocalAI/pkg/grpc"
"github.com/go-skynet/LocalAI/pkg/model"
)
func StoreBackend(sl *model.ModelLoader, appConfig *config.ApplicationConfig, storeName string) (grpc.Backend, error) {
if storeName == "" {
storeName = "default"
}
sc := []model.Option{
model.WithBackendString(model.LocalStoreBackend),
model.WithAssetDir(appConfig.AssetsDestination),
model.WithModel(storeName),
}
return sl.BackendLoader(sc...)
}

View File

@@ -15,11 +15,13 @@ type ApplicationConfig struct {
ConfigFile string
ModelPath string
UploadLimitMB, Threads, ContextSize int
DisableWelcomePage bool
F16 bool
Debug, DisableMessage bool
ImageDir string
AudioDir string
UploadDir string
ConfigsDir string
CORS bool
PreloadJSONModels string
PreloadModelsFromPath string
@@ -104,6 +106,10 @@ var EnableWatchDogBusyCheck = func(o *ApplicationConfig) {
o.WatchDogBusy = true
}
var DisableWelcomePage = func(o *ApplicationConfig) {
o.DisableWelcomePage = true
}
func SetWatchDogBusyTimeout(t time.Duration) AppOption {
return func(o *ApplicationConfig) {
o.WatchDogBusyTimeout = t
@@ -163,7 +169,7 @@ func WithStringGalleries(galls string) AppOption {
}
var galleries []gallery.Gallery
if err := json.Unmarshal([]byte(galls), &galleries); err != nil {
log.Error().Msgf("failed loading galleries: %s", err.Error())
log.Error().Err(err).Msg("failed loading galleries")
}
o.Galleries = append(o.Galleries, galleries...)
}
@@ -252,12 +258,33 @@ func WithUploadDir(uploadDir string) AppOption {
}
}
func WithConfigsDir(configsDir string) AppOption {
return func(o *ApplicationConfig) {
o.ConfigsDir = configsDir
}
}
func WithApiKeys(apiKeys []string) AppOption {
return func(o *ApplicationConfig) {
o.ApiKeys = apiKeys
}
}
// ToConfigLoaderOptions returns a slice of ConfigLoader Option.
// Some options defined at the application level are going to be passed as defaults for
// all the configuration for the models.
// This includes for instance the context size or the number of threads.
// If a model doesn't set configs directly to the config model file
// it will use the defaults defined here.
func (o *ApplicationConfig) ToConfigLoaderOptions() []ConfigLoaderOption {
return []ConfigLoaderOption{
LoadOptionContextSize(o.ContextSize),
LoadOptionDebug(o.Debug),
LoadOptionF16(o.F16),
LoadOptionThreads(o.Threads),
}
}
// func WithMetrics(meter *metrics.Metrics) AppOption {
// return func(o *StartupOptions) {
// o.Metrics = meter

View File

@@ -4,9 +4,9 @@ import (
"errors"
"fmt"
"io/fs"
"math/rand"
"os"
"path/filepath"
"sort"
"strings"
"sync"
@@ -19,6 +19,10 @@ import (
"github.com/charmbracelet/glamour"
)
const (
RAND_SEED = -1
)
type BackendConfig struct {
schema.PredictionOptions `yaml:"parameters"`
Name string `yaml:"name"`
@@ -185,17 +189,32 @@ func (c *BackendConfig) ShouldCallSpecificFunction() bool {
}
func (c *BackendConfig) FunctionToCall() string {
return c.functionCallNameString
if c.functionCallNameString != "" &&
c.functionCallNameString != "none" && c.functionCallNameString != "auto" {
return c.functionCallNameString
}
return c.functionCallString
}
func (cfg *BackendConfig) SetDefaults(debug bool, threads, ctx int, f16 bool) {
defaultTopP := 0.7
defaultTopK := 80
func (cfg *BackendConfig) SetDefaults(opts ...ConfigLoaderOption) {
lo := &LoadOptions{}
lo.Apply(opts...)
ctx := lo.ctxSize
threads := lo.threads
f16 := lo.f16
debug := lo.debug
// https://github.com/ggerganov/llama.cpp/blob/75cd4c77292034ecec587ecb401366f57338f7c0/common/sampling.h#L22
defaultTopP := 0.95
defaultTopK := 40
defaultTemp := 0.9
defaultMaxTokens := 2048
defaultMirostat := 2
defaultMirostatTAU := 5.0
defaultMirostatETA := 0.1
defaultTypicalP := 1.0
defaultTFZ := 1.0
// Try to offload all GPU layers (if GPU is found)
defaultNGPULayers := 99999999
@@ -205,7 +224,7 @@ func (cfg *BackendConfig) SetDefaults(debug bool, threads, ctx int, f16 bool) {
if cfg.Seed == nil {
// random number generator seed
defaultSeed := int(rand.Int31())
defaultSeed := RAND_SEED
cfg.Seed = &defaultSeed
}
@@ -213,6 +232,14 @@ func (cfg *BackendConfig) SetDefaults(debug bool, threads, ctx int, f16 bool) {
cfg.TopK = &defaultTopK
}
if cfg.TypicalP == nil {
cfg.TypicalP = &defaultTypicalP
}
if cfg.TFZ == nil {
cfg.TFZ = &defaultTFZ
}
if cfg.MMap == nil {
// MMap is enabled by default
cfg.MMap = &trueV
@@ -276,8 +303,12 @@ func (cfg *BackendConfig) SetDefaults(debug bool, threads, ctx int, f16 bool) {
cfg.F16 = &f16
}
if cfg.Debug == nil {
cfg.Debug = &falseV
}
if debug {
cfg.Debug = &debug
cfg.Debug = &trueV
}
}
@@ -329,9 +360,6 @@ func (lo *LoadOptions) Apply(options ...ConfigLoaderOption) {
// Load a config file for a model
func (cl *BackendConfigLoader) LoadBackendConfigFileByName(modelName, modelPath string, opts ...ConfigLoaderOption) (*BackendConfig, error) {
lo := &LoadOptions{}
lo.Apply(opts...)
// Load a config file if present after the model name
cfg := &BackendConfig{
PredictionOptions: schema.PredictionOptions{
@@ -346,7 +374,9 @@ func (cl *BackendConfigLoader) LoadBackendConfigFileByName(modelName, modelPath
// Try loading a model config file
modelConfig := filepath.Join(modelPath, modelName+".yaml")
if _, err := os.Stat(modelConfig); err == nil {
if err := cl.LoadBackendConfig(modelConfig); err != nil {
if err := cl.LoadBackendConfig(
modelConfig, opts...,
); err != nil {
return nil, fmt.Errorf("failed loading model config (%s) %s", modelConfig, err.Error())
}
cfgExisting, exists = cl.GetBackendConfig(modelName)
@@ -356,7 +386,7 @@ func (cl *BackendConfigLoader) LoadBackendConfigFileByName(modelName, modelPath
}
}
cfg.SetDefaults(lo.debug, lo.threads, lo.ctxSize, lo.f16)
cfg.SetDefaults(opts...)
return cfg, nil
}
@@ -367,9 +397,6 @@ func NewBackendConfigLoader() *BackendConfigLoader {
}
}
func ReadBackendConfigFile(file string, opts ...ConfigLoaderOption) ([]*BackendConfig, error) {
lo := &LoadOptions{}
lo.Apply(opts...)
c := &[]*BackendConfig{}
f, err := os.ReadFile(file)
if err != nil {
@@ -380,7 +407,7 @@ func ReadBackendConfigFile(file string, opts ...ConfigLoaderOption) ([]*BackendC
}
for _, cc := range *c {
cc.SetDefaults(lo.debug, lo.threads, lo.ctxSize, lo.f16)
cc.SetDefaults(opts...)
}
return *c, nil
@@ -399,7 +426,7 @@ func ReadBackendConfig(file string, opts ...ConfigLoaderOption) (*BackendConfig,
return nil, fmt.Errorf("cannot unmarshal config file: %w", err)
}
c.SetDefaults(lo.debug, lo.threads, lo.ctxSize, lo.f16)
c.SetDefaults(opts...)
return c, nil
}
@@ -443,6 +470,11 @@ func (cl *BackendConfigLoader) GetAllBackendConfigs() []BackendConfig {
for _, v := range cl.configs {
res = append(res, v)
}
sort.SliceStable(res, func(i, j int) bool {
return res[i].Name < res[j].Name
})
return res
}

View File

@@ -6,6 +6,9 @@ import (
"os"
"strings"
"github.com/go-skynet/LocalAI/pkg/utils"
"github.com/gofiber/swagger" // swagger handler
"github.com/go-skynet/LocalAI/core/http/endpoints/elevenlabs"
"github.com/go-skynet/LocalAI/core/http/endpoints/localai"
"github.com/go-skynet/LocalAI/core/http/endpoints/openai"
@@ -40,9 +43,23 @@ func readAuthHeader(c *fiber.Ctx) string {
return authHeader
}
// @title LocalAI API
// @version 2.0.0
// @description The LocalAI Rest API.
// @termsOfService
// @contact.name LocalAI
// @contact.url https://localai.io
// @license.name MIT
// @license.url https://raw.githubusercontent.com/mudler/LocalAI/master/LICENSE
// @BasePath /
// @securityDefinitions.apikey BearerAuth
// @in header
// @name Authorization
func App(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *config.ApplicationConfig) (*fiber.App, error) {
// Return errors as JSON responses
app := fiber.New(fiber.Config{
Views: renderEngine(),
BodyLimit: appConfig.UploadLimitMB * 1024 * 1024, // this is the default limit of 4MB
DisableStartupMessage: appConfig.DisableMessage,
// Override default error handler
@@ -155,8 +172,27 @@ func App(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *confi
}{Version: internal.PrintableVersion()})
})
// Load upload json
openai.LoadUploadConfig(appConfig.UploadDir)
// Make sure directories exists
os.MkdirAll(appConfig.ImageDir, 0755)
os.MkdirAll(appConfig.AudioDir, 0755)
os.MkdirAll(appConfig.UploadDir, 0755)
os.MkdirAll(appConfig.ConfigsDir, 0755)
os.MkdirAll(appConfig.ModelPath, 0755)
// Load config jsons
utils.LoadConfig(appConfig.UploadDir, openai.UploadedFilesFile, &openai.UploadedFiles)
utils.LoadConfig(appConfig.ConfigsDir, openai.AssistantsConfigFile, &openai.Assistants)
utils.LoadConfig(appConfig.ConfigsDir, openai.AssistantsFileConfigFile, &openai.AssistantFiles)
app.Get("/swagger/*", swagger.HandlerDefault) // default
welcomeRoute(
app,
cl,
ml,
appConfig,
auth,
)
modelGalleryEndpointService := localai.CreateModelGalleryEndpointService(appConfig.Galleries, appConfig.ModelPath, galleryService)
app.Post("/models/apply", auth, modelGalleryEndpointService.ApplyModelGalleryEndpoint())
@@ -172,6 +208,13 @@ func App(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *confi
// Elevenlabs
app.Post("/v1/text-to-speech/:voice-id", auth, elevenlabs.TTSEndpoint(cl, ml, appConfig))
// Stores
sl := model.NewModelLoader("")
app.Post("/stores/set", auth, localai.StoresSetEndpoint(sl, appConfig))
app.Post("/stores/delete", auth, localai.StoresDeleteEndpoint(sl, appConfig))
app.Post("/stores/get", auth, localai.StoresGetEndpoint(sl, appConfig))
app.Post("/stores/find", auth, localai.StoresFindEndpoint(sl, appConfig))
// openAI compatible API endpoint
// chat
@@ -182,6 +225,26 @@ func App(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *confi
app.Post("/v1/edits", auth, openai.EditEndpoint(cl, ml, appConfig))
app.Post("/edits", auth, openai.EditEndpoint(cl, ml, appConfig))
// assistant
app.Get("/v1/assistants", auth, openai.ListAssistantsEndpoint(cl, ml, appConfig))
app.Get("/assistants", auth, openai.ListAssistantsEndpoint(cl, ml, appConfig))
app.Post("/v1/assistants", auth, openai.CreateAssistantEndpoint(cl, ml, appConfig))
app.Post("/assistants", auth, openai.CreateAssistantEndpoint(cl, ml, appConfig))
app.Delete("/v1/assistants/:assistant_id", auth, openai.DeleteAssistantEndpoint(cl, ml, appConfig))
app.Delete("/assistants/:assistant_id", auth, openai.DeleteAssistantEndpoint(cl, ml, appConfig))
app.Get("/v1/assistants/:assistant_id", auth, openai.GetAssistantEndpoint(cl, ml, appConfig))
app.Get("/assistants/:assistant_id", auth, openai.GetAssistantEndpoint(cl, ml, appConfig))
app.Post("/v1/assistants/:assistant_id", auth, openai.ModifyAssistantEndpoint(cl, ml, appConfig))
app.Post("/assistants/:assistant_id", auth, openai.ModifyAssistantEndpoint(cl, ml, appConfig))
app.Get("/v1/assistants/:assistant_id/files", auth, openai.ListAssistantFilesEndpoint(cl, ml, appConfig))
app.Get("/assistants/:assistant_id/files", auth, openai.ListAssistantFilesEndpoint(cl, ml, appConfig))
app.Post("/v1/assistants/:assistant_id/files", auth, openai.CreateAssistantFileEndpoint(cl, ml, appConfig))
app.Post("/assistants/:assistant_id/files", auth, openai.CreateAssistantFileEndpoint(cl, ml, appConfig))
app.Delete("/v1/assistants/:assistant_id/files/:file_id", auth, openai.DeleteAssistantFileEndpoint(cl, ml, appConfig))
app.Delete("/assistants/:assistant_id/files/:file_id", auth, openai.DeleteAssistantFileEndpoint(cl, ml, appConfig))
app.Get("/v1/assistants/:assistant_id/files/:file_id", auth, openai.GetAssistantFileEndpoint(cl, ml, appConfig))
app.Get("/assistants/:assistant_id/files/:file_id", auth, openai.GetAssistantFileEndpoint(cl, ml, appConfig))
// files
app.Post("/v1/files", auth, openai.UploadFilesEndpoint(cl, appConfig))
app.Post("/files", auth, openai.UploadFilesEndpoint(cl, appConfig))
@@ -229,14 +292,18 @@ func App(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *confi
// Experimental Backend Statistics Module
backendMonitor := services.NewBackendMonitor(cl, ml, appConfig) // Split out for now
app.Get("/backend/monitor", localai.BackendMonitorEndpoint(backendMonitor))
app.Post("/backend/shutdown", localai.BackendShutdownEndpoint(backendMonitor))
app.Get("/backend/monitor", auth, localai.BackendMonitorEndpoint(backendMonitor))
app.Post("/backend/shutdown", auth, localai.BackendShutdownEndpoint(backendMonitor))
// models
app.Get("/v1/models", auth, openai.ListModelsEndpoint(cl, ml))
app.Get("/models", auth, openai.ListModelsEndpoint(cl, ml))
app.Get("/metrics", localai.LocalAIMetricsEndpoint())
app.Get("/metrics", auth, localai.LocalAIMetricsEndpoint())
// Define a custom 404 handler
// Note: keep this at the bottom!
app.Use(notFoundHandler)
return app, nil
}

View File

@@ -15,6 +15,7 @@ import (
"github.com/go-skynet/LocalAI/core/config"
. "github.com/go-skynet/LocalAI/core/http"
"github.com/go-skynet/LocalAI/core/schema"
"github.com/go-skynet/LocalAI/core/startup"
"github.com/go-skynet/LocalAI/pkg/downloader"
@@ -122,6 +123,75 @@ func postModelApplyRequest(url string, request modelApplyRequest) (response map[
return
}
func postRequestJSON[B any](url string, bodyJson *B) error {
payload, err := json.Marshal(bodyJson)
if err != nil {
return err
}
GinkgoWriter.Printf("POST %s: %s\n", url, string(payload))
req, err := http.NewRequest("POST", url, bytes.NewBuffer(payload))
if err != nil {
return err
}
req.Header.Set("Content-Type", "application/json")
client := &http.Client{}
resp, err := client.Do(req)
if err != nil {
return err
}
defer resp.Body.Close()
body, err := io.ReadAll(resp.Body)
if err != nil {
return err
}
if resp.StatusCode < 200 || resp.StatusCode >= 400 {
return fmt.Errorf("unexpected status code: %d, body: %s", resp.StatusCode, string(body))
}
return nil
}
func postRequestResponseJSON[B1 any, B2 any](url string, reqJson *B1, respJson *B2) error {
payload, err := json.Marshal(reqJson)
if err != nil {
return err
}
GinkgoWriter.Printf("POST %s: %s\n", url, string(payload))
req, err := http.NewRequest("POST", url, bytes.NewBuffer(payload))
if err != nil {
return err
}
req.Header.Set("Content-Type", "application/json")
client := &http.Client{}
resp, err := client.Do(req)
if err != nil {
return err
}
defer resp.Body.Close()
body, err := io.ReadAll(resp.Body)
if err != nil {
return err
}
if resp.StatusCode < 200 || resp.StatusCode >= 400 {
return fmt.Errorf("unexpected status code: %d, body: %s", resp.StatusCode, string(body))
}
return json.Unmarshal(body, respJson)
}
//go:embed backend-assets/*
var backendAssets embed.FS
@@ -666,15 +736,15 @@ var _ = Describe("API test", func() {
Expect(err).ToNot(HaveOccurred())
Expect(len(models.Models)).To(Equal(6)) // If "config.yaml" should be included, this should be 8?
})
It("can generate completions", func() {
resp, err := client.CreateCompletion(context.TODO(), openai.CompletionRequest{Model: "testmodel", Prompt: testPrompt})
It("can generate completions via ggml", func() {
resp, err := client.CreateCompletion(context.TODO(), openai.CompletionRequest{Model: "testmodel.ggml", Prompt: testPrompt})
Expect(err).ToNot(HaveOccurred())
Expect(len(resp.Choices)).To(Equal(1))
Expect(resp.Choices[0].Text).ToNot(BeEmpty())
})
It("can generate chat completions ", func() {
resp, err := client.CreateChatCompletion(context.TODO(), openai.ChatCompletionRequest{Model: "testmodel", Messages: []openai.ChatCompletionMessage{openai.ChatCompletionMessage{Role: "user", Content: testPrompt}}})
It("can generate chat completions via ggml", func() {
resp, err := client.CreateChatCompletion(context.TODO(), openai.ChatCompletionRequest{Model: "testmodel.ggml", Messages: []openai.ChatCompletionMessage{openai.ChatCompletionMessage{Role: "user", Content: testPrompt}}})
Expect(err).ToNot(HaveOccurred())
Expect(len(resp.Choices)).To(Equal(1))
Expect(resp.Choices[0].Message.Content).ToNot(BeEmpty())
@@ -836,6 +906,78 @@ var _ = Describe("API test", func() {
Expect(tokens).ToNot(Or(Equal(1), Equal(0)))
})
})
// See tests/integration/stores_test
Context("Stores", Label("stores"), func() {
It("sets, gets, finds and deletes entries", func() {
ks := [][]float32{
{0.1, 0.2, 0.3},
{0.4, 0.5, 0.6},
{0.7, 0.8, 0.9},
}
vs := []string{
"test1",
"test2",
"test3",
}
setBody := schema.StoresSet{
Keys: ks,
Values: vs,
}
url := "http://127.0.0.1:9090/stores/"
err := postRequestJSON(url+"set", &setBody)
Expect(err).ToNot(HaveOccurred())
getBody := schema.StoresGet{
Keys: ks,
}
var getRespBody schema.StoresGetResponse
err = postRequestResponseJSON(url+"get", &getBody, &getRespBody)
Expect(err).ToNot(HaveOccurred())
Expect(len(getRespBody.Keys)).To(Equal(len(ks)))
for i, v := range getRespBody.Keys {
if v[0] == 0.1 {
Expect(getRespBody.Values[i]).To(Equal("test1"))
} else if v[0] == 0.4 {
Expect(getRespBody.Values[i]).To(Equal("test2"))
} else {
Expect(getRespBody.Values[i]).To(Equal("test3"))
}
}
deleteBody := schema.StoresDelete{
Keys: [][]float32{
{0.1, 0.2, 0.3},
},
}
err = postRequestJSON(url+"delete", &deleteBody)
Expect(err).ToNot(HaveOccurred())
findBody := schema.StoresFind{
Key: []float32{0.1, 0.3, 0.7},
Topk: 10,
}
var findRespBody schema.StoresFindResponse
err = postRequestResponseJSON(url+"find", &findBody, &findRespBody)
Expect(err).ToNot(HaveOccurred())
Expect(len(findRespBody.Keys)).To(Equal(2))
for i, v := range findRespBody.Keys {
if v[0] == 0.4 {
Expect(findRespBody.Values[i]).To(Equal("test2"))
} else {
Expect(findRespBody.Values[i]).To(Equal("test3"))
}
Expect(findRespBody.Similarities[i]).To(BeNumerically(">=", -1))
Expect(findRespBody.Similarities[i]).To(BeNumerically("<=", 1))
}
})
})
})
Context("Config file", func() {

