mirror of
https://github.com/mudler/LocalAI.git
synced 2026-02-03 03:02:38 -05:00
Compare commits
183 Commits
revert-205
...
v2.15.0
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
f69de3be0d | ||
|
|
650ae620c5 | ||
|
|
6a209cbef6 | ||
|
|
9786bb826d | ||
|
|
9b4c6f348a | ||
|
|
cb6ddb21ec | ||
|
|
0baacca605 | ||
|
|
222d714ec7 | ||
|
|
fd2d89d37b | ||
|
|
6440b608dc | ||
|
|
1937118eab | ||
|
|
bc272d1e4b | ||
|
|
d651f390cd | ||
|
|
ea777f8716 | ||
|
|
eca5200fbd | ||
|
|
0809e9e7a0 | ||
|
|
b66baa3db6 | ||
|
|
6eb77f0d3a | ||
|
|
b20354b3ad | ||
|
|
d6f76c75e1 | ||
|
|
ed4f412f1c | ||
|
|
5bf56e01aa | ||
|
|
5ff5f0b393 | ||
|
|
6559ac11b1 | ||
|
|
02ec546dd6 | ||
|
|
995aa5ed21 | ||
|
|
e28ba4b807 | ||
|
|
d1e3436de5 | ||
|
|
d3ddc9e4aa | ||
|
|
fea9522982 | ||
|
|
fe055d4b36 | ||
|
|
581b894789 | ||
|
|
477655f6e6 | ||
|
|
169d8d21ff | ||
|
|
c5475020fe | ||
|
|
b52ff1249f | ||
|
|
c5798500cb | ||
|
|
67ad3532ec | ||
|
|
5cb96fe7df | ||
|
|
810e8e5855 | ||
|
|
f3bcc648e7 | ||
|
|
3096566333 | ||
|
|
f50c6a4e88 | ||
|
|
ab4ee54855 | ||
|
|
f2d35062d4 | ||
|
|
b69ff46c7e | ||
|
|
117c9873e1 | ||
|
|
17e94fbcb1 | ||
|
|
92f7feb874 | ||
|
|
b70e2bffa3 | ||
|
|
06c43ca285 | ||
|
|
530bec9c64 | ||
|
|
fa10302dd2 | ||
|
|
54faaa87ea | ||
|
|
daba8a85f9 | ||
|
|
ac0f3d6e82 | ||
|
|
da0b6a89ae | ||
|
|
929a68c06d | ||
|
|
a0aa5d01a1 | ||
|
|
dc834cc9d2 | ||
|
|
b58274b8a2 | ||
|
|
a31d00d904 | ||
|
|
2cc1bd85af | ||
|
|
2c5a46bc34 | ||
|
|
f7f8b4804b | ||
|
|
e5bd9a76c7 | ||
|
|
4690b534e0 | ||
|
|
6a7a7996bb | ||
|
|
962ebbaf77 | ||
|
|
f90d56d371 | ||
|
|
445cfd4db3 | ||
|
|
b24d44dc56 | ||
|
|
cd31f8d865 | ||
|
|
970cb3a219 | ||
|
|
f7aabf1b50 | ||
|
|
e38610e521 | ||
|
|
3754f154ee | ||
|
|
29d7812344 | ||
|
|
5fd46175dc | ||
|
|
52a268c38c | ||
|
|
53c3842bc2 | ||
|
|
c4f958e11b | ||
|
|
147440b39b | ||
|
|
baff5ff8c2 | ||
|
|
ea13863221 | ||
|
|
93ca56086e | ||
|
|
11c48a0004 | ||
|
|
b7ea9602f5 | ||
|
|
982dc6a2bd | ||
|
|
74d903acca | ||
|
|
5fef3b0ff1 | ||
|
|
0674893649 | ||
|
|
e8d44447ad | ||
|
|
a24cd4fda0 | ||
|
|
01860674c4 | ||
|
|
987b7ad42d | ||
|
|
21974fe1d3 | ||
|
|
26e1892521 | ||
|
|
a78cd67737 | ||
|
|
5e243ceaeb | ||
|
|
1a0a6f60a7 | ||
|
|
3179c019af | ||
|
|
a8089494fd | ||
|
|
a248ede222 | ||
|
|
0f0ae13ad0 | ||
|
|
773d5d23d5 | ||
|
|
c3982212f9 | ||
|
|
7e6bf6e7a1 | ||
|
|
9fc0135991 | ||
|
|
164be58445 | ||
|
|
1f8461767d | ||
|
|
935f4c23f6 | ||
|
|
4c97406f2b | ||
|
|
fb2a05ff43 | ||
|
|
030d555995 | ||
|
|
56d843c263 | ||
|
|
2dc1fa2474 | ||
|
|
c9451cb604 | ||
|
|
006306b183 | ||
|
|
2cd4936c99 | ||
|
|
44bc540bb5 | ||
|
|
6b411ae212 | ||
|
|
eed285f9de | ||
|
|
c8dd8e5ef4 | ||
|
|
365ef92530 | ||
|
|
5fceb876c4 | ||
|
|
d98063e80e | ||
|
|
45761f8be2 | ||
|
|
4ae4e44506 | ||
|
|
2ada13b1ad | ||
|
|
5d170e9264 | ||
|
|
1b0a64aa46 | ||
|
|
aa8e1c63d5 | ||
|
|
60690c9fc4 | ||
|
|
758b0c9042 | ||
|
|
48d0aa2f6d | ||
|
|
b664edde29 | ||
|
|
e16658b7ec | ||
|
|
d30280ed23 | ||
|
|
9dbd217c59 | ||
|
|
23eac98b3c | ||
|
|
4fffc47e77 | ||
|
|
d65214a234 | ||
|
|
2fb34b00b5 | ||
|
|
f718a391c0 | ||
|
|
ac56ac2b2d | ||
|
|
34c3f563fd | ||
|
|
d2bea6f9e3 | ||
|
|
a09fe1b9ba | ||
|
|
55778b35ff | ||
|
|
8b169f1dac | ||
|
|
d344daf129 | ||
|
|
3411e072ca | ||
|
|
8e36fe9b6f | ||
|
|
0d8bf91699 | ||
|
|
bd507678be | ||
|
|
b6f0e80d54 | ||
|
|
729378ca98 | ||
|
|
220958a87c | ||
|
|
f3f6535aad | ||
|
|
228bc4903f | ||
|
|
38c9abed8b | ||
|
|
66b002458d | ||
|
|
39814cab32 | ||
|
|
180cd4ccda | ||
|
|
284ad026b1 | ||
|
|
afa1bca1e3 | ||
|
|
03adc1f60d | ||
|
|
b319ed58b0 | ||
|
|
8d30b39811 | ||
|
|
1038f7469c | ||
|
|
b9e7708643 | ||
|
|
1e37101930 | ||
|
|
b2772509b4 | ||
|
|
27ec84827c | ||
|
|
852316c5a6 | ||
|
|
e9448005a5 | ||
|
|
bbea62b907 | ||
|
|
13012cfa70 | ||
|
|
8f2681f904 | ||
|
|
f9c75d4878 | ||
|
|
502c1eedaa | ||
|
|
e9f090257c |
@@ -5,4 +5,7 @@ models
|
||||
examples/chatbot-ui/models
|
||||
examples/rwkv/models
|
||||
examples/**/models
|
||||
Dockerfile*
|
||||
Dockerfile*
|
||||
|
||||
# SonarQube
|
||||
.scannerwork
|
||||
4
.env
4
.env
@@ -10,7 +10,7 @@
|
||||
#
|
||||
## Define galleries.
|
||||
## models will to install will be visible in `/models/available`
|
||||
# LOCALAI_GALLERIES=[{"name":"model-gallery", "url":"github:go-skynet/model-gallery/index.yaml"}]
|
||||
# LOCALAI_GALLERIES=[{"name":"localai", "url":"github:mudler/LocalAI/gallery/index.yaml@master"}]
|
||||
|
||||
## CORS settings
|
||||
# LOCALAI_CORS=true
|
||||
@@ -86,4 +86,4 @@
|
||||
# LOCALAI_WATCHDOG_BUSY=true
|
||||
#
|
||||
# Time in duration format (e.g. 1h30m) after which a backend is considered busy
|
||||
# LOCALAI_WATCHDOG_BUSY_TIMEOUT=5m
|
||||
# LOCALAI_WATCHDOG_BUSY_TIMEOUT=5m
|
||||
|
||||
2
.github/bump_docs.sh
vendored
2
.github/bump_docs.sh
vendored
@@ -2,6 +2,6 @@
|
||||
set -xe
|
||||
REPO=$1
|
||||
|
||||
LATEST_TAG=$(curl -s "https://api.github.com/repos/$REPO/releases/latest" | jq -r '.name')
|
||||
LATEST_TAG=$(curl -s "https://api.github.com/repos/$REPO/releases/latest" | jq -r '.tag_name')
|
||||
|
||||
cat <<< $(jq ".version = \"$LATEST_TAG\"" docs/data/version.json) > docs/data/version.json
|
||||
|
||||
111
.github/checksum_checker.sh
vendored
Normal file
111
.github/checksum_checker.sh
vendored
Normal file
@@ -0,0 +1,111 @@
|
||||
#!/bin/bash
|
||||
# This scripts needs yq and huggingface_hub to be installed
|
||||
# to install hugingface_hub run pip install huggingface_hub
|
||||
|
||||
# Path to the input YAML file
|
||||
input_yaml=$1
|
||||
|
||||
# Function to download file and check checksum using Python
|
||||
function check_and_update_checksum() {
|
||||
model_name="$1"
|
||||
file_name="$2"
|
||||
uri="$3"
|
||||
old_checksum="$4"
|
||||
idx="$5"
|
||||
|
||||
# Download the file and calculate new checksum using Python
|
||||
new_checksum=$(python3 -c "
|
||||
import hashlib
|
||||
from huggingface_hub import hf_hub_download
|
||||
import requests
|
||||
import sys
|
||||
import os
|
||||
|
||||
uri = '$uri'
|
||||
file_name = uri.split('/')[-1]
|
||||
|
||||
# Function to parse the URI and determine download method
|
||||
# Function to parse the URI and determine download method
|
||||
def parse_uri(uri):
|
||||
if uri.startswith('huggingface://'):
|
||||
repo_id = uri.split('://')[1]
|
||||
return 'huggingface', repo_id.rsplit('/', 1)[0]
|
||||
elif 'huggingface.co' in uri:
|
||||
parts = uri.split('/resolve/')
|
||||
if len(parts) > 1:
|
||||
repo_path = parts[0].split('https://huggingface.co/')[-1]
|
||||
return 'huggingface', repo_path
|
||||
return 'direct', uri
|
||||
|
||||
def calculate_sha256(file_path):
|
||||
sha256_hash = hashlib.sha256()
|
||||
with open(file_path, 'rb') as f:
|
||||
for byte_block in iter(lambda: f.read(4096), b''):
|
||||
sha256_hash.update(byte_block)
|
||||
return sha256_hash.hexdigest()
|
||||
|
||||
download_type, repo_id_or_url = parse_uri(uri)
|
||||
|
||||
# Decide download method based on URI type
|
||||
if download_type == 'huggingface':
|
||||
try:
|
||||
file_path = hf_hub_download(repo_id=repo_id_or_url, filename=file_name)
|
||||
except Exception as e:
|
||||
print(f'Error from Hugging Face Hub: {str(e)}', file=sys.stderr)
|
||||
sys.exit(2)
|
||||
else:
|
||||
response = requests.get(repo_id_or_url)
|
||||
if response.status_code == 200:
|
||||
with open(file_name, 'wb') as f:
|
||||
f.write(response.content)
|
||||
file_path = file_name
|
||||
elif response.status_code == 404:
|
||||
print(f'File not found: {response.status_code}', file=sys.stderr)
|
||||
sys.exit(2)
|
||||
else:
|
||||
print(f'Error downloading file: {response.status_code}', file=sys.stderr)
|
||||
sys.exit(1)
|
||||
|
||||
print(calculate_sha256(file_path))
|
||||
# Clean up the downloaded file
|
||||
os.remove(file_path)
|
||||
")
|
||||
|
||||
if [[ "$new_checksum" == "" ]]; then
|
||||
echo "Error calculating checksum for $file_name. Skipping..."
|
||||
return
|
||||
fi
|
||||
|
||||
echo "Checksum for $file_name: $new_checksum"
|
||||
|
||||
# Compare and update the YAML file if checksums do not match
|
||||
result=$?
|
||||
if [[ $result -eq 2 ]]; then
|
||||
echo "File not found, deleting entry for $file_name..."
|
||||
# yq eval -i "del(.[$idx].files[] | select(.filename == \"$file_name\"))" "$input_yaml"
|
||||
elif [[ "$old_checksum" != "$new_checksum" ]]; then
|
||||
echo "Checksum mismatch for $file_name. Updating..."
|
||||
yq eval -i "del(.[$idx].files[] | select(.filename == \"$file_name\").sha256)" "$input_yaml"
|
||||
yq eval -i "(.[$idx].files[] | select(.filename == \"$file_name\")).sha256 = \"$new_checksum\"" "$input_yaml"
|
||||
elif [[ $result -ne 0 ]]; then
|
||||
echo "Error downloading file $file_name. Skipping..."
|
||||
else
|
||||
echo "Checksum match for $file_name. No update needed."
|
||||
fi
|
||||
}
|
||||
|
||||
# Read the YAML and process each file
|
||||
len=$(yq eval '. | length' "$input_yaml")
|
||||
for ((i=0; i<$len; i++))
|
||||
do
|
||||
name=$(yq eval ".[$i].name" "$input_yaml")
|
||||
files_len=$(yq eval ".[$i].files | length" "$input_yaml")
|
||||
for ((j=0; j<$files_len; j++))
|
||||
do
|
||||
filename=$(yq eval ".[$i].files[$j].filename" "$input_yaml")
|
||||
uri=$(yq eval ".[$i].files[$j].uri" "$input_yaml")
|
||||
checksum=$(yq eval ".[$i].files[$j].sha256" "$input_yaml")
|
||||
echo "Checking model $name, file $filename. URI = $uri, Checksum = $checksum"
|
||||
check_and_update_checksum "$name" "$filename" "$uri" "$checksum" "$i"
|
||||
done
|
||||
done
|
||||
7
.github/labeler.yml
vendored
7
.github/labeler.yml
vendored
@@ -8,6 +8,11 @@ kind/documentation:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file: '*.md'
|
||||
|
||||
area/ai-model:
|
||||
- any:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file: 'gallery/*'
|
||||
|
||||
examples:
|
||||
- any:
|
||||
- changed-files:
|
||||
@@ -16,4 +21,4 @@ examples:
|
||||
ci:
|
||||
- any:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file: '.github/*'
|
||||
- any-glob-to-any-file: '.github/*'
|
||||
|
||||
47
.github/workflows/checksum_checker.yaml
vendored
Normal file
47
.github/workflows/checksum_checker.yaml
vendored
Normal file
@@ -0,0 +1,47 @@
|
||||
name: Check if checksums are up-to-date
|
||||
on:
|
||||
schedule:
|
||||
- cron: 0 20 * * *
|
||||
workflow_dispatch:
|
||||
jobs:
|
||||
checksum_check:
|
||||
runs-on: arc-runner-set
|
||||
steps:
|
||||
- name: Force Install GIT latest
|
||||
run: |
|
||||
sudo apt-get update \
|
||||
&& sudo apt-get install -y software-properties-common \
|
||||
&& sudo apt-get update \
|
||||
&& sudo add-apt-repository -y ppa:git-core/ppa \
|
||||
&& sudo apt-get update \
|
||||
&& sudo apt-get install -y git
|
||||
- uses: actions/checkout@v4
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install -y pip wget
|
||||
sudo pip install --upgrade pip
|
||||
pip install huggingface_hub
|
||||
- name: 'Setup yq'
|
||||
uses: dcarbone/install-yq-action@v1.1.1
|
||||
with:
|
||||
version: 'v4.43.1'
|
||||
download-compressed: true
|
||||
force: true
|
||||
|
||||
- name: Checksum checker 🔧
|
||||
run: |
|
||||
export HF_HOME=/hf_cache
|
||||
sudo mkdir /hf_cache
|
||||
sudo chmod 777 /hf_cache
|
||||
bash .github/checksum_checker.sh gallery/index.yaml
|
||||
- name: Create Pull Request
|
||||
uses: peter-evans/create-pull-request@v6
|
||||
with:
|
||||
token: ${{ secrets.UPDATE_BOT_TOKEN }}
|
||||
push-to-fork: ci-forks/LocalAI
|
||||
commit-message: ':arrow_up: Checksum updates in gallery/index.yaml'
|
||||
title: 'models(gallery): :arrow_up: update checksum'
|
||||
branch: "update/checksum"
|
||||
body: Updating checksums in gallery/index.yaml
|
||||
signoff: true
|
||||
2
.github/workflows/dependabot_auto.yml
vendored
2
.github/workflows/dependabot_auto.yml
vendored
@@ -14,7 +14,7 @@ jobs:
|
||||
steps:
|
||||
- name: Dependabot metadata
|
||||
id: metadata
|
||||
uses: dependabot/fetch-metadata@v2.0.0
|
||||
uses: dependabot/fetch-metadata@v2.1.0
|
||||
with:
|
||||
github-token: "${{ secrets.GITHUB_TOKEN }}"
|
||||
skip-commit-verification: true
|
||||
|
||||
94
.github/workflows/generate_grpc_cache.yaml
vendored
Normal file
94
.github/workflows/generate_grpc_cache.yaml
vendored
Normal file
@@ -0,0 +1,94 @@
|
||||
name: 'generate and publish GRPC docker caches'
|
||||
|
||||
on:
|
||||
workflow_dispatch:
|
||||
push:
|
||||
branches:
|
||||
- master
|
||||
|
||||
concurrency:
|
||||
group: grpc-cache-${{ github.head_ref || github.ref }}-${{ github.repository }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
generate_caches:
|
||||
strategy:
|
||||
matrix:
|
||||
include:
|
||||
- grpc-base-image: ubuntu:22.04
|
||||
runs-on: 'ubuntu-latest'
|
||||
platforms: 'linux/amd64'
|
||||
runs-on: ${{matrix.runs-on}}
|
||||
steps:
|
||||
- name: Release space from worker
|
||||
if: matrix.runs-on == 'ubuntu-latest'
|
||||
run: |
|
||||
echo "Listing top largest packages"
|
||||
pkgs=$(dpkg-query -Wf '${Installed-Size}\t${Package}\t${Status}\n' | awk '$NF == "installed"{print $1 "\t" $2}' | sort -nr)
|
||||
head -n 30 <<< "${pkgs}"
|
||||
echo
|
||||
df -h
|
||||
echo
|
||||
sudo apt-get remove -y '^llvm-.*|^libllvm.*' || true
|
||||
sudo apt-get remove --auto-remove android-sdk-platform-tools || true
|
||||
sudo apt-get purge --auto-remove android-sdk-platform-tools || true
|
||||
sudo rm -rf /usr/local/lib/android
|
||||
sudo apt-get remove -y '^dotnet-.*|^aspnetcore-.*' || true
|
||||
sudo rm -rf /usr/share/dotnet
|
||||
sudo apt-get remove -y '^mono-.*' || true
|
||||
sudo apt-get remove -y '^ghc-.*' || true
|
||||
sudo apt-get remove -y '.*jdk.*|.*jre.*' || true
|
||||
sudo apt-get remove -y 'php.*' || true
|
||||
sudo apt-get remove -y hhvm powershell firefox monodoc-manual msbuild || true
|
||||
sudo apt-get remove -y '^google-.*' || true
|
||||
sudo apt-get remove -y azure-cli || true
|
||||
sudo apt-get remove -y '^mongo.*-.*|^postgresql-.*|^mysql-.*|^mssql-.*' || true
|
||||
sudo apt-get remove -y '^gfortran-.*' || true
|
||||
sudo apt-get remove -y microsoft-edge-stable || true
|
||||
sudo apt-get remove -y firefox || true
|
||||
sudo apt-get remove -y powershell || true
|
||||
sudo apt-get remove -y r-base-core || true
|
||||
sudo apt-get autoremove -y
|
||||
sudo apt-get clean
|
||||
echo
|
||||
echo "Listing top largest packages"
|
||||
pkgs=$(dpkg-query -Wf '${Installed-Size}\t${Package}\t${Status}\n' | awk '$NF == "installed"{print $1 "\t" $2}' | sort -nr)
|
||||
head -n 30 <<< "${pkgs}"
|
||||
echo
|
||||
sudo rm -rfv build || true
|
||||
sudo rm -rf /usr/share/dotnet || true
|
||||
sudo rm -rf /opt/ghc || true
|
||||
sudo rm -rf "/usr/local/share/boost" || true
|
||||
sudo rm -rf "$AGENT_TOOLSDIRECTORY" || true
|
||||
df -h
|
||||
|
||||
- name: Set up QEMU
|
||||
uses: docker/setup-qemu-action@master
|
||||
with:
|
||||
platforms: all
|
||||
|
||||
- name: Set up Docker Buildx
|
||||
id: buildx
|
||||
uses: docker/setup-buildx-action@master
|
||||
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Cache GRPC
|
||||
uses: docker/build-push-action@v5
|
||||
with:
|
||||
builder: ${{ steps.buildx.outputs.name }}
|
||||
# The build-args MUST be an EXACT match between the image cache and other workflow steps that want to use that cache.
|
||||
# This means that even the MAKEFLAGS have to be an EXACT match.
|
||||
# If the build-args are not an EXACT match, it will result in a cache miss, which will require GRPC to be built from scratch.
|
||||
build-args: |
|
||||
GRPC_BASE_IMAGE=${{ matrix.grpc-base-image }}
|
||||
GRPC_MAKEFLAGS=--jobs=4 --output-sync=target
|
||||
GRPC_VERSION=v1.63.0
|
||||
context: .
|
||||
file: ./Dockerfile
|
||||
cache-to: type=gha,ignore-error=true
|
||||
cache-from: type=gha
|
||||
target: grpc
|
||||
platforms: ${{ matrix.platforms }}
|
||||
push: false
|
||||
15
.github/workflows/image-pr.yml
vendored
15
.github/workflows/image-pr.yml
vendored
@@ -22,6 +22,7 @@ jobs:
|
||||
platforms: ${{ matrix.platforms }}
|
||||
runs-on: ${{ matrix.runs-on }}
|
||||
base-image: ${{ matrix.base-image }}
|
||||
grpc-base-image: ${{ matrix.grpc-base-image }}
|
||||
makeflags: ${{ matrix.makeflags }}
|
||||
secrets:
|
||||
dockerUsername: ${{ secrets.DOCKERHUB_USERNAME }}
|
||||
@@ -60,13 +61,15 @@ jobs:
|
||||
tag-suffix: '-hipblas'
|
||||
ffmpeg: 'false'
|
||||
image-type: 'extras'
|
||||
base-image: "rocm/dev-ubuntu-22.04:6.0-complete"
|
||||
base-image: "rocm/dev-ubuntu-22.04:6.1"
|
||||
grpc-base-image: "ubuntu:22.04"
|
||||
runs-on: 'arc-runner-set'
|
||||
makeflags: "--jobs=3 --output-sync=target"
|
||||
- build-type: 'sycl_f16'
|
||||
platforms: 'linux/amd64'
|
||||
tag-latest: 'false'
|
||||
base-image: "intel/oneapi-basekit:2024.0.1-devel-ubuntu22.04"
|
||||
base-image: "intel/oneapi-basekit:2024.1.0-devel-ubuntu22.04"
|
||||
grpc-base-image: "ubuntu:22.04"
|
||||
tag-suffix: 'sycl-f16-ffmpeg'
|
||||
ffmpeg: 'true'
|
||||
image-type: 'extras'
|
||||
@@ -85,6 +88,7 @@ jobs:
|
||||
platforms: ${{ matrix.platforms }}
|
||||
runs-on: ${{ matrix.runs-on }}
|
||||
base-image: ${{ matrix.base-image }}
|
||||
grpc-base-image: ${{ matrix.grpc-base-image }}
|
||||
makeflags: ${{ matrix.makeflags }}
|
||||
secrets:
|
||||
dockerUsername: ${{ secrets.DOCKERHUB_USERNAME }}
|
||||
@@ -102,11 +106,12 @@ jobs:
|
||||
image-type: 'core'
|
||||
runs-on: 'ubuntu-latest'
|
||||
base-image: "ubuntu:22.04"
|
||||
makeflags: "--jobs=5 --output-sync=target"
|
||||
makeflags: "--jobs=4 --output-sync=target"
|
||||
- build-type: 'sycl_f16'
|
||||
platforms: 'linux/amd64'
|
||||
tag-latest: 'false'
|
||||
base-image: "intel/oneapi-basekit:2024.0.1-devel-ubuntu22.04"
|
||||
base-image: "intel/oneapi-basekit:2024.1.0-devel-ubuntu22.04"
|
||||
grpc-base-image: "ubuntu:22.04"
|
||||
tag-suffix: 'sycl-f16-ffmpeg-core'
|
||||
ffmpeg: 'true'
|
||||
image-type: 'core'
|
||||
@@ -122,4 +127,4 @@ jobs:
|
||||
image-type: 'core'
|
||||
runs-on: 'ubuntu-latest'
|
||||
base-image: "ubuntu:22.04"
|
||||
makeflags: "--jobs=5 --output-sync=target"
|
||||
makeflags: "--jobs=4 --output-sync=target"
|
||||
42
.github/workflows/image.yml
vendored
42
.github/workflows/image.yml
vendored
@@ -26,6 +26,7 @@ jobs:
|
||||
platforms: ${{ matrix.platforms }}
|
||||
runs-on: ${{ matrix.runs-on }}
|
||||
base-image: ${{ matrix.base-image }}
|
||||
grpc-base-image: ${{ matrix.grpc-base-image }}
|
||||
aio: ${{ matrix.aio }}
|
||||
makeflags: ${{ matrix.makeflags }}
|
||||
latest-image: ${{ matrix.latest-image }}
|
||||
@@ -128,7 +129,8 @@ jobs:
|
||||
ffmpeg: 'true'
|
||||
image-type: 'extras'
|
||||
aio: "-aio-gpu-hipblas"
|
||||
base-image: "rocm/dev-ubuntu-22.04:6.0-complete"
|
||||
base-image: "rocm/dev-ubuntu-22.04:6.1"
|
||||
grpc-base-image: "ubuntu:22.04"
|
||||
latest-image: 'latest-gpu-hipblas'
|
||||
latest-image-aio: 'latest-aio-gpu-hipblas'
|
||||
runs-on: 'arc-runner-set'
|
||||
@@ -139,13 +141,15 @@ jobs:
|
||||
tag-suffix: '-hipblas'
|
||||
ffmpeg: 'false'
|
||||
image-type: 'extras'
|
||||
base-image: "rocm/dev-ubuntu-22.04:6.0-complete"
|
||||
base-image: "rocm/dev-ubuntu-22.04:6.1"
|
||||
grpc-base-image: "ubuntu:22.04"
|
||||
runs-on: 'arc-runner-set'
|
||||
makeflags: "--jobs=3 --output-sync=target"
|
||||
- build-type: 'sycl_f16'
|
||||
platforms: 'linux/amd64'
|
||||
tag-latest: 'auto'
|
||||
base-image: "intel/oneapi-basekit:2024.0.1-devel-ubuntu22.04"
|
||||
base-image: "intel/oneapi-basekit:2024.1.0-devel-ubuntu22.04"
|
||||
grpc-base-image: "ubuntu:22.04"
|
||||
tag-suffix: '-sycl-f16-ffmpeg'
|
||||
ffmpeg: 'true'
|
||||
image-type: 'extras'
|
||||
@@ -157,7 +161,8 @@ jobs:
|
||||
- build-type: 'sycl_f32'
|
||||
platforms: 'linux/amd64'
|
||||
tag-latest: 'auto'
|
||||
base-image: "intel/oneapi-basekit:2024.0.1-devel-ubuntu22.04"
|
||||
base-image: "intel/oneapi-basekit:2024.1.0-devel-ubuntu22.04"
|
||||
grpc-base-image: "ubuntu:22.04"
|
||||
tag-suffix: '-sycl-f32-ffmpeg'
|
||||
ffmpeg: 'true'
|
||||
image-type: 'extras'
|
||||
@@ -170,7 +175,8 @@ jobs:
|
||||
- build-type: 'sycl_f16'
|
||||
platforms: 'linux/amd64'
|
||||
tag-latest: 'false'
|
||||
base-image: "intel/oneapi-basekit:2024.0.1-devel-ubuntu22.04"
|
||||
base-image: "intel/oneapi-basekit:2024.1.0-devel-ubuntu22.04"
|
||||
grpc-base-image: "ubuntu:22.04"
|
||||
tag-suffix: '-sycl-f16-core'
|
||||
ffmpeg: 'false'
|
||||
image-type: 'core'
|
||||
@@ -179,7 +185,8 @@ jobs:
|
||||
- build-type: 'sycl_f32'
|
||||
platforms: 'linux/amd64'
|
||||
tag-latest: 'false'
|
||||
base-image: "intel/oneapi-basekit:2024.0.1-devel-ubuntu22.04"
|
||||
base-image: "intel/oneapi-basekit:2024.1.0-devel-ubuntu22.04"
|
||||
grpc-base-image: "ubuntu:22.04"
|
||||
tag-suffix: '-sycl-f32-core'
|
||||
ffmpeg: 'false'
|
||||
image-type: 'core'
|
||||
@@ -188,7 +195,8 @@ jobs:
|
||||
- build-type: 'sycl_f16'
|
||||
platforms: 'linux/amd64'
|
||||
tag-latest: 'false'
|
||||
base-image: "intel/oneapi-basekit:2024.0.1-devel-ubuntu22.04"
|
||||
base-image: "intel/oneapi-basekit:2024.1.0-devel-ubuntu22.04"
|
||||
grpc-base-image: "ubuntu:22.04"
|
||||
tag-suffix: '-sycl-f16-ffmpeg-core'
|
||||
ffmpeg: 'true'
|
||||
image-type: 'core'
|
||||
@@ -197,7 +205,8 @@ jobs:
|
||||
- build-type: 'sycl_f32'
|
||||
platforms: 'linux/amd64'
|
||||
tag-latest: 'false'
|
||||
base-image: "intel/oneapi-basekit:2024.0.1-devel-ubuntu22.04"
|
||||
base-image: "intel/oneapi-basekit:2024.1.0-devel-ubuntu22.04"
|
||||
grpc-base-image: "ubuntu:22.04"
|
||||
tag-suffix: '-sycl-f32-ffmpeg-core'
|
||||
ffmpeg: 'true'
|
||||
image-type: 'core'
|
||||
@@ -209,7 +218,8 @@ jobs:
|
||||
tag-suffix: '-hipblas-ffmpeg-core'
|
||||
ffmpeg: 'true'
|
||||
image-type: 'core'
|
||||
base-image: "rocm/dev-ubuntu-22.04:6.0-complete"
|
||||
base-image: "rocm/dev-ubuntu-22.04:6.1"
|
||||
grpc-base-image: "ubuntu:22.04"
|
||||
runs-on: 'arc-runner-set'
|
||||
makeflags: "--jobs=3 --output-sync=target"
|
||||
- build-type: 'hipblas'
|
||||
@@ -218,7 +228,8 @@ jobs:
|
||||
tag-suffix: '-hipblas-core'
|
||||
ffmpeg: 'false'
|
||||
image-type: 'core'
|
||||
base-image: "rocm/dev-ubuntu-22.04:6.0-complete"
|
||||
base-image: "rocm/dev-ubuntu-22.04:6.1"
|
||||
grpc-base-image: "ubuntu:22.04"
|
||||
runs-on: 'arc-runner-set'
|
||||
makeflags: "--jobs=3 --output-sync=target"
|
||||
|
||||
@@ -236,6 +247,7 @@ jobs:
|
||||
runs-on: ${{ matrix.runs-on }}
|
||||
aio: ${{ matrix.aio }}
|
||||
base-image: ${{ matrix.base-image }}
|
||||
grpc-base-image: ${{ matrix.grpc-base-image }}
|
||||
makeflags: ${{ matrix.makeflags }}
|
||||
latest-image: ${{ matrix.latest-image }}
|
||||
latest-image-aio: ${{ matrix.latest-image-aio }}
|
||||
@@ -258,7 +270,7 @@ jobs:
|
||||
aio: "-aio-cpu"
|
||||
latest-image: 'latest-cpu'
|
||||
latest-image-aio: 'latest-aio-cpu'
|
||||
makeflags: "--jobs=5 --output-sync=target"
|
||||
makeflags: "--jobs=4 --output-sync=target"
|
||||
- build-type: 'cublas'
|
||||
cuda-major-version: "11"
|
||||
cuda-minor-version: "7"
|
||||
@@ -269,7 +281,7 @@ jobs:
|
||||
image-type: 'core'
|
||||
base-image: "ubuntu:22.04"
|
||||
runs-on: 'ubuntu-latest'
|
||||
makeflags: "--jobs=5 --output-sync=target"
|
||||
makeflags: "--jobs=4 --output-sync=target"
|
||||
- build-type: 'cublas'
|
||||
cuda-major-version: "12"
|
||||
cuda-minor-version: "1"
|
||||
@@ -280,7 +292,7 @@ jobs:
|
||||
image-type: 'core'
|
||||
base-image: "ubuntu:22.04"
|
||||
runs-on: 'ubuntu-latest'
|
||||
makeflags: "--jobs=5 --output-sync=target"
|
||||
makeflags: "--jobs=4 --output-sync=target"
|
||||
- build-type: 'cublas'
|
||||
cuda-major-version: "11"
|
||||
cuda-minor-version: "7"
|
||||
@@ -291,7 +303,7 @@ jobs:
|
||||
image-type: 'core'
|
||||
runs-on: 'ubuntu-latest'
|
||||
base-image: "ubuntu:22.04"
|
||||
makeflags: "--jobs=5 --output-sync=target"
|
||||
makeflags: "--jobs=4 --output-sync=target"
|
||||
- build-type: 'cublas'
|
||||
cuda-major-version: "12"
|
||||
cuda-minor-version: "1"
|
||||
@@ -302,4 +314,4 @@ jobs:
|
||||
image-type: 'core'
|
||||
runs-on: 'ubuntu-latest'
|
||||
base-image: "ubuntu:22.04"
|
||||
makeflags: "--jobs=5 --output-sync=target"
|
||||
makeflags: "--jobs=4 --output-sync=target"
|
||||
|
||||
40
.github/workflows/image_build.yml
vendored
40
.github/workflows/image_build.yml
vendored
@@ -6,6 +6,10 @@ on:
|
||||
inputs:
|
||||
base-image:
|
||||
description: 'Base image'
|
||||
required: true
|
||||
type: string
|
||||
grpc-base-image:
|
||||
description: 'GRPC Base image, must be a compatible image with base-image'
|
||||
required: false
|
||||
default: ''
|
||||
type: string
|
||||
@@ -57,7 +61,7 @@ on:
|
||||
makeflags:
|
||||
description: 'Make Flags'
|
||||
required: false
|
||||
default: '--jobs=3 --output-sync=target'
|
||||
default: '--jobs=4 --output-sync=target'
|
||||
type: string
|
||||
aio:
|
||||
description: 'AIO Image Name'
|
||||
@@ -197,29 +201,14 @@ jobs:
|
||||
username: ${{ secrets.quayUsername }}
|
||||
password: ${{ secrets.quayPassword }}
|
||||
|
||||
- name: Cache GRPC
|
||||
uses: docker/build-push-action@v5
|
||||
with:
|
||||
builder: ${{ steps.buildx.outputs.name }}
|
||||
build-args: |
|
||||
IMAGE_TYPE=${{ inputs.image-type }}
|
||||
BASE_IMAGE=${{ inputs.base-image }}
|
||||
MAKEFLAGS=${{ inputs.makeflags }}
|
||||
GRPC_VERSION=v1.58.0
|
||||
context: .
|
||||
file: ./Dockerfile
|
||||
cache-from: type=gha
|
||||
cache-to: type=gha,ignore-error=true
|
||||
target: grpc
|
||||
platforms: ${{ inputs.platforms }}
|
||||
push: false
|
||||
tags: ${{ steps.meta.outputs.tags }}
|
||||
labels: ${{ steps.meta.outputs.labels }}
|
||||
|
||||
- name: Build and push
|
||||
uses: docker/build-push-action@v5
|
||||
with:
|
||||
builder: ${{ steps.buildx.outputs.name }}
|
||||
# The build-args MUST be an EXACT match between the image cache and other workflow steps that want to use that cache.
|
||||
# This means that even the MAKEFLAGS have to be an EXACT match.
|
||||
# If the build-args are not an EXACT match, it will result in a cache miss, which will require GRPC to be built from scratch.
|
||||
# This is why some build args like GRPC_VERSION and MAKEFLAGS are hardcoded
|
||||
build-args: |
|
||||
BUILD_TYPE=${{ inputs.build-type }}
|
||||
CUDA_MAJOR_VERSION=${{ inputs.cuda-major-version }}
|
||||
@@ -227,6 +216,9 @@ jobs:
|
||||
FFMPEG=${{ inputs.ffmpeg }}
|
||||
IMAGE_TYPE=${{ inputs.image-type }}
|
||||
BASE_IMAGE=${{ inputs.base-image }}
|
||||
GRPC_BASE_IMAGE=${{ inputs.grpc-base-image || inputs.base-image }}
|
||||
GRPC_MAKEFLAGS=--jobs=4 --output-sync=target
|
||||
GRPC_VERSION=v1.63.0
|
||||
MAKEFLAGS=${{ inputs.makeflags }}
|
||||
context: .
|
||||
file: ./Dockerfile
|
||||
@@ -236,14 +228,6 @@ jobs:
|
||||
tags: ${{ steps.meta.outputs.tags }}
|
||||
labels: ${{ steps.meta.outputs.labels }}
|
||||
|
||||
- name: Inspect image
|
||||
if: github.event_name != 'pull_request'
|
||||
run: |
|
||||
docker pull localai/localai:${{ steps.meta.outputs.version }}
|
||||
docker image inspect localai/localai:${{ steps.meta.outputs.version }}
|
||||
docker pull quay.io/go-skynet/local-ai:${{ steps.meta.outputs.version }}
|
||||
docker image inspect quay.io/go-skynet/local-ai:${{ steps.meta.outputs.version }}
|
||||
|
||||
- name: Build and push AIO image
|
||||
if: inputs.aio != ''
|
||||
uses: docker/build-push-action@v5
|
||||
|
||||
70
.github/workflows/release.yaml
vendored
70
.github/workflows/release.yaml
vendored
@@ -5,7 +5,7 @@ on:
|
||||
- pull_request
|
||||
|
||||
env:
|
||||
GRPC_VERSION: v1.58.0
|
||||
GRPC_VERSION: v1.63.0
|
||||
|
||||
permissions:
|
||||
contents: write
|
||||
@@ -19,12 +19,8 @@ jobs:
|
||||
strategy:
|
||||
matrix:
|
||||
include:
|
||||
- build: 'avx2'
|
||||
- build: ''
|
||||
defines: ''
|
||||
- build: 'avx'
|
||||
defines: '-DLLAMA_AVX2=OFF'
|
||||
- build: 'avx512'
|
||||
defines: '-DLLAMA_AVX512=ON'
|
||||
- build: 'cuda12'
|
||||
defines: ''
|
||||
- build: 'cuda11'
|
||||
@@ -74,7 +70,6 @@ jobs:
|
||||
- name: Build
|
||||
id: build
|
||||
env:
|
||||
CMAKE_ARGS: "${{ matrix.defines }}"
|
||||
BUILD_ID: "${{ matrix.build }}"
|
||||
run: |
|
||||
go install google.golang.org/grpc/cmd/protoc-gen-go-grpc@latest
|
||||
@@ -124,63 +119,7 @@ jobs:
|
||||
name: stablediffusion
|
||||
path: release/
|
||||
|
||||
build-macOS:
|
||||
strategy:
|
||||
matrix:
|
||||
include:
|
||||
- build: 'avx2'
|
||||
defines: ''
|
||||
- build: 'avx'
|
||||
defines: '-DLLAMA_AVX2=OFF'
|
||||
- build: 'avx512'
|
||||
defines: '-DLLAMA_AVX512=ON'
|
||||
runs-on: macOS-latest
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
submodules: true
|
||||
- uses: actions/setup-go@v5
|
||||
with:
|
||||
go-version: '1.21.x'
|
||||
cache: false
|
||||
- name: Dependencies
|
||||
run: |
|
||||
brew install protobuf grpc
|
||||
go install google.golang.org/grpc/cmd/protoc-gen-go-grpc@latest
|
||||
go install google.golang.org/protobuf/cmd/protoc-gen-go@latest
|
||||
- name: Build
|
||||
id: build
|
||||
env:
|
||||
CMAKE_ARGS: "${{ matrix.defines }}"
|
||||
BUILD_ID: "${{ matrix.build }}"
|
||||
run: |
|
||||
export C_INCLUDE_PATH=/usr/local/include
|
||||
export CPLUS_INCLUDE_PATH=/usr/local/include
|
||||
export PATH=$PATH:$GOPATH/bin
|
||||
make dist
|
||||
- uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: LocalAI-MacOS-${{ matrix.build }}
|
||||
path: release/
|
||||
- name: Release
|
||||
uses: softprops/action-gh-release@v2
|
||||
if: startsWith(github.ref, 'refs/tags/')
|
||||
with:
|
||||
files: |
|
||||
release/*
|
||||
|
||||
|
||||
build-macOS-arm64:
|
||||
strategy:
|
||||
matrix:
|
||||
include:
|
||||
- build: 'avx2'
|
||||
defines: ''
|
||||
- build: 'avx'
|
||||
defines: '-DLLAMA_AVX2=OFF'
|
||||
- build: 'avx512'
|
||||
defines: '-DLLAMA_AVX512=ON'
|
||||
runs-on: macos-14
|
||||
steps:
|
||||
- name: Clone
|
||||
@@ -198,9 +137,6 @@ jobs:
|
||||
go install google.golang.org/protobuf/cmd/protoc-gen-go@latest
|
||||
- name: Build
|
||||
id: build
|
||||
env:
|
||||
CMAKE_ARGS: "${{ matrix.defines }}"
|
||||
BUILD_ID: "${{ matrix.build }}"
|
||||
run: |
|
||||
export C_INCLUDE_PATH=/usr/local/include
|
||||
export CPLUS_INCLUDE_PATH=/usr/local/include
|
||||
@@ -208,7 +144,7 @@ jobs:
|
||||
make dist
|
||||
- uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: LocalAI-MacOS-arm64-${{ matrix.build }}
|
||||
name: LocalAI-MacOS-arm64
|
||||
path: release/
|
||||
- name: Release
|
||||
uses: softprops/action-gh-release@v2
|
||||
|
||||
51
.github/workflows/test-extra.yml
vendored
51
.github/workflows/test-extra.yml
vendored
@@ -34,7 +34,7 @@ jobs:
|
||||
sudo apt-get install -y conda
|
||||
sudo apt-get install -y ca-certificates cmake curl patch python3-pip
|
||||
sudo apt-get install -y libopencv-dev
|
||||
pip install --user grpcio-tools
|
||||
pip install --user grpcio-tools==1.63.0
|
||||
|
||||
sudo rm -rfv /usr/bin/conda || true
|
||||
|
||||
@@ -64,7 +64,7 @@ jobs:
|
||||
sudo apt-get install -y conda
|
||||
sudo apt-get install -y ca-certificates cmake curl patch python3-pip
|
||||
sudo apt-get install -y libopencv-dev
|
||||
pip install --user grpcio-tools
|
||||
pip install --user grpcio-tools==1.63.0
|
||||
|
||||
sudo rm -rfv /usr/bin/conda || true
|
||||
|
||||
@@ -74,6 +74,37 @@ jobs:
|
||||
make --jobs=5 --output-sync=target -C backend/python/sentencetransformers
|
||||
make --jobs=5 --output-sync=target -C backend/python/sentencetransformers test
|
||||
|
||||
|
||||
tests-rerankers:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
submodules: true
|
||||
- name: Dependencies
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential ffmpeg
|
||||
curl https://repo.anaconda.com/pkgs/misc/gpgkeys/anaconda.asc | gpg --dearmor > conda.gpg && \
|
||||
sudo install -o root -g root -m 644 conda.gpg /usr/share/keyrings/conda-archive-keyring.gpg && \
|
||||
gpg --keyring /usr/share/keyrings/conda-archive-keyring.gpg --no-default-keyring --fingerprint 34161F5BF5EB1D4BFBBB8F0A8AEB4F8B29D82806 && \
|
||||
sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" > /etc/apt/sources.list.d/conda.list' && \
|
||||
sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" | tee -a /etc/apt/sources.list.d/conda.list' && \
|
||||
sudo apt-get update && \
|
||||
sudo apt-get install -y conda
|
||||
sudo apt-get install -y ca-certificates cmake curl patch python3-pip
|
||||
sudo apt-get install -y libopencv-dev
|
||||
pip install --user grpcio-tools==1.63.0
|
||||
|
||||
sudo rm -rfv /usr/bin/conda || true
|
||||
|
||||
- name: Test rerankers
|
||||
run: |
|
||||
export PATH=$PATH:/opt/conda/bin
|
||||
make --jobs=5 --output-sync=target -C backend/python/rerankers
|
||||
make --jobs=5 --output-sync=target -C backend/python/rerankers test
|
||||
|
||||
tests-diffusers:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
@@ -94,7 +125,7 @@ jobs:
|
||||
sudo apt-get install -y conda
|
||||
sudo apt-get install -y ca-certificates cmake curl patch python3-pip
|
||||
sudo apt-get install -y libopencv-dev
|
||||
pip install --user grpcio-tools
|
||||
pip install --user grpcio-tools==1.63.0
|
||||
|
||||
sudo rm -rfv /usr/bin/conda || true
|
||||
|
||||
@@ -124,7 +155,7 @@ jobs:
|
||||
sudo apt-get install -y conda
|
||||
sudo apt-get install -y ca-certificates cmake curl patch python3-pip
|
||||
sudo apt-get install -y libopencv-dev
|
||||
pip install --user grpcio-tools
|
||||
pip install --user grpcio-tools==1.63.0
|
||||
|
||||
sudo rm -rfv /usr/bin/conda || true
|
||||
|
||||
@@ -154,7 +185,7 @@ jobs:
|
||||
sudo apt-get install -y conda
|
||||
sudo apt-get install -y ca-certificates cmake curl patch python3-pip
|
||||
sudo apt-get install -y libopencv-dev
|
||||
pip install --user grpcio-tools
|
||||
pip install --user grpcio-tools==1.63.0
|
||||
|
||||
sudo rm -rfv /usr/bin/conda || true
|
||||
|
||||
@@ -186,7 +217,7 @@ jobs:
|
||||
# sudo apt-get install -y conda
|
||||
# sudo apt-get install -y ca-certificates cmake curl patch python3-pip
|
||||
# sudo apt-get install -y libopencv-dev
|
||||
# pip install --user grpcio-tools
|
||||
# pip install --user grpcio-tools==1.63.0
|
||||
|
||||
# sudo rm -rfv /usr/bin/conda || true
|
||||
|
||||
@@ -258,7 +289,7 @@ jobs:
|
||||
# sudo apt-get install -y conda
|
||||
# sudo apt-get install -y ca-certificates cmake curl patch python3-pip
|
||||
# sudo apt-get install -y libopencv-dev
|
||||
# pip install --user grpcio-tools
|
||||
# pip install --user grpcio-tools==1.63.0
|
||||
|
||||
# sudo rm -rfv /usr/bin/conda || true
|
||||
|
||||
@@ -291,7 +322,7 @@ jobs:
|
||||
# sudo apt-get install -y conda
|
||||
# sudo apt-get install -y ca-certificates cmake curl patch python3-pip
|
||||
# sudo apt-get install -y libopencv-dev
|
||||
# pip install --user grpcio-tools
|
||||
# pip install --user grpcio-tools==1.63.0
|
||||
# sudo rm -rfv /usr/bin/conda || true
|
||||
# - name: Test vllm
|
||||
# run: |
|
||||
@@ -318,7 +349,7 @@ jobs:
|
||||
sudo apt-get install -y conda
|
||||
sudo apt-get install -y ca-certificates cmake curl patch python3-pip
|
||||
sudo apt-get install -y libopencv-dev
|
||||
pip install --user grpcio-tools
|
||||
pip install --user grpcio-tools==1.63.0
|
||||
sudo rm -rfv /usr/bin/conda || true
|
||||
- name: Test vall-e-x
|
||||
run: |
|
||||
@@ -345,7 +376,7 @@ jobs:
|
||||
sudo apt-get update && \
|
||||
sudo apt-get install -y conda
|
||||
sudo apt-get install -y ca-certificates cmake curl patch espeak espeak-ng python3-pip
|
||||
pip install --user grpcio-tools
|
||||
pip install --user grpcio-tools==1.63.0
|
||||
sudo rm -rfv /usr/bin/conda || true
|
||||
|
||||
- name: Test coqui
|
||||
|
||||
12
.github/workflows/test.yml
vendored
12
.github/workflows/test.yml
vendored
@@ -10,7 +10,7 @@ on:
|
||||
- '*'
|
||||
|
||||
env:
|
||||
GRPC_VERSION: v1.58.0
|
||||
GRPC_VERSION: v1.63.0
|
||||
|
||||
concurrency:
|
||||
group: ci-tests-${{ github.head_ref || github.ref }}-${{ github.repository }}
|
||||
@@ -123,7 +123,9 @@ jobs:
|
||||
if: ${{ failure() }}
|
||||
uses: mxschmitt/action-tmate@v3.18
|
||||
with:
|
||||
detached: true
|
||||
connect-timeout-seconds: 180
|
||||
limit-access-to-actor: true
|
||||
|
||||
tests-aio-container:
|
||||
runs-on: ubuntu-latest
|
||||
@@ -176,7 +178,9 @@ jobs:
|
||||
if: ${{ failure() }}
|
||||
uses: mxschmitt/action-tmate@v3.18
|
||||
with:
|
||||
detached: true
|
||||
connect-timeout-seconds: 180
|
||||
limit-access-to-actor: true
|
||||
|
||||
tests-apple:
|
||||
runs-on: macOS-14
|
||||
@@ -199,7 +203,7 @@ jobs:
|
||||
- name: Dependencies
|
||||
run: |
|
||||
brew install protobuf grpc make protoc-gen-go protoc-gen-go-grpc
|
||||
pip install --user grpcio-tools
|
||||
pip install --user grpcio-tools==1.63.0
|
||||
- name: Test
|
||||
run: |
|
||||
export C_INCLUDE_PATH=/usr/local/include
|
||||
@@ -211,4 +215,6 @@ jobs:
|
||||
if: ${{ failure() }}
|
||||
uses: mxschmitt/action-tmate@v3.18
|
||||
with:
|
||||
connect-timeout-seconds: 180
|
||||
detached: true
|
||||
connect-timeout-seconds: 180
|
||||
limit-access-to-actor: true
|
||||
|
||||
31
.github/workflows/update_swagger.yaml
vendored
Normal file
31
.github/workflows/update_swagger.yaml
vendored
Normal file
@@ -0,0 +1,31 @@
|
||||
name: Update swagger
|
||||
on:
|
||||
schedule:
|
||||
- cron: 0 20 * * *
|
||||
workflow_dispatch:
|
||||
jobs:
|
||||
swagger:
|
||||
strategy:
|
||||
fail-fast: false
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/setup-go@v5
|
||||
with:
|
||||
go-version: 'stable'
|
||||
- run: |
|
||||
go install github.com/swaggo/swag/cmd/swag@latest
|
||||
- name: Bump swagger 🔧
|
||||
run: |
|
||||
make swagger
|
||||
- name: Create Pull Request
|
||||
uses: peter-evans/create-pull-request@v6
|
||||
with:
|
||||
token: ${{ secrets.UPDATE_BOT_TOKEN }}
|
||||
push-to-fork: ci-forks/LocalAI
|
||||
commit-message: 'feat(swagger): update swagger'
|
||||
title: 'feat(swagger): update swagger'
|
||||
branch: "update/swagger"
|
||||
body: Update swagger
|
||||
signoff: true
|
||||
|
||||
18
.github/workflows/yaml-check.yml
vendored
Normal file
18
.github/workflows/yaml-check.yml
vendored
Normal file
@@ -0,0 +1,18 @@
|
||||
name: 'Yamllint GitHub Actions'
|
||||
on:
|
||||
- pull_request
|
||||
jobs:
|
||||
yamllint:
|
||||
name: 'Yamllint'
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: 'Checkout'
|
||||
uses: actions/checkout@master
|
||||
- name: 'Yamllint'
|
||||
uses: karancode/yamllint-github-action@master
|
||||
with:
|
||||
yamllint_file_or_dir: 'gallery'
|
||||
yamllint_strict: false
|
||||
yamllint_comment: true
|
||||
env:
|
||||
GITHUB_ACCESS_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
3
.gitignore
vendored
3
.gitignore
vendored
@@ -44,3 +44,6 @@ prepare
|
||||
*.pb.go
|
||||
*pb2.py
|
||||
*pb2_grpc.py
|
||||
|
||||
# SonarQube
|
||||
.scannerwork
|
||||
221
Dockerfile
221
Dockerfile
@@ -1,41 +1,43 @@
|
||||
ARG IMAGE_TYPE=extras
|
||||
ARG BASE_IMAGE=ubuntu:22.04
|
||||
ARG GRPC_BASE_IMAGE=${BASE_IMAGE}
|
||||
|
||||
# extras or core
|
||||
FROM ${BASE_IMAGE} as requirements-core
|
||||
# The requirements-core target is common to all images. It should not be placed in requirements-core unless every single build will use it.
