mirror of
https://github.com/mudler/LocalAI.git
synced 2026-02-03 03:02:38 -05:00
Compare commits
72 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
7fec26f5d3 | ||
|
|
a9a875ee2b | ||
|
|
db5ac715f3 | ||
|
|
0b330d90ad | ||
|
|
63601fabd1 | ||
|
|
1370b4482f | ||
|
|
b062f3142b | ||
|
|
c37175271f | ||
|
|
e8eab66c30 | ||
|
|
a73a497143 | ||
|
|
6aea515e1d | ||
|
|
dfc2b7e02a | ||
|
|
040290971c | ||
|
|
553bad585e | ||
|
|
f76b612506 | ||
|
|
c4e94c88d7 | ||
|
|
a9cd6b3ca3 | ||
|
|
e786576b95 | ||
|
|
d426571789 | ||
|
|
a896a2b5ad | ||
|
|
8273cd5c04 | ||
|
|
16f1281d38 | ||
|
|
8042e9a2d6 | ||
|
|
624092cb99 | ||
|
|
a422a883ac | ||
|
|
7858a97254 | ||
|
|
5556aa46dd | ||
|
|
eb4257f946 | ||
|
|
ae30bd346d | ||
|
|
93d8977ba2 | ||
|
|
f43aeeb4a1 | ||
|
|
c17dcc5e9d | ||
|
|
4a932483e1 | ||
|
|
b710147b95 | ||
|
|
ba70363330 | ||
|
|
9fb581739b | ||
|
|
48aca246e3 | ||
|
|
12eee097b7 | ||
|
|
b33d015b8c | ||
|
|
b7c0a108f5 | ||
|
|
f694a89c28 | ||
|
|
be682e6c2f | ||
|
|
bf85a31f9e | ||
|
|
d69048e0b0 | ||
|
|
827f189163 | ||
|
|
a23deb5ec7 | ||
|
|
999676b106 | ||
|
|
c61b023bc8 | ||
|
|
650a22aef1 | ||
|
|
17b1724f7c | ||
|
|
e860e62036 | ||
|
|
1f45ff8cd6 | ||
|
|
abee34f60a | ||
|
|
dbc70dc13c | ||
|
|
55142065eb | ||
|
|
d83d2293b5 | ||
|
|
467ce5a7aa | ||
|
|
4c9c5ce4ce | ||
|
|
6394d85ca2 | ||
|
|
2b6a5aef5f | ||
|
|
d191ecb9fe | ||
|
|
e14e1b0a77 | ||
|
|
bffaf2aa42 | ||
|
|
d98d1fe55e | ||
|
|
0785cb6b0b | ||
|
|
f88d5ad829 | ||
|
|
c7119a2882 | ||
|
|
8324402b49 | ||
|
|
9ba30c9c44 | ||
|
|
973042bb4c | ||
|
|
3ed2888646 | ||
|
|
593ff6308c |
1
.dockerignore
Normal file
1
.dockerignore
Normal file
@@ -0,0 +1 @@
|
||||
models
|
||||
67
.github/workflows/image.yml
vendored
67
.github/workflows/image.yml
vendored
@@ -2,6 +2,7 @@
|
||||
name: 'build container images'
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
push:
|
||||
branches:
|
||||
- master
|
||||
@@ -12,68 +13,42 @@ jobs:
|
||||
docker:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Release space from worker
|
||||
run: |
|
||||
echo "Listing top largest packages"
|
||||
pkgs=$(dpkg-query -Wf '${Installed-Size}\t${Package}\t${Status}\n' | awk '$NF == "installed"{print $1 "\t" $2}' | sort -nr)
|
||||
head -n 30 <<< "${pkgs}"
|
||||
echo
|
||||
df -h
|
||||
echo
|
||||
sudo apt-get remove -y '^llvm-.*|^libllvm.*' || true
|
||||
sudo apt-get remove --auto-remove android-sdk-platform-tools || true
|
||||
sudo apt-get purge --auto-remove android-sdk-platform-tools || true
|
||||
sudo rm -rf /usr/local/lib/android
|
||||
sudo apt-get remove -y '^dotnet-.*|^aspnetcore-.*' || true
|
||||
sudo rm -rf /usr/share/dotnet
|
||||
sudo apt-get remove -y '^mono-.*' || true
|
||||
sudo apt-get remove -y '^ghc-.*' || true
|
||||
sudo apt-get remove -y '.*jdk.*|.*jre.*' || true
|
||||
sudo apt-get remove -y 'php.*' || true
|
||||