View File

@@ -11,6 +11,12 @@ import (
"github.com/rs/zerolog/log"
)
// TTSEndpoint is the OpenAI Speech API endpoint https://platform.openai.com/docs/api-reference/audio/createSpeech
// @Summary Generates audio from the input text.
// @Param voice-id path string true "Account ID"
// @Param request body schema.TTSRequest true "query params"
// @Success 200 {string} binary "Response"
// @Router /v1/text-to-speech/{voice-id} [post]
func TTSEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {

View File

@@ -0,0 +1,121 @@
package localai
import (
"github.com/go-skynet/LocalAI/core/backend"
"github.com/go-skynet/LocalAI/core/config"
"github.com/go-skynet/LocalAI/core/schema"
"github.com/go-skynet/LocalAI/pkg/model"
"github.com/go-skynet/LocalAI/pkg/store"
"github.com/gofiber/fiber/v2"
)
func StoresSetEndpoint(sl *model.ModelLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
input := new(schema.StoresSet)
if err := c.BodyParser(input); err != nil {
return err
}
sb, err := backend.StoreBackend(sl, appConfig, input.Store)
if err != nil {
return err
}
vals := make([][]byte, len(input.Values))
for i, v := range input.Values {
vals[i] = []byte(v)
}
err = store.SetCols(c.Context(), sb, input.Keys, vals)
if err != nil {
return err
}
return c.Send(nil)
}
}
func StoresDeleteEndpoint(sl *model.ModelLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
input := new(schema.StoresDelete)
if err := c.BodyParser(input); err != nil {
return err
}
sb, err := backend.StoreBackend(sl, appConfig, input.Store)
if err != nil {
return err
}
if err := store.DeleteCols(c.Context(), sb, input.Keys); err != nil {
return err
}
return c.Send(nil)
}
}
func StoresGetEndpoint(sl *model.ModelLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
input := new(schema.StoresGet)
if err := c.BodyParser(input); err != nil {
return err
}
sb, err := backend.StoreBackend(sl, appConfig, input.Store)
if err != nil {
return err
}
keys, vals, err := store.GetCols(c.Context(), sb, input.Keys)
if err != nil {
return err
}
res := schema.StoresGetResponse{
Keys: keys,
Values: make([]string, len(vals)),
}
for i, v := range vals {
res.Values[i] = string(v)
}
return c.JSON(res)
}
}
func StoresFindEndpoint(sl *model.ModelLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
input := new(schema.StoresFind)
if err := c.BodyParser(input); err != nil {
return err
}
sb, err := backend.StoreBackend(sl, appConfig, input.Store)
if err != nil {
return err
}
keys, vals, similarities, err := store.Find(c.Context(), sb, input.Key, input.Topk)
if err != nil {
return err
}
res := schema.StoresFindResponse{
Keys: keys,
Values: make([]string, len(vals)),
Similarities: similarities,
}
for i, v := range vals {
res.Values[i] = string(v)
}
return c.JSON(res)
}
}

View File

@@ -11,6 +11,11 @@ import (
"github.com/rs/zerolog/log"
)
// TTSEndpoint is the OpenAI Speech API endpoint https://platform.openai.com/docs/api-reference/audio/createSpeech
// @Summary Generates audio from the input text.
// @Param request body schema.TTSRequest true "query params"
// @Success 200 {string} binary "Response"
// @Router /v1/audio/speech [post]
func TTSEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {

View File

@@ -0,0 +1,521 @@
package openai
import (
"fmt"
"net/http"
"sort"
"strconv"
"strings"
"sync/atomic"
"time"
"github.com/go-skynet/LocalAI/core/config"
model "github.com/go-skynet/LocalAI/pkg/model"
"github.com/go-skynet/LocalAI/pkg/utils"
"github.com/gofiber/fiber/v2"
"github.com/rs/zerolog/log"
)
// ToolType defines a type for tool options
type ToolType string
const (
CodeInterpreter ToolType = "code_interpreter"
Retrieval ToolType = "retrieval"
Function ToolType = "function"
MaxCharacterInstructions = 32768
MaxCharacterDescription = 512
MaxCharacterName = 256
MaxToolsSize = 128
MaxFileIdSize = 20
MaxCharacterMetadataKey = 64
MaxCharacterMetadataValue = 512
)
type Tool struct {
Type ToolType `json:"type"`
}
// Assistant represents the structure of an assistant object from the OpenAI API.
type Assistant struct {
ID string `json:"id"` // The unique identifier of the assistant.
Object string `json:"object"` // Object type, which is "assistant".
Created int64 `json:"created"` // The time at which the assistant was created.
Model string `json:"model"` // The model ID used by the assistant.
Name string `json:"name,omitempty"` // The name of the assistant.
Description string `json:"description,omitempty"` // The description of the assistant.
Instructions string `json:"instructions,omitempty"` // The system instructions that the assistant uses.
Tools []Tool `json:"tools,omitempty"` // A list of tools enabled on the assistant.
FileIDs []string `json:"file_ids,omitempty"` // A list of file IDs attached to this assistant.
Metadata map[string]string `json:"metadata,omitempty"` // Set of key-value pairs attached to the assistant.
}
var (
Assistants = []Assistant{} // better to return empty array instead of "null"
AssistantsConfigFile = "assistants.json"
)
type AssistantRequest struct {
Model string `json:"model"`
Name string `json:"name,omitempty"`
Description string `json:"description,omitempty"`
Instructions string `json:"instructions,omitempty"`
Tools []Tool `json:"tools,omitempty"`
FileIDs []string `json:"file_ids,omitempty"`
Metadata map[string]string `json:"metadata,omitempty"`
}
// CreateAssistantEndpoint is the OpenAI Assistant API endpoint https://platform.openai.com/docs/api-reference/assistants/createAssistant
// @Summary Create an assistant with a model and instructions.
// @Param request body AssistantRequest true "query params"
// @Success 200 {object} Assistant "Response"
// @Router /v1/assistants [post]
func CreateAssistantEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
request := new(AssistantRequest)
if err := c.BodyParser(request); err != nil {
log.Warn().AnErr("Unable to parse AssistantRequest", err)
return c.Status(fiber.StatusBadRequest).JSON(fiber.Map{"error": "Cannot parse JSON"})
}
if !modelExists(ml, request.Model) {
log.Warn().Msgf("Model: %s was not found in list of models.", request.Model)
return c.Status(fiber.StatusBadRequest).SendString("Model " + request.Model + " not found")
}
if request.Tools == nil {
request.Tools = []Tool{}
}
if request.FileIDs == nil {
request.FileIDs = []string{}
}
if request.Metadata == nil {
request.Metadata = make(map[string]string)
}
id := "asst_" + strconv.FormatInt(generateRandomID(), 10)
assistant := Assistant{
ID: id,
Object: "assistant",
Created: time.Now().Unix(),
Model: request.Model,
Name: request.Name,
Description: request.Description,
Instructions: request.Instructions,
Tools: request.Tools,
FileIDs: request.FileIDs,
Metadata: request.Metadata,
}
Assistants = append(Assistants, assistant)
utils.SaveConfig(appConfig.ConfigsDir, AssistantsConfigFile, Assistants)
return c.Status(fiber.StatusOK).JSON(assistant)
}
}
var currentId int64 = 0
func generateRandomID() int64 {
atomic.AddInt64(&currentId, 1)
return currentId
}
func ListAssistantsEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
// Because we're altering the existing assistants list we should just duplicate it for now.
returnAssistants := Assistants
// Parse query parameters
limitQuery := c.Query("limit", "20")
orderQuery := c.Query("order", "desc")
afterQuery := c.Query("after")
beforeQuery := c.Query("before")
// Convert string limit to integer
limit, err := strconv.Atoi(limitQuery)
if err != nil {
return c.Status(http.StatusBadRequest).SendString(fmt.Sprintf("Invalid limit query value: %s", limitQuery))
}
// Sort assistants
sort.SliceStable(returnAssistants, func(i, j int) bool {
if orderQuery == "asc" {
return returnAssistants[i].Created < returnAssistants[j].Created
}
return returnAssistants[i].Created > returnAssistants[j].Created
})
// After and before cursors
if afterQuery != "" {
returnAssistants = filterAssistantsAfterID(returnAssistants, afterQuery)
}
if beforeQuery != "" {
returnAssistants = filterAssistantsBeforeID(returnAssistants, beforeQuery)
}
// Apply limit
if limit < len(returnAssistants) {
returnAssistants = returnAssistants[:limit]
}
return c.JSON(returnAssistants)
}
}
// FilterAssistantsBeforeID filters out those assistants whose ID comes before the given ID
// We assume that the assistants are already sorted
func filterAssistantsBeforeID(assistants []Assistant, id string) []Assistant {
idInt, err := strconv.Atoi(id)
if err != nil {
return assistants // Return original slice if invalid id format is provided
}
var filteredAssistants []Assistant
for _, assistant := range assistants {
aid, err := strconv.Atoi(strings.TrimPrefix(assistant.ID, "asst_"))
if err != nil {
continue // Skip if invalid id in assistant
}
if aid < idInt {
filteredAssistants = append(filteredAssistants, assistant)
}
}
return filteredAssistants
}
// FilterAssistantsAfterID filters out those assistants whose ID comes after the given ID
// We assume that the assistants are already sorted
func filterAssistantsAfterID(assistants []Assistant, id string) []Assistant {
idInt, err := strconv.Atoi(id)
if err != nil {
return assistants // Return original slice if invalid id format is provided
}
var filteredAssistants []Assistant
for _, assistant := range assistants {
aid, err := strconv.Atoi(strings.TrimPrefix(assistant.ID, "asst_"))
if err != nil {
continue // Skip if invalid id in assistant
}
if aid > idInt {
filteredAssistants = append(filteredAssistants, assistant)
}
}
return filteredAssistants
}
func modelExists(ml *model.ModelLoader, modelName string) (found bool) {
found = false
models, err := ml.ListModels()
if err != nil {
return
}
for _, model := range models {
if model == modelName {
found = true
return
}
}
return
}
func DeleteAssistantEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
type DeleteAssistantResponse struct {
ID string `json:"id"`
Object string `json:"object"`
Deleted bool `json:"deleted"`
}
return func(c *fiber.Ctx) error {
assistantID := c.Params("assistant_id")
if assistantID == "" {
return c.Status(fiber.StatusBadRequest).SendString("parameter assistant_id is required")
}
for i, assistant := range Assistants {
if assistant.ID == assistantID {
Assistants = append(Assistants[:i], Assistants[i+1:]...)
utils.SaveConfig(appConfig.ConfigsDir, AssistantsConfigFile, Assistants)
return c.Status(fiber.StatusOK).JSON(DeleteAssistantResponse{
ID: assistantID,
Object: "assistant.deleted",
Deleted: true,
})
}
}
log.Warn().Msgf("Unable to find assistant %s for deletion", assistantID)
return c.Status(fiber.StatusNotFound).JSON(DeleteAssistantResponse{
ID: assistantID,
Object: "assistant.deleted",
Deleted: false,
})
}
}
func GetAssistantEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
assistantID := c.Params("assistant_id")
if assistantID == "" {
return c.Status(fiber.StatusBadRequest).SendString("parameter assistant_id is required")
}
for _, assistant := range Assistants {
if assistant.ID == assistantID {
return c.Status(fiber.StatusOK).JSON(assistant)
}
}
return c.Status(fiber.StatusNotFound).SendString(fmt.Sprintf("Unable to find assistant with id: %s", assistantID))
}
}
type AssistantFile struct {
ID string `json:"id"`
Object string `json:"object"`
CreatedAt int64 `json:"created_at"`
AssistantID string `json:"assistant_id"`
}
var (
AssistantFiles []AssistantFile
AssistantsFileConfigFile = "assistantsFile.json"
)
type AssistantFileRequest struct {
FileID string `json:"file_id"`
}
type DeleteAssistantFileResponse struct {
ID string `json:"id"`
Object string `json:"object"`
Deleted bool `json:"deleted"`
}
func CreateAssistantFileEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
request := new(AssistantFileRequest)
if err := c.BodyParser(request); err != nil {
return c.Status(fiber.StatusBadRequest).JSON(fiber.Map{"error": "Cannot parse JSON"})
}
assistantID := c.Params("assistant_id")
if assistantID == "" {
return c.Status(fiber.StatusBadRequest).SendString("parameter assistant_id is required")
}
for _, assistant := range Assistants {
if assistant.ID == assistantID {
if len(assistant.FileIDs) > MaxFileIdSize {
return c.Status(fiber.StatusBadRequest).SendString(fmt.Sprintf("Max files %d for assistant %s reached.", MaxFileIdSize, assistant.Name))
}
for _, file := range UploadedFiles {
if file.ID == request.FileID {
assistant.FileIDs = append(assistant.FileIDs, request.FileID)
assistantFile := AssistantFile{
ID: file.ID,
Object: "assistant.file",
CreatedAt: time.Now().Unix(),
AssistantID: assistant.ID,
}
AssistantFiles = append(AssistantFiles, assistantFile)
utils.SaveConfig(appConfig.ConfigsDir, AssistantsFileConfigFile, AssistantFiles)
return c.Status(fiber.StatusOK).JSON(assistantFile)
}
}
return c.Status(fiber.StatusNotFound).SendString(fmt.Sprintf("Unable to find file_id: %s", request.FileID))
}
}
return c.Status(fiber.StatusNotFound).SendString(fmt.Sprintf("Unable to find "))
}
}
func ListAssistantFilesEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
type ListAssistantFiles struct {
Data []File
Object string
}
return func(c *fiber.Ctx) error {
assistantID := c.Params("assistant_id")
if assistantID == "" {
return c.Status(fiber.StatusBadRequest).SendString("parameter assistant_id is required")
}
limitQuery := c.Query("limit", "20")
order := c.Query("order", "desc")
limit, err := strconv.Atoi(limitQuery)
if err != nil || limit < 1 || limit > 100 {
limit = 20 // Default to 20 if there's an error or the limit is out of bounds
}
// Sort files by CreatedAt depending on the order query parameter
if order == "asc" {
sort.Slice(AssistantFiles, func(i, j int) bool {
return AssistantFiles[i].CreatedAt < AssistantFiles[j].CreatedAt
})
} else { // default to "desc"
sort.Slice(AssistantFiles, func(i, j int) bool {
return AssistantFiles[i].CreatedAt > AssistantFiles[j].CreatedAt
})
}
// Limit the number of files returned
var limitedFiles []AssistantFile
hasMore := false
if len(AssistantFiles) > limit {
hasMore = true
limitedFiles = AssistantFiles[:limit]
} else {
limitedFiles = AssistantFiles
}
response := map[string]interface{}{
"object": "list",
"data": limitedFiles,
"first_id": func() string {
if len(limitedFiles) > 0 {
return limitedFiles[0].ID
}
return ""
}(),
"last_id": func() string {
if len(limitedFiles) > 0 {
return limitedFiles[len(limitedFiles)-1].ID
}
return ""
}(),
"has_more": hasMore,
}
return c.Status(fiber.StatusOK).JSON(response)
}
}
func ModifyAssistantEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
request := new(AssistantRequest)
if err := c.BodyParser(request); err != nil {
log.Warn().AnErr("Unable to parse AssistantRequest", err)
return c.Status(fiber.StatusBadRequest).JSON(fiber.Map{"error": "Cannot parse JSON"})
}
assistantID := c.Params("assistant_id")
if assistantID == "" {
return c.Status(fiber.StatusBadRequest).SendString("parameter assistant_id is required")
}
for i, assistant := range Assistants {
if assistant.ID == assistantID {
newAssistant := Assistant{
ID: assistantID,
Object: assistant.Object,
Created: assistant.Created,
Model: request.Model,
Name: request.Name,
Description: request.Description,
Instructions: request.Instructions,
Tools: request.Tools,
FileIDs: request.FileIDs, // todo: should probably verify fileids exist
Metadata: request.Metadata,
}
// Remove old one and replace with new one
Assistants = append(Assistants[:i], Assistants[i+1:]...)
Assistants = append(Assistants, newAssistant)
utils.SaveConfig(appConfig.ConfigsDir, AssistantsConfigFile, Assistants)
return c.Status(fiber.StatusOK).JSON(newAssistant)
}
}
return c.Status(fiber.StatusNotFound).SendString(fmt.Sprintf("Unable to find assistant with id: %s", assistantID))
}
}
func DeleteAssistantFileEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
assistantID := c.Params("assistant_id")
fileId := c.Params("file_id")
if assistantID == "" {
return c.Status(fiber.StatusBadRequest).SendString("parameter assistant_id and file_id are required")
}
// First remove file from assistant
for i, assistant := range Assistants {
if assistant.ID == assistantID {
for j, fileId := range assistant.FileIDs {
if fileId == fileId {
Assistants[i].FileIDs = append(Assistants[i].FileIDs[:j], Assistants[i].FileIDs[j+1:]...)
// Check if the file exists in the assistantFiles slice
for i, assistantFile := range AssistantFiles {
if assistantFile.ID == fileId {
// Remove the file from the assistantFiles slice
AssistantFiles = append(AssistantFiles[:i], AssistantFiles[i+1:]...)
utils.SaveConfig(appConfig.ConfigsDir, AssistantsFileConfigFile, AssistantFiles)
return c.Status(fiber.StatusOK).JSON(DeleteAssistantFileResponse{
ID: fileId,
Object: "assistant.file.deleted",
Deleted: true,
})
}
}
}
}
log.Warn().Msgf("Unable to locate file_id: %s in assistants: %s. Continuing to delete assistant file.", fileId, assistantID)
for i, assistantFile := range AssistantFiles {
if assistantFile.AssistantID == assistantID {
AssistantFiles = append(AssistantFiles[:i], AssistantFiles[i+1:]...)
utils.SaveConfig(appConfig.ConfigsDir, AssistantsFileConfigFile, AssistantFiles)
return c.Status(fiber.StatusNotFound).JSON(DeleteAssistantFileResponse{
ID: fileId,
Object: "assistant.file.deleted",
Deleted: true,
})
}
}
}
}
log.Warn().Msgf("Unable to find assistant: %s", assistantID)
return c.Status(fiber.StatusNotFound).JSON(DeleteAssistantFileResponse{
ID: fileId,
Object: "assistant.file.deleted",
Deleted: false,
})
}
}
func GetAssistantFileEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
assistantID := c.Params("assistant_id")
fileId := c.Params("file_id")
if assistantID == "" {
return c.Status(fiber.StatusBadRequest).SendString("parameter assistant_id and file_id are required")
}
for _, assistantFile := range AssistantFiles {
if assistantFile.AssistantID == assistantID {
if assistantFile.ID == fileId {
return c.Status(fiber.StatusOK).JSON(assistantFile)
}
return c.Status(fiber.StatusNotFound).SendString(fmt.Sprintf("Unable to find assistant file with file_id: %s", fileId))
}
}
return c.Status(fiber.StatusNotFound).SendString(fmt.Sprintf("Unable to find assistant file with assistant_id: %s", assistantID))
}
}