|
||||
FROM ${BASE_IMAGE} AS requirements-core
|
||||
|
||||
USER root
|
||||
|
||||
ARG GO_VERSION=1.21.7
|
||||
ARG BUILD_TYPE
|
||||
ARG CUDA_MAJOR_VERSION=11
|
||||
ARG CUDA_MINOR_VERSION=7
|
||||
ARG TARGETARCH
|
||||
ARG TARGETVARIANT
|
||||
|
||||
ENV BUILD_TYPE=${BUILD_TYPE}
|
||||
ENV DEBIAN_FRONTEND=noninteractive
|
||||
ENV EXTERNAL_GRPC_BACKENDS="coqui:/build/backend/python/coqui/run.sh,huggingface-embeddings:/build/backend/python/sentencetransformers/run.sh,petals:/build/backend/python/petals/run.sh,transformers:/build/backend/python/transformers/run.sh,sentencetransformers:/build/backend/python/sentencetransformers/run.sh,autogptq:/build/backend/python/autogptq/run.sh,bark:/build/backend/python/bark/run.sh,diffusers:/build/backend/python/diffusers/run.sh,exllama:/build/backend/python/exllama/run.sh,vall-e-x:/build/backend/python/vall-e-x/run.sh,vllm:/build/backend/python/vllm/run.sh,mamba:/build/backend/python/mamba/run.sh,exllama2:/build/backend/python/exllama2/run.sh,transformers-musicgen:/build/backend/python/transformers-musicgen/run.sh,parler-tts:/build/backend/python/parler-tts/run.sh"
|
||||
ENV EXTERNAL_GRPC_BACKENDS="coqui:/build/backend/python/coqui/run.sh,huggingface-embeddings:/build/backend/python/sentencetransformers/run.sh,petals:/build/backend/python/petals/run.sh,transformers:/build/backend/python/transformers/run.sh,sentencetransformers:/build/backend/python/sentencetransformers/run.sh,rerankers:/build/backend/python/rerankers/run.sh,autogptq:/build/backend/python/autogptq/run.sh,bark:/build/backend/python/bark/run.sh,diffusers:/build/backend/python/diffusers/run.sh,exllama:/build/backend/python/exllama/run.sh,vall-e-x:/build/backend/python/vall-e-x/run.sh,vllm:/build/backend/python/vllm/run.sh,mamba:/build/backend/python/mamba/run.sh,exllama2:/build/backend/python/exllama2/run.sh,transformers-musicgen:/build/backend/python/transformers-musicgen/run.sh,parler-tts:/build/backend/python/parler-tts/run.sh"
|
||||
|
||||
ARG GO_TAGS="stablediffusion tinydream tts"
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y ca-certificates curl python3-pip unzip && apt-get clean
|
||||
apt-get install -y --no-install-recommends \
|
||||
build-essential \
|
||||
ca-certificates \
|
||||
cmake \
|
||||
curl \
|
||||
git \
|
||||
python3-pip \
|
||||
python-is-python3 \
|
||||
unzip && \
|
||||
apt-get clean && \
|
||||
rm -rf /var/lib/apt/lists/* && \
|
||||
pip install --upgrade pip
|
||||
|
||||
# Install Go
|
||||
RUN curl -L -s https://go.dev/dl/go$GO_VERSION.linux-$TARGETARCH.tar.gz | tar -C /usr/local -xz
|
||||
ENV PATH $PATH:/usr/local/go/bin
|
||||
RUN curl -L -s https://go.dev/dl/go${GO_VERSION}.linux-${TARGETARCH}.tar.gz | tar -C /usr/local -xz
|
||||
ENV PATH $PATH:/root/go/bin:/usr/local/go/bin
|
||||
|
||||
# Install grpc compilers
|
||||
ENV PATH $PATH:/root/go/bin
|
||||
RUN go install google.golang.org/protobuf/cmd/protoc-gen-go@latest && \
|
||||
go install google.golang.org/grpc/cmd/protoc-gen-go-grpc@latest
|
||||
|
||||
# Install protobuf (the version in 22.04 is too old)
|
||||
RUN curl -L -s https://github.com/protocolbuffers/protobuf/releases/download/v26.1/protoc-26.1-linux-x86_64.zip -o protoc.zip && \
|
||||
unzip -j -d /usr/local/bin protoc.zip bin/protoc && \
|
||||
rm protoc.zip
|
||||
|
||||
# Install grpcio-tools (the version in 22.04 is too old)
|
||||
RUN pip install --user grpcio-tools
|
||||
|
||||
@@ -46,16 +48,6 @@ RUN update-ca-certificates
|
||||
RUN echo "Target Architecture: $TARGETARCH"
|
||||
RUN echo "Target Variant: $TARGETVARIANT"
|
||||
|
||||
# CuBLAS requirements
|
||||
RUN if [ "${BUILD_TYPE}" = "cublas" ]; then \
|
||||
apt-get install -y software-properties-common && \
|
||||
curl -O https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-keyring_1.1-1_all.deb && \
|
||||
dpkg -i cuda-keyring_1.1-1_all.deb && \
|
||||
rm -f cuda-keyring_1.1-1_all.deb && \
|
||||
apt-get update && \
|
||||
apt-get install -y cuda-nvcc-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} libcurand-dev-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} libcublas-dev-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} libcusparse-dev-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} libcusolver-dev-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} && apt-get clean \
|
||||
; fi
|
||||
|
||||
# Cuda
|
||||
ENV PATH /usr/local/cuda/bin:${PATH}
|
||||
|
||||
@@ -63,10 +55,12 @@ ENV PATH /usr/local/cuda/bin:${PATH}
|
||||
ENV PATH /opt/rocm/bin:${PATH}
|
||||
|
||||
# OpenBLAS requirements and stable diffusion
|
||||
RUN apt-get install -y \
|
||||
libopenblas-dev \
|
||||
libopencv-dev \
|
||||
&& apt-get clean
|
||||
RUN apt-get update && \
|
||||
apt-get install -y --no-install-recommends \
|
||||
libopenblas-dev \
|
||||
libopencv-dev && \
|
||||
apt-get clean && \
|
||||
rm -rf /var/lib/apt/lists/*
|
||||
|
||||
# Set up OpenCV
|
||||
RUN ln -s /usr/include/opencv4/opencv2 /usr/include/opencv2
|
||||
@@ -79,57 +73,126 @@ RUN test -n "$TARGETARCH" \
|
||||
###################################
|
||||
###################################
|
||||
|
||||
FROM requirements-core as requirements-extras
|
||||
# The requirements-extras target is for any builds with IMAGE_TYPE=extras. It should not be placed in this target unless every IMAGE_TYPE=extras build will use it
|
||||
FROM requirements-core AS requirements-extras
|
||||
|
||||
RUN apt install -y gpg && \
|
||||
RUN apt-get update && \
|
||||
apt-get install -y --no-install-recommends gpg && \
|
||||
curl https://repo.anaconda.com/pkgs/misc/gpgkeys/anaconda.asc | gpg --dearmor > conda.gpg && \
|
||||
install -o root -g root -m 644 conda.gpg /usr/share/keyrings/conda-archive-keyring.gpg && \
|
||||
gpg --keyring /usr/share/keyrings/conda-archive-keyring.gpg --no-default-keyring --fingerprint 34161F5BF5EB1D4BFBBB8F0A8AEB4F8B29D82806 && \
|
||||
echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" > /etc/apt/sources.list.d/conda.list && \
|
||||
echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" | tee -a /etc/apt/sources.list.d/conda.list && \
|
||||
apt-get update && \
|
||||
apt-get install -y conda && apt-get clean
|
||||
apt-get install -y --no-install-recommends \
|
||||
conda && \
|
||||
apt-get clean && \
|
||||
rm -rf /var/lib/apt/lists/*
|
||||
|
||||
ENV PATH="/root/.cargo/bin:${PATH}"
|
||||
RUN apt-get install -y python3-pip && apt-get clean
|
||||
RUN pip install --upgrade pip
|
||||
|
||||
RUN curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh -s -- -y
|
||||
RUN apt-get install -y espeak-ng espeak && apt-get clean
|
||||
RUN apt-get update && \
|
||||
apt-get install -y --no-install-recommends \
|
||||
espeak-ng \
|
||||
espeak && \
|
||||
apt-get clean && \
|
||||
rm -rf /var/lib/apt/lists/*
|
||||
|
||||
RUN if [ ! -e /usr/bin/python ]; then \
|
||||
ln -s /usr/bin/python3 /usr/bin/python \
|
||||
###################################
|
||||
###################################
|
||||
|
||||
# The requirements-drivers target is for BUILD_TYPE specific items. If you need to install something specific to CUDA, or specific to ROCM, it goes here.
|
||||
# This target will be built on top of requirements-core or requirements-extras as retermined by the IMAGE_TYPE build-arg
|
||||
FROM requirements-${IMAGE_TYPE} AS requirements-drivers
|
||||
|
||||
ARG BUILD_TYPE
|
||||
ARG CUDA_MAJOR_VERSION=11
|
||||
ARG CUDA_MINOR_VERSION=7
|
||||
|
||||
ENV BUILD_TYPE=${BUILD_TYPE}
|
||||
|
||||
# CuBLAS requirements
|
||||
RUN if [ "${BUILD_TYPE}" = "cublas" ]; then \
|
||||
apt-get update && \
|
||||
apt-get install -y --no-install-recommends \
|
||||
software-properties-common && \
|
||||
curl -O https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-keyring_1.1-1_all.deb && \
|
||||
dpkg -i cuda-keyring_1.1-1_all.deb && \
|
||||
rm -f cuda-keyring_1.1-1_all.deb && \
|
||||
apt-get update && \
|
||||
apt-get install -y --no-install-recommends \
|
||||
cuda-nvcc-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} \
|
||||
libcurand-dev-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} \
|
||||
libcublas-dev-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} \
|
||||
libcusparse-dev-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} \
|
||||
libcusolver-dev-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} && \
|
||||
apt-get clean && \
|
||||
rm -rf /var/lib/apt/lists/* \
|
||||
; fi
|
||||
|
||||
# If we are building with clblas support, we need the libraries for the builds
|
||||
RUN if [ "${BUILD_TYPE}" = "clblas" ]; then \
|
||||
apt-get update && \
|
||||
apt-get install -y --no-install-recommends \
|
||||
libclblast-dev && \
|
||||
apt-get clean && \
|
||||
rm -rf /var/lib/apt/lists/* \
|
||||
; fi
|
||||
|
||||
RUN if [ "${BUILD_TYPE}" = "hipblas" ]; then \
|
||||
apt-get update && \
|
||||
apt-get install -y --no-install-recommends \
|
||||
hipblas-dev \
|
||||
rocblas-dev && \
|
||||
apt-get clean && \
|
||||
rm -rf /var/lib/apt/lists/* && \
|
||||
# I have no idea why, but the ROCM lib packages don't trigger ldconfig after they install, which results in local-ai and others not being able
|
||||
# to locate the libraries. We run ldconfig ourselves to work around this packaging deficiency
|
||||
ldconfig \
|
||||
; fi
|
||||
|
||||
###################################
|
||||
###################################
|
||||
|
||||
FROM ${BASE_IMAGE} as grpc
|
||||
# The grpc target does one thing, it builds and installs GRPC. This is in it's own layer so that it can be effectively cached by CI.
|
||||
# You probably don't need to change anything here, and if you do, make sure that CI is adjusted so that the cache continues to work.
|
||||
FROM ${GRPC_BASE_IMAGE} AS grpc
|
||||
|
||||
ARG MAKEFLAGS
|
||||
# This is a bit of a hack, but it's required in order to be able to effectively cache this layer in CI
|
||||
ARG GRPC_MAKEFLAGS="-j4 -Otarget"
|
||||
ARG GRPC_VERSION=v1.58.0
|
||||
|
||||
ENV MAKEFLAGS=${MAKEFLAGS}
|
||||
ENV MAKEFLAGS=${GRPC_MAKEFLAGS}
|
||||
|
||||
WORKDIR /build
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y build-essential cmake git && \
|
||||
apt-get install -y --no-install-recommends \
|
||||
ca-certificates \
|
||||
build-essential \
|
||||
cmake \
|
||||
git && \
|
||||
apt-get clean && \
|
||||
rm -rf /var/lib/apt/lists/*
|
||||
|
||||
RUN git clone --recurse-submodules --jobs 4 -b ${GRPC_VERSION} --depth 1 --shallow-submodules https://github.com/grpc/grpc
|
||||
|
||||
RUN cd grpc && \
|
||||
mkdir -p cmake/build && \
|
||||
cd cmake/build && \
|
||||
cmake -DgRPC_INSTALL=ON -DgRPC_BUILD_TESTS=OFF ../.. && \
|
||||
make
|
||||
# We install GRPC to a different prefix here so that we can copy in only the build artifacts later
|
||||
# saves several hundred MB on the final docker image size vs copying in the entire GRPC source tree
|
||||
# and running make install in the target container
|
||||
RUN git clone --recurse-submodules --jobs 4 -b ${GRPC_VERSION} --depth 1 --shallow-submodules https://github.com/grpc/grpc && \
|
||||
mkdir -p /build/grpc/cmake/build && \
|
||||
cd /build/grpc/cmake/build && \
|
||||
cmake -DgRPC_INSTALL=ON -DgRPC_BUILD_TESTS=OFF -DCMAKE_INSTALL_PREFIX:PATH=/opt/grpc ../.. && \
|
||||
make && \
|
||||
make install && \
|
||||
rm -rf /build
|
||||
|
||||
###################################
|
||||
###################################
|
||||
|
||||
FROM requirements-${IMAGE_TYPE} as builder
|
||||
# The builder target compiles LocalAI. This target is not the target that will be uploaded to the registry.
|
||||
# Adjustments to the build process should likely be made here.
|
||||
FROM requirements-drivers AS builder
|
||||
|
||||
ARG GO_TAGS="stablediffusion tts"
|
||||
ARG GRPC_BACKENDS
|
||||
@@ -148,39 +211,36 @@ COPY . .
|
||||
COPY .git .
|
||||
RUN echo "GO_TAGS: $GO_TAGS"
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y build-essential cmake git && \
|
||||
apt-get clean && \
|
||||
rm -rf /var/lib/apt/lists/*
|
||||
|
||||
RUN make prepare
|
||||
|
||||
# If we are building with clblas support, we need the libraries for the builds
|
||||
RUN if [ "${BUILD_TYPE}" = "clblas" ]; then \
|
||||
apt-get update && \
|
||||
apt-get install -y libclblast-dev && \
|
||||
apt-get clean \
|
||||
; fi
|
||||
# We need protoc installed, and the version in 22.04 is too old. We will create one as part installing the GRPC build below
|
||||
# but that will also being in a newer version of absl which stablediffusion cannot compile with. This version of protoc is only
|
||||
# here so that we can generate the grpc code for the stablediffusion build
|
||||
RUN curl -L -s https://github.com/protocolbuffers/protobuf/releases/download/v26.1/protoc-26.1-linux-x86_64.zip -o protoc.zip && \
|
||||
unzip -j -d /usr/local/bin protoc.zip bin/protoc && \
|
||||
rm protoc.zip
|
||||
|
||||
# stablediffusion does not tolerate a newer version of abseil, build it first
|
||||
RUN GRPC_BACKENDS=backend-assets/grpc/stablediffusion make build
|
||||
|
||||
COPY --from=grpc /build/grpc ./grpc/
|
||||
|
||||
RUN cd /build/grpc/cmake/build && make install
|
||||
# Install the pre-built GRPC
|
||||
COPY --from=grpc /opt/grpc /usr/local
|
||||
|
||||
# Rebuild with defaults backends
|
||||
WORKDIR /build
|
||||
RUN make build
|
||||
|
||||
RUN if [ ! -d "/build/sources/go-piper/piper-phonemize/pi/lib/" ]; then \
|
||||
mkdir -p /build/sources/go-piper/piper-phonemize/pi/lib/ \
|
||||
touch /build/sources/go-piper/piper-phonemize/pi/lib/keep \
|
||||
mkdir -p /build/sources/go-piper/piper-phonemize/pi/lib/ \
|
||||
touch /build/sources/go-piper/piper-phonemize/pi/lib/keep \
|
||||
; fi
|
||||
|
||||
###################################
|
||||
###################################
|
||||
|
||||
FROM requirements-${IMAGE_TYPE}
|
||||
# This is the final target. The result of this target will be the image uploaded to the registry.
|
||||
# If you cannot find a more suitable place for an addition, this layer is a suitable place for it.
|
||||
FROM requirements-drivers
|
||||
|
||||
ARG FFMPEG
|
||||
ARG BUILD_TYPE
|
||||
@@ -201,21 +261,13 @@ ENV PIP_CACHE_PURGE=true
|
||||
|
||||
# Add FFmpeg
|
||||
RUN if [ "${FFMPEG}" = "true" ]; then \
|
||||
apt-get install -y ffmpeg && apt-get clean \
|
||||
apt-get update && \
|
||||
apt-get install -y --no-install-recommends \
|
||||
ffmpeg && \
|
||||
apt-get clean && \
|
||||
rm -rf /var/lib/apt/lists/* \
|
||||
; fi
|
||||
|
||||
# Add OpenCL
|
||||
RUN if [ "${BUILD_TYPE}" = "clblas" ]; then \
|
||||
apt-get update && \
|
||||
apt-get install -y libclblast1 && \
|
||||
apt-get clean \
|
||||
; fi
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y cmake git && \
|
||||
apt-get clean && \
|
||||
rm -rf /var/lib/apt/lists/*
|
||||
|
||||
WORKDIR /build
|
||||
|
||||
# we start fresh & re-copy all assets because `make build` does not clean up nicely after itself
|
||||
@@ -225,9 +277,9 @@ WORKDIR /build
|
||||
COPY . .
|
||||
|
||||
COPY --from=builder /build/sources ./sources/
|
||||
COPY --from=grpc /build/grpc ./grpc/
|
||||
COPY --from=grpc /opt/grpc /usr/local
|
||||
|
||||
RUN make prepare-sources && cd /build/grpc/cmake/build && make install && rm -rf /build/grpc
|
||||
RUN make prepare-sources
|
||||
|
||||
# Copy the binary
|
||||
COPY --from=builder /build/local-ai ./
|
||||
@@ -257,6 +309,9 @@ RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
|
||||
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
|
||||
make -C backend/python/sentencetransformers \
|
||||
; fi
|
||||
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
|
||||
make -C backend/python/rerankers \
|
||||
; fi
|
||||
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
|
||||
make -C backend/python/transformers \
|
||||
; fi
|
||||
@@ -287,7 +342,7 @@ RUN mkdir -p /build/models
|
||||
|
||||
# Define the health check command
|
||||
HEALTHCHECK --interval=1m --timeout=10m --retries=10 \
|
||||
CMD curl -f $HEALTHCHECK_ENDPOINT || exit 1
|
||||
CMD curl -f ${HEALTHCHECK_ENDPOINT} || exit 1
|
||||
|
||||
VOLUME /build/models
|
||||
EXPOSE 8080
|
||||
|
||||
155
Makefile
155
Makefile
@@ -5,7 +5,7 @@ BINARY_NAME=local-ai
|
||||
|
||||
# llama.cpp versions
|
||||
GOLLAMA_STABLE_VERSION?=2b57a8ae43e4699d3dc5d1496a1ccd42922993be
|
||||
CPPLLAMA_VERSION?=7593639ce335e8d7f89aa9a54d616951f273af60
|
||||
CPPLLAMA_VERSION?=c12452c7aec8a02264afc00196a13caa591a13ac
|
||||
|
||||
# gpt4all version
|
||||
GPT4ALL_REPO?=https://github.com/nomic-ai/gpt4all
|
||||
@@ -16,7 +16,7 @@ RWKV_REPO?=https://github.com/donomii/go-rwkv.cpp
|
||||
RWKV_VERSION?=661e7ae26d442f5cfebd2a0881b44e8c55949ec6
|
||||
|
||||
# whisper.cpp version
|
||||
WHISPER_CPP_VERSION?=b0c3cbf2e851cf232e432b590dcc514a689ec028
|
||||
WHISPER_CPP_VERSION?=73d13ad19a8c9c4da4f405088a85169b1a171e66
|
||||
|
||||
# bert.cpp version
|
||||
BERT_VERSION?=6abe312cded14042f6b7c3cd8edf082713334a4d
|
||||
@@ -25,10 +25,10 @@ BERT_VERSION?=6abe312cded14042f6b7c3cd8edf082713334a4d
|
||||
PIPER_VERSION?=9d0100873a7dbb0824dfea40e8cec70a1b110759
|
||||
|
||||
# stablediffusion version
|
||||
STABLEDIFFUSION_VERSION?=362df9da29f882dbf09ade61972d16a1f53c3485
|
||||
STABLEDIFFUSION_VERSION?=4a3cd6aeae6f66ee57eae9a0075f8c58c3a6a38f
|
||||
|
||||
# tinydream version
|
||||
TINYDREAM_VERSION?=22a12a4bc0ac5455856f28f3b771331a551a4293
|
||||
TINYDREAM_VERSION?=c04fa463ace9d9a6464313aa5f9cd0f953b6c057
|
||||
|
||||
export BUILD_TYPE?=
|
||||
export STABLE_BUILD_TYPE?=$(BUILD_TYPE)
|
||||
@@ -99,7 +99,7 @@ endif
|
||||
ifeq ($(BUILD_TYPE),cublas)
|
||||
CGO_LDFLAGS+=-lcublas -lcudart -L$(CUDA_LIBPATH)
|
||||
export LLAMA_CUBLAS=1
|
||||
export WHISPER_CUBLAS=1
|
||||
export WHISPER_CUDA=1
|
||||
CGO_LDFLAGS_WHISPER+=-L$(CUDA_LIBPATH)/stubs/ -lcuda
|
||||
endif
|
||||
|
||||
@@ -152,9 +152,11 @@ ifeq ($(findstring tts,$(GO_TAGS)),tts)
|
||||
OPTIONAL_GRPC+=backend-assets/grpc/piper
|
||||
endif
|
||||
|
||||
ALL_GRPC_BACKENDS=backend-assets/grpc/langchain-huggingface
|
||||
ALL_GRPC_BACKENDS=backend-assets/grpc/huggingface
|
||||
ALL_GRPC_BACKENDS+=backend-assets/grpc/bert-embeddings
|
||||
ALL_GRPC_BACKENDS+=backend-assets/grpc/llama-cpp
|
||||
ALL_GRPC_BACKENDS+=backend-assets/grpc/llama-cpp-noavx
|
||||
ALL_GRPC_BACKENDS+=backend-assets/grpc/llama-cpp-fallback
|
||||
ALL_GRPC_BACKENDS+=backend-assets/grpc/llama-ggml
|
||||
ALL_GRPC_BACKENDS+=backend-assets/grpc/gpt4all
|
||||
ALL_GRPC_BACKENDS+=backend-assets/grpc/rwkv
|
||||
@@ -179,20 +181,20 @@ endif
|
||||
all: help
|
||||
|
||||
## BERT embeddings
|
||||
sources/go-bert:
|
||||
git clone --recurse-submodules https://github.com/go-skynet/go-bert.cpp sources/go-bert
|
||||
cd sources/go-bert && git checkout -b build $(BERT_VERSION) && git submodule update --init --recursive --depth 1
|
||||
sources/go-bert.cpp:
|
||||
git clone --recurse-submodules https://github.com/go-skynet/go-bert.cpp sources/go-bert.cpp
|
||||
cd sources/go-bert.cpp && git checkout -b build $(BERT_VERSION) && git submodule update --init --recursive --depth 1
|
||||
|
||||
sources/go-bert/libgobert.a: sources/go-bert
|
||||
$(MAKE) -C sources/go-bert libgobert.a
|
||||
sources/go-bert.cpp/libgobert.a: sources/go-bert.cpp
|
||||
$(MAKE) -C sources/go-bert.cpp libgobert.a
|
||||
|
||||
## go-llama-ggml
|
||||
sources/go-llama-ggml:
|
||||
git clone --recurse-submodules https://github.com/go-skynet/go-llama.cpp sources/go-llama-ggml
|
||||
cd sources/go-llama-ggml && git checkout -b build $(GOLLAMA_STABLE_VERSION) && git submodule update --init --recursive --depth 1
|
||||
## go-llama.cpp
|
||||
sources/go-llama.cpp:
|
||||
git clone --recurse-submodules https://github.com/go-skynet/go-llama.cpp sources/go-llama.cpp
|
||||
cd sources/go-llama.cpp && git checkout -b build $(GOLLAMA_STABLE_VERSION) && git submodule update --init --recursive --depth 1
|
||||
|
||||
sources/go-llama-ggml/libbinding.a: sources/go-llama-ggml
|
||||
$(MAKE) -C sources/go-llama-ggml BUILD_TYPE=$(STABLE_BUILD_TYPE) libbinding.a
|
||||
sources/go-llama.cpp/libbinding.a: sources/go-llama.cpp
|
||||
$(MAKE) -C sources/go-llama.cpp BUILD_TYPE=$(STABLE_BUILD_TYPE) libbinding.a
|
||||
|
||||
## go-piper
|
||||
sources/go-piper:
|
||||
@@ -211,12 +213,12 @@ sources/gpt4all/gpt4all-bindings/golang/libgpt4all.a: sources/gpt4all
|
||||
$(MAKE) -C sources/gpt4all/gpt4all-bindings/golang/ libgpt4all.a
|
||||
|
||||
## RWKV
|
||||
sources/go-rwkv:
|
||||
git clone --recurse-submodules $(RWKV_REPO) sources/go-rwkv
|
||||
cd sources/go-rwkv && git checkout -b build $(RWKV_VERSION) && git submodule update --init --recursive --depth 1
|
||||
sources/go-rwkv.cpp:
|
||||
git clone --recurse-submodules $(RWKV_REPO) sources/go-rwkv.cpp
|
||||
cd sources/go-rwkv.cpp && git checkout -b build $(RWKV_VERSION) && git submodule update --init --recursive --depth 1
|
||||
|
||||
sources/go-rwkv/librwkv.a: sources/go-rwkv
|
||||
cd sources/go-rwkv && cd rwkv.cpp && cmake . -DRWKV_BUILD_SHARED_LIBRARY=OFF && cmake --build . && cp librwkv.a ..
|
||||
sources/go-rwkv.cpp/librwkv.a: sources/go-rwkv.cpp
|
||||
cd sources/go-rwkv.cpp && cd rwkv.cpp && cmake . -DRWKV_BUILD_SHARED_LIBRARY=OFF && cmake --build . && cp librwkv.a ..
|
||||
|
||||
## stable diffusion
|
||||
sources/go-stable-diffusion:
|
||||
@@ -236,23 +238,24 @@ sources/go-tiny-dream/libtinydream.a: sources/go-tiny-dream
|
||||
|
||||
## whisper
|
||||
sources/whisper.cpp:
|
||||
git clone https://github.com/ggerganov/whisper.cpp.git sources/whisper.cpp
|
||||
git clone https://github.com/ggerganov/whisper.cpp sources/whisper.cpp
|
||||
cd sources/whisper.cpp && git checkout -b build $(WHISPER_CPP_VERSION) && git submodule update --init --recursive --depth 1
|
||||
|
||||
sources/whisper.cpp/libwhisper.a: sources/whisper.cpp
|
||||
cd sources/whisper.cpp && make libwhisper.a
|
||||
cd sources/whisper.cpp && $(MAKE) libwhisper.a
|
||||
|
||||
get-sources: sources/go-llama-ggml sources/gpt4all sources/go-piper sources/go-rwkv sources/whisper.cpp sources/go-bert sources/go-stable-diffusion sources/go-tiny-dream
|
||||
get-sources: sources/go-llama.cpp sources/gpt4all sources/go-piper sources/go-rwkv.cpp sources/whisper.cpp sources/go-bert.cpp sources/go-stable-diffusion sources/go-tiny-dream
|
||||
|
||||
replace:
|
||||
$(GOCMD) mod edit -replace github.com/donomii/go-rwkv.cpp=$(CURDIR)/sources/go-rwkv
|
||||
$(GOCMD) mod edit -replace github.com/donomii/go-rwkv.cpp=$(CURDIR)/sources/go-rwkv.cpp
|
||||
$(GOCMD) mod edit -replace github.com/ggerganov/whisper.cpp=$(CURDIR)/sources/whisper.cpp
|
||||
$(GOCMD) mod edit -replace github.com/ggerganov/whisper.cpp/bindings/go=$(CURDIR)/sources/whisper.cpp/bindings/go
|
||||
$(GOCMD) mod edit -replace github.com/go-skynet/go-bert.cpp=$(CURDIR)/sources/go-bert
|
||||
$(GOCMD) mod edit -replace github.com/go-skynet/go-bert.cpp=$(CURDIR)/sources/go-bert.cpp
|
||||
$(GOCMD) mod edit -replace github.com/M0Rf30/go-tiny-dream=$(CURDIR)/sources/go-tiny-dream
|
||||
$(GOCMD) mod edit -replace github.com/mudler/go-piper=$(CURDIR)/sources/go-piper
|
||||
$(GOCMD) mod edit -replace github.com/mudler/go-stable-diffusion=$(CURDIR)/sources/go-stable-diffusion
|
||||
$(GOCMD) mod edit -replace github.com/nomic-ai/gpt4all/gpt4all-bindings/golang=$(CURDIR)/sources/gpt4all/gpt4all-bindings/golang
|
||||
$(GOCMD) mod edit -replace github.com/go-skynet/go-llama.cpp=$(CURDIR)/sources/go-llama.cpp
|
||||
|
||||
dropreplace:
|
||||
$(GOCMD) mod edit -dropreplace github.com/donomii/go-rwkv.cpp
|
||||
@@ -271,12 +274,12 @@ prepare-sources: get-sources replace
|
||||
## GENERIC
|
||||
rebuild: ## Rebuilds the project
|
||||
$(GOCMD) clean -cache
|
||||
$(MAKE) -C sources/go-llama-ggml clean
|
||||
$(MAKE) -C sources/go-llama.cpp clean
|
||||
$(MAKE) -C sources/gpt4all/gpt4all-bindings/golang/ clean
|
||||
$(MAKE) -C sources/go-rwkv clean
|
||||
$(MAKE) -C sources/go-rwkv.cpp clean
|
||||
$(MAKE) -C sources/whisper.cpp clean
|
||||
$(MAKE) -C sources/go-stable-diffusion clean
|
||||
$(MAKE) -C sources/go-bert clean
|
||||
$(MAKE) -C sources/go-bert.cpp clean
|
||||
$(MAKE) -C sources/go-piper clean
|
||||
$(MAKE) -C sources/go-tiny-dream clean
|
||||
$(MAKE) build
|
||||
@@ -292,6 +295,7 @@ clean: ## Remove build related file
|
||||
rm -rf backend-assets/*
|
||||
$(MAKE) -C backend/cpp/grpc clean
|
||||
$(MAKE) -C backend/cpp/llama clean
|
||||
rm -rf backend/cpp/llama-* || true
|
||||
$(MAKE) dropreplace
|
||||
$(MAKE) protogen-clean
|
||||
rmdir pkg/grpc/proto || true
|
||||
@@ -301,9 +305,6 @@ clean-tests:
|
||||
rm -rf test-dir
|
||||
rm -rf core/http/backend-assets
|
||||
|
||||
halt-backends: ## Used to clean up stray backends sometimes left running when debugging manually
|
||||
ps | grep 'backend-assets/grpc/' | awk '{print $$1}' | xargs -I {} kill -9 {}
|
||||
|
||||
## Build:
|
||||
build: prepare backend-assets grpcs ## Build the project
|
||||
$(info ${GREEN}I local-ai build info:${RESET})
|
||||
@@ -313,14 +314,19 @@ build: prepare backend-assets grpcs ## Build the project
|
||||
CGO_LDFLAGS="$(CGO_LDFLAGS)" $(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o $(BINARY_NAME) ./
|
||||
|
||||
build-minimal:
|
||||
BUILD_GRPC_FOR_BACKEND_LLAMA=true GRPC_BACKENDS=backend-assets/grpc/llama-cpp GO_TAGS=none $(MAKE) build
|
||||
BUILD_GRPC_FOR_BACKEND_LLAMA=true GRPC_BACKENDS="backend-assets/grpc/llama-cpp" GO_TAGS=none $(MAKE) build
|
||||
|
||||
build-api:
|
||||
BUILD_GRPC_FOR_BACKEND_LLAMA=true BUILD_API_ONLY=true GO_TAGS=none $(MAKE) build
|
||||
|
||||
dist: build
|
||||
mkdir -p release
|
||||
# if BUILD_ID is empty, then we don't append it to the binary name
|
||||
ifeq ($(BUILD_ID),)
|
||||
cp $(BINARY_NAME) release/$(BINARY_NAME)-$(OS)-$(ARCH)
|
||||
else
|
||||
cp $(BINARY_NAME) release/$(BINARY_NAME)-$(BUILD_ID)-$(OS)-$(ARCH)
|
||||
endif
|
||||
|
||||
osx-signed: build
|
||||
codesign --deep --force --sign "$(OSX_SIGNING_IDENTITY)" --entitlements "./Entitlements.plist" "./$(BINARY_NAME)"
|
||||
@@ -368,13 +374,13 @@ run-e2e-image:
|
||||
|
||||
run-e2e-aio:
|
||||
@echo 'Running e2e AIO tests'
|
||||
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --flake-attempts $(TEST_FLAKES) -v -r ./tests/e2e-aio
|
||||
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --flake-attempts 5 -v -r ./tests/e2e-aio
|
||||
|
||||
test-e2e:
|
||||
@echo 'Running e2e tests'
|
||||
BUILD_TYPE=$(BUILD_TYPE) \
|
||||
LOCALAI_API=http://$(E2E_BRIDGE_IP):5390/v1 \
|
||||
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --flake-attempts $(TEST_FLAKES) -v -r ./tests/e2e
|
||||
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --flake-attempts 5 -v -r ./tests/e2e
|
||||
|
||||
teardown-e2e:
|
||||
rm -rf $(TEST_DIR) || true
|
||||
@@ -382,15 +388,15 @@ teardown-e2e:
|
||||
|
||||
test-gpt4all: prepare-test
|
||||
TEST_DIR=$(abspath ./)/test-dir/ FIXTURES=$(abspath ./)/tests/fixtures CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models \
|
||||
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="gpt4all" --flake-attempts $(TEST_FLAKES) -v -r $(TEST_PATHS)
|
||||
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="gpt4all" --flake-attempts 5 -v -r $(TEST_PATHS)
|
||||
|
||||
test-llama: prepare-test
|
||||
TEST_DIR=$(abspath ./)/test-dir/ FIXTURES=$(abspath ./)/tests/fixtures CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models \
|
||||
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="llama" --flake-attempts $(TEST_FLAKES) -v -r $(TEST_PATHS)
|
||||
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="llama" --flake-attempts 5 -v -r $(TEST_PATHS)
|
||||
|
||||
test-llama-gguf: prepare-test
|
||||
TEST_DIR=$(abspath ./)/test-dir/ FIXTURES=$(abspath ./)/tests/fixtures CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models \
|
||||
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="llama-gguf" --flake-attempts $(TEST_FLAKES) -v -r $(TEST_PATHS)
|
||||
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="llama-gguf" --flake-attempts 5 -v -r $(TEST_PATHS)
|
||||
|
||||
test-tts: prepare-test
|
||||
TEST_DIR=$(abspath ./)/test-dir/ FIXTURES=$(abspath ./)/tests/fixtures CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models \
|
||||
@@ -439,10 +445,10 @@ protogen-go-clean:
|
||||
$(RM) bin/*
|
||||
|
||||
.PHONY: protogen-python
|
||||
protogen-python: autogptq-protogen bark-protogen coqui-protogen diffusers-protogen exllama-protogen exllama2-protogen mamba-protogen petals-protogen sentencetransformers-protogen transformers-protogen parler-tts-protogen transformers-musicgen-protogen vall-e-x-protogen vllm-protogen
|
||||
protogen-python: autogptq-protogen bark-protogen coqui-protogen diffusers-protogen exllama-protogen exllama2-protogen mamba-protogen petals-protogen rerankers-protogen sentencetransformers-protogen transformers-protogen parler-tts-protogen transformers-musicgen-protogen vall-e-x-protogen vllm-protogen
|
||||
|
||||
.PHONY: protogen-python-clean
|
||||
protogen-python-clean: autogptq-protogen-clean bark-protogen-clean coqui-protogen-clean diffusers-protogen-clean exllama-protogen-clean exllama2-protogen-clean mamba-protogen-clean petals-protogen-clean sentencetransformers-protogen-clean transformers-protogen-clean transformers-musicgen-protogen-clean parler-tts-protogen-clean vall-e-x-protogen-clean vllm-protogen-clean
|
||||
protogen-python-clean: autogptq-protogen-clean bark-protogen-clean coqui-protogen-clean diffusers-protogen-clean exllama-protogen-clean exllama2-protogen-clean mamba-protogen-clean petals-protogen-clean sentencetransformers-protogen-clean rerankers-protogen-clean transformers-protogen-clean transformers-musicgen-protogen-clean parler-tts-protogen-clean vall-e-x-protogen-clean vllm-protogen-clean
|
||||
|
||||
.PHONY: autogptq-protogen
|
||||
autogptq-protogen:
|
||||
@@ -508,6 +514,14 @@ petals-protogen:
|
||||
petals-protogen-clean:
|
||||
$(MAKE) -C backend/python/petals protogen-clean
|
||||
|
||||
.PHONY: rerankers-protogen
|
||||
rerankers-protogen:
|
||||
$(MAKE) -C backend/python/rerankers protogen
|
||||
|
||||
.PHONY: rerankers-protogen-clean
|
||||
rerankers-protogen-clean:
|
||||
$(MAKE) -C backend/python/rerankers protogen-clean
|
||||
|
||||
.PHONY: sentencetransformers-protogen
|
||||
sentencetransformers-protogen:
|
||||
$(MAKE) -C backend/python/sentencetransformers protogen
|
||||
@@ -566,6 +580,7 @@ prepare-extra-conda-environments: protogen-python
|
||||
$(MAKE) -C backend/python/vllm
|
||||
$(MAKE) -C backend/python/mamba
|
||||
$(MAKE) -C backend/python/sentencetransformers
|
||||
$(MAKE) -C backend/python/rerankers
|
||||
$(MAKE) -C backend/python/transformers
|
||||
$(MAKE) -C backend/python/transformers-musicgen
|
||||
$(MAKE) -C backend/python/parler-tts
|
||||
@@ -601,16 +616,16 @@ backend-assets/gpt4all: sources/gpt4all sources/gpt4all/gpt4all-bindings/golang/
|
||||
backend-assets/grpc: protogen-go replace
|
||||
mkdir -p backend-assets/grpc
|
||||
|
||||
backend-assets/grpc/bert-embeddings: sources/go-bert sources/go-bert/libgobert.a backend-assets/grpc
|
||||
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(CURDIR)/sources/go-bert LIBRARY_PATH=$(CURDIR)/sources/go-bert \
|
||||
backend-assets/grpc/bert-embeddings: sources/go-bert.cpp sources/go-bert.cpp/libgobert.a backend-assets/grpc
|
||||
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(CURDIR)/sources/go-bert.cpp LIBRARY_PATH=$(CURDIR)/sources/go-bert.cpp \
|
||||
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/bert-embeddings ./backend/go/llm/bert/
|
||||
|
||||
backend-assets/grpc/gpt4all: sources/gpt4all sources/gpt4all/gpt4all-bindings/golang/libgpt4all.a backend-assets/gpt4all backend-assets/grpc
|
||||
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(CURDIR)/sources/gpt4all/gpt4all-bindings/golang/ LIBRARY_PATH=$(CURDIR)/sources/gpt4all/gpt4all-bindings/golang/ \
|
||||
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/gpt4all ./backend/go/llm/gpt4all/
|
||||
|
||||
backend-assets/grpc/langchain-huggingface: backend-assets/grpc
|
||||
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/langchain-huggingface ./backend/go/llm/langchain/
|
||||
backend-assets/grpc/huggingface: backend-assets/grpc
|
||||
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/huggingface ./backend/go/llm/langchain/
|
||||
|
||||
backend/cpp/llama/llama.cpp:
|
||||
LLAMA_VERSION=$(CPPLLAMA_VERSION) $(MAKE) -C backend/cpp/llama llama.cpp
|
||||
@@ -622,7 +637,7 @@ ADDED_CMAKE_ARGS=-Dabsl_DIR=${INSTALLED_LIB_CMAKE}/absl \
|
||||
-Dutf8_range_DIR=${INSTALLED_LIB_CMAKE}/utf8_range \
|
||||
-DgRPC_DIR=${INSTALLED_LIB_CMAKE}/grpc \
|
||||
-DCMAKE_CXX_STANDARD_INCLUDE_DIRECTORIES=${INSTALLED_PACKAGES}/include
|
||||
backend/cpp/llama/grpc-server:
|
||||
build-llama-cpp-grpc-server:
|
||||
# Conditionally build grpc for the llama backend to use if needed
|
||||
ifdef BUILD_GRPC_FOR_BACKEND_LLAMA
|
||||
$(MAKE) -C backend/cpp/grpc build
|
||||
@@ -631,33 +646,47 @@ ifdef BUILD_GRPC_FOR_BACKEND_LLAMA
|
||||
PATH="${INSTALLED_PACKAGES}/bin:${PATH}" \
|
||||
CMAKE_ARGS="${CMAKE_ARGS} ${ADDED_CMAKE_ARGS}" \
|
||||
LLAMA_VERSION=$(CPPLLAMA_VERSION) \
|
||||
$(MAKE) -C backend/cpp/llama grpc-server
|
||||
$(MAKE) -C backend/cpp/${VARIANT} grpc-server
|
||||
else
|
||||
echo "BUILD_GRPC_FOR_BACKEND_LLAMA is not defined."
|
||||
LLAMA_VERSION=$(CPPLLAMA_VERSION) $(MAKE) -C backend/cpp/llama grpc-server
|
||||
LLAMA_VERSION=$(CPPLLAMA_VERSION) $(MAKE) -C backend/cpp/${VARIANT} grpc-server
|
||||
endif
|
||||
|
||||
backend-assets/grpc/llama-cpp: backend-assets/grpc backend/cpp/llama/grpc-server
|
||||
cp -rfv backend/cpp/llama/grpc-server backend-assets/grpc/llama-cpp
|
||||
backend-assets/grpc/llama-cpp: backend-assets/grpc
|
||||
$(info ${GREEN}I llama-cpp build info:standard${RESET})
|
||||
cp -rf backend/cpp/llama backend/cpp/llama-default
|
||||
$(MAKE) -C backend/cpp/llama-default purge
|
||||
$(MAKE) VARIANT="llama-default" build-llama-cpp-grpc-server
|
||||
cp -rfv backend/cpp/llama-default/grpc-server backend-assets/grpc/llama-cpp
|
||||
# TODO: every binary should have its own folder instead, so can have different metal implementations
|
||||
ifeq ($(BUILD_TYPE),metal)
|
||||
cp backend/cpp/llama/llama.cpp/build/bin/default.metallib backend-assets/grpc/
|
||||
cp backend/cpp/llama-default/llama.cpp/build/bin/default.metallib backend-assets/grpc/
|
||||
endif
|
||||
|
||||
backend-assets/grpc/llama-ggml: sources/go-llama-ggml sources/go-llama-ggml/libbinding.a backend-assets/grpc
|
||||
$(GOCMD) mod edit -replace github.com/go-skynet/go-llama.cpp=$(CURDIR)/sources/go-llama-ggml
|
||||
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(CURDIR)/sources/go-llama-ggml LIBRARY_PATH=$(CURDIR)/sources/go-llama-ggml \
|
||||
backend-assets/grpc/llama-cpp-noavx: backend-assets/grpc
|
||||
cp -rf backend/cpp/llama backend/cpp/llama-noavx
|
||||
$(MAKE) -C backend/cpp/llama-noavx purge
|
||||
$(info ${GREEN}I llama-cpp build info:noavx${RESET})
|
||||
CMAKE_ARGS="$(CMAKE_ARGS) -DLLAMA_AVX512=OFF -DLLAMA_AVX2=OFF" $(MAKE) VARIANT="llama-noavx" build-llama-cpp-grpc-server
|
||||
cp -rfv backend/cpp/llama-noavx/grpc-server backend-assets/grpc/llama-cpp-noavx
|
||||
|
||||
backend-assets/grpc/llama-cpp-fallback: backend-assets/grpc
|
||||
cp -rf backend/cpp/llama backend/cpp/llama-fallback
|
||||
$(MAKE) -C backend/cpp/llama-fallback purge
|
||||
$(info ${GREEN}I llama-cpp build info:fallback${RESET})
|
||||
CMAKE_ARGS="$(CMAKE_ARGS) -DLLAMA_F16C=OFF -DLLAMA_AVX512=OFF -DLLAMA_AVX2=OFF -DLLAMA_FMA=OFF" $(MAKE) VARIANT="llama-fallback" build-llama-cpp-grpc-server
|
||||
cp -rfv backend/cpp/llama-fallback/grpc-server backend-assets/grpc/llama-cpp-fallback
|
||||
|
||||
backend-assets/grpc/llama-ggml: sources/go-llama.cpp sources/go-llama.cpp/libbinding.a backend-assets/grpc
|
||||
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(CURDIR)/sources/go-llama.cpp LIBRARY_PATH=$(CURDIR)/sources/go-llama.cpp \
|
||||
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/llama-ggml ./backend/go/llm/llama-ggml/
|
||||
# EXPERIMENTAL:
|
||||
ifeq ($(BUILD_TYPE),metal)
|
||||
cp $(CURDIR)/sources/go-llama-ggml/llama.cpp/ggml-metal.metal backend-assets/grpc/
|
||||
endif
|
||||
|
||||
backend-assets/grpc/piper: sources/go-piper sources/go-piper/libpiper_binding.a backend-assets/grpc backend-assets/espeak-ng-data
|
||||
CGO_CXXFLAGS="$(PIPER_CGO_CXXFLAGS)" CGO_LDFLAGS="$(PIPER_CGO_LDFLAGS)" LIBRARY_PATH=$(CURDIR)/sources/go-piper \
|
||||
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/piper ./backend/go/tts/
|
||||
|
||||
backend-assets/grpc/rwkv: sources/go-rwkv sources/go-rwkv/librwkv.a backend-assets/grpc
|
||||
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(CURDIR)/sources/go-rwkv LIBRARY_PATH=$(CURDIR)/sources/go-rwkv \
|
||||
backend-assets/grpc/rwkv: sources/go-rwkv.cpp sources/go-rwkv.cpp/librwkv.a backend-assets/grpc
|
||||
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(CURDIR)/sources/go-rwkv.cpp LIBRARY_PATH=$(CURDIR)/sources/go-rwkv.cpp \
|
||||
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/rwkv ./backend/go/llm/rwkv
|
||||
|
||||
backend-assets/grpc/stablediffusion: sources/go-stable-diffusion sources/go-stable-diffusion/libstablediffusion.a backend-assets/grpc
|
||||
@@ -704,7 +733,7 @@ docker-aio-all:
|
||||
|
||||
docker-image-intel:
|
||||
docker build \
|
||||
--build-arg BASE_IMAGE=intel/oneapi-basekit:2024.0.1-devel-ubuntu22.04 \
|
||||
--build-arg BASE_IMAGE=intel/oneapi-basekit:2024.1.0-devel-ubuntu22.04 \
|
||||
--build-arg IMAGE_TYPE=$(IMAGE_TYPE) \
|
||||
--build-arg GO_TAGS="none" \
|
||||
--build-arg MAKEFLAGS="$(DOCKER_MAKEFLAGS)" \
|
||||
@@ -712,7 +741,7 @@ docker-image-intel:
|
||||
|
||||
docker-image-intel-xpu:
|
||||
docker build \
|
||||
--build-arg BASE_IMAGE=intel/oneapi-basekit:2024.0.1-devel-ubuntu22.04 \
|
||||
--build-arg BASE_IMAGE=intel/oneapi-basekit:2024.1.0-devel-ubuntu22.04 \
|
||||
--build-arg IMAGE_TYPE=$(IMAGE_TYPE) \
|
||||
--build-arg GO_TAGS="none" \
|
||||
--build-arg MAKEFLAGS="$(DOCKER_MAKEFLAGS)" \
|
||||
@@ -720,4 +749,4 @@ docker-image-intel-xpu:
|
||||
|
||||
.PHONY: swagger
|
||||
swagger:
|
||||
swag init -g core/http/api.go --output swagger
|
||||
swag init -g core/http/app.go --output swagger
|
||||
|
||||
16
README.md
16
README.md
@@ -44,20 +44,24 @@
|
||||
|
||||
[](https://github.com/go-skynet/LocalAI/actions/workflows/test.yml)[](https://github.com/go-skynet/LocalAI/actions/workflows/release.yaml)[](https://github.com/go-skynet/LocalAI/actions/workflows/image.yml)[](https://github.com/go-skynet/LocalAI/actions/workflows/bump_deps.yaml)[](https://artifacthub.io/packages/search?repo=localai)
|
||||
|
||||
**LocalAI** is the free, Open Source OpenAI alternative. LocalAI act as a drop-in replacement REST API that’s compatible with OpenAI (Elevenlabs, Anthropic... ) API specifications for local AI inferencing. It allows you to run LLMs, generate images, audio (and not only) locally or on-prem with consumer grade hardware, supporting multiple model families. Does not require GPU.
|
||||
**LocalAI** is the free, Open Source OpenAI alternative. LocalAI act as a drop-in replacement REST API that’s compatible with OpenAI (Elevenlabs, Anthropic... ) API specifications for local AI inferencing. It allows you to run LLMs, generate images, audio (and not only) locally or on-prem with consumer grade hardware, supporting multiple model families. Does not require GPU. It is created and maintained by [Ettore Di Giacinto](https://github.com/mudler).