sudo apt-get remove -y hhvm powershell firefox monodoc-manual msbuild || true
|
||||
sudo apt-get remove -y '^google-.*' || true
|
||||
sudo apt-get remove -y azure-cli || true
|
||||
sudo apt-get remove -y '^mongo.*-.*|^postgresql-.*|^mysql-.*|^mssql-.*' || true
|
||||
sudo apt-get remove -y '^gfortran-.*' || true
|
||||
sudo apt-get autoremove -y
|
||||
sudo apt-get clean
|
||||
echo
|
||||
echo "Listing top largest packages"
|
||||
pkgs=$(dpkg-query -Wf '${Installed-Size}\t${Package}\t${Status}\n' | awk '$NF == "installed"{print $1 "\t" $2}' | sort -nr)
|
||||
head -n 30 <<< "${pkgs}"
|
||||
echo
|
||||
sudo rm -rfv build || true
|
||||
df -h
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v3
|
||||
|
||||
- name: Prepare
|
||||
id: prep
|
||||
run: |
|
||||
DOCKER_IMAGE=quay.io/go-skynet/llama-cli
|
||||
VERSION=latest
|
||||
VERSION=master
|
||||
SHORTREF=${GITHUB_SHA::8}
|
||||
|
||||
# If this is git tag, use the tag name as a docker tag
|
||||
if [[ $GITHUB_REF == refs/tags/* ]]; then
|
||||
VERSION=${GITHUB_REF#refs/tags/}
|
||||
fi
|
||||
TAGS="${DOCKER_IMAGE}:${VERSION},${DOCKER_IMAGE}:${SHORTREF}"
|
||||
|
||||
# If the VERSION looks like a version number, assume that
|
||||
# this is the most recent version of the image and also
|
||||
# tag it 'latest'.
|
||||
if [[ $VERSION =~ ^[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}$ ]]; then
|
||||
if [[ $VERSION =~ ^v[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}$ ]]; then
|
||||
TAGS="$TAGS,${DOCKER_IMAGE}:latest"
|
||||
fi
|
||||
|
||||
# Set output parameters.
|
||||
echo ::set-output name=tags::${TAGS}
|
||||
echo ::set-output name=docker_image::${DOCKER_IMAGE}
|
||||
echo ::set-output name=image::${DOCKER_IMAGE}:${VERSION}
|
||||
|
||||
- name: Set up QEMU
|
||||
uses: docker/setup-qemu-action@master
|
||||
with:
|
||||
platforms: all
|
||||
|
||||
- name: Set up Docker Buildx
|
||||
id: buildx
|
||||
uses: docker/setup-buildx-action@master
|
||||
|
||||
- name: Login to DockerHub
|
||||
if: github.event_name != 'pull_request'
|
||||
uses: docker/login-action@v2
|
||||
@@ -81,7 +56,23 @@ jobs:
|
||||
registry: quay.io
|
||||
username: ${{ secrets.QUAY_USERNAME }}
|
||||
password: ${{ secrets.QUAY_PASSWORD }}
|
||||
- uses: earthly/actions/setup-earthly@v1
|
||||
- name: Build
|
||||
run: |
|
||||
earthly --push +image-all --IMAGE=${{ steps.prep.outputs.image }}
|
||||
if: github.event_name != 'pull_request'
|
||||
uses: docker/build-push-action@v4
|
||||
with:
|
||||
builder: ${{ steps.buildx.outputs.name }}
|
||||
context: .
|
||||
file: ./Dockerfile
|
||||
platforms: linux/amd64,linux/arm64
|
||||
push: true
|
||||
tags: ${{ steps.prep.outputs.tags }}
|
||||
- name: Build PRs
|
||||
if: github.event_name == 'pull_request'
|
||||
uses: docker/build-push-action@v4
|
||||
with:
|
||||
builder: ${{ steps.buildx.outputs.name }}
|
||||
context: .