View File

@@ -0,0 +1,456 @@
package openai
import (
"encoding/json"
"fmt"
"github.com/go-skynet/LocalAI/core/config"
"github.com/go-skynet/LocalAI/pkg/model"
"github.com/gofiber/fiber/v2"
"github.com/stretchr/testify/assert"
"io"
"io/ioutil"
"net/http"
"net/http/httptest"
"os"
"path/filepath"
"strings"
"testing"
"time"
)
var configsDir string = "/tmp/localai/configs"
type MockLoader struct {
models []string
}
func tearDown() func() {
return func() {
UploadedFiles = []File{}
Assistants = []Assistant{}
AssistantFiles = []AssistantFile{}
_ = os.Remove(filepath.Join(configsDir, AssistantsConfigFile))
_ = os.Remove(filepath.Join(configsDir, AssistantsFileConfigFile))
}
}
func TestAssistantEndpoints(t *testing.T) {
// Preparing the mocked objects
cl := &config.BackendConfigLoader{}
//configsDir := "/tmp/localai/configs"
modelPath := "/tmp/localai/model"
var ml = model.NewModelLoader(modelPath)
appConfig := &config.ApplicationConfig{
ConfigsDir: configsDir,
UploadLimitMB: 10,
UploadDir: "test_dir",
ModelPath: modelPath,
}
_ = os.RemoveAll(appConfig.ConfigsDir)
_ = os.MkdirAll(appConfig.ConfigsDir, 0755)
_ = os.MkdirAll(modelPath, 0755)
os.Create(filepath.Join(modelPath, "ggml-gpt4all-j"))
app := fiber.New(fiber.Config{
BodyLimit: 20 * 1024 * 1024, // sets the limit to 20MB.
})
// Create a Test Server
app.Get("/assistants", ListAssistantsEndpoint(cl, ml, appConfig))
app.Post("/assistants", CreateAssistantEndpoint(cl, ml, appConfig))
app.Delete("/assistants/:assistant_id", DeleteAssistantEndpoint(cl, ml, appConfig))
app.Get("/assistants/:assistant_id", GetAssistantEndpoint(cl, ml, appConfig))
app.Post("/assistants/:assistant_id", ModifyAssistantEndpoint(cl, ml, appConfig))
app.Post("/files", UploadFilesEndpoint(cl, appConfig))
app.Get("/assistants/:assistant_id/files", ListAssistantFilesEndpoint(cl, ml, appConfig))
app.Post("/assistants/:assistant_id/files", CreateAssistantFileEndpoint(cl, ml, appConfig))
app.Delete("/assistants/:assistant_id/files/:file_id", DeleteAssistantFileEndpoint(cl, ml, appConfig))
app.Get("/assistants/:assistant_id/files/:file_id", GetAssistantFileEndpoint(cl, ml, appConfig))
t.Run("CreateAssistantEndpoint", func(t *testing.T) {
t.Cleanup(tearDown())
ar := &AssistantRequest{
Model: "ggml-gpt4all-j",
Name: "3.5-turbo",
Description: "Test Assistant",
Instructions: "You are computer science teacher answering student questions",
Tools: []Tool{{Type: Function}},
FileIDs: nil,
Metadata: nil,
}
resultAssistant, resp, err := createAssistant(app, *ar)
assert.NoError(t, err)
assert.Equal(t, fiber.StatusOK, resp.StatusCode)
assert.Equal(t, 1, len(Assistants))
//t.Cleanup(cleanupAllAssistants(t, app, []string{resultAssistant.ID}))
assert.Equal(t, ar.Name, resultAssistant.Name)
assert.Equal(t, ar.Model, resultAssistant.Model)
assert.Equal(t, ar.Tools, resultAssistant.Tools)
assert.Equal(t, ar.Description, resultAssistant.Description)
assert.Equal(t, ar.Instructions, resultAssistant.Instructions)
assert.Equal(t, ar.FileIDs, resultAssistant.FileIDs)
assert.Equal(t, ar.Metadata, resultAssistant.Metadata)
})
t.Run("ListAssistantsEndpoint", func(t *testing.T) {
var ids []string
var resultAssistant []Assistant
for i := 0; i < 4; i++ {
ar := &AssistantRequest{
Model: "ggml-gpt4all-j",
Name: fmt.Sprintf("3.5-turbo-%d", i),
Description: fmt.Sprintf("Test Assistant - %d", i),
Instructions: fmt.Sprintf("You are computer science teacher answering student questions - %d", i),
Tools: []Tool{{Type: Function}},
FileIDs: []string{"fid-1234"},
Metadata: map[string]string{"meta": "data"},
}
//var err error
ra, _, err := createAssistant(app, *ar)
// Because we create the assistants so fast all end up with the same created time.
time.Sleep(time.Second)
resultAssistant = append(resultAssistant, ra)
assert.NoError(t, err)
ids = append(ids, resultAssistant[i].ID)
}
t.Cleanup(cleanupAllAssistants(t, app, ids))
tests := []struct {
name string
reqURL string
expectedStatus int
expectedResult []Assistant
expectedStringResult string
}{
{
name: "Valid Usage - limit only",
reqURL: "/assistants?limit=2",
expectedStatus: http.StatusOK,
expectedResult: Assistants[:2], // Expecting the first two assistants
},
{
name: "Valid Usage - order asc",
reqURL: "/assistants?order=asc",
expectedStatus: http.StatusOK,
expectedResult: Assistants, // Expecting all assistants in ascending order
},
{
name: "Valid Usage - order desc",
reqURL: "/assistants?order=desc",
expectedStatus: http.StatusOK,
expectedResult: []Assistant{Assistants[3], Assistants[2], Assistants[1], Assistants[0]}, // Expecting all assistants in descending order
},
{
name: "Valid Usage - after specific ID",
reqURL: "/assistants?after=2",
expectedStatus: http.StatusOK,
// Note this is correct because it's put in descending order already
expectedResult: Assistants[:3], // Expecting assistants after (excluding) ID 2
},
{
name: "Valid Usage - before specific ID",
reqURL: "/assistants?before=4",
expectedStatus: http.StatusOK,
expectedResult: Assistants[2:], // Expecting assistants before (excluding) ID 3.
},
{
name: "Invalid Usage - non-integer limit",
reqURL: "/assistants?limit=two",
expectedStatus: http.StatusBadRequest,
expectedStringResult: "Invalid limit query value: two",
},
{
name: "Invalid Usage - non-existing id in after",
reqURL: "/assistants?after=100",
expectedStatus: http.StatusOK,
expectedResult: []Assistant(nil), // Expecting empty list as there are no IDs above 100
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
request := httptest.NewRequest(http.MethodGet, tt.reqURL, nil)
response, err := app.Test(request)
assert.NoError(t, err)
assert.Equal(t, tt.expectedStatus, response.StatusCode)
if tt.expectedStatus != fiber.StatusOK {
all, _ := ioutil.ReadAll(response.Body)
assert.Equal(t, tt.expectedStringResult, string(all))
} else {
var result []Assistant
err = json.NewDecoder(response.Body).Decode(&result)
assert.NoError(t, err)
assert.Equal(t, tt.expectedResult, result)
}
})
}
})
t.Run("DeleteAssistantEndpoint", func(t *testing.T) {
ar := &AssistantRequest{
Model: "ggml-gpt4all-j",
Name: "3.5-turbo",
Description: "Test Assistant",
Instructions: "You are computer science teacher answering student questions",
Tools: []Tool{{Type: Function}},
FileIDs: nil,
Metadata: nil,
}
resultAssistant, _, err := createAssistant(app, *ar)
assert.NoError(t, err)
target := fmt.Sprintf("/assistants/%s", resultAssistant.ID)
deleteReq := httptest.NewRequest(http.MethodDelete, target, nil)
_, err = app.Test(deleteReq)
assert.NoError(t, err)
assert.Equal(t, 0, len(Assistants))
})
t.Run("GetAssistantEndpoint", func(t *testing.T) {
ar := &AssistantRequest{
Model: "ggml-gpt4all-j",
Name: "3.5-turbo",
Description: "Test Assistant",
Instructions: "You are computer science teacher answering student questions",
Tools: []Tool{{Type: Function}},
FileIDs: nil,
Metadata: nil,
}
resultAssistant, _, err := createAssistant(app, *ar)
assert.NoError(t, err)
t.Cleanup(cleanupAllAssistants(t, app, []string{resultAssistant.ID}))
target := fmt.Sprintf("/assistants/%s", resultAssistant.ID)
request := httptest.NewRequest(http.MethodGet, target, nil)
response, err := app.Test(request)
assert.NoError(t, err)
var getAssistant Assistant
err = json.NewDecoder(response.Body).Decode(&getAssistant)
assert.NoError(t, err)
assert.Equal(t, resultAssistant.ID, getAssistant.ID)
})
t.Run("ModifyAssistantEndpoint", func(t *testing.T) {
ar := &AssistantRequest{
Model: "ggml-gpt4all-j",
Name: "3.5-turbo",
Description: "Test Assistant",
Instructions: "You are computer science teacher answering student questions",
Tools: []Tool{{Type: Function}},
FileIDs: nil,
Metadata: nil,
}
resultAssistant, _, err := createAssistant(app, *ar)
assert.NoError(t, err)
modifiedAr := &AssistantRequest{
Model: "ggml-gpt4all-j",
Name: "4.0-turbo",
Description: "Modified Test Assistant",
Instructions: "You are math teacher answering student questions",
Tools: []Tool{{Type: CodeInterpreter}},
FileIDs: nil,
Metadata: nil,
}
modifiedArJson, err := json.Marshal(modifiedAr)
assert.NoError(t, err)
target := fmt.Sprintf("/assistants/%s", resultAssistant.ID)
request := httptest.NewRequest(http.MethodPost, target, strings.NewReader(string(modifiedArJson)))
request.Header.Set(fiber.HeaderContentType, "application/json")
modifyResponse, err := app.Test(request)
assert.NoError(t, err)
var getAssistant Assistant
err = json.NewDecoder(modifyResponse.Body).Decode(&getAssistant)
t.Cleanup(cleanupAllAssistants(t, app, []string{getAssistant.ID}))
assert.Equal(t, resultAssistant.ID, getAssistant.ID) // IDs should match even if contents change
assert.Equal(t, modifiedAr.Tools, getAssistant.Tools)
assert.Equal(t, modifiedAr.Name, getAssistant.Name)
assert.Equal(t, modifiedAr.Instructions, getAssistant.Instructions)
assert.Equal(t, modifiedAr.Description, getAssistant.Description)
})
t.Run("CreateAssistantFileEndpoint", func(t *testing.T) {
t.Cleanup(tearDown())
file, assistant, err := createFileAndAssistant(t, app, appConfig)
assert.NoError(t, err)
afr := AssistantFileRequest{FileID: file.ID}
af, _, err := createAssistantFile(app, afr, assistant.ID)
assert.NoError(t, err)
assert.Equal(t, assistant.ID, af.AssistantID)
})
t.Run("ListAssistantFilesEndpoint", func(t *testing.T) {
t.Cleanup(tearDown())
file, assistant, err := createFileAndAssistant(t, app, appConfig)
assert.NoError(t, err)
afr := AssistantFileRequest{FileID: file.ID}
af, _, err := createAssistantFile(app, afr, assistant.ID)
assert.NoError(t, err)
assert.Equal(t, assistant.ID, af.AssistantID)
})
t.Run("GetAssistantFileEndpoint", func(t *testing.T) {
t.Cleanup(tearDown())
file, assistant, err := createFileAndAssistant(t, app, appConfig)
assert.NoError(t, err)
afr := AssistantFileRequest{FileID: file.ID}
af, _, err := createAssistantFile(app, afr, assistant.ID)
assert.NoError(t, err)
t.Cleanup(cleanupAssistantFile(t, app, af.ID, af.AssistantID))
target := fmt.Sprintf("/assistants/%s/files/%s", assistant.ID, file.ID)
request := httptest.NewRequest(http.MethodGet, target, nil)
response, err := app.Test(request)
assert.NoError(t, err)
var assistantFile AssistantFile
err = json.NewDecoder(response.Body).Decode(&assistantFile)
assert.NoError(t, err)
assert.Equal(t, af.ID, assistantFile.ID)
assert.Equal(t, af.AssistantID, assistantFile.AssistantID)
})
t.Run("DeleteAssistantFileEndpoint", func(t *testing.T) {
t.Cleanup(tearDown())
file, assistant, err := createFileAndAssistant(t, app, appConfig)
assert.NoError(t, err)
afr := AssistantFileRequest{FileID: file.ID}
af, _, err := createAssistantFile(app, afr, assistant.ID)
assert.NoError(t, err)
cleanupAssistantFile(t, app, af.ID, af.AssistantID)()
assert.Empty(t, AssistantFiles)
})
}
func createFileAndAssistant(t *testing.T, app *fiber.App, o *config.ApplicationConfig) (File, Assistant, error) {
ar := &AssistantRequest{
Model: "ggml-gpt4all-j",
Name: "3.5-turbo",
Description: "Test Assistant",
Instructions: "You are computer science teacher answering student questions",
Tools: []Tool{{Type: Function}},
FileIDs: nil,
Metadata: nil,
}
assistant, _, err := createAssistant(app, *ar)
if err != nil {
return File{}, Assistant{}, err
}
t.Cleanup(cleanupAllAssistants(t, app, []string{assistant.ID}))
file := CallFilesUploadEndpointWithCleanup(t, app, "test.txt", "file", "fine-tune", 5, o)
t.Cleanup(func() {
_, err := CallFilesDeleteEndpoint(t, app, file.ID)
assert.NoError(t, err)
})
return file, assistant, nil
}
func createAssistantFile(app *fiber.App, afr AssistantFileRequest, assistantId string) (AssistantFile, *http.Response, error) {
afrJson, err := json.Marshal(afr)
if err != nil {
return AssistantFile{}, nil, err
}
target := fmt.Sprintf("/assistants/%s/files", assistantId)
request := httptest.NewRequest(http.MethodPost, target, strings.NewReader(string(afrJson)))
request.Header.Set(fiber.HeaderContentType, "application/json")
request.Header.Set("OpenAi-Beta", "assistants=v1")
resp, err := app.Test(request)
if err != nil {
return AssistantFile{}, resp, err
}
var assistantFile AssistantFile
all, err := ioutil.ReadAll(resp.Body)
err = json.NewDecoder(strings.NewReader(string(all))).Decode(&assistantFile)
if err != nil {
return AssistantFile{}, resp, err
}
return assistantFile, resp, nil
}
func createAssistant(app *fiber.App, ar AssistantRequest) (Assistant, *http.Response, error) {
assistant, err := json.Marshal(ar)
if err != nil {
return Assistant{}, nil, err
}
request := httptest.NewRequest(http.MethodPost, "/assistants", strings.NewReader(string(assistant)))
request.Header.Set(fiber.HeaderContentType, "application/json")
request.Header.Set("OpenAi-Beta", "assistants=v1")
resp, err := app.Test(request)
if err != nil {
return Assistant{}, resp, err
}
bodyString, err := io.ReadAll(resp.Body)
if err != nil {
return Assistant{}, resp, err
}
var resultAssistant Assistant
err = json.NewDecoder(strings.NewReader(string(bodyString))).Decode(&resultAssistant)
return resultAssistant, resp, nil
}
func cleanupAllAssistants(t *testing.T, app *fiber.App, ids []string) func() {
return func() {
for _, assistant := range ids {
target := fmt.Sprintf("/assistants/%s", assistant)
deleteReq := httptest.NewRequest(http.MethodDelete, target, nil)
_, err := app.Test(deleteReq)
if err != nil {
t.Fatalf("Failed to delete assistant %s: %v", assistant, err)
}
}
}
}
func cleanupAssistantFile(t *testing.T, app *fiber.App, fileId, assistantId string) func() {
return func() {
target := fmt.Sprintf("/assistants/%s/files/%s", assistantId, fileId)
request := httptest.NewRequest(http.MethodDelete, target, nil)
request.Header.Set(fiber.HeaderContentType, "application/json")
request.Header.Set("OpenAi-Beta", "assistants=v1")
resp, err := app.Test(request)
assert.NoError(t, err)
var dafr DeleteAssistantFileResponse
err = json.NewDecoder(resp.Body).Decode(&dafr)
assert.NoError(t, err)
assert.True(t, dafr.Deleted)
}
}

View File

@@ -20,6 +20,11 @@ import (
"github.com/valyala/fasthttp"
)
// ChatEndpoint is the OpenAI Completion API endpoint https://platform.openai.com/docs/api-reference/chat/create
// @Summary Generate a chat completions for a given prompt and model.
// @Param request body schema.OpenAIRequest true "query params"
// @Success 200 {object} schema.OpenAIResponse "Response"
// @Router /v1/chat/completions [post]
func ChatEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, startupOptions *config.ApplicationConfig) func(c *fiber.Ctx) error {
emptyMessage := ""
id := uuid.New().String()
@@ -79,7 +84,7 @@ func ChatEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, startup
result, err := handleQuestion(config, req, ml, startupOptions, results[0].arguments, prompt)
if err != nil {
log.Error().Msgf("error handling question: %s", err.Error())
log.Error().Err(err).Msg("error handling question")
return
}
@@ -180,6 +185,8 @@ func ChatEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, startup
input.Grammar = grammar.JSONBNF
}
config.Grammar = input.Grammar
// process functions if we have any defined or if we have a function call string
if len(input.Functions) > 0 && config.ShouldUseFunctions() {
log.Debug().Msgf("Response needs to process functions")
@@ -231,7 +238,7 @@ func ChatEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, startup
// if function call, we might want to customize the role so we can display better that the "assistant called a json action"
// if an "assistant_function_call" role is defined, we use it, otherwise we use the role that is passed by in the request
if i.FunctionCall != nil && i.Role == "assistant" {
if (i.FunctionCall != nil || i.ToolCalls != nil) && i.Role == "assistant" {
roleFn := "assistant_function_call"
r := config.Roles[roleFn]
if r != "" {
@@ -241,6 +248,11 @@ func ChatEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, startup
r := config.Roles[role]
contentExists := i.Content != nil && i.StringContent != ""
fcall := i.FunctionCall
if len(i.ToolCalls) > 0 {
fcall = i.ToolCalls
}
// First attempt to populate content via a chat message specific template
if config.TemplateConfig.ChatMessage != "" {
chatMessageData := model.ChatMessageTemplateData{
@@ -248,12 +260,15 @@ func ChatEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, startup
Role: r,
RoleName: role,
Content: i.StringContent,
FunctionCall: fcall,
FunctionName: i.Name,
LastMessage: messageIndex == (len(input.Messages) - 1),
Function: config.Grammar != "" && (messageIndex == (len(input.Messages) - 1)),
MessageIndex: messageIndex,
}
templatedChatMessage, err := ml.EvaluateTemplateForChatMessage(config.TemplateConfig.ChatMessage, chatMessageData)
if err != nil {
log.Error().Msgf("error processing message %+v using template \"%s\": %v. Skipping!", chatMessageData, config.TemplateConfig.ChatMessage, err)
log.Error().Err(err).Interface("message", chatMessageData).Str("template", config.TemplateConfig.ChatMessage).Msg("error processing message with template, skipping")
} else {
if templatedChatMessage == "" {
log.Warn().Msgf("template \"%s\" produced blank output for %+v. Skipping!", config.TemplateConfig.ChatMessage, chatMessageData)
@@ -263,35 +278,49 @@ func ChatEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, startup
content = templatedChatMessage
}
}
marshalAnyRole := func(f any) {
j, err := json.Marshal(f)
if err == nil {
if contentExists {
content += "\n" + fmt.Sprint(r, " ", string(j))
} else {
content = fmt.Sprint(r, " ", string(j))
}
}
}
marshalAny := func(f any) {
j, err := json.Marshal(f)
if err == nil {
if contentExists {
content += "\n" + string(j)
} else {
content = string(j)
}
}
}
// If this model doesn't have such a template, or if that template fails to return a value, template at the message level.
if content == "" {
if r != "" {
if contentExists {
content = fmt.Sprint(r, i.StringContent)
}
if i.FunctionCall != nil {
j, err := json.Marshal(i.FunctionCall)
if err == nil {
if contentExists {
content += "\n" + fmt.Sprint(r, " ", string(j))
} else {
content = fmt.Sprint(r, " ", string(j))
}
}
marshalAnyRole(i.FunctionCall)
}
if i.ToolCalls != nil {
marshalAnyRole(i.ToolCalls)
}
} else {
if contentExists {
content = fmt.Sprint(i.StringContent)
}
if i.FunctionCall != nil {
j, err := json.Marshal(i.FunctionCall)
if err == nil {
if contentExists {
content += "\n" + string(j)
} else {
content = string(j)
}
}
marshalAny(i.FunctionCall)
}
if i.ToolCalls != nil {
marshalAny(i.ToolCalls)
}
}
// Special Handling: System. We care if it was printed at all, not the r branch, so check seperately
@@ -426,7 +455,7 @@ func ChatEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, startup
case noActionsToRun:
result, err := handleQuestion(config, input, ml, startupOptions, results[0].arguments, predInput)
if err != nil {
log.Error().Msgf("error handling question: %s", err.Error())
log.Error().Err(err).Msg("error handling question")
return
}
*c = append(*c, schema.Choice{
@@ -536,13 +565,13 @@ func handleQuestion(config *config.BackendConfig, input *schema.OpenAIRequest, m
predFunc, err := backend.ModelInference(input.Context, prompt, images, ml, *config, o, nil)
if err != nil {
log.Error().Msgf("inference error: %s", err.Error())
log.Error().Err(err).Msg("model inference failed")
return "", err
}
prediction, err := predFunc()
if err != nil {
log.Error().Msgf("inference error: %s", err.Error())
log.Error().Err(err).Msg("prediction failed")
return "", err
}
return backend.Finetune(*config, prompt, prediction.Response), nil