|
||||
|
||||
## 🔥🔥 Hot topics / Roadmap
|
||||
|
||||
[Roadmap](https://github.com/mudler/LocalAI/issues?q=is%3Aissue+is%3Aopen+label%3Aroadmap)
|
||||
|
||||
- Chat, TTS, and Image generation in the WebUI: https://github.com/mudler/LocalAI/pull/2222
|
||||
- Reranker API: https://github.com/mudler/LocalAI/pull/2121
|
||||
- Gallery WebUI: https://github.com/mudler/LocalAI/pull/2104
|
||||
- llama3: https://github.com/mudler/LocalAI/discussions/2076
|
||||
- Parler-TTS: https://github.com/mudler/LocalAI/pull/2027
|
||||
- Landing page: https://github.com/mudler/LocalAI/pull/1922
|
||||
- Openvino support: https://github.com/mudler/LocalAI/pull/1892
|
||||
- Vector store: https://github.com/mudler/LocalAI/pull/1795
|
||||
- All-in-one container image: https://github.com/mudler/LocalAI/issues/1855
|
||||
- Parallel function calling: https://github.com/mudler/LocalAI/pull/1726 / Tools API support: https://github.com/mudler/LocalAI/pull/1715
|
||||
|
||||
Hot topics (looking for contributors):
|
||||
|
||||
- WebUI improvements: https://github.com/mudler/LocalAI/issues/2156
|
||||
- Backends v2: https://github.com/mudler/LocalAI/issues/1126
|
||||
- Improving UX v2: https://github.com/mudler/LocalAI/issues/1373
|
||||
- Assistant API: https://github.com/mudler/LocalAI/issues/1273
|
||||
@@ -88,7 +92,8 @@ docker run -ti --name local-ai -p 8080:8080 localai/localai:latest-aio-cpu
|
||||
- 🧠 [Embeddings generation for vector databases](https://localai.io/features/embeddings/)
|
||||
- ✍️ [Constrained grammars](https://localai.io/features/constrained_grammars/)
|
||||
- 🖼️ [Download Models directly from Huggingface ](https://localai.io/models/)
|
||||
- 🆕 [Vision API](https://localai.io/features/gpt-vision/)
|
||||
- 🥽 [Vision API](https://localai.io/features/gpt-vision/)
|
||||
- 🆕 [Reranker API](https://localai.io/features/reranker/)
|
||||
|
||||
## 💻 Usage
|
||||
|
||||
@@ -109,6 +114,7 @@ Model galleries
|
||||
Other:
|
||||
- Helm chart https://github.com/go-skynet/helm-charts
|
||||
- VSCode extension https://github.com/badgooooor/localai-vscode-plugin
|
||||
- Terminal utility https://github.com/djcopley/ShellOracle
|
||||
- Local Smart assistant https://github.com/mudler/LocalAGI
|
||||
- Home Assistant https://github.com/sammcj/homeassistant-localai / https://github.com/drndos/hass-openai-custom-conversation
|
||||
- Discord bot https://github.com/mudler/LocalAGI/tree/main/examples/discord
|
||||
@@ -127,7 +133,7 @@ Other:
|
||||
|
||||
## :book: 🎥 [Media, Blogs, Social](https://localai.io/basics/news/#media-blogs-social)
|
||||
|
||||
- [Run LocalAI on AWS EKS with Pulumi](https://www.pulumi.com/ai/answers/tiZMDoZzZV6TLxgDXNBnFE/deploying-helm-charts-on-aws-eks)
|
||||
- [Run LocalAI on AWS EKS with Pulumi](https://www.pulumi.com/blog/low-code-llm-apps-with-local-ai-flowise-and-pulumi/)
|
||||
- [Run LocalAI on AWS](https://staleks.hashnode.dev/installing-localai-on-aws-ec2-instance)
|
||||
- [Create a slackbot for teams and OSS projects that answer to documentation](https://mudler.pm/posts/smart-slackbot-for-teams/)
|
||||
- [LocalAI meets k8sgpt](https://www.youtube.com/watch?v=PKrDNuJ_dfE)
|
||||
|
||||
27
aio/cpu/rerank.yaml
Normal file
27
aio/cpu/rerank.yaml
Normal file
@@ -0,0 +1,27 @@
|
||||
name: jina-reranker-v1-base-en
|
||||
backend: rerankers
|
||||
parameters:
|
||||
model: cross-encoder
|
||||
|
||||
usage: |
|
||||
You can test this model with curl like this:
|
||||
|
||||
curl http://localhost:8080/v1/rerank \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
"model": "jina-reranker-v1-base-en",
|
||||
"query": "Organic skincare products for sensitive skin",
|
||||
"documents": [
|
||||
"Eco-friendly kitchenware for modern homes",
|
||||
"Biodegradable cleaning supplies for eco-conscious consumers",
|
||||
"Organic cotton baby clothes for sensitive skin",
|
||||
"Natural organic skincare range for sensitive skin",
|
||||
"Tech gadgets for smart homes: 2024 edition",
|
||||
"Sustainable gardening tools and compost solutions",
|
||||
"Sensitive skin-friendly facial cleansers and toners",
|
||||
"Organic food wraps and storage solutions",
|
||||
"All-natural pet food for dogs with allergies",
|
||||
"Yoga mats made from recycled materials"
|
||||
],
|
||||
"top_n": 3
|
||||
}'
|
||||
@@ -1,20 +1,27 @@
|
||||
name: gpt-4
|
||||
mmap: true
|
||||
parameters:
|
||||
model: huggingface://NousResearch/Hermes-2-Pro-Mistral-7B-GGUF/Hermes-2-Pro-Mistral-7B.Q2_K.gguf
|
||||
model: huggingface://NousResearch/Hermes-2-Pro-Llama-3-8B-GGUF/Hermes-2-Pro-Llama-3-8B-Q4_K_M.gguf
|
||||
|
||||
template:
|
||||
chat_message: |
|
||||
<|im_start|>{{if eq .RoleName "assistant"}}assistant{{else if eq .RoleName "system"}}system{{else if eq .RoleName "tool"}}tool{{else if eq .RoleName "user"}}user{{end}}
|
||||
{{- if .FunctionCall }}<tool_call>{{end}}
|
||||
{{- if eq .RoleName "tool" }}<tool_result>{{end }}
|
||||
{{- if .Content}}
|
||||
{{.Content}}
|
||||
{{- if .FunctionCall }}
|
||||
<tool_call>
|
||||
{{- else if eq .RoleName "tool" }}
|
||||
<tool_response>
|
||||
{{- end }}
|
||||
{{- if .FunctionCall}}{{toJson .FunctionCall}}{{end }}
|
||||
{{- if .FunctionCall }}</tool_call>{{end }}
|
||||
{{- if eq .RoleName "tool" }}</tool_result>{{end }}
|
||||
<|im_end|>
|
||||
{{- if .Content}}
|
||||
{{.Content }}
|
||||
{{- end }}
|
||||
{{- if .FunctionCall}}
|
||||
{{toJson .FunctionCall}}
|
||||
{{- end }}
|
||||
{{- if .FunctionCall }}
|
||||
</tool_call>
|
||||
{{- else if eq .RoleName "tool" }}
|
||||
</tool_response>
|
||||
{{- end }}<|im_end|>
|
||||
# https://huggingface.co/NousResearch/Hermes-2-Pro-Mistral-7B-GGUF#prompt-format-for-function-calling
|
||||
function: |
|
||||
<|im_start|>system
|
||||
@@ -29,8 +36,7 @@ template:
|
||||
For each function call return a json object with function name and arguments within <tool_call></tool_call> XML tags as follows:
|
||||
<tool_call>
|
||||
{'arguments': <args-dict>, 'name': <function-name>}
|
||||
</tool_call>
|
||||
<|im_end|>
|
||||
</tool_call><|im_end|>
|
||||
{{.Input -}}
|
||||
<|im_start|>assistant
|
||||
<tool_call>
|
||||
|
||||
@@ -129,7 +129,7 @@ detect_gpu
|
||||
detect_gpu_size
|
||||
|
||||
PROFILE="${PROFILE:-$GPU_SIZE}" # default to cpu
|
||||
export MODELS="${MODELS:-/aio/${PROFILE}/embeddings.yaml,/aio/${PROFILE}/text-to-speech.yaml,/aio/${PROFILE}/image-gen.yaml,/aio/${PROFILE}/text-to-text.yaml,/aio/${PROFILE}/speech-to-text.yaml,/aio/${PROFILE}/vision.yaml}"
|
||||
export MODELS="${MODELS:-/aio/${PROFILE}/embeddings.yaml,/aio/${PROFILE}/rerank.yaml,/aio/${PROFILE}/text-to-speech.yaml,/aio/${PROFILE}/image-gen.yaml,/aio/${PROFILE}/text-to-text.yaml,/aio/${PROFILE}/speech-to-text.yaml,/aio/${PROFILE}/vision.yaml}"
|
||||
|
||||
check_vars
|
||||
|
||||
|
||||
27
aio/gpu-8g/rerank.yaml
Normal file
27
aio/gpu-8g/rerank.yaml
Normal file
@@ -0,0 +1,27 @@
|
||||
name: jina-reranker-v1-base-en
|
||||
backend: rerankers
|
||||
parameters:
|
||||
model: cross-encoder
|
||||
|
||||
usage: |
|
||||
You can test this model with curl like this:
|
||||
|
||||
curl http://localhost:8080/v1/rerank \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
"model": "jina-reranker-v1-base-en",
|
||||
"query": "Organic skincare products for sensitive skin",
|
||||
"documents": [
|
||||
"Eco-friendly kitchenware for modern homes",
|
||||
"Biodegradable cleaning supplies for eco-conscious consumers",
|
||||
"Organic cotton baby clothes for sensitive skin",
|
||||
"Natural organic skincare range for sensitive skin",
|
||||
"Tech gadgets for smart homes: 2024 edition",
|
||||
"Sustainable gardening tools and compost solutions",
|
||||
"Sensitive skin-friendly facial cleansers and toners",
|
||||
"Organic food wraps and storage solutions",
|
||||
"All-natural pet food for dogs with allergies",
|
||||
"Yoga mats made from recycled materials"
|
||||
],
|
||||
"top_n": 3
|
||||
}'
|
||||
@@ -1,20 +1,27 @@
|
||||
name: gpt-4
|
||||
mmap: true
|
||||
parameters:
|
||||
model: huggingface://NousResearch/Hermes-2-Pro-Mistral-7B-GGUF/Hermes-2-Pro-Mistral-7B.Q6_K.gguf
|
||||
model: huggingface://NousResearch/Hermes-2-Pro-Llama-3-8B-GGUF/Hermes-2-Pro-Llama-3-8B-Q4_K_M.gguf
|
||||
|
||||
template:
|
||||
chat_message: |
|
||||
<|im_start|>{{if eq .RoleName "assistant"}}assistant{{else if eq .RoleName "system"}}system{{else if eq .RoleName "tool"}}tool{{else if eq .RoleName "user"}}user{{end}}
|
||||
{{- if .FunctionCall }}<tool_call>{{end}}
|
||||
{{- if eq .RoleName "tool" }}<tool_result>{{end }}
|
||||
{{- if .Content}}
|
||||
{{.Content}}
|
||||
{{- if .FunctionCall }}
|
||||
<tool_call>
|
||||
{{- else if eq .RoleName "tool" }}
|
||||
<tool_response>
|
||||
{{- end }}
|
||||
{{- if .FunctionCall}}{{toJson .FunctionCall}}{{end }}
|
||||
{{- if .FunctionCall }}</tool_call>{{end }}
|
||||
{{- if eq .RoleName "tool" }}</tool_result>{{end }}
|
||||
<|im_end|>
|
||||
{{- if .Content}}
|
||||
{{.Content }}
|
||||
{{- end }}
|
||||
{{- if .FunctionCall}}
|
||||
{{toJson .FunctionCall}}
|
||||
{{- end }}
|
||||
{{- if .FunctionCall }}
|
||||
</tool_call>
|
||||
{{- else if eq .RoleName "tool" }}
|
||||
</tool_response>
|
||||
{{- end }}<|im_end|>
|
||||
# https://huggingface.co/NousResearch/Hermes-2-Pro-Mistral-7B-GGUF#prompt-format-for-function-calling
|
||||
function: |
|
||||
<|im_start|>system
|
||||
@@ -29,8 +36,7 @@ template:
|
||||
For each function call return a json object with function name and arguments within <tool_call></tool_call> XML tags as follows:
|
||||
<tool_call>
|
||||
{'arguments': <args-dict>, 'name': <function-name>}
|
||||
</tool_call>
|
||||
<|im_end|>
|
||||
</tool_call><|im_end|>
|
||||
{{.Input -}}
|
||||
<|im_start|>assistant
|
||||
<tool_call>
|
||||
|
||||
27
aio/intel/rerank.yaml
Normal file
27
aio/intel/rerank.yaml
Normal file
@@ -0,0 +1,27 @@
|
||||
name: jina-reranker-v1-base-en
|
||||
backend: rerankers
|
||||
parameters:
|
||||
model: cross-encoder
|
||||
|
||||
usage: |
|
||||
You can test this model with curl like this:
|
||||
|
||||
curl http://localhost:8080/v1/rerank \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
"model": "jina-reranker-v1-base-en",
|
||||
"query": "Organic skincare products for sensitive skin",
|
||||
"documents": [
|
||||
"Eco-friendly kitchenware for modern homes",
|
||||
"Biodegradable cleaning supplies for eco-conscious consumers",
|
||||
"Organic cotton baby clothes for sensitive skin",
|
||||
"Natural organic skincare range for sensitive skin",
|
||||
"Tech gadgets for smart homes: 2024 edition",
|
||||
"Sustainable gardening tools and compost solutions",
|
||||
"Sensitive skin-friendly facial cleansers and toners",
|
||||
"Organic food wraps and storage solutions",
|
||||
"All-natural pet food for dogs with allergies",
|
||||
"Yoga mats made from recycled materials"
|
||||
],
|
||||
"top_n": 3
|
||||
}'
|
||||
@@ -2,20 +2,27 @@ name: gpt-4
|
||||
mmap: false
|
||||
f16: false
|
||||
parameters:
|
||||
model: huggingface://NousResearch/Hermes-2-Pro-Mistral-7B-GGUF/Hermes-2-Pro-Mistral-7B.Q6_K.gguf
|
||||
model: huggingface://NousResearch/Hermes-2-Pro-Llama-3-8B-GGUF/Hermes-2-Pro-Llama-3-8B-Q4_K_M.gguf
|
||||
|
||||
template:
|
||||
chat_message: |
|
||||
<|im_start|>{{if eq .RoleName "assistant"}}assistant{{else if eq .RoleName "system"}}system{{else if eq .RoleName "tool"}}tool{{else if eq .RoleName "user"}}user{{end}}
|
||||
{{- if .FunctionCall }}<tool_call>{{end}}
|
||||
{{- if eq .RoleName "tool" }}<tool_result>{{end }}
|
||||
{{- if .Content}}
|
||||
{{.Content}}
|
||||
{{- if .FunctionCall }}
|
||||
<tool_call>
|
||||
{{- else if eq .RoleName "tool" }}
|
||||
<tool_response>
|
||||
{{- end }}
|
||||
{{- if .FunctionCall}}{{toJson .FunctionCall}}{{end }}
|
||||
{{- if .FunctionCall }}</tool_call>{{end }}
|
||||
{{- if eq .RoleName "tool" }}</tool_result>{{end }}
|
||||
<|im_end|>
|
||||
{{- if .Content}}
|
||||
{{.Content }}
|
||||
{{- end }}
|
||||
{{- if .FunctionCall}}
|
||||
{{toJson .FunctionCall}}
|
||||
{{- end }}
|
||||
{{- if .FunctionCall }}
|
||||
</tool_call>
|
||||
{{- else if eq .RoleName "tool" }}
|
||||
</tool_response>
|
||||
{{- end }}<|im_end|>
|
||||
# https://huggingface.co/NousResearch/Hermes-2-Pro-Mistral-7B-GGUF#prompt-format-for-function-calling
|
||||
function: |
|
||||
<|im_start|>system
|
||||
@@ -30,8 +37,7 @@ template:
|
||||
For each function call return a json object with function name and arguments within <tool_call></tool_call> XML tags as follows:
|
||||
<tool_call>
|
||||
{'arguments': <args-dict>, 'name': <function-name>}
|
||||
</tool_call>
|
||||
<|im_end|>
|
||||
</tool_call><|im_end|>
|
||||
{{.Input -}}
|
||||
<|im_start|>assistant
|
||||
<tool_call>
|
||||
|
||||
@@ -23,6 +23,30 @@ service Backend {
|
||||
rpc StoresDelete(StoresDeleteOptions) returns (Result) {}
|
||||
rpc StoresGet(StoresGetOptions) returns (StoresGetResult) {}
|
||||
rpc StoresFind(StoresFindOptions) returns (StoresFindResult) {}
|
||||
|
||||
rpc Rerank(RerankRequest) returns (RerankResult) {}
|
||||
}
|
||||
|
||||
message RerankRequest {
|
||||
string query = 1;
|
||||
repeated string documents = 2;
|
||||
int32 top_n = 3;
|
||||
}
|
||||
|
||||
message RerankResult {
|
||||
Usage usage = 1;
|
||||
repeated DocumentResult results = 2;
|
||||
}
|
||||
|
||||
message Usage {
|
||||
int32 total_tokens = 1;
|
||||
int32 prompt_tokens = 2;
|
||||
}
|
||||
|
||||
message DocumentResult {
|
||||
int32 index = 1;
|
||||
string text = 2;
|
||||
float relevance_score = 3;
|
||||
}
|
||||
|
||||
message StoresKey {
|
||||
@@ -177,6 +201,7 @@ message ModelOptions {
|
||||
bool EnforceEager = 52;
|
||||
int32 SwapSpace = 53;
|
||||
int32 MaxModelLen = 54;
|
||||
int32 TensorParallelSize = 55;
|
||||
|
||||
string MMProj = 41;
|
||||
|
||||
|
||||
@@ -43,31 +43,23 @@ llama.cpp:
|
||||
|
||||
llama.cpp/examples/grpc-server: llama.cpp
|
||||
mkdir -p llama.cpp/examples/grpc-server
|
||||
cp -r $(abspath ./)/CMakeLists.txt llama.cpp/examples/grpc-server/
|
||||
cp -r $(abspath ./)/grpc-server.cpp llama.cpp/examples/grpc-server/
|
||||
cp -rfv $(abspath ./)/json.hpp llama.cpp/examples/grpc-server/
|
||||
cp -rfv $(abspath ./)/utils.hpp llama.cpp/examples/grpc-server/
|
||||
echo "add_subdirectory(grpc-server)" >> llama.cpp/examples/CMakeLists.txt
|
||||
## XXX: In some versions of CMake clip wasn't being built before llama.
|
||||
## This is an hack for now, but it should be fixed in the future.
|
||||
cp -rfv llama.cpp/examples/llava/clip.h llama.cpp/examples/grpc-server/clip.h
|
||||
cp -rfv llama.cpp/examples/llava/llava.cpp llama.cpp/examples/grpc-server/llava.cpp
|
||||
echo '#include "llama.h"' > llama.cpp/examples/grpc-server/llava.h
|
||||
cat llama.cpp/examples/llava/llava.h >> llama.cpp/examples/grpc-server/llava.h
|
||||
cp -rfv llama.cpp/examples/llava/clip.cpp llama.cpp/examples/grpc-server/clip.cpp
|
||||
bash prepare.sh
|
||||
|
||||
rebuild:
|
||||
cp -rfv $(abspath ./)/CMakeLists.txt llama.cpp/examples/grpc-server/
|
||||
cp -rfv $(abspath ./)/grpc-server.cpp llama.cpp/examples/grpc-server/
|
||||
cp -rfv $(abspath ./)/json.hpp llama.cpp/examples/grpc-server/
|
||||
bash prepare.sh
|
||||
rm -rf grpc-server
|
||||
$(MAKE) grpc-server
|
||||
|
||||
clean:
|
||||
rm -rf llama.cpp
|
||||
purge:
|
||||
rm -rf llama.cpp/build
|
||||
rm -rf llama.cpp/examples/grpc-server
|
||||
rm -rf grpc-server
|
||||
|
||||
clean: purge
|
||||
rm -rf llama.cpp
|
||||
|
||||
grpc-server: llama.cpp llama.cpp/examples/grpc-server
|
||||
@echo "Building grpc-server with $(BUILD_TYPE) build type and $(CMAKE_ARGS)"
|
||||
ifneq (,$(findstring sycl,$(BUILD_TYPE)))
|
||||
bash -c "source $(ONEAPI_VARS); \
|
||||
cd llama.cpp && mkdir -p build && cd build && cmake .. $(CMAKE_ARGS) && cmake --build . --config Release"
|
||||
|
||||
20
backend/cpp/llama/prepare.sh
Normal file
20
backend/cpp/llama/prepare.sh
Normal file
@@ -0,0 +1,20 @@
|
||||
#!/bin/bash
|
||||
|
||||
cp -r CMakeLists.txt llama.cpp/examples/grpc-server/
|
||||
cp -r grpc-server.cpp llama.cpp/examples/grpc-server/
|
||||
cp -rfv json.hpp llama.cpp/examples/grpc-server/
|
||||
cp -rfv utils.hpp llama.cpp/examples/grpc-server/
|
||||
|
||||
if grep -q "grpc-server" llama.cpp/examples/CMakeLists.txt; then
|
||||
echo "grpc-server already added"
|
||||
else
|
||||
echo "add_subdirectory(grpc-server)" >> llama.cpp/examples/CMakeLists.txt
|
||||
fi
|
||||
|
||||
## XXX: In some versions of CMake clip wasn't being built before llama.
|
||||
## This is an hack for now, but it should be fixed in the future.
|
||||
cp -rfv llama.cpp/examples/llava/clip.h llama.cpp/examples/grpc-server/clip.h
|
||||
cp -rfv llama.cpp/examples/llava/llava.cpp llama.cpp/examples/grpc-server/llava.cpp
|
||||
echo '#include "llama.h"' > llama.cpp/examples/grpc-server/llava.h
|
||||
cat llama.cpp/examples/llava/llava.h >> llama.cpp/examples/grpc-server/llava.h
|
||||
cp -rfv llama.cpp/examples/llava/clip.cpp llama.cpp/examples/grpc-server/clip.cpp
|
||||
@@ -4,6 +4,7 @@ package main
|
||||
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
|
||||
import (
|
||||
"fmt"
|
||||
"os"
|
||||
|
||||
"github.com/go-skynet/LocalAI/pkg/grpc/base"
|
||||
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
|
||||
@@ -18,9 +19,14 @@ type LLM struct {
|
||||
}
|
||||
|
||||
func (llm *LLM) Load(opts *pb.ModelOptions) error {
|
||||
llm.langchain, _ = langchain.NewHuggingFace(opts.Model)
|
||||
var err error
|
||||
hfToken := os.Getenv("HUGGINGFACEHUB_API_TOKEN")
|
||||
if hfToken == "" {
|
||||
return fmt.Errorf("no huggingface token provided")
|
||||
}
|
||||
llm.langchain, err = langchain.NewHuggingFace(opts.Model, hfToken)
|
||||
llm.model = opts.Model
|
||||
return nil
|
||||
return err
|
||||
}
|
||||
|
||||
func (llm *LLM) Predict(opts *pb.PredictOptions) (string, error) {
|
||||
|
||||
@@ -11,8 +11,8 @@ import (
|
||||
"github.com/go-skynet/LocalAI/core/schema"
|
||||
)
|
||||
|
||||
func runCommand(command []string) (string, error) {
|
||||
cmd := exec.Command(command[0], command[1:]...)
|
||||
func ffmpegCommand(args []string) (string, error) {
|
||||
cmd := exec.Command("ffmpeg", args...) // Constrain this to ffmpeg to permit security scanner to see that the command is safe.
|
||||
cmd.Env = os.Environ()
|
||||
out, err := cmd.CombinedOutput()
|
||||
return string(out), err
|
||||
@@ -21,8 +21,8 @@ func runCommand(command []string) (string, error) {
|
||||
// AudioToWav converts audio to wav for transcribe.
|
||||
// TODO: use https://github.com/mccoyst/ogg?
|
||||
func audioToWav(src, dst string) error {
|
||||
command := []string{"ffmpeg", "-i", src, "-format", "s16le", "-ar", "16000", "-ac", "1", "-acodec", "pcm_s16le", dst}
|
||||
out, err := runCommand(command)
|
||||
commandArgs := []string{"-i", src, "-format", "s16le", "-ar", "16000", "-ac", "1", "-acodec", "pcm_s16le", dst}
|
||||
out, err := ffmpegCommand(commandArgs)
|
||||
if err != nil {
|
||||
return fmt.Errorf("error: %w out: %s", err, out)
|
||||
}
|
||||
|
||||
@@ -41,7 +41,7 @@ dependencies:
|
||||
- filelock==3.12.4
|
||||
- frozenlist==1.4.0
|
||||
- fsspec==2023.6.0
|
||||
- grpcio==1.59.0
|
||||
- grpcio==1.63.0
|
||||
- huggingface-hub==0.16.4
|
||||
- idna==3.4
|
||||
- jinja2==3.1.2
|
||||
|
||||
@@ -26,7 +26,7 @@ if [ -d "/opt/intel" ]; then
|
||||
# Intel GPU: If the directory exists, we assume we are using the intel image
|
||||
# (no conda env)
|
||||
# https://github.com/intel/intel-extension-for-pytorch/issues/538
|
||||
pip install intel-extension-for-transformers datasets sentencepiece tiktoken neural_speed optimum[openvino]
|
||||
pip install torch==2.1.0.post0 torchvision==0.16.0.post0 torchaudio==2.1.0.post0 intel-extension-for-pytorch==2.1.20+xpu oneccl_bind_pt==2.1.200+xpu intel-extension-for-transformers datasets sentencepiece tiktoken neural_speed optimum[openvino] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
|
||||
fi
|
||||
|
||||
# If we didn't skip conda, activate the environment
|
||||
|
||||
@@ -47,7 +47,7 @@ dependencies:
|
||||
- frozenlist==1.4.0
|
||||
- fsspec==2023.6.0
|
||||
- funcy==2.0
|
||||
- grpcio==1.59.0
|
||||
- grpcio==1.63.0
|
||||
- huggingface-hub
|
||||
- idna==3.4
|
||||
- jinja2==3.1.2
|
||||
@@ -120,4 +120,6 @@ dependencies:
|
||||
- transformers>=4.38.2 # Updated Version
|
||||
- transformers_stream_generator==0.0.5
|
||||
- xformers==0.0.23.post1
|
||||
- rerankers[transformers]
|
||||
- pydantic
|
||||
prefix: /opt/conda/envs/transformers
|
||||
|
||||
@@ -48,7 +48,7 @@ dependencies:
|
||||
- frozenlist==1.4.0
|
||||
- fsspec==2023.6.0
|
||||
- funcy==2.0
|
||||
- grpcio==1.59.0
|
||||
- grpcio==1.63.0
|
||||
- huggingface-hub
|
||||
- idna==3.4
|
||||
- jinja2==3.1.2
|
||||
@@ -108,4 +108,6 @@ dependencies:
|
||||
- transformers>=4.38.2 # Updated Version
|
||||
- transformers_stream_generator==0.0.5
|
||||
- xformers==0.0.23.post1
|
||||
- rerankers[transformers]
|
||||
- pydantic
|
||||
prefix: /opt/conda/envs/transformers
|
||||
|
||||
@@ -47,7 +47,7 @@ dependencies:
|
||||
- frozenlist==1.4.0
|
||||
- fsspec==2023.6.0
|
||||
- funcy==2.0
|
||||
- grpcio==1.59.0
|
||||
- grpcio==1.63.0
|
||||
- huggingface-hub
|
||||
- humanfriendly==10.0
|
||||
- idna==3.4
|
||||
@@ -60,9 +60,10 @@ dependencies:
|
||||
- networkx
|
||||
- numpy==1.26.0
|
||||
- onnx==1.15.0
|
||||
- openvino==2024.0.0
|
||||
- openvino-telemetry==2023.2.1
|
||||
- optimum[openvino]==1.17.1
|
||||
- openvino==2024.1.0
|
||||
- openvino-telemetry==2024.1.0
|
||||
- optimum[openvino]==1.19.1
|
||||
- optimum-intel==1.16.1
|
||||
- packaging==23.2
|
||||
- pandas
|
||||
- peft==0.5.0
|
||||
@@ -111,5 +112,7 @@ dependencies:
|
||||
- vllm>=0.4.0
|
||||
- transformers>=4.38.2 # Updated Version
|
||||
- transformers_stream_generator==0.0.5
|
||||
- xformers==0.0.23.post1
|
||||
- xformers==0.0.23.post1
|
||||
- rerankers[transformers]
|
||||
- pydantic
|
||||
prefix: /opt/conda/envs/transformers
|
||||
|
||||
@@ -34,7 +34,7 @@ dependencies:
|
||||
- diffusers==0.24.0
|
||||
- filelock==3.12.4
|
||||
- fsspec==2023.9.2
|
||||
- grpcio==1.59.0
|
||||
- grpcio==1.63.0
|
||||
- huggingface-hub>=0.19.4
|
||||
- idna==3.4
|
||||
- importlib-metadata==6.8.0
|
||||
@@ -61,4 +61,5 @@ dependencies:
|
||||
- urllib3==2.0.6
|
||||
- zipp==3.17.0
|
||||
- torch
|
||||
- opencv-python
|
||||
prefix: /opt/conda/envs/diffusers
|
||||
|
||||
@@ -32,7 +32,7 @@ dependencies:
|
||||
- diffusers==0.24.0
|
||||
- filelock==3.12.4
|
||||
- fsspec==2023.9.2
|
||||
- grpcio==1.59.0
|
||||
- grpcio==1.63.0
|
||||
- huggingface-hub>=0.19.4
|
||||
- idna==3.4
|
||||
- importlib-metadata==6.8.0
|
||||
@@ -71,4 +71,5 @@ dependencies:
|
||||
- typing-extensions==4.8.0
|
||||
- urllib3==2.0.6
|
||||
- zipp==3.17.0
|
||||
- opencv-python
|
||||
prefix: /opt/conda/envs/diffusers
|
||||
|
||||
@@ -31,8 +31,8 @@ if [ -d "/opt/intel" ]; then
|
||||
--extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
|
||||
|
||||
pip install google-api-python-client \
|
||||
grpcio \
|
||||
grpcio-tools \
|
||||
grpcio==1.63.0 \
|
||||
grpcio-tools==1.63.0 \
|
||||
diffusers==0.24.0 \
|
||||
transformers>=4.25.1 \
|
||||
accelerate \
|
||||
|
||||
@@ -27,7 +27,7 @@ dependencies:
|
||||
- pip:
|
||||
- filelock==3.12.4
|
||||
- fsspec==2023.9.2
|
||||
- grpcio==1.59.0
|
||||
- grpcio==1.63.0
|
||||
- jinja2==3.1.2
|
||||
- markupsafe==2.1.3
|
||||
- mpmath==1.3.0
|
||||
|
||||
@@ -27,7 +27,7 @@ dependencies:
|
||||
- pip:
|
||||
- filelock==3.12.4
|
||||
- fsspec==2023.9.2
|
||||
- grpcio==1.59.0
|
||||
- grpcio==1.63.0
|
||||
- markupsafe==2.1.3
|
||||
- mpmath==1.3.0
|
||||
- networkx==3.1
|
||||
|
||||
@@ -26,7 +26,7 @@ dependencies:
|
||||
- zlib=1.2.13=h5eee18b_0
|
||||
- pip:
|
||||
- accelerate>=0.11.0
|
||||
- grpcio==1.59.0
|
||||
- grpcio==1.63.0
|
||||
- numpy==1.26.0
|
||||
- nvidia-cublas-cu12==12.1.3.1
|
||||
- nvidia-cuda-cupti-cu12==12.1.105
|
||||
|
||||
@@ -27,7 +27,7 @@ dependencies:
|
||||
- pip:
|
||||
- accelerate>=0.11.0
|
||||
- numpy==1.26.0
|
||||
- grpcio==1.59.0
|
||||
- grpcio==1.63.0
|
||||
- torch==2.1.0
|
||||
- transformers>=4.34.0
|
||||
- descript-audio-codec
|
||||
|
||||
27
backend/python/rerankers/Makefile
Normal file
27
backend/python/rerankers/Makefile
Normal file
@@ -0,0 +1,27 @@
|
||||
.PHONY: rerankers
|
||||
rerankers: protogen
|
||||
$(MAKE) -C ../common-env/transformers
|
||||
|
||||
|
||||
.PHONY: run
|
||||
run: protogen
|
||||
@echo "Running rerankers..."
|
||||
bash run.sh
|
||||
@echo "rerankers run."
|
||||
|
||||
# It is not working well by using command line. It only6 works with IDE like VSCode.
|
||||
.PHONY: test
|
||||
test: protogen
|
||||
@echo "Testing rerankers..."
|
||||
bash test.sh
|
||||
@echo "rerankers tested."
|
||||
|
||||
.PHONY: protogen
|
||||
protogen: backend_pb2_grpc.py backend_pb2.py
|
||||
|
||||
.PHONY: protogen-clean
|
||||
protogen-clean:
|
||||
$(RM) backend_pb2_grpc.py backend_pb2.py
|
||||
|
||||
backend_pb2_grpc.py backend_pb2.py:
|
||||
python3 -m grpc_tools.protoc -I../.. --python_out=. --grpc_python_out=. backend.proto
|
||||
5
backend/python/rerankers/README.md
Normal file
5
backend/python/rerankers/README.md
Normal file
@@ -0,0 +1,5 @@
|
||||
# Creating a separate environment for the reranker project
|
||||
|
||||
```
|
||||
make reranker
|
||||
```
|
||||
123
backend/python/rerankers/reranker.py
Executable file
123
backend/python/rerankers/reranker.py
Executable file
@@ -0,0 +1,123 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Extra gRPC server for Rerankers models.
|
||||
"""
|
||||
from concurrent import futures
|
||||
|
||||
import argparse
|
||||
import signal
|
||||
import sys
|
||||
import os
|
||||
|
||||
import time
|
||||
import backend_pb2
|
||||
import backend_pb2_grpc
|
||||
|
||||
import grpc
|
||||
|
||||
from rerankers import Reranker
|
||||
|
||||
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
|
||||
|
||||
# If MAX_WORKERS are specified in the environment use it, otherwise default to 1
|
||||
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1'))
|
||||
|
||||
# Implement the BackendServicer class with the service methods
|
||||
class BackendServicer(backend_pb2_grpc.BackendServicer):
|
||||
"""
|
||||
A gRPC servicer for the backend service.
|
||||
|
||||
This class implements the gRPC methods for the backend service, including Health, LoadModel, and Embedding.
|
||||
"""
|
||||
def Health(self, request, context):
|
||||
"""
|
||||
A gRPC method that returns the health status of the backend service.
|
||||
|
||||
Args:
|
||||
request: A HealthRequest object that contains the request parameters.
|
||||
context: A grpc.ServicerContext object that provides information about the RPC.
|
||||
|
||||
Returns:
|
||||
A Reply object that contains the health status of the backend service.
|
||||
"""
|
||||
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
|
||||
|
||||
def LoadModel(self, request, context):
|
||||
"""
|
||||
A gRPC method that loads a model into memory.
|
||||
|
||||
Args:
|
||||
request: A LoadModelRequest object that contains the request parameters.
|
||||
context: A grpc.ServicerContext object that provides information about the RPC.
|
||||
|
||||
Returns:
|
||||
A Result object that contains the result of the LoadModel operation.
|
||||
"""
|
||||
model_name = request.Model
|
||||
try:
|
||||
kwargs = {}
|
||||
if request.Type != "":
|
||||
kwargs['model_type'] = request.Type
|
||||
if request.PipelineType != "": # Reuse the PipelineType field for language
|
||||
kwargs['lang'] = request.PipelineType
|
||||
self.model_name = model_name
|
||||
self.model = Reranker(model_name, **kwargs)
|
||||
except Exception as err:
|
||||
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
|
||||
|
||||
# Implement your logic here for the LoadModel service
|
||||
# Replace this with your desired response
|
||||
return backend_pb2.Result(message="Model loaded successfully", success=True)
|
||||
|
||||
def Rerank(self, request, context):
|
||||
documents = []
|
||||
for idx, doc in enumerate(request.documents):
|
||||
documents.append(doc)
|
||||
ranked_results=self.model.rank(query=request.query, docs=documents, doc_ids=list(range(len(request.documents))))
|
||||
# Prepare results to return
|
||||
results = [
|
||||
backend_pb2.DocumentResult(
|
||||
index=res.doc_id,
|
||||
text=res.text,
|
||||
relevance_score=res.score
|
||||
) for res in ranked_results.results
|
||||
]
|
||||
|
||||
# Calculate the usage and total tokens
|
||||
# TODO: Implement the usage calculation with reranker
|
||||
total_tokens = sum(len(doc.split()) for doc in request.documents) + len(request.query.split())
|
||||
prompt_tokens = len(request.query.split())
|
||||
usage = backend_pb2.Usage(total_tokens=total_tokens, prompt_tokens=prompt_tokens)
|
||||
return backend_pb2.RerankResult(usage=usage, results=results)
|
||||
|
||||
def serve(address):
|
||||
server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS))
|
||||
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
|
||||
server.add_insecure_port(address)
|
||||
server.start()
|
||||
print("Server started. Listening on: " + address, file=sys.stderr)
|
||||
|
||||
# Define the signal handler function
|
||||
def signal_handler(sig, frame):
|
||||
print("Received termination signal. Shutting down...")
|
||||
server.stop(0)
|
||||
sys.exit(0)
|
||||
|
||||
# Set the signal handlers for SIGINT and SIGTERM
|
||||
signal.signal(signal.SIGINT, signal_handler)
|
||||
signal.signal(signal.SIGTERM, signal_handler)
|
||||
|
||||
try:
|
||||
while True:
|
||||
time.sleep(_ONE_DAY_IN_SECONDS)
|
||||
except KeyboardInterrupt:
|
||||
server.stop(0)
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Run the gRPC server.")
|
||||
parser.add_argument(
|
||||
"--addr", default="localhost:50051", help="The address to bind the server to."
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
serve(args.addr)
|
||||
14
backend/python/rerankers/run.sh
Executable file
14
backend/python/rerankers/run.sh
Executable file
@@ -0,0 +1,14 @@
|
||||
#!/bin/bash
|
||||
|
||||
##
|
||||
## A bash script wrapper that runs the reranker server with conda
|
||||
|
||||
export PATH=$PATH:/opt/conda/bin
|
||||
|
||||
# Activate conda environment
|
||||
source activate transformers
|
||||
|
||||
# get the directory where the bash script is located
|
||||
DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
|
||||
|
||||
python $DIR/reranker.py $@
|
||||
11
backend/python/rerankers/test.sh
Executable file
11
backend/python/rerankers/test.sh
Executable file
@@ -0,0 +1,11 @@
|
||||
#!/bin/bash
|
||||
##
|
||||
## A bash script wrapper that runs the reranker server with conda
|
||||
|
||||
# Activate conda environment
|
||||
source activate transformers
|
||||
|
||||
# get the directory where the bash script is located
|
||||
DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
|
||||
|
||||
python -m unittest $DIR/test_reranker.py
|
||||
90
backend/python/rerankers/test_reranker.py
Executable file
90
backend/python/rerankers/test_reranker.py
Executable file
@@ -0,0 +1,90 @@
|
||||
"""
|
||||
A test script to test the gRPC service
|
||||
"""
|
||||
import unittest
|
||||
import subprocess
|
||||
import time
|
||||
import backend_pb2
|
||||
import backend_pb2_grpc
|
||||
|
||||
import grpc
|
||||
|
||||
|
||||
class TestBackendServicer(unittest.TestCase):
|
||||
"""
|
||||
TestBackendServicer is the class that tests the gRPC service
|
||||
"""
|
||||
def setUp(self):
|
||||
"""
|
||||
This method sets up the gRPC service by starting the server
|
||||
"""
|
||||
self.service = subprocess.Popen(["python3", "reranker.py", "--addr", "localhost:50051"])
|
||||
time.sleep(10)
|
||||
|
||||
def tearDown(self) -> None:
|
||||
"""
|
||||
This method tears down the gRPC service by terminating the server
|
||||
"""
|
||||
self.service.kill()
|
||||
self.service.wait()
|
||||
|
||||
def test_server_startup(self):
|
||||
"""
|
||||
This method tests if the server starts up successfully
|
||||
"""
|
||||
try:
|
||||
self.setUp()
|
||||
with grpc.insecure_channel("localhost:50051") as channel:
|
||||
stub = backend_pb2_grpc.BackendStub(channel)
|
||||
response = stub.Health(backend_pb2.HealthMessage())
|
||||
self.assertEqual(response.message, b'OK')
|
||||
except Exception as err:
|
||||
print(err)
|
||||
self.fail("Server failed to start")
|
||||
finally:
|
||||
self.tearDown()
|
||||
|
||||
def test_load_model(self):
|
||||
"""
|
||||
This method tests if the model is loaded successfully
|
||||
"""
|
||||
try:
|
||||
self.setUp()
|
||||
with grpc.insecure_channel("localhost:50051") as channel:
|
||||
stub = backend_pb2_grpc.BackendStub(channel)
|
||||
response = stub.LoadModel(backend_pb2.ModelOptions(Model="cross-encoder"))
|
||||
self.assertTrue(response.success)
|
||||
self.assertEqual(response.message, "Model loaded successfully")
|
||||
except Exception as err:
|
||||
print(err)
|
||||
self.fail("LoadModel service failed")
|
||||
finally:
|
||||
self.tearDown()
|
||||
|
||||
def test_rerank(self):
|
||||
"""
|
||||
This method tests if the embeddings are generated successfully
|
||||
"""
|
||||
try:
|
||||
self.setUp()
|
||||
with grpc.insecure_channel("localhost:50051") as channel:
|
||||
stub = backend_pb2_grpc.BackendStub(channel)
|
||||
request = backend_pb2.RerankRequest(
|
||||
query="I love you",
|
||||
documents=["I hate you", "I really like you"],
|
||||
top_n=2
|
||||
)
|
||||
response = stub.LoadModel(backend_pb2.ModelOptions(Model="cross-encoder"))
|
||||
self.assertTrue(response.success)
|
||||
|
||||
rerank_response = stub.Rerank(request)
|
||||
print(rerank_response.results[0])
|
||||
self.assertIsNotNone(rerank_response.results)
|
||||
self.assertEqual(len(rerank_response.results), 2)
|
||||
self.assertEqual(rerank_response.results[0].text, "I really like you")
|
||||
self.assertEqual(rerank_response.results[1].text, "I hate you")
|
||||
except Exception as err:
|
||||
print(err)
|
||||
self.fail("Reranker service failed")
|
||||
finally:
|
||||
self.tearDown()
|
||||
@@ -89,8 +89,8 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
|
||||
quantization = None
|
||||
|
||||
if self.CUDA:
|
||||
if request.Device:
|
||||
device_map=request.Device
|
||||
if request.MainGPU:
|
||||
device_map=request.MainGPU
|
||||
else:
|
||||
device_map="cuda:0"
|
||||
if request.Quantization == "bnb_4bit":
|
||||
@@ -143,12 +143,49 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
|
||||
from optimum.intel.openvino import OVModelForCausalLM
|
||||
from openvino.runtime import Core
|
||||
|
||||
if "GPU" in Core().available_devices:
|
||||
device_map="GPU"
|
||||
if request.MainGPU:
|
||||
device_map=request.MainGPU
|
||||
else:
|
||||
device_map="CPU"
|
||||
device_map="AUTO"
|
||||
devices = Core().available_devices
|
||||
if "GPU" in " ".join(devices):
|
||||
device_map="AUTO:GPU"
|
||||
# While working on a fine tuned model, inference may give an inaccuracy and performance drop on GPU if winograd convolutions are selected.
|
||||
# https://docs.openvino.ai/2024/openvino-workflow/running-inference/inference-devices-and-modes/gpu-device.html
|
||||
if "CPU" or "NPU" in device_map:
|
||||
if "-CPU" or "-NPU" not in device_map:
|
||||
ovconfig={"PERFORMANCE_HINT": "CUMULATIVE_THROUGHPUT"}
|
||||
else:
|
||||
ovconfig={"PERFORMANCE_HINT": "CUMULATIVE_THROUGHPUT","GPU_DISABLE_WINOGRAD_CONVOLUTION": "YES"}
|
||||
self.model = OVModelForCausalLM.from_pretrained(model_name,
|
||||
compile=True,
|
||||
compile=True,
|
||||
trust_remote_code=request.TrustRemoteCode,
|
||||
ov_config=ovconfig,
|
||||
device=device_map)
|
||||
self.OV = True
|
||||
elif request.Type == "OVModelForFeatureExtraction":
|
||||
from optimum.intel.openvino import OVModelForFeatureExtraction
|
||||
from openvino.runtime import Core
|
||||
|
||||
if request.MainGPU:
|
||||
device_map=request.MainGPU
|
||||
else:
|
||||
device_map="AUTO"
|
||||
devices = Core().available_devices
|
||||
if "GPU" in " ".join(devices):
|
||||
device_map="AUTO:GPU"
|
||||
# While working on a fine tuned model, inference may give an inaccuracy and performance drop on GPU if winograd convolutions are selected.
|
||||
# https://docs.openvino.ai/2024/openvino-workflow/running-inference/inference-devices-and-modes/gpu-device.html
|
||||
if "CPU" or "NPU" in device_map:
|
||||
if "-CPU" or "-NPU" not in device_map:
|
||||
ovconfig={"PERFORMANCE_HINT": "CUMULATIVE_THROUGHPUT"}
|
||||
else:
|
||||
ovconfig={"PERFORMANCE_HINT": "CUMULATIVE_THROUGHPUT","GPU_DISABLE_WINOGRAD_CONVOLUTION": "YES"}
|
||||
self.model = OVModelForFeatureExtraction.from_pretrained(model_name,
|
||||
compile=True,
|
||||
trust_remote_code=request.TrustRemoteCode,
|
||||
ov_config=ovconfig,
|
||||
export=True,
|
||||
device=device_map)
|
||||
self.OV = True
|
||||
else:
|
||||
@@ -158,6 +195,11 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
|
||||
quantization_config=quantization,
|
||||
device_map=device_map,
|
||||
torch_dtype=compute)
|
||||
if request.ContextSize > 0:
|
||||
self.max_tokens = request.ContextSize
|
||||
else:
|
||||
self.max_tokens = self.model.config.max_position_embeddings
|
||||
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(model_name, use_safetensors=True)
|
||||
self.XPU = False
|
||||
|
||||
@@ -204,20 +246,35 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
|
||||
|
||||
# Pool to get sentence embeddings; i.e. generate one 1024 vector for the entire sentence
|
||||
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
||||
print("Calculated embeddings for: " + request.Embeddings, file=sys.stderr)
|
||||
print("Embeddings:", sentence_embeddings, file=sys.stderr)
|
||||
# print("Calculated embeddings for: " + request.Embeddings, file=sys.stderr)
|
||||
# print("Embeddings:", sentence_embeddings, file=sys.stderr)
|
||||
return backend_pb2.EmbeddingResult(embeddings=sentence_embeddings[0])
|
||||
|
||||
async def _predict(self, request, context, streaming=False):
|
||||
set_seed(request.Seed)
|
||||
if request.TopP == 0:
|
||||
request.TopP = 0.9
|
||||
|
||||
if request.TopK == 0:
|
||||
request.TopK = 40
|
||||
|
||||
prompt = request.Prompt
|
||||
if not request.Prompt and request.UseTokenizerTemplate and request.Messages:
|
||||
prompt = self.tokenizer.apply_chat_template(request.Messages, tokenize=False, add_generation_prompt=True)
|
||||
|
||||
eos_token_id = self.tokenizer.eos_token_id
|
||||
if request.StopPrompts:
|
||||
eos_token_id = []
|
||||
for word in request.StopPrompts:
|
||||
eos_token_id.append(self.tokenizer.convert_tokens_to_ids(word))
|
||||
|
||||
inputs = self.tokenizer(prompt, return_tensors="pt")
|
||||
|
||||
max_tokens = 200
|
||||
if request.Tokens > 0:
|
||||
max_tokens = request.Tokens
|
||||
else:
|
||||
max_tokens = self.max_tokens - inputs["input_ids"].size()[inputs["input_ids"].dim()-1]
|
||||
|
||||
inputs = self.tokenizer(request.Prompt, return_tensors="pt")
|
||||
if self.CUDA:
|
||||
inputs = inputs.to("cuda")
|
||||
if XPU and self.OV == False:
|
||||
@@ -235,7 +292,7 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
|
||||
top_k=request.TopK,
|
||||
do_sample=True,
|
||||
attention_mask=inputs["attention_mask"],
|
||||
eos_token_id=self.tokenizer.eos_token_id,
|
||||
eos_token_id=eos_token_id,
|
||||
pad_token_id=self.tokenizer.eos_token_id,
|
||||
streamer=streamer)
|
||||
thread=Thread(target=self.model.generate, kwargs=config)
|
||||
@@ -264,7 +321,7 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
|
||||
top_k=request.TopK,
|
||||
do_sample=True,
|
||||
attention_mask=inputs["attention_mask"],
|
||||
eos_token_id=self.tokenizer.eos_token_id,
|
||||
eos_token_id=eos_token_id,
|
||||
pad_token_id=self.tokenizer.eos_token_id)
|
||||
generated_text = self.tokenizer.batch_decode(outputs[:, inputs["input_ids"].shape[1]:], skip_special_tokens=True)[0]
|
||||
|
||||
@@ -334,4 +391,4 @@ if __name__ == "__main__":
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
asyncio.run(serve(args.addr))
|
||||
asyncio.run(serve(args.addr))
|
||||
|
||||
@@ -42,7 +42,7 @@ dependencies:
|
||||
- future==0.18.3
|
||||
- gradio==3.47.1
|
||||
- gradio-client==0.6.0
|
||||
- grpcio==1.59.0
|
||||
- grpcio==1.63.0
|
||||
- h11==0.14.0
|
||||
- httpcore==0.18.0
|
||||
- httpx==0.25.0
|
||||
|
||||
@@ -95,6 +95,8 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
|
||||
engine_args.trust_remote_code = request.TrustRemoteCode
|
||||
if request.EnforceEager:
|
||||
engine_args.enforce_eager = request.EnforceEager
|
||||
if request.TensorParallelSize:
|
||||
engine_args.tensor_parallel_size = request.TensorParallelSize
|
||||
if request.SwapSpace != 0:
|
||||
engine_args.swap_space = request.SwapSpace
|
||||
if request.MaxModelLen != 0:
|
||||
|
||||
@@ -1,13 +1,11 @@
|
||||
package core
|
||||
|
||||
import (
|
||||
"github.com/go-skynet/LocalAI/core/backend"
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
"github.com/go-skynet/LocalAI/core/services"
|
||||
"github.com/go-skynet/LocalAI/pkg/model"
|
||||
)
|
||||
|
||||
// TODO: Can I come up with a better name or location for this?
|
||||
// The purpose of this structure is to hold pointers to all initialized services, to make plumbing easy
|
||||
// Perhaps a proper DI system is worth it in the future, but for now keep things simple.
|
||||
type Application struct {
|
||||
@@ -21,18 +19,18 @@ type Application struct {
|
||||
ModelLoader *model.ModelLoader
|
||||
|
||||
// Backend Services
|
||||
EmbeddingsBackendService *backend.EmbeddingsBackendService
|
||||
ImageGenerationBackendService *backend.ImageGenerationBackendService
|
||||
LLMBackendService *backend.LLMBackendService
|
||||
TranscriptionBackendService *backend.TranscriptionBackendService
|
||||
TextToSpeechBackendService *backend.TextToSpeechBackendService
|
||||
// EmbeddingsBackendService *backend.EmbeddingsBackendService
|
||||
// ImageGenerationBackendService *backend.ImageGenerationBackendService
|
||||
// LLMBackendService *backend.LLMBackendService
|
||||
// TranscriptionBackendService *backend.TranscriptionBackendService
|
||||
// TextToSpeechBackendService *backend.TextToSpeechBackendService
|
||||
|
||||
// LocalAI System Services
|
||||
BackendMonitorService *services.BackendMonitorService
|
||||
GalleryService *services.GalleryService
|
||||
ListModelsService *services.ListModelsService
|
||||
LocalAIMetricsService *services.LocalAIMetricsService
|
||||
OpenAIService *services.OpenAIService
|
||||
// OpenAIService *services.OpenAIService
|
||||
}
|
||||
|
||||
// TODO [NEXT PR?]: Break up ApplicationConfig.
|
||||
@@ -2,100 +2,14 @@ package backend
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"time"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
"github.com/go-skynet/LocalAI/core/schema"
|
||||
"github.com/google/uuid"
|
||||
|
||||
"github.com/go-skynet/LocalAI/pkg/concurrency"
|
||||
"github.com/go-skynet/LocalAI/pkg/grpc"
|
||||
"github.com/go-skynet/LocalAI/pkg/model"
|
||||
model "github.com/go-skynet/LocalAI/pkg/model"
|
||||
)
|
||||
|
||||
type EmbeddingsBackendService struct {
|
||||
ml *model.ModelLoader
|
||||
bcl *config.BackendConfigLoader
|
||||
appConfig *config.ApplicationConfig
|
||||
}
|
||||
|
||||
func NewEmbeddingsBackendService(ml *model.ModelLoader, bcl *config.BackendConfigLoader, appConfig *config.ApplicationConfig) *EmbeddingsBackendService {
|
||||
return &EmbeddingsBackendService{
|
||||
ml: ml,
|
||||
bcl: bcl,
|
||||
appConfig: appConfig,
|
||||
}
|
||||
}
|
||||
|
||||
func (ebs *EmbeddingsBackendService) Embeddings(request *schema.OpenAIRequest) <-chan concurrency.ErrorOr[*schema.OpenAIResponse] {
|
||||
|
||||
resultChannel := make(chan concurrency.ErrorOr[*schema.OpenAIResponse])
|
||||
go func(request *schema.OpenAIRequest) {
|
||||
if request.Model == "" {
|
||||
request.Model = model.StableDiffusionBackend
|
||||
}
|
||||
|
||||
bc, request, err := ebs.bcl.LoadBackendConfigForModelAndOpenAIRequest(request.Model, request, ebs.appConfig)
|
||||
if err != nil {
|
||||
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: err}
|
||||
close(resultChannel)
|
||||
return
|
||||
}
|
||||
|
||||
items := []schema.Item{}
|
||||
|
||||
for i, s := range bc.InputToken {
|
||||
// get the model function to call for the result
|
||||
embedFn, err := modelEmbedding("", s, ebs.ml, bc, ebs.appConfig)
|
||||
if err != nil {
|
||||
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: err}
|
||||
close(resultChannel)
|
||||
return
|
||||
}
|
||||
|
||||
embeddings, err := embedFn()
|
||||
if err != nil {
|
||||
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: err}
|
||||
close(resultChannel)
|
||||
return
|
||||
}
|
||||
items = append(items, schema.Item{Embedding: embeddings, Index: i, Object: "embedding"})
|
||||
}
|
||||
|
||||
for i, s := range bc.InputStrings {
|
||||
// get the model function to call for the result
|
||||
embedFn, err := modelEmbedding(s, []int{}, ebs.ml, bc, ebs.appConfig)
|
||||
if err != nil {
|
||||
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: err}
|
||||
close(resultChannel)
|
||||
return
|
||||
}
|
||||
|
||||
embeddings, err := embedFn()
|
||||
if err != nil {
|
||||
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: err}
|
||||
close(resultChannel)
|
||||
return
|
||||
}
|
||||
items = append(items, schema.Item{Embedding: embeddings, Index: i, Object: "embedding"})
|
||||
}
|
||||
|
||||
id := uuid.New().String()
|
||||
created := int(time.Now().Unix())
|
||||
resp := &schema.OpenAIResponse{
|
||||
ID: id,
|
||||
Created: created,
|
||||
Model: request.Model, // we have to return what the user sent here, due to OpenAI spec.
|
||||
Data: items,
|
||||
Object: "list",
|
||||
}
|
||||
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Value: resp}
|
||||
close(resultChannel)
|
||||
}(request)
|
||||
return resultChannel
|
||||
}
|
||||
|
||||
func modelEmbedding(s string, tokens []int, loader *model.ModelLoader, backendConfig *config.BackendConfig, appConfig *config.ApplicationConfig) (func() ([]float32, error), error) {
|
||||
func ModelEmbedding(s string, tokens []int, loader *model.ModelLoader, backendConfig config.BackendConfig, appConfig *config.ApplicationConfig) (func() ([]float32, error), error) {
|
||||
modelFile := backendConfig.Model
|
||||
|
||||
grpcOpts := gRPCModelOpts(backendConfig)
|
||||
|
||||
@@ -1,252 +1,18 @@
|
||||
package backend
|
||||
|
||||
import (
|
||||
"bufio"
|
||||
"encoding/base64"
|
||||
"fmt"
|
||||
"io"
|
||||
"net/http"
|
||||
"os"
|
||||
"path/filepath"
|
||||
"strconv"
|
||||
"strings"
|
||||
"time"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
"github.com/go-skynet/LocalAI/core/schema"
|
||||
"github.com/google/uuid"
|
||||
"github.com/rs/zerolog/log"
|
||||
|
||||
"github.com/go-skynet/LocalAI/pkg/concurrency"
|
||||
"github.com/go-skynet/LocalAI/pkg/grpc/proto"
|
||||
"github.com/go-skynet/LocalAI/pkg/model"
|
||||
model "github.com/go-skynet/LocalAI/pkg/model"
|
||||
)
|
||||
|
||||
type ImageGenerationBackendService struct {
|
||||
ml *model.ModelLoader
|
||||
bcl *config.BackendConfigLoader
|
||||
appConfig *config.ApplicationConfig
|
||||
BaseUrlForGeneratedImages string
|
||||
}
|
||||
|
||||
func NewImageGenerationBackendService(ml *model.ModelLoader, bcl *config.BackendConfigLoader, appConfig *config.ApplicationConfig) *ImageGenerationBackendService {
|
||||
return &ImageGenerationBackendService{
|
||||
ml: ml,
|
||||
bcl: bcl,
|
||||
appConfig: appConfig,
|
||||
}
|
||||
}
|
||||
|
||||
func (igbs *ImageGenerationBackendService) GenerateImage(request *schema.OpenAIRequest) <-chan concurrency.ErrorOr[*schema.OpenAIResponse] {
|
||||
resultChannel := make(chan concurrency.ErrorOr[*schema.OpenAIResponse])
|
||||
go func(request *schema.OpenAIRequest) {
|
||||
bc, request, err := igbs.bcl.LoadBackendConfigForModelAndOpenAIRequest(request.Model, request, igbs.appConfig)
|
||||
if err != nil {
|
||||
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: err}
|
||||
close(resultChannel)
|
||||
return
|
||||
}
|
||||
|
||||
src := ""
|
||||
if request.File != "" {
|
||||
|
||||
var fileData []byte
|
||||
// check if input.File is an URL, if so download it and save it
|
||||
// to a temporary file
|
||||
if strings.HasPrefix(request.File, "http://") || strings.HasPrefix(request.File, "https://") {
|
||||
out, err := downloadFile(request.File)
|
||||
if err != nil {
|
||||
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: fmt.Errorf("failed downloading file:%w", err)}
|
||||
close(resultChannel)
|
||||
return
|
||||
}
|
||||
defer os.RemoveAll(out)
|
||||
|
||||
fileData, err = os.ReadFile(out)
|
||||
if err != nil {
|
||||
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: fmt.Errorf("failed reading file:%w", err)}
|
||||
close(resultChannel)
|
||||
return
|
||||
}
|
||||
|
||||
} else {
|
||||
// base 64 decode the file and write it somewhere
|
||||
// that we will cleanup
|
||||
fileData, err = base64.StdEncoding.DecodeString(request.File)
|
||||
if err != nil {
|
||||
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: err}
|
||||
close(resultChannel)
|
||||
return
|
||||
}
|
||||
}
|
||||
|
||||
// Create a temporary file
|
||||
outputFile, err := os.CreateTemp(igbs.appConfig.ImageDir, "b64")
|
||||
if err != nil {
|
||||
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: err}
|
||||
close(resultChannel)
|
||||
return
|
||||
}
|
||||
// write the base64 result
|
||||
writer := bufio.NewWriter(outputFile)
|
||||
_, err = writer.Write(fileData)
|
||||
if err != nil {
|
||||
outputFile.Close()
|
||||
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: err}
|
||||
close(resultChannel)
|
||||
return
|
||||
}
|
||||
outputFile.Close()
|
||||
src = outputFile.Name()
|
||||
defer os.RemoveAll(src)
|
||||
}
|
||||
|
||||
log.Debug().Msgf("Parameter Config: %+v", bc)
|
||||
|
||||
switch bc.Backend {
|
||||
case "stablediffusion":
|
||||
bc.Backend = model.StableDiffusionBackend
|
||||
case "tinydream":
|
||||
bc.Backend = model.TinyDreamBackend
|
||||
case "":
|
||||
bc.Backend = model.StableDiffusionBackend
|
||||
if bc.Model == "" {
|
||||
bc.Model = "stablediffusion_assets" // TODO: check?