|
||||
file: ./Dockerfile
|
||||
platforms: linux/amd64
|
||||
push: false
|
||||
tags: ${{ steps.prep.outputs.tags }}
|
||||
10
.gitignore
vendored
Normal file
10
.gitignore
vendored
Normal file
@@ -0,0 +1,10 @@
|
||||
# go-llama build artifacts
|
||||
go-llama
|
||||
go-gpt4all-j
|
||||
|
||||
# llama-cli build binary
|
||||
llama-cli
|
||||
|
||||
# Ignore models
|
||||
models/*.bin
|
||||
models/ggml-*
|
||||
16
.vscode/launch.json
vendored
Normal file
16
.vscode/launch.json
vendored
Normal file
@@ -0,0 +1,16 @@
|
||||
{
|
||||
"version": "0.2.0",
|
||||
"configurations": [
|
||||
|
||||
{
|
||||
"name": "Launch Go",
|
||||
"type": "go",
|
||||
"request": "launch",
|
||||
"mode": "debug",
|
||||
"program": "${workspaceFolder}/main.go",
|
||||
"args": [
|
||||
"api"
|
||||
]
|
||||
}
|
||||
]
|
||||
}
|
||||
12
Dockerfile
Normal file
12
Dockerfile
Normal file
@@ -0,0 +1,12 @@
|
||||
ARG GO_VERSION=1.20
|
||||
ARG DEBIAN_VERSION=11
|
||||
FROM golang:$GO_VERSION as builder
|
||||
WORKDIR /build
|
||||
RUN apt-get update && apt-get install -y cmake
|
||||
COPY . .
|
||||
ARG BUILD_TYPE=
|
||||
RUN make build${BUILD_TYPE}
|
||||
|
||||
FROM debian:$DEBIAN_VERSION
|
||||
COPY --from=builder /build/llama-cli /usr/bin/llama-cli
|
||||
ENTRYPOINT [ "/usr/bin/llama-cli" ]
|
||||
39
Earthfile
39
Earthfile
@@ -1,40 +1,5 @@
|
||||
VERSION 0.7
|
||||
|
||||
go-deps:
|
||||
ARG GO_VERSION=1.20
|
||||
FROM golang:$GO_VERSION
|
||||
WORKDIR /build
|
||||
COPY go.mod ./
|
||||
COPY go.sum ./
|
||||
RUN go mod download
|
||||
RUN apt-get update
|
||||
SAVE ARTIFACT go.mod AS LOCAL go.mod
|
||||
SAVE ARTIFACT go.sum AS LOCAL go.sum
|
||||
|
||||
alpaca-model:
|
||||
FROM alpine
|
||||
# This is the alpaca.cpp model https://github.com/antimatter15/alpaca.cpp
|
||||
ARG MODEL_URL=https://ipfs.io/ipfs/QmQ1bf2BTnYxq73MFJWu1B7bQ2UD6qG7D7YDCxhTndVkPC
|
||||
RUN wget -O model.bin -c https://ipfs.io/ipfs/QmQ1bf2BTnYxq73MFJWu1B7bQ2UD6qG7D7YDCxhTndVkPC
|
||||
SAVE ARTIFACT model.bin AS LOCAL model.bin
|
||||
|
||||
build:
|
||||
FROM +go-deps
|
||||
WORKDIR /build
|
||||
RUN git clone https://github.com/go-skynet/llama
|
||||
RUN cd llama && make libllama.a
|
||||
COPY . .
|
||||
RUN C_INCLUDE_PATH=/build/llama LIBRARY_PATH=/build/llama go build -o llama-cli ./
|
||||
SAVE ARTIFACT llama-cli AS LOCAL llama-cli
|
||||
|
||||
image:
|
||||
FROM +go-deps
|
||||
ARG IMAGE=alpaca-cli
|
||||
COPY +alpaca-model/model.bin /model.bin
|
||||
COPY +build/llama-cli /llama-cli
|
||||
ENV MODEL_PATH=/model.bin
|
||||
ENTRYPOINT [ "/llama-cli" ]
|
||||
SAVE IMAGE --push $IMAGE
|
||||
|
||||
image-all:
|
||||
BUILD --platform=linux/amd64 --platform=linux/arm64 +image
|
||||
FROM DOCKERFILE -f Dockerfile .