View File

@@ -20,7 +20,11 @@ import (
"github.com/valyala/fasthttp"
)
// https://platform.openai.com/docs/api-reference/completions
// CompletionEndpoint is the OpenAI Completion API endpoint https://platform.openai.com/docs/api-reference/completions
// @Summary Generate completions for a given prompt and model.
// @Param request body schema.OpenAIRequest true "query params"
// @Success 200 {object} schema.OpenAIResponse "Response"
// @Router /v1/completions [post]
func CompletionEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
id := uuid.New().String()
created := int(time.Now().Unix())
@@ -69,6 +73,8 @@ func CompletionEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, a
input.Grammar = grammar.JSONBNF
}
config.Grammar = input.Grammar
log.Debug().Msgf("Parameter Config: %+v", config)
if input.Stream {

View File

@@ -16,7 +16,11 @@ import (
"github.com/rs/zerolog/log"
)
// https://platform.openai.com/docs/api-reference/embeddings
// EmbeddingsEndpoint is the OpenAI Embeddings API endpoint https://platform.openai.com/docs/api-reference/embeddings
// @Summary Get a vector representation of a given input that can be easily consumed by machine learning models and algorithms.
// @Param request body schema.OpenAIRequest true "query params"
// @Success 200 {object} schema.OpenAIResponse "Response"
// @Router /v1/embeddings [post]
func EmbeddingsEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
model, input, err := readRequest(c, ml, appConfig, true)

View File

@@ -1,23 +1,22 @@
package openai
import (
"encoding/json"
"errors"
"fmt"
"os"
"path/filepath"
"sync/atomic"
"time"
"github.com/go-skynet/LocalAI/core/config"
"github.com/go-skynet/LocalAI/pkg/utils"
"github.com/gofiber/fiber/v2"
"github.com/rs/zerolog/log"
)
var uploadedFiles []File
var UploadedFiles []File
const uploadedFilesFile = "uploadedFiles.json"
const UploadedFilesFile = "uploadedFiles.json"
// File represents the structure of a file object from the OpenAI API.
type File struct {
@@ -29,38 +28,6 @@ type File struct {
Purpose string `json:"purpose"` // The purpose of the file (e.g., "fine-tune", "classifications", etc.)
}
func saveUploadConfig(uploadDir string) {
file, err := json.MarshalIndent(uploadedFiles, "", " ")
if err != nil {
log.Error().Msgf("Failed to JSON marshal the uploadedFiles: %s", err)
}
err = os.WriteFile(filepath.Join(uploadDir, uploadedFilesFile), file, 0644)
if err != nil {
log.Error().Msgf("Failed to save uploadedFiles to file: %s", err)
}
}
func LoadUploadConfig(uploadPath string) {
uploadFilePath := filepath.Join(uploadPath, uploadedFilesFile)
_, err := os.Stat(uploadFilePath)
if os.IsNotExist(err) {
log.Debug().Msgf("No uploadedFiles file found at %s", uploadFilePath)
return
}
file, err := os.ReadFile(uploadFilePath)
if err != nil {
log.Error().Msgf("Failed to read file: %s", err)
} else {
err = json.Unmarshal(file, &uploadedFiles)
if err != nil {
log.Error().Msgf("Failed to JSON unmarshal the file into uploadedFiles: %s", err)
}
}
}
// UploadFilesEndpoint https://platform.openai.com/docs/api-reference/files/create
func UploadFilesEndpoint(cm *config.BackendConfigLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
@@ -95,7 +62,7 @@ func UploadFilesEndpoint(cm *config.BackendConfigLoader, appConfig *config.Appli
}
f := File{
ID: fmt.Sprintf("file-%d", time.Now().Unix()),
ID: fmt.Sprintf("file-%d", getNextFileId()),
Object: "file",
Bytes: int(file.Size),
CreatedAt: time.Now(),
@@ -103,12 +70,19 @@ func UploadFilesEndpoint(cm *config.BackendConfigLoader, appConfig *config.Appli
Purpose: purpose,
}
uploadedFiles = append(uploadedFiles, f)
saveUploadConfig(appConfig.UploadDir)
UploadedFiles = append(UploadedFiles, f)
utils.SaveConfig(appConfig.UploadDir, UploadedFilesFile, UploadedFiles)
return c.Status(fiber.StatusOK).JSON(f)
}
}
var currentFileId int64 = 0
func getNextFileId() int64 {
atomic.AddInt64(&currentId, 1)
return currentId
}
// ListFilesEndpoint https://platform.openai.com/docs/api-reference/files/list
func ListFilesEndpoint(cm *config.BackendConfigLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
type ListFiles struct {
@@ -121,9 +95,9 @@ func ListFilesEndpoint(cm *config.BackendConfigLoader, appConfig *config.Applica
purpose := c.Query("purpose")
if purpose == "" {
listFiles.Data = uploadedFiles
listFiles.Data = UploadedFiles
} else {
for _, f := range uploadedFiles {
for _, f := range UploadedFiles {
if purpose == f.Purpose {
listFiles.Data = append(listFiles.Data, f)
}
@@ -140,7 +114,7 @@ func getFileFromRequest(c *fiber.Ctx) (*File, error) {
return nil, fmt.Errorf("file_id parameter is required")
}
for _, f := range uploadedFiles {
for _, f := range UploadedFiles {
if id == f.ID {
return &f, nil
}
@@ -184,14 +158,14 @@ func DeleteFilesEndpoint(cm *config.BackendConfigLoader, appConfig *config.Appli
}
// Remove upload from list
for i, f := range uploadedFiles {
for i, f := range UploadedFiles {
if f.ID == file.ID {
uploadedFiles = append(uploadedFiles[:i], uploadedFiles[i+1:]...)
UploadedFiles = append(UploadedFiles[:i], UploadedFiles[i+1:]...)
break
}
}
saveUploadConfig(appConfig.UploadDir)
utils.SaveConfig(appConfig.UploadDir, UploadedFilesFile, UploadedFiles)
return c.JSON(DeleteStatus{
Id: file.ID,
Object: "file",

View File

@@ -11,6 +11,8 @@ import (
"path/filepath"
"strings"
"github.com/rs/zerolog/log"
"github.com/go-skynet/LocalAI/core/config"
utils2 "github.com/go-skynet/LocalAI/pkg/utils"
@@ -73,6 +75,7 @@ func TestUploadFileExceedSizeLimit(t *testing.T) {
app.Get("/files/:file_id/content", GetFilesContentsEndpoint(loader, option))
t.Run("UploadFilesEndpoint file size exceeds limit", func(t *testing.T) {
t.Cleanup(tearDown())
resp, err := CallFilesUploadEndpoint(t, app, "foo.txt", "file", "fine-tune", 11, option)
assert.NoError(t, err)
@@ -80,46 +83,54 @@ func TestUploadFileExceedSizeLimit(t *testing.T) {
assert.Contains(t, bodyToString(resp, t), "exceeds upload limit")
})
t.Run("UploadFilesEndpoint purpose not defined", func(t *testing.T) {
t.Cleanup(tearDown())
resp, _ := CallFilesUploadEndpoint(t, app, "foo.txt", "file", "", 5, option)
assert.Equal(t, fiber.StatusBadRequest, resp.StatusCode)
assert.Contains(t, bodyToString(resp, t), "Purpose is not defined")
})
t.Run("UploadFilesEndpoint file already exists", func(t *testing.T) {
t.Cleanup(tearDown())
f1 := CallFilesUploadEndpointWithCleanup(t, app, "foo.txt", "file", "fine-tune", 5, option)
resp, err := CallFilesUploadEndpoint(t, app, "foo.txt", "file", "fine-tune", 5, option)
fmt.Println(f1)
fmt.Printf("ERror: %v", err)
fmt.Printf("ERror: %v\n", err)
fmt.Printf("resp: %+v\n", resp)
assert.Equal(t, fiber.StatusBadRequest, resp.StatusCode)
assert.Contains(t, bodyToString(resp, t), "File already exists")
})
t.Run("UploadFilesEndpoint file uploaded successfully", func(t *testing.T) {
t.Cleanup(tearDown())
file := CallFilesUploadEndpointWithCleanup(t, app, "test.txt", "file", "fine-tune", 5, option)
// Check if file exists in the disk
filePath := filepath.Join(option.UploadDir, utils2.SanitizeFileName("test.txt"))
testName := strings.Split(t.Name(), "/")[1]
fileName := testName + "-test.txt"
filePath := filepath.Join(option.UploadDir, utils2.SanitizeFileName(fileName))
_, err := os.Stat(filePath)
assert.False(t, os.IsNotExist(err))
assert.Equal(t, file.Bytes, 5242880)
assert.NotEmpty(t, file.CreatedAt)
assert.Equal(t, file.Filename, "test.txt")
assert.Equal(t, file.Filename, fileName)
assert.Equal(t, file.Purpose, "fine-tune")
})
t.Run("ListFilesEndpoint without purpose parameter", func(t *testing.T) {
t.Cleanup(tearDown())
resp, err := CallListFilesEndpoint(t, app, "")
assert.NoError(t, err)
assert.Equal(t, 200, resp.StatusCode)
listFiles := responseToListFile(t, resp)
if len(listFiles.Data) != len(uploadedFiles) {
t.Errorf("Expected %v files, got %v files", len(uploadedFiles), len(listFiles.Data))
if len(listFiles.Data) != len(UploadedFiles) {
t.Errorf("Expected %v files, got %v files", len(UploadedFiles), len(listFiles.Data))
}
})
t.Run("ListFilesEndpoint with valid purpose parameter", func(t *testing.T) {
t.Cleanup(tearDown())
_ = CallFilesUploadEndpointWithCleanup(t, app, "test.txt", "file", "fine-tune", 5, option)
resp, err := CallListFilesEndpoint(t, app, "fine-tune")
@@ -131,6 +142,7 @@ func TestUploadFileExceedSizeLimit(t *testing.T) {
}
})
t.Run("ListFilesEndpoint with invalid query parameter", func(t *testing.T) {
t.Cleanup(tearDown())
resp, err := CallListFilesEndpoint(t, app, "not-so-fine-tune")
assert.NoError(t, err)
assert.Equal(t, 200, resp.StatusCode)
@@ -142,6 +154,7 @@ func TestUploadFileExceedSizeLimit(t *testing.T) {
}
})
t.Run("GetFilesContentsEndpoint get file content", func(t *testing.T) {
t.Cleanup(tearDown())
req := httptest.NewRequest("GET", "/files", nil)
resp, _ := app.Test(req)
assert.Equal(t, 200, resp.StatusCode)
@@ -175,8 +188,10 @@ func CallFilesContentEndpoint(t *testing.T, app *fiber.App, fileId string) (*htt
}
func CallFilesUploadEndpoint(t *testing.T, app *fiber.App, fileName, tag, purpose string, fileSize int, appConfig *config.ApplicationConfig) (*http.Response, error) {
testName := strings.Split(t.Name(), "/")[1]
// Create a file that exceeds the limit
file := createTestFile(t, fileName, fileSize, appConfig)
file := createTestFile(t, testName+"-"+fileName, fileSize, appConfig)
// Creating a new HTTP Request
body, writer := newMultipartFile(file.Name(), tag, purpose)
@@ -188,7 +203,8 @@ func CallFilesUploadEndpoint(t *testing.T, app *fiber.App, fileName, tag, purpos
func CallFilesUploadEndpointWithCleanup(t *testing.T, app *fiber.App, fileName, tag, purpose string, fileSize int, appConfig *config.ApplicationConfig) File {
// Create a file that exceeds the limit
file := createTestFile(t, fileName, fileSize, appConfig)
testName := strings.Split(t.Name(), "/")[1]
file := createTestFile(t, testName+"-"+fileName, fileSize, appConfig)
// Creating a new HTTP Request
body, writer := newMultipartFile(file.Name(), tag, purpose)
@@ -199,11 +215,12 @@ func CallFilesUploadEndpointWithCleanup(t *testing.T, app *fiber.App, fileName,
assert.NoError(t, err)
f := responseToFile(t, resp)
id := f.ID
t.Cleanup(func() {
_, err := CallFilesDeleteEndpoint(t, app, id)
assert.NoError(t, err)
})
//id := f.ID
//t.Cleanup(func() {
// _, err := CallFilesDeleteEndpoint(t, app, id)
// assert.NoError(t, err)
// assert.Empty(t, UploadedFiles)
//})
return f
@@ -240,7 +257,8 @@ func createTestFile(t *testing.T, name string, sizeMB int, option *config.Applic
t.Fatalf("Error MKDIR: %v", err)
}
file, _ := os.Create(name)
file, err := os.Create(name)
assert.NoError(t, err)
file.WriteString(strings.Repeat("a", sizeMB*1024*1024)) // sizeMB MB File
t.Cleanup(func() {
@@ -280,7 +298,7 @@ func responseToListFile(t *testing.T, resp *http.Response) ListFiles {
err := json.NewDecoder(strings.NewReader(responseToString)).Decode(&listFiles)
if err != nil {
fmt.Printf("Failed to decode response: %s", err)
log.Error().Err(err).Msg("failed to decode response")
}
return listFiles

View File

@@ -44,7 +44,7 @@ func downloadFile(url string) (string, error) {
return out.Name(), err
}
// https://platform.openai.com/docs/api-reference/images/create
//
/*
*
@@ -59,6 +59,11 @@ func downloadFile(url string) (string, error) {
*
*/
// ImageEndpoint is the OpenAI Image generation API endpoint https://platform.openai.com/docs/api-reference/images/create
// @Summary Creates an image given a prompt.
// @Param request body schema.OpenAIRequest true "query params"
// @Success 200 {object} schema.OpenAIResponse "Response"
// @Router /v1/images/generations [post]
func ImageEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
m, input, err := readRequest(c, ml, appConfig, false)

View File

@@ -146,7 +146,14 @@ func updateRequestConfig(config *config.BackendConfig, input *schema.OpenAIReque
if input.ToolsChoice != nil {
var toolChoice grammar.Tool
json.Unmarshal([]byte(input.ToolsChoice.(string)), &toolChoice)
switch content := input.ToolsChoice.(type) {
case string:
_ = json.Unmarshal([]byte(content), &toolChoice)
case map[string]interface{}:
dat, _ := json.Marshal(content)
_ = json.Unmarshal(dat, &toolChoice)
}
input.FunctionCall = map[string]interface{}{
"name": toolChoice.Function.Name,
}
@@ -185,6 +192,14 @@ func updateRequestConfig(config *config.BackendConfig, input *schema.OpenAIReque
config.RepeatPenalty = input.RepeatPenalty
}
if input.FrequencyPenalty != 0 {
config.FrequencyPenalty = input.FrequencyPenalty
}
if input.PresencePenalty != 0 {
config.PresencePenalty = input.PresencePenalty
}
if input.Keep != 0 {
config.Keep = input.Keep
}
@@ -201,7 +216,7 @@ func updateRequestConfig(config *config.BackendConfig, input *schema.OpenAIReque
config.Seed = input.Seed
}
if input.TypicalP != 0 {
if input.TypicalP != nil {
config.TypicalP = input.TypicalP
}

View File

@@ -16,7 +16,13 @@ import (
"github.com/rs/zerolog/log"
)
// https://platform.openai.com/docs/api-reference/audio/create
// TranscriptEndpoint is the OpenAI Whisper API endpoint https://platform.openai.com/docs/api-reference/audio/create
// @Summary Transcribes audio into the input language.
// @accept multipart/form-data
// @Param model formData string true "model"
// @Param file formData file true "file"
// @Success 200 {object} map[string]string "Response"
// @Router /v1/audio/transcriptions [post]
func TranscriptEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
m, input, err := readRequest(c, ml, appConfig, false)

80
core/http/render.go Normal file
View File

@@ -0,0 +1,80 @@
package http
import (
"embed"
"fmt"
"html/template"
"net/http"
"github.com/Masterminds/sprig/v3"
"github.com/go-skynet/LocalAI/core/config"
"github.com/go-skynet/LocalAI/core/schema"
"github.com/go-skynet/LocalAI/internal"
"github.com/go-skynet/LocalAI/pkg/model"
"github.com/gofiber/fiber/v2"
fiberhtml "github.com/gofiber/template/html/v2"
"github.com/russross/blackfriday"
)
//go:embed views/*
var viewsfs embed.FS
func notFoundHandler(c *fiber.Ctx) error {
// Check if the request accepts JSON
if string(c.Context().Request.Header.ContentType()) == "application/json" || len(c.Accepts("html")) == 0 {
// The client expects a JSON response
c.Status(fiber.StatusNotFound).JSON(schema.ErrorResponse{
Error: &schema.APIError{Message: "Resource not found", Code: fiber.StatusNotFound},
})
} else {
// The client expects an HTML response
c.Status(fiber.StatusNotFound).Render("views/404", fiber.Map{})
}
return nil
}
func welcomeRoute(
app *fiber.App,
cl *config.BackendConfigLoader,
ml *model.ModelLoader,
appConfig *config.ApplicationConfig,
auth func(*fiber.Ctx) error,
) {
if appConfig.DisableWelcomePage {
return
}
models, _ := ml.ListModels()
backendConfigs := cl.GetAllBackendConfigs()
app.Get("/", auth, func(c *fiber.Ctx) error {
summary := fiber.Map{
"Title": "LocalAI API - " + internal.PrintableVersion(),
"Version": internal.PrintableVersion(),
"Models": models,
"ModelsConfig": backendConfigs,
"ApplicationConfig": appConfig,
}
if string(c.Context().Request.Header.ContentType()) == "application/json" || len(c.Accepts("html")) == 0 {
// The client expects a JSON response
return c.Status(fiber.StatusOK).JSON(summary)
} else {
// Render index
return c.Render("views/index", summary)
}
})
}
func renderEngine() *fiberhtml.Engine {
engine := fiberhtml.NewFileSystem(http.FS(viewsfs), ".html")
engine.AddFuncMap(sprig.FuncMap())
engine.AddFunc("MDToHTML", markDowner)
return engine
}
func markDowner(args ...interface{}) template.HTML {
s := blackfriday.MarkdownCommon([]byte(fmt.Sprintf("%s", args...)))
return template.HTML(s)
}

33
core/http/views/404.html Normal file
View File

@@ -0,0 +1,33 @@
<!DOCTYPE html>
<html lang="en">
{{template "views/partials/head" .}}
<body class="bg-black text-white">
<div class="flex flex-col min-h-screen">
{{template "views/partials/navbar" .}}
<div class="container mx-auto px-4 flex-grow">
<div class="header text-center py-12">
<h1 class="text-5xl font-bold">Welcome to your LocalAI instance!</h1>
<div class="mt-6">
<!-- <a href="/" aria-label="HomePage" alt="HomePage">
<img class="mx-auto w-1/4 h-auto" src="https://github.com/go-skynet/LocalAI/assets/2420543/0966aa2a-166e-4f99-a3e5-6c915fc997dd" alt="LocalAI Logo">
</a>
-->
</div>
<p class="mt-4 text-lg">The FOSS alternative to OpenAI, Claude, ...</p>
<a href="https://localai.io" target="_blank" class="mt-4 inline-block bg-blue-500 text-white py-2 px-4 rounded transition duration-300 ease-in-out hover:bg-blue-700"><i class="fas fa-book-reader pr-2"></i>Documentation</a>
</div>
<div class="models mt-12">
<h2 class="text-center text-3xl font-semibold">Nothing found!</h2>
</div>
</div>
{{template "views/partials/footer" .}}
</div>
</body>
</html>

View File

@@ -0,0 +1,52 @@
<!DOCTYPE html>
<html lang="en">
{{template "views/partials/head" .}}
<body class="bg-gray-900 text-gray-200">
<div class="flex flex-col min-h-screen">
{{template "views/partials/navbar" .}}
<div class="container mx-auto px-4 flex-grow">
<div class="header text-center py-12">
<h1 class="text-5xl font-bold text-gray-100">Welcome to <i>your</i> LocalAI instance!</h1>
<div class="mt-6">
<!-- Logo can be uncommented and updated with a valid URL -->
</div>
<p class="mt-4 text-lg">The FOSS alternative to OpenAI, Claude, ...</p>
<a href="https://localai.io" target="_blank" class="mt-4 inline-block bg-blue-500 text-white py-2 px-4 rounded-lg shadow transition duration-300 ease-in-out hover:bg-blue-700 hover:shadow-lg">
<i class="fas fa-book-reader pr-2"></i>Documentation
</a>
</div>
<div class="models mt-12">
<h2 class="text-center text-3xl font-semibold text-gray-100">Installed models</h2>
<p class="text-center mt-4 text-xl">We have {{len .ModelsConfig}} pre-loaded models available.</p>
<ul class="mt-8 space-y-4">
{{ range .ModelsConfig }}
<li class="bg-gray-800 border border-gray-700 p-4 rounded-lg">
<div class="flex justify-between items-center">
<p class="font-bold text-white flex items-center"><i class="fas fa-brain pr-2"></i>{{.Name}}</p>
{{ if .Backend }}
<!-- Badge for Backend -->
<span class="inline-block bg-blue-500 text-white py-1 px-3 rounded-full text-xs">
{{.Backend}}
</span>
{{ else }}
<span class="inline-block bg-yellow-500 text-white py-1 px-3 rounded-full text-xs">
auto
</span>
{{ end }}
</div>
<!-- Additional details can go here -->
</li>
{{ end }}
</ul>
</div>
</div>
{{template "views/partials/footer" .}}
</div>
</body>
</html>