|
||||
}
|
||||
}
|
||||
|
||||
sizeParts := strings.Split(request.Size, "x")
|
||||
if len(sizeParts) != 2 {
|
||||
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: fmt.Errorf("invalid value for 'size'")}
|
||||
close(resultChannel)
|
||||
return
|
||||
}
|
||||
width, err := strconv.Atoi(sizeParts[0])
|
||||
if err != nil {
|
||||
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: fmt.Errorf("invalid value for 'size'")}
|
||||
close(resultChannel)
|
||||
return
|
||||
}
|
||||
height, err := strconv.Atoi(sizeParts[1])
|
||||
if err != nil {
|
||||
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: fmt.Errorf("invalid value for 'size'")}
|
||||
close(resultChannel)
|
||||
return
|
||||
}
|
||||
|
||||
b64JSON := false
|
||||
if request.ResponseFormat.Type == "b64_json" {
|
||||
b64JSON = true
|
||||
}
|
||||
// src and clip_skip
|
||||
var result []schema.Item
|
||||
for _, i := range bc.PromptStrings {
|
||||
n := request.N
|
||||
if request.N == 0 {
|
||||
n = 1
|
||||
}
|
||||
for j := 0; j < n; j++ {
|
||||
prompts := strings.Split(i, "|")
|
||||
positive_prompt := prompts[0]
|
||||
negative_prompt := ""
|
||||
if len(prompts) > 1 {
|
||||
negative_prompt = prompts[1]
|
||||
}
|
||||
|
||||
mode := 0
|
||||
step := bc.Step
|
||||
if step == 0 {
|
||||
step = 15
|
||||
}
|
||||
|
||||
if request.Mode != 0 {
|
||||
mode = request.Mode
|
||||
}
|
||||
|
||||
if request.Step != 0 {
|
||||
step = request.Step
|
||||
}
|
||||
|
||||
tempDir := ""
|
||||
if !b64JSON {
|
||||
tempDir = igbs.appConfig.ImageDir
|
||||
}
|
||||
// Create a temporary file
|
||||
outputFile, err := os.CreateTemp(tempDir, "b64")
|
||||
if err != nil {
|
||||
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: err}
|
||||
close(resultChannel)
|
||||
return
|
||||
}
|
||||
outputFile.Close()
|
||||
output := outputFile.Name() + ".png"
|
||||
// Rename the temporary file
|
||||
err = os.Rename(outputFile.Name(), output)
|
||||
if err != nil {
|
||||
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: err}
|
||||
close(resultChannel)
|
||||
return
|
||||
}
|
||||
|
||||
if request.Seed == nil {
|
||||
zVal := 0 // Idiomatic way to do this? Actually needed?
|
||||
request.Seed = &zVal
|
||||
}
|
||||
|
||||
fn, err := imageGeneration(height, width, mode, step, *request.Seed, positive_prompt, negative_prompt, src, output, igbs.ml, bc, igbs.appConfig)
|
||||
if err != nil {
|
||||
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: err}
|
||||
close(resultChannel)
|
||||
return
|
||||
}
|
||||
if err := fn(); err != nil {
|
||||
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: err}
|
||||
close(resultChannel)
|
||||
return
|
||||
}
|
||||
|
||||
item := &schema.Item{}
|
||||
|
||||
if b64JSON {
|
||||
defer os.RemoveAll(output)
|
||||
data, err := os.ReadFile(output)
|
||||
if err != nil {
|
||||
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: err}
|
||||
close(resultChannel)
|
||||
return
|
||||
}
|
||||
item.B64JSON = base64.StdEncoding.EncodeToString(data)
|
||||
} else {
|
||||
base := filepath.Base(output)
|
||||
item.URL = igbs.BaseUrlForGeneratedImages + base
|
||||
}
|
||||
|
||||
result = append(result, *item)
|
||||
}
|
||||
}
|
||||
|
||||
id := uuid.New().String()
|
||||
created := int(time.Now().Unix())
|
||||
resp := &schema.OpenAIResponse{
|
||||
ID: id,
|
||||
Created: created,
|
||||
Data: result,
|
||||
}
|
||||
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Value: resp}
|
||||
close(resultChannel)
|
||||
}(request)
|
||||
return resultChannel
|
||||
}
|
||||
|
||||
func imageGeneration(height, width, mode, step, seed int, positive_prompt, negative_prompt, src, dst string, loader *model.ModelLoader, backendConfig *config.BackendConfig, appConfig *config.ApplicationConfig) (func() error, error) {
|
||||
|
||||
func ImageGeneration(height, width, mode, step, seed int, positive_prompt, negative_prompt, src, dst string, loader *model.ModelLoader, backendConfig config.BackendConfig, appConfig *config.ApplicationConfig) (func() error, error) {
|
||||
threads := backendConfig.Threads
|
||||
if *threads == 0 && appConfig.Threads != 0 {
|
||||
threads = &appConfig.Threads
|
||||
}
|
||||
|
||||
gRPCOpts := gRPCModelOpts(backendConfig)
|
||||
|
||||
opts := modelOpts(backendConfig, appConfig, []model.Option{
|
||||
model.WithBackendString(backendConfig.Backend),
|
||||
model.WithAssetDir(appConfig.AssetsDestination),
|
||||
@@ -284,24 +50,3 @@ func imageGeneration(height, width, mode, step, seed int, positive_prompt, negat
|
||||
|
||||
return fn, nil
|
||||
}
|
||||
|
||||
// TODO: Replace this function with pkg/downloader - no reason to have a (crappier) bespoke download file fn here, but get things working before that change.
|
||||
func downloadFile(url string) (string, error) {
|
||||
// Get the data
|
||||
resp, err := http.Get(url)
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
defer resp.Body.Close()
|
||||
|
||||
// Create the file
|
||||
out, err := os.CreateTemp("", "image")
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
defer out.Close()
|
||||
|
||||
// Write the body to file
|
||||
_, err = io.Copy(out, resp.Body)
|
||||
return out.Name(), err
|
||||
}
|
||||
|
||||
@@ -11,22 +11,17 @@ import (
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
"github.com/go-skynet/LocalAI/core/schema"
|
||||
"github.com/rs/zerolog/log"
|
||||
|
||||
"github.com/go-skynet/LocalAI/pkg/concurrency"
|
||||
"github.com/go-skynet/LocalAI/pkg/gallery"
|
||||
"github.com/go-skynet/LocalAI/pkg/grpc"
|
||||
"github.com/go-skynet/LocalAI/pkg/grpc/proto"
|
||||
"github.com/go-skynet/LocalAI/pkg/model"
|
||||
model "github.com/go-skynet/LocalAI/pkg/model"
|
||||
"github.com/go-skynet/LocalAI/pkg/utils"
|
||||
)
|
||||
|
||||
type LLMRequest struct {
|
||||
Id int // TODO Remove if not used.
|
||||
Text string
|
||||
Images []string
|
||||
RawMessages []schema.Message
|
||||
// TODO: Other Modalities?
|
||||
type LLMResponse struct {
|
||||
Response string // should this be []byte?
|
||||
Usage TokenUsage
|
||||
}
|
||||
|
||||
type TokenUsage struct {
|
||||
@@ -34,94 +29,57 @@ type TokenUsage struct {
|
||||
Completion int
|
||||
}
|
||||
|
||||
type LLMResponse struct {
|
||||
Request *LLMRequest
|
||||
Response string // should this be []byte?
|
||||
Usage TokenUsage
|
||||
}
|
||||
|
||||
// TODO: Does this belong here or in core/services/openai.go?
|
||||
type LLMResponseBundle struct {
|
||||
Request *schema.OpenAIRequest
|
||||
Response []schema.Choice
|
||||
Usage TokenUsage
|
||||
}
|
||||
|
||||
type LLMBackendService struct {
|
||||
bcl *config.BackendConfigLoader
|
||||
ml *model.ModelLoader
|
||||
appConfig *config.ApplicationConfig
|
||||
ftMutex sync.Mutex
|
||||
cutstrings map[string]*regexp.Regexp
|
||||
}
|
||||
|
||||
func NewLLMBackendService(ml *model.ModelLoader, bcl *config.BackendConfigLoader, appConfig *config.ApplicationConfig) *LLMBackendService {
|
||||
return &LLMBackendService{
|
||||
bcl: bcl,
|
||||
ml: ml,
|
||||
appConfig: appConfig,
|
||||
ftMutex: sync.Mutex{},
|
||||
cutstrings: make(map[string]*regexp.Regexp),
|
||||
func ModelInference(ctx context.Context, s string, messages []schema.Message, images []string, loader *model.ModelLoader, c config.BackendConfig, o *config.ApplicationConfig, tokenCallback func(string, TokenUsage) bool) (func() (LLMResponse, error), error) {
|
||||
modelFile := c.Model
|
||||
threads := c.Threads
|
||||
if *threads == 0 && o.Threads != 0 {
|
||||
threads = &o.Threads
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: Should ctx param be removed and replaced with hardcoded req.Context?
|
||||
func (llmbs *LLMBackendService) Inference(ctx context.Context, req *LLMRequest, bc *config.BackendConfig, enableTokenChannel bool) (
|
||||
resultChannel <-chan concurrency.ErrorOr[*LLMResponse], tokenChannel <-chan concurrency.ErrorOr[*LLMResponse], err error) {
|
||||
|
||||
threads := bc.Threads
|
||||
if (threads == nil || *threads == 0) && llmbs.appConfig.Threads != 0 {
|
||||
threads = &llmbs.appConfig.Threads
|
||||
}
|
||||
|
||||
grpcOpts := gRPCModelOpts(bc)
|
||||
grpcOpts := gRPCModelOpts(c)
|
||||
|
||||
var inferenceModel grpc.Backend
|
||||
var err error
|
||||
|
||||
opts := modelOpts(bc, llmbs.appConfig, []model.Option{
|
||||
opts := modelOpts(c, o, []model.Option{
|
||||
model.WithLoadGRPCLoadModelOpts(grpcOpts),
|
||||
model.WithThreads(uint32(*threads)), // some models uses this to allocate threads during startup
|
||||
model.WithAssetDir(llmbs.appConfig.AssetsDestination),
|
||||
model.WithModel(bc.Model),
|
||||
model.WithContext(llmbs.appConfig.Context),
|
||||
model.WithAssetDir(o.AssetsDestination),
|
||||
model.WithModel(modelFile),
|
||||
model.WithContext(o.Context),
|
||||
})
|
||||
|
||||
if bc.Backend != "" {
|
||||
opts = append(opts, model.WithBackendString(bc.Backend))
|
||||
if c.Backend != "" {
|
||||
opts = append(opts, model.WithBackendString(c.Backend))
|
||||
}
|
||||
|
||||
// Check if bc.Model exists, if it doesn't try to load it from the gallery
|
||||
if llmbs.appConfig.AutoloadGalleries { // experimental
|
||||
if _, err := os.Stat(bc.Model); os.IsNotExist(err) {
|
||||
// Check if the modelFile exists, if it doesn't try to load it from the gallery
|
||||
if o.AutoloadGalleries { // experimental
|
||||
if _, err := os.Stat(modelFile); os.IsNotExist(err) {
|
||||
utils.ResetDownloadTimers()
|
||||
// if we failed to load the model, we try to download it
|
||||
err := gallery.InstallModelFromGalleryByName(llmbs.appConfig.Galleries, bc.Model, llmbs.appConfig.ModelPath, gallery.GalleryModel{}, utils.DisplayDownloadFunction)
|
||||
err := gallery.InstallModelFromGalleryByName(o.Galleries, modelFile, loader.ModelPath, gallery.GalleryModel{}, utils.DisplayDownloadFunction)
|
||||
if err != nil {
|
||||
return nil, nil, err
|
||||
return nil, err
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if bc.Backend == "" {
|
||||
log.Debug().Msgf("backend not known for %q, falling back to greedy loader to find it", bc.Model)
|
||||
inferenceModel, err = llmbs.ml.GreedyLoader(opts...)
|
||||
if c.Backend == "" {
|
||||
inferenceModel, err = loader.GreedyLoader(opts...)
|
||||
} else {
|
||||
inferenceModel, err = llmbs.ml.BackendLoader(opts...)
|
||||
inferenceModel, err = loader.BackendLoader(opts...)
|
||||
}
|
||||
|
||||
if err != nil {
|
||||
log.Error().Err(err).Msg("[llmbs.Inference] failed to load a backend")
|
||||
return
|
||||
return nil, err
|
||||
}
|
||||
|
||||
grpcPredOpts := gRPCPredictOpts(bc, llmbs.appConfig.ModelPath)
|
||||
grpcPredOpts.Prompt = req.Text
|
||||
grpcPredOpts.Images = req.Images
|
||||
|
||||
if bc.TemplateConfig.UseTokenizerTemplate && req.Text == "" {
|
||||
grpcPredOpts.UseTokenizerTemplate = true
|
||||
protoMessages := make([]*proto.Message, len(req.RawMessages), len(req.RawMessages))
|
||||
for i, message := range req.RawMessages {
|
||||
var protoMessages []*proto.Message
|
||||
// if we are using the tokenizer template, we need to convert the messages to proto messages
|
||||
// unless the prompt has already been tokenized (non-chat endpoints + functions)
|
||||
if c.TemplateConfig.UseTokenizerTemplate && s == "" {
|
||||
protoMessages = make([]*proto.Message, len(messages), len(messages))
|
||||
for i, message := range messages {
|
||||
protoMessages[i] = &proto.Message{
|
||||
Role: message.Role,
|
||||
}
|
||||
@@ -129,32 +87,47 @@ func (llmbs *LLMBackendService) Inference(ctx context.Context, req *LLMRequest,
|
||||
case string:
|
||||
protoMessages[i].Content = ct
|
||||
default:
|
||||
err = fmt.Errorf("unsupported type for schema.Message.Content for inference: %T", ct)
|
||||
return
|
||||
return nil, fmt.Errorf("Unsupported type for schema.Message.Content for inference: %T", ct)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
tokenUsage := TokenUsage{}
|
||||
// in GRPC, the backend is supposed to answer to 1 single token if stream is not supported
|
||||
fn := func() (LLMResponse, error) {
|
||||
opts := gRPCPredictOpts(c, loader.ModelPath)
|
||||
opts.Prompt = s
|
||||
opts.Messages = protoMessages
|
||||
opts.UseTokenizerTemplate = c.TemplateConfig.UseTokenizerTemplate
|
||||
opts.Images = images
|
||||
|
||||
promptInfo, pErr := inferenceModel.TokenizeString(ctx, grpcPredOpts)
|
||||
if pErr == nil && promptInfo.Length > 0 {
|
||||
tokenUsage.Prompt = int(promptInfo.Length)
|
||||
}
|
||||
tokenUsage := TokenUsage{}
|
||||
|
||||
rawResultChannel := make(chan concurrency.ErrorOr[*LLMResponse])
|
||||
// TODO this next line is the biggest argument for taking named return values _back_ out!!!
|
||||
var rawTokenChannel chan concurrency.ErrorOr[*LLMResponse]
|
||||
// check the per-model feature flag for usage, since tokenCallback may have a cost.
|
||||
// Defaults to off as for now it is still experimental
|
||||
if c.FeatureFlag.Enabled("usage") {
|
||||
userTokenCallback := tokenCallback
|
||||
if userTokenCallback == nil {
|
||||
userTokenCallback = func(token string, usage TokenUsage) bool {
|
||||
return true
|
||||
}
|
||||
}
|
||||
|
||||
if enableTokenChannel {
|
||||
rawTokenChannel = make(chan concurrency.ErrorOr[*LLMResponse])
|
||||
promptInfo, pErr := inferenceModel.TokenizeString(ctx, opts)
|
||||
if pErr == nil && promptInfo.Length > 0 {
|
||||
tokenUsage.Prompt = int(promptInfo.Length)
|
||||
}
|
||||
|
||||
// TODO Needs better name
|
||||
ss := ""
|
||||
tokenCallback = func(token string, usage TokenUsage) bool {
|
||||
tokenUsage.Completion++
|
||||
return userTokenCallback(token, tokenUsage)
|
||||
}
|
||||
}
|
||||
|
||||
if tokenCallback != nil {
|
||||
ss := ""
|
||||
|
||||
go func() {
|
||||
var partialRune []byte
|
||||
err := inferenceModel.PredictStream(ctx, grpcPredOpts, func(chars []byte) {
|
||||
err := inferenceModel.PredictStream(ctx, opts, func(chars []byte) {
|
||||
partialRune = append(partialRune, chars...)
|
||||
|
||||
for len(partialRune) > 0 {
|
||||
@@ -164,126 +137,54 @@ func (llmbs *LLMBackendService) Inference(ctx context.Context, req *LLMRequest,
|
||||
break
|
||||
}
|
||||
|
||||
tokenUsage.Completion++
|
||||
rawTokenChannel <- concurrency.ErrorOr[*LLMResponse]{Value: &LLMResponse{
|
||||
Response: string(r),
|
||||
Usage: tokenUsage,
|
||||
}}
|
||||
|
||||
tokenCallback(string(r), tokenUsage)
|
||||
ss += string(r)
|
||||
|
||||
partialRune = partialRune[size:]
|
||||
}
|
||||
})
|
||||
close(rawTokenChannel)
|
||||
return LLMResponse{
|
||||
Response: ss,
|
||||
Usage: tokenUsage,
|
||||
}, err
|
||||
} else {
|
||||
// TODO: Is the chicken bit the only way to get here? is that acceptable?
|
||||
reply, err := inferenceModel.Predict(ctx, opts)
|
||||
if err != nil {
|
||||
rawResultChannel <- concurrency.ErrorOr[*LLMResponse]{Error: err}
|
||||
} else {
|
||||
rawResultChannel <- concurrency.ErrorOr[*LLMResponse]{Value: &LLMResponse{
|
||||
Response: ss,
|
||||
Usage: tokenUsage,
|
||||
}}
|
||||
return LLMResponse{}, err
|
||||
}
|
||||
close(rawResultChannel)
|
||||
}()
|
||||
} else {
|
||||
go func() {
|
||||
reply, err := inferenceModel.Predict(ctx, grpcPredOpts)
|
||||
if tokenUsage.Prompt == 0 {
|
||||
tokenUsage.Prompt = int(reply.PromptTokens)
|
||||
}
|
||||
if tokenUsage.Completion == 0 {
|
||||
tokenUsage.Completion = int(reply.Tokens)
|
||||
}
|
||||
if err != nil {
|
||||
rawResultChannel <- concurrency.ErrorOr[*LLMResponse]{Error: err}
|
||||
close(rawResultChannel)
|
||||
} else {
|
||||
rawResultChannel <- concurrency.ErrorOr[*LLMResponse]{Value: &LLMResponse{
|
||||
Response: string(reply.Message),
|
||||
Usage: tokenUsage,
|
||||
}}
|
||||
close(rawResultChannel)
|
||||
}
|
||||
}()
|
||||
return LLMResponse{
|
||||
Response: string(reply.Message),
|
||||
Usage: tokenUsage,
|
||||
}, err
|
||||
}
|
||||
}
|
||||
|
||||
resultChannel = rawResultChannel
|
||||
tokenChannel = rawTokenChannel
|
||||
return
|
||||
return fn, nil
|
||||
}
|
||||
|
||||
// TODO: Should predInput be a seperate param still, or should this fn handle extracting it from request??
|
||||
func (llmbs *LLMBackendService) GenerateText(predInput string, request *schema.OpenAIRequest, bc *config.BackendConfig,
|
||||
mappingFn func(*LLMResponse) schema.Choice, enableCompletionChannels bool, enableTokenChannels bool) (
|
||||
// Returns:
|
||||
resultChannel <-chan concurrency.ErrorOr[*LLMResponseBundle], completionChannels []<-chan concurrency.ErrorOr[*LLMResponse], tokenChannels []<-chan concurrency.ErrorOr[*LLMResponse], err error) {
|
||||
var cutstrings map[string]*regexp.Regexp = make(map[string]*regexp.Regexp)
|
||||
var mu sync.Mutex = sync.Mutex{}
|
||||
|
||||
rawChannel := make(chan concurrency.ErrorOr[*LLMResponseBundle])
|
||||
resultChannel = rawChannel
|
||||
|
||||
if request.N == 0 { // number of completions to return
|
||||
request.N = 1
|
||||
}
|
||||
images := []string{}
|
||||
for _, m := range request.Messages {
|
||||
images = append(images, m.StringImages...)
|
||||
}
|
||||
|
||||
for i := 0; i < request.N; i++ {
|
||||
|
||||
individualResultChannel, tokenChannel, infErr := llmbs.Inference(request.Context, &LLMRequest{
|
||||
Text: predInput,
|
||||
Images: images,
|
||||
RawMessages: request.Messages,
|
||||
}, bc, enableTokenChannels)
|
||||
if infErr != nil {
|
||||
err = infErr // Avoids complaints about redeclaring err but looks dumb
|
||||
return
|
||||
}
|
||||
completionChannels = append(completionChannels, individualResultChannel)
|
||||
tokenChannels = append(tokenChannels, tokenChannel)
|
||||
}
|
||||
|
||||
go func() {
|
||||
initialBundle := LLMResponseBundle{
|
||||
Request: request,
|
||||
Response: []schema.Choice{},
|
||||
Usage: TokenUsage{},
|
||||
}
|
||||
|
||||
wg := concurrency.SliceOfChannelsReducer(completionChannels, rawChannel, func(iv concurrency.ErrorOr[*LLMResponse], ov concurrency.ErrorOr[*LLMResponseBundle]) concurrency.ErrorOr[*LLMResponseBundle] {
|
||||
if iv.Error != nil {
|
||||
ov.Error = iv.Error
|
||||
// TODO: Decide if we should wipe partials or not?
|
||||
return ov
|
||||
}
|
||||
ov.Value.Usage.Prompt += iv.Value.Usage.Prompt
|
||||
ov.Value.Usage.Completion += iv.Value.Usage.Completion
|
||||
|
||||
ov.Value.Response = append(ov.Value.Response, mappingFn(iv.Value))
|
||||
return ov
|
||||
}, concurrency.ErrorOr[*LLMResponseBundle]{Value: &initialBundle}, true)
|
||||
wg.Wait()
|
||||
|
||||
}()
|
||||
|
||||
return
|
||||
}
|
||||
|
||||
func (llmbs *LLMBackendService) Finetune(config config.BackendConfig, input, prediction string) string {
|
||||
func Finetune(config config.BackendConfig, input, prediction string) string {
|
||||
if config.Echo {
|
||||
prediction = input + prediction
|
||||
}
|
||||
|
||||
for _, c := range config.Cutstrings {
|
||||
llmbs.ftMutex.Lock()
|
||||
reg, ok := llmbs.cutstrings[c]
|
||||
mu.Lock()
|
||||
reg, ok := cutstrings[c]
|
||||
if !ok {
|
||||
llmbs.cutstrings[c] = regexp.MustCompile(c)
|
||||
reg = llmbs.cutstrings[c]
|
||||
cutstrings[c] = regexp.MustCompile(c)
|
||||
reg = cutstrings[c]
|
||||
}
|
||||
llmbs.ftMutex.Unlock()
|
||||
mu.Unlock()
|
||||
prediction = reg.ReplaceAllString(prediction, "")
|
||||
}
|
||||
|
||||
|
||||
@@ -7,10 +7,11 @@ import (
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
|
||||
model "github.com/go-skynet/LocalAI/pkg/model"
|
||||
"github.com/go-skynet/LocalAI/pkg/model"
|
||||
"github.com/rs/zerolog/log"
|
||||
)
|
||||
|
||||
func modelOpts(bc *config.BackendConfig, so *config.ApplicationConfig, opts []model.Option) []model.Option {
|
||||
func modelOpts(c config.BackendConfig, so *config.ApplicationConfig, opts []model.Option) []model.Option {
|
||||
if so.SingleBackend {
|
||||
opts = append(opts, model.WithSingleActiveBackend())
|
||||
}
|
||||
@@ -19,12 +20,12 @@ func modelOpts(bc *config.BackendConfig, so *config.ApplicationConfig, opts []mo
|
||||
opts = append(opts, model.EnableParallelRequests)
|
||||
}
|
||||
|
||||
if bc.GRPC.Attempts != 0 {
|
||||
opts = append(opts, model.WithGRPCAttempts(bc.GRPC.Attempts))
|
||||
if c.GRPC.Attempts != 0 {
|
||||
opts = append(opts, model.WithGRPCAttempts(c.GRPC.Attempts))
|
||||
}
|
||||
|
||||
if bc.GRPC.AttemptsSleepTime != 0 {
|
||||
opts = append(opts, model.WithGRPCAttemptsDelay(bc.GRPC.AttemptsSleepTime))
|
||||
if c.GRPC.AttemptsSleepTime != 0 {
|
||||
opts = append(opts, model.WithGRPCAttemptsDelay(c.GRPC.AttemptsSleepTime))
|
||||
}
|
||||
|
||||
for k, v := range so.ExternalGRPCBackends {
|
||||
@@ -34,7 +35,7 @@ func modelOpts(bc *config.BackendConfig, so *config.ApplicationConfig, opts []mo
|
||||
return opts
|
||||
}
|
||||
|
||||
func getSeed(c *config.BackendConfig) int32 {
|
||||
func getSeed(c config.BackendConfig) int32 {
|
||||
seed := int32(*c.Seed)
|
||||
if seed == config.RAND_SEED {
|
||||
seed = rand.Int31()
|
||||
@@ -43,7 +44,7 @@ func getSeed(c *config.BackendConfig) int32 {
|
||||
return seed
|
||||
}
|
||||
|
||||
func gRPCModelOpts(c *config.BackendConfig) *pb.ModelOptions {
|
||||
func gRPCModelOpts(c config.BackendConfig) *pb.ModelOptions {
|
||||
b := 512
|
||||
if c.Batch != 0 {
|
||||
b = c.Batch
|
||||
@@ -74,6 +75,7 @@ func gRPCModelOpts(c *config.BackendConfig) *pb.ModelOptions {
|
||||
EnforceEager: c.EnforceEager,
|
||||
SwapSpace: int32(c.SwapSpace),
|
||||
MaxModelLen: int32(c.MaxModelLen),
|
||||
TensorParallelSize: int32(c.TensorParallelSize),
|
||||
MMProj: c.MMProj,
|
||||
YarnExtFactor: c.YarnExtFactor,
|
||||
YarnAttnFactor: c.YarnAttnFactor,
|
||||
@@ -104,47 +106,51 @@ func gRPCModelOpts(c *config.BackendConfig) *pb.ModelOptions {
|
||||
}
|
||||
}
|
||||
|
||||
func gRPCPredictOpts(bc *config.BackendConfig, modelPath string) *pb.PredictOptions {
|
||||
func gRPCPredictOpts(c config.BackendConfig, modelPath string) *pb.PredictOptions {
|
||||
promptCachePath := ""
|
||||
if bc.PromptCachePath != "" {
|
||||
p := filepath.Join(modelPath, bc.PromptCachePath)
|
||||
os.MkdirAll(filepath.Dir(p), 0755)
|
||||
promptCachePath = p
|
||||
if c.PromptCachePath != "" {
|
||||
p := filepath.Join(modelPath, c.PromptCachePath)
|
||||
err := os.MkdirAll(filepath.Dir(p), 0750)
|
||||
if err == nil {
|
||||
promptCachePath = p
|
||||
} else {
|
||||
log.Error().Err(err).Str("promptCachePath", promptCachePath).Msg("error creating prompt cache folder")
|
||||
}
|
||||
}
|
||||
|
||||
return &pb.PredictOptions{
|
||||
Temperature: float32(*bc.Temperature),
|
||||
TopP: float32(*bc.TopP),
|
||||
NDraft: bc.NDraft,
|
||||
TopK: int32(*bc.TopK),
|
||||
Tokens: int32(*bc.Maxtokens),
|
||||
Threads: int32(*bc.Threads),
|
||||
PromptCacheAll: bc.PromptCacheAll,
|
||||
PromptCacheRO: bc.PromptCacheRO,
|
||||
Temperature: float32(*c.Temperature),
|
||||
TopP: float32(*c.TopP),
|
||||
NDraft: c.NDraft,
|
||||
TopK: int32(*c.TopK),
|
||||
Tokens: int32(*c.Maxtokens),
|
||||
Threads: int32(*c.Threads),
|
||||
PromptCacheAll: c.PromptCacheAll,
|
||||
PromptCacheRO: c.PromptCacheRO,
|
||||
PromptCachePath: promptCachePath,
|
||||
F16KV: *bc.F16,
|
||||
DebugMode: *bc.Debug,
|
||||
Grammar: bc.Grammar,
|
||||
NegativePromptScale: bc.NegativePromptScale,
|
||||
RopeFreqBase: bc.RopeFreqBase,
|
||||
RopeFreqScale: bc.RopeFreqScale,
|
||||
NegativePrompt: bc.NegativePrompt,
|
||||
Mirostat: int32(*bc.LLMConfig.Mirostat),
|
||||
MirostatETA: float32(*bc.LLMConfig.MirostatETA),
|
||||
MirostatTAU: float32(*bc.LLMConfig.MirostatTAU),
|
||||
Debug: *bc.Debug,
|
||||
StopPrompts: bc.StopWords,
|
||||
Repeat: int32(bc.RepeatPenalty),
|
||||
NKeep: int32(bc.Keep),
|
||||
Batch: int32(bc.Batch),
|
||||
IgnoreEOS: bc.IgnoreEOS,
|
||||
Seed: getSeed(bc),
|
||||
FrequencyPenalty: float32(bc.FrequencyPenalty),
|
||||
MLock: *bc.MMlock,
|
||||
MMap: *bc.MMap,
|
||||
MainGPU: bc.MainGPU,
|
||||
TensorSplit: bc.TensorSplit,
|
||||
TailFreeSamplingZ: float32(*bc.TFZ),
|
||||
TypicalP: float32(*bc.TypicalP),
|
||||
F16KV: *c.F16,
|
||||
DebugMode: *c.Debug,
|
||||
Grammar: c.Grammar,
|
||||
NegativePromptScale: c.NegativePromptScale,
|
||||
RopeFreqBase: c.RopeFreqBase,
|
||||
RopeFreqScale: c.RopeFreqScale,
|
||||
NegativePrompt: c.NegativePrompt,
|
||||
Mirostat: int32(*c.LLMConfig.Mirostat),
|
||||
MirostatETA: float32(*c.LLMConfig.MirostatETA),
|
||||
MirostatTAU: float32(*c.LLMConfig.MirostatTAU),
|
||||
Debug: *c.Debug,
|
||||
StopPrompts: c.StopWords,
|
||||
Repeat: int32(c.RepeatPenalty),
|
||||
NKeep: int32(c.Keep),
|
||||
Batch: int32(c.Batch),
|
||||
IgnoreEOS: c.IgnoreEOS,
|
||||
Seed: getSeed(c),
|
||||
FrequencyPenalty: float32(c.FrequencyPenalty),
|
||||
MLock: *c.MMlock,
|
||||
MMap: *c.MMap,
|
||||
MainGPU: c.MainGPU,
|
||||
TensorSplit: c.TensorSplit,
|
||||
TailFreeSamplingZ: float32(*c.TFZ),
|
||||
TypicalP: float32(*c.TypicalP),
|
||||
}
|
||||
}
|
||||
|
||||
39
core/backend/rerank.go
Normal file
39
core/backend/rerank.go
Normal file
@@ -0,0 +1,39 @@
|
||||
package backend
|
||||
|
||||
import (
|
||||
"context"
|
||||
"fmt"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
"github.com/go-skynet/LocalAI/pkg/grpc/proto"
|
||||
model "github.com/go-skynet/LocalAI/pkg/model"
|
||||
)
|
||||
|
||||
func Rerank(backend, modelFile string, request *proto.RerankRequest, loader *model.ModelLoader, appConfig *config.ApplicationConfig, backendConfig config.BackendConfig) (*proto.RerankResult, error) {
|
||||
bb := backend
|
||||
if bb == "" {
|
||||
return nil, fmt.Errorf("backend is required")
|
||||
}
|
||||
|
||||
grpcOpts := gRPCModelOpts(backendConfig)
|
||||
|
||||
opts := modelOpts(config.BackendConfig{}, appConfig, []model.Option{
|
||||
model.WithBackendString(bb),
|
||||
model.WithModel(modelFile),
|
||||
model.WithContext(appConfig.Context),
|
||||
model.WithAssetDir(appConfig.AssetsDestination),
|
||||
model.WithLoadGRPCLoadModelOpts(grpcOpts),
|
||||
})
|
||||
rerankModel, err := loader.BackendLoader(opts...)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if rerankModel == nil {
|
||||
return nil, fmt.Errorf("could not load rerank model")
|
||||
}
|
||||
|
||||
res, err := rerankModel.Rerank(context.Background(), request)
|
||||
|
||||
return res, err
|
||||
}
|
||||
@@ -7,48 +7,11 @@ import (
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
"github.com/go-skynet/LocalAI/core/schema"
|
||||
|
||||
"github.com/go-skynet/LocalAI/pkg/concurrency"
|
||||
"github.com/go-skynet/LocalAI/pkg/grpc/proto"
|
||||
"github.com/go-skynet/LocalAI/pkg/model"
|
||||
model "github.com/go-skynet/LocalAI/pkg/model"
|
||||
)
|
||||
|
||||
type TranscriptionBackendService struct {
|
||||
ml *model.ModelLoader
|
||||
bcl *config.BackendConfigLoader
|
||||
appConfig *config.ApplicationConfig
|
||||
}
|
||||
|
||||
func NewTranscriptionBackendService(ml *model.ModelLoader, bcl *config.BackendConfigLoader, appConfig *config.ApplicationConfig) *TranscriptionBackendService {
|
||||
return &TranscriptionBackendService{
|
||||
ml: ml,
|
||||
bcl: bcl,
|
||||
appConfig: appConfig,
|
||||
}
|
||||
}
|
||||
|
||||
func (tbs *TranscriptionBackendService) Transcribe(request *schema.OpenAIRequest) <-chan concurrency.ErrorOr[*schema.TranscriptionResult] {
|
||||
responseChannel := make(chan concurrency.ErrorOr[*schema.TranscriptionResult])
|
||||
go func(request *schema.OpenAIRequest) {
|
||||
bc, request, err := tbs.bcl.LoadBackendConfigForModelAndOpenAIRequest(request.Model, request, tbs.appConfig)
|
||||
if err != nil {
|
||||
responseChannel <- concurrency.ErrorOr[*schema.TranscriptionResult]{Error: fmt.Errorf("failed reading parameters from request:%w", err)}
|
||||
close(responseChannel)
|
||||
return
|
||||
}
|
||||
|
||||
tr, err := modelTranscription(request.File, request.Language, tbs.ml, bc, tbs.appConfig)
|
||||
if err != nil {
|
||||
responseChannel <- concurrency.ErrorOr[*schema.TranscriptionResult]{Error: err}
|
||||
close(responseChannel)
|
||||
return
|
||||
}
|
||||
responseChannel <- concurrency.ErrorOr[*schema.TranscriptionResult]{Value: tr}
|
||||
close(responseChannel)
|
||||
}(request)
|
||||
return responseChannel
|
||||
}
|
||||
|
||||
func modelTranscription(audio, language string, ml *model.ModelLoader, backendConfig *config.BackendConfig, appConfig *config.ApplicationConfig) (*schema.TranscriptionResult, error) {
|
||||
func ModelTranscription(audio, language string, ml *model.ModelLoader, backendConfig config.BackendConfig, appConfig *config.ApplicationConfig) (*schema.TranscriptionResult, error) {
|
||||
|
||||
opts := modelOpts(backendConfig, appConfig, []model.Option{
|
||||
model.WithBackendString(model.WhisperBackend),
|
||||
|
||||
@@ -7,60 +7,29 @@ import (
|
||||
"path/filepath"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
"github.com/go-skynet/LocalAI/core/schema"
|
||||
|
||||
"github.com/go-skynet/LocalAI/pkg/concurrency"
|
||||
"github.com/go-skynet/LocalAI/pkg/grpc/proto"
|
||||
"github.com/go-skynet/LocalAI/pkg/model"
|
||||
model "github.com/go-skynet/LocalAI/pkg/model"
|
||||
"github.com/go-skynet/LocalAI/pkg/utils"
|
||||
)
|
||||
|
||||
type TextToSpeechBackendService struct {
|
||||
ml *model.ModelLoader
|
||||
bcl *config.BackendConfigLoader
|
||||
appConfig *config.ApplicationConfig
|
||||
}
|
||||
func generateUniqueFileName(dir, baseName, ext string) string {
|
||||
counter := 1
|
||||
fileName := baseName + ext
|
||||
|
||||
func NewTextToSpeechBackendService(ml *model.ModelLoader, bcl *config.BackendConfigLoader, appConfig *config.ApplicationConfig) *TextToSpeechBackendService {
|
||||
return &TextToSpeechBackendService{
|
||||
ml: ml,
|
||||
bcl: bcl,
|
||||
appConfig: appConfig,
|
||||
for {
|
||||
filePath := filepath.Join(dir, fileName)
|
||||
_, err := os.Stat(filePath)
|
||||
if os.IsNotExist(err) {
|
||||
return fileName
|
||||
}
|
||||
|
||||
counter++
|
||||
fileName = fmt.Sprintf("%s_%d%s", baseName, counter, ext)
|
||||
}
|
||||
}
|
||||
|
||||
func (ttsbs *TextToSpeechBackendService) TextToAudioFile(request *schema.TTSRequest) <-chan concurrency.ErrorOr[*string] {
|
||||
responseChannel := make(chan concurrency.ErrorOr[*string])
|
||||
go func(request *schema.TTSRequest) {
|
||||
cfg, err := ttsbs.bcl.LoadBackendConfigFileByName(request.Model, ttsbs.appConfig.ModelPath,
|
||||
config.LoadOptionDebug(ttsbs.appConfig.Debug),
|
||||
config.LoadOptionThreads(ttsbs.appConfig.Threads),
|
||||
config.LoadOptionContextSize(ttsbs.appConfig.ContextSize),
|
||||
config.LoadOptionF16(ttsbs.appConfig.F16),
|
||||
)
|
||||
if err != nil {
|
||||
responseChannel <- concurrency.ErrorOr[*string]{Error: err}
|
||||
close(responseChannel)
|
||||
return
|
||||
}
|
||||
|
||||
if request.Backend != "" {
|
||||
cfg.Backend = request.Backend
|
||||
}
|
||||
|
||||
outFile, _, err := modelTTS(cfg.Backend, request.Input, cfg.Model, request.Voice, ttsbs.ml, ttsbs.appConfig, cfg)
|
||||
if err != nil {
|
||||
responseChannel <- concurrency.ErrorOr[*string]{Error: err}
|
||||
close(responseChannel)
|
||||
return
|
||||
}
|
||||
responseChannel <- concurrency.ErrorOr[*string]{Value: &outFile}
|
||||
close(responseChannel)
|
||||
}(request)
|
||||
return responseChannel
|
||||
}
|
||||
|
||||
func modelTTS(backend, text, modelFile string, voice string, loader *model.ModelLoader, appConfig *config.ApplicationConfig, backendConfig *config.BackendConfig) (string, *proto.Result, error) {
|
||||
func ModelTTS(backend, text, modelFile, voice string, loader *model.ModelLoader, appConfig *config.ApplicationConfig, backendConfig config.BackendConfig) (string, *proto.Result, error) {
|
||||
bb := backend
|
||||
if bb == "" {
|
||||
bb = model.PiperBackend
|
||||
@@ -68,7 +37,7 @@ func modelTTS(backend, text, modelFile string, voice string, loader *model.Model
|
||||
|
||||
grpcOpts := gRPCModelOpts(backendConfig)
|
||||
|
||||
opts := modelOpts(&config.BackendConfig{}, appConfig, []model.Option{
|
||||
opts := modelOpts(config.BackendConfig{}, appConfig, []model.Option{
|
||||
model.WithBackendString(bb),
|
||||
model.WithModel(modelFile),
|
||||
model.WithContext(appConfig.Context),
|
||||
@@ -84,7 +53,7 @@ func modelTTS(backend, text, modelFile string, voice string, loader *model.Model
|
||||
return "", nil, fmt.Errorf("could not load piper model")
|
||||
}
|
||||
|
||||
if err := os.MkdirAll(appConfig.AudioDir, 0755); err != nil {
|
||||
if err := os.MkdirAll(appConfig.AudioDir, 0750); err != nil {
|
||||
return "", nil, fmt.Errorf("failed creating audio directory: %s", err)
|
||||
}
|
||||
|
||||
@@ -118,19 +87,3 @@ func modelTTS(backend, text, modelFile string, voice string, loader *model.Model
|
||||
|
||||
return filePath, res, err
|
||||
}
|
||||
|
||||
func generateUniqueFileName(dir, baseName, ext string) string {
|
||||
counter := 1
|
||||
fileName := baseName + ext
|
||||
|
||||
for {
|
||||
filePath := filepath.Join(dir, fileName)
|
||||
_, err := os.Stat(filePath)
|
||||
if os.IsNotExist(err) {
|
||||
return fileName
|
||||
}
|
||||
|
||||
counter++
|
||||
fileName = fmt.Sprintf("%s_%d%s", baseName, counter, ext)
|
||||
}
|
||||
}
|
||||
|
||||
@@ -4,7 +4,7 @@ import "embed"
|
||||
|
||||
type Context struct {
|
||||
Debug bool `env:"LOCALAI_DEBUG,DEBUG" default:"false" hidden:"" help:"DEPRECATED, use --log-level=debug instead. Enable debug logging"`
|
||||
LogLevel *string `env:"LOCALAI_LOG_LEVEL" enum:"error,warn,info,debug" help:"Set the level of logs to output [${enum}]"`
|
||||
LogLevel *string `env:"LOCALAI_LOG_LEVEL" enum:"error,warn,info,debug,trace" help:"Set the level of logs to output [${enum}]"`
|
||||
|
||||
// This field is not a command line argument/flag, the struct tag excludes it from the parsed CLI
|
||||
BackendAssets embed.FS `kong:"-"`
|
||||
|
||||
@@ -25,7 +25,7 @@ type ModelsInstall struct {
|
||||
}
|
||||
|
||||
type ModelsCMD struct {
|
||||
List ModelsList `cmd:"" help:"List the models avaiable in your galleries" default:"withargs"`
|
||||
List ModelsList `cmd:"" help:"List the models available in your galleries" default:"withargs"`
|
||||
Install ModelsInstall `cmd:"" help:"Install a model from the gallery"`
|
||||
}
|
||||
|
||||
@@ -64,7 +64,11 @@ func (mi *ModelsInstall) Run(ctx *Context) error {
|
||||
progressbar.OptionClearOnFinish(),
|
||||
)
|
||||
progressCallback := func(fileName string, current string, total string, percentage float64) {
|
||||
progressBar.Set(int(percentage * 10))
|
||||
v := int(percentage * 10)
|
||||
err := progressBar.Set(v)
|
||||
if err != nil {
|
||||
log.Error().Err(err).Str("filename", fileName).Int("value", v).Msg("error while updating progress bar")
|
||||
}
|
||||
}
|
||||
err := gallery.InstallModelFromGallery(galleries, modelName, mi.ModelsPath, gallery.GalleryModel{}, progressCallback)
|
||||
if err != nil {
|
||||
|
||||
@@ -2,30 +2,31 @@ package cli
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"os"
|
||||
"strings"
|
||||
"time"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
"github.com/go-skynet/LocalAI/core/http"
|
||||
"github.com/go-skynet/LocalAI/core/startup"
|
||||
"github.com/rs/zerolog"
|
||||
"github.com/rs/zerolog/log"
|
||||
)
|
||||
|
||||
type RunCMD struct {
|
||||
ModelArgs []string `arg:"" optional:"" name:"models" help:"Model configuration URLs to load"`
|
||||
|
||||
ModelsPath string `env:"LOCALAI_MODELS_PATH,MODELS_PATH" type:"path" default:"${basepath}/models" help:"Path containing models used for inferencing" group:"storage"`
|
||||
BackendAssetsPath string `env:"LOCALAI_BACKEND_ASSETS_PATH,BACKEND_ASSETS_PATH" type:"path" default:"/tmp/localai/backend_data" help:"Path used to extract libraries that are required by some of the backends in runtime" group:"storage"`
|
||||
ImagePath string `env:"LOCALAI_IMAGE_PATH,IMAGE_PATH" type:"path" default:"/tmp/generated/images" help:"Location for images generated by backends (e.g. stablediffusion)" group:"storage"`
|
||||
AudioPath string `env:"LOCALAI_AUDIO_PATH,AUDIO_PATH" type:"path" default:"/tmp/generated/audio" help:"Location for audio generated by backends (e.g. piper)" group:"storage"`
|
||||
UploadPath string `env:"LOCALAI_UPLOAD_PATH,UPLOAD_PATH" type:"path" default:"/tmp/localai/upload" help:"Path to store uploads from files api" group:"storage"`
|
||||
ConfigPath string `env:"LOCALAI_CONFIG_PATH,CONFIG_PATH" default:"/tmp/localai/config" group:"storage"`
|
||||
LocalaiConfigDir string `env:"LOCALAI_CONFIG_DIR" type:"path" default:"${basepath}/configuration" help:"Directory for dynamic loading of certain configuration files (currently api_keys.json and external_backends.json)" group:"storage"`
|
||||
ModelsPath string `env:"LOCALAI_MODELS_PATH,MODELS_PATH" type:"path" default:"${basepath}/models" help:"Path containing models used for inferencing" group:"storage"`
|
||||
BackendAssetsPath string `env:"LOCALAI_BACKEND_ASSETS_PATH,BACKEND_ASSETS_PATH" type:"path" default:"/tmp/localai/backend_data" help:"Path used to extract libraries that are required by some of the backends in runtime" group:"storage"`
|
||||
ImagePath string `env:"LOCALAI_IMAGE_PATH,IMAGE_PATH" type:"path" default:"/tmp/generated/images" help:"Location for images generated by backends (e.g. stablediffusion)" group:"storage"`
|
||||
AudioPath string `env:"LOCALAI_AUDIO_PATH,AUDIO_PATH" type:"path" default:"/tmp/generated/audio" help:"Location for audio generated by backends (e.g. piper)" group:"storage"`
|
||||
UploadPath string `env:"LOCALAI_UPLOAD_PATH,UPLOAD_PATH" type:"path" default:"/tmp/localai/upload" help:"Path to store uploads from files api" group:"storage"`
|
||||
ConfigPath string `env:"LOCALAI_CONFIG_PATH,CONFIG_PATH" default:"/tmp/localai/config" group:"storage"`
|
||||
LocalaiConfigDir string `env:"LOCALAI_CONFIG_DIR" type:"path" default:"${basepath}/configuration" help:"Directory for dynamic loading of certain configuration files (currently api_keys.json and external_backends.json)" group:"storage"`
|
||||
LocalaiConfigDirPollInterval time.Duration `env:"LOCALAI_CONFIG_DIR_POLL_INTERVAL" help:"Typically the config path picks up changes automatically, but if your system has broken fsnotify events, set this to an interval to poll the LocalAI Config Dir (example: 1m)" group:"storage"`
|
||||
// The alias on this option is there to preserve functionality with the old `--config-file` parameter
|
||||
ModelsConfigFile string `env:"LOCALAI_MODELS_CONFIG_FILE,CONFIG_FILE" aliases:"config-file" help:"YAML file containing a list of model backend configs" group:"storage"`
|
||||
|
||||
Galleries string `env:"LOCALAI_GALLERIES,GALLERIES" help:"JSON list of galleries" group:"models"`
|
||||
Galleries string `env:"LOCALAI_GALLERIES,GALLERIES" help:"JSON list of galleries" group:"models" default:"${galleries}"`
|
||||
AutoloadGalleries bool `env:"LOCALAI_AUTOLOAD_GALLERIES,AUTOLOAD_GALLERIES" group:"models"`
|
||||
RemoteLibrary string `env:"LOCALAI_REMOTE_LIBRARY,REMOTE_LIBRARY" default:"${remoteLibraryURL}" help:"A LocalAI remote library URL" group:"models"`
|
||||
PreloadModels string `env:"LOCALAI_PRELOAD_MODELS,PRELOAD_MODELS" help:"A List of models to apply in JSON at start" group:"models"`
|
||||
@@ -41,7 +42,7 @@ type RunCMD struct {
|
||||
CORSAllowOrigins string `env:"LOCALAI_CORS_ALLOW_ORIGINS,CORS_ALLOW_ORIGINS" group:"api"`
|
||||
UploadLimit int `env:"LOCALAI_UPLOAD_LIMIT,UPLOAD_LIMIT" default:"15" help:"Default upload-limit in MB" group:"api"`
|
||||
APIKeys []string `env:"LOCALAI_API_KEY,API_KEY" help:"List of API Keys to enable API authentication. When this is set, all the requests must be authenticated with one of these API keys" group:"api"`
|
||||
DisableWelcome bool `env:"LOCALAI_DISABLE_WELCOME,DISABLE_WELCOME" default:"false" help:"Disable welcome pages" group:"api"`
|
||||
DisableWebUI bool `env:"LOCALAI_DISABLE_WEBUI,DISABLE_WEBUI" default:"false" help:"Disable webui" group:"api"`
|
||||
|
||||
ParallelRequests bool `env:"LOCALAI_PARALLEL_REQUESTS,PARALLEL_REQUESTS" help:"Enable backends to handle multiple requests in parallel if they support it (e.g.: llama.cpp or vllm)" group:"backends"`
|
||||
SingleActiveBackend bool `env:"LOCALAI_SINGLE_ACTIVE_BACKEND,SINGLE_ACTIVE_BACKEND" help:"Allow only one backend to be run at a time" group:"backends"`
|
||||
@@ -60,15 +61,16 @@ func (r *RunCMD) Run(ctx *Context) error {
|
||||
config.WithYAMLConfigPreload(r.PreloadModelsConfig),
|
||||
config.WithModelPath(r.ModelsPath),
|
||||
config.WithContextSize(r.ContextSize),
|
||||
config.WithDebug(*ctx.LogLevel == "debug"),
|
||||
config.WithDebug(zerolog.GlobalLevel() <= zerolog.DebugLevel),
|
||||
config.WithImageDir(r.ImagePath),
|
||||
config.WithAudioDir(r.AudioPath),
|
||||
config.WithUploadDir(r.UploadPath),
|
||||
config.WithConfigsDir(r.ConfigPath),
|
||||
config.WithDynamicConfigDir(r.LocalaiConfigDir),
|
||||
config.WithDynamicConfigDirPollInterval(r.LocalaiConfigDirPollInterval),
|
||||
config.WithF16(r.F16),
|
||||
config.WithStringGalleries(r.Galleries),
|
||||
config.WithModelLibraryURL(r.RemoteLibrary),
|
||||
config.WithDisableMessage(false),
|
||||
config.WithCors(r.CORS),
|
||||
config.WithCorsAllowOrigins(r.CORSAllowOrigins),
|
||||
config.WithThreads(r.Threads),
|
||||
@@ -82,8 +84,8 @@ func (r *RunCMD) Run(ctx *Context) error {
|
||||
idleWatchDog := r.EnableWatchdogIdle
|
||||
busyWatchDog := r.EnableWatchdogBusy
|
||||
|
||||
if r.DisableWelcome {
|
||||
opts = append(opts, config.DisableWelcomePage)
|
||||
if r.DisableWebUI {
|
||||
opts = append(opts, config.DisableWebUI)
|
||||
}
|
||||
|
||||
if idleWatchDog || busyWatchDog {
|
||||
@@ -124,28 +126,16 @@ func (r *RunCMD) Run(ctx *Context) error {
|
||||
}
|
||||
|
||||
if r.PreloadBackendOnly {
|
||||
_, err := startup.Startup(opts...)
|
||||
_, _, _, err := startup.Startup(opts...)
|
||||
return err
|
||||
}
|
||||
|
||||
application, err := startup.Startup(opts...)
|
||||
|
||||
cl, ml, options, err := startup.Startup(opts...)