|
||||
SAVE ARTIFACT /usr/bin/llama-cli AS LOCAL llama-cli
|
||||
|
||||
79
Makefile
Normal file
79
Makefile
Normal file
@@ -0,0 +1,79 @@
|
||||
GOCMD=go
|
||||
GOTEST=$(GOCMD) test
|
||||
GOVET=$(GOCMD) vet
|
||||
BINARY_NAME=llama-cli
|
||||
GOLLAMA_VERSION?=llama.cpp-5ecff35
|
||||
|
||||
GREEN := $(shell tput -Txterm setaf 2)
|
||||
YELLOW := $(shell tput -Txterm setaf 3)
|
||||
WHITE := $(shell tput -Txterm setaf 7)
|
||||
CYAN := $(shell tput -Txterm setaf 6)
|
||||
RESET := $(shell tput -Txterm sgr0)
|
||||
|
||||
.PHONY: all test build vendor
|
||||
|
||||
all: help
|
||||
|
||||
## Build:
|
||||
|
||||
build: prepare ## Build the project
|
||||
C_INCLUDE_PATH=$(shell pwd)/go-llama.cpp:$(shell pwd)/go-gpt4all-j LIBRARY_PATH=$(shell pwd)/go-llama.cpp:$(shell pwd)/go-gpt4all-j $(GOCMD) build -o $(BINARY_NAME) ./
|
||||
|
||||
buildgeneric: prepare-generic ## Build the project
|
||||
C_INCLUDE_PATH=$(shell pwd)/go-llama.cpp:$(shell pwd)/go-gpt4all-j LIBRARY_PATH=$(shell pwd)/go-llama.cpp:$(shell pwd)/go-gpt4all-j $(GOCMD) build -o $(BINARY_NAME) ./
|
||||
|
||||
go-gpt4all-j:
|
||||
git clone --recurse-submodules https://github.com/go-skynet/go-gpt4all-j.cpp go-gpt4all-j
|
||||
# This is hackish, but needed as both go-llama and go-gpt4allj have their own version of ggml..
|
||||
@find ./go-gpt4all-j -type f -name "*.c" -exec sed -i'' -e 's/ggml_/ggml_gptj_/g' {} +
|
||||
@find ./go-gpt4all-j -type f -name "*.cpp" -exec sed -i'' -e 's/ggml_/ggml_gptj_/g' {} +
|
||||
@find ./go-gpt4all-j -type f -name "*.h" -exec sed -i'' -e 's/ggml_/ggml_gptj_/g' {} +
|
||||
@find ./go-gpt4all-j -type f -name "*.cpp" -exec sed -i'' -e 's/gpt_/gptj_/g' {} +
|
||||
@find ./go-gpt4all-j -type f -name "*.h" -exec sed -i'' -e 's/gpt_/gptj_/g' {} +
|
||||
|
||||
go-gpt4all-j/libgptj.a: go-gpt4all-j
|
||||
$(MAKE) -C go-gpt4all-j libgptj.a
|
||||
|
||||
go-gpt4all-j/libgptj.a-generic: go-gpt4all-j
|
||||
$(MAKE) -C go-gpt4all-j generic-libgptj.a
|
||||
|
||||
go-llama:
|
||||
git clone -b $(GOLLAMA_VERSION) --recurse-submodules https://github.com/go-skynet/go-llama.cpp go-llama
|
||||
$(MAKE) -C go-llama libbinding.a
|
||||
|
||||
go-llama-generic:
|
||||
git clone -b $(GOLLAMA_VERSION) --recurse-submodules https://github.com/go-skynet/go-llama.cpp go-llama
|
||||
$(MAKE) -C go-llama generic-libbinding.a
|
||||
|
||||
prepare: go-llama go-gpt4all-j/libgptj.a
|
||||
$(GOCMD) mod edit -replace github.com/go-skynet/go-llama.cpp=$(shell pwd)/go-llama
|
||||
$(GOCMD) mod edit -replace github.com/go-skynet/go-gpt4all-j.cpp=$(shell pwd)/go-gpt4all-j
|
||||
|
||||