View File

@@ -0,0 +1,4 @@
<footer class="text-center py-8">
LocalAI Version {{.Version}}<br>
<a href='https://localai.io' class="text-blue-400 hover:text-blue-600" target="_blank">LocalAI</a> © 2023-2024 <a href='https://mudler.pm' class="text-blue-400 hover:text-blue-600" target="_blank">Ettore Di Giacinto</a>
</footer>

View File

@@ -0,0 +1,13 @@
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>{{.Title}}</title>
<link href="https://fonts.googleapis.com/css2?family=Inter:wght@400;600;700&family=Roboto:wght@400;500&display=swap" rel="stylesheet">
<link href="https://cdn.jsdelivr.net/npm/tailwindcss@2.2.19/dist/tailwind.min.css" rel="stylesheet">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.1.1/css/all.min.css">
<style>
body {
font-family: 'Inter', sans-serif;
}
</style>
</head>

View File

@@ -0,0 +1,16 @@
<nav class="bg-gray-800 shadow-lg">
<div class="container mx-auto px-4 py-4">
<div class="flex items-center justify-between">
<div class="flex items-center">
<!-- Logo Image: Replace 'logo_url_here' with your actual logo URL -->
<a href="/" class="text-white text-xl font-bold"><img src="https://github.com/go-skynet/LocalAI/assets/2420543/0966aa2a-166e-4f99-a3e5-6c915fc997dd" alt="LocalAI Logo" class="h-10 mr-3 border-2 border-gray-300 shadow rounded"></a>
<a href="/" class="text-white text-xl font-bold">LocalAI</a>
</div>
<div>
<a href="/" class="text-gray-400 hover:text-white px-3 py-2 rounded"><i class="fas fa-home pr-2"></i>Home</a>
<a href="https://localai.io" class="text-gray-400 hover:text-white px-3 py-2 rounded" target="_blank" ><i class="fas fa-book-reader pr-2"></i> Documentation</a>
<a href="/swagger/" class="text-gray-400 hover:text-white px-3 py-2 rounded"><i class="fas fa-code pr-2"></i> API</a>
</div>
</div>
</div>
</nav>

View File

@@ -20,3 +20,40 @@ type TTSRequest struct {
Voice string `json:"voice" yaml:"voice"`
Backend string `json:"backend" yaml:"backend"`
}
type StoresSet struct {
Store string `json:"store,omitempty" yaml:"store,omitempty"`
Keys [][]float32 `json:"keys" yaml:"keys"`
Values []string `json:"values" yaml:"values"`
}
type StoresDelete struct {
Store string `json:"store,omitempty" yaml:"store,omitempty"`
Keys [][]float32 `json:"keys"`
}
type StoresGet struct {
Store string `json:"store,omitempty" yaml:"store,omitempty"`
Keys [][]float32 `json:"keys" yaml:"keys"`
}
type StoresGetResponse struct {
Keys [][]float32 `json:"keys" yaml:"keys"`
Values []string `json:"values" yaml:"values"`
}
type StoresFind struct {
Store string `json:"store,omitempty" yaml:"store,omitempty"`
Key []float32 `json:"key" yaml:"key"`
Topk int `json:"topk" yaml:"topk"`
}
type StoresFindResponse struct {
Keys [][]float32 `json:"keys" yaml:"keys"`
Values []string `json:"values" yaml:"values"`
Similarities []float32 `json:"similarities" yaml:"similarities"`
}

View File

@@ -108,7 +108,7 @@ type ChatCompletionResponseFormat struct {
type OpenAIRequest struct {
PredictionOptions
Context context.Context `json:"-"`
Context context.Context `json:"-"`
Cancel context.CancelFunc `json:"-"`
// whisper

View File

@@ -24,11 +24,12 @@ type PredictionOptions struct {
RepeatPenalty float64 `json:"repeat_penalty" yaml:"repeat_penalty"`
Keep int `json:"n_keep" yaml:"n_keep"`
FrequencyPenalty float64 `json:"frequency_penalty" yaml:"frequency_penalty"`
TFZ float64 `json:"tfz" yaml:"tfz"`
FrequencyPenalty float64 `json:"frequency_penalty" yaml:"frequency_penalty"`
PresencePenalty float64 `json:"presence_penalty" yaml:"presence_penalty"`
TFZ *float64 `json:"tfz" yaml:"tfz"`
TypicalP float64 `json:"typical_p" yaml:"typical_p"`
Seed *int `json:"seed" yaml:"seed"`
TypicalP *float64 `json:"typical_p" yaml:"typical_p"`
Seed *int `json:"seed" yaml:"seed"`
NegativePrompt string `json:"negative_prompt" yaml:"negative_prompt"`
RopeFreqBase float32 `json:"rope_freq_base" yaml:"rope_freq_base"`

View File

@@ -63,7 +63,7 @@ func (bm *BackendMonitor) SampleLocalBackendProcess(model string) (*schema.Backe
pid, err := bm.modelLoader.GetGRPCPID(backend)
if err != nil {
log.Error().Msgf("model %s : failed to find pid %+v", model, err)
log.Error().Err(err).Str("model", model).Msg("failed to find GRPC pid")
return nil, err
}
@@ -71,26 +71,26 @@ func (bm *BackendMonitor) SampleLocalBackendProcess(model string) (*schema.Backe
backendProcess, err := gopsutil.NewProcess(int32(pid))
if err != nil {
log.Error().Msgf("model %s [PID %d] : error getting process info %+v", model, pid, err)
log.Error().Err(err).Str("model", model).Int("pid", pid).Msg("error getting process info")
return nil, err
}
memInfo, err := backendProcess.MemoryInfo()
if err != nil {
log.Error().Msgf("model %s [PID %d] : error getting memory info %+v", model, pid, err)
log.Error().Err(err).Str("model", model).Int("pid", pid).Msg("error getting memory info")
return nil, err
}
memPercent, err := backendProcess.MemoryPercent()
if err != nil {
log.Error().Msgf("model %s [PID %d] : error getting memory percent %+v", model, pid, err)
log.Error().Err(err).Str("model", model).Int("pid", pid).Msg("error getting memory percent")
return nil, err
}
cpuPercent, err := backendProcess.CPUPercent()
if err != nil {
log.Error().Msgf("model %s [PID %d] : error getting cpu percent %+v", model, pid, err)
log.Error().Err(err).Str("model", model).Int("pid", pid).Msg("error getting cpu percent")
return nil, err
}

View File

@@ -85,7 +85,7 @@ func WatchConfigDirectory(configDir string, appConfig *config.ApplicationConfig)
if !ok {
return
}
log.Error().Msgf("WatchConfigDirectory goroutine error: %+v", err)
log.Error().Err(err).Msg("error encountered while watching config directory")
}
}
}()

View File

@@ -58,18 +58,20 @@ func Startup(opts ...config.AppOption) (*config.BackendConfigLoader, *model.Mode
cl := config.NewBackendConfigLoader()
ml := model.NewModelLoader(options.ModelPath)
if err := cl.LoadBackendConfigsFromPath(options.ModelPath); err != nil {
log.Error().Msgf("error loading config files: %s", err.Error())
configLoaderOpts := options.ToConfigLoaderOptions()
if err := cl.LoadBackendConfigsFromPath(options.ModelPath, configLoaderOpts...); err != nil {
log.Error().Err(err).Msg("error loading config files")
}
if options.ConfigFile != "" {
if err := cl.LoadBackendConfigFile(options.ConfigFile); err != nil {
log.Error().Msgf("error loading config file: %s", err.Error())
if err := cl.LoadBackendConfigFile(options.ConfigFile, configLoaderOpts...); err != nil {
log.Error().Err(err).Msg("error loading config file")
}
}
if err := cl.Preload(options.ModelPath); err != nil {
log.Error().Msgf("error downloading models: %s", err.Error())
log.Error().Err(err).Msg("error downloading models")
}
if options.PreloadJSONModels != "" {

View File

@@ -0,0 +1,97 @@
+++
disableToc = false
title = "💾 Stores"
weight = 18
url = '/stores'
+++
Stores are an experimental feature to help with querying data using similarity search. It is
a low level API that consists of only `get`, `set`, `delete` and `find`.
For example if you have an embedding of some text and want to find text with similar embeddings.
You can create embeddings for chunks of all your text then compare them against the embedding of the text you
are searching on.
An embedding here meaning a vector of numbers that represent some information about the text. The
embeddings are created from an A.I. model such as BERT or a more traditional method such as word
frequency.
Previously you would have to integrate with an external vector database or library directly.
With the stores feature you can now do it through the LocalAI API.
Note however that doing a similarity search on embeddings is just one way to do retrieval. A higher level
API can take this into account, so this may not be the best place to start.
## API overview
There is an internal gRPC API and an external facing HTTP JSON API. We'll just discuss the external HTTP API,
however the HTTP API mirrors the gRPC API. Consult `pkg/store/client` for internal usage.
Everything is in columnar format meaning that instead of getting an array of objects with a key and a value each.
You instead get two separate arrays of keys and values.
Keys are arrays of floating point numbers with a maximum width of 32bits. Values are strings (in gRPC they are bytes).
The key vectors must all be the same length and it's best for search performance if they are normalized. When
addings keys it will be detected if they are not normalized and what length they are.
All endpoints accept a `store` field which specifies which store to operate on. Presently they are created
on the fly and there is only one store backend so no configuration is required.
## Set
To set some keys you can do
```
curl -X POST http://localhost:8080/stores/set \
-H "Content-Type: application/json" \
-d '{"keys": [[0.1, 0.2], [0.3, 0.4]], "values": ["foo", "bar"]}'
```
Setting the same keys again will update their values.
On success 200 OK is returned with no body.
## Get
To get some keys you can do
```
curl -X POST http://localhost:8080/stores/get \
-H "Content-Type: application/json" \
-d '{"keys": [[0.1, 0.2]]}'
```
Both the keys and values are returned, e.g: `{"keys":[[0.1,0.2]],"values":["foo"]}`
The order of the keys is not preserved! If a key does not exist then nothing is returned.
## Delete
To delete keys and values you can do
```
curl -X POST http://localhost:8080/stores/delete \
-H "Content-Type: application/json" \
-d '{"keys": [[0.1, 0.2]]}'
```
If a key doesn't exist then it is ignored.
On success 200 OK is returned with no body.
## Find
To do a similarity search you can do
```
curl -X POST http://localhost:8080/stores/find
-H "Content-Type: application/json" \
-d '{"topk": 2, "key": [0.2, 0.1]}'
```
`topk` limits the number of results returned. The result value is the same as `get`,
except that it also includes an array of `similarities`. Where `1.0` is the maximum similarity.
They are returned in the order of most similar to least.