|
||||
if err != nil {
|
||||
return fmt.Errorf("failed basic startup tasks with error %s", err.Error())
|
||||
}
|
||||
|
||||
// Watch the configuration directory
|
||||
// If the directory does not exist, we don't watch it
|
||||
if _, err := os.Stat(r.LocalaiConfigDir); err == nil {
|
||||
closeConfigWatcherFn, err := startup.WatchConfigDirectory(r.LocalaiConfigDir, application.ApplicationConfig)
|
||||
defer closeConfigWatcherFn()
|
||||
|
||||
if err != nil {
|
||||
return fmt.Errorf("failed while watching configuration directory %s", r.LocalaiConfigDir)
|
||||
}
|
||||
}
|
||||
|
||||
appHTTP, err := http.App(application)
|
||||
appHTTP, err := http.App(cl, ml, options)
|
||||
if err != nil {
|
||||
log.Error().Err(err).Msg("error during HTTP App construction")
|
||||
return err
|
||||
|
||||
@@ -7,8 +7,8 @@ import (
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/backend"
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
"github.com/go-skynet/LocalAI/core/schema"
|
||||
"github.com/go-skynet/LocalAI/pkg/model"
|
||||
"github.com/rs/zerolog/log"
|
||||
)
|
||||
|
||||
type TranscriptCMD struct {
|
||||
@@ -42,23 +42,18 @@ func (t *TranscriptCMD) Run(ctx *Context) error {
|
||||
|
||||
c.Threads = &t.Threads
|
||||
|
||||
defer ml.StopAllGRPC()
|
||||
defer func() {
|
||||
err := ml.StopAllGRPC()
|
||||
if err != nil {
|
||||
log.Error().Err(err).Msg("unable to stop all grpc processes")
|
||||
}
|
||||
}()
|
||||
|
||||
tbs := backend.NewTranscriptionBackendService(ml, cl, opts)
|
||||
|
||||
resultChannel := tbs.Transcribe(&schema.OpenAIRequest{
|
||||
PredictionOptions: schema.PredictionOptions{
|
||||
Language: t.Language,
|
||||
},
|
||||
File: t.Filename,
|
||||
})
|
||||
|
||||
r := <-resultChannel
|
||||
|
||||
if r.Error != nil {
|
||||
return r.Error
|
||||
tr, err := backend.ModelTranscription(t.Filename, t.Language, ml, c, opts)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
for _, segment := range r.Value.Segments {
|
||||
for _, segment := range tr.Segments {
|
||||
fmt.Println(segment.Start.String(), "-", segment.Text)
|
||||
}
|
||||
return nil
|
||||
|
||||
@@ -9,8 +9,8 @@ import (
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/backend"
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
"github.com/go-skynet/LocalAI/core/schema"
|
||||
"github.com/go-skynet/LocalAI/pkg/model"
|
||||
"github.com/rs/zerolog/log"
|
||||
)
|
||||
|
||||
type TTSCMD struct {
|
||||
@@ -41,31 +41,27 @@ func (t *TTSCMD) Run(ctx *Context) error {
|
||||
}
|
||||
ml := model.NewModelLoader(opts.ModelPath)
|
||||
|
||||
defer ml.StopAllGRPC()
|
||||
defer func() {
|
||||
err := ml.StopAllGRPC()
|
||||
if err != nil {
|
||||
log.Error().Err(err).Msg("unable to stop all grpc processes")
|
||||
}
|
||||
}()
|
||||
|
||||
ttsbs := backend.NewTextToSpeechBackendService(ml, config.NewBackendConfigLoader(), opts)
|
||||
options := config.BackendConfig{}
|
||||
options.SetDefaults()
|
||||
|
||||
request := &schema.TTSRequest{
|
||||
Model: t.Model,
|
||||
Input: text,
|
||||
Backend: t.Backend,
|
||||
Voice: t.Voice,
|
||||
}
|
||||
|
||||
resultsChannel := ttsbs.TextToAudioFile(request)
|
||||
|
||||
rawResult := <-resultsChannel
|
||||
|
||||
if rawResult.Error != nil {
|
||||
return rawResult.Error
|
||||
filePath, _, err := backend.ModelTTS(t.Backend, text, t.Model, t.Voice, ml, opts, options)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
if outputFile != "" {
|
||||
if err := os.Rename(*rawResult.Value, outputFile); err != nil {
|
||||
if err := os.Rename(filePath, outputFile); err != nil {
|
||||
return err
|
||||
}
|
||||
fmt.Printf("Generated file %q\n", outputFile)
|
||||
fmt.Printf("Generate file %s\n", outputFile)
|
||||
} else {
|
||||
fmt.Printf("Generated file %q\n", *rawResult.Value)
|
||||
fmt.Printf("Generate file %s\n", filePath)
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
@@ -15,13 +15,15 @@ type ApplicationConfig struct {
|
||||
ConfigFile string
|
||||
ModelPath string
|
||||
UploadLimitMB, Threads, ContextSize int
|
||||
DisableWelcomePage bool
|
||||
DisableWebUI bool
|
||||
F16 bool
|
||||
Debug, DisableMessage bool
|
||||
Debug bool
|
||||
ImageDir string
|
||||
AudioDir string
|
||||
UploadDir string
|
||||
ConfigsDir string
|
||||
DynamicConfigsDir string
|
||||
DynamicConfigsDirPollInterval time.Duration
|
||||
CORS bool
|
||||
PreloadJSONModels string
|
||||
PreloadModelsFromPath string
|
||||
@@ -55,12 +57,11 @@ type AppOption func(*ApplicationConfig)
|
||||
|
||||
func NewApplicationConfig(o ...AppOption) *ApplicationConfig {
|
||||
opt := &ApplicationConfig{
|
||||
Context: context.Background(),
|
||||
UploadLimitMB: 15,
|
||||
Threads: 1,
|
||||
ContextSize: 512,
|
||||
Debug: true,
|
||||
DisableMessage: true,
|
||||
Context: context.Background(),
|
||||
UploadLimitMB: 15,
|
||||
Threads: 1,
|
||||
ContextSize: 512,
|
||||
Debug: true,
|
||||
}
|
||||
for _, oo := range o {
|
||||
oo(opt)
|
||||
@@ -106,8 +107,8 @@ var EnableWatchDogBusyCheck = func(o *ApplicationConfig) {
|
||||
o.WatchDogBusy = true
|
||||
}
|
||||
|
||||
var DisableWelcomePage = func(o *ApplicationConfig) {
|
||||
o.DisableWelcomePage = true
|
||||
var DisableWebUI = func(o *ApplicationConfig) {
|
||||
o.DisableWebUI = true
|
||||
}
|
||||
|
||||
func SetWatchDogBusyTimeout(t time.Duration) AppOption {
|
||||
@@ -234,12 +235,6 @@ func WithDebug(debug bool) AppOption {
|
||||
}
|
||||
}
|
||||
|
||||
func WithDisableMessage(disableMessage bool) AppOption {
|
||||
return func(o *ApplicationConfig) {
|
||||
o.DisableMessage = disableMessage
|
||||
}
|
||||
}
|
||||
|
||||
func WithAudioDir(audioDir string) AppOption {
|
||||
return func(o *ApplicationConfig) {
|
||||
o.AudioDir = audioDir
|
||||
@@ -264,6 +259,18 @@ func WithConfigsDir(configsDir string) AppOption {
|
||||
}
|
||||
}
|
||||
|
||||
func WithDynamicConfigDir(dynamicConfigsDir string) AppOption {
|
||||
return func(o *ApplicationConfig) {
|
||||
o.DynamicConfigsDir = dynamicConfigsDir
|
||||
}
|
||||
}
|
||||
|
||||
func WithDynamicConfigDirPollInterval(interval time.Duration) AppOption {
|
||||
return func(o *ApplicationConfig) {
|
||||
o.DynamicConfigsDirPollInterval = interval
|
||||
}
|
||||
}
|
||||
|
||||
func WithApiKeys(apiKeys []string) AppOption {
|
||||
return func(o *ApplicationConfig) {
|
||||
o.ApiKeys = apiKeys
|
||||
|
||||
@@ -1,7 +1,12 @@
|
||||
package config
|
||||
|
||||
import (
|
||||
"os"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/schema"
|
||||
"github.com/go-skynet/LocalAI/pkg/downloader"
|
||||
"github.com/go-skynet/LocalAI/pkg/functions"
|
||||
"github.com/go-skynet/LocalAI/pkg/utils"
|
||||
)
|
||||
|
||||
const (
|
||||
@@ -24,7 +29,7 @@ type BackendConfig struct {
|
||||
InputToken [][]int `yaml:"-"`
|
||||
functionCallString, functionCallNameString string `yaml:"-"`
|
||||
|
||||
FunctionsConfig Functions `yaml:"function"`
|
||||
FunctionsConfig functions.FunctionsConfig `yaml:"function"`
|
||||
|
||||
FeatureFlag FeatureFlag `yaml:"feature_flags"` // Feature Flag registry. We move fast, and features may break on a per model/backend basis. Registry for (usually temporary) flags that indicate aborting something early.
|
||||
// LLM configs (GPT4ALL, Llama.cpp, ...)
|
||||
@@ -124,6 +129,7 @@ type LLMConfig struct {
|
||||
EnforceEager bool `yaml:"enforce_eager"` // vLLM
|
||||
SwapSpace int `yaml:"swap_space"` // vLLM
|
||||
MaxModelLen int `yaml:"max_model_len"` // vLLM
|
||||
TensorParallelSize int `yaml:"tensor_parallel_size"` // vLLM
|
||||
MMProj string `yaml:"mmproj"`
|
||||
|
||||
RopeScaling string `yaml:"rope_scaling"`
|
||||
@@ -142,13 +148,6 @@ type AutoGPTQ struct {
|
||||
UseFastTokenizer bool `yaml:"use_fast_tokenizer"`
|
||||
}
|
||||
|
||||
type Functions struct {
|
||||
DisableNoAction bool `yaml:"disable_no_action"`
|
||||
NoActionFunctionName string `yaml:"no_action_function_name"`
|
||||
NoActionDescriptionName string `yaml:"no_action_description_name"`
|
||||
ParallelCalls bool `yaml:"parallel_calls"`
|
||||
}
|
||||
|
||||
type TemplateConfig struct {
|
||||
Chat string `yaml:"chat"`
|
||||
ChatMessage string `yaml:"chat_message"`
|
||||
@@ -174,6 +173,36 @@ func (c *BackendConfig) ShouldCallSpecificFunction() bool {
|
||||
return len(c.functionCallNameString) > 0
|
||||
}
|
||||
|
||||
// MMProjFileName returns the filename of the MMProj file
|
||||
// If the MMProj is a URL, it will return the MD5 of the URL which is the filename
|
||||
func (c *BackendConfig) MMProjFileName() string {
|
||||
modelURL := downloader.ConvertURL(c.MMProj)
|
||||
if downloader.LooksLikeURL(modelURL) {
|
||||
return utils.MD5(modelURL)
|
||||
}
|
||||
|
||||
return c.MMProj
|
||||
}
|
||||
|
||||
func (c *BackendConfig) IsMMProjURL() bool {
|
||||
return downloader.LooksLikeURL(downloader.ConvertURL(c.MMProj))
|
||||
}
|
||||
|
||||
func (c *BackendConfig) IsModelURL() bool {
|
||||
return downloader.LooksLikeURL(downloader.ConvertURL(c.Model))
|
||||
}
|
||||
|
||||
// ModelFileName returns the filename of the model
|
||||
// If the model is a URL, it will return the MD5 of the URL which is the filename
|
||||
func (c *BackendConfig) ModelFileName() string {
|
||||
modelURL := downloader.ConvertURL(c.Model)
|
||||
if downloader.LooksLikeURL(modelURL) {
|
||||
return utils.MD5(modelURL)
|
||||
}
|
||||
|
||||
return c.Model
|
||||
}
|
||||
|
||||
func (c *BackendConfig) FunctionToCall() string {
|
||||
if c.functionCallNameString != "" &&
|
||||
c.functionCallNameString != "none" && c.functionCallNameString != "auto" {
|
||||
@@ -184,7 +213,7 @@ func (c *BackendConfig) FunctionToCall() string {
|
||||
}
|
||||
|
||||
func (cfg *BackendConfig) SetDefaults(opts ...ConfigLoaderOption) {
|
||||
lo := &ConfigLoaderOptions{}
|
||||
lo := &LoadOptions{}
|
||||
lo.Apply(opts...)
|
||||
|
||||
ctx := lo.ctxSize
|
||||
@@ -195,15 +224,15 @@ func (cfg *BackendConfig) SetDefaults(opts ...ConfigLoaderOption) {
|
||||
defaultTopP := 0.95
|
||||
defaultTopK := 40
|
||||
defaultTemp := 0.9
|
||||
defaultMaxTokens := 2048
|
||||
defaultMirostat := 2
|
||||
defaultMirostatTAU := 5.0
|
||||
defaultMirostatETA := 0.1
|
||||
defaultTypicalP := 1.0
|
||||
defaultTFZ := 1.0
|
||||
defaultZero := 0
|
||||
|
||||
// Try to offload all GPU layers (if GPU is found)
|
||||
defaultNGPULayers := 99999999
|
||||
defaultHigh := 99999999
|
||||
|
||||
trueV := true
|
||||
falseV := false
|
||||
@@ -228,7 +257,13 @@ func (cfg *BackendConfig) SetDefaults(opts ...ConfigLoaderOption) {
|
||||
|
||||
if cfg.MMap == nil {
|
||||
// MMap is enabled by default
|
||||
cfg.MMap = &trueV
|
||||
|
||||
// Only exception is for Intel GPUs
|
||||
if os.Getenv("XPU") != "" {
|
||||
cfg.MMap = &falseV
|
||||
} else {
|
||||
cfg.MMap = &trueV
|
||||
}
|
||||
}
|
||||
|
||||
if cfg.MMlock == nil {
|
||||
@@ -244,7 +279,7 @@ func (cfg *BackendConfig) SetDefaults(opts ...ConfigLoaderOption) {
|
||||
}
|
||||
|
||||
if cfg.Maxtokens == nil {
|
||||
cfg.Maxtokens = &defaultMaxTokens
|
||||
cfg.Maxtokens = &defaultZero
|
||||
}
|
||||
|
||||
if cfg.Mirostat == nil {
|
||||
@@ -259,7 +294,7 @@ func (cfg *BackendConfig) SetDefaults(opts ...ConfigLoaderOption) {
|
||||
cfg.MirostatTAU = &defaultMirostatTAU
|
||||
}
|
||||
if cfg.NGPULayers == nil {
|
||||
cfg.NGPULayers = &defaultNGPULayers
|
||||
cfg.NGPULayers = &defaultHigh
|
||||
}
|
||||
|
||||
if cfg.LowVRAM == nil {
|
||||
|
||||
@@ -1,7 +1,6 @@
|
||||
package config
|
||||
|
||||
import (
|
||||
"encoding/json"
|
||||
"errors"
|
||||
"fmt"
|
||||
"io/fs"
|
||||
@@ -14,10 +13,9 @@ import (
|
||||
"github.com/charmbracelet/glamour"
|
||||
"github.com/go-skynet/LocalAI/core/schema"
|
||||
"github.com/go-skynet/LocalAI/pkg/downloader"
|
||||
"github.com/go-skynet/LocalAI/pkg/grammar"
|
||||
"github.com/go-skynet/LocalAI/pkg/utils"
|
||||
"github.com/rs/zerolog/log"
|
||||
"gopkg.in/yaml.v2"
|
||||
"gopkg.in/yaml.v3"
|
||||
)
|
||||
|
||||
type BackendConfigLoader struct {
|
||||
@@ -25,96 +23,185 @@ type BackendConfigLoader struct {
|
||||
sync.Mutex
|
||||
}
|
||||
|
||||
type ConfigLoaderOptions struct {
|
||||
type LoadOptions struct {
|
||||
debug bool
|
||||
threads, ctxSize int
|
||||
f16 bool
|
||||
}
|
||||
|
||||
func LoadOptionDebug(debug bool) ConfigLoaderOption {
|
||||
return func(o *ConfigLoaderOptions) {
|
||||
return func(o *LoadOptions) {
|
||||
o.debug = debug
|
||||
}
|
||||
}
|
||||
|
||||
func LoadOptionThreads(threads int) ConfigLoaderOption {
|
||||
return func(o *ConfigLoaderOptions) {
|
||||
return func(o *LoadOptions) {
|
||||
o.threads = threads
|
||||
}
|
||||
}
|
||||
|
||||
func LoadOptionContextSize(ctxSize int) ConfigLoaderOption {
|
||||
return func(o *ConfigLoaderOptions) {
|
||||
return func(o *LoadOptions) {
|
||||
o.ctxSize = ctxSize
|
||||
}
|
||||
}
|
||||
|
||||
func LoadOptionF16(f16 bool) ConfigLoaderOption {
|
||||
return func(o *ConfigLoaderOptions) {
|
||||
return func(o *LoadOptions) {
|
||||
o.f16 = f16
|
||||
}
|
||||
}
|
||||
|
||||
type ConfigLoaderOption func(*ConfigLoaderOptions)
|
||||
type ConfigLoaderOption func(*LoadOptions)
|
||||
|
||||
func (lo *ConfigLoaderOptions) Apply(options ...ConfigLoaderOption) {
|
||||
func (lo *LoadOptions) Apply(options ...ConfigLoaderOption) {
|
||||
for _, l := range options {
|
||||
l(lo)
|
||||
}
|
||||
}
|
||||
|
||||
// Load a config file for a model
|
||||
func (cl *BackendConfigLoader) LoadBackendConfigFileByName(modelName, modelPath string, opts ...ConfigLoaderOption) (*BackendConfig, error) {
|
||||
|
||||
// Load a config file if present after the model name
|
||||
cfg := &BackendConfig{
|
||||
PredictionOptions: schema.PredictionOptions{
|
||||
Model: modelName,
|
||||
},
|
||||
}
|
||||
|
||||
cfgExisting, exists := cl.GetBackendConfig(modelName)
|
||||
if exists {
|
||||
cfg = &cfgExisting
|
||||
} else {
|
||||
// Try loading a model config file
|
||||
modelConfig := filepath.Join(modelPath, modelName+".yaml")
|
||||
if _, err := os.Stat(modelConfig); err == nil {
|
||||
if err := cl.LoadBackendConfig(
|
||||
modelConfig, opts...,
|
||||
); err != nil {
|
||||
return nil, fmt.Errorf("failed loading model config (%s) %s", modelConfig, err.Error())
|
||||
}
|
||||
cfgExisting, exists = cl.GetBackendConfig(modelName)
|
||||
if exists {
|
||||
cfg = &cfgExisting
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
cfg.SetDefaults(opts...)
|
||||
|
||||
return cfg, nil
|
||||
}
|
||||
|
||||
func NewBackendConfigLoader() *BackendConfigLoader {
|
||||
return &BackendConfigLoader{
|
||||
configs: make(map[string]BackendConfig),
|
||||
}
|
||||
}
|
||||
func ReadBackendConfigFile(file string, opts ...ConfigLoaderOption) ([]*BackendConfig, error) {
|
||||
c := &[]*BackendConfig{}
|
||||
f, err := os.ReadFile(file)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("cannot read config file: %w", err)
|
||||
}
|
||||
if err := yaml.Unmarshal(f, c); err != nil {
|
||||
return nil, fmt.Errorf("cannot unmarshal config file: %w", err)
|
||||
}
|
||||
|
||||
func (bcl *BackendConfigLoader) LoadBackendConfig(file string, opts ...ConfigLoaderOption) error {
|
||||
bcl.Lock()
|
||||
defer bcl.Unlock()
|
||||
c, err := readBackendConfig(file, opts...)
|
||||
for _, cc := range *c {
|
||||
cc.SetDefaults(opts...)
|
||||
}
|
||||
|
||||
return *c, nil
|
||||
}
|
||||
|
||||
func ReadBackendConfig(file string, opts ...ConfigLoaderOption) (*BackendConfig, error) {
|
||||
lo := &LoadOptions{}
|
||||
lo.Apply(opts...)
|
||||
|
||||
c := &BackendConfig{}
|
||||
f, err := os.ReadFile(file)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("cannot read config file: %w", err)
|
||||
}
|
||||
if err := yaml.Unmarshal(f, c); err != nil {
|
||||
return nil, fmt.Errorf("cannot unmarshal config file: %w", err)
|
||||
}
|
||||
|
||||
c.SetDefaults(opts...)
|
||||
return c, nil
|
||||
}
|
||||
|
||||
func (cm *BackendConfigLoader) LoadBackendConfigFile(file string, opts ...ConfigLoaderOption) error {
|
||||
cm.Lock()
|
||||
defer cm.Unlock()
|
||||
c, err := ReadBackendConfigFile(file, opts...)
|
||||
if err != nil {
|
||||
return fmt.Errorf("cannot load config file: %w", err)
|
||||
}
|
||||
|
||||
for _, cc := range c {
|
||||
cm.configs[cc.Name] = *cc
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
func (cl *BackendConfigLoader) LoadBackendConfig(file string, opts ...ConfigLoaderOption) error {
|
||||
cl.Lock()
|
||||
defer cl.Unlock()
|
||||
c, err := ReadBackendConfig(file, opts...)
|
||||
if err != nil {
|
||||
return fmt.Errorf("cannot read config file: %w", err)
|
||||
}
|
||||
|
||||
bcl.configs[c.Name] = *c
|
||||
cl.configs[c.Name] = *c
|
||||
return nil
|
||||
}
|
||||
|
||||
func (bcl *BackendConfigLoader) GetBackendConfig(m string) (BackendConfig, bool) {
|
||||
bcl.Lock()
|
||||
defer bcl.Unlock()
|
||||
v, exists := bcl.configs[m]
|
||||
func (cl *BackendConfigLoader) GetBackendConfig(m string) (BackendConfig, bool) {
|
||||
cl.Lock()
|
||||
defer cl.Unlock()
|
||||
v, exists := cl.configs[m]
|
||||
return v, exists
|
||||
}
|
||||
|
||||
func (bcl *BackendConfigLoader) GetAllBackendConfigs() []BackendConfig {
|
||||
bcl.Lock()
|
||||
defer bcl.Unlock()
|
||||
func (cl *BackendConfigLoader) GetAllBackendConfigs() []BackendConfig {
|
||||
cl.Lock()
|
||||
defer cl.Unlock()
|
||||
var res []BackendConfig
|
||||
for _, v := range bcl.configs {
|
||||
for _, v := range cl.configs {
|
||||
res = append(res, v)
|
||||
}
|
||||
|
||||
sort.SliceStable(res, func(i, j int) bool {
|
||||
return res[i].Name < res[j].Name
|
||||
})
|
||||
|
||||
return res
|
||||
}
|
||||
|
||||
func (bcl *BackendConfigLoader) ListBackendConfigs() []string {
|
||||
bcl.Lock()
|
||||
defer bcl.Unlock()
|
||||
func (cl *BackendConfigLoader) RemoveBackendConfig(m string) {
|
||||
cl.Lock()
|
||||
defer cl.Unlock()
|
||||
delete(cl.configs, m)
|
||||
}
|
||||
|
||||
func (cl *BackendConfigLoader) ListBackendConfigs() []string {
|
||||
cl.Lock()
|
||||
defer cl.Unlock()
|
||||
var res []string
|
||||
for k := range bcl.configs {
|
||||
for k := range cl.configs {
|
||||
res = append(res, k)
|
||||
}
|
||||
return res
|
||||
}
|
||||
|
||||
// Preload prepare models if they are not local but url or huggingface repositories
|
||||
func (bcl *BackendConfigLoader) Preload(modelPath string) error {
|
||||
bcl.Lock()
|
||||
defer bcl.Unlock()
|
||||
func (cl *BackendConfigLoader) Preload(modelPath string) error {
|
||||
cl.Lock()
|
||||
defer cl.Unlock()
|
||||
|
||||
status := func(fileName, current, total string, percent float64) {
|
||||
utils.DisplayDownloadFunction(fileName, current, total, percent)
|
||||
@@ -136,10 +223,10 @@ func (bcl *BackendConfigLoader) Preload(modelPath string) error {
|
||||
}
|
||||
}
|
||||
|
||||
for i, config := range bcl.configs {
|
||||
for i, config := range cl.configs {
|
||||
|
||||
// Download files and verify their SHA
|
||||
for _, file := range config.DownloadFiles {
|
||||
for i, file := range config.DownloadFiles {
|
||||
log.Debug().Msgf("Checking %q exists and matches SHA", file.Filename)
|
||||
|
||||
if err := utils.VerifyPath(file.Filename, modelPath); err != nil {
|
||||
@@ -148,49 +235,66 @@ func (bcl *BackendConfigLoader) Preload(modelPath string) error {
|
||||
// Create file path
|
||||
filePath := filepath.Join(modelPath, file.Filename)
|
||||
|
||||
if err := downloader.DownloadFile(file.URI, filePath, file.SHA256, status); err != nil {
|
||||
if err := downloader.DownloadFile(file.URI, filePath, file.SHA256, i, len(config.DownloadFiles), status); err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
|
||||
modelURL := config.PredictionOptions.Model
|
||||
modelURL = downloader.ConvertURL(modelURL)
|
||||
|
||||
if downloader.LooksLikeURL(modelURL) {
|
||||
// md5 of model name
|
||||
md5Name := utils.MD5(modelURL)
|
||||
|
||||
// If the model is an URL, expand it, and download the file
|
||||
if config.IsModelURL() {
|
||||
modelFileName := config.ModelFileName()
|
||||
modelURL := downloader.ConvertURL(config.Model)
|
||||
// check if file exists
|
||||
if _, err := os.Stat(filepath.Join(modelPath, md5Name)); errors.Is(err, os.ErrNotExist) {
|
||||
err := downloader.DownloadFile(modelURL, filepath.Join(modelPath, md5Name), "", status)
|
||||
if _, err := os.Stat(filepath.Join(modelPath, modelFileName)); errors.Is(err, os.ErrNotExist) {
|
||||
err := downloader.DownloadFile(modelURL, filepath.Join(modelPath, modelFileName), "", 0, 0, status)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
|
||||
cc := bcl.configs[i]
|
||||
cc := cl.configs[i]
|
||||
c := &cc
|
||||
c.PredictionOptions.Model = md5Name
|
||||
bcl.configs[i] = *c
|
||||
c.PredictionOptions.Model = modelFileName
|
||||
cl.configs[i] = *c
|
||||
}
|
||||
if bcl.configs[i].Name != "" {
|
||||
glamText(fmt.Sprintf("**Model name**: _%s_", bcl.configs[i].Name))
|
||||
|
||||
if config.IsMMProjURL() {
|
||||
modelFileName := config.MMProjFileName()
|
||||
modelURL := downloader.ConvertURL(config.MMProj)
|
||||
// check if file exists
|
||||
if _, err := os.Stat(filepath.Join(modelPath, modelFileName)); errors.Is(err, os.ErrNotExist) {
|
||||
err := downloader.DownloadFile(modelURL, filepath.Join(modelPath, modelFileName), "", 0, 0, status)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
|
||||
cc := cl.configs[i]
|
||||
c := &cc
|
||||
c.MMProj = modelFileName
|
||||
cl.configs[i] = *c
|
||||
}
|
||||
if bcl.configs[i].Description != "" {
|
||||
|
||||
if cl.configs[i].Name != "" {
|
||||
glamText(fmt.Sprintf("**Model name**: _%s_", cl.configs[i].Name))
|
||||
}
|
||||
if cl.configs[i].Description != "" {
|
||||
//glamText("**Description**")
|
||||
glamText(bcl.configs[i].Description)
|
||||
glamText(cl.configs[i].Description)
|
||||
}
|
||||
if bcl.configs[i].Usage != "" {
|
||||
if cl.configs[i].Usage != "" {
|
||||
//glamText("**Usage**")
|
||||
glamText(bcl.configs[i].Usage)
|
||||
glamText(cl.configs[i].Usage)
|
||||
}
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
func (bcl *BackendConfigLoader) LoadBackendConfigsFromPath(path string, opts ...ConfigLoaderOption) error {
|
||||
bcl.Lock()
|
||||
defer bcl.Unlock()
|
||||
// LoadBackendConfigsFromPath reads all the configurations of the models from a path
|
||||
// (non-recursive)
|
||||
func (cm *BackendConfigLoader) LoadBackendConfigsFromPath(path string, opts ...ConfigLoaderOption) error {
|
||||
cm.Lock()
|
||||
defer cm.Unlock()
|
||||
entries, err := os.ReadDir(path)
|
||||
if err != nil {
|
||||
return err
|
||||
@@ -205,305 +309,15 @@ func (bcl *BackendConfigLoader) LoadBackendConfigsFromPath(path string, opts ...
|
||||
}
|
||||
for _, file := range files {
|
||||
// Skip templates, YAML and .keep files
|
||||
if !strings.Contains(file.Name(), ".yaml") && !strings.Contains(file.Name(), ".yml") {
|
||||
if !strings.Contains(file.Name(), ".yaml") && !strings.Contains(file.Name(), ".yml") ||
|
||||
strings.HasPrefix(file.Name(), ".") {
|
||||
continue
|
||||
}
|
||||
c, err := readBackendConfig(filepath.Join(path, file.Name()), opts...)
|
||||
c, err := ReadBackendConfig(filepath.Join(path, file.Name()), opts...)
|
||||
if err == nil {
|
||||
bcl.configs[c.Name] = *c
|
||||
cm.configs[c.Name] = *c
|
||||
}
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
func (bcl *BackendConfigLoader) LoadBackendConfigFile(file string, opts ...ConfigLoaderOption) error {
|
||||
bcl.Lock()
|
||||
defer bcl.Unlock()
|
||||
c, err := readBackendConfigFile(file, opts...)
|
||||
if err != nil {
|
||||
return fmt.Errorf("cannot load config file: %w", err)
|
||||
}
|
||||
|
||||
for _, cc := range c {
|
||||
bcl.configs[cc.Name] = *cc
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
//////////
|
||||
|
||||
// Load a config file for a model
|
||||
func (bcl *BackendConfigLoader) LoadBackendConfigFileByName(modelName string, modelPath string, opts ...ConfigLoaderOption) (*BackendConfig, error) {
|
||||
|
||||
// Load a config file if present after the model name
|
||||
cfg := &BackendConfig{
|
||||
PredictionOptions: schema.PredictionOptions{
|
||||
Model: modelName,
|
||||
},
|
||||
}
|
||||
|
||||
cfgExisting, exists := bcl.GetBackendConfig(modelName)
|
||||
if exists {
|
||||
cfg = &cfgExisting
|
||||
} else {
|
||||
// Load a config file if present after the model name
|
||||
modelConfig := filepath.Join(modelPath, modelName+".yaml")
|
||||
if _, err := os.Stat(modelConfig); err == nil {
|
||||
if err := bcl.LoadBackendConfig(modelConfig); err != nil {
|
||||
return nil, fmt.Errorf("failed loading model config (%s) %s", modelConfig, err.Error())
|
||||
}
|
||||
cfgExisting, exists = bcl.GetBackendConfig(modelName)
|
||||
if exists {
|
||||
cfg = &cfgExisting
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
cfg.SetDefaults(opts...)
|
||||
return cfg, nil
|
||||
}
|
||||
|
||||
func readBackendConfigFile(file string, opts ...ConfigLoaderOption) ([]*BackendConfig, error) {
|
||||
c := &[]*BackendConfig{}
|
||||
f, err := os.ReadFile(file)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("cannot read config file: %w", err)
|
||||
}
|
||||
if err := yaml.Unmarshal(f, c); err != nil {
|
||||
return nil, fmt.Errorf("cannot unmarshal config file: %w", err)
|
||||
}
|
||||
|
||||
for _, cc := range *c {
|
||||
cc.SetDefaults(opts...)
|
||||
}
|
||||
|
||||
return *c, nil
|
||||
}
|
||||
|
||||
func readBackendConfig(file string, opts ...ConfigLoaderOption) (*BackendConfig, error) {
|
||||
c := &BackendConfig{}
|
||||
f, err := os.ReadFile(file)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("cannot read config file: %w", err)
|
||||
}
|
||||
if err := yaml.Unmarshal(f, c); err != nil {
|
||||
return nil, fmt.Errorf("cannot unmarshal config file: %w", err)
|
||||
}
|
||||
|
||||
c.SetDefaults(opts...)
|
||||
return c, nil
|
||||
}
|
||||
|
||||
func (bcl *BackendConfigLoader) LoadBackendConfigForModelAndOpenAIRequest(modelFile string, input *schema.OpenAIRequest, appConfig *ApplicationConfig) (*BackendConfig, *schema.OpenAIRequest, error) {
|
||||
cfg, err := bcl.LoadBackendConfigFileByName(modelFile, appConfig.ModelPath,
|
||||
LoadOptionContextSize(appConfig.ContextSize),
|
||||
LoadOptionDebug(appConfig.Debug),
|
||||
LoadOptionF16(appConfig.F16),
|
||||
LoadOptionThreads(appConfig.Threads),
|
||||
)
|
||||
|
||||
// Set the parameters for the language model prediction
|
||||
updateBackendConfigFromOpenAIRequest(cfg, input)
|
||||
|
||||
return cfg, input, err
|
||||
}
|
||||
|
||||
func updateBackendConfigFromOpenAIRequest(bc *BackendConfig, request *schema.OpenAIRequest) {
|
||||
if request.Echo {
|
||||
bc.Echo = request.Echo
|
||||
}
|
||||
if request.TopK != nil && *request.TopK != 0 {
|
||||
bc.TopK = request.TopK
|
||||
}
|
||||
if request.TopP != nil && *request.TopP != 0 {
|
||||
bc.TopP = request.TopP
|
||||
}
|
||||
|
||||
if request.Backend != "" {
|
||||
bc.Backend = request.Backend
|
||||
}
|
||||
|
||||
if request.ClipSkip != 0 {
|
||||
bc.Diffusers.ClipSkip = request.ClipSkip
|
||||
}
|
||||
|
||||
if request.ModelBaseName != "" {
|
||||
bc.AutoGPTQ.ModelBaseName = request.ModelBaseName
|
||||
}
|
||||
|
||||
if request.NegativePromptScale != 0 {
|
||||
bc.NegativePromptScale = request.NegativePromptScale
|
||||
}
|
||||
|
||||
if request.UseFastTokenizer {
|
||||
bc.UseFastTokenizer = request.UseFastTokenizer
|
||||
}
|
||||
|
||||
if request.NegativePrompt != "" {
|
||||
bc.NegativePrompt = request.NegativePrompt
|
||||
}
|
||||
|
||||
if request.RopeFreqBase != 0 {
|
||||
bc.RopeFreqBase = request.RopeFreqBase
|
||||
}
|
||||
|
||||
if request.RopeFreqScale != 0 {
|
||||
bc.RopeFreqScale = request.RopeFreqScale
|
||||
}
|
||||
|
||||
if request.Grammar != "" {
|
||||
bc.Grammar = request.Grammar
|
||||
}
|
||||
|
||||
if request.Temperature != nil && *request.Temperature != 0 {
|
||||
bc.Temperature = request.Temperature
|
||||
}
|
||||
|
||||
if request.Maxtokens != nil && *request.Maxtokens != 0 {
|
||||
bc.Maxtokens = request.Maxtokens
|
||||
}
|
||||
|
||||
switch stop := request.Stop.(type) {
|
||||
case string:
|
||||
if stop != "" {
|
||||
bc.StopWords = append(bc.StopWords, stop)
|
||||
}
|
||||
case []interface{}:
|
||||
for _, pp := range stop {
|
||||
if s, ok := pp.(string); ok {
|
||||
bc.StopWords = append(bc.StopWords, s)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if len(request.Tools) > 0 {
|
||||
for _, tool := range request.Tools {
|
||||
request.Functions = append(request.Functions, tool.Function)
|
||||
}
|
||||
}
|
||||
|
||||
if request.ToolsChoice != nil {
|
||||
var toolChoice grammar.Tool
|
||||
switch content := request.ToolsChoice.(type) {
|
||||
case string:
|
||||
_ = json.Unmarshal([]byte(content), &toolChoice)
|
||||
case map[string]interface{}:
|
||||
dat, _ := json.Marshal(content)
|
||||
_ = json.Unmarshal(dat, &toolChoice)
|
||||
}
|
||||
request.FunctionCall = map[string]interface{}{
|
||||
"name": toolChoice.Function.Name,
|
||||
}
|
||||
}
|
||||
|
||||
// Decode each request's message content
|
||||
index := 0
|
||||
for i, m := range request.Messages {
|
||||
switch content := m.Content.(type) {
|
||||
case string:
|
||||
request.Messages[i].StringContent = content
|
||||
case []interface{}:
|
||||
dat, _ := json.Marshal(content)
|
||||
c := []schema.Content{}
|
||||
json.Unmarshal(dat, &c)
|
||||
for _, pp := range c {
|
||||
if pp.Type == "text" {
|
||||
request.Messages[i].StringContent = pp.Text
|
||||
} else if pp.Type == "image_url" {
|
||||
// Detect if pp.ImageURL is an URL, if it is download the image and encode it in base64:
|
||||
base64, err := utils.GetImageURLAsBase64(pp.ImageURL.URL)
|
||||
if err == nil {
|
||||
request.Messages[i].StringImages = append(request.Messages[i].StringImages, base64) // TODO: make sure that we only return base64 stuff
|
||||
// set a placeholder for each image
|
||||
request.Messages[i].StringContent = fmt.Sprintf("[img-%d]", index) + request.Messages[i].StringContent
|
||||
index++
|
||||
} else {
|
||||
fmt.Print("Failed encoding image", err)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if request.RepeatPenalty != 0 {
|
||||
bc.RepeatPenalty = request.RepeatPenalty
|
||||
}
|
||||
|
||||
if request.FrequencyPenalty != 0 {
|
||||
bc.FrequencyPenalty = request.FrequencyPenalty
|
||||
}
|
||||
|
||||
if request.PresencePenalty != 0 {
|
||||
bc.PresencePenalty = request.PresencePenalty
|
||||
}
|
||||
|
||||
if request.Keep != 0 {
|
||||
bc.Keep = request.Keep
|
||||
}
|
||||
|
||||
if request.Batch != 0 {
|
||||
bc.Batch = request.Batch
|
||||
}
|
||||
|
||||
if request.IgnoreEOS {
|
||||
bc.IgnoreEOS = request.IgnoreEOS
|
||||
}
|
||||
|
||||
if request.Seed != nil {
|
||||
bc.Seed = request.Seed
|
||||
}
|
||||
|
||||
if request.TypicalP != nil {
|
||||
bc.TypicalP = request.TypicalP
|
||||
}
|
||||
|
||||
switch inputs := request.Input.(type) {
|
||||
case string:
|
||||
if inputs != "" {
|
||||
bc.InputStrings = append(bc.InputStrings, inputs)
|
||||
}
|
||||
case []interface{}:
|
||||
for _, pp := range inputs {
|
||||
switch i := pp.(type) {
|
||||
case string:
|
||||
bc.InputStrings = append(bc.InputStrings, i)
|
||||
case []interface{}:
|
||||
tokens := []int{}
|
||||
for _, ii := range i {
|
||||
tokens = append(tokens, int(ii.(float64)))
|
||||
}
|
||||
bc.InputToken = append(bc.InputToken, tokens)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Can be either a string or an object
|
||||
switch fnc := request.FunctionCall.(type) {
|
||||
case string:
|
||||
if fnc != "" {
|
||||
bc.SetFunctionCallString(fnc)
|
||||
}
|
||||
case map[string]interface{}:
|
||||
var name string
|
||||
n, exists := fnc["name"]
|
||||
if exists {
|
||||
nn, e := n.(string)
|
||||
if e {
|
||||
name = nn
|
||||
}
|
||||
}
|
||||
bc.SetFunctionCallNameString(name)
|
||||
}
|
||||
|
||||
switch p := request.Prompt.(type) {
|
||||
case string:
|
||||
bc.PromptStrings = append(bc.PromptStrings, p)
|
||||
case []interface{}:
|
||||
for _, pp := range p {
|
||||
if s, ok := pp.(string); ok {
|
||||
bc.PromptStrings = append(bc.PromptStrings, s)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,6 +0,0 @@
|
||||
package config
|
||||
|
||||
// This file re-exports private functions to be used directly in unit tests.
|
||||
// Since this file's name ends in _test.go, theoretically these should not be exposed past the tests.
|
||||
|
||||
var ReadBackendConfigFile = readBackendConfigFile
|
||||
278
core/http/api.go
278
core/http/api.go
@@ -1,278 +0,0 @@
|
||||
package http
|
||||
|
||||
import (
|
||||
"errors"
|
||||
"strings"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core"
|
||||
fiberContext "github.com/go-skynet/LocalAI/core/http/ctx"
|
||||
"github.com/gofiber/swagger" // swagger handler
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/http/endpoints/elevenlabs"
|
||||
"github.com/go-skynet/LocalAI/core/http/endpoints/localai"
|
||||
"github.com/go-skynet/LocalAI/core/http/endpoints/openai"
|
||||
"github.com/go-skynet/LocalAI/core/schema"
|
||||
"github.com/go-skynet/LocalAI/core/services"
|
||||
"github.com/go-skynet/LocalAI/internal"
|
||||
model "github.com/go-skynet/LocalAI/pkg/model"
|
||||
|
||||
"github.com/gofiber/fiber/v2"
|
||||
"github.com/gofiber/fiber/v2/middleware/cors"
|
||||
"github.com/gofiber/fiber/v2/middleware/logger"
|
||||
"github.com/gofiber/fiber/v2/middleware/recover"
|
||||
)
|
||||
|
||||
func readAuthHeader(c *fiber.Ctx) string {
|
||||
authHeader := c.Get("Authorization")
|
||||
|
||||
// elevenlabs
|
||||
xApiKey := c.Get("xi-api-key")
|
||||
if xApiKey != "" {
|
||||
authHeader = "Bearer " + xApiKey
|
||||
}
|
||||
|
||||
// anthropic
|
||||
xApiKey = c.Get("x-api-key")
|
||||
if xApiKey != "" {
|
||||
authHeader = "Bearer " + xApiKey
|
||||
}
|
||||
|
||||
return authHeader
|
||||
}
|
||||
|
||||
// @title LocalAI API
|
||||
// @version 2.0.0
|
||||
// @description The LocalAI Rest API.
|
||||
// @termsOfService
|
||||
// @contact.name LocalAI
|
||||
// @contact.url https://localai.io
|
||||
// @license.name MIT
|
||||
// @license.url https://raw.githubusercontent.com/mudler/LocalAI/master/LICENSE
|
||||
// @BasePath /
|
||||
// @securityDefinitions.apikey BearerAuth
|
||||
// @in header
|
||||
// @name Authorization
|
||||
func App(application *core.Application) (*fiber.App, error) {
|
||||
// Return errors as JSON responses
|
||||
app := fiber.New(fiber.Config{
|
||||
Views: renderEngine(),
|
||||
BodyLimit: application.ApplicationConfig.UploadLimitMB * 1024 * 1024, // this is the default limit of 4MB
|
||||
DisableStartupMessage: application.ApplicationConfig.DisableMessage,
|
||||
// Override default error handler
|
||||
ErrorHandler: func(ctx *fiber.Ctx, err error) error {
|
||||
// Status code defaults to 500
|
||||
code := fiber.StatusInternalServerError
|
||||
|
||||
// Retrieve the custom status code if it's a *fiber.Error
|
||||
var e *fiber.Error
|
||||
if errors.As(err, &e) {
|
||||
code = e.Code
|
||||
}
|
||||
|
||||
// Send custom error page
|
||||
return ctx.Status(code).JSON(
|
||||
schema.ErrorResponse{
|
||||
Error: &schema.APIError{Message: err.Error(), Code: code},
|
||||
},
|
||||
)
|
||||
},
|
||||
})
|
||||
|
||||
if application.ApplicationConfig.Debug {
|
||||
app.Use(logger.New(logger.Config{
|
||||
Format: "[${ip}]:${port} ${status} - ${method} ${path}\n",
|
||||
}))
|
||||
}
|
||||
|
||||
// Default middleware config
|
||||
|
||||
if !application.ApplicationConfig.Debug {
|
||||
app.Use(recover.New())
|
||||
}
|
||||
|
||||
metricsService, err := services.NewLocalAIMetricsService()
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if metricsService != nil {
|
||||
app.Use(localai.LocalAIMetricsAPIMiddleware(metricsService))
|
||||
app.Hooks().OnShutdown(func() error {
|
||||
return metricsService.Shutdown()
|
||||
})
|
||||
}
|
||||
|
||||
// Auth middleware checking if API key is valid. If no API key is set, no auth is required.
|
||||
auth := func(c *fiber.Ctx) error {
|
||||
if len(application.ApplicationConfig.ApiKeys) == 0 {
|
||||
return c.Next()
|
||||
}
|
||||
|
||||
authHeader := readAuthHeader(c)
|
||||
if authHeader == "" {
|
||||
return c.Status(fiber.StatusUnauthorized).JSON(fiber.Map{"message": "Authorization header missing"})
|
||||
}
|
||||
|
||||
// If it's a bearer token
|
||||
authHeaderParts := strings.Split(authHeader, " ")
|
||||
if len(authHeaderParts) != 2 || authHeaderParts[0] != "Bearer" {
|
||||
return c.Status(fiber.StatusUnauthorized).JSON(fiber.Map{"message": "Invalid Authorization header format"})
|
||||
}
|
||||
|
||||
apiKey := authHeaderParts[1]
|
||||
for _, key := range application.ApplicationConfig.ApiKeys {
|
||||
if apiKey == key {
|
||||
return c.Next()
|
||||
}
|
||||
}
|
||||
|
||||
return c.Status(fiber.StatusUnauthorized).JSON(fiber.Map{"message": "Invalid API key"})
|
||||
}
|
||||
|
||||
if application.ApplicationConfig.CORS {
|
||||
var c func(ctx *fiber.Ctx) error
|
||||
if application.ApplicationConfig.CORSAllowOrigins == "" {
|
||||
c = cors.New()
|
||||
} else {
|
||||
c = cors.New(cors.Config{AllowOrigins: application.ApplicationConfig.CORSAllowOrigins})
|
||||
}
|
||||
|
||||
app.Use(c)
|
||||
}
|
||||
|
||||
fiberContextExtractor := fiberContext.NewFiberContextExtractor(application.ModelLoader, application.ApplicationConfig)
|
||||
|
||||
// LocalAI API endpoints
|
||||
galleryService := services.NewGalleryService(application.ApplicationConfig.ModelPath)
|
||||
galleryService.Start(application.ApplicationConfig.Context, application.BackendConfigLoader)
|
||||
|
||||
app.Get("/version", auth, func(c *fiber.Ctx) error {
|
||||
return c.JSON(struct {
|
||||
Version string `json:"version"`
|
||||
}{Version: internal.PrintableVersion()})
|
||||
})
|
||||
|
||||
app.Get("/swagger/*", swagger.HandlerDefault) // default
|
||||
|
||||
welcomeRoute(
|
||||
app,
|
||||
application.BackendConfigLoader,
|
||||
application.ModelLoader,
|
||||
application.ApplicationConfig,
|
||||
auth,
|
||||
)
|
||||
|
||||
modelGalleryEndpointService := localai.CreateModelGalleryEndpointService(application.ApplicationConfig.Galleries, application.ApplicationConfig.ModelPath, galleryService)
|
||||
app.Post("/models/apply", auth, modelGalleryEndpointService.ApplyModelGalleryEndpoint())
|
||||
app.Get("/models/available", auth, modelGalleryEndpointService.ListModelFromGalleryEndpoint())
|
||||
app.Get("/models/galleries", auth, modelGalleryEndpointService.ListModelGalleriesEndpoint())
|
||||
app.Post("/models/galleries", auth, modelGalleryEndpointService.AddModelGalleryEndpoint())
|
||||
app.Delete("/models/galleries", auth, modelGalleryEndpointService.RemoveModelGalleryEndpoint())
|
||||
app.Get("/models/jobs/:uuid", auth, modelGalleryEndpointService.GetOpStatusEndpoint())
|
||||
app.Get("/models/jobs", auth, modelGalleryEndpointService.GetAllStatusEndpoint())
|
||||
|
||||
// Stores
|
||||
storeLoader := model.NewModelLoader("") // TODO: Investigate if this should be migrated to application and reused. Should the path be configurable? Merging for now.
|
||||
app.Post("/stores/set", auth, localai.StoresSetEndpoint(storeLoader, application.ApplicationConfig))
|
||||
app.Post("/stores/delete", auth, localai.StoresDeleteEndpoint(storeLoader, application.ApplicationConfig))
|
||||
app.Post("/stores/get", auth, localai.StoresGetEndpoint(storeLoader, application.ApplicationConfig))
|
||||
app.Post("/stores/find", auth, localai.StoresFindEndpoint(storeLoader, application.ApplicationConfig))
|
||||
|
||||
// openAI compatible API endpoints
|
||||
|
||||
// chat
|
||||
app.Post("/v1/chat/completions", auth, openai.ChatEndpoint(fiberContextExtractor, application.OpenAIService))
|
||||
app.Post("/chat/completions", auth, openai.ChatEndpoint(fiberContextExtractor, application.OpenAIService))
|
||||
|
||||
// edit
|
||||
app.Post("/v1/edits", auth, openai.EditEndpoint(fiberContextExtractor, application.OpenAIService))
|
||||
app.Post("/edits", auth, openai.EditEndpoint(fiberContextExtractor, application.OpenAIService))
|
||||
|
||||
// assistant
|
||||
// TODO: Refactor this to the new style eventually
|
||||
app.Get("/v1/assistants", auth, openai.ListAssistantsEndpoint(application.BackendConfigLoader, application.ModelLoader, application.ApplicationConfig))
|
||||
app.Get("/assistants", auth, openai.ListAssistantsEndpoint(application.BackendConfigLoader, application.ModelLoader, application.ApplicationConfig))
|
||||
app.Post("/v1/assistants", auth, openai.CreateAssistantEndpoint(application.BackendConfigLoader, application.ModelLoader, application.ApplicationConfig))
|
||||
app.Post("/assistants", auth, openai.CreateAssistantEndpoint(application.BackendConfigLoader, application.ModelLoader, application.ApplicationConfig))
|
||||
app.Delete("/v1/assistants/:assistant_id", auth, openai.DeleteAssistantEndpoint(application.BackendConfigLoader, application.ModelLoader, application.ApplicationConfig))
|
||||
app.Delete("/assistants/:assistant_id", auth, openai.DeleteAssistantEndpoint(application.BackendConfigLoader, application.ModelLoader, application.ApplicationConfig))
|
||||
app.Get("/v1/assistants/:assistant_id", auth, openai.GetAssistantEndpoint(application.BackendConfigLoader, application.ModelLoader, application.ApplicationConfig))
|
||||
app.Get("/assistants/:assistant_id", auth, openai.GetAssistantEndpoint(application.BackendConfigLoader, application.ModelLoader, application.ApplicationConfig))
|
||||
app.Post("/v1/assistants/:assistant_id", auth, openai.ModifyAssistantEndpoint(application.BackendConfigLoader, application.ModelLoader, application.ApplicationConfig))
|
||||
app.Post("/assistants/:assistant_id", auth, openai.ModifyAssistantEndpoint(application.BackendConfigLoader, application.ModelLoader, application.ApplicationConfig))
|
||||
app.Get("/v1/assistants/:assistant_id/files", auth, openai.ListAssistantFilesEndpoint(application.BackendConfigLoader, application.ModelLoader, application.ApplicationConfig))
|
||||
app.Get("/assistants/:assistant_id/files", auth, openai.ListAssistantFilesEndpoint(application.BackendConfigLoader, application.ModelLoader, application.ApplicationConfig))
|
||||
app.Post("/v1/assistants/:assistant_id/files", auth, openai.CreateAssistantFileEndpoint(application.BackendConfigLoader, application.ModelLoader, application.ApplicationConfig))
|
||||
app.Post("/assistants/:assistant_id/files", auth, openai.CreateAssistantFileEndpoint(application.BackendConfigLoader, application.ModelLoader, application.ApplicationConfig))
|
||||
app.Delete("/v1/assistants/:assistant_id/files/:file_id", auth, openai.DeleteAssistantFileEndpoint(application.BackendConfigLoader, application.ModelLoader, application.ApplicationConfig))
|
||||
app.Delete("/assistants/:assistant_id/files/:file_id", auth, openai.DeleteAssistantFileEndpoint(application.BackendConfigLoader, application.ModelLoader, application.ApplicationConfig))
|
||||
app.Get("/v1/assistants/:assistant_id/files/:file_id", auth, openai.GetAssistantFileEndpoint(application.BackendConfigLoader, application.ModelLoader, application.ApplicationConfig))
|
||||
app.Get("/assistants/:assistant_id/files/:file_id", auth, openai.GetAssistantFileEndpoint(application.BackendConfigLoader, application.ModelLoader, application.ApplicationConfig))
|
||||
|
||||
// files
|
||||
app.Post("/v1/files", auth, openai.UploadFilesEndpoint(application.BackendConfigLoader, application.ApplicationConfig))
|
||||
app.Post("/files", auth, openai.UploadFilesEndpoint(application.BackendConfigLoader, application.ApplicationConfig))
|
||||
app.Get("/v1/files", auth, openai.ListFilesEndpoint(application.BackendConfigLoader, application.ApplicationConfig))
|
||||
app.Get("/files", auth, openai.ListFilesEndpoint(application.BackendConfigLoader, application.ApplicationConfig))
|
||||
app.Get("/v1/files/:file_id", auth, openai.GetFilesEndpoint(application.BackendConfigLoader, application.ApplicationConfig))
|
||||
app.Get("/files/:file_id", auth, openai.GetFilesEndpoint(application.BackendConfigLoader, application.ApplicationConfig))
|
||||
app.Delete("/v1/files/:file_id", auth, openai.DeleteFilesEndpoint(application.BackendConfigLoader, application.ApplicationConfig))
|
||||
app.Delete("/files/:file_id", auth, openai.DeleteFilesEndpoint(application.BackendConfigLoader, application.ApplicationConfig))
|
||||
app.Get("/v1/files/:file_id/content", auth, openai.GetFilesContentsEndpoint(application.BackendConfigLoader, application.ApplicationConfig))
|
||||
app.Get("/files/:file_id/content", auth, openai.GetFilesContentsEndpoint(application.BackendConfigLoader, application.ApplicationConfig))
|
||||
|
||||
// completion
|
||||
app.Post("/v1/completions", auth, openai.CompletionEndpoint(fiberContextExtractor, application.OpenAIService))
|
||||
app.Post("/completions", auth, openai.CompletionEndpoint(fiberContextExtractor, application.OpenAIService))
|
||||
app.Post("/v1/engines/:model/completions", auth, openai.CompletionEndpoint(fiberContextExtractor, application.OpenAIService))
|
||||
|
||||
// embeddings
|
||||
app.Post("/v1/embeddings", auth, openai.EmbeddingsEndpoint(fiberContextExtractor, application.EmbeddingsBackendService))
|
||||
app.Post("/embeddings", auth, openai.EmbeddingsEndpoint(fiberContextExtractor, application.EmbeddingsBackendService))
|
||||
app.Post("/v1/engines/:model/embeddings", auth, openai.EmbeddingsEndpoint(fiberContextExtractor, application.EmbeddingsBackendService))
|
||||
|
||||
// audio
|
||||
app.Post("/v1/audio/transcriptions", auth, openai.TranscriptEndpoint(fiberContextExtractor, application.TranscriptionBackendService))
|
||||
app.Post("/v1/audio/speech", auth, localai.TTSEndpoint(fiberContextExtractor, application.TextToSpeechBackendService))
|
||||
|
||||
// images
|
||||
app.Post("/v1/images/generations", auth, openai.ImageEndpoint(fiberContextExtractor, application.ImageGenerationBackendService))
|
||||
|
||||
// Elevenlabs
|
||||
app.Post("/v1/text-to-speech/:voice-id", auth, elevenlabs.TTSEndpoint(fiberContextExtractor, application.TextToSpeechBackendService))
|
||||
|
||||
// LocalAI TTS?
|
||||
app.Post("/tts", auth, localai.TTSEndpoint(fiberContextExtractor, application.TextToSpeechBackendService))
|
||||
|
||||
if application.ApplicationConfig.ImageDir != "" {
|
||||
app.Static("/generated-images", application.ApplicationConfig.ImageDir)
|
||||
}
|
||||
|
||||
if application.ApplicationConfig.AudioDir != "" {
|
||||
app.Static("/generated-audio", application.ApplicationConfig.AudioDir)
|
||||
}
|
||||
|
||||
ok := func(c *fiber.Ctx) error {
|
||||
return c.SendStatus(200)
|
||||
}
|
||||
|
||||
// Kubernetes health checks
|
||||
app.Get("/healthz", ok)
|
||||
app.Get("/readyz", ok)
|
||||
|
||||
// Experimental Backend Statistics Module
|
||||
app.Get("/backend/monitor", auth, localai.BackendMonitorEndpoint(application.BackendMonitorService))
|
||||
app.Post("/backend/shutdown", auth, localai.BackendShutdownEndpoint(application.BackendMonitorService))
|
||||
|
||||
// models
|
||||
app.Get("/v1/models", auth, openai.ListModelsEndpoint(application.ListModelsService))
|
||||
app.Get("/models", auth, openai.ListModelsEndpoint(application.ListModelsService))
|
||||
|
||||
app.Get("/metrics", auth, localai.LocalAIMetricsEndpoint())
|
||||
|
||||
// Define a custom 404 handler
|
||||
// Note: keep this at the bottom!