prepare-generic: go-llama-generic go-gpt4all-j/libgptj.a-generic
|
||||
$(GOCMD) mod edit -replace github.com/go-skynet/go-llama.cpp=$(shell pwd)/go-llama
|
||||
$(GOCMD) mod edit -replace github.com/go-skynet/go-gpt4all-j.cpp=$(shell pwd)/go-gpt4all-j
|
||||
|
||||
clean: ## Remove build related file
|
||||
rm -fr ./go-llama
|
||||
rm -rf ./go-gpt4all-j
|
||||
rm -rf $(BINARY_NAME)
|
||||
|
||||
## Run:
|
||||
run: prepare
|
||||
$(GOCMD) run ./ api
|
||||
|
||||
## Test:
|
||||
test: ## Run the tests of the project
|
||||
$(GOTEST) -v -race ./... $(OUTPUT_OPTIONS)
|
||||
|
||||
## Help:
|
||||
help: ## Show this help.
|
||||
@echo ''
|
||||
@echo 'Usage:'
|
||||
@echo ' ${YELLOW}make${RESET} ${GREEN}<target>${RESET}'
|
||||
@echo ''
|
||||
@echo 'Targets:'
|
||||
@awk 'BEGIN {FS = ":.*?## "} { \
|
||||
if (/^[a-zA-Z_-]+:.*?##.*$$/) {printf " ${YELLOW}%-20s${GREEN}%s${RESET}\n", $$1, $$2} \
|
||||
else if (/^## .*$$/) {printf " ${CYAN}%s${RESET}\n", substr($$1,4)} \
|
||||
}' $(MAKEFILE_LIST)
|
||||
223
README.md
223
README.md
@@ -1,14 +1,82 @@
|
||||
## :camel: llama-cli
|
||||
|
||||
|
||||
llama-cli is a straightforward golang CLI interface for [llama.cpp](https://github.com/ggerganov/llama.cpp), providing a simple API and a command line interface that allows text generation using a GPT-based model like llama directly from the terminal.
|
||||
llama-cli is a straightforward, drop-in replacement API compatible with OpenAI for local CPU inferencing, based on [llama.cpp](https://github.com/ggerganov/llama.cpp), [gpt4all](https://github.com/nomic-ai/gpt4all) and [ggml](https://github.com/ggerganov/ggml), including support GPT4ALL-J which is Apache 2.0 Licensed and can be used for commercial purposes.
|
||||
|
||||
- OpenAI compatible API
|
||||
- Supports multiple-models
|
||||
- Once loaded the first time, it keep models loaded in memory for faster inference
|
||||
- Provides a simple command line interface that allows text generation directly from the terminal
|
||||
- Support for prompt templates
|
||||
- Doesn't shell-out, but uses C bindings for a faster inference and better performance. Uses [go-llama.cpp](https://github.com/go-skynet/go-llama.cpp) and [go-gpt4all-j.cpp](https://github.com/go-skynet/go-gpt4all-j.cpp).
|
||||
|
||||
## Model compatibility
|
||||
|
||||
It is compatible with the models supported by [llama.cpp](https://github.com/ggerganov/llama.cpp) and also [GPT4ALL-J](https://github.com/nomic-ai/gpt4all).
|
||||
|
||||
Note: You might need to convert older models to the new format, see [here](https://github.com/ggerganov/llama.cpp#using-gpt4all) for instance to run `gpt4all`.