View File

@@ -304,6 +304,7 @@ The backend will automatically download the required files in order to run the m
| Type | Description |
| --- | --- |
| `AutoModelForCausalLM` | `AutoModelForCausalLM` is a model that can be used to generate sequences. |
| `OVModelForCausalLM` | for OpenVINO models |
| N/A | Defaults to `AutoModel` |
@@ -324,4 +325,35 @@ curl http://localhost:8080/v1/completions -H "Content-Type: application/json" -d
"prompt": "Hello, my name is",
"temperature": 0.1, "top_p": 0.1
}'
```
#### Examples
##### OpenVINO
A model configuration file for openvion and starling model:
```yaml
name: starling-openvino
backend: transformers
parameters:
model: fakezeta/Starling-LM-7B-beta-openvino-int8
context_size: 8192
threads: 6
f16: true
type: OVModelForCausalLM
stopwords:
- <|end_of_turn|>
- <|endoftext|>
prompt_cache_path: "cache"
prompt_cache_all: true
template:
chat_message: |
{{if eq .RoleName "system"}}{{.Content}}<|end_of_turn|>{{end}}{{if eq .RoleName "assistant"}}<|end_of_turn|>GPT4 Correct Assistant: {{.Content}}<|end_of_turn|>{{end}}{{if eq .RoleName "user"}}GPT4 Correct User: {{.Content}}{{end}}
chat: |
{{.Input}}<|end_of_turn|>GPT4 Correct Assistant:
completion: |
{{.Input}}
```

View File

@@ -15,19 +15,7 @@ LocalAI's extensible architecture allows you to add your own backends, which can
In some cases you might want to re-build LocalAI from source (for instance to leverage Apple Silicon acceleration), or to build a custom container image with your own backends. This section contains instructions on how to build LocalAI from source.
#### Container image
Requirements:
- Docker or podman, or a container engine
In order to build the `LocalAI` container image locally you can use `docker`, for example:
```
# build the image
docker build -t localai .
docker run localai
```
#### Build LocalAI locally
@@ -45,6 +33,8 @@ To install the dependencies follow the instructions below:
{{< tabs tabTotal="3" >}}
{{% tab tabName="Apple" %}}
Install `xcode` from the App Store
```bash
brew install abseil cmake go grpc protobuf wget
```
@@ -109,12 +99,35 @@ docker run --rm -ti -p 8080:8080 -e DEBUG=true -e MODELS_PATH=/models -e THREADS
{{% /alert %}}
#### Container image
Requirements:
- Docker or podman, or a container engine
In order to build the `LocalAI` container image locally you can use `docker`, for example:
```
# build the image
docker build -t localai .
docker run localai
```
There are some build arguments that can be used to customize the build:
| Variable | Default | Description |
| ---------------------| ------- | ----------- |
| `IMAGE_TYPE` | `extras` | Build type. Available: `core`, `extras` |
### Example: Build on mac
Building on Mac (M1 or M2) works, but you may need to install some prerequisites using `brew`.
Building on Mac (M1, M2 or M3) works, but you may need to install some prerequisites using `brew`.
The below has been tested by one mac user and found to work. Note that this doesn't use Docker to run the server:
Install `xcode` from the Apps Store (needed for metalkit)
```
# install build dependencies
brew install abseil cmake go grpc protobuf wget
@@ -146,8 +159,20 @@ curl http://localhost:8080/v1/chat/completions -H "Content-Type: application/jso
}'
```
### Build with Image generation support
#### Troublshooting mac
If you encounter errors regarding a missing utility metal, install `Xcode` from the App Store.
If completions are slow, ensure that `gpu-layers` in your model yaml matches the number of layers from the model in use (or simply use a high number such as 256).
If you a get a compile error: `error: only virtual member functions can be marked 'final'`, reinstall all the necessary brew packages, clean the build, and try again.
```
# reinstall build dependencies
brew reinstall abseil cmake go grpc protobuf wget
make clean
make build
```
**Requirements**: OpenCV, Gomp
@@ -239,13 +264,12 @@ make BUILD_TYPE=sycl_f32 build # for float32
#### Metal (Apple Silicon)
```
make BUILD_TYPE=metal build
make build
# Set `gpu_layers: 1` to your YAML model config file and `f16: true`
# Note: only models quantized with q4_0 are supported!
# correct build type is automatically used on mac (BUILD_TYPE=metal)
# Set `gpu_layers: 256` (or equal to the number of model layers) to your YAML model config file and `f16: true`
```
### Windows compatibility
Make sure to give enough resources to the running container. See https://github.com/go-skynet/LocalAI/issues/2

View File

@@ -10,17 +10,8 @@ icon = "rocket_launch"
**LocalAI** is the free, Open Source OpenAI alternative. LocalAI act as a drop-in replacement REST API that's compatible with OpenAI API specifications for local inferencing. It allows you to run [LLMs]({{%relref "docs/features/text-generation" %}}), generate images, audio (and not only) locally or on-prem with consumer grade hardware, supporting multiple model families and architectures.
## Installation Methods
LocalAI is available as a container image and binary, compatible with various container engines like Docker, Podman, and Kubernetes. Container images are published on [quay.io](https://quay.io/repository/go-skynet/local-ai?tab=tags&tag=latest) and [Docker Hub](https://hub.docker.com/r/localai/localai). Binaries can be downloaded from [GitHub](https://github.com/mudler/LocalAI/releases).
{{% alert icon="💡" %}}
**Hardware Requirements:** The hardware requirements for LocalAI vary based on the model size and quantization method used. For performance benchmarks with different backends, such as `llama.cpp`, visit [this link](https://github.com/ggerganov/llama.cpp#memorydisk-requirements). The `rwkv` backend is noted for its lower resource consumption.
{{% /alert %}}
## Prerequisites
Before you begin, ensure you have a container engine installed if you are not using the binaries. Suitable options include Docker or Podman. For installation instructions, refer to the following guides:
@@ -29,171 +20,286 @@ Before you begin, ensure you have a container engine installed if you are not us
- [Install Podman (Linux)](https://podman.io/getting-started/installation)
- [Install Docker engine (Servers)](https://docs.docker.com/engine/install/#get-started)
## Running Models
> _Do you have already a model file? Skip to [Run models manually]({{%relref "docs/getting-started/manual" %}})_.
LocalAI allows one-click runs with popular models. It downloads the model and starts the API with the model loaded.
There are different categories of models: [LLMs]({{%relref "docs/features/text-generation" %}}), [Multimodal LLM]({{%relref "docs/features/gpt-vision" %}}) , [Embeddings]({{%relref "docs/features/embeddings" %}}), [Audio to Text]({{%relref "docs/features/audio-to-text" %}}), and [Text to Audio]({{%relref "docs/features/text-to-audio" %}}) depending on the backend being used and the model architecture.
{{% alert icon="💡" %}}
To customize the models, see [Model customization]({{%relref "docs/getting-started/customize-model" %}}). For more model configurations, visit the [Examples Section](https://github.com/mudler/LocalAI/tree/master/examples/configurations) and the configurations for the models below is available [here](https://github.com/mudler/LocalAI/tree/master/embedded/models).
**Hardware Requirements:** The hardware requirements for LocalAI vary based on the model size and quantization method used. For performance benchmarks with different backends, such as `llama.cpp`, visit [this link](https://github.com/ggerganov/llama.cpp#memorydisk-requirements). The `rwkv` backend is noted for its lower resource consumption.
{{% /alert %}}
{{< tabs tabTotal="3" >}}
{{% tab tabName="CPU-only" %}}
## Running LocalAI with All-in-One (AIO) Images
> 💡Don't need GPU acceleration? use the CPU images which are lighter and do not have Nvidia dependencies
> _Do you have already a model file? Skip to [Run models manually]({{%relref "docs/getting-started/manual" %}}) or [Run other models]({{%relref "docs/getting-started/run-other-models" %}}) to use an already-configured model_.
| Model | Category | Docker command |
| --- | --- | --- |
| [phi-2](https://huggingface.co/microsoft/phi-2) | [LLM]({{%relref "docs/features/text-generation" %}}) | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-ffmpeg-core phi-2``` |
| 🌋 [llava](https://github.com/SkunkworksAI/BakLLaVA) | [Multimodal LLM]({{%relref "docs/features/gpt-vision" %}}) | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-ffmpeg-core llava``` |
| [mistral-openorca](https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca) | [LLM]({{%relref "docs/features/text-generation" %}}) | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-ffmpeg-core mistral-openorca``` |
| [bert-cpp](https://github.com/skeskinen/bert.cpp) | [Embeddings]({{%relref "docs/features/embeddings" %}}) | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-ffmpeg-core bert-cpp``` |
| [all-minilm-l6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) | [Embeddings]({{%relref "docs/features/embeddings" %}}) | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-ffmpeg all-minilm-l6-v2``` |
| whisper-base | [Audio to Text]({{%relref "docs/features/audio-to-text" %}}) | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-ffmpeg-core whisper-base``` |
| rhasspy-voice-en-us-amy | [Text to Audio]({{%relref "docs/features/text-to-audio" %}}) | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-ffmpeg-core rhasspy-voice-en-us-amy``` |
| 🐸 [coqui](https://github.com/coqui-ai/TTS) | [Text to Audio]({{%relref "docs/features/text-to-audio" %}}) | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-ffmpeg coqui``` |
| 🐶 [bark](https://github.com/suno-ai/bark) | [Text to Audio]({{%relref "docs/features/text-to-audio" %}}) | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-ffmpeg bark``` |
| 🔊 [vall-e-x](https://github.com/Plachtaa/VALL-E-X) | [Text to Audio]({{%relref "docs/features/text-to-audio" %}}) | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-ffmpeg vall-e-x``` |
| mixtral-instruct Mixtral-8x7B-Instruct-v0.1 | [LLM]({{%relref "docs/features/text-generation" %}}) | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-ffmpeg-core mixtral-instruct``` |
| [tinyllama-chat](https://huggingface.co/TheBloke/TinyLlama-1.1B-Chat-v0.3-GGUF) [original model](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v0.3) | [LLM]({{%relref "docs/features/text-generation" %}}) | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-ffmpeg-core tinyllama-chat``` |
| [dolphin-2.5-mixtral-8x7b](https://huggingface.co/TheBloke/dolphin-2.5-mixtral-8x7b-GGUF) | [LLM]({{%relref "docs/features/text-generation" %}}) | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-ffmpeg-core dolphin-2.5-mixtral-8x7b``` |
| 🐍 [mamba](https://github.com/state-spaces/mamba) | [LLM]({{%relref "docs/features/text-generation" %}}) | GPU-only |
| animagine-xl | [Text to Image]({{%relref "docs/features/image-generation" %}}) | GPU-only |
| transformers-tinyllama | [LLM]({{%relref "docs/features/text-generation" %}}) | GPU-only |
| [codellama-7b](https://huggingface.co/codellama/CodeLlama-7b-hf) (with transformers) | [LLM]({{%relref "docs/features/text-generation" %}}) | GPU-only |
| [codellama-7b-gguf](https://huggingface.co/TheBloke/CodeLlama-7B-GGUF) (with llama.cpp) | [LLM]({{%relref "docs/features/text-generation" %}}) | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-ffmpeg-core codellama-7b-gguf``` |
{{% /tab %}}
{{% tab tabName="GPU (CUDA 11)" %}}
LocalAI's All-in-One (AIO) images are pre-configured with a set of models and backends to fully leverage almost all the LocalAI featureset.
These images are available for both CPU and GPU environments. The AIO images are designed to be easy to use and requires no configuration.
It suggested to use the AIO images if you don't want to configure the models to run on LocalAI. If you want to run specific models, you can use the [manual method]({{%relref "docs/getting-started/manual" %}}).
The AIO Images comes pre-configured with the following features:
- Text to Speech (TTS)
- Speech to Text
- Function calling
- Large Language Models (LLM) for text generation
- Image generation
- Embedding server
> To know which version of CUDA do you have available, you can check with `nvidia-smi` or `nvcc --version` see also [GPU acceleration]({{%relref "docs/features/gpu-acceleration" %}}).
| Model | Category | Docker command |
| --- | --- | --- |
| [phi-2](https://huggingface.co/microsoft/phi-2) | [LLM]({{%relref "docs/features/text-generation" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda11-core phi-2``` |
| 🌋 [llava](https://github.com/SkunkworksAI/BakLLaVA) | [Multimodal LLM]({{%relref "docs/features/gpt-vision" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda11-core llava``` |
| [mistral-openorca](https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca) | [LLM]({{%relref "docs/features/text-generation" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda11-core mistral-openorca``` |
| [bert-cpp](https://github.com/skeskinen/bert.cpp) | [Embeddings]({{%relref "docs/features/embeddings" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda11-core bert-cpp``` |
| [all-minilm-l6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) | [Embeddings]({{%relref "docs/features/embeddings" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda11 all-minilm-l6-v2``` |
| whisper-base | [Audio to Text]({{%relref "docs/features/audio-to-text" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda11-core whisper-base``` |
| rhasspy-voice-en-us-amy | [Text to Audio]({{%relref "docs/features/text-to-audio" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda11-core rhasspy-voice-en-us-amy``` |
| 🐸 [coqui](https://github.com/coqui-ai/TTS) | [Text to Audio]({{%relref "docs/features/text-to-audio" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda11 coqui``` |
| 🐶 [bark](https://github.com/suno-ai/bark) | [Text to Audio]({{%relref "docs/features/text-to-audio" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda11 bark``` |
| 🔊 [vall-e-x](https://github.com/Plachtaa/VALL-E-X) | [Text to Audio]({{%relref "docs/features/text-to-audio" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda11 vall-e-x``` |
| mixtral-instruct Mixtral-8x7B-Instruct-v0.1 | [LLM]({{%relref "docs/features/text-generation" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda11-core mixtral-instruct``` |
| [tinyllama-chat](https://huggingface.co/TheBloke/TinyLlama-1.1B-Chat-v0.3-GGUF) [original model](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v0.3) | [LLM]({{%relref "docs/features/text-generation" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda11-core tinyllama-chat``` |
| [dolphin-2.5-mixtral-8x7b](https://huggingface.co/TheBloke/dolphin-2.5-mixtral-8x7b-GGUF) | [LLM]({{%relref "docs/features/text-generation" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda11-core dolphin-2.5-mixtral-8x7b``` |
| 🐍 [mamba](https://github.com/state-spaces/mamba) | [LLM]({{%relref "docs/features/text-generation" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda11 mamba-chat``` |
| animagine-xl | [Text to Image]({{%relref "docs/features/image-generation" %}}) | ```docker run -ti -p 8080:8080 -e COMPEL=0 --gpus all localai/localai:{{< version >}}-cublas-cuda11 animagine-xl``` |
| transformers-tinyllama | [LLM]({{%relref "docs/features/text-generation" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda11 transformers-tinyllama``` |
| [codellama-7b](https://huggingface.co/codellama/CodeLlama-7b-hf) | [LLM]({{%relref "docs/features/text-generation" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda11 codellama-7b``` |
| [codellama-7b-gguf](https://huggingface.co/TheBloke/CodeLlama-7B-GGUF) | [LLM]({{%relref "docs/features/text-generation" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda11-core codellama-7b-gguf``` |
{{% /tab %}}
{{% tab tabName="GPU (CUDA 12)" %}}
> To know which version of CUDA do you have available, you can check with `nvidia-smi` or `nvcc --version` see also [GPU acceleration]({{%relref "docs/features/gpu-acceleration" %}}).
| Model | Category | Docker command |
| --- | --- | --- |
| [phi-2](https://huggingface.co/microsoft/phi-2) | [LLM]({{%relref "docs/features/text-generation" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda12-core phi-2``` |
| 🌋 [llava](https://github.com/SkunkworksAI/BakLLaVA) | [Multimodal LLM]({{%relref "docs/features/gpt-vision" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda12-core llava``` |
| [mistral-openorca](https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca) | [LLM]({{%relref "docs/features/text-generation" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda12-core mistral-openorca``` |
| [bert-cpp](https://github.com/skeskinen/bert.cpp) | [Embeddings]({{%relref "docs/features/embeddings" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda12-core bert-cpp``` |
| [all-minilm-l6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) | [Embeddings]({{%relref "docs/features/embeddings" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda12 all-minilm-l6-v2``` |
| whisper-base | [Audio to Text]({{%relref "docs/features/audio-to-text" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda12-core whisper-base``` |
| rhasspy-voice-en-us-amy | [Text to Audio]({{%relref "docs/features/text-to-audio" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda12-core rhasspy-voice-en-us-amy``` |
| 🐸 [coqui](https://github.com/coqui-ai/TTS) | [Text to Audio]({{%relref "docs/features/text-to-audio" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda12 coqui``` |
| 🐶 [bark](https://github.com/suno-ai/bark) | [Text to Audio]({{%relref "docs/features/text-to-audio" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda12 bark``` |
| 🔊 [vall-e-x](https://github.com/Plachtaa/VALL-E-X) | [Text to Audio]({{%relref "docs/features/text-to-audio" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda12 vall-e-x``` |
| mixtral-instruct Mixtral-8x7B-Instruct-v0.1 | [LLM]({{%relref "docs/features/text-generation" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda12-core mixtral-instruct``` |
| [tinyllama-chat](https://huggingface.co/TheBloke/TinyLlama-1.1B-Chat-v0.3-GGUF) [original model](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v0.3) | [LLM]({{%relref "docs/features/text-generation" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda12-core tinyllama-chat``` |
| [dolphin-2.5-mixtral-8x7b](https://huggingface.co/TheBloke/dolphin-2.5-mixtral-8x7b-GGUF) | [LLM]({{%relref "docs/features/text-generation" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda12-core dolphin-2.5-mixtral-8x7b``` |
| 🐍 [mamba](https://github.com/state-spaces/mamba) | [LLM]({{%relref "docs/features/text-generation" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda12 mamba-chat``` |
| animagine-xl | [Text to Image]({{%relref "docs/features/image-generation" %}}) | ```docker run -ti -p 8080:8080 -e COMPEL=0 --gpus all localai/localai:{{< version >}}-cublas-cuda12 animagine-xl``` |
| transformers-tinyllama | [LLM]({{%relref "docs/features/text-generation" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda12 transformers-tinyllama``` |
| [codellama-7b](https://huggingface.co/codellama/CodeLlama-7b-hf) | [LLM]({{%relref "docs/features/text-generation" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda12 codellama-7b``` |
| [codellama-7b-gguf](https://huggingface.co/TheBloke/CodeLlama-7B-GGUF) | [LLM]({{%relref "docs/features/text-generation" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda12-core codellama-7b-gguf``` |
{{% /tab %}}
{{< /tabs >}}
{{% alert icon="💡" %}}
**Tip** You can actually specify multiple models to start an instance with the models loaded, for example to have both llava and phi-2 configured:
Start the image with Docker:
```bash
docker run -ti -p 8080:8080 localai/localai:{{< version >}}-ffmpeg-core llava phi-2
docker run -p 8080:8080 --name local-ai -ti localai/localai:latest-aio-cpu
# For Nvidia GPUs:
# docker run -p 8080:8080 --gpus all --name local-ai -ti localai/localai:latest-aio-gpu-nvidia-cuda-11
# docker run -p 8080:8080 --gpus all --name local-ai -ti localai/localai:latest-aio-gpu-nvidia-cuda-12
```
Or with a docker-compose file:
```yaml
version: "3.9"
services:
api:
image: localai/localai:latest-aio-cpu
# For a specific version:
# image: localai/localai:{{< version >}}-aio-cpu
# For Nvidia GPUs decomment one of the following (cuda11 or cuda12):
# image: localai/localai:{{< version >}}-aio-gpu-nvidia-cuda-11
# image: localai/localai:{{< version >}}-aio-gpu-nvidia-cuda-12
# image: localai/localai:latest-aio-gpu-nvidia-cuda-11
# image: localai/localai:latest-aio-gpu-nvidia-cuda-12
healthcheck:
test: ["CMD", "curl", "-f", "http://localhost:8080/readyz"]
interval: 1m
timeout: 20m
retries: 5
ports:
- 8080:8080
environment:
- DEBUG=true
# ...
volumes:
- ./models:/build/models:cached
# decomment the following piece if running with Nvidia GPUs
# deploy:
# resources:
# reservations:
# devices:
# - driver: nvidia
# count: 1
# capabilities: [gpu]
```
For a list of all the container-images available, see [Container images]({{%relref "docs/reference/container-images" %}}). To learn more about All-in-one images instead, see [All-in-one Images]({{%relref "docs/reference/aio-images" %}}).
{{% alert icon="💡" %}}
**Models caching**: The **AIO** image will download the needed models on the first run if not already present and store those in `/build/models` inside the container. The AIO models will be automatically updated with new versions of AIO images.
You can change the directory inside the container by specifying a `MODELS_PATH` environment variable (or `--models-path`).
If you want to use a named model or a local directory, you can mount it as a volume to `/build/models`:
```bash
docker run -p 8080:8080 --name local-ai -ti -v $PWD/models:/build/models localai/localai:latest-aio-cpu
```
or associate a volume:
```bash
docker volume create localai-models
docker run -p 8080:8080 --name local-ai -ti -v localai-models:/build/models localai/localai:latest-aio-cpu
```
{{% /alert %}}
## Container images
## Try it out
LocalAI provides a variety of images to support different environments. These images are available on [quay.io](https://quay.io/repository/go-skynet/local-ai?tab=tags) and [Docker Hub](https://hub.docker.com/r/localai/localai).
LocalAI does not ship a webui by default, however you can use 3rd party projects to interact with it (see also [Integrations]({{%relref "docs/integrations" %}}) ). However, you can test out the API endpoints using `curl`, you can find few examples below.
For GPU Acceleration support for Nvidia video graphic cards, use the Nvidia/CUDA images, if you don't have a GPU, use the CPU images. If you have AMD or Mac Silicon, see the [build section]({{%relref "docs/getting-started/build" %}}).
### Text Generation
Creates a model response for the given chat conversation. [OpenAI documentation](https://platform.openai.com/docs/api-reference/chat/create).