|
||||
app.Use(notFoundHandler)
|
||||
|
||||
return app, nil
|
||||
}
|
||||
205
core/http/app.go
Normal file
205
core/http/app.go
Normal file
@@ -0,0 +1,205 @@
|
||||
package http
|
||||
|
||||
import (
|
||||
"embed"
|
||||
"errors"
|
||||
"net/http"
|
||||
"strings"
|
||||
|
||||
"github.com/go-skynet/LocalAI/pkg/utils"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/http/endpoints/localai"
|
||||
"github.com/go-skynet/LocalAI/core/http/endpoints/openai"
|
||||
"github.com/go-skynet/LocalAI/core/http/routes"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
"github.com/go-skynet/LocalAI/core/schema"
|
||||
"github.com/go-skynet/LocalAI/core/services"
|
||||
"github.com/go-skynet/LocalAI/pkg/model"
|
||||
|
||||
"github.com/gofiber/contrib/fiberzerolog"
|
||||
"github.com/gofiber/fiber/v2"
|
||||
"github.com/gofiber/fiber/v2/middleware/cors"
|
||||
"github.com/gofiber/fiber/v2/middleware/favicon"
|
||||
"github.com/gofiber/fiber/v2/middleware/filesystem"
|
||||
"github.com/gofiber/fiber/v2/middleware/recover"
|
||||
|
||||
// swagger handler
|
||||
"github.com/rs/zerolog/log"
|
||||
)
|
||||
|
||||
func readAuthHeader(c *fiber.Ctx) string {
|
||||
authHeader := c.Get("Authorization")
|
||||
|
||||
// elevenlabs
|
||||
xApiKey := c.Get("xi-api-key")
|
||||
if xApiKey != "" {
|
||||
authHeader = "Bearer " + xApiKey
|
||||
}
|
||||
|
||||
// anthropic
|
||||
xApiKey = c.Get("x-api-key")
|
||||
if xApiKey != "" {
|
||||
authHeader = "Bearer " + xApiKey
|
||||
}
|
||||
|
||||
return authHeader
|
||||
}
|
||||
|
||||
// Embed a directory
|
||||
//
|
||||
//go:embed static/*
|
||||
var embedDirStatic embed.FS
|
||||
|
||||
// @title LocalAI API
|
||||
// @version 2.0.0
|
||||
// @description The LocalAI Rest API.
|
||||
// @termsOfService
|
||||
// @contact.name LocalAI
|
||||
// @contact.url https://localai.io
|
||||
// @license.name MIT
|
||||
// @license.url https://raw.githubusercontent.com/mudler/LocalAI/master/LICENSE
|
||||
// @BasePath /
|
||||
// @securityDefinitions.apikey BearerAuth
|
||||
// @in header
|
||||
// @name Authorization
|
||||
|
||||
func App(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *config.ApplicationConfig) (*fiber.App, error) {
|
||||
// Return errors as JSON responses
|
||||
app := fiber.New(fiber.Config{
|
||||
Views: renderEngine(),
|
||||
BodyLimit: appConfig.UploadLimitMB * 1024 * 1024, // this is the default limit of 4MB
|
||||
// We disable the Fiber startup message as it does not conform to structured logging.
|
||||
// We register a startup log line with connection information in the OnListen hook to keep things user friendly though
|
||||
DisableStartupMessage: true,
|
||||
// Override default error handler
|
||||
ErrorHandler: func(ctx *fiber.Ctx, err error) error {
|
||||
// Status code defaults to 500
|
||||
code := fiber.StatusInternalServerError
|
||||
|
||||
// Retrieve the custom status code if it's a *fiber.Error
|
||||
var e *fiber.Error
|
||||
if errors.As(err, &e) {
|
||||
code = e.Code
|
||||
}
|
||||
|
||||
// Send custom error page
|
||||
return ctx.Status(code).JSON(
|
||||
schema.ErrorResponse{
|
||||
Error: &schema.APIError{Message: err.Error(), Code: code},
|
||||
},
|
||||
)
|
||||
},
|
||||
})
|
||||
|
||||
app.Hooks().OnListen(func(listenData fiber.ListenData) error {
|
||||
scheme := "http"
|
||||
if listenData.TLS {
|
||||
scheme = "https"
|
||||
}
|
||||
log.Info().Str("endpoint", scheme+"://"+listenData.Host+":"+listenData.Port).Msg("LocalAI API is listening! Please connect to the endpoint for API documentation.")
|
||||
return nil
|
||||
})
|
||||
|
||||
// Have Fiber use zerolog like the rest of the application rather than it's built-in logger
|
||||
logger := log.Logger
|
||||
app.Use(fiberzerolog.New(fiberzerolog.Config{
|
||||
Logger: &logger,
|
||||
}))
|
||||
|
||||
// Default middleware config
|
||||
|
||||
if !appConfig.Debug {
|
||||
app.Use(recover.New())
|
||||
}
|
||||
|
||||
metricsService, err := services.NewLocalAIMetricsService()
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if metricsService != nil {
|
||||
app.Use(localai.LocalAIMetricsAPIMiddleware(metricsService))
|
||||
app.Hooks().OnShutdown(func() error {
|
||||
return metricsService.Shutdown()
|
||||
})
|
||||
}
|
||||
|
||||
// Auth middleware checking if API key is valid. If no API key is set, no auth is required.
|
||||
auth := func(c *fiber.Ctx) error {
|
||||
if len(appConfig.ApiKeys) == 0 {
|
||||
return c.Next()
|
||||
}
|
||||
|
||||
if len(appConfig.ApiKeys) == 0 {
|
||||
return c.Next()
|
||||
}
|
||||
|
||||
authHeader := readAuthHeader(c)
|
||||
if authHeader == "" {
|
||||
return c.Status(fiber.StatusUnauthorized).JSON(fiber.Map{"message": "Authorization header missing"})
|
||||
}
|
||||
|
||||
// If it's a bearer token
|
||||
authHeaderParts := strings.Split(authHeader, " ")
|
||||
if len(authHeaderParts) != 2 || authHeaderParts[0] != "Bearer" {
|
||||
return c.Status(fiber.StatusUnauthorized).JSON(fiber.Map{"message": "Invalid Authorization header format"})
|
||||
}
|
||||
|
||||
apiKey := authHeaderParts[1]
|
||||
for _, key := range appConfig.ApiKeys {
|
||||
if apiKey == key {
|
||||
return c.Next()
|
||||
}
|
||||
}
|
||||
|
||||
return c.Status(fiber.StatusUnauthorized).JSON(fiber.Map{"message": "Invalid API key"})
|
||||
}
|
||||
|
||||
if appConfig.CORS {
|
||||
var c func(ctx *fiber.Ctx) error
|
||||
if appConfig.CORSAllowOrigins == "" {
|
||||
c = cors.New()
|
||||
} else {
|
||||
c = cors.New(cors.Config{AllowOrigins: appConfig.CORSAllowOrigins})
|
||||
}
|
||||
|
||||
app.Use(c)
|
||||
}
|
||||
|
||||
// Load config jsons
|
||||
utils.LoadConfig(appConfig.UploadDir, openai.UploadedFilesFile, &openai.UploadedFiles)
|
||||
utils.LoadConfig(appConfig.ConfigsDir, openai.AssistantsConfigFile, &openai.Assistants)
|
||||
utils.LoadConfig(appConfig.ConfigsDir, openai.AssistantsFileConfigFile, &openai.AssistantFiles)
|
||||
|
||||
galleryService := services.NewGalleryService(appConfig.ModelPath)
|
||||
galleryService.Start(appConfig.Context, cl)
|
||||
|
||||
routes.RegisterElevenLabsRoutes(app, cl, ml, appConfig, auth)
|
||||
routes.RegisterLocalAIRoutes(app, cl, ml, appConfig, galleryService, auth)
|
||||
routes.RegisterOpenAIRoutes(app, cl, ml, appConfig, auth)
|
||||
if !appConfig.DisableWebUI {
|
||||
routes.RegisterUIRoutes(app, cl, ml, appConfig, galleryService, auth)
|
||||
}
|
||||
routes.RegisterJINARoutes(app, cl, ml, appConfig, auth)
|
||||
|
||||
httpFS := http.FS(embedDirStatic)
|
||||
|
||||
app.Use(favicon.New(favicon.Config{
|
||||
URL: "/favicon.ico",
|
||||
FileSystem: httpFS,
|
||||
File: "static/favicon.ico",
|
||||
}))
|
||||
|
||||
app.Use("/static", filesystem.New(filesystem.Config{
|
||||
Root: httpFS,
|
||||
PathPrefix: "static",
|
||||
Browse: true,
|
||||
}))
|
||||
|
||||
// Define a custom 404 handler
|
||||
// Note: keep this at the bottom!
|
||||
app.Use(notFoundHandler)
|
||||
|
||||
return app, nil
|
||||
}
|
||||
@@ -12,9 +12,7 @@ import (
|
||||
"os"
|
||||
"path/filepath"
|
||||
"runtime"
|
||||
"strings"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core"
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
. "github.com/go-skynet/LocalAI/core/http"
|
||||
"github.com/go-skynet/LocalAI/core/schema"
|
||||
@@ -207,11 +205,12 @@ var _ = Describe("API test", func() {
|
||||
var cancel context.CancelFunc
|
||||
var tmpdir string
|
||||
var modelDir string
|
||||
var application *core.Application
|
||||
var bcl *config.BackendConfigLoader
|
||||
var ml *model.ModelLoader
|
||||
var applicationConfig *config.ApplicationConfig
|
||||
|
||||
commonOpts := []config.AppOption{
|
||||
config.WithDebug(true),
|
||||
config.WithDisableMessage(true),
|
||||
}
|
||||
|
||||
Context("API with ephemeral models", func() {
|
||||
@@ -223,7 +222,7 @@ var _ = Describe("API test", func() {
|
||||
|
||||
modelDir = filepath.Join(tmpdir, "models")
|
||||
backendAssetsDir := filepath.Join(tmpdir, "backend-assets")
|
||||
err = os.Mkdir(backendAssetsDir, 0755)
|
||||
err = os.Mkdir(backendAssetsDir, 0750)
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
|
||||
c, cancel = context.WithCancel(context.Background())
|
||||
@@ -242,7 +241,7 @@ var _ = Describe("API test", func() {
|
||||
}
|
||||
out, err := yaml.Marshal(g)
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
err = os.WriteFile(filepath.Join(tmpdir, "gallery_simple.yaml"), out, 0644)
|
||||
err = os.WriteFile(filepath.Join(tmpdir, "gallery_simple.yaml"), out, 0600)
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
|
||||
galleries := []gallery.Gallery{
|
||||
@@ -252,7 +251,7 @@ var _ = Describe("API test", func() {
|
||||
},
|
||||
}
|
||||
|
||||
application, err = startup.Startup(
|
||||
bcl, ml, applicationConfig, err = startup.Startup(
|
||||
append(commonOpts,
|
||||
config.WithContext(c),
|
||||
config.WithGalleries(galleries),
|
||||
@@ -261,7 +260,7 @@ var _ = Describe("API test", func() {
|
||||
config.WithBackendAssetsOutput(backendAssetsDir))...)
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
|
||||
app, err = App(application)
|
||||
app, err = App(bcl, ml, applicationConfig)
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
|
||||
go app.Listen("127.0.0.1:9090")
|
||||
@@ -474,11 +473,11 @@ var _ = Describe("API test", func() {
|
||||
})
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
Expect(len(resp2.Choices)).To(Equal(1))
|
||||
Expect(resp2.Choices[0].Message.ToolCalls[0].Function).ToNot(BeNil())
|
||||
Expect(resp2.Choices[0].Message.ToolCalls[0].Function.Name).To(Equal("get_current_weather"), resp2.Choices[0].Message.ToolCalls[0].Function.Name)
|
||||
Expect(resp2.Choices[0].Message.FunctionCall).ToNot(BeNil())
|
||||
Expect(resp2.Choices[0].Message.FunctionCall.Name).To(Equal("get_current_weather"), resp2.Choices[0].Message.FunctionCall.Name)
|
||||
|
||||
var res map[string]string
|
||||
err = json.Unmarshal([]byte(resp2.Choices[0].Message.ToolCalls[0].Function.Arguments), &res)
|
||||
err = json.Unmarshal([]byte(resp2.Choices[0].Message.FunctionCall.Arguments), &res)
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
Expect(res["location"]).To(Equal("San Francisco"), fmt.Sprint(res))
|
||||
Expect(res["unit"]).To(Equal("celcius"), fmt.Sprint(res))
|
||||
@@ -487,14 +486,13 @@ var _ = Describe("API test", func() {
|
||||
})
|
||||
|
||||
It("runs openllama gguf(llama-cpp)", Label("llama-gguf"), func() {
|
||||
// if runtime.GOOS != "linux" {
|
||||
// Skip("test supported only on linux")
|
||||
// }
|
||||
modelName := "codellama"
|
||||
if runtime.GOOS != "linux" {
|
||||
Skip("test supported only on linux")
|
||||
}
|
||||
|
||||
modelName := "hermes-2-pro-mistral"
|
||||
response := postModelApplyRequest("http://127.0.0.1:9090/models/apply", modelApplyRequest{
|
||||
URL: "github:go-skynet/model-gallery/codellama-7b-instruct.yaml",
|
||||
Name: modelName,
|
||||
Overrides: map[string]interface{}{"backend": "llama", "mmap": true, "f16": true, "context_size": 128},
|
||||
ConfigURL: "https://raw.githubusercontent.com/mudler/LocalAI/master/embedded/models/hermes-2-pro-mistral.yaml",
|
||||
})
|
||||
|
||||
Expect(response["uuid"]).ToNot(BeEmpty(), fmt.Sprint(response))
|
||||
@@ -504,7 +502,7 @@ var _ = Describe("API test", func() {
|
||||
Eventually(func() bool {
|
||||
response := getModelStatus("http://127.0.0.1:9090/models/jobs/" + uuid)
|
||||
return response["processed"].(bool)
|
||||
}, "480s", "10s").Should(Equal(true))
|
||||
}, "360s", "10s").Should(Equal(true))
|
||||
|
||||
By("testing chat")
|
||||
resp, err := client.CreateChatCompletion(context.TODO(), openai.ChatCompletionRequest{Model: modelName, Messages: []openai.ChatCompletionMessage{
|
||||
@@ -551,15 +549,13 @@ var _ = Describe("API test", func() {
|
||||
})
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
Expect(len(resp2.Choices)).To(Equal(1))
|
||||
fmt.Printf("\n--- %+v\n\n", resp2.Choices[0].Message)
|
||||
Expect(resp2.Choices[0].Message.ToolCalls).ToNot(BeNil())
|
||||
Expect(resp2.Choices[0].Message.ToolCalls[0]).ToNot(BeNil())
|
||||
Expect(resp2.Choices[0].Message.ToolCalls[0].Function.Name).To(Equal("get_current_weather"), resp2.Choices[0].Message.ToolCalls[0].Function.Name)
|
||||
Expect(resp2.Choices[0].Message.FunctionCall).ToNot(BeNil())
|
||||
Expect(resp2.Choices[0].Message.FunctionCall.Name).To(Equal("get_current_weather"), resp2.Choices[0].Message.FunctionCall.Name)
|
||||
|
||||
var res map[string]string
|
||||
err = json.Unmarshal([]byte(resp2.Choices[0].Message.ToolCalls[0].Function.Arguments), &res)
|
||||
err = json.Unmarshal([]byte(resp2.Choices[0].Message.FunctionCall.Arguments), &res)
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
Expect(res["location"]).To(Equal("San Francisco"), fmt.Sprint(res))
|
||||
Expect(res["location"]).To(ContainSubstring("San Francisco"), fmt.Sprint(res))
|
||||
Expect(res["unit"]).To(Equal("celcius"), fmt.Sprint(res))
|
||||
Expect(string(resp2.Choices[0].FinishReason)).To(Equal("function_call"), fmt.Sprint(resp2.Choices[0].FinishReason))
|
||||
})
|
||||
@@ -599,7 +595,7 @@ var _ = Describe("API test", func() {
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
modelDir = filepath.Join(tmpdir, "models")
|
||||
backendAssetsDir := filepath.Join(tmpdir, "backend-assets")
|
||||
err = os.Mkdir(backendAssetsDir, 0755)
|
||||
err = os.Mkdir(backendAssetsDir, 0750)
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
|
||||
c, cancel = context.WithCancel(context.Background())
|
||||
@@ -611,7 +607,7 @@ var _ = Describe("API test", func() {
|
||||
},
|
||||
}
|
||||
|
||||
application, err = startup.Startup(
|
||||
bcl, ml, applicationConfig, err = startup.Startup(
|
||||
append(commonOpts,
|
||||
config.WithContext(c),
|
||||
config.WithAudioDir(tmpdir),
|
||||
@@ -622,7 +618,7 @@ var _ = Describe("API test", func() {
|
||||
config.WithBackendAssetsOutput(tmpdir))...,
|
||||
)
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
app, err = App(application)
|
||||
app, err = App(bcl, ml, applicationConfig)
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
|
||||
go app.Listen("127.0.0.1:9090")
|
||||
@@ -712,10 +708,26 @@ var _ = Describe("API test", func() {
|
||||
// The response should contain an URL
|
||||
Expect(err).ToNot(HaveOccurred(), fmt.Sprint(resp))
|
||||
dat, err := io.ReadAll(resp.Body)
|
||||
Expect(err).ToNot(HaveOccurred(), string(dat))
|
||||
Expect(string(dat)).To(ContainSubstring("http://127.0.0.1:9090/"), string(dat))
|
||||
Expect(string(dat)).To(ContainSubstring(".png"), string(dat))
|
||||
Expect(err).ToNot(HaveOccurred(), "error reading /image/generations response")
|
||||
|
||||
imgUrlResp := &schema.OpenAIResponse{}
|
||||
err = json.Unmarshal(dat, imgUrlResp)
|
||||
Expect(imgUrlResp.Data).ToNot(Or(BeNil(), BeZero()))
|
||||
imgUrl := imgUrlResp.Data[0].URL
|
||||
Expect(imgUrl).To(ContainSubstring("http://127.0.0.1:9090/"), imgUrl)
|
||||
Expect(imgUrl).To(ContainSubstring(".png"), imgUrl)
|
||||
|
||||
imgResp, err := http.Get(imgUrl)
|
||||
Expect(err).To(BeNil())
|
||||
Expect(imgResp).ToNot(BeNil())
|
||||
Expect(imgResp.StatusCode).To(Equal(200))
|
||||
Expect(imgResp.ContentLength).To(BeNumerically(">", 0))
|
||||
imgData := make([]byte, 512)
|
||||
count, err := io.ReadFull(imgResp.Body, imgData)
|
||||
Expect(err).To(Or(BeNil(), MatchError(io.EOF)))
|
||||
Expect(count).To(BeNumerically(">", 0))
|
||||
Expect(count).To(BeNumerically("<=", 512))
|
||||
Expect(http.DetectContentType(imgData)).To(Equal("image/png"))
|
||||
})
|
||||
})
|
||||
|
||||
@@ -726,14 +738,14 @@ var _ = Describe("API test", func() {
|
||||
|
||||
var err error
|
||||
|
||||
application, err = startup.Startup(
|
||||
bcl, ml, applicationConfig, err = startup.Startup(
|
||||
append(commonOpts,
|
||||
config.WithExternalBackend("huggingface", os.Getenv("HUGGINGFACE_GRPC")),
|
||||
config.WithContext(c),
|
||||
config.WithModelPath(modelPath),
|
||||
)...)
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
app, err = App(application)
|
||||
app, err = App(bcl, ml, applicationConfig)
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
go app.Listen("127.0.0.1:9090")
|
||||
|
||||
@@ -763,11 +775,6 @@ var _ = Describe("API test", func() {
|
||||
Expect(len(models.Models)).To(Equal(6)) // If "config.yaml" should be included, this should be 8?
|
||||
})
|
||||
It("can generate completions via ggml", func() {
|
||||
bt, ok := os.LookupEnv("BUILD_TYPE")
|
||||
if ok && strings.ToLower(bt) == "metal" {
|
||||
Skip("GGML + Metal is known flaky, skip test temporarily")
|
||||
}
|
||||
|
||||
resp, err := client.CreateCompletion(context.TODO(), openai.CompletionRequest{Model: "testmodel.ggml", Prompt: testPrompt})
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
Expect(len(resp.Choices)).To(Equal(1))
|
||||
@@ -775,11 +782,6 @@ var _ = Describe("API test", func() {
|
||||
})
|
||||
|
||||
It("can generate chat completions via ggml", func() {
|
||||
bt, ok := os.LookupEnv("BUILD_TYPE")
|
||||
if ok && strings.ToLower(bt) == "metal" {
|
||||
Skip("GGML + Metal is known flaky, skip test temporarily")
|
||||
}
|
||||
|
||||
resp, err := client.CreateChatCompletion(context.TODO(), openai.ChatCompletionRequest{Model: "testmodel.ggml", Messages: []openai.ChatCompletionMessage{openai.ChatCompletionMessage{Role: "user", Content: testPrompt}}})
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
Expect(len(resp.Choices)).To(Equal(1))
|
||||
@@ -787,11 +789,6 @@ var _ = Describe("API test", func() {
|
||||
})
|
||||
|
||||
It("can generate completions from model configs", func() {
|
||||
bt, ok := os.LookupEnv("BUILD_TYPE")
|
||||
if ok && strings.ToLower(bt) == "metal" {
|
||||
Skip("GGML + Metal is known flaky, skip test temporarily")
|
||||
}
|
||||
|
||||
resp, err := client.CreateCompletion(context.TODO(), openai.CompletionRequest{Model: "gpt4all", Prompt: testPrompt})
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
Expect(len(resp.Choices)).To(Equal(1))
|
||||
@@ -799,11 +796,6 @@ var _ = Describe("API test", func() {
|
||||
})
|
||||
|
||||
It("can generate chat completions from model configs", func() {
|
||||
bt, ok := os.LookupEnv("BUILD_TYPE")
|
||||
if ok && strings.ToLower(bt) == "metal" {
|
||||
Skip("GGML + Metal is known flaky, skip test temporarily")
|
||||
}
|
||||
|
||||
resp, err := client.CreateChatCompletion(context.TODO(), openai.ChatCompletionRequest{Model: "gpt4all-2", Messages: []openai.ChatCompletionMessage{openai.ChatCompletionMessage{Role: "user", Content: testPrompt}}})
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
Expect(len(resp.Choices)).To(Equal(1))
|
||||
@@ -811,11 +803,11 @@ var _ = Describe("API test", func() {
|
||||
})
|
||||
|
||||
It("returns errors", func() {
|
||||
backends := len(model.AutoLoadBackends) + 1 // +1 for huggingface
|
||||
_, err := client.CreateCompletion(context.TODO(), openai.CompletionRequest{Model: "foomodel", Prompt: testPrompt})
|
||||
Expect(err).To(HaveOccurred())
|
||||
Expect(err.Error()).To(ContainSubstring(fmt.Sprintf("error, status code: 500, message: could not load model - all backends returned error: %d errors occurred:", backends)))
|
||||
Expect(err.Error()).To(ContainSubstring("error, status code: 500, message: could not load model - all backends returned error:"))
|
||||
})
|
||||
|
||||
It("transcribes audio", func() {
|
||||
if runtime.GOOS != "linux" {
|
||||
Skip("test supported only on linux")
|
||||
@@ -890,9 +882,9 @@ var _ = Describe("API test", func() {
|
||||
|
||||
Context("backends", func() {
|
||||
It("runs rwkv completion", func() {
|
||||
// if runtime.GOOS != "linux" {
|
||||
// Skip("test supported only on linux")
|
||||
// }
|
||||
if runtime.GOOS != "linux" {
|
||||
Skip("test supported only on linux")
|
||||
}
|
||||
resp, err := client.CreateCompletion(context.TODO(), openai.CompletionRequest{Model: "rwkv_test", Prompt: "Count up to five: one, two, three, four,"})
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
Expect(len(resp.Choices) > 0).To(BeTrue())
|
||||
@@ -913,20 +905,17 @@ var _ = Describe("API test", func() {
|
||||
}
|
||||
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
|
||||
if len(response.Choices) > 0 {
|
||||
text += response.Choices[0].Text
|
||||
tokens++
|
||||
}
|
||||
text += response.Choices[0].Text
|
||||
tokens++
|
||||
}
|
||||
Expect(text).ToNot(BeEmpty())
|
||||
Expect(text).To(ContainSubstring("five"))
|
||||
Expect(tokens).ToNot(Or(Equal(1), Equal(0)))
|
||||
})
|
||||
It("runs rwkv chat completion", func() {
|
||||
// if runtime.GOOS != "linux" {
|
||||
// Skip("test supported only on linux")
|
||||
// }
|
||||
if runtime.GOOS != "linux" {
|
||||
Skip("test supported only on linux")
|
||||
}
|
||||
resp, err := client.CreateChatCompletion(context.TODO(),
|
||||
openai.ChatCompletionRequest{Model: "rwkv_test", Messages: []openai.ChatCompletionMessage{{Content: "Can you count up to five?", Role: "user"}}})
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
@@ -1035,14 +1024,14 @@ var _ = Describe("API test", func() {
|
||||
c, cancel = context.WithCancel(context.Background())
|
||||
|
||||
var err error
|
||||
application, err = startup.Startup(
|
||||
bcl, ml, applicationConfig, err = startup.Startup(
|
||||
append(commonOpts,
|
||||
config.WithContext(c),
|
||||
config.WithModelPath(modelPath),
|
||||
config.WithConfigFile(os.Getenv("CONFIG_FILE")))...,
|
||||
)
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
app, err = App(application)
|
||||
app, err = App(bcl, ml, applicationConfig)
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
|
||||
go app.Listen("127.0.0.1:9090")
|
||||
@@ -1066,33 +1055,18 @@ var _ = Describe("API test", func() {
|
||||
}
|
||||
})
|
||||
It("can generate chat completions from config file (list1)", func() {
|
||||
bt, ok := os.LookupEnv("BUILD_TYPE")
|
||||
if ok && strings.ToLower(bt) == "metal" {
|
||||
Skip("GGML + Metal is known flaky, skip test temporarily")
|
||||
}
|
||||
|
||||
resp, err := client.CreateChatCompletion(context.TODO(), openai.ChatCompletionRequest{Model: "list1", Messages: []openai.ChatCompletionMessage{{Role: "user", Content: testPrompt}}})
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
Expect(len(resp.Choices)).To(Equal(1))
|
||||
Expect(resp.Choices[0].Message.Content).ToNot(BeEmpty())
|
||||
})
|
||||
It("can generate chat completions from config file (list2)", func() {
|
||||
bt, ok := os.LookupEnv("BUILD_TYPE")
|
||||
if ok && strings.ToLower(bt) == "metal" {
|
||||
Skip("GGML + Metal is known flaky, skip test temporarily")
|
||||
}
|
||||
|
||||
resp, err := client.CreateChatCompletion(context.TODO(), openai.ChatCompletionRequest{Model: "list2", Messages: []openai.ChatCompletionMessage{{Role: "user", Content: testPrompt}}})
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
Expect(len(resp.Choices)).To(Equal(1))
|
||||
Expect(resp.Choices[0].Message.Content).ToNot(BeEmpty())
|
||||
})
|
||||
It("can generate edit completions from config file", func() {
|
||||
bt, ok := os.LookupEnv("BUILD_TYPE")
|
||||
if ok && strings.ToLower(bt) == "metal" {
|
||||
Skip("GGML + Metal is known flaky, skip test temporarily")
|
||||
}
|
||||
|
||||
request := openaigo.EditCreateRequestBody{
|
||||
Model: "list2",
|
||||
Instruction: "foo",
|
||||
@@ -1,88 +1,43 @@
|
||||
package fiberContext
|
||||
|
||||
import (
|
||||
"context"
|
||||
"encoding/json"
|
||||
"fmt"
|
||||
"strings"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
"github.com/go-skynet/LocalAI/core/schema"
|
||||
"github.com/go-skynet/LocalAI/pkg/model"
|
||||
"github.com/gofiber/fiber/v2"
|
||||
"github.com/rs/zerolog/log"
|
||||
)
|
||||
|
||||
type FiberContextExtractor struct {
|
||||
ml *model.ModelLoader
|
||||
appConfig *config.ApplicationConfig
|
||||
}
|
||||
|
||||
func NewFiberContextExtractor(ml *model.ModelLoader, appConfig *config.ApplicationConfig) *FiberContextExtractor {
|
||||
return &FiberContextExtractor{
|
||||
ml: ml,
|
||||
appConfig: appConfig,
|
||||
}
|
||||
}
|
||||
|
||||
// ModelFromContext returns the model from the context
|
||||
// If no model is specified, it will take the first available
|
||||
// Takes a model string as input which should be the one received from the user request.
|
||||
// It returns the model name resolved from the context and an error if any.
|
||||
func (fce *FiberContextExtractor) ModelFromContext(ctx *fiber.Ctx, modelInput string, firstModel bool) (string, error) {
|
||||
ctxPM := ctx.Params("model")
|
||||
if ctxPM != "" {
|
||||
log.Debug().Msgf("[FCE] Overriding param modelInput %q with ctx.Params value %q", modelInput, ctxPM)
|
||||
modelInput = ctxPM
|
||||
func ModelFromContext(ctx *fiber.Ctx, loader *model.ModelLoader, modelInput string, firstModel bool) (string, error) {
|
||||
if ctx.Params("model") != "" {
|
||||
modelInput = ctx.Params("model")
|
||||
}
|
||||
|
||||
// Set model from bearer token, if available
|
||||
bearer := strings.TrimPrefix(ctx.Get("authorization"), "Bearer ")
|
||||
bearerExists := bearer != "" && fce.ml.ExistsInModelPath(bearer)
|
||||
bearer := strings.TrimLeft(ctx.Get("authorization"), "Bearer ")
|
||||
bearerExists := bearer != "" && loader.ExistsInModelPath(bearer)
|
||||
|
||||
// If no model was specified, take the first available
|
||||
if modelInput == "" && !bearerExists && firstModel {
|
||||
models, _ := fce.ml.ListModels()
|
||||
models, _ := loader.ListModels()
|
||||
if len(models) > 0 {
|
||||
modelInput = models[0]
|
||||
log.Debug().Msgf("[FCE] No model specified, using first available: %s", modelInput)
|
||||
log.Debug().Msgf("No model specified, using: %s", modelInput)
|
||||
} else {
|
||||
log.Warn().Msgf("[FCE] No model specified, none available")
|
||||
return "", fmt.Errorf("[fce] no model specified, none available")
|
||||
log.Debug().Msgf("No model specified, returning error")
|
||||
return "", fmt.Errorf("no model specified")
|
||||
}
|
||||
}
|
||||
|
||||
// If a model is found in bearer token takes precedence
|
||||
if bearerExists {
|
||||
log.Debug().Msgf("[FCE] Using model from bearer token: %s", bearer)
|
||||
log.Debug().Msgf("Using model from bearer token: %s", bearer)
|
||||
modelInput = bearer
|
||||
}
|
||||
|
||||
if modelInput == "" {
|
||||
log.Warn().Msg("[FCE] modelInput is empty")
|
||||
}
|
||||
return modelInput, nil
|
||||
}
|
||||
|
||||
// TODO: Do we still need the first return value?
|
||||
func (fce *FiberContextExtractor) OpenAIRequestFromContext(c *fiber.Ctx, firstModel bool) (string, *schema.OpenAIRequest, error) {
|
||||
input := new(schema.OpenAIRequest)
|
||||
|
||||
// Get input data from the request body
|
||||
if err := c.BodyParser(input); err != nil {
|
||||
return "", nil, fmt.Errorf("failed parsing request body: %w", err)
|
||||
}
|
||||
|
||||
received, _ := json.Marshal(input)
|
||||
|
||||
ctx, cancel := context.WithCancel(fce.appConfig.Context)
|
||||
input.Context = ctx
|
||||
input.Cancel = cancel
|
||||
|
||||
log.Debug().Msgf("Request received: %s", string(received))
|
||||
|
||||
var err error
|
||||
input.Model, err = fce.ModelFromContext(c, input.Model, firstModel)
|
||||
|
||||
return input.Model, input, err
|
||||
}
|
||||
|
||||
405
core/http/elements/gallery.go
Normal file
405
core/http/elements/gallery.go
Normal file
@@ -0,0 +1,405 @@
|
||||
package elements
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"strings"
|
||||
|
||||
"github.com/chasefleming/elem-go"
|
||||
"github.com/chasefleming/elem-go/attrs"
|
||||
"github.com/go-skynet/LocalAI/core/services"
|
||||
"github.com/go-skynet/LocalAI/pkg/gallery"
|
||||
"github.com/go-skynet/LocalAI/pkg/xsync"
|
||||
)
|
||||
|
||||
const (
|
||||
noImage = "https://upload.wikimedia.org/wikipedia/commons/6/65/No-Image-Placeholder.svg"
|
||||
)
|
||||
|
||||
func DoneProgress(galleryID, text string, showDelete bool) string {
|
||||
var modelName = galleryID
|
||||
// Split by @ and grab the name
|
||||
if strings.Contains(galleryID, "@") {
|
||||
modelName = strings.Split(galleryID, "@")[1]
|
||||
}
|
||||
|
||||
return elem.Div(
|
||||
attrs.Props{
|
||||
"id": "action-div-" + dropBadChars(galleryID),
|
||||
},
|
||||
elem.H3(
|
||||
attrs.Props{
|
||||
"role": "status",
|
||||
"id": "pblabel",
|
||||
"tabindex": "-1",
|
||||
"autofocus": "",
|
||||
},
|
||||
elem.Text(text),
|
||||
),
|
||||
elem.If(showDelete, deleteButton(galleryID, modelName), reInstallButton(galleryID)),
|
||||
).Render()
|
||||
}
|
||||
|
||||
func ErrorProgress(err, galleryName string) string {
|
||||
return elem.Div(
|
||||
attrs.Props{},
|
||||
elem.H3(
|
||||
attrs.Props{
|
||||
"role": "status",
|
||||
"id": "pblabel",
|
||||
"tabindex": "-1",
|
||||
"autofocus": "",
|
||||
},
|
||||
elem.Text("Error "+err),
|
||||
),
|
||||
installButton(galleryName),
|
||||
).Render()
|
||||
}
|
||||
|
||||
func ProgressBar(progress string) string {
|
||||
return elem.Div(attrs.Props{
|
||||
"class": "progress",
|
||||
"role": "progressbar",
|
||||
"aria-valuemin": "0",
|
||||
"aria-valuemax": "100",
|
||||
"aria-valuenow": "0",
|
||||
"aria-labelledby": "pblabel",
|
||||
},
|
||||
elem.Div(attrs.Props{
|
||||
"id": "pb",
|
||||
"class": "progress-bar",
|
||||
"style": "width:" + progress + "%",
|
||||
}),
|
||||
).Render()
|
||||
}
|
||||
|
||||
func StartProgressBar(uid, progress, text string) string {
|
||||
if progress == "" {
|
||||
progress = "0"
|
||||
}
|
||||
return elem.Div(
|
||||
attrs.Props{
|
||||
"hx-trigger": "done",
|
||||
"hx-get": "/browse/job/" + uid,
|
||||
"hx-swap": "outerHTML",
|
||||
"hx-target": "this",
|
||||
},
|
||||
elem.H3(
|
||||
attrs.Props{
|
||||
"role": "status",
|
||||
"id": "pblabel",
|
||||
"tabindex": "-1",
|
||||
"autofocus": "",
|
||||
},
|
||||
elem.Text(text),
|
||||
elem.Div(attrs.Props{
|
||||
"hx-get": "/browse/job/progress/" + uid,
|
||||
"hx-trigger": "every 600ms",
|
||||
"hx-target": "this",
|
||||
"hx-swap": "innerHTML",
|
||||
},
|
||||
elem.Raw(ProgressBar(progress)),
|
||||
),
|
||||
),
|
||||
).Render()
|
||||
}
|
||||
|
||||
func cardSpan(text, icon string) elem.Node {
|
||||
return elem.Span(
|
||||
attrs.Props{
|
||||
"class": "inline-block bg-gray-200 rounded-full px-3 py-1 text-sm font-semibold text-gray-700 mr-2 mb-2",
|
||||
},
|
||||
elem.I(attrs.Props{
|
||||
"class": icon + " pr-2",
|
||||
}),
|
||||
|
||||
elem.Text(text),
|
||||
|
||||
//elem.Text(text),
|
||||
)
|
||||
}
|
||||
|
||||
func searchableElement(text, icon string) elem.Node {
|
||||
return elem.Form(
|
||||
attrs.Props{},
|
||||
elem.Input(
|
||||
attrs.Props{
|
||||
"type": "hidden",
|
||||
"name": "search",
|
||||
"value": text,
|
||||
},
|
||||
),
|
||||
elem.Span(
|
||||
attrs.Props{
|
||||
"class": "inline-block bg-gray-200 rounded-full px-3 py-1 text-sm font-semibold text-gray-700 mr-2 mb-2 hover:bg-gray-300 hover:shadow-gray-2",
|
||||
},
|
||||
|
||||
elem.A(
|
||||
attrs.Props{
|
||||
// "name": "search",
|
||||
// "value": text,
|
||||
//"class": "inline-block bg-gray-200 rounded-full px-3 py-1 text-sm font-semibold text-gray-700 mr-2 mb-2",
|
||||
"href": "#!",
|
||||
"hx-post": "/browse/search/models",
|
||||
"hx-target": "#search-results",
|
||||
// TODO: this doesn't work
|
||||
// "hx-vals": `{ \"search\": \"` + text + `\" }`,
|
||||
"hx-indicator": ".htmx-indicator",
|
||||
},
|
||||
elem.I(attrs.Props{
|
||||
"class": icon + " pr-2",
|
||||
}),
|
||||
elem.Text(text),
|
||||
),
|
||||
),
|
||||
|
||||
//elem.Text(text),
|
||||
)
|
||||
}
|
||||
|
||||
func link(text, url string) elem.Node {
|
||||
return elem.A(
|
||||
attrs.Props{
|
||||
"class": "inline-block bg-gray-200 rounded-full px-3 py-1 text-sm font-semibold text-gray-700 mr-2 mb-2 hover:bg-gray-300 hover:shadow-gray-2",
|
||||
"href": url,
|
||||
"target": "_blank",
|
||||
},
|
||||
elem.I(attrs.Props{
|
||||
"class": "fas fa-link pr-2",
|
||||
}),
|
||||
elem.Text(text),
|
||||
)
|
||||
}
|
||||
func installButton(galleryName string) elem.Node {
|
||||
return elem.Button(
|
||||
attrs.Props{
|
||||
"data-twe-ripple-init": "",
|
||||
"data-twe-ripple-color": "light",
|
||||
"class": "float-right inline-block rounded bg-primary px-6 pb-2.5 mb-3 pt-2.5 text-xs font-medium uppercase leading-normal text-white shadow-primary-3 transition duration-150 ease-in-out hover:bg-primary-accent-300 hover:shadow-primary-2 focus:bg-primary-accent-300 focus:shadow-primary-2 focus:outline-none focus:ring-0 active:bg-primary-600 active:shadow-primary-2 dark:shadow-black/30 dark:hover:shadow-dark-strong dark:focus:shadow-dark-strong dark:active:shadow-dark-strong",
|
||||
"hx-swap": "outerHTML",
|
||||
// post the Model ID as param
|
||||
"hx-post": "/browse/install/model/" + galleryName,
|
||||
},
|
||||
elem.I(
|
||||
attrs.Props{
|
||||
"class": "fa-solid fa-download pr-2",
|
||||
},
|
||||
),
|
||||
elem.Text("Install"),
|
||||
)
|
||||
}
|
||||
|
||||
func reInstallButton(galleryName string) elem.Node {
|
||||
return elem.Button(
|
||||
attrs.Props{
|
||||
"data-twe-ripple-init": "",
|
||||
"data-twe-ripple-color": "light",
|
||||
"class": "float-right inline-block rounded bg-primary ml-2 px-6 pb-2.5 mb-3 pt-2.5 text-xs font-medium uppercase leading-normal text-white shadow-primary-3 transition duration-150 ease-in-out hover:bg-primary-accent-300 hover:shadow-primary-2 focus:bg-primary-accent-300 focus:shadow-primary-2 focus:outline-none focus:ring-0 active:bg-primary-600 active:shadow-primary-2 dark:shadow-black/30 dark:hover:shadow-dark-strong dark:focus:shadow-dark-strong dark:active:shadow-dark-strong",
|
||||
"hx-target": "#action-div-" + dropBadChars(galleryName),
|
||||
"hx-swap": "outerHTML",
|
||||
// post the Model ID as param
|
||||
"hx-post": "/browse/install/model/" + galleryName,
|
||||
},
|
||||
elem.I(
|
||||
attrs.Props{
|
||||
"class": "fa-solid fa-arrow-rotate-right pr-2",
|
||||
},
|
||||
),
|
||||
elem.Text("Reinstall"),
|
||||
)
|
||||
}
|
||||
|
||||
func deleteButton(galleryID, modelName string) elem.Node {
|
||||
return elem.Button(
|
||||
attrs.Props{
|
||||
"data-twe-ripple-init": "",
|
||||
"data-twe-ripple-color": "light",
|
||||
"hx-confirm": "Are you sure you wish to delete the model?",
|
||||
"class": "float-right inline-block rounded bg-red-800 px-6 pb-2.5 mb-3 pt-2.5 text-xs font-medium uppercase leading-normal text-white shadow-primary-3 transition duration-150 ease-in-out hover:bg-red-accent-300 hover:shadow-red-2 focus:bg-red-accent-300 focus:shadow-primary-2 focus:outline-none focus:ring-0 active:bg-red-600 active:shadow-primary-2 dark:shadow-black/30 dark:hover:shadow-dark-strong dark:focus:shadow-dark-strong dark:active:shadow-dark-strong",
|
||||
"hx-target": "#action-div-" + dropBadChars(galleryID),
|
||||
"hx-swap": "outerHTML",
|
||||
// post the Model ID as param
|
||||
"hx-post": "/browse/delete/model/" + galleryID,
|
||||
},
|
||||
elem.I(
|
||||
attrs.Props{
|
||||
"class": "fa-solid fa-cancel pr-2",
|
||||
},
|
||||
),
|
||||
elem.Text("Delete"),
|
||||
)
|
||||
}
|
||||
|
||||
// Javascript/HTMX doesn't like weird IDs
|
||||
func dropBadChars(s string) string {
|
||||
return strings.ReplaceAll(s, "@", "__")
|
||||
}
|
||||
|
||||
func ListModels(models []*gallery.GalleryModel, processing *xsync.SyncedMap[string, string], galleryService *services.GalleryService) string {
|
||||
modelsElements := []elem.Node{}
|
||||
descriptionDiv := func(m *gallery.GalleryModel) elem.Node {
|
||||
return elem.Div(
|
||||
attrs.Props{
|
||||
"class": "p-6 text-surface dark:text-white",
|
||||
},
|
||||
elem.H5(
|
||||
attrs.Props{
|
||||
"class": "mb-2 text-xl font-medium leading-tight",
|
||||
},
|
||||
elem.Text(m.Name),
|
||||
),
|
||||
elem.P(
|
||||
attrs.Props{
|
||||
"class": "mb-4 text-base",
|
||||
},
|
||||
elem.Text(m.Description),
|
||||
),
|
||||
)
|
||||
}
|
||||
|
||||
actionDiv := func(m *gallery.GalleryModel) elem.Node {
|
||||
galleryID := fmt.Sprintf("%s@%s", m.Gallery.Name, m.Name)
|
||||
currentlyProcessing := processing.Exists(galleryID)
|
||||
jobID := ""
|
||||
isDeletionOp := false
|
||||
if currentlyProcessing {
|
||||
status := galleryService.GetStatus(galleryID)
|
||||
if status != nil && status.Deletion {
|
||||
isDeletionOp = true
|
||||
}
|
||||
jobID = processing.Get(galleryID)
|
||||
// TODO:
|
||||
// case not handled, if status == nil : "Waiting"
|
||||
}
|
||||
|
||||
nodes := []elem.Node{
|
||||
cardSpan("Repository: "+m.Gallery.Name, "fa-brands fa-git-alt"),
|
||||
}
|
||||
|
||||
if m.License != "" {
|
||||
nodes = append(nodes,
|
||||
cardSpan("License: "+m.License, "fas fa-book"),
|
||||
)
|
||||
}
|
||||
|
||||
tagsNodes := []elem.Node{}
|
||||
for _, tag := range m.Tags {
|
||||
tagsNodes = append(tagsNodes,
|
||||
searchableElement(tag, "fas fa-tag"),
|
||||
)
|
||||
}
|
||||
|
||||
nodes = append(nodes,
|
||||
elem.Div(
|
||||
attrs.Props{
|
||||
"class": "flex flex-row flex-wrap content-center",
|
||||
},
|
||||
tagsNodes...,
|
||||
),
|
||||
)
|
||||
|
||||
for i, url := range m.URLs {
|
||||
nodes = append(nodes,
|
||||
link("Link #"+fmt.Sprintf("%d", i+1), url),
|
||||
)
|
||||
}
|
||||
|
||||
progressMessage := "Installation"
|
||||
if isDeletionOp {
|
||||
progressMessage = "Deletion"
|
||||
}
|
||||
|
||||
return elem.Div(
|
||||
attrs.Props{
|
||||
"class": "px-6 pt-4 pb-2",
|
||||
},
|
||||
elem.P(
|
||||
attrs.Props{
|
||||
"class": "mb-4 text-base",
|
||||
},
|
||||
nodes...,
|
||||
),
|
||||
elem.Div(
|
||||
attrs.Props{
|
||||
"id": "action-div-" + dropBadChars(galleryID),
|
||||
},
|
||||
elem.If(
|
||||
currentlyProcessing,
|
||||
elem.Node( // If currently installing, show progress bar
|
||||
elem.Raw(StartProgressBar(jobID, "0", progressMessage)),
|
||||
), // Otherwise, show install button (if not installed) or display "Installed"
|
||||
elem.If(m.Installed,
|
||||
elem.Node(elem.Div(
|
||||
attrs.Props{},
|
||||
reInstallButton(m.ID()),
|
||||
deleteButton(m.ID(), m.Name),
|
||||
)),
|
||||
installButton(m.ID()),
|
||||
),
|
||||
),
|
||||
),
|
||||
)
|
||||
}
|
||||
|
||||
for _, m := range models {
|
||||
elems := []elem.Node{}
|
||||
|
||||
if m.Icon == "" {
|
||||
m.Icon = noImage
|
||||
}
|
||||
|
||||
divProperties := attrs.Props{
|
||||
"class": "flex justify-center items-center",
|
||||
}
|
||||
|
||||
elems = append(elems,
|
||||
elem.Div(divProperties,
|
||||
elem.A(attrs.Props{
|
||||
"href": "#!",
|
||||
// "class": "justify-center items-center",
|
||||
},
|
||||
elem.Img(attrs.Props{
|
||||
// "class": "rounded-t-lg object-fit object-center h-96",
|
||||
"class": "rounded-t-lg max-h-48 max-w-96 object-cover mt-3",
|
||||
"src": m.Icon,
|
||||
}),
|
||||
),
|
||||
),
|
||||
)
|
||||
|
||||
// Special/corner case: if a model sets Trust Remote Code as required, show a warning
|
||||
// TODO: handle this more generically later
|
||||
_, trustRemoteCodeExists := m.Overrides["trust_remote_code"]
|
||||
if trustRemoteCodeExists {
|
||||
elems = append(elems, elem.Div(
|
||||
attrs.Props{
|
||||
"class": "flex justify-center items-center bg-red-500 text-white p-2 rounded-lg mt-2",
|
||||
},
|
||||
elem.I(attrs.Props{
|
||||
"class": "fa-solid fa-circle-exclamation pr-2",
|
||||
}),
|
||||
elem.Text("Attention: Trust Remote Code is required for this model"),
|
||||
))
|
||||
}
|
||||
|
||||
elems = append(elems, descriptionDiv(m), actionDiv(m))
|
||||
modelsElements = append(modelsElements,
|
||||
elem.Div(
|
||||
attrs.Props{
|
||||
"class": " me-4 mb-2 block rounded-lg bg-white shadow-secondary-1 dark:bg-gray-800 dark:bg-surface-dark dark:text-white text-surface pb-2",
|
||||
},
|
||||
elem.Div(
|
||||
attrs.Props{
|
||||
// "class": "p-6",
|
||||
},
|
||||
elems...,
|
||||
),
|
||||
),
|
||||
)
|
||||
}
|
||||
|
||||
wrapper := elem.Div(attrs.Props{
|
||||
"class": "dark grid grid-cols-1 grid-rows-1 md:grid-cols-3 block rounded-lg shadow-secondary-1 dark:bg-surface-dark",
|
||||
}, modelsElements...)