|
||||
|
||||
## Usage
|
||||
|
||||
The easiest way to run llama-cli is by using `docker-compose`:
|
||||
|
||||
```bash
|
||||
|
||||
git clone https://github.com/go-skynet/llama-cli
|
||||
cd llama-cli
|
||||
|
||||
# copy your models to models/
|
||||
cp your-model.bin models/
|
||||
|
||||
# (optional) Edit the .env file to set things like context size and threads
|
||||
# vim .env
|
||||
|
||||
# start with docker-compose
|
||||
docker compose up -d --build
|
||||
|
||||
# Now API is accessible at localhost:8080
|
||||
curl http://localhost:8080/v1/models
|
||||
# {"object":"list","data":[{"id":"your-model.bin","object":"model"}]}
|
||||
|
||||
curl http://localhost:8080/v1/completions -H "Content-Type: application/json" -d '{
|
||||
"model": "your-model.bin",
|
||||
"prompt": "A long time ago in a galaxy far, far away",
|
||||
"temperature": 0.7
|
||||
}'
|
||||
```
|
||||
|
||||
Note: The API doesn't inject a default prompt for talking to the model, while the CLI does. You have to use a prompt similar to what's described in the standford-alpaca docs: https://github.com/tatsu-lab/stanford_alpaca#data-release.
|
||||
|
||||
You can use a default template for every model present in your model path, by creating a corresponding file with the `.tmpl` suffix next to your model. For instance, if the model is called `foo.bin`, you can create a sibiling file, `foo.bin.tmpl` which will be used as a default prompt, for instance this can be used with alpaca:
|
||||
|
||||
```
|
||||
Below is an instruction that describes a task. Write a response that appropriately completes the request.
|
||||
|
||||
### Instruction:
|
||||
{{.Input}}
|
||||
|
||||
### Response:
|
||||
```
|
||||
|
||||
See the [prompt-templates](https://github.com/go-skynet/llama-cli/tree/master/prompt-templates) directory in this repository for templates for most popular models.
|
||||
|
||||
## Container images
|
||||
|
||||
The `llama-cli` [container images](https://quay.io/repository/go-skynet/llama-cli?tab=tags&tag=latest) come preloaded with the [alpaca.cpp](https://github.com/antimatter15/alpaca.cpp) model, enabling you to start making predictions immediately! To begin, run:
|
||||
`llama-cli` comes by default as a container image. You can check out all the available images with corresponding tags [here](https://quay.io/repository/go-skynet/llama-cli?tab=tags&tag=latest)
|
||||
|
||||
To begin, run:
|
||||
|
||||
```
|
||||
docker run -ti --rm quay.io/go-skynet/llama-cli:latest --instruction "What's an alpaca?" --topk 10000
|
||||
docker run -ti --rm quay.io/go-skynet/llama-cli:latest --instruction "What's an alpaca?" --topk 10000 --model ...
|
||||
```
|
||||
|
||||
Where `--model` is the path of the model you want to use.
|
||||
|
||||
Note: you need to mount a volume to the docker container in order to load a model, for instance:
|
||||
|
||||
```
|
||||
# assuming your model is in /path/to/your/models/foo.bin
|
||||
docker run -v /path/to/your/models:/models -ti --rm quay.io/go-skynet/llama-cli:latest --instruction "What's an alpaca?" --topk 10000 --model /models/foo.bin
|
||||
```
|
||||
|
||||
You will receive a response like the following:
|
||||
@@ -19,7 +87,7 @@ An alpaca is a member of the South American Camelid family, which includes the l
|
||||
|
||||
## Basic usage
|
||||
|
||||
To use llama-cli, specify a pre-trained GPT-based model, an input text, and an instruction for text generation. llama-cli takes the following arguments:
|
||||
To use llama-cli, specify a pre-trained GPT-based model, an input text, and an instruction for text generation. llama-cli takes the following arguments when running from the CLI:
|
||||
|
||||
```
|
||||
llama-cli --model <model_path> --instruction <instruction> [--input <input>] [--template <template_path>] [--tokens <num_tokens>] [--threads <num_threads>] [--temperature <temperature>] [--topp <top_p>] [--topk <top_k>]
|
||||
@@ -30,13 +98,13 @@ llama-cli --model <model_path> --instruction <instruction> [--input <input>] [--
|
||||
| template | TEMPLATE | | A file containing a template for output formatting (optional). |
|
||||
| instruction | INSTRUCTION | | Input prompt text or instruction. "-" for STDIN. |
|
||||
| input | INPUT | - | Path to text or "-" for STDIN. |
|
||||
| model | MODEL_PATH | | The path to the pre-trained GPT-based model. |
|
||||
| model | MODEL | | The path to the pre-trained GPT-based model. |
|
||||
| tokens | TOKENS | 128 | The maximum number of tokens to generate. |
|
||||
| threads | THREADS | NumCPU() | The number of threads to use for text generation. |
|
||||
| temperature | TEMPERATURE | 0.95 | Sampling temperature for model output. |
|
||||
| temperature | TEMPERATURE | 0.95 | Sampling temperature for model output. ( values between `0.1` and `1.0` ) |
|
||||
| top_p | TOP_P | 0.85 | The cumulative probability for top-p sampling. |
|
||||
| top_k | TOP_K | 20 | The number of top-k tokens to consider for text generation. |
|
||||
|
||||
| context-size | CONTEXT_SIZE | 512 | Default token context size. |
|
||||
|
||||
Here's an example of using `llama-cli`:
|
||||
|
||||
@@ -46,22 +114,15 @@ llama-cli --model ~/ggml-alpaca-7b-q4.bin --instruction "What's an alpaca?"