<details>
```bash
curl http://localhost:8080/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{ "model": "gpt-4", "messages": [{"role": "user", "content": "How are you doing?", "temperature": 0.1}] }'
```
</details>
### GPT Vision
Understand images.
<details>
```bash
curl http://localhost:8080/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "gpt-4-vision-preview",
"messages": [
{
"role": "user", "content": [
{"type":"text", "text": "What is in the image?"},
{
"type": "image_url",
"image_url": {
"url": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
}
}
],
"temperature": 0.9
}
]
}'
```
</details>
### Function calling
Call functions
<details>
```bash
curl https://localhost:8080/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "gpt-4",
"messages": [
{
"role": "user",
"content": "What is the weather like in Boston?"
}
],
"tools": [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA"
},
"unit": {
"type": "string",
"enum": ["celsius", "fahrenheit"]
}
},
"required": ["location"]
}
}
}
],
"tool_choice": "auto"
}'
```
</details>
### Image Generation
Creates an image given a prompt. [OpenAI documentation](https://platform.openai.com/docs/api-reference/images/create).
<details>
```bash
curl http://localhost:8080/v1/images/generations \
-H "Content-Type: application/json" -d '{
"prompt": "A cute baby sea otter",
"size": "256x256"
}'
```
</details>
### Text to speech
Generates audio from the input text. [OpenAI documentation](https://platform.openai.com/docs/api-reference/audio/createSpeech).
<details>
```bash
curl http://localhost:8080/v1/audio/speech \
-H "Content-Type: application/json" \
-d '{
"model": "tts-1",
"input": "The quick brown fox jumped over the lazy dog.",
"voice": "alloy"
}' \
--output speech.mp3
```
</details>
### Audio Transcription
Transcribes audio into the input language. [OpenAI Documentation](https://platform.openai.com/docs/api-reference/audio/createTranscription).
<details>
Download first a sample to transcribe:
```bash
wget --quiet --show-progress -O gb1.ogg https://upload.wikimedia.org/wikipedia/commons/1/1f/George_W_Bush_Columbia_FINAL.ogg
```
Send the example audio file to the transcriptions endpoint :
```bash
curl http://localhost:8080/v1/audio/transcriptions \
-H "Content-Type: multipart/form-data" \
-F file="@$PWD/gb1.ogg" -F model="whisper-1"
```
</details>
### Embeddings Generation
Get a vector representation of a given input that can be easily consumed by machine learning models and algorithms. [OpenAI Embeddings](https://platform.openai.com/docs/api-reference/embeddings).
<details>
```bash
curl http://localhost:8080/embeddings \
-X POST -H "Content-Type: application/json" \
-d '{
"input": "Your text string goes here",
"model": "text-embedding-ada-002"
}'
```
</details>
{{% alert icon="💡" %}}
**Available Images Types**:
Don't use the model file as `model` in the request unless you want to handle the prompt template for yourself.
- Images ending with `-core` are smaller images without predownload python dependencies. Use these images if you plan to use `llama.cpp`, `stablediffusion-ncn`, `tinydream` or `rwkv` backends - if you are not sure which one to use, do **not** use these images.
- FFMpeg is **not** included in the default images due to [its licensing](https://www.ffmpeg.org/legal.html). If you need FFMpeg, use the images ending with `-ffmpeg`. Note that `ffmpeg` is needed in case of using `audio-to-text` LocalAI's features.
- If using old and outdated CPUs and no GPUs you might need to set `REBUILD` to `true` as environment variable along with options to disable the flags which your CPU does not support, however note that inference will perform poorly and slow. See also [flagset compatibility]({{%relref "docs/getting-started/build#cpu-flagset-compatibility" %}}).
Use the model names like you would do with OpenAI like in the examples below. For instance `gpt-4-vision-preview`, or `gpt-4`.
{{% /alert %}}
{{< tabs tabTotal="3" >}}
{{% tab tabName="Vanilla / CPU Images" %}}
| Description | Quay | Docker Hub |
| --- | --- |-----------------------------------------------|
| Latest images from the branch (development) | `quay.io/go-skynet/local-ai:master` | `localai/localai:master` |
| Latest tag | `quay.io/go-skynet/local-ai:latest` | `localai/localai:latest` |
| Versioned image | `quay.io/go-skynet/local-ai:{{< version >}}` | `localai/localai:{{< version >}}` |
| Versioned image including FFMpeg| `quay.io/go-skynet/local-ai:{{< version >}}-ffmpeg` | `localai/localai:{{< version >}}-ffmpeg` |
| Versioned image including FFMpeg, no python | `quay.io/go-skynet/local-ai:{{< version >}}-ffmpeg-core` | `localai/localai:{{< version >}}-ffmpeg-core` |
{{% /tab %}}
{{% tab tabName="GPU Images CUDA 11" %}}
| Description | Quay | Docker Hub |
| --- | --- |-------------------------------------------------------------|
| Latest images from the branch (development) | `quay.io/go-skynet/local-ai:master-cublas-cuda11` | `localai/localai:master-cublas-cuda11` |
| Latest tag | `quay.io/go-skynet/local-ai:latest-cublas-cuda11` | `localai/localai:latest-cublas-cuda11` |
| Versioned image | `quay.io/go-skynet/local-ai:{{< version >}}-cublas-cuda11` | `localai/localai:{{< version >}}-cublas-cuda11` |
| Versioned image including FFMpeg| `quay.io/go-skynet/local-ai:{{< version >}}-cublas-cuda11-ffmpeg` | `localai/localai:{{< version >}}-cublas-cuda11-ffmpeg` |
| Versioned image including FFMpeg, no python | `quay.io/go-skynet/local-ai:{{< version >}}-cublas-cuda11-ffmpeg-core` | `localai/localai:{{< version >}}-cublas-cuda11-ffmpeg-core` |
{{% /tab %}}
{{% tab tabName="GPU Images CUDA 12" %}}
| Description | Quay | Docker Hub |
| --- | --- |-------------------------------------------------------------|
| Latest images from the branch (development) | `quay.io/go-skynet/local-ai:master-cublas-cuda12` | `localai/localai:master-cublas-cuda12` |
| Latest tag | `quay.io/go-skynet/local-ai:latest-cublas-cuda12` | `localai/localai:latest-cublas-cuda12` |
| Versioned image | `quay.io/go-skynet/local-ai:{{< version >}}-cublas-cuda12` | `localai/localai:{{< version >}}-cublas-cuda12` |
| Versioned image including FFMpeg| `quay.io/go-skynet/local-ai:{{< version >}}-cublas-cuda12-ffmpeg` | `localai/localai:{{< version >}}-cublas-cuda12-ffmpeg` |
| Versioned image including FFMpeg, no python | `quay.io/go-skynet/local-ai:{{< version >}}-cublas-cuda12-ffmpeg-core` | `localai/localai:{{< version >}}-cublas-cuda12-ffmpeg-core` |
{{% /tab %}}
{{< /tabs >}}
## What's next?
There is much more to explore! run any model from huggingface, video generation, and voice cloning with LocalAI, check out the [features]({{%relref "docs/features" %}}) section for a full overview.
Explore further resources and community contributions:
- [Community How to's](https://io.midori-ai.xyz/howtos/)
- [Build LocalAI and the container image]({{%relref "docs/getting-started/build" %}})
- [Run models manually]({{%relref "docs/getting-started/manual" %}})
- [Run other models]({{%relref "docs/getting-started/run-other-models" %}})
- [Container images]({{%relref "docs/reference/container-images" %}})
- [All-in-one Images]({{%relref "docs/reference/aio-images" %}})
- [Examples](https://github.com/mudler/LocalAI/tree/master/examples#examples)
[![Screenshot from 2023-04-26 23-59-55](https://user-images.githubusercontent.com/2420543/234715439-98d12e03-d3ce-4f94-ab54-2b256808e05e.png)](https://github.com/mudler/LocalAI/tree/master/examples#examples)

View File

@@ -0,0 +1,126 @@
+++
disableToc = false
title = "Run other Models"
weight = 3
icon = "rocket_launch"
+++
## Running other models
> _Do you have already a model file? Skip to [Run models manually]({{%relref "docs/getting-started/manual" %}})_.
To load models into LocalAI, you can either [use models manually]({{%relref "docs/getting-started/manual" %}}) or configure LocalAI to pull the models from external sources, like Huggingface and configure the model.
To do that, you can point LocalAI to an URL to a YAML configuration file - however - LocalAI does also have some popular model configuration embedded in the binary as well. Below you can find a list of the models configuration that LocalAI has pre-built, see [Model customization]({{%relref "docs/getting-started/customize-model" %}}) on how to configure models from URLs.
There are different categories of models: [LLMs]({{%relref "docs/features/text-generation" %}}), [Multimodal LLM]({{%relref "docs/features/gpt-vision" %}}) , [Embeddings]({{%relref "docs/features/embeddings" %}}), [Audio to Text]({{%relref "docs/features/audio-to-text" %}}), and [Text to Audio]({{%relref "docs/features/text-to-audio" %}}) depending on the backend being used and the model architecture.
{{% alert icon="💡" %}}
To customize the models, see [Model customization]({{%relref "docs/getting-started/customize-model" %}}). For more model configurations, visit the [Examples Section](https://github.com/mudler/LocalAI/tree/master/examples/configurations) and the configurations for the models below is available [here](https://github.com/mudler/LocalAI/tree/master/embedded/models).
{{% /alert %}}
{{< tabs tabTotal="3" >}}
{{% tab tabName="CPU-only" %}}
> 💡Don't need GPU acceleration? use the CPU images which are lighter and do not have Nvidia dependencies
| Model | Category | Docker command |
| --- | --- | --- |
| [phi-2](https://huggingface.co/microsoft/phi-2) | [LLM]({{%relref "docs/features/text-generation" %}}) | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-ffmpeg-core phi-2``` |
| 🌋 [bakllava](https://github.com/SkunkworksAI/BakLLaVA) | [Multimodal LLM]({{%relref "docs/features/gpt-vision" %}}) | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-ffmpeg-core bakllava``` |
| 🌋 [llava-1.5](https://llava-vl.github.io/) | [Multimodal LLM]({{%relref "docs/features/gpt-vision" %}}) | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-ffmpeg-core llava-1.5``` |
| 🌋 [llava-1.6-mistral](https://huggingface.co/cjpais/llava-1.6-mistral-7b-gguf) | [Multimodal LLM]({{%relref "docs/features/gpt-vision" %}}) | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-ffmpeg-core llava-1.6-mistral``` |
| 🌋 [llava-1.6-vicuna](https://huggingface.co/cmp-nct/llava-1.6-gguf) | [Multimodal LLM]({{%relref "docs/features/gpt-vision" %}}) | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-ffmpeg-core llava-1.6-vicuna``` |
| [mistral-openorca](https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca) | [LLM]({{%relref "docs/features/text-generation" %}}) | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-ffmpeg-core mistral-openorca``` |
| [bert-cpp](https://github.com/skeskinen/bert.cpp) | [Embeddings]({{%relref "docs/features/embeddings" %}}) | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-ffmpeg-core bert-cpp``` |
| [all-minilm-l6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) | [Embeddings]({{%relref "docs/features/embeddings" %}}) | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-ffmpeg all-minilm-l6-v2``` |
| whisper-base | [Audio to Text]({{%relref "docs/features/audio-to-text" %}}) | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-ffmpeg-core whisper-base``` |
| rhasspy-voice-en-us-amy | [Text to Audio]({{%relref "docs/features/text-to-audio" %}}) | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-ffmpeg-core rhasspy-voice-en-us-amy``` |
| 🐸 [coqui](https://github.com/coqui-ai/TTS) | [Text to Audio]({{%relref "docs/features/text-to-audio" %}}) | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-ffmpeg coqui``` |
| 🐶 [bark](https://github.com/suno-ai/bark) | [Text to Audio]({{%relref "docs/features/text-to-audio" %}}) | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-ffmpeg bark``` |
| 🔊 [vall-e-x](https://github.com/Plachtaa/VALL-E-X) | [Text to Audio]({{%relref "docs/features/text-to-audio" %}}) | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-ffmpeg vall-e-x``` |
| mixtral-instruct Mixtral-8x7B-Instruct-v0.1 | [LLM]({{%relref "docs/features/text-generation" %}}) | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-ffmpeg-core mixtral-instruct``` |
| [tinyllama-chat](https://huggingface.co/TheBloke/TinyLlama-1.1B-Chat-v0.3-GGUF) [original model](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v0.3) | [LLM]({{%relref "docs/features/text-generation" %}}) | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-ffmpeg-core tinyllama-chat``` |
| [dolphin-2.5-mixtral-8x7b](https://huggingface.co/TheBloke/dolphin-2.5-mixtral-8x7b-GGUF) | [LLM]({{%relref "docs/features/text-generation" %}}) | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-ffmpeg-core dolphin-2.5-mixtral-8x7b``` |
| 🐍 [mamba](https://github.com/state-spaces/mamba) | [LLM]({{%relref "docs/features/text-generation" %}}) | GPU-only |
| animagine-xl | [Text to Image]({{%relref "docs/features/image-generation" %}}) | GPU-only |
| transformers-tinyllama | [LLM]({{%relref "docs/features/text-generation" %}}) | GPU-only |
| [codellama-7b](https://huggingface.co/codellama/CodeLlama-7b-hf) (with transformers) | [LLM]({{%relref "docs/features/text-generation" %}}) | GPU-only |
| [codellama-7b-gguf](https://huggingface.co/TheBloke/CodeLlama-7B-GGUF) (with llama.cpp) | [LLM]({{%relref "docs/features/text-generation" %}}) | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-ffmpeg-core codellama-7b-gguf``` |
| [hermes-2-pro-mistral](https://huggingface.co/NousResearch/Hermes-2-Pro-Mistral-7B-GGUF) | [LLM]({{%relref "docs/features/text-generation" %}}) | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-ffmpeg-core hermes-2-pro-mistral``` |
{{% /tab %}}
{{% tab tabName="GPU (CUDA 11)" %}}
> To know which version of CUDA do you have available, you can check with `nvidia-smi` or `nvcc --version` see also [GPU acceleration]({{%relref "docs/features/gpu-acceleration" %}}).
| Model | Category | Docker command |
| --- | --- | --- |
| [phi-2](https://huggingface.co/microsoft/phi-2) | [LLM]({{%relref "docs/features/text-generation" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda11-core phi-2``` |
| 🌋 [bakllava](https://github.com/SkunkworksAI/BakLLaVA) | [Multimodal LLM]({{%relref "docs/features/gpt-vision" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda11-core bakllava``` |
| 🌋 [llava-1.5](https://llava-vl.github.io/) | [Multimodal LLM]({{%relref "docs/features/gpt-vision" %}}) | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-cublas-cuda11-core llava-1.5``` |
| 🌋 [llava-1.6-mistral](https://huggingface.co/cjpais/llava-1.6-mistral-7b-gguf) | [Multimodal LLM]({{%relref "docs/features/gpt-vision" %}}) | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-cublas-cuda11-core llava-1.6-mistral``` |
| 🌋 [llava-1.6-vicuna](https://huggingface.co/cmp-nct/llava-1.6-gguf) | [Multimodal LLM]({{%relref "docs/features/gpt-vision" %}}) | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-cublas-cuda11-core llava-1.6-vicuna``` |
| [mistral-openorca](https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca) | [LLM]({{%relref "docs/features/text-generation" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda11-core mistral-openorca``` |
| [bert-cpp](https://github.com/skeskinen/bert.cpp) | [Embeddings]({{%relref "docs/features/embeddings" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda11-core bert-cpp``` |
| [all-minilm-l6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) | [Embeddings]({{%relref "docs/features/embeddings" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda11 all-minilm-l6-v2``` |
| whisper-base | [Audio to Text]({{%relref "docs/features/audio-to-text" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda11-core whisper-base``` |
| rhasspy-voice-en-us-amy | [Text to Audio]({{%relref "docs/features/text-to-audio" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda11-core rhasspy-voice-en-us-amy``` |
| 🐸 [coqui](https://github.com/coqui-ai/TTS) | [Text to Audio]({{%relref "docs/features/text-to-audio" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda11 coqui``` |
| 🐶 [bark](https://github.com/suno-ai/bark) | [Text to Audio]({{%relref "docs/features/text-to-audio" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda11 bark``` |
| 🔊 [vall-e-x](https://github.com/Plachtaa/VALL-E-X) | [Text to Audio]({{%relref "docs/features/text-to-audio" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda11 vall-e-x``` |
| mixtral-instruct Mixtral-8x7B-Instruct-v0.1 | [LLM]({{%relref "docs/features/text-generation" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda11-core mixtral-instruct``` |
| [tinyllama-chat](https://huggingface.co/TheBloke/TinyLlama-1.1B-Chat-v0.3-GGUF) [original model](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v0.3) | [LLM]({{%relref "docs/features/text-generation" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda11-core tinyllama-chat``` |
| [dolphin-2.5-mixtral-8x7b](https://huggingface.co/TheBloke/dolphin-2.5-mixtral-8x7b-GGUF) | [LLM]({{%relref "docs/features/text-generation" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda11-core dolphin-2.5-mixtral-8x7b``` |
| 🐍 [mamba](https://github.com/state-spaces/mamba) | [LLM]({{%relref "docs/features/text-generation" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda11 mamba-chat``` |
| animagine-xl | [Text to Image]({{%relref "docs/features/image-generation" %}}) | ```docker run -ti -p 8080:8080 -e COMPEL=0 --gpus all localai/localai:{{< version >}}-cublas-cuda11 animagine-xl``` |
| transformers-tinyllama | [LLM]({{%relref "docs/features/text-generation" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda11 transformers-tinyllama``` |
| [codellama-7b](https://huggingface.co/codellama/CodeLlama-7b-hf) | [LLM]({{%relref "docs/features/text-generation" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda11 codellama-7b``` |
| [codellama-7b-gguf](https://huggingface.co/TheBloke/CodeLlama-7B-GGUF) | [LLM]({{%relref "docs/features/text-generation" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda11-core codellama-7b-gguf``` |
| [hermes-2-pro-mistral](https://huggingface.co/NousResearch/Hermes-2-Pro-Mistral-7B-GGUF) | [LLM]({{%relref "docs/features/text-generation" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda11-core hermes-2-pro-mistral``` |
{{% /tab %}}
{{% tab tabName="GPU (CUDA 12)" %}}
> To know which version of CUDA do you have available, you can check with `nvidia-smi` or `nvcc --version` see also [GPU acceleration]({{%relref "docs/features/gpu-acceleration" %}}).
| Model | Category | Docker command |
| --- | --- | --- |
| [phi-2](https://huggingface.co/microsoft/phi-2) | [LLM]({{%relref "docs/features/text-generation" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda12-core phi-2``` |
| 🌋 [bakllava](https://github.com/SkunkworksAI/BakLLaVA) | [Multimodal LLM]({{%relref "docs/features/gpt-vision" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda12-core bakllava``` |
| 🌋 [llava-1.5](https://llava-vl.github.io/) | [Multimodal LLM]({{%relref "docs/features/gpt-vision" %}}) | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-cublas-cuda12-core llava-1.5``` |
| 🌋 [llava-1.6-mistral](https://huggingface.co/cjpais/llava-1.6-mistral-7b-gguf) | [Multimodal LLM]({{%relref "docs/features/gpt-vision" %}}) | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-cublas-cuda12-core llava-1.6-mistral``` |
| 🌋 [llava-1.6-vicuna](https://huggingface.co/cmp-nct/llava-1.6-gguf) | [Multimodal LLM]({{%relref "docs/features/gpt-vision" %}}) | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-cublas-cuda12-core llava-1.6-vicuna``` |
| [mistral-openorca](https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca) | [LLM]({{%relref "docs/features/text-generation" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda12-core mistral-openorca``` |
| [bert-cpp](https://github.com/skeskinen/bert.cpp) | [Embeddings]({{%relref "docs/features/embeddings" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda12-core bert-cpp``` |
| [all-minilm-l6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) | [Embeddings]({{%relref "docs/features/embeddings" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda12 all-minilm-l6-v2``` |
| whisper-base | [Audio to Text]({{%relref "docs/features/audio-to-text" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda12-core whisper-base``` |
| rhasspy-voice-en-us-amy | [Text to Audio]({{%relref "docs/features/text-to-audio" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda12-core rhasspy-voice-en-us-amy``` |
| 🐸 [coqui](https://github.com/coqui-ai/TTS) | [Text to Audio]({{%relref "docs/features/text-to-audio" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda12 coqui``` |
| 🐶 [bark](https://github.com/suno-ai/bark) | [Text to Audio]({{%relref "docs/features/text-to-audio" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda12 bark``` |
| 🔊 [vall-e-x](https://github.com/Plachtaa/VALL-E-X) | [Text to Audio]({{%relref "docs/features/text-to-audio" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda12 vall-e-x``` |
| mixtral-instruct Mixtral-8x7B-Instruct-v0.1 | [LLM]({{%relref "docs/features/text-generation" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda12-core mixtral-instruct``` |
| [tinyllama-chat](https://huggingface.co/TheBloke/TinyLlama-1.1B-Chat-v0.3-GGUF) [original model](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v0.3) | [LLM]({{%relref "docs/features/text-generation" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda12-core tinyllama-chat``` |
| [dolphin-2.5-mixtral-8x7b](https://huggingface.co/TheBloke/dolphin-2.5-mixtral-8x7b-GGUF) | [LLM]({{%relref "docs/features/text-generation" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda12-core dolphin-2.5-mixtral-8x7b``` |
| 🐍 [mamba](https://github.com/state-spaces/mamba) | [LLM]({{%relref "docs/features/text-generation" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda12 mamba-chat``` |
| animagine-xl | [Text to Image]({{%relref "docs/features/image-generation" %}}) | ```docker run -ti -p 8080:8080 -e COMPEL=0 --gpus all localai/localai:{{< version >}}-cublas-cuda12 animagine-xl``` |
| transformers-tinyllama | [LLM]({{%relref "docs/features/text-generation" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda12 transformers-tinyllama``` |
| [codellama-7b](https://huggingface.co/codellama/CodeLlama-7b-hf) | [LLM]({{%relref "docs/features/text-generation" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda12 codellama-7b``` |
| [codellama-7b-gguf](https://huggingface.co/TheBloke/CodeLlama-7B-GGUF) | [LLM]({{%relref "docs/features/text-generation" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda12-core codellama-7b-gguf``` |
| [hermes-2-pro-mistral](https://huggingface.co/NousResearch/Hermes-2-Pro-Mistral-7B-GGUF) | [LLM]({{%relref "docs/features/text-generation" %}}) | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda12-core hermes-2-pro-mistral``` |
{{% /tab %}}
{{< /tabs >}}
{{% alert icon="💡" %}}
**Tip** You can actually specify multiple models to start an instance with the models loaded, for example to have both llava and phi-2 configured:
```bash