|
||||
|
||||
return wrapper.Render()
|
||||
}
|
||||
@@ -2,7 +2,9 @@ package elevenlabs
|
||||
|
||||
import (
|
||||
"github.com/go-skynet/LocalAI/core/backend"
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
fiberContext "github.com/go-skynet/LocalAI/core/http/ctx"
|
||||
"github.com/go-skynet/LocalAI/pkg/model"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/schema"
|
||||
"github.com/gofiber/fiber/v2"
|
||||
@@ -15,7 +17,7 @@ import (
|
||||
// @Param request body schema.TTSRequest true "query params"
|
||||
// @Success 200 {string} binary "Response"
|
||||
// @Router /v1/text-to-speech/{voice-id} [post]
|
||||
func TTSEndpoint(fce *fiberContext.FiberContextExtractor, ttsbs *backend.TextToSpeechBackendService) func(c *fiber.Ctx) error {
|
||||
func TTSEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
|
||||
return func(c *fiber.Ctx) error {
|
||||
|
||||
input := new(schema.ElevenLabsTTSRequest)
|
||||
@@ -26,21 +28,34 @@ func TTSEndpoint(fce *fiberContext.FiberContextExtractor, ttsbs *backend.TextToS
|
||||
return err
|
||||
}
|
||||
|
||||
var err error
|
||||
input.ModelID, err = fce.ModelFromContext(c, input.ModelID, false)
|
||||
modelFile, err := fiberContext.ModelFromContext(c, ml, input.ModelID, false)
|
||||
if err != nil {
|
||||
modelFile = input.ModelID
|
||||
log.Warn().Msgf("Model not found in context: %s", input.ModelID)
|
||||
}
|
||||
|
||||
responseChannel := ttsbs.TextToAudioFile(&schema.TTSRequest{
|
||||
Model: input.ModelID,
|
||||
Voice: voiceID,
|
||||
Input: input.Text,
|
||||
})
|
||||
rawValue := <-responseChannel
|
||||
if rawValue.Error != nil {
|
||||
return rawValue.Error
|
||||
cfg, err := cl.LoadBackendConfigFileByName(modelFile, appConfig.ModelPath,
|
||||
config.LoadOptionDebug(appConfig.Debug),
|
||||
config.LoadOptionThreads(appConfig.Threads),
|
||||
config.LoadOptionContextSize(appConfig.ContextSize),
|
||||
config.LoadOptionF16(appConfig.F16),
|
||||
)
|
||||
if err != nil {
|
||||
modelFile = input.ModelID
|
||||
log.Warn().Msgf("Model not found in context: %s", input.ModelID)
|
||||
} else {
|
||||
if input.ModelID != "" {
|
||||
modelFile = input.ModelID
|
||||
} else {
|
||||
modelFile = cfg.Model
|
||||
}
|
||||
}
|
||||
return c.Download(*rawValue.Value)
|
||||
log.Debug().Msgf("Request for model: %s", modelFile)
|
||||
|
||||
filePath, _, err := backend.ModelTTS(cfg.Backend, input.Text, modelFile, voiceID, ml, appConfig, *cfg)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
return c.Download(filePath)
|
||||
}
|
||||
}
|
||||
|
||||
84
core/http/endpoints/jina/rerank.go
Normal file
84
core/http/endpoints/jina/rerank.go
Normal file
@@ -0,0 +1,84 @@
|
||||
package jina
|
||||
|
||||
import (
|
||||
"github.com/go-skynet/LocalAI/core/backend"
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
|
||||
fiberContext "github.com/go-skynet/LocalAI/core/http/ctx"
|
||||
"github.com/go-skynet/LocalAI/core/schema"
|
||||
"github.com/go-skynet/LocalAI/pkg/grpc/proto"
|
||||
"github.com/go-skynet/LocalAI/pkg/model"
|
||||
"github.com/gofiber/fiber/v2"
|
||||
"github.com/rs/zerolog/log"
|
||||
)
|
||||
|
||||
func JINARerankEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
|
||||
return func(c *fiber.Ctx) error {
|
||||
req := new(schema.JINARerankRequest)
|
||||
if err := c.BodyParser(req); err != nil {
|
||||
return c.Status(fiber.StatusBadRequest).JSON(fiber.Map{
|
||||
"error": "Cannot parse JSON",
|
||||
})
|
||||
}
|
||||
|
||||
input := new(schema.TTSRequest)
|
||||
|
||||
// Get input data from the request body
|
||||
if err := c.BodyParser(input); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
modelFile, err := fiberContext.ModelFromContext(c, ml, input.Model, false)
|
||||
if err != nil {
|
||||
modelFile = input.Model
|
||||
log.Warn().Msgf("Model not found in context: %s", input.Model)
|
||||
}
|
||||
|
||||
cfg, err := cl.LoadBackendConfigFileByName(modelFile, appConfig.ModelPath,
|
||||
config.LoadOptionDebug(appConfig.Debug),
|
||||
config.LoadOptionThreads(appConfig.Threads),
|
||||
config.LoadOptionContextSize(appConfig.ContextSize),
|
||||
config.LoadOptionF16(appConfig.F16),
|
||||
)
|
||||
|
||||
if err != nil {
|
||||
modelFile = input.Model
|
||||
log.Warn().Msgf("Model not found in context: %s", input.Model)
|
||||
} else {
|
||||
modelFile = cfg.Model
|
||||
}
|
||||
log.Debug().Msgf("Request for model: %s", modelFile)
|
||||
|
||||
if input.Backend != "" {
|
||||
cfg.Backend = input.Backend
|
||||
}
|
||||
|
||||
request := &proto.RerankRequest{
|
||||
Query: req.Query,
|
||||
TopN: int32(req.TopN),
|
||||
Documents: req.Documents,
|
||||
}
|
||||
|
||||
results, err := backend.Rerank(cfg.Backend, modelFile, request, ml, appConfig, *cfg)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
response := &schema.JINARerankResponse{
|
||||
Model: req.Model,
|
||||
}
|
||||
|
||||
for _, r := range results.Results {
|
||||
response.Results = append(response.Results, schema.JINADocumentResult{
|
||||
Index: int(r.Index),
|
||||
Document: schema.JINAText{Text: r.Text},
|
||||
RelevanceScore: float64(r.RelevanceScore),
|
||||
})
|
||||
}
|
||||
|
||||
response.Usage.TotalTokens = int(results.Usage.TotalTokens)
|
||||
response.Usage.PromptTokens = int(results.Usage.PromptTokens)
|
||||
|
||||
return c.Status(fiber.StatusOK).JSON(response)
|
||||
}
|
||||
}
|
||||
@@ -61,11 +61,11 @@ func (mgs *ModelGalleryEndpointService) ApplyModelGalleryEndpoint() func(c *fibe
|
||||
return err
|
||||
}
|
||||
mgs.galleryApplier.C <- gallery.GalleryOp{
|
||||
Req: input.GalleryModel,
|
||||
Id: uuid.String(),
|
||||
GalleryName: input.ID,
|
||||
Galleries: mgs.galleries,
|
||||
ConfigURL: input.ConfigURL,
|
||||
Req: input.GalleryModel,
|
||||
Id: uuid.String(),
|
||||
GalleryModelName: input.ID,
|
||||
Galleries: mgs.galleries,
|
||||
ConfigURL: input.ConfigURL,
|
||||
}
|
||||
return c.JSON(struct {
|
||||
ID string `json:"uuid"`
|
||||
@@ -74,6 +74,27 @@ func (mgs *ModelGalleryEndpointService) ApplyModelGalleryEndpoint() func(c *fibe
|
||||
}
|
||||
}
|
||||
|
||||
func (mgs *ModelGalleryEndpointService) DeleteModelGalleryEndpoint() func(c *fiber.Ctx) error {
|
||||
return func(c *fiber.Ctx) error {
|
||||
modelName := c.Params("name")
|
||||
|
||||
mgs.galleryApplier.C <- gallery.GalleryOp{
|
||||
Delete: true,
|
||||
GalleryModelName: modelName,
|
||||
}
|
||||
|
||||
uuid, err := uuid.NewUUID()
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
return c.JSON(struct {
|
||||
ID string `json:"uuid"`
|
||||
StatusURL string `json:"status"`
|
||||
}{ID: uuid.String(), StatusURL: c.BaseURL() + "/models/jobs/" + uuid.String()})
|
||||
}
|
||||
}
|
||||
|
||||
func (mgs *ModelGalleryEndpointService) ListModelFromGalleryEndpoint() func(c *fiber.Ctx) error {
|
||||
return func(c *fiber.Ctx) error {
|
||||
log.Debug().Msgf("Listing models from galleries: %+v", mgs.galleries)
|
||||
|
||||
@@ -2,7 +2,9 @@ package localai
|
||||
|
||||
import (
|
||||
"github.com/go-skynet/LocalAI/core/backend"
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
fiberContext "github.com/go-skynet/LocalAI/core/http/ctx"
|
||||
"github.com/go-skynet/LocalAI/pkg/model"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/schema"
|
||||
"github.com/gofiber/fiber/v2"
|
||||
@@ -14,26 +16,45 @@ import (
|
||||
// @Param request body schema.TTSRequest true "query params"
|
||||
// @Success 200 {string} binary "Response"
|
||||
// @Router /v1/audio/speech [post]
|
||||
func TTSEndpoint(fce *fiberContext.FiberContextExtractor, ttsbs *backend.TextToSpeechBackendService) func(c *fiber.Ctx) error {
|
||||
func TTSEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
|
||||
return func(c *fiber.Ctx) error {
|
||||
var err error
|
||||
|
||||
input := new(schema.TTSRequest)
|
||||
|
||||
// Get input data from the request body
|
||||
if err = c.BodyParser(input); err != nil {
|
||||
if err := c.BodyParser(input); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
input.Model, err = fce.ModelFromContext(c, input.Model, false)
|
||||
modelFile, err := fiberContext.ModelFromContext(c, ml, input.Model, false)
|
||||
if err != nil {
|
||||
modelFile = input.Model
|
||||
log.Warn().Msgf("Model not found in context: %s", input.Model)
|
||||
}
|
||||
|
||||
responseChannel := ttsbs.TextToAudioFile(input)
|
||||
rawValue := <-responseChannel
|
||||
if rawValue.Error != nil {
|
||||
return rawValue.Error
|
||||
cfg, err := cl.LoadBackendConfigFileByName(modelFile, appConfig.ModelPath,
|
||||
config.LoadOptionDebug(appConfig.Debug),
|
||||
config.LoadOptionThreads(appConfig.Threads),
|
||||
config.LoadOptionContextSize(appConfig.ContextSize),
|
||||
config.LoadOptionF16(appConfig.F16),
|
||||
)
|
||||
|
||||
if err != nil {
|
||||
modelFile = input.Model
|
||||
log.Warn().Msgf("Model not found in context: %s", input.Model)
|
||||
} else {
|
||||
modelFile = cfg.Model
|
||||
}
|
||||
return c.Download(*rawValue.Value)
|
||||
log.Debug().Msgf("Request for model: %s", modelFile)
|
||||
|
||||
if input.Backend != "" {
|
||||
cfg.Backend = input.Backend
|
||||
}
|
||||
|
||||
filePath, _, err := backend.ModelTTS(cfg.Backend, input.Input, modelFile, input.Voice, ml, appConfig, *cfg)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
return c.Download(filePath)
|
||||
}
|
||||
}
|
||||
|
||||
49
core/http/endpoints/localai/welcome.go
Normal file
49
core/http/endpoints/localai/welcome.go
Normal file
@@ -0,0 +1,49 @@
|
||||
package localai
|
||||
|
||||
import (
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
"github.com/go-skynet/LocalAI/internal"
|
||||
"github.com/go-skynet/LocalAI/pkg/gallery"
|
||||
"github.com/go-skynet/LocalAI/pkg/model"
|
||||
"github.com/gofiber/fiber/v2"
|
||||
)
|
||||
|
||||
func WelcomeEndpoint(appConfig *config.ApplicationConfig,
|
||||
cl *config.BackendConfigLoader, ml *model.ModelLoader, modelStatus func() (map[string]string, map[string]string)) func(*fiber.Ctx) error {
|
||||
return func(c *fiber.Ctx) error {
|
||||
models, _ := ml.ListModels()
|
||||
backendConfigs := cl.GetAllBackendConfigs()
|
||||
|
||||
galleryConfigs := map[string]*gallery.Config{}
|
||||
for _, m := range backendConfigs {
|
||||
|
||||
cfg, err := gallery.GetLocalModelConfiguration(ml.ModelPath, m.Name)
|
||||
if err != nil {
|
||||
continue
|
||||
}
|
||||
galleryConfigs[m.Name] = cfg
|
||||
}
|
||||
|
||||
// Get model statuses to display in the UI the operation in progress
|
||||
processingModels, taskTypes := modelStatus()
|
||||
|
||||
summary := fiber.Map{
|
||||
"Title": "LocalAI API - " + internal.PrintableVersion(),
|
||||
"Version": internal.PrintableVersion(),
|
||||
"Models": models,
|
||||
"ModelsConfig": backendConfigs,
|
||||
"GalleryConfig": galleryConfigs,
|
||||
"ApplicationConfig": appConfig,
|
||||
"ProcessingModels": processingModels,
|
||||
"TaskTypes": taskTypes,
|
||||
}
|
||||
|
||||
if string(c.Context().Request.Header.ContentType()) == "application/json" || len(c.Accepts("html")) == 0 {
|
||||
// The client expects a JSON response
|
||||
return c.Status(fiber.StatusOK).JSON(summary)
|
||||
} else {
|
||||
// Render index
|
||||
return c.Render("views/index", summary)
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -339,7 +339,7 @@ func CreateAssistantFileEndpoint(cl *config.BackendConfigLoader, ml *model.Model
|
||||
}
|
||||
}
|
||||
|
||||
return c.Status(fiber.StatusNotFound).SendString(fmt.Sprintf("Unable to find assistantID %q", assistantID))
|
||||
return c.Status(fiber.StatusNotFound).SendString(fmt.Sprintf("Unable to find "))
|
||||
}
|
||||
}
|
||||
|
||||
@@ -455,21 +455,19 @@ func DeleteAssistantFileEndpoint(cl *config.BackendConfigLoader, ml *model.Model
|
||||
for i, assistant := range Assistants {
|
||||
if assistant.ID == assistantID {
|
||||
for j, fileId := range assistant.FileIDs {
|
||||
if fileId == fileId {
|
||||
Assistants[i].FileIDs = append(Assistants[i].FileIDs[:j], Assistants[i].FileIDs[j+1:]...)
|
||||
Assistants[i].FileIDs = append(Assistants[i].FileIDs[:j], Assistants[i].FileIDs[j+1:]...)
|
||||
|
||||
// Check if the file exists in the assistantFiles slice
|
||||
for i, assistantFile := range AssistantFiles {
|
||||
if assistantFile.ID == fileId {
|
||||
// Remove the file from the assistantFiles slice
|
||||
AssistantFiles = append(AssistantFiles[:i], AssistantFiles[i+1:]...)
|
||||
utils.SaveConfig(appConfig.ConfigsDir, AssistantsFileConfigFile, AssistantFiles)
|
||||
return c.Status(fiber.StatusOK).JSON(DeleteAssistantFileResponse{
|
||||
ID: fileId,
|
||||
Object: "assistant.file.deleted",
|
||||
Deleted: true,
|
||||
})
|
||||
}
|
||||
// Check if the file exists in the assistantFiles slice
|
||||
for i, assistantFile := range AssistantFiles {
|
||||
if assistantFile.ID == fileId {
|
||||
// Remove the file from the assistantFiles slice
|
||||
AssistantFiles = append(AssistantFiles[:i], AssistantFiles[i+1:]...)
|
||||
utils.SaveConfig(appConfig.ConfigsDir, AssistantsFileConfigFile, AssistantFiles)
|
||||
return c.Status(fiber.StatusOK).JSON(DeleteAssistantFileResponse{
|
||||
ID: fileId,
|
||||
Object: "assistant.file.deleted",
|
||||
Deleted: true,
|
||||
})
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -3,10 +3,6 @@ package openai
|
||||
import (
|
||||
"encoding/json"
|
||||
"fmt"
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
"github.com/go-skynet/LocalAI/pkg/model"
|
||||
"github.com/gofiber/fiber/v2"
|
||||
"github.com/stretchr/testify/assert"
|
||||
"io"
|
||||
"io/ioutil"
|
||||
"net/http"
|
||||
@@ -16,6 +12,11 @@ import (
|
||||
"strings"
|
||||
"testing"
|
||||
"time"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
"github.com/go-skynet/LocalAI/pkg/model"
|
||||
"github.com/gofiber/fiber/v2"
|
||||
"github.com/stretchr/testify/assert"
|
||||
)
|
||||
|
||||
var configsDir string = "/tmp/localai/configs"
|
||||
@@ -49,8 +50,8 @@ func TestAssistantEndpoints(t *testing.T) {
|
||||
}
|
||||
|
||||
_ = os.RemoveAll(appConfig.ConfigsDir)
|
||||
_ = os.MkdirAll(appConfig.ConfigsDir, 0755)
|
||||
_ = os.MkdirAll(modelPath, 0755)
|
||||
_ = os.MkdirAll(appConfig.ConfigsDir, 0750)
|
||||
_ = os.MkdirAll(modelPath, 0750)
|
||||
os.Create(filepath.Join(modelPath, "ggml-gpt4all-j"))
|
||||
|
||||
app := fiber.New(fiber.Config{
|
||||
|
||||
@@ -5,11 +5,16 @@ import (
|
||||
"bytes"
|
||||
"encoding/json"
|
||||
"fmt"
|
||||
"strings"
|
||||
"time"
|
||||
|
||||
fiberContext "github.com/go-skynet/LocalAI/core/http/ctx"
|
||||
"github.com/go-skynet/LocalAI/core/backend"
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
"github.com/go-skynet/LocalAI/core/schema"
|
||||
"github.com/go-skynet/LocalAI/core/services"
|
||||
"github.com/go-skynet/LocalAI/pkg/functions"
|
||||
model "github.com/go-skynet/LocalAI/pkg/model"
|
||||
"github.com/gofiber/fiber/v2"
|
||||
"github.com/google/uuid"
|
||||
"github.com/rs/zerolog/log"
|
||||
"github.com/valyala/fasthttp"
|
||||
)
|
||||
@@ -19,82 +24,418 @@ import (
|
||||
// @Param request body schema.OpenAIRequest true "query params"
|
||||
// @Success 200 {object} schema.OpenAIResponse "Response"
|
||||
// @Router /v1/chat/completions [post]
|
||||
func ChatEndpoint(fce *fiberContext.FiberContextExtractor, oais *services.OpenAIService) func(c *fiber.Ctx) error {
|
||||
func ChatEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, startupOptions *config.ApplicationConfig) func(c *fiber.Ctx) error {
|
||||
emptyMessage := ""
|
||||
id := uuid.New().String()
|
||||
created := int(time.Now().Unix())
|
||||
|
||||
process := func(s string, req *schema.OpenAIRequest, config *config.BackendConfig, loader *model.ModelLoader, responses chan schema.OpenAIResponse) {
|
||||
initialMessage := schema.OpenAIResponse{
|
||||
ID: id,
|
||||
Created: created,
|
||||
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
|
||||
Choices: []schema.Choice{{Delta: &schema.Message{Role: "assistant", Content: &emptyMessage}}},
|
||||
Object: "chat.completion.chunk",
|
||||
}
|
||||
responses <- initialMessage
|
||||
|
||||
ComputeChoices(req, s, config, startupOptions, loader, func(s string, c *[]schema.Choice) {}, func(s string, usage backend.TokenUsage) bool {
|
||||
resp := schema.OpenAIResponse{
|
||||
ID: id,
|
||||
Created: created,
|
||||
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
|
||||
Choices: []schema.Choice{{Delta: &schema.Message{Content: &s}, Index: 0}},
|
||||
Object: "chat.completion.chunk",
|
||||
Usage: schema.OpenAIUsage{
|
||||
PromptTokens: usage.Prompt,
|
||||
CompletionTokens: usage.Completion,
|
||||
TotalTokens: usage.Prompt + usage.Completion,
|
||||
},
|
||||
}
|
||||
|
||||
responses <- resp
|
||||
return true
|
||||
})
|
||||
close(responses)
|
||||
}
|
||||
processTools := func(noAction string, prompt string, req *schema.OpenAIRequest, config *config.BackendConfig, loader *model.ModelLoader, responses chan schema.OpenAIResponse) {
|
||||
result := ""
|
||||
_, tokenUsage, _ := ComputeChoices(req, prompt, config, startupOptions, loader, func(s string, c *[]schema.Choice) {}, func(s string, usage backend.TokenUsage) bool {
|
||||
result += s
|
||||
// TODO: Change generated BNF grammar to be compliant with the schema so we can
|
||||
// stream the result token by token here.
|
||||
return true
|
||||
})
|
||||
|
||||
results := functions.ParseFunctionCall(result, config.FunctionsConfig)
|
||||
noActionToRun := len(results) > 0 && results[0].Name == noAction || len(results) == 0
|
||||
|
||||
switch {
|
||||
case noActionToRun:
|
||||
initialMessage := schema.OpenAIResponse{
|
||||
ID: id,
|
||||
Created: created,
|
||||
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
|
||||
Choices: []schema.Choice{{Delta: &schema.Message{Role: "assistant", Content: &emptyMessage}}},
|
||||
Object: "chat.completion.chunk",
|
||||
}
|
||||
responses <- initialMessage
|
||||
|
||||
result, err := handleQuestion(config, req, ml, startupOptions, results, prompt)
|
||||
if err != nil {
|
||||
log.Error().Err(err).Msg("error handling question")
|
||||
return
|
||||
}
|
||||
|
||||
resp := schema.OpenAIResponse{
|
||||
ID: id,
|
||||
Created: created,
|
||||
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
|
||||
Choices: []schema.Choice{{Delta: &schema.Message{Content: &result}, Index: 0}},
|
||||
Object: "chat.completion.chunk",
|
||||
Usage: schema.OpenAIUsage{
|
||||
PromptTokens: tokenUsage.Prompt,
|
||||
CompletionTokens: tokenUsage.Completion,
|
||||
TotalTokens: tokenUsage.Prompt + tokenUsage.Completion,
|
||||
},
|
||||
}
|
||||
|
||||
responses <- resp
|
||||
|
||||
default:
|
||||
for i, ss := range results {
|
||||
name, args := ss.Name, ss.Arguments
|
||||
|
||||
initialMessage := schema.OpenAIResponse{
|
||||
ID: id,
|
||||
Created: created,
|
||||
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
|
||||
Choices: []schema.Choice{{
|
||||
Delta: &schema.Message{
|
||||
Role: "assistant",
|
||||
ToolCalls: []schema.ToolCall{
|
||||
{
|
||||
Index: i,
|
||||
ID: id,
|
||||
Type: "function",
|
||||
FunctionCall: schema.FunctionCall{
|
||||
Name: name,
|
||||
},
|
||||
},
|
||||
},
|
||||
}}},
|
||||
Object: "chat.completion.chunk",
|
||||
}
|
||||
responses <- initialMessage
|
||||
|
||||
responses <- schema.OpenAIResponse{
|
||||
ID: id,
|
||||
Created: created,
|
||||
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
|
||||
Choices: []schema.Choice{{
|
||||
Delta: &schema.Message{
|
||||
Role: "assistant",
|
||||
ToolCalls: []schema.ToolCall{
|
||||
{
|
||||
Index: i,
|
||||
ID: id,
|
||||
Type: "function",
|
||||
FunctionCall: schema.FunctionCall{
|
||||
Arguments: args,
|
||||
},
|
||||
},
|
||||
},
|
||||
}}},
|
||||
Object: "chat.completion.chunk",
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
close(responses)
|
||||
}
|
||||
|
||||
return func(c *fiber.Ctx) error {
|
||||
_, request, err := fce.OpenAIRequestFromContext(c, false)
|
||||
modelFile, input, err := readRequest(c, ml, startupOptions, true)
|
||||
if err != nil {
|
||||
return fmt.Errorf("failed reading parameters from request: %w", err)
|
||||
return fmt.Errorf("failed reading parameters from request:%w", err)
|
||||
}
|
||||
|
||||
traceID, finalResultChannel, _, tokenChannel, err := oais.Chat(request, false, request.Stream)
|
||||
config, input, err := mergeRequestWithConfig(modelFile, input, cl, ml, startupOptions.Debug, startupOptions.Threads, startupOptions.ContextSize, startupOptions.F16)
|
||||
if err != nil {
|
||||
return err
|
||||
return fmt.Errorf("failed reading parameters from request:%w", err)
|
||||
}
|
||||
log.Debug().Msgf("Configuration read: %+v", config)
|
||||
|
||||
funcs := input.Functions
|
||||
shouldUseFn := len(input.Functions) > 0 && config.ShouldUseFunctions()
|
||||
|
||||
// Allow the user to set custom actions via config file
|
||||
// to be "embedded" in each model
|
||||
noActionName := "answer"
|
||||
noActionDescription := "use this action to answer without performing any action"
|
||||
|
||||
if config.FunctionsConfig.NoActionFunctionName != "" {
|
||||
noActionName = config.FunctionsConfig.NoActionFunctionName
|
||||
}
|
||||
if config.FunctionsConfig.NoActionDescriptionName != "" {
|
||||
noActionDescription = config.FunctionsConfig.NoActionDescriptionName
|
||||
}
|
||||
|
||||
if request.Stream {
|
||||
if input.ResponseFormat.Type == "json_object" {
|
||||
input.Grammar = functions.JSONBNF
|
||||
}
|
||||
|
||||
log.Debug().Msgf("Chat Stream request received")
|
||||
config.Grammar = input.Grammar
|
||||
|
||||
if shouldUseFn {
|
||||
log.Debug().Msgf("Response needs to process functions")
|
||||
}
|
||||
|
||||
switch {
|
||||
case !config.FunctionsConfig.NoGrammar && shouldUseFn:
|
||||
noActionGrammar := functions.Function{
|
||||
Name: noActionName,
|
||||
Description: noActionDescription,
|
||||
Parameters: map[string]interface{}{
|
||||
"properties": map[string]interface{}{
|
||||
"message": map[string]interface{}{
|
||||
"type": "string",
|
||||
"description": "The message to reply the user with",
|
||||
}},
|
||||
},
|
||||
}
|
||||
|
||||
// Append the no action function
|
||||
if !config.FunctionsConfig.DisableNoAction {
|
||||
funcs = append(funcs, noActionGrammar)
|
||||
}
|
||||
|
||||
// Force picking one of the functions by the request
|
||||
if config.FunctionToCall() != "" {
|
||||
funcs = funcs.Select(config.FunctionToCall())
|
||||
}
|
||||
|
||||
// Update input grammar
|
||||
jsStruct := funcs.ToJSONStructure()
|
||||
config.Grammar = jsStruct.Grammar("", config.FunctionsConfig.ParallelCalls)
|
||||
case input.JSONFunctionGrammarObject != nil:
|
||||
config.Grammar = input.JSONFunctionGrammarObject.Grammar("", config.FunctionsConfig.ParallelCalls)
|
||||
default:
|
||||
// Force picking one of the functions by the request
|
||||
if config.FunctionToCall() != "" {
|
||||
funcs = funcs.Select(config.FunctionToCall())
|
||||
}
|
||||
}
|
||||
|
||||
// process functions if we have any defined or if we have a function call string
|
||||
|
||||
// functions are not supported in stream mode (yet?)
|
||||
toStream := input.Stream
|
||||
|
||||
log.Debug().Msgf("Parameters: %+v", config)
|
||||
|
||||
var predInput string
|
||||
|
||||
// If we are using the tokenizer template, we don't need to process the messages
|
||||
// unless we are processing functions
|
||||
if !config.TemplateConfig.UseTokenizerTemplate || shouldUseFn {
|
||||
suppressConfigSystemPrompt := false
|
||||
mess := []string{}
|
||||
for messageIndex, i := range input.Messages {
|
||||
var content string
|
||||
role := i.Role
|
||||
|
||||
// if function call, we might want to customize the role so we can display better that the "assistant called a json action"
|
||||
// if an "assistant_function_call" role is defined, we use it, otherwise we use the role that is passed by in the request
|
||||
if (i.FunctionCall != nil || i.ToolCalls != nil) && i.Role == "assistant" {
|
||||
roleFn := "assistant_function_call"
|
||||
r := config.Roles[roleFn]
|
||||
if r != "" {
|
||||
role = roleFn
|
||||
}
|
||||
}
|
||||
r := config.Roles[role]
|
||||
contentExists := i.Content != nil && i.StringContent != ""
|
||||
|
||||
fcall := i.FunctionCall
|
||||
if len(i.ToolCalls) > 0 {
|
||||
fcall = i.ToolCalls
|
||||
}
|
||||
|
||||
// First attempt to populate content via a chat message specific template
|
||||
if config.TemplateConfig.ChatMessage != "" {
|
||||
chatMessageData := model.ChatMessageTemplateData{
|
||||
SystemPrompt: config.SystemPrompt,
|
||||
Role: r,
|
||||
RoleName: role,
|
||||
Content: i.StringContent,
|
||||
FunctionCall: fcall,
|
||||
FunctionName: i.Name,
|
||||
LastMessage: messageIndex == (len(input.Messages) - 1),
|
||||
Function: config.Grammar != "" && (messageIndex == (len(input.Messages) - 1)),
|
||||
MessageIndex: messageIndex,
|
||||
}
|
||||
templatedChatMessage, err := ml.EvaluateTemplateForChatMessage(config.TemplateConfig.ChatMessage, chatMessageData)
|
||||
if err != nil {
|
||||
log.Error().Err(err).Interface("message", chatMessageData).Str("template", config.TemplateConfig.ChatMessage).Msg("error processing message with template, skipping")
|
||||
} else {
|
||||
if templatedChatMessage == "" {
|
||||
log.Warn().Msgf("template \"%s\" produced blank output for %+v. Skipping!", config.TemplateConfig.ChatMessage, chatMessageData)
|
||||
continue // TODO: This continue is here intentionally to skip over the line `mess = append(mess, content)` below, and to prevent the sprintf
|
||||
}
|
||||
log.Debug().Msgf("templated message for chat: %s", templatedChatMessage)
|
||||
content = templatedChatMessage
|
||||
}
|
||||
}
|
||||
|
||||
marshalAnyRole := func(f any) {
|
||||
j, err := json.Marshal(f)
|
||||
if err == nil {
|
||||
if contentExists {
|
||||
content += "\n" + fmt.Sprint(r, " ", string(j))
|
||||
} else {
|
||||
content = fmt.Sprint(r, " ", string(j))
|
||||
}
|
||||
}
|
||||
}
|
||||
marshalAny := func(f any) {
|
||||
j, err := json.Marshal(f)
|
||||
if err == nil {
|
||||
if contentExists {
|
||||
content += "\n" + string(j)
|
||||
} else {
|
||||
content = string(j)
|
||||
}
|
||||
}
|
||||
}
|
||||
// If this model doesn't have such a template, or if that template fails to return a value, template at the message level.
|
||||
if content == "" {
|
||||
if r != "" {
|
||||
if contentExists {
|
||||
content = fmt.Sprint(r, i.StringContent)
|
||||
}
|
||||
|
||||
if i.FunctionCall != nil {
|
||||
marshalAnyRole(i.FunctionCall)
|
||||
}
|
||||
if i.ToolCalls != nil {
|
||||
marshalAnyRole(i.ToolCalls)
|
||||
}
|
||||
} else {
|
||||
if contentExists {
|
||||
content = fmt.Sprint(i.StringContent)
|
||||
}
|
||||
if i.FunctionCall != nil {
|
||||
marshalAny(i.FunctionCall)
|
||||
}
|
||||
if i.ToolCalls != nil {
|
||||
marshalAny(i.ToolCalls)
|
||||
}
|
||||
}
|
||||
// Special Handling: System. We care if it was printed at all, not the r branch, so check seperately
|
||||
if contentExists && role == "system" {
|
||||
suppressConfigSystemPrompt = true
|
||||
}
|
||||
}
|
||||
|
||||
mess = append(mess, content)
|
||||
}
|
||||
|
||||
predInput = strings.Join(mess, "\n")
|
||||
log.Debug().Msgf("Prompt (before templating): %s", predInput)
|
||||
|
||||
templateFile := ""
|
||||
|
||||
// A model can have a "file.bin.tmpl" file associated with a prompt template prefix
|
||||
if ml.ExistsInModelPath(fmt.Sprintf("%s.tmpl", config.Model)) {
|
||||
templateFile = config.Model
|
||||
}
|
||||
|
||||
if config.TemplateConfig.Chat != "" && !shouldUseFn {
|
||||
templateFile = config.TemplateConfig.Chat
|
||||
}
|
||||
|
||||
if config.TemplateConfig.Functions != "" && shouldUseFn {
|
||||
templateFile = config.TemplateConfig.Functions
|
||||
}
|
||||
|
||||
if templateFile != "" {
|
||||
templatedInput, err := ml.EvaluateTemplateForPrompt(model.ChatPromptTemplate, templateFile, model.PromptTemplateData{
|
||||
SystemPrompt: config.SystemPrompt,
|
||||
SuppressSystemPrompt: suppressConfigSystemPrompt,
|
||||
Input: predInput,
|
||||
Functions: funcs,
|
||||
})
|
||||
if err == nil {
|
||||
predInput = templatedInput
|
||||
log.Debug().Msgf("Template found, input modified to: %s", predInput)
|
||||
} else {
|
||||
log.Debug().Msgf("Template failed loading: %s", err.Error())
|
||||
}
|
||||
}
|
||||
|
||||
log.Debug().Msgf("Prompt (after templating): %s", predInput)
|
||||
if shouldUseFn && config.Grammar != "" {
|
||||
log.Debug().Msgf("Grammar: %+v", config.Grammar)
|
||||
}
|
||||
}
|
||||
|
||||
switch {
|
||||
case toStream:
|
||||
|
||||
log.Debug().Msgf("Stream request received")
|
||||
c.Context().SetContentType("text/event-stream")
|
||||
//c.Response().Header.SetContentType(fiber.MIMETextHTMLCharsetUTF8)
|
||||
//
|
||||
// c.Set("Content-Type", "text/event-stream")
|
||||
c.Set("Cache-Control", "no-cache")
|
||||
c.Set("Connection", "keep-alive")
|
||||
c.Set("Transfer-Encoding", "chunked")
|
||||
|
||||
responses := make(chan schema.OpenAIResponse)
|
||||
|
||||
if !shouldUseFn {
|
||||
go process(predInput, input, config, ml, responses)
|
||||
} else {
|
||||
go processTools(noActionName, predInput, input, config, ml, responses)
|
||||
}
|
||||
|
||||
c.Context().SetBodyStreamWriter(fasthttp.StreamWriter(func(w *bufio.Writer) {
|
||||
usage := &schema.OpenAIUsage{}
|
||||
toolsCalled := false
|
||||
for ev := range tokenChannel {
|
||||
if ev.Error != nil {
|
||||
log.Debug().Err(ev.Error).Msg("chat streaming responseChannel error")
|
||||
request.Cancel()
|
||||
break
|
||||
}
|
||||
usage = &ev.Value.Usage // Copy a pointer to the latest usage chunk so that the stop message can reference it
|
||||
|
||||
if len(ev.Value.Choices[0].Delta.ToolCalls) > 0 {
|
||||
for ev := range responses {
|
||||
usage = &ev.Usage // Copy a pointer to the latest usage chunk so that the stop message can reference it
|
||||
if len(ev.Choices[0].Delta.ToolCalls) > 0 {
|
||||
toolsCalled = true
|
||||
}
|
||||
var buf bytes.Buffer
|
||||
enc := json.NewEncoder(&buf)
|
||||
if ev.Error != nil {
|
||||
log.Debug().Err(ev.Error).Msg("[ChatEndpoint] error to debug during tokenChannel handler")
|
||||
enc.Encode(ev.Error)
|
||||
} else {
|
||||
enc.Encode(ev.Value)
|
||||
}
|
||||
log.Debug().Msgf("chat streaming sending chunk: %s", buf.String())
|
||||
enc.Encode(ev)
|
||||
log.Debug().Msgf("Sending chunk: %s", buf.String())
|
||||
_, err := fmt.Fprintf(w, "data: %v\n", buf.String())
|
||||
if err != nil {
|
||||
log.Debug().Err(err).Msgf("Sending chunk failed")
|
||||
request.Cancel()
|
||||
break
|
||||
}
|
||||
err = w.Flush()
|
||||
if err != nil {
|
||||
log.Debug().Msg("error while flushing, closing connection")
|
||||
request.Cancel()
|
||||
log.Debug().Msgf("Sending chunk failed: %v", err)
|
||||
input.Cancel()
|
||||
break
|
||||
}
|
||||
w.Flush()
|
||||
}
|
||||
|
||||
finishReason := "stop"
|
||||
if toolsCalled {
|
||||
finishReason = "tool_calls"
|
||||
} else if toolsCalled && len(request.Tools) == 0 {
|
||||
} else if toolsCalled && len(input.Tools) == 0 {
|
||||
finishReason = "function_call"
|
||||
}
|
||||
|
||||
resp := &schema.OpenAIResponse{
|
||||
ID: traceID.ID,
|
||||
Created: traceID.Created,
|
||||
Model: request.Model, // we have to return what the user sent here, due to OpenAI spec.
|
||||
ID: id,
|
||||
Created: created,
|
||||
Model: input.Model, // we have to return what the user sent here, due to OpenAI spec.
|
||||
Choices: []schema.Choice{
|
||||
{
|
||||
FinishReason: finishReason,
|
||||
Index: 0,
|
||||
Delta: &schema.Message{Content: ""},
|
||||
Delta: &schema.Message{Content: &emptyMessage},
|
||||
}},
|
||||
Object: "chat.completion.chunk",
|
||||
Usage: *usage,
|
||||
@@ -105,21 +446,146 @@ func ChatEndpoint(fce *fiberContext.FiberContextExtractor, oais *services.OpenAI
|
||||
w.WriteString("data: [DONE]\n\n")
|
||||
w.Flush()
|
||||
}))
|
||||
|
||||
return nil
|
||||
|
||||
// no streaming mode
|
||||
default:
|
||||
result, tokenUsage, err := ComputeChoices(input, predInput, config, startupOptions, ml, func(s string, c *[]schema.Choice) {
|
||||
if !shouldUseFn {
|
||||
// no function is called, just reply and use stop as finish reason
|
||||
*c = append(*c, schema.Choice{FinishReason: "stop", Index: 0, Message: &schema.Message{Role: "assistant", Content: &s}})
|
||||
return
|
||||
}
|
||||
|
||||
results := functions.ParseFunctionCall(s, config.FunctionsConfig)
|
||||
noActionsToRun := len(results) > 0 && results[0].Name == noActionName || len(results) == 0
|
||||
|
||||
switch {
|
||||
case noActionsToRun:
|
||||
result, err := handleQuestion(config, input, ml, startupOptions, results, predInput)
|
||||
if err != nil {
|
||||
log.Error().Err(err).Msg("error handling question")
|
||||
return
|
||||
}
|
||||
*c = append(*c, schema.Choice{
|
||||
Message: &schema.Message{Role: "assistant", Content: &result}})
|
||||
default:
|
||||
toolChoice := schema.Choice{
|
||||
Message: &schema.Message{
|
||||
Role: "assistant",
|
||||
},
|
||||
}
|
||||
|
||||
if len(input.Tools) > 0 {
|
||||
toolChoice.FinishReason = "tool_calls"
|
||||
}
|
||||
|
||||
for _, ss := range results {
|
||||
name, args := ss.Name, ss.Arguments
|
||||
if len(input.Tools) > 0 {
|
||||
// If we are using tools, we condense the function calls into
|
||||
// a single response choice with all the tools
|
||||
toolChoice.Message.ToolCalls = append(toolChoice.Message.ToolCalls,
|
||||
schema.ToolCall{
|
||||
ID: id,
|
||||
Type: "function",
|
||||
FunctionCall: schema.FunctionCall{
|
||||
Name: name,
|
||||
Arguments: args,
|
||||
},
|
||||
},
|
||||
)
|
||||
} else {
|
||||
// otherwise we return more choices directly
|
||||
*c = append(*c, schema.Choice{
|
||||
FinishReason: "function_call",
|
||||
Message: &schema.Message{
|
||||
Role: "assistant",
|
||||
FunctionCall: map[string]interface{}{
|
||||
"name": name,
|
||||
"arguments": args,
|
||||
},
|
||||
},
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
if len(input.Tools) > 0 {
|
||||
// we need to append our result if we are using tools
|
||||
*c = append(*c, toolChoice)
|
||||
}
|
||||
}
|
||||
|
||||
}, nil)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
resp := &schema.OpenAIResponse{
|
||||
ID: id,
|
||||
Created: created,
|
||||
Model: input.Model, // we have to return what the user sent here, due to OpenAI spec.
|
||||
Choices: result,
|
||||
Object: "chat.completion",
|
||||
Usage: schema.OpenAIUsage{
|
||||
PromptTokens: tokenUsage.Prompt,
|
||||
CompletionTokens: tokenUsage.Completion,
|
||||
TotalTokens: tokenUsage.Prompt + tokenUsage.Completion,
|
||||
},
|
||||
}
|
||||
respData, _ := json.Marshal(resp)
|
||||
log.Debug().Msgf("Response: %s", respData)
|
||||
|
||||
// Return the prediction in the response body
|
||||
return c.JSON(resp)
|
||||
}
|
||||
|
||||
// TODO is this proper to have exclusive from Stream, or do we need to issue both responses?
|
||||
rawResponse := <-finalResultChannel
|
||||
|
||||
if rawResponse.Error != nil {
|
||||
return rawResponse.Error
|
||||
}
|
||||
|
||||
jsonResult, _ := json.Marshal(rawResponse.Value)
|
||||
log.Debug().Str("jsonResult", string(jsonResult)).Msg("Chat Final Response")
|
||||
|
||||
// Return the prediction in the response body
|
||||
return c.JSON(rawResponse.Value)
|
||||
}
|
||||
}
|
||||
|
||||
func handleQuestion(config *config.BackendConfig, input *schema.OpenAIRequest, ml *model.ModelLoader, o *config.ApplicationConfig, funcResults []functions.FuncCallResults, prompt string) (string, error) {
|
||||
log.Debug().Msgf("nothing to do, computing a reply")
|
||||
arg := ""
|
||||
if len(funcResults) > 0 {
|
||||
arg = funcResults[0].Arguments
|
||||
}
|
||||
// If there is a message that the LLM already sends as part of the JSON reply, use it
|
||||
arguments := map[string]interface{}{}
|
||||
if err := json.Unmarshal([]byte(arg), &arguments); err != nil {
|
||||
log.Debug().Msg("handleQuestion: function result did not contain a valid JSON object")
|
||||
}
|
||||
m, exists := arguments["message"]
|
||||
if exists {
|
||||
switch message := m.(type) {
|
||||
case string:
|
||||
if message != "" {
|
||||
log.Debug().Msgf("Reply received from LLM: %s", message)
|
||||
message = backend.Finetune(*config, prompt, message)
|
||||
log.Debug().Msgf("Reply received from LLM(finetuned): %s", message)
|
||||
|
||||
return message, nil
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
log.Debug().Msgf("No action received from LLM, without a message, computing a reply")
|
||||
// Otherwise ask the LLM to understand the JSON output and the context, and return a message
|
||||
// Note: This costs (in term of CPU/GPU) another computation
|
||||
config.Grammar = ""
|
||||
images := []string{}
|
||||
for _, m := range input.Messages {
|
||||
images = append(images, m.StringImages...)
|
||||
}
|
||||
|
||||
predFunc, err := backend.ModelInference(input.Context, prompt, input.Messages, images, ml, *config, o, nil)
|
||||
if err != nil {
|
||||
log.Error().Err(err).Msg("model inference failed")
|
||||
return "", err
|
||||
}
|
||||
|
||||
prediction, err := predFunc()
|
||||
if err != nil {
|
||||
log.Error().Err(err).Msg("prediction failed")
|
||||
return "", err
|
||||
}
|
||||
return backend.Finetune(*config, prompt, prediction.Response), nil
|
||||
}
|
||||
|
||||
@@ -4,13 +4,18 @@ import (
|
||||
"bufio"
|
||||
"bytes"
|
||||
"encoding/json"
|
||||
"errors"
|
||||
"fmt"
|
||||
"time"
|
||||
|
||||
fiberContext "github.com/go-skynet/LocalAI/core/http/ctx"
|
||||
"github.com/go-skynet/LocalAI/core/services"
|
||||
"github.com/go-skynet/LocalAI/core/backend"
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/schema"
|
||||
"github.com/go-skynet/LocalAI/pkg/functions"
|
||||
model "github.com/go-skynet/LocalAI/pkg/model"
|
||||
"github.com/gofiber/fiber/v2"
|
||||
"github.com/google/uuid"
|
||||
"github.com/rs/zerolog/log"
|
||||
"github.com/valyala/fasthttp"
|
||||
)
|
||||
@@ -20,50 +25,116 @@ import (
|
||||
// @Param request body schema.OpenAIRequest true "query params"
|
||||
// @Success 200 {object} schema.OpenAIResponse "Response"
|
||||
// @Router /v1/completions [post]
|
||||
func CompletionEndpoint(fce *fiberContext.FiberContextExtractor, oais *services.OpenAIService) func(c *fiber.Ctx) error {
|
||||
func CompletionEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
|
||||
id := uuid.New().String()
|
||||
created := int(time.Now().Unix())
|
||||
|
||||
process := func(s string, req *schema.OpenAIRequest, config *config.BackendConfig, loader *model.ModelLoader, responses chan schema.OpenAIResponse) {
|
||||
ComputeChoices(req, s, config, appConfig, loader, func(s string, c *[]schema.Choice) {}, func(s string, usage backend.TokenUsage) bool {
|
||||
resp := schema.OpenAIResponse{
|
||||
ID: id,
|
||||
Created: created,
|
||||
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
|
||||
Choices: []schema.Choice{
|
||||
{
|
||||
Index: 0,
|
||||
Text: s,
|
||||
},
|
||||
},
|
||||
Object: "text_completion",
|
||||
Usage: schema.OpenAIUsage{
|
||||
PromptTokens: usage.Prompt,
|
||||
CompletionTokens: usage.Completion,
|
||||
TotalTokens: usage.Prompt + usage.Completion,
|
||||
},
|
||||
}
|
||||
log.Debug().Msgf("Sending goroutine: %s", s)
|
||||
|
||||
responses <- resp
|
||||
return true
|
||||
})
|
||||
close(responses)
|
||||
}
|
||||
|
||||
return func(c *fiber.Ctx) error {
|
||||
_, request, err := fce.OpenAIRequestFromContext(c, false)
|
||||
modelFile, input, err := readRequest(c, ml, appConfig, true)
|
||||
if err != nil {
|
||||
return fmt.Errorf("failed reading parameters from request:%w", err)
|
||||
}
|
||||
|
||||
log.Debug().Msgf("`OpenAIRequest`: %+v", request)
|
||||
log.Debug().Msgf("`input`: %+v", input)
|
||||
|
||||
traceID, finalResultChannel, _, _, tokenChannel, err := oais.Completion(request, false, request.Stream)
|
||||
config, input, err := mergeRequestWithConfig(modelFile, input, cl, ml, appConfig.Debug, appConfig.Threads, appConfig.ContextSize, appConfig.F16)
|
||||
if err != nil {
|
||||
return err
|
||||
return fmt.Errorf("failed reading parameters from request:%w", err)
|
||||
}
|
||||
|
||||
if request.Stream {
|
||||
log.Debug().Msgf("Completion Stream request received")
|
||||
if input.ResponseFormat.Type == "json_object" {
|
||||
input.Grammar = functions.JSONBNF
|
||||
}
|
||||
|
||||
config.Grammar = input.Grammar
|
||||
|
||||
log.Debug().Msgf("Parameter Config: %+v", config)
|
||||
|
||||
if input.Stream {
|
||||
log.Debug().Msgf("Stream request received")
|
||||
c.Context().SetContentType("text/event-stream")
|
||||
//c.Response().Header.SetContentType(fiber.MIMETextHTMLCharsetUTF8)
|
||||
//c.Set("Content-Type", "text/event-stream")
|
||||
c.Set("Cache-Control", "no-cache")
|
||||
c.Set("Connection", "keep-alive")
|
||||
c.Set("Transfer-Encoding", "chunked")
|
||||
}
|
||||
|
||||
templateFile := ""
|
||||
|
||||
// A model can have a "file.bin.tmpl" file associated with a prompt template prefix
|
||||
if ml.ExistsInModelPath(fmt.Sprintf("%s.tmpl", config.Model)) {
|
||||
templateFile = config.Model
|
||||
}
|
||||
|
||||
if config.TemplateConfig.Completion != "" {
|
||||
templateFile = config.TemplateConfig.Completion
|
||||
}
|
||||
|
||||
if input.Stream {
|
||||
if len(config.PromptStrings) > 1 {
|
||||
return errors.New("cannot handle more than 1 `PromptStrings` when Streaming")
|
||||
}
|
||||
|
||||
predInput := config.PromptStrings[0]
|
||||
|
||||
if templateFile != "" {
|
||||
templatedInput, err := ml.EvaluateTemplateForPrompt(model.CompletionPromptTemplate, templateFile, model.PromptTemplateData{
|
||||
Input: predInput,
|
||||
})
|
||||
if err == nil {
|
||||
predInput = templatedInput
|
||||
log.Debug().Msgf("Template found, input modified to: %s", predInput)
|
||||
}
|
||||
}
|
||||
|
||||
responses := make(chan schema.OpenAIResponse)
|
||||
|
||||
go process(predInput, input, config, ml, responses)
|
||||
|
||||
c.Context().SetBodyStreamWriter(fasthttp.StreamWriter(func(w *bufio.Writer) {
|
||||
for ev := range tokenChannel {
|
||||
|
||||
for ev := range responses {
|
||||
var buf bytes.Buffer
|
||||
enc := json.NewEncoder(&buf)
|
||||
if ev.Error != nil {
|
||||
log.Debug().Msgf("[CompletionEndpoint] error to debug during tokenChannel handler: %q", ev.Error)
|
||||
enc.Encode(ev.Error)
|
||||
} else {
|
||||
enc.Encode(ev.Value)
|
||||
}
|
||||
enc.Encode(ev)
|
||||
|
||||
log.Debug().Msgf("completion streaming sending chunk: %s", buf.String())
|
||||
log.Debug().Msgf("Sending chunk: %s", buf.String())
|
||||
fmt.Fprintf(w, "data: %v\n", buf.String())
|
||||
w.Flush()
|
||||
}
|
||||
|
||||
resp := &schema.OpenAIResponse{
|
||||
ID: traceID.ID,
|
||||
Created: traceID.Created,
|
||||
Model: request.Model, // we have to return what the user sent here, due to OpenAI spec.
|
||||
ID: id,
|
||||
Created: created,
|
||||
Model: input.Model, // we have to return what the user sent here, due to OpenAI spec.
|
||||
Choices: []schema.Choice{
|
||||
{
|
||||
Index: 0,
|
||||
@@ -80,15 +151,55 @@ func CompletionEndpoint(fce *fiberContext.FiberContextExtractor, oais *services.
|
||||
}))
|
||||
return nil
|
||||
}
|
||||
// TODO is this proper to have exclusive from Stream, or do we need to issue both responses?
|
||||
rawResponse := <-finalResultChannel
|
||||
if rawResponse.Error != nil {
|
||||
return rawResponse.Error
|
||||
|
||||
var result []schema.Choice
|
||||
|
||||
totalTokenUsage := backend.TokenUsage{}
|
||||
|
||||
for k, i := range config.PromptStrings {
|
||||
if templateFile != "" {
|
||||
// A model can have a "file.bin.tmpl" file associated with a prompt template prefix
|
||||
templatedInput, err := ml.EvaluateTemplateForPrompt(model.CompletionPromptTemplate, templateFile, model.PromptTemplateData{
|
||||
SystemPrompt: config.SystemPrompt,
|
||||
Input: i,
|
||||
})
|
||||
if err == nil {
|
||||
i = templatedInput
|
||||
log.Debug().Msgf("Template found, input modified to: %s", i)
|
||||
}
|
||||
}
|
||||
|
||||
r, tokenUsage, err := ComputeChoices(
|
||||
input, i, config, appConfig, ml, func(s string, c *[]schema.Choice) {
|
||||
*c = append(*c, schema.Choice{Text: s, FinishReason: "stop", Index: k})
|
||||
}, nil)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
totalTokenUsage.Prompt += tokenUsage.Prompt
|
||||
totalTokenUsage.Completion += tokenUsage.Completion
|
||||
|
||||
result = append(result, r...)
|
||||
}
|
||||
jsonResult, _ := json.Marshal(rawResponse.Value)
|
||||
|
||||
resp := &schema.OpenAIResponse{
|
||||
ID: id,
|
||||
Created: created,
|
||||
Model: input.Model, // we have to return what the user sent here, due to OpenAI spec.
|
||||
Choices: result,
|
||||
Object: "text_completion",
|
||||
Usage: schema.OpenAIUsage{
|
||||
PromptTokens: totalTokenUsage.Prompt,
|
||||
CompletionTokens: totalTokenUsage.Completion,
|
||||
TotalTokens: totalTokenUsage.Prompt + totalTokenUsage.Completion,
|
||||
},
|
||||
}
|
||||
|
||||
jsonResult, _ := json.Marshal(resp)
|
||||
log.Debug().Msgf("Response: %s", jsonResult)
|
||||
|
||||
// Return the prediction in the response body
|
||||
return c.JSON(rawResponse.Value)
|
||||
return c.JSON(resp)
|
||||
}
|
||||
}
|
||||
|
||||
@@ -3,36 +3,92 @@ package openai
|
||||
import (
|
||||
"encoding/json"
|
||||
"fmt"
|
||||
"time"
|
||||
|
||||
fiberContext "github.com/go-skynet/LocalAI/core/http/ctx"
|
||||
"github.com/go-skynet/LocalAI/core/services"
|
||||
"github.com/go-skynet/LocalAI/core/backend"
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/schema"
|
||||
model "github.com/go-skynet/LocalAI/pkg/model"
|
||||
"github.com/gofiber/fiber/v2"
|
||||
"github.com/google/uuid"
|
||||
|
||||
"github.com/rs/zerolog/log"
|
||||
)
|
||||
|
||||
func EditEndpoint(fce *fiberContext.FiberContextExtractor, oais *services.OpenAIService) func(c *fiber.Ctx) error {
|
||||
func EditEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
|
||||
return func(c *fiber.Ctx) error {
|
||||
_, request, err := fce.OpenAIRequestFromContext(c, false)
|
||||
modelFile, input, err := readRequest(c, ml, appConfig, true)
|
||||
if err != nil {
|
||||
return fmt.Errorf("failed reading parameters from request:%w", err)
|
||||
}
|
||||
|
||||
_, finalResultChannel, _, _, _, err := oais.Edit(request, false, request.Stream)
|
||||
config, input, err := mergeRequestWithConfig(modelFile, input, cl, ml, appConfig.Debug, appConfig.Threads, appConfig.ContextSize, appConfig.F16)
|
||||
if err != nil {
|
||||
return err
|
||||
return fmt.Errorf("failed reading parameters from request:%w", err)
|
||||
}
|
||||
|
||||
rawResponse := <-finalResultChannel
|
||||
if rawResponse.Error != nil {
|
||||
return rawResponse.Error
|
||||
log.Debug().Msgf("Parameter Config: %+v", config)
|
||||
|
||||
templateFile := ""
|
||||
|
||||
// A model can have a "file.bin.tmpl" file associated with a prompt template prefix
|
||||
if ml.ExistsInModelPath(fmt.Sprintf("%s.tmpl", config.Model)) {
|
||||
templateFile = config.Model
|
||||
}
|
||||
|
||||
jsonResult, _ := json.Marshal(rawResponse.Value)
|
||||
if config.TemplateConfig.Edit != "" {
|
||||
templateFile = config.TemplateConfig.Edit
|
||||
}
|
||||
|
||||
var result []schema.Choice
|
||||
totalTokenUsage := backend.TokenUsage{}
|
||||
|
||||
for _, i := range config.InputStrings {
|
||||
if templateFile != "" {
|
||||
templatedInput, err := ml.EvaluateTemplateForPrompt(model.EditPromptTemplate, templateFile, model.PromptTemplateData{
|
||||
Input: i,
|
||||
Instruction: input.Instruction,
|
||||
SystemPrompt: config.SystemPrompt,
|
||||
})
|
||||
if err == nil {
|
||||
i = templatedInput
|
||||
log.Debug().Msgf("Template found, input modified to: %s", i)
|
||||
}
|
||||
}
|
||||
|
||||
r, tokenUsage, err := ComputeChoices(input, i, config, appConfig, ml, func(s string, c *[]schema.Choice) {
|
||||
*c = append(*c, schema.Choice{Text: s})
|
||||
}, nil)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
totalTokenUsage.Prompt += tokenUsage.Prompt
|
||||
totalTokenUsage.Completion += tokenUsage.Completion
|
||||
|
||||
result = append(result, r...)
|
||||
}
|
||||
|
||||
id := uuid.New().String()
|
||||
created := int(time.Now().Unix())
|
||||
resp := &schema.OpenAIResponse{
|
||||
ID: id,
|
||||
Created: created,
|
||||
Model: input.Model, // we have to return what the user sent here, due to OpenAI spec.
|
||||
Choices: result,
|
||||
Object: "edit",
|
||||
Usage: schema.OpenAIUsage{
|
||||
PromptTokens: totalTokenUsage.Prompt,
|
||||
CompletionTokens: totalTokenUsage.Completion,
|
||||
TotalTokens: totalTokenUsage.Prompt + totalTokenUsage.Completion,
|
||||
},
|
||||
}
|
||||
|
||||
jsonResult, _ := json.Marshal(resp)
|
||||
log.Debug().Msgf("Response: %s", jsonResult)
|
||||
|
||||
// Return the prediction in the response body
|
||||
return c.JSON(rawResponse.Value)
|
||||
return c.JSON(resp)
|
||||
}
|
||||
}
|
||||
|
||||
@@ -3,9 +3,14 @@ package openai
|
||||
import (
|
||||
"encoding/json"
|
||||
"fmt"
|
||||
"time"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/backend"
|
||||
fiberContext "github.com/go-skynet/LocalAI/core/http/ctx"
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
"github.com/go-skynet/LocalAI/pkg/model"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/schema"
|
||||
"github.com/google/uuid"
|
||||
|
||||
"github.com/gofiber/fiber/v2"
|
||||
"github.com/rs/zerolog/log"
|
||||
@@ -16,25 +21,63 @@ import (
|
||||
// @Param request body schema.OpenAIRequest true "query params"
|
||||
// @Success 200 {object} schema.OpenAIResponse "Response"
|
||||
// @Router /v1/embeddings [post]
|
||||
func EmbeddingsEndpoint(fce *fiberContext.FiberContextExtractor, ebs *backend.EmbeddingsBackendService) func(c *fiber.Ctx) error {
|
||||
func EmbeddingsEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
|
||||
return func(c *fiber.Ctx) error {
|
||||
_, input, err := fce.OpenAIRequestFromContext(c, true)
|
||||
model, input, err := readRequest(c, ml, appConfig, true)
|
||||
if err != nil {
|
||||
return fmt.Errorf("failed reading parameters from request:%w", err)
|
||||
}
|
||||
|
||||
responseChannel := ebs.Embeddings(input)
|
||||
|
||||
rawResponse := <-responseChannel
|
||||
|
||||
if rawResponse.Error != nil {
|
||||
return rawResponse.Error
|
||||
config, input, err := mergeRequestWithConfig(model, input, cl, ml, appConfig.Debug, appConfig.Threads, appConfig.ContextSize, appConfig.F16)
|
||||
if err != nil {
|
||||
return fmt.Errorf("failed reading parameters from request:%w", err)
|
||||
}
|
||||
|
||||
jsonResult, _ := json.Marshal(rawResponse.Value)
|
||||
log.Debug().Msgf("Parameter Config: %+v", config)
|
||||
items := []schema.Item{}
|
||||
|
||||
for i, s := range config.InputToken {
|
||||
// get the model function to call for the result
|
||||
embedFn, err := backend.ModelEmbedding("", s, ml, *config, appConfig)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
embeddings, err := embedFn()
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
items = append(items, schema.Item{Embedding: embeddings, Index: i, Object: "embedding"})
|
||||
}
|
||||
|
||||
for i, s := range config.InputStrings {
|
||||
// get the model function to call for the result
|
||||
embedFn, err := backend.ModelEmbedding(s, []int{}, ml, *config, appConfig)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
embeddings, err := embedFn()
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
items = append(items, schema.Item{Embedding: embeddings, Index: i, Object: "embedding"})
|
||||
}
|
||||
|
||||
id := uuid.New().String()
|
||||
created := int(time.Now().Unix())
|
||||
resp := &schema.OpenAIResponse{
|
||||
ID: id,
|
||||
Created: created,
|
||||
Model: input.Model, // we have to return what the user sent here, due to OpenAI spec.