|
||||
|
||||
This will generate text based on the given model and instruction.
|
||||
|
||||
## Advanced usage
|
||||
## API
|
||||
|
||||
`llama-cli` also provides an API for running text generation as a service. You can start the API server using the following command:
|
||||
`llama-cli` also provides an API for running text generation as a service. The models once loaded the first time will be kept in memory.
|
||||
|
||||
Example of starting the API with `docker`:
|
||||
|
||||
```bash
|
||||
docker run -p 8080:8080 -ti --rm quay.io/go-skynet/llama-cli:latest api --models-path /path/to/models --context-size 700 --threads 4
|
||||
```
|
||||
llama-cli api --model <model_path> [--address <address>] [--threads <num_threads>]
|
||||
```
|
||||
|
||||
The API takes takes the following arguments:
|
||||
|
||||
| Parameter | Environment Variable | Default Value | Description |
|
||||
| ------------ | -------------------- | ------------- | -------------------------------------- |
|
||||
| model | MODEL_PATH | | The path to the pre-trained GPT-based model. |
|
||||
| threads | THREADS | CPU cores | The number of threads to use for text generation. |
|
||||
| address | ADDRESS | :8080 | The address and port to listen on. |
|
||||
|
||||
|
||||
And you'll see:
|
||||
```
|
||||
@@ -75,28 +136,128 @@ And you'll see:
|
||||
└───────────────────────────────────────────────────┘
|
||||
```
|
||||
|
||||
Once the server is running, you can make requests to it using HTTP. For example, to generate text based on an instruction, you can send a POST request to the `/predict` endpoint with the instruction as the request body:
|
||||
Note: Models have to end up with `.bin`.
|
||||
|
||||
You can control the API server options with command line arguments:
|
||||
|
||||
```
|
||||
curl --location --request POST 'http://localhost:8080/predict' --header 'Content-Type: application/json' --data-raw '{
|
||||
"text": "What is an alpaca?",
|
||||
"topP": 0.8,
|
||||
"topK": 50,
|
||||
"temperature": 0.7,
|
||||
"tokens": 100
|
||||
}'
|
||||
llama-cli api --models-path <model_path> [--address <address>] [--threads <num_threads>]
|
||||
```
|
||||
|
||||
Example of starting the API with `docker`:
|
||||
The API takes takes the following:
|
||||
|
||||
| Parameter | Environment Variable | Default Value | Description |
|
||||
| ------------ | -------------------- | ------------- | -------------------------------------- |
|
||||
| models-path | MODELS_PATH | | The path where you have models (ending with `.bin`). |
|
||||
| threads | THREADS | CPU cores | The number of threads to use for text generation. |
|
||||
| address | ADDRESS | :8080 | The address and port to listen on. |
|
||||
| context-size | CONTEXT_SIZE | 512 | Default token context size. |
|
||||
|
||||
Once the server is running, you can start making requests to it using HTTP, using the OpenAI API.