docker run -ti -p 8080:8080 localai/localai:{{< version >}}-ffmpeg-core llava phi-2
```
{{% /alert %}}

View File

@@ -31,14 +31,14 @@ icon = "info"
</a>
</p>
[<img src="https://img.shields.io/badge/dockerhub-images-important.svg?logo=Docker">](https://hub.docker.com/r/localai/localai)
[<img src="https://img.shields.io/badge/quay.io-images-important.svg?">](https://quay.io/repository/go-skynet/local-ai?tab=tags&tag=latest)
> 💡 Get help - [❓FAQ](https://localai.io/faq/) [❓How tos](https://io.midori-ai.xyz/howtos/) [💭Discussions](https://github.com/go-skynet/LocalAI/discussions) [💭Discord](https://discord.gg/uJAeKSAGDy)
>
> [💻 Quickstart](https://localai.io/basics/getting_started/) [📣 News](https://localai.io/basics/news/) [ 🛫 Examples ](https://github.com/go-skynet/LocalAI/tree/master/examples/) [ 🖼️ Models ](https://localai.io/models/) [ 🚀 Roadmap ](https://github.com/mudler/LocalAI/issues?q=is%3Aissue+is%3Aopen+label%3Aroadmap)
**LocalAI** is the free, Open Source OpenAI alternative. LocalAI act as a drop-in replacement REST API that's compatible with OpenAI API specifications for local inferencing. It allows you to run LLMs, generate images, audio (and not only) locally or on-prem with consumer grade hardware, supporting multiple model families and architectures. Does not require GPU. It is maintained by [mudler](https://github.com/mudler).
<p align="center">
<a href="https://hub.docker.com/r/localai/localai" target="blank">
<img src="https://img.shields.io/badge/dockerhub-images-important.svg?logo=Docker" alt="LocalAI Docker hub"/>
</a>
<a href="https://quay.io/repository/go-skynet/local-ai?tab=tags&tag=latest" target="blank">
<img src="https://img.shields.io/badge/quay.io-images-important.svg?" alt="LocalAI Quay.io"/>
</a>
</p>
<p align="center">
<a href="https://twitter.com/LocalAI_API" target="blank">
@@ -47,6 +47,34 @@ icon = "info"
<a href="https://discord.gg/uJAeKSAGDy" target="blank">
<img src="https://dcbadge.vercel.app/api/server/uJAeKSAGDy?style=flat-square&theme=default-inverted" alt="Join LocalAI Discord Community"/>
</a>
</p>
> 💡 Get help - [❓FAQ](https://localai.io/faq/) [💭Discussions](https://github.com/go-skynet/LocalAI/discussions) [💭Discord](https://discord.gg/uJAeKSAGDy)
>
> [💻 Quickstart](https://localai.io/basics/getting_started/) [📣 News](https://localai.io/basics/news/) [ 🛫 Examples ](https://github.com/go-skynet/LocalAI/tree/master/examples/) [ 🖼️ Models ](https://localai.io/models/) [ 🚀 Roadmap ](https://github.com/mudler/LocalAI/issues?q=is%3Aissue+is%3Aopen+label%3Aroadmap)
**LocalAI** is the free, Open Source OpenAI alternative. LocalAI act as a drop-in replacement REST API that's compatible with OpenAI API specifications for local inferencing. It allows you to run LLMs, generate images, audio (and not only) locally or on-prem with consumer grade hardware, supporting multiple model families and architectures. Does not require GPU. It is maintained by [mudler](https://github.com/mudler).
## Start LocalAI
Start the image with Docker to have a functional clone of OpenAI! 🚀:
```bash
docker run -p 8080:8080 --name local-ai -ti localai/localai:latest-aio-cpu
# Do you have a Nvidia GPUs? Use this instead
# CUDA 11
# docker run -p 8080:8080 --gpus all --name local-ai -ti localai/localai:latest-aio-gpu-cuda-11
# CUDA 12
# docker run -p 8080:8080 --gpus all --name local-ai -ti localai/localai:latest-aio-gpu-cuda-12
```
See the [💻 Quickstart](https://localai.io/basics/getting_started/) for all the options and way you can run LocalAI!
## What is LocalAI?
In a nutshell:
@@ -61,8 +89,7 @@ LocalAI is focused on making the AI accessible to anyone. Any contribution, feed
Note that this started just as a fun weekend project by [mudler](https://github.com/mudler) in order to try to create the necessary pieces for a full AI assistant like `ChatGPT`: the community is growing fast and we are working hard to make it better and more stable. If you want to help, please consider contributing (see below)!
## 🚀 Features
### 🚀 Features
- 📖 [Text generation with GPTs](https://localai.io/features/text-generation/) (`llama.cpp`, `gpt4all.cpp`, ... [:book: and more](https://localai.io/model-compatibility/index.html#model-compatibility-table))
- 🗣 [Text to Audio](https://localai.io/features/text-to-audio/)
@@ -73,6 +100,7 @@ Note that this started just as a fun weekend project by [mudler](https://github.
- ✍️ [Constrained grammars](https://localai.io/features/constrained_grammars/)
- 🖼️ [Download Models directly from Huggingface ](https://localai.io/models/)
- 🆕 [Vision API](https://localai.io/features/gpt-vision/)
- 💾 [Stores](https://localai.io/features/stores)
## Contribute and help

View File

@@ -0,0 +1,52 @@
+++
disableToc = false
title = "All-In-One images"
weight = 26
+++
All-In-One images are images that come pre-configured with a set of models and backends to fully leverage almost all the LocalAI featureset. These images are available for both CPU and GPU environments. The AIO images are designed to be easy to use and requires no configuration. Models configuration can be found [here](https://github.com/mudler/LocalAI/tree/master/aio) separated by size.
In the AIO images there are models configured with the names of OpenAI models, however, they are really backed by Open Source models. You can find the table below
| Category | Model name | Real model |
| Text Generation | `gpt-4` | `phi-2`(CPU) or `hermes-2-pro-mistral`(GPU) |
| Multimodal | `gpt-4-vision-preview` | `bakllava`(CPU) or `llava-1.6-mistral`(GPU) |
| Text generation | `stablediffusion` | `stablediffusion`(CPU) `dreamshaper-8` (GPU) |
| Audio transcription | `whisper-1` | `whisper` with the `whisper-base` model |
| Text to Audio | `tts-1` | the `en-us-amy-low.onnx` model with `rhasspy` |
| Embeddings | `text-embedding-ada-002` | |
## Usage
Select the image (CPU or GPU) and start the container with Docker:
```bash
# CPU example
docker run -p 8080:8080 --name local-ai -ti localai/localai:latest-aio-cpu
```
LocalAI will automatically download all the required models, and the API will be available at [localhost:8080](http://localhost:8080/v1/models).
## Available images
| Description | Quay | Docker Hub |
| --- | --- |-----------------------------------------------|
| Latest images for CPU | `quay.io/go-skynet/local-ai:latest-aio-cpu` | `localai/localai:latest-aio-cpu` |
| Versioned image (e.g. for CPU) | `quay.io/go-skynet/local-ai:{{< version >}}-aio-cpu` | `localai/localai:{{< version >}}-aio-cpu` |
| Latest images for Nvidia GPU (CUDA11) | `quay.io/go-skynet/local-ai:latest-aio-gpu-nvidia-cuda-11` | `localai/localai:latest-aio-gpu-nvidia-cuda-11` |
| Latest images for Nvidia GPU (CUDA12) | `quay.io/go-skynet/local-ai:latest-aio-gpu-nvidia-cuda-12` | `localai/localai:latest-aio-gpu-nvidia-cuda-12` |
| Latest images for AMD GPU | `quay.io/go-skynet/local-ai:latest-aio-gpu-hipblas` | `localai/localai:latest-aio-gpu-hipblas` |
| Latest images for Intel GPU (sycl f16) | `quay.io/go-skynet/local-ai:latest-aio-gpu-intel-f16` | `localai/localai:latest-aio-gpu-intel-f16` |
| Latest images for Intel GPU (sycl f32) | `quay.io/go-skynet/local-ai:latest-aio-gpu-intel-f32` | `localai/localai:latest-aio-gpu-intel-f32` |
## Available environment variables
The AIO Images are inheriting the same environment variables as the base images and the environment of LocalAI (that you can inspect by calling `--help`). However, it supports additional environment variables available only from the container image
| Variable | Default | Description |
| ---------------------| ------- | ----------- |
| `PROFILE` | Auto-detected | The size of the model to use. Available: `cpu`, `gpu-8g` |
| `MODELS` | Auto-detected | A list of models YAML Configuration file URI/URL (see also [running models]({{%relref "docs/getting-started/run-other-models" %}})) |

View File

@@ -0,0 +1,103 @@
+++
disableToc = false
title = "Available Container images"
weight = 25
+++
LocalAI provides a variety of images to support different environments. These images are available on [quay.io](https://quay.io/repository/go-skynet/local-ai?tab=tags) and [Docker Hub](https://hub.docker.com/r/localai/localai).
> _For All-in-One image with a pre-configured set of models and backends, see the [AIO Images]({{%relref "docs/reference/aio-images" %}})._
For GPU Acceleration support for Nvidia video graphic cards, use the Nvidia/CUDA images, if you don't have a GPU, use the CPU images. If you have AMD or Mac Silicon, see the [build section]({{%relref "docs/getting-started/build" %}}).
{{% alert icon="💡" %}}
**Available Images Types**:
- Images ending with `-core` are smaller images without predownload python dependencies. Use these images if you plan to use `llama.cpp`, `stablediffusion-ncn`, `tinydream` or `rwkv` backends - if you are not sure which one to use, do **not** use these images.
- Images containing the `aio` tag are all-in-one images with all the features enabled, and come with an opinionated set of configuration.
- FFMpeg is **not** included in the default images due to [its licensing](https://www.ffmpeg.org/legal.html). If you need FFMpeg, use the images ending with `-ffmpeg`. Note that `ffmpeg` is needed in case of using `audio-to-text` LocalAI's features.
- If using old and outdated CPUs and no GPUs you might need to set `REBUILD` to `true` as environment variable along with options to disable the flags which your CPU does not support, however note that inference will perform poorly and slow. See also [flagset compatibility]({{%relref "docs/getting-started/build#cpu-flagset-compatibility" %}}).
{{% /alert %}}
{{< tabs tabTotal="6" >}}
{{% tab tabName="Vanilla / CPU Images" %}}
| Description | Quay | Docker Hub |
| --- | --- |-----------------------------------------------|
| Latest images from the branch (development) | `quay.io/go-skynet/local-ai:master` | `localai/localai:master` |
| Latest tag | `quay.io/go-skynet/local-ai:latest` | `localai/localai:latest` |
| Versioned image | `quay.io/go-skynet/local-ai:{{< version >}}` | `localai/localai:{{< version >}}` |
| Versioned image including FFMpeg| `quay.io/go-skynet/local-ai:{{< version >}}-ffmpeg` | `localai/localai:{{< version >}}-ffmpeg` |
| Versioned image including FFMpeg, no python | `quay.io/go-skynet/local-ai:{{< version >}}-ffmpeg-core` | `localai/localai:{{< version >}}-ffmpeg-core` |
{{% /tab %}}
{{% tab tabName="GPU Images CUDA 11" %}}
| Description | Quay | Docker Hub |
| --- | --- |-------------------------------------------------------------|
| Latest images from the branch (development) | `quay.io/go-skynet/local-ai:master-cublas-cuda11` | `localai/localai:master-cublas-cuda11` |
| Latest tag | `quay.io/go-skynet/local-ai:latest-cublas-cuda11` | `localai/localai:latest-cublas-cuda11` |
| Versioned image | `quay.io/go-skynet/local-ai:{{< version >}}-cublas-cuda11` | `localai/localai:{{< version >}}-cublas-cuda11` |
| Versioned image including FFMpeg| `quay.io/go-skynet/local-ai:{{< version >}}-cublas-cuda11-ffmpeg` | `localai/localai:{{< version >}}-cublas-cuda11-ffmpeg` |
| Versioned image including FFMpeg, no python | `quay.io/go-skynet/local-ai:{{< version >}}-cublas-cuda11-ffmpeg-core` | `localai/localai:{{< version >}}-cublas-cuda11-ffmpeg-core` |
{{% /tab %}}
{{% tab tabName="GPU Images CUDA 12" %}}
| Description | Quay | Docker Hub |
| --- | --- |-------------------------------------------------------------|
| Latest images from the branch (development) | `quay.io/go-skynet/local-ai:master-cublas-cuda12` | `localai/localai:master-cublas-cuda12` |
| Latest tag | `quay.io/go-skynet/local-ai:latest-cublas-cuda12` | `localai/localai:latest-cublas-cuda12` |
| Versioned image | `quay.io/go-skynet/local-ai:{{< version >}}-cublas-cuda12` | `localai/localai:{{< version >}}-cublas-cuda12` |
| Versioned image including FFMpeg| `quay.io/go-skynet/local-ai:{{< version >}}-cublas-cuda12-ffmpeg` | `localai/localai:{{< version >}}-cublas-cuda12-ffmpeg` |
| Versioned image including FFMpeg, no python | `quay.io/go-skynet/local-ai:{{< version >}}-cublas-cuda12-ffmpeg-core` | `localai/localai:{{< version >}}-cublas-cuda12-ffmpeg-core` |
{{% /tab %}}
{{% tab tabName="Intel GPU (sycl f16)" %}}
| Description | Quay | Docker Hub |
| --- | --- |-------------------------------------------------------------|
| Latest images from the branch (development) | `quay.io/go-skynet/local-ai:master-sycl-f16` | `localai/localai:master-sycl-f16` |
| Latest tag | `quay.io/go-skynet/local-ai:latest-sycl-f16` | `localai/localai:latest-sycl-f16` |
| Versioned image | `quay.io/go-skynet/local-ai:{{< version >}}-sycl-f16` | `localai/localai:{{< version >}}-sycl-f16` |
| Versioned image including FFMpeg| `quay.io/go-skynet/local-ai:{{< version >}}-sycl-f16-ffmpeg` | `localai/localai:{{< version >}}-sycl-f16-ffmpeg` |
| Versioned image including FFMpeg, no python | `quay.io/go-skynet/local-ai:{{< version >}}-sycl-f16-ffmpeg-core` | `localai/localai:{{< version >}}-sycl-f16-ffmpeg-core` |
{{% /tab %}}
{{% tab tabName="Intel GPU (sycl f32)" %}}
| Description | Quay | Docker Hub |
| --- | --- |-------------------------------------------------------------|
| Latest images from the branch (development) | `quay.io/go-skynet/local-ai:master-sycl-f32` | `localai/localai:master-sycl-f32` |
| Latest tag | `quay.io/go-skynet/local-ai:latest-sycl-f32` | `localai/localai:latest-sycl-f32` |
| Versioned image | `quay.io/go-skynet/local-ai:{{< version >}}-sycl-f32` | `localai/localai:{{< version >}}-sycl-f32` |
| Versioned image including FFMpeg| `quay.io/go-skynet/local-ai:{{< version >}}-sycl-f32-ffmpeg` | `localai/localai:{{< version >}}-sycl-f32-ffmpeg` |
| Versioned image including FFMpeg, no python | `quay.io/go-skynet/local-ai:{{< version >}}-sycl-f32-ffmpeg-core` | `localai/localai:{{< version >}}-sycl-f32-ffmpeg-core` |
{{% /tab %}}
{{% tab tabName="AMD GPU" %}}
| Description | Quay | Docker Hub |
| --- | --- |-------------------------------------------------------------|
| Latest images from the branch (development) | `quay.io/go-skynet/local-ai:master-hipblas` | `localai/localai:master-hipblas` |
| Latest tag | `quay.io/go-skynet/local-ai:latest-hipblas` | `localai/localai:latest-hipblas` |
| Versioned image | `quay.io/go-skynet/local-ai:{{< version >}}-hipblas` | `localai/localai:{{< version >}}-hipblas` |
| Versioned image including FFMpeg| `quay.io/go-skynet/local-ai:{{< version >}}-hipblas-ffmpeg` | `localai/localai:{{< version >}}-hipblas-ffmpeg` |
| Versioned image including FFMpeg, no python | `quay.io/go-skynet/local-ai:{{< version >}}-hipblas-ffmpeg-core` | `localai/localai:{{< version >}}-hipblas-ffmpeg-core` |
{{% /tab %}}
{{< /tabs >}}
## See Also
- [GPU acceleration]({{%relref "docs/features/gpu-acceleration" %}})
- [AIO Images]({{%relref "docs/reference/aio-images" %}})

View File

@@ -1,3 +1,3 @@
{
"version": "v2.9.0"
"version": "v2.12.1"
}

View File

@@ -0,0 +1,40 @@
backend: llama-cpp
context_size: 4096
f16: true
gpu_layers: 90
mmap: true
name: bakllava
roles:
user: "USER:"
assistant: "ASSISTANT:"
system: "SYSTEM:"
mmproj: bakllava-mmproj.gguf
parameters:
model: bakllava.gguf
temperature: 0.2
top_k: 40
top_p: 0.95
seed: -1
mirostat: 2
mirostat_eta: 1.0
mirostat_tau: 1.0
template:
chat: |
A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.
{{.Input}}
ASSISTANT:
download_files:
- filename: bakllava.gguf
uri: huggingface://mys/ggml_bakllava-1/ggml-model-q4_k.gguf
- filename: bakllava-mmproj.gguf
uri: huggingface://mys/ggml_bakllava-1/mmproj-model-f16.gguf
usage: |
curl http://localhost:8080/v1/chat/completions -H "Content-Type: application/json" -d '{
"model": "bakllava",
"messages": [{"role": "user", "content": [{"type":"text", "text": "What is in the image?"}, {"type": "image_url", "image_url": {"url": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg" }}], "temperature": 0.9}]}'

View File

@@ -0,0 +1,24 @@
backend: llama
context_size: 8192
f16: false
gpu_layers: 90
name: cerbero
mmap: false
parameters:
model: huggingface://galatolo/cerbero-7b-gguf/ggml-model-Q8_0.gguf
top_k: 80
temperature: 0.2
top_p: 0.7
template:
completion: "{{.Input}}"
chat: "Questa è una conversazione tra un umano ed un assistente AI.\n{{.Input}}\n[|Assistente|] "
roles:
user: "[|Umano|] "
system: "[|Umano|] "
assistant: "[|Assistente|] "
stopwords:
- "[|Umano|]"
trimsuffix:
- "\n"

View File

@@ -0,0 +1,53 @@
name: hermes-2-pro-mistral
mmap: true
parameters:
model: huggingface://NousResearch/Hermes-2-Pro-Mistral-7B-GGUF/Hermes-2-Pro-Mistral-7B.Q6_K.gguf
template:
chat_message: |
<|im_start|>{{if eq .RoleName "assistant"}}assistant{{else if eq .RoleName "system"}}system{{else if eq .RoleName "tool"}}tool{{else if eq .RoleName "user"}}user{{end}}
{{- if .FunctionCall }}<tool_call>{{end}}
{{- if eq .RoleName "tool" }}<tool_result>{{end }}
{{- if .Content}}
{{.Content}}
{{- end }}
{{- if .FunctionCall}}{{toJson .FunctionCall}}{{end }}
{{- if .FunctionCall }}</tool_call>{{end }}
{{- if eq .RoleName "tool" }}</tool_result>{{end }}
<|im_end|>
# https://huggingface.co/NousResearch/Hermes-2-Pro-Mistral-7B-GGUF#prompt-format-for-function-calling
function: |
<|im_start|>system
You are a function calling AI model. You are provided with function signatures within <tools></tools> XML tags. You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions. Here are the available tools:
<tools>
{{range .Functions}}
{'type': 'function', 'function': {'name': '{{.Name}}', 'description': '{{.Description}}', 'parameters': {{toJson .Parameters}} }}
{{end}}
</tools>
Use the following pydantic model json schema for each tool call you will make:
{'title': 'FunctionCall', 'type': 'object', 'properties': {'arguments': {'title': 'Arguments', 'type': 'object'}, 'name': {'title': 'Name', 'type': 'string'}}, 'required': ['arguments', 'name']}
For each function call return a json object with function name and arguments within <tool_call></tool_call> XML tags as follows:
<tool_call>
{'arguments': <args-dict>, 'name': <function-name>}
</tool_call>
<|im_end|>
{{.Input -}}
<|im_start|>assistant
<tool_call>
chat: |
{{.Input -}}
<|im_start|>assistant
completion: |
{{.Input}}
context_size: 4096
f16: true
stopwords:
- <|im_end|>
- <dummy32000>
- "\n</tool_call>"
- "\n\n\n"
usage: |
curl http://localhost:8080/v1/chat/completions -H "Content-Type: application/json" -d '{
"model": "hermes-2-pro-mistral",
"messages": [{"role": "user", "content": "How are you doing?", "temperature": 0.1}]
}'

View File

@@ -0,0 +1,33 @@
backend: llama-cpp
context_size: 4096
f16: true
gpu_layers: 90
mmap: true
name: llava-1.5
roles:
user: "USER:"
assistant: "ASSISTANT:"
system: "SYSTEM:"
mmproj: llava-v1.5-7b-mmproj-Q8_0.gguf
parameters:
model: llava-v1.5-7b-Q4_K.gguf
template:
chat: |
A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.
{{.Input}}
ASSISTANT:
download_files:
- filename: llava-v1.5-7b-Q4_K.gguf
uri: huggingface://jartine/llava-v1.5-7B-GGUF/llava-v1.5-7b-Q4_K.gguf
- filename: llava-v1.5-7b-mmproj-Q8_0.gguf
uri: huggingface://jartine/llava-v1.5-7B-GGUF/llava-v1.5-7b-mmproj-Q8_0.gguf
usage: |
curl http://localhost:8080/v1/chat/completions -H "Content-Type: application/json" -d '{
"model": "llava-1.5",
"messages": [{"role": "user", "content": [{"type":"text", "text": "What is in the image?"}, {"type": "image_url", "image_url": {"url": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg" }}], "temperature": 0.9}]}'

View File

@@ -0,0 +1,33 @@
backend: llama-cpp
context_size: 4096
f16: true
gpu_layers: 90
mmap: true
name: llava-1.6-mistral
roles:
user: "USER:"
assistant: "ASSISTANT:"
system: "SYSTEM:"
mmproj: llava-v1.6-7b-mmproj-f16.gguf
parameters:
model: llava-v1.6-mistral-7b.gguf
template:
chat: |
A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.
{{.Input}}
ASSISTANT:
download_files:
- filename: llava-v1.6-mistral-7b.gguf
uri: huggingface://cjpais/llava-1.6-mistral-7b-gguf/llava-v1.6-mistral-7b.Q6_K.gguf
- filename: llava-v1.6-7b-mmproj-f16.gguf
uri: huggingface://cjpais/llava-1.6-mistral-7b-gguf/mmproj-model-f16.gguf
usage: |
curl http://localhost:8080/v1/chat/completions -H "Content-Type: application/json" -d '{
"model": "llava-1.6-mistral",
"messages": [{"role": "user", "content": [{"type":"text", "text": "What is in the image?"}, {"type": "image_url", "image_url": {"url": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg" }}], "temperature": 0.9}]}'

View File

@@ -0,0 +1,37 @@
backend: llama-cpp
context_size: 4096
f16: true
gpu_layers: 90
mmap: true
name: llava-1.6-vicuna
roles:
user: "USER:"
assistant: "ASSISTANT:"
system: "SYSTEM:"
mmproj: mmproj-vicuna7b-f16.gguf
parameters:
model: vicuna-7b-q5_k.gguf
temperature: 0.2
top_k: 40
top_p: 0.95
seed: -1
template:
chat: |
A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.
{{.Input}}
ASSISTANT:
download_files:
- filename: vicuna-7b-q5_k.gguf
uri: https://huggingface.co/cmp-nct/llava-1.6-gguf/resolve/main/vicuna-7b-q5_k.gguf
- filename: mmproj-vicuna7b-f16.gguf
uri: https://huggingface.co/cmp-nct/llava-1.6-gguf/resolve/main/mmproj-vicuna7b-f16.gguf
usage: |
curl http://localhost:8080/v1/chat/completions -H "Content-Type: application/json" -d '{
"model": "llava-1.6-vicuna",
"messages": [{"role": "user", "content": [{"type":"text", "text": "What is in the image?"}, {"type": "image_url", "image_url": {"url": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg" }}], "temperature": 0.9}]}'

View File

@@ -0,0 +1,25 @@
name: phi-2-chat
mmap: true
parameters:
model: huggingface://l3utterfly/phi-2-layla-v1-chatml-gguf/phi-2-layla-v1-chatml-Q8_0.gguf
template:
chat_message: |
<|im_start|>{{if eq .RoleName "assistant"}}assistant{{else if eq .RoleName "system"}}system{{else if eq .RoleName "user"}}user{{end}}
{{if .Content}}{{.Content}}{{end}}
<|im_end|>
chat: |
{{.Input}}
<|im_start|>assistant
completion: |
{{.Input}}
context_size: 4096
f16: true
stopwords:
- <|im_end|>
- <dummy32000>
usage: |
curl http://localhost:8080/v1/chat/completions -H "Content-Type: application/json" -d '{
"model": "phi-2-chat",
"messages": [{"role": "user", "content": "How are you doing?", "temperature": 0.1}]
}'

View File

@@ -0,0 +1,30 @@
name: phi-2-orange
mmap: true
parameters:
model: huggingface://l3utterfly/phi-2-orange-GGUF/phi-2-orange.Q6_K.gguf
template:
chat_message: |
<|im_start|>{{if eq .RoleName "assistant"}}assistant{{else if eq .RoleName "system"}}system{{else if eq .RoleName "user"}}user{{end}}
{{if .Content}}{{.Content}}{{end}}
<|im_end|>
chat: |
{{.Input}}
<|im_start|>assistant
completion: |
{{.Input}}
context_size: 4096
f16: true
stopwords:
- <|im_end|>
- <dummy32000>
description: |
This model is a chatbot that can be used for general conversation.
[Model card](https://huggingface.co/TheBloke/phi-2-orange-GGUF)
usage: |
curl http://localhost:8080/v1/chat/completions -H "Content-Type: application/json" -d '{
"model": "phi-2-orange",
"messages": [{"role": "user", "content": "How are you doing?", "temperature": 0.1}]
}'

Some files were not shown because too many files have changed in this diff Show More