|
||||
Data: items,
|
||||
Object: "list",
|
||||
}
|
||||
|
||||
jsonResult, _ := json.Marshal(resp)
|
||||
log.Debug().Msgf("Response: %s", jsonResult)
|
||||
|
||||
// Return the prediction in the response body
|
||||
return c.JSON(rawResponse.Value)
|
||||
return c.JSON(resp)
|
||||
}
|
||||
}
|
||||
|
||||
@@ -251,7 +251,7 @@ func newMultipartFile(filePath, tag, purpose string) (*strings.Reader, *multipar
|
||||
|
||||
// Helper to create test files
|
||||
func createTestFile(t *testing.T, name string, sizeMB int, option *config.ApplicationConfig) *os.File {
|
||||
err := os.MkdirAll(option.UploadDir, 0755)
|
||||
err := os.MkdirAll(option.UploadDir, 0750)
|
||||
if err != nil {
|
||||
|
||||
t.Fatalf("Error MKDIR: %v", err)
|
||||
|
||||
@@ -1,18 +1,50 @@
|
||||
package openai
|
||||
|
||||
import (
|
||||
"bufio"
|
||||
"encoding/base64"
|
||||
"encoding/json"
|
||||
"fmt"
|
||||
"io"
|
||||
"net/http"
|
||||
"os"
|
||||
"path/filepath"
|
||||
"strconv"
|
||||
"strings"
|
||||
"time"
|
||||
|
||||
fiberContext "github.com/go-skynet/LocalAI/core/http/ctx"
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
"github.com/go-skynet/LocalAI/core/schema"
|
||||
"github.com/google/uuid"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/backend"
|
||||
|
||||
model "github.com/go-skynet/LocalAI/pkg/model"
|
||||
"github.com/gofiber/fiber/v2"
|
||||
"github.com/rs/zerolog/log"
|
||||
)
|
||||
|
||||
// https://platform.openai.com/docs/api-reference/images/create
|
||||
func downloadFile(url string) (string, error) {
|
||||
// Get the data
|
||||
resp, err := http.Get(url)
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
defer resp.Body.Close()
|
||||
|
||||
// Create the file
|
||||
out, err := os.CreateTemp("", "image")
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
defer out.Close()
|
||||
|
||||
// Write the body to file
|
||||
_, err = io.Copy(out, resp.Body)
|
||||
return out.Name(), err
|
||||
}
|
||||
|
||||
//
|
||||
|
||||
/*
|
||||
*
|
||||
@@ -27,36 +59,186 @@ import (
|
||||
|
||||
*
|
||||
*/
|
||||
|
||||
// ImageEndpoint is the OpenAI Image generation API endpoint https://platform.openai.com/docs/api-reference/images/create
|
||||
// @Summary Creates an image given a prompt.
|
||||
// @Param request body schema.OpenAIRequest true "query params"
|
||||
// @Success 200 {object} schema.OpenAIResponse "Response"
|
||||
// @Router /v1/images/generations [post]
|
||||
func ImageEndpoint(fce *fiberContext.FiberContextExtractor, igbs *backend.ImageGenerationBackendService) func(c *fiber.Ctx) error {
|
||||
func ImageEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
|
||||
return func(c *fiber.Ctx) error {
|
||||
// TODO: Somewhat a hack. Is there a better place to assign this?
|
||||
if igbs.BaseUrlForGeneratedImages == "" {
|
||||
igbs.BaseUrlForGeneratedImages = c.BaseURL() + "/generated-images/"
|
||||
}
|
||||
_, request, err := fce.OpenAIRequestFromContext(c, false)
|
||||
m, input, err := readRequest(c, ml, appConfig, false)
|
||||
if err != nil {
|
||||
return fmt.Errorf("failed reading parameters from request:%w", err)
|
||||
}
|
||||
|
||||
responseChannel := igbs.GenerateImage(request)
|
||||
rawResponse := <-responseChannel
|
||||
|
||||
if rawResponse.Error != nil {
|
||||
return rawResponse.Error
|
||||
if m == "" {
|
||||
m = model.StableDiffusionBackend
|
||||
}
|
||||
log.Debug().Msgf("Loading model: %+v", m)
|
||||
|
||||
jsonResult, err := json.Marshal(rawResponse.Value)
|
||||
config, input, err := mergeRequestWithConfig(m, input, cl, ml, appConfig.Debug, 0, 0, false)
|
||||
if err != nil {
|
||||
return err
|
||||
return fmt.Errorf("failed reading parameters from request:%w", err)
|
||||
}
|
||||
|
||||
src := ""
|
||||
if input.File != "" {
|
||||
|
||||
fileData := []byte{}
|
||||
// check if input.File is an URL, if so download it and save it
|
||||
// to a temporary file
|
||||
if strings.HasPrefix(input.File, "http://") || strings.HasPrefix(input.File, "https://") {
|
||||
out, err := downloadFile(input.File)
|
||||
if err != nil {
|
||||
return fmt.Errorf("failed downloading file:%w", err)
|
||||
}
|
||||
defer os.RemoveAll(out)
|
||||
|
||||
fileData, err = os.ReadFile(out)
|
||||
if err != nil {
|
||||
return fmt.Errorf("failed reading file:%w", err)
|
||||
}
|
||||
|
||||
} else {
|
||||
// base 64 decode the file and write it somewhere
|
||||
// that we will cleanup
|
||||
fileData, err = base64.StdEncoding.DecodeString(input.File)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
|
||||
// Create a temporary file
|
||||
outputFile, err := os.CreateTemp(appConfig.ImageDir, "b64")
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
// write the base64 result
|
||||
writer := bufio.NewWriter(outputFile)
|
||||
_, err = writer.Write(fileData)
|
||||
if err != nil {
|
||||
outputFile.Close()
|
||||
return err
|
||||
}
|
||||
outputFile.Close()
|
||||
src = outputFile.Name()
|
||||
defer os.RemoveAll(src)
|
||||
}
|
||||
|
||||
log.Debug().Msgf("Parameter Config: %+v", config)
|
||||
|
||||
switch config.Backend {
|
||||
case "stablediffusion":
|
||||
config.Backend = model.StableDiffusionBackend
|
||||
case "tinydream":
|
||||
config.Backend = model.TinyDreamBackend
|
||||
case "":
|
||||
config.Backend = model.StableDiffusionBackend
|
||||
}
|
||||
|
||||
sizeParts := strings.Split(input.Size, "x")
|
||||
if len(sizeParts) != 2 {
|
||||
return fmt.Errorf("invalid value for 'size'")
|
||||
}
|
||||
width, err := strconv.Atoi(sizeParts[0])
|
||||
if err != nil {
|
||||
return fmt.Errorf("invalid value for 'size'")
|
||||
}
|
||||
height, err := strconv.Atoi(sizeParts[1])
|
||||
if err != nil {
|
||||
return fmt.Errorf("invalid value for 'size'")
|
||||
}
|
||||
|
||||
b64JSON := false
|
||||
if input.ResponseFormat.Type == "b64_json" {
|
||||
b64JSON = true
|
||||
}
|
||||
// src and clip_skip
|
||||
var result []schema.Item
|
||||
for _, i := range config.PromptStrings {
|
||||
n := input.N
|
||||
if input.N == 0 {
|
||||
n = 1
|
||||
}
|
||||
for j := 0; j < n; j++ {
|
||||
prompts := strings.Split(i, "|")
|
||||
positive_prompt := prompts[0]
|
||||
negative_prompt := ""
|
||||
if len(prompts) > 1 {
|
||||
negative_prompt = prompts[1]
|
||||
}
|
||||
|
||||
mode := 0
|
||||
step := config.Step
|
||||
if step == 0 {
|
||||
step = 15
|
||||
}
|
||||
|
||||
if input.Mode != 0 {
|
||||
mode = input.Mode
|
||||
}
|
||||
|
||||
if input.Step != 0 {
|
||||
step = input.Step
|
||||
}
|
||||
|
||||
tempDir := ""
|
||||
if !b64JSON {
|
||||
tempDir = appConfig.ImageDir
|
||||
}
|
||||
// Create a temporary file
|
||||
outputFile, err := os.CreateTemp(tempDir, "b64")
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
outputFile.Close()
|
||||
output := outputFile.Name() + ".png"
|
||||
// Rename the temporary file
|
||||
err = os.Rename(outputFile.Name(), output)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
baseURL := c.BaseURL()
|
||||
|
||||
fn, err := backend.ImageGeneration(height, width, mode, step, *config.Seed, positive_prompt, negative_prompt, src, output, ml, *config, appConfig)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
if err := fn(); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
item := &schema.Item{}
|
||||
|
||||
if b64JSON {
|
||||
defer os.RemoveAll(output)
|
||||
data, err := os.ReadFile(output)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
item.B64JSON = base64.StdEncoding.EncodeToString(data)
|
||||
} else {
|
||||
base := filepath.Base(output)
|
||||
item.URL = baseURL + "/generated-images/" + base
|
||||
}
|
||||
|
||||
result = append(result, *item)
|
||||
}
|
||||
}
|
||||
|
||||
id := uuid.New().String()
|
||||
created := int(time.Now().Unix())
|
||||
resp := &schema.OpenAIResponse{
|
||||
ID: id,
|
||||
Created: created,
|
||||
Data: result,
|
||||
}
|
||||
|
||||
jsonResult, _ := json.Marshal(resp)
|
||||
log.Debug().Msgf("Response: %s", jsonResult)
|
||||
|
||||
// Return the prediction in the response body
|
||||
return c.JSON(rawResponse.Value)
|
||||
return c.JSON(resp)
|
||||
}
|
||||
}
|
||||
|
||||
55
core/http/endpoints/openai/inference.go
Normal file
55
core/http/endpoints/openai/inference.go
Normal file
@@ -0,0 +1,55 @@
|
||||
package openai
|
||||
|
||||
import (
|
||||
"github.com/go-skynet/LocalAI/core/backend"
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/schema"
|
||||
model "github.com/go-skynet/LocalAI/pkg/model"
|
||||
)
|
||||
|
||||
func ComputeChoices(
|
||||
req *schema.OpenAIRequest,
|
||||
predInput string,
|
||||
config *config.BackendConfig,
|
||||
o *config.ApplicationConfig,
|
||||
loader *model.ModelLoader,
|
||||
cb func(string, *[]schema.Choice),
|
||||
tokenCallback func(string, backend.TokenUsage) bool) ([]schema.Choice, backend.TokenUsage, error) {
|
||||
n := req.N // number of completions to return
|
||||
result := []schema.Choice{}
|
||||
|
||||
if n == 0 {
|
||||
n = 1
|
||||
}
|
||||
|
||||
images := []string{}
|
||||
for _, m := range req.Messages {
|
||||
images = append(images, m.StringImages...)
|
||||
}
|
||||
|
||||
// get the model function to call for the result
|
||||
predFunc, err := backend.ModelInference(req.Context, predInput, req.Messages, images, loader, *config, o, tokenCallback)
|
||||
if err != nil {
|
||||
return result, backend.TokenUsage{}, err
|
||||
}
|
||||
|
||||
tokenUsage := backend.TokenUsage{}
|
||||
|
||||
for i := 0; i < n; i++ {
|
||||
prediction, err := predFunc()
|
||||
if err != nil {
|
||||
return result, backend.TokenUsage{}, err
|
||||
}
|
||||
|
||||
tokenUsage.Prompt += prediction.Usage.Prompt
|
||||
tokenUsage.Completion += prediction.Usage.Completion
|
||||
|
||||
finetunedResponse := backend.Finetune(*config, predInput, prediction.Response)
|
||||
cb(finetunedResponse, &result)
|
||||
|
||||
//result = append(result, Choice{Text: prediction})
|
||||
|
||||
}
|
||||
return result, tokenUsage, err
|
||||
}
|
||||
@@ -10,6 +10,7 @@ func ListModelsEndpoint(lms *services.ListModelsService) func(ctx *fiber.Ctx) er
|
||||
return func(c *fiber.Ctx) error {
|
||||
// If blank, no filter is applied.
|
||||
filter := c.Query("filter")
|
||||
|
||||
// By default, exclude any loose files that are already referenced by a configuration file.
|
||||
excludeConfigured := c.QueryBool("excludeConfigured", true)
|
||||
|
||||
@@ -17,7 +18,6 @@ func ListModelsEndpoint(lms *services.ListModelsService) func(ctx *fiber.Ctx) er
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
return c.JSON(struct {
|
||||
Object string `json:"object"`
|
||||
Data []schema.OpenAIModel `json:"data"`
|
||||
|
||||
289
core/http/endpoints/openai/request.go
Normal file
289
core/http/endpoints/openai/request.go
Normal file
@@ -0,0 +1,289 @@
|
||||
package openai
|
||||
|
||||
import (
|
||||
"context"
|
||||
"encoding/base64"
|
||||
"encoding/json"
|
||||
"fmt"
|
||||
"io"
|
||||
"net/http"
|
||||
"strings"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
fiberContext "github.com/go-skynet/LocalAI/core/http/ctx"
|
||||
"github.com/go-skynet/LocalAI/core/schema"
|
||||
"github.com/go-skynet/LocalAI/pkg/functions"
|
||||
model "github.com/go-skynet/LocalAI/pkg/model"
|
||||
"github.com/gofiber/fiber/v2"
|
||||
"github.com/rs/zerolog/log"
|
||||
)
|
||||
|
||||
func readRequest(c *fiber.Ctx, ml *model.ModelLoader, o *config.ApplicationConfig, firstModel bool) (string, *schema.OpenAIRequest, error) {
|
||||
input := new(schema.OpenAIRequest)
|
||||
|
||||
// Get input data from the request body
|
||||
if err := c.BodyParser(input); err != nil {
|
||||
return "", nil, fmt.Errorf("failed parsing request body: %w", err)
|
||||
}
|
||||
|
||||
received, _ := json.Marshal(input)
|
||||
|
||||
ctx, cancel := context.WithCancel(o.Context)
|
||||
input.Context = ctx
|
||||
input.Cancel = cancel
|
||||
|
||||
log.Debug().Msgf("Request received: %s", string(received))
|
||||
|
||||
modelFile, err := fiberContext.ModelFromContext(c, ml, input.Model, firstModel)
|
||||
|
||||
return modelFile, input, err
|
||||
}
|
||||
|
||||
// this function check if the string is an URL, if it's an URL downloads the image in memory
|
||||
// encodes it in base64 and returns the base64 string
|
||||
func getBase64Image(s string) (string, error) {
|
||||
if strings.HasPrefix(s, "http") {
|
||||
// download the image
|
||||
resp, err := http.Get(s)
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
defer resp.Body.Close()
|
||||
|
||||
// read the image data into memory
|
||||
data, err := io.ReadAll(resp.Body)
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
|
||||
// encode the image data in base64
|
||||
encoded := base64.StdEncoding.EncodeToString(data)
|
||||
|
||||
// return the base64 string
|
||||
return encoded, nil
|
||||
}
|
||||
|
||||
// if the string instead is prefixed with "data:image/...;base64,", drop it
|
||||
dropPrefix := []string{"data:image/jpeg;base64,", "data:image/png;base64,"}
|
||||
for _, prefix := range dropPrefix {
|
||||
if strings.HasPrefix(s, prefix) {
|
||||
return strings.ReplaceAll(s, prefix, ""), nil
|
||||
}
|
||||
}
|
||||
|
||||
return "", fmt.Errorf("not valid string")
|
||||
}
|
||||
|
||||
func updateRequestConfig(config *config.BackendConfig, input *schema.OpenAIRequest) {
|
||||
if input.Echo {
|
||||
config.Echo = input.Echo
|
||||
}
|
||||
if input.TopK != nil {
|
||||
config.TopK = input.TopK
|
||||
}
|
||||
if input.TopP != nil {
|
||||
config.TopP = input.TopP
|
||||
}
|
||||
|
||||
if input.Backend != "" {
|
||||
config.Backend = input.Backend
|
||||
}
|
||||
|
||||
if input.ClipSkip != 0 {
|
||||
config.Diffusers.ClipSkip = input.ClipSkip
|
||||
}
|
||||
|
||||
if input.ModelBaseName != "" {
|
||||
config.AutoGPTQ.ModelBaseName = input.ModelBaseName
|
||||
}
|
||||
|
||||
if input.NegativePromptScale != 0 {
|
||||
config.NegativePromptScale = input.NegativePromptScale
|
||||
}
|
||||
|
||||
if input.UseFastTokenizer {
|
||||
config.UseFastTokenizer = input.UseFastTokenizer
|
||||
}
|
||||
|
||||
if input.NegativePrompt != "" {
|
||||
config.NegativePrompt = input.NegativePrompt
|
||||
}
|
||||
|
||||
if input.RopeFreqBase != 0 {
|
||||
config.RopeFreqBase = input.RopeFreqBase
|
||||
}
|
||||
|
||||
if input.RopeFreqScale != 0 {
|
||||
config.RopeFreqScale = input.RopeFreqScale
|
||||
}
|
||||
|
||||
if input.Grammar != "" {
|
||||
config.Grammar = input.Grammar
|
||||
}
|
||||
|
||||
if input.Temperature != nil {
|
||||
config.Temperature = input.Temperature
|
||||
}
|
||||
|
||||
if input.Maxtokens != nil {
|
||||
config.Maxtokens = input.Maxtokens
|
||||
}
|
||||
|
||||
switch stop := input.Stop.(type) {
|
||||
case string:
|
||||
if stop != "" {
|
||||
config.StopWords = append(config.StopWords, stop)
|
||||
}
|
||||
case []interface{}:
|
||||
for _, pp := range stop {
|
||||
if s, ok := pp.(string); ok {
|
||||
config.StopWords = append(config.StopWords, s)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if len(input.Tools) > 0 {
|
||||
for _, tool := range input.Tools {
|
||||
input.Functions = append(input.Functions, tool.Function)
|
||||
}
|
||||
}
|
||||
|
||||
if input.ToolsChoice != nil {
|
||||
var toolChoice functions.Tool
|
||||
|
||||
switch content := input.ToolsChoice.(type) {
|
||||
case string:
|
||||
_ = json.Unmarshal([]byte(content), &toolChoice)
|
||||
case map[string]interface{}:
|
||||
dat, _ := json.Marshal(content)
|
||||
_ = json.Unmarshal(dat, &toolChoice)
|
||||
}
|
||||
input.FunctionCall = map[string]interface{}{
|
||||
"name": toolChoice.Function.Name,
|
||||
}
|
||||
}
|
||||
|
||||
// Decode each request's message content
|
||||
index := 0
|
||||
for i, m := range input.Messages {
|
||||
switch content := m.Content.(type) {
|
||||
case string:
|
||||
input.Messages[i].StringContent = content
|
||||
case []interface{}:
|
||||
dat, _ := json.Marshal(content)
|
||||
c := []schema.Content{}
|
||||
json.Unmarshal(dat, &c)
|
||||
for _, pp := range c {
|
||||
if pp.Type == "text" {
|
||||
input.Messages[i].StringContent = pp.Text
|
||||
} else if pp.Type == "image_url" {
|
||||
// Detect if pp.ImageURL is an URL, if it is download the image and encode it in base64:
|
||||
base64, err := getBase64Image(pp.ImageURL.URL)
|
||||
if err == nil {
|
||||
input.Messages[i].StringImages = append(input.Messages[i].StringImages, base64) // TODO: make sure that we only return base64 stuff
|
||||
// set a placeholder for each image
|
||||
input.Messages[i].StringContent = fmt.Sprintf("[img-%d]", index) + input.Messages[i].StringContent
|
||||
index++
|
||||
} else {
|
||||
log.Error().Msgf("Failed encoding image: %s", err)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if input.RepeatPenalty != 0 {
|
||||
config.RepeatPenalty = input.RepeatPenalty
|
||||
}
|
||||
|
||||
if input.FrequencyPenalty != 0 {
|
||||
config.FrequencyPenalty = input.FrequencyPenalty
|
||||
}
|
||||
|
||||
if input.PresencePenalty != 0 {
|
||||
config.PresencePenalty = input.PresencePenalty
|
||||
}
|
||||
|
||||
if input.Keep != 0 {
|
||||
config.Keep = input.Keep
|
||||
}
|
||||
|
||||
if input.Batch != 0 {
|
||||
config.Batch = input.Batch
|
||||
}
|
||||
|
||||
if input.IgnoreEOS {
|
||||
config.IgnoreEOS = input.IgnoreEOS
|
||||
}
|
||||
|
||||
if input.Seed != nil {
|
||||
config.Seed = input.Seed
|
||||
}
|
||||
|
||||
if input.TypicalP != nil {
|
||||
config.TypicalP = input.TypicalP
|
||||
}
|
||||
|
||||
switch inputs := input.Input.(type) {
|
||||
case string:
|
||||
if inputs != "" {
|
||||
config.InputStrings = append(config.InputStrings, inputs)
|
||||
}
|
||||
case []interface{}:
|
||||
for _, pp := range inputs {
|
||||
switch i := pp.(type) {
|
||||
case string:
|
||||
config.InputStrings = append(config.InputStrings, i)
|
||||
case []interface{}:
|
||||
tokens := []int{}
|
||||
for _, ii := range i {
|
||||
tokens = append(tokens, int(ii.(float64)))
|
||||
}
|
||||
config.InputToken = append(config.InputToken, tokens)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Can be either a string or an object
|
||||
switch fnc := input.FunctionCall.(type) {
|
||||
case string:
|
||||
if fnc != "" {
|
||||
config.SetFunctionCallString(fnc)
|
||||
}
|
||||
case map[string]interface{}:
|
||||
var name string
|
||||
n, exists := fnc["name"]
|
||||
if exists {
|
||||
nn, e := n.(string)
|
||||
if e {
|
||||
name = nn
|
||||
}
|
||||
}
|
||||
config.SetFunctionCallNameString(name)
|
||||
}
|
||||
|
||||
switch p := input.Prompt.(type) {
|
||||
case string:
|
||||
config.PromptStrings = append(config.PromptStrings, p)
|
||||
case []interface{}:
|
||||
for _, pp := range p {
|
||||
if s, ok := pp.(string); ok {
|
||||
config.PromptStrings = append(config.PromptStrings, s)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func mergeRequestWithConfig(modelFile string, input *schema.OpenAIRequest, cm *config.BackendConfigLoader, loader *model.ModelLoader, debug bool, threads, ctx int, f16 bool) (*config.BackendConfig, *schema.OpenAIRequest, error) {
|
||||
cfg, err := cm.LoadBackendConfigFileByName(modelFile, loader.ModelPath,
|
||||
config.LoadOptionDebug(debug),
|
||||
config.LoadOptionThreads(threads),
|
||||
config.LoadOptionContextSize(ctx),
|
||||
config.LoadOptionF16(f16),
|
||||
)
|
||||
|
||||
// Set the parameters for the language model prediction
|
||||
updateRequestConfig(cfg, input)
|
||||
|
||||
return cfg, input, err
|
||||
}
|
||||
@@ -9,7 +9,8 @@ import (
|
||||
"path/filepath"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/backend"
|
||||
fiberContext "github.com/go-skynet/LocalAI/core/http/ctx"
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
model "github.com/go-skynet/LocalAI/pkg/model"
|
||||
|
||||
"github.com/gofiber/fiber/v2"
|
||||
"github.com/rs/zerolog/log"
|
||||
@@ -22,15 +23,17 @@ import (
|
||||
// @Param file formData file true "file"
|
||||
// @Success 200 {object} map[string]string "Response"
|
||||
// @Router /v1/audio/transcriptions [post]
|
||||
func TranscriptEndpoint(fce *fiberContext.FiberContextExtractor, tbs *backend.TranscriptionBackendService) func(c *fiber.Ctx) error {
|
||||
func TranscriptEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
|
||||
return func(c *fiber.Ctx) error {
|
||||
_, request, err := fce.OpenAIRequestFromContext(c, false)
|
||||
m, input, err := readRequest(c, ml, appConfig, false)
|
||||
if err != nil {
|
||||
return fmt.Errorf("failed reading parameters from request:%w", err)
|
||||
}
|
||||
|
||||
// TODO: Investigate this file copy stuff later - potentially belongs in service.
|
||||
|
||||
config, input, err := mergeRequestWithConfig(m, input, cl, ml, appConfig.Debug, appConfig.Threads, appConfig.ContextSize, appConfig.F16)
|
||||
if err != nil {
|
||||
return fmt.Errorf("failed reading parameters from request:%w", err)
|
||||
}
|
||||
// retrieve the file data from the request
|
||||
file, err := c.FormFile("file")
|
||||
if err != nil {
|
||||
@@ -62,16 +65,13 @@ func TranscriptEndpoint(fce *fiberContext.FiberContextExtractor, tbs *backend.Tr
|
||||
|
||||
log.Debug().Msgf("Audio file copied to: %+v", dst)
|
||||
|
||||
request.File = dst
|
||||
|
||||
responseChannel := tbs.Transcribe(request)
|
||||
rawResponse := <-responseChannel
|
||||
|
||||
if rawResponse.Error != nil {
|
||||
return rawResponse.Error
|
||||
tr, err := backend.ModelTranscription(dst, input.Language, ml, *config, appConfig)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
log.Debug().Msgf("Transcribed: %+v", rawResponse.Value)
|
||||
|
||||
log.Debug().Msgf("Trascribed: %+v", tr)
|
||||
// TODO: handle different outputs here
|
||||
return c.Status(http.StatusOK).JSON(rawResponse.Value)
|
||||
return c.Status(http.StatusOK).JSON(tr)
|
||||
}
|
||||
}
|
||||
|
||||
@@ -7,12 +7,10 @@ import (
|
||||
"net/http"
|
||||
|
||||
"github.com/Masterminds/sprig/v3"
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
"github.com/go-skynet/LocalAI/core/schema"
|
||||
"github.com/go-skynet/LocalAI/internal"
|
||||
"github.com/go-skynet/LocalAI/pkg/model"
|
||||
"github.com/gofiber/fiber/v2"
|
||||
fiberhtml "github.com/gofiber/template/html/v2"
|
||||
"github.com/microcosm-cc/bluemonday"
|
||||
"github.com/russross/blackfriday"
|
||||
)
|
||||
|
||||
@@ -33,40 +31,6 @@ func notFoundHandler(c *fiber.Ctx) error {
|
||||
return nil
|
||||
}
|
||||
|
||||
func welcomeRoute(
|
||||
app *fiber.App,
|
||||
cl *config.BackendConfigLoader,
|
||||
ml *model.ModelLoader,
|
||||
appConfig *config.ApplicationConfig,
|
||||
auth func(*fiber.Ctx) error,
|
||||
) {
|
||||
if appConfig.DisableWelcomePage {
|
||||
return
|
||||
}
|
||||
|
||||
models, _ := ml.ListModels()
|
||||
backendConfigs := cl.GetAllBackendConfigs()
|
||||
|
||||
app.Get("/", auth, func(c *fiber.Ctx) error {
|
||||
summary := fiber.Map{
|
||||
"Title": "LocalAI API - " + internal.PrintableVersion(),
|
||||
"Version": internal.PrintableVersion(),
|
||||
"Models": models,
|
||||
"ModelsConfig": backendConfigs,
|
||||
"ApplicationConfig": appConfig,
|
||||
}
|
||||
|
||||
if string(c.Context().Request.Header.ContentType()) == "application/json" || len(c.Accepts("html")) == 0 {
|
||||
// The client expects a JSON response
|
||||
return c.Status(fiber.StatusOK).JSON(summary)
|
||||
} else {
|
||||
// Render index
|
||||
return c.Render("views/index", summary)
|
||||
}
|
||||
})
|
||||
|
||||
}
|
||||
|
||||
func renderEngine() *fiberhtml.Engine {
|
||||
engine := fiberhtml.NewFileSystem(http.FS(viewsfs), ".html")
|
||||
engine.AddFuncMap(sprig.FuncMap())
|
||||
@@ -76,5 +40,5 @@ func renderEngine() *fiberhtml.Engine {
|
||||
|
||||
func markDowner(args ...interface{}) template.HTML {
|
||||
s := blackfriday.MarkdownCommon([]byte(fmt.Sprintf("%s", args...)))
|
||||
return template.HTML(s)
|
||||
return template.HTML(bluemonday.UGCPolicy().Sanitize(string(s)))
|
||||
}
|
||||
|
||||
19
core/http/routes/elevenlabs.go
Normal file
19
core/http/routes/elevenlabs.go
Normal file
@@ -0,0 +1,19 @@
|
||||
package routes
|
||||
|
||||
import (
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
"github.com/go-skynet/LocalAI/core/http/endpoints/elevenlabs"
|
||||
"github.com/go-skynet/LocalAI/pkg/model"
|
||||
"github.com/gofiber/fiber/v2"
|
||||
)
|
||||
|
||||
func RegisterElevenLabsRoutes(app *fiber.App,
|
||||
cl *config.BackendConfigLoader,
|
||||
ml *model.ModelLoader,
|
||||
appConfig *config.ApplicationConfig,
|
||||
auth func(*fiber.Ctx) error) {
|
||||
|
||||
// Elevenlabs
|
||||
app.Post("/v1/text-to-speech/:voice-id", auth, elevenlabs.TTSEndpoint(cl, ml, appConfig))
|
||||
|
||||
}
|
||||
19
core/http/routes/jina.go
Normal file
19
core/http/routes/jina.go
Normal file
@@ -0,0 +1,19 @@
|
||||
package routes
|
||||
|
||||
import (
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
"github.com/go-skynet/LocalAI/core/http/endpoints/jina"
|
||||
|
||||
"github.com/go-skynet/LocalAI/pkg/model"
|
||||
"github.com/gofiber/fiber/v2"
|
||||
)
|
||||
|
||||
func RegisterJINARoutes(app *fiber.App,
|
||||
cl *config.BackendConfigLoader,
|
||||
ml *model.ModelLoader,
|
||||
appConfig *config.ApplicationConfig,
|
||||
auth func(*fiber.Ctx) error) {
|
||||
|
||||
// POST endpoint to mimic the reranking
|
||||
app.Post("/v1/rerank", jina.JINARerankEndpoint(cl, ml, appConfig))
|
||||
}
|
||||
65
core/http/routes/localai.go
Normal file
65
core/http/routes/localai.go
Normal file
@@ -0,0 +1,65 @@
|
||||
package routes
|
||||
|
||||
import (
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
"github.com/go-skynet/LocalAI/core/http/endpoints/localai"
|
||||
"github.com/go-skynet/LocalAI/core/services"
|
||||
"github.com/go-skynet/LocalAI/internal"
|
||||
"github.com/go-skynet/LocalAI/pkg/model"
|
||||
"github.com/gofiber/fiber/v2"
|
||||
"github.com/gofiber/swagger"
|
||||
)
|
||||
|
||||
func RegisterLocalAIRoutes(app *fiber.App,
|
||||
cl *config.BackendConfigLoader,
|
||||
ml *model.ModelLoader,
|
||||
appConfig *config.ApplicationConfig,
|
||||
galleryService *services.GalleryService,
|
||||
auth func(*fiber.Ctx) error) {
|
||||
|
||||
app.Get("/swagger/*", swagger.HandlerDefault) // default
|
||||
|
||||
// LocalAI API endpoints
|
||||
|
||||
modelGalleryEndpointService := localai.CreateModelGalleryEndpointService(appConfig.Galleries, appConfig.ModelPath, galleryService)
|
||||
app.Post("/models/apply", auth, modelGalleryEndpointService.ApplyModelGalleryEndpoint())
|
||||
app.Post("/models/delete/:name", auth, modelGalleryEndpointService.DeleteModelGalleryEndpoint())
|
||||
|
||||
app.Get("/models/available", auth, modelGalleryEndpointService.ListModelFromGalleryEndpoint())
|
||||
app.Get("/models/galleries", auth, modelGalleryEndpointService.ListModelGalleriesEndpoint())
|
||||
app.Post("/models/galleries", auth, modelGalleryEndpointService.AddModelGalleryEndpoint())
|
||||
app.Delete("/models/galleries", auth, modelGalleryEndpointService.RemoveModelGalleryEndpoint())
|
||||
app.Get("/models/jobs/:uuid", auth, modelGalleryEndpointService.GetOpStatusEndpoint())
|
||||
app.Get("/models/jobs", auth, modelGalleryEndpointService.GetAllStatusEndpoint())
|
||||
|
||||
app.Post("/tts", auth, localai.TTSEndpoint(cl, ml, appConfig))
|
||||
|
||||
// Stores
|
||||
sl := model.NewModelLoader("")
|
||||
app.Post("/stores/set", auth, localai.StoresSetEndpoint(sl, appConfig))
|
||||
app.Post("/stores/delete", auth, localai.StoresDeleteEndpoint(sl, appConfig))
|
||||
app.Post("/stores/get", auth, localai.StoresGetEndpoint(sl, appConfig))
|
||||
app.Post("/stores/find", auth, localai.StoresFindEndpoint(sl, appConfig))
|
||||
|
||||
// Kubernetes health checks
|
||||
ok := func(c *fiber.Ctx) error {
|
||||
return c.SendStatus(200)
|
||||
}
|
||||
|
||||
app.Get("/healthz", ok)
|
||||
app.Get("/readyz", ok)
|
||||
|
||||
app.Get("/metrics", auth, localai.LocalAIMetricsEndpoint())
|
||||
|
||||
// Experimental Backend Statistics Module
|
||||
backendMonitorService := services.NewBackendMonitorService(ml, cl, appConfig) // Split out for now
|
||||
app.Get("/backend/monitor", auth, localai.BackendMonitorEndpoint(backendMonitorService))
|
||||
app.Post("/backend/shutdown", auth, localai.BackendShutdownEndpoint(backendMonitorService))
|
||||
|
||||
app.Get("/version", auth, func(c *fiber.Ctx) error {
|
||||
return c.JSON(struct {
|
||||
Version string `json:"version"`
|
||||
}{Version: internal.PrintableVersion()})
|
||||
})
|
||||
|
||||
}
|
||||
88
core/http/routes/openai.go
Normal file
88
core/http/routes/openai.go
Normal file
@@ -0,0 +1,88 @@
|
||||
package routes
|
||||
|
||||
import (
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
"github.com/go-skynet/LocalAI/core/http/endpoints/localai"
|
||||
"github.com/go-skynet/LocalAI/core/http/endpoints/openai"
|
||||
"github.com/go-skynet/LocalAI/core/services"
|
||||
"github.com/go-skynet/LocalAI/pkg/model"
|
||||
"github.com/gofiber/fiber/v2"
|
||||
)
|
||||
|
||||
func RegisterOpenAIRoutes(app *fiber.App,
|
||||
cl *config.BackendConfigLoader,
|
||||
ml *model.ModelLoader,
|
||||
appConfig *config.ApplicationConfig,
|
||||
auth func(*fiber.Ctx) error) {
|
||||
// openAI compatible API endpoint
|
||||
|
||||
// chat
|
||||
app.Post("/v1/chat/completions", auth, openai.ChatEndpoint(cl, ml, appConfig))
|
||||
app.Post("/chat/completions", auth, openai.ChatEndpoint(cl, ml, appConfig))
|
||||
|
||||
// edit
|
||||
app.Post("/v1/edits", auth, openai.EditEndpoint(cl, ml, appConfig))
|
||||
app.Post("/edits", auth, openai.EditEndpoint(cl, ml, appConfig))
|
||||
|
||||
// assistant
|
||||
app.Get("/v1/assistants", auth, openai.ListAssistantsEndpoint(cl, ml, appConfig))
|
||||
app.Get("/assistants", auth, openai.ListAssistantsEndpoint(cl, ml, appConfig))
|
||||
app.Post("/v1/assistants", auth, openai.CreateAssistantEndpoint(cl, ml, appConfig))
|
||||
app.Post("/assistants", auth, openai.CreateAssistantEndpoint(cl, ml, appConfig))
|
||||
app.Delete("/v1/assistants/:assistant_id", auth, openai.DeleteAssistantEndpoint(cl, ml, appConfig))
|
||||
app.Delete("/assistants/:assistant_id", auth, openai.DeleteAssistantEndpoint(cl, ml, appConfig))
|
||||
app.Get("/v1/assistants/:assistant_id", auth, openai.GetAssistantEndpoint(cl, ml, appConfig))
|
||||
app.Get("/assistants/:assistant_id", auth, openai.GetAssistantEndpoint(cl, ml, appConfig))
|
||||
app.Post("/v1/assistants/:assistant_id", auth, openai.ModifyAssistantEndpoint(cl, ml, appConfig))
|
||||
app.Post("/assistants/:assistant_id", auth, openai.ModifyAssistantEndpoint(cl, ml, appConfig))
|
||||
app.Get("/v1/assistants/:assistant_id/files", auth, openai.ListAssistantFilesEndpoint(cl, ml, appConfig))
|
||||
app.Get("/assistants/:assistant_id/files", auth, openai.ListAssistantFilesEndpoint(cl, ml, appConfig))
|
||||
app.Post("/v1/assistants/:assistant_id/files", auth, openai.CreateAssistantFileEndpoint(cl, ml, appConfig))
|
||||
app.Post("/assistants/:assistant_id/files", auth, openai.CreateAssistantFileEndpoint(cl, ml, appConfig))
|
||||
app.Delete("/v1/assistants/:assistant_id/files/:file_id", auth, openai.DeleteAssistantFileEndpoint(cl, ml, appConfig))
|
||||
app.Delete("/assistants/:assistant_id/files/:file_id", auth, openai.DeleteAssistantFileEndpoint(cl, ml, appConfig))
|
||||
app.Get("/v1/assistants/:assistant_id/files/:file_id", auth, openai.GetAssistantFileEndpoint(cl, ml, appConfig))
|
||||
app.Get("/assistants/:assistant_id/files/:file_id", auth, openai.GetAssistantFileEndpoint(cl, ml, appConfig))
|
||||
|
||||
// files
|
||||
app.Post("/v1/files", auth, openai.UploadFilesEndpoint(cl, appConfig))
|
||||
app.Post("/files", auth, openai.UploadFilesEndpoint(cl, appConfig))
|
||||
app.Get("/v1/files", auth, openai.ListFilesEndpoint(cl, appConfig))
|
||||
app.Get("/files", auth, openai.ListFilesEndpoint(cl, appConfig))
|
||||
app.Get("/v1/files/:file_id", auth, openai.GetFilesEndpoint(cl, appConfig))
|
||||
app.Get("/files/:file_id", auth, openai.GetFilesEndpoint(cl, appConfig))
|
||||
app.Delete("/v1/files/:file_id", auth, openai.DeleteFilesEndpoint(cl, appConfig))
|
||||
app.Delete("/files/:file_id", auth, openai.DeleteFilesEndpoint(cl, appConfig))
|
||||
app.Get("/v1/files/:file_id/content", auth, openai.GetFilesContentsEndpoint(cl, appConfig))
|
||||
app.Get("/files/:file_id/content", auth, openai.GetFilesContentsEndpoint(cl, appConfig))
|
||||
|
||||
// completion
|
||||
app.Post("/v1/completions", auth, openai.CompletionEndpoint(cl, ml, appConfig))
|
||||
app.Post("/completions", auth, openai.CompletionEndpoint(cl, ml, appConfig))
|
||||
app.Post("/v1/engines/:model/completions", auth, openai.CompletionEndpoint(cl, ml, appConfig))
|
||||
|
||||
// embeddings
|
||||
app.Post("/v1/embeddings", auth, openai.EmbeddingsEndpoint(cl, ml, appConfig))
|
||||
app.Post("/embeddings", auth, openai.EmbeddingsEndpoint(cl, ml, appConfig))
|
||||
app.Post("/v1/engines/:model/embeddings", auth, openai.EmbeddingsEndpoint(cl, ml, appConfig))
|
||||
|
||||
// audio
|
||||
app.Post("/v1/audio/transcriptions", auth, openai.TranscriptEndpoint(cl, ml, appConfig))
|
||||
app.Post("/v1/audio/speech", auth, localai.TTSEndpoint(cl, ml, appConfig))
|
||||
|
||||
// images
|
||||
app.Post("/v1/images/generations", auth, openai.ImageEndpoint(cl, ml, appConfig))
|
||||
|
||||
if appConfig.ImageDir != "" {
|
||||
app.Static("/generated-images", appConfig.ImageDir)
|
||||
}
|
||||
|
||||
if appConfig.AudioDir != "" {
|
||||
app.Static("/generated-audio", appConfig.AudioDir)
|
||||
}
|
||||
|
||||
// models
|
||||
tmpLMS := services.NewListModelsService(ml, cl, appConfig) // TODO: once createApplication() is fully in use, reference the central instance.
|
||||
app.Get("/v1/models", auth, openai.ListModelsEndpoint(tmpLMS))
|
||||
app.Get("/models", auth, openai.ListModelsEndpoint(tmpLMS))
|
||||
}
|
||||
336
core/http/routes/ui.go
Normal file
336
core/http/routes/ui.go
Normal file
@@ -0,0 +1,336 @@
|
||||
package routes
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"html/template"
|
||||
"sort"
|
||||
"strings"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
"github.com/go-skynet/LocalAI/core/http/elements"
|
||||
"github.com/go-skynet/LocalAI/core/http/endpoints/localai"
|
||||
"github.com/go-skynet/LocalAI/core/services"
|
||||
"github.com/go-skynet/LocalAI/internal"
|
||||
"github.com/go-skynet/LocalAI/pkg/gallery"
|
||||
"github.com/go-skynet/LocalAI/pkg/model"
|
||||
"github.com/go-skynet/LocalAI/pkg/xsync"
|
||||
"github.com/rs/zerolog/log"
|
||||
|
||||
"github.com/gofiber/fiber/v2"
|
||||
"github.com/google/uuid"
|
||||
)
|
||||
|
||||
func RegisterUIRoutes(app *fiber.App,
|
||||
cl *config.BackendConfigLoader,
|
||||
ml *model.ModelLoader,
|
||||
appConfig *config.ApplicationConfig,
|
||||
galleryService *services.GalleryService,
|
||||
auth func(*fiber.Ctx) error) {
|
||||
|
||||
// keeps the state of models that are being installed from the UI
|
||||
var processingModels = xsync.NewSyncedMap[string, string]()
|
||||
|
||||
// modelStatus returns the current status of the models being processed (installation or deletion)
|
||||
// it is called asynchonously from the UI
|
||||
modelStatus := func() (map[string]string, map[string]string) {
|
||||
processingModelsData := processingModels.Map()
|
||||
|
||||
taskTypes := map[string]string{}
|
||||
|
||||
for k, v := range processingModelsData {
|
||||
status := galleryService.GetStatus(v)
|
||||
taskTypes[k] = "Installation"
|
||||
if status != nil && status.Deletion {
|
||||
taskTypes[k] = "Deletion"
|
||||
} else if status == nil {
|
||||
taskTypes[k] = "Waiting"
|
||||
}
|
||||
}
|
||||
|
||||
return processingModelsData, taskTypes
|
||||
}
|
||||
|
||||
app.Get("/", auth, localai.WelcomeEndpoint(appConfig, cl, ml, modelStatus))
|
||||
|
||||
// Show the Models page (all models)
|
||||
app.Get("/browse", auth, func(c *fiber.Ctx) error {
|
||||
term := c.Query("term")
|
||||
|
||||
models, _ := gallery.AvailableGalleryModels(appConfig.Galleries, appConfig.ModelPath)
|
||||
|
||||
// Get all available tags
|
||||
allTags := map[string]struct{}{}
|
||||
tags := []string{}
|
||||
for _, m := range models {
|
||||
for _, t := range m.Tags {
|
||||
allTags[t] = struct{}{}
|
||||
}
|
||||
}
|
||||
for t := range allTags {
|
||||
tags = append(tags, t)
|
||||
}
|
||||
sort.Strings(tags)
|
||||
|
||||
if term != "" {
|
||||
models = gallery.GalleryModels(models).Search(term)
|
||||
}
|
||||
|
||||
// Get model statuses
|
||||
processingModelsData, taskTypes := modelStatus()
|
||||
|
||||
summary := fiber.Map{
|
||||
"Title": "LocalAI - Models",
|
||||
"Version": internal.PrintableVersion(),
|
||||
"Models": template.HTML(elements.ListModels(models, processingModels, galleryService)),
|
||||
"Repositories": appConfig.Galleries,
|
||||
"AllTags": tags,
|
||||
"ProcessingModels": processingModelsData,
|
||||
"TaskTypes": taskTypes,
|
||||
// "ApplicationConfig": appConfig,
|
||||
}
|
||||
|
||||
// Render index
|
||||
return c.Render("views/models", summary)
|
||||
})
|
||||
|
||||
// Show the models, filtered from the user input
|
||||
// https://htmx.org/examples/active-search/
|
||||
app.Post("/browse/search/models", auth, func(c *fiber.Ctx) error {
|
||||
form := struct {
|
||||
Search string `form:"search"`
|
||||
}{}
|
||||
if err := c.BodyParser(&form); err != nil {
|
||||
return c.Status(fiber.StatusBadRequest).SendString(err.Error())
|
||||
}
|
||||
|
||||
models, _ := gallery.AvailableGalleryModels(appConfig.Galleries, appConfig.ModelPath)
|
||||
|
||||
return c.SendString(elements.ListModels(gallery.GalleryModels(models).Search(form.Search), processingModels, galleryService))
|
||||
})
|
||||
|
||||
/*
|
||||
|
||||
Install routes
|
||||
|
||||
*/
|
||||
|
||||
// This route is used when the "Install" button is pressed, we submit here a new job to the gallery service
|
||||
// https://htmx.org/examples/progress-bar/
|
||||
app.Post("/browse/install/model/:id", auth, func(c *fiber.Ctx) error {
|
||||
galleryID := strings.Clone(c.Params("id")) // note: strings.Clone is required for multiple requests!
|
||||
log.Debug().Msgf("UI job submitted to install : %+v\n", galleryID)
|
||||
|
||||
id, err := uuid.NewUUID()
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
uid := id.String()
|
||||
|
||||
processingModels.Set(galleryID, uid)
|
||||
|
||||
op := gallery.GalleryOp{
|
||||
Id: uid,
|
||||
GalleryModelName: galleryID,
|
||||
Galleries: appConfig.Galleries,
|
||||
}
|
||||
go func() {
|
||||
galleryService.C <- op
|
||||
}()
|
||||
|
||||
return c.SendString(elements.StartProgressBar(uid, "0", "Installation"))
|
||||
})
|
||||
|
||||
// This route is used when the "Install" button is pressed, we submit here a new job to the gallery service
|
||||
// https://htmx.org/examples/progress-bar/
|
||||
app.Post("/browse/delete/model/:id", auth, func(c *fiber.Ctx) error {
|
||||
galleryID := strings.Clone(c.Params("id")) // note: strings.Clone is required for multiple requests!
|
||||
log.Debug().Msgf("UI job submitted to delete : %+v\n", galleryID)
|
||||
var galleryName = galleryID
|
||||
if strings.Contains(galleryID, "@") {
|
||||
// if the galleryID contains a @ it means that it's a model from a gallery
|
||||
// but we want to delete it from the local models which does not need
|
||||
// a repository ID
|
||||
galleryName = strings.Split(galleryID, "@")[1]
|
||||
}
|
||||
|
||||
id, err := uuid.NewUUID()
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
uid := id.String()
|
||||
|
||||
// Track the deletion job by galleryID and galleryName
|
||||
// The GalleryID contains information about the repository,
|
||||
// while the GalleryName is ONLY the name of the model
|
||||
processingModels.Set(galleryName, uid)
|
||||
processingModels.Set(galleryID, uid)
|
||||
|
||||
op := gallery.GalleryOp{
|
||||
Id: uid,
|
||||
Delete: true,
|
||||
GalleryModelName: galleryName,
|
||||
}
|
||||
go func() {
|
||||
galleryService.C <- op
|
||||
cl.RemoveBackendConfig(galleryName)
|
||||
}()
|
||||
|
||||
return c.SendString(elements.StartProgressBar(uid, "0", "Deletion"))
|
||||
})
|
||||
|
||||
// Display the job current progress status
|
||||
// If the job is done, we trigger the /browse/job/:uid route
|
||||
// https://htmx.org/examples/progress-bar/
|
||||
app.Get("/browse/job/progress/:uid", auth, func(c *fiber.Ctx) error {
|
||||
jobUID := strings.Clone(c.Params("uid")) // note: strings.Clone is required for multiple requests!
|
||||
|
||||
status := galleryService.GetStatus(jobUID)
|
||||
if status == nil {
|
||||
//fmt.Errorf("could not find any status for ID")
|
||||
return c.SendString(elements.ProgressBar("0"))
|
||||
}
|
||||
|
||||
if status.Progress == 100 {
|
||||
c.Set("HX-Trigger", "done") // this triggers /browse/job/:uid (which is when the job is done)
|
||||
return c.SendString(elements.ProgressBar("100"))
|
||||
}
|
||||
if status.Error != nil {
|
||||
return c.SendString(elements.ErrorProgress(status.Error.Error(), status.GalleryModelName))
|
||||
}
|
||||
|
||||
return c.SendString(elements.ProgressBar(fmt.Sprint(status.Progress)))
|
||||
})
|
||||
|
||||
// this route is hit when the job is done, and we display the
|
||||
// final state (for now just displays "Installation completed")
|
||||
app.Get("/browse/job/:uid", auth, func(c *fiber.Ctx) error {
|
||||
jobUID := strings.Clone(c.Params("uid")) // note: strings.Clone is required for multiple requests!
|
||||
|
||||
status := galleryService.GetStatus(jobUID)
|
||||
|
||||
galleryID := ""
|
||||
for _, k := range processingModels.Keys() {
|
||||
if processingModels.Get(k) == jobUID {
|
||||
galleryID = k
|
||||
processingModels.Delete(k)
|
||||
}
|
||||
}
|
||||
if galleryID == "" {
|
||||
log.Debug().Msgf("no processing model found for job : %+v\n", jobUID)
|
||||
}
|
||||
|
||||
log.Debug().Msgf("JOB finished : %+v\n", status)
|
||||
showDelete := true
|
||||
displayText := "Installation completed"
|
||||
if status.Deletion {
|
||||
showDelete = false
|
||||
displayText = "Deletion completed"
|
||||
}
|
||||
|
||||
return c.SendString(elements.DoneProgress(galleryID, displayText, showDelete))
|
||||
})
|
||||
|
||||
// Show the Chat page
|
||||
app.Get("/chat/:model", auth, func(c *fiber.Ctx) error {
|
||||
backendConfigs := cl.GetAllBackendConfigs()
|
||||
|
||||
summary := fiber.Map{
|
||||
"Title": "LocalAI - Chat with " + c.Params("model"),
|
||||
"ModelsConfig": backendConfigs,
|
||||
"Model": c.Params("model"),
|
||||
"Version": internal.PrintableVersion(),
|
||||
}
|
||||
|
||||
// Render index
|
||||
return c.Render("views/chat", summary)
|
||||
})
|
||||
app.Get("/chat/", auth, func(c *fiber.Ctx) error {
|
||||
|
||||
backendConfigs := cl.GetAllBackendConfigs()
|
||||
|
||||
if len(backendConfigs) == 0 {
|
||||
// If no model is available redirect to the index which suggests how to install models
|
||||
return c.Redirect("/")
|
||||
}
|
||||
|
||||
summary := fiber.Map{
|
||||
"Title": "LocalAI - Chat with " + backendConfigs[0].Name,
|
||||
"ModelsConfig": backendConfigs,
|
||||
"Model": backendConfigs[0].Name,
|
||||
"Version": internal.PrintableVersion(),
|
||||
}
|
||||
|
||||
// Render index
|
||||
return c.Render("views/chat", summary)
|
||||
})
|
||||
|
||||
app.Get("/text2image/:model", auth, func(c *fiber.Ctx) error {
|
||||
backendConfigs := cl.GetAllBackendConfigs()
|
||||
|
||||
summary := fiber.Map{
|
||||
"Title": "LocalAI - Generate images with " + c.Params("model"),
|
||||
"ModelsConfig": backendConfigs,
|
||||
"Model": c.Params("model"),
|
||||
"Version": internal.PrintableVersion(),
|
||||
}
|
||||
|
||||
// Render index
|
||||
return c.Render("views/text2image", summary)
|
||||
})
|
||||
|
||||
app.Get("/text2image/", auth, func(c *fiber.Ctx) error {
|
||||
|
||||
backendConfigs := cl.GetAllBackendConfigs()
|
||||
|
||||
if len(backendConfigs) == 0 {
|
||||
// If no model is available redirect to the index which suggests how to install models
|
||||
return c.Redirect("/")
|
||||
}
|
||||
|
||||
summary := fiber.Map{
|
||||
"Title": "LocalAI - Generate images with " + backendConfigs[0].Name,
|
||||
"ModelsConfig": backendConfigs,
|
||||
"Model": backendConfigs[0].Name,
|
||||
"Version": internal.PrintableVersion(),
|
||||
}
|
||||
|
||||
// Render index
|
||||
return c.Render("views/text2image", summary)
|
||||
})
|
||||
|
||||
app.Get("/tts/:model", auth, func(c *fiber.Ctx) error {
|
||||
backendConfigs := cl.GetAllBackendConfigs()
|
||||
|
||||
summary := fiber.Map{
|
||||
"Title": "LocalAI - Generate images with " + c.Params("model"),
|
||||
"ModelsConfig": backendConfigs,
|
||||
"Model": c.Params("model"),
|
||||
"Version": internal.PrintableVersion(),
|
||||
}
|
||||
|
||||
// Render index
|
||||
return c.Render("views/tts", summary)
|
||||
})
|
||||
|
||||
app.Get("/tts/", auth, func(c *fiber.Ctx) error {
|
||||
|
||||
backendConfigs := cl.GetAllBackendConfigs()
|
||||
|
||||
if len(backendConfigs) == 0 {
|
||||
// If no model is available redirect to the index which suggests how to install models
|
||||
return c.Redirect("/")
|
||||
}
|
||||
|
||||
summary := fiber.Map{
|
||||
"Title": "LocalAI - Generate audio with " + backendConfigs[0].Name,
|
||||
"ModelsConfig": backendConfigs,
|
||||
"Model": backendConfigs[0].Name,
|
||||
"Version": internal.PrintableVersion(),
|
||||
}
|
||||
|
||||
// Render index
|
||||
return c.Render("views/tts", summary)
|
||||
})
|
||||
}
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user