|
||||
|
||||
### Supported OpenAI API endpoints
|
||||
|
||||
You can check out the [OpenAI API reference](https://platform.openai.com/docs/api-reference/chat/create).
|
||||
|
||||
Following the list of endpoints/parameters supported.
|
||||
|
||||
#### Chat completions
|
||||
|
||||
For example, to generate a chat completion, you can send a POST request to the `/v1/chat/completions` endpoint with the instruction as the request body:
|
||||
|
||||
```
|
||||
curl http://localhost:8080/v1/chat/completions -H "Content-Type: application/json" -d '{
|
||||
"model": "ggml-koala-7b-model-q4_0-r2.bin",
|
||||
"messages": [{"role": "user", "content": "Say this is a test!"}],
|
||||
"temperature": 0.7
|
||||
}'
|
||||
```
|
||||
|
||||
Available additional parameters: `top_p`, `top_k`, `max_tokens`
|
||||
|
||||
#### Completions
|
||||
|
||||
For example, to generate a comletion, you can send a POST request to the `/v1/completions` endpoint with the instruction as the request body:
|
||||
```
|
||||
curl http://localhost:8080/v1/completions -H "Content-Type: application/json" -d '{
|
||||
"model": "ggml-koala-7b-model-q4_0-r2.bin",
|
||||
"prompt": "A long time ago in a galaxy far, far away",
|
||||
"temperature": 0.7
|
||||
}'
|
||||
```
|
||||
|
||||
Available additional parameters: `top_p`, `top_k`, `max_tokens`
|
||||
|
||||
#### List models
|
||||
|
||||
You can list all the models available with:
|
||||
|
||||
```
|
||||
curl http://localhost:8080/v1/models
|
||||
```
|
||||
|
||||
## Using other models
|
||||
|
||||
gpt4all (https://github.com/nomic-ai/gpt4all) works as well, however the original model needs to be converted (same applies for old alpaca models, too):
|
||||
|
||||
```bash
|
||||
docker run -ti --rm quay.io/go-skynet/llama-cli:latest api
|
||||
wget -O tokenizer.model https://huggingface.co/decapoda-research/llama-30b-hf/resolve/main/tokenizer.model
|
||||
mkdir models
|
||||
cp gpt4all.. models/
|
||||
git clone https://gist.github.com/eiz/828bddec6162a023114ce19146cb2b82
|
||||
pip install sentencepiece
|
||||
python 828bddec6162a023114ce19146cb2b82/gistfile1.txt models tokenizer.model
|
||||
# There will be a new model with the ".tmp" extension, you have to use that one!
|
||||
```
|
||||
|
||||
### Windows compatibility
|
||||
|
||||
It should work, however you need to make sure you give enough resources to the container. See https://github.com/go-skynet/llama-cli/issues/2
|
||||
|
||||
### Kubernetes
|
||||
|
||||
You can run the API directly in Kubernetes:
|
||||
|
||||
```bash
|
||||
kubectl apply -f https://raw.githubusercontent.com/go-skynet/llama-cli/master/kubernetes/deployment.yaml
|
||||
```
|
||||
```
|
||||
|
||||
### Build locally
|
||||
|
||||
Pre-built images might fit well for most of the modern hardware, however you can and might need to build the images manually.
|
||||
|
||||
In order to build the `llama-cli` container image locally you can use `docker`:
|
||||
|
||||
```
|
||||
# build the image as "alpaca-image"
|
||||
docker build -t llama-cli .
|
||||
docker run llama-cli --instruction "What's an alpaca?"
|
||||
```
|
||||
|
||||
Or build the binary with:
|
||||
|
||||
```
|
||||
# build the image as "alpaca-image"
|
||||
docker run --privileged -v /var/run/docker.sock:/var/run/docker.sock --rm -t -v "$(pwd)":/workspace -v earthly-tmp:/tmp/earthly:rw earthly/earthly:v0.7.2 +build
|
||||
# run the binary
|
||||
./llama-cli --instruction "What's an alpaca?"
|
||||
```
|
||||
|
||||
## Short-term roadmap
|
||||
|
||||
- [x] Mimic OpenAI API (https://github.com/go-skynet/llama-cli/issues/10)
|
||||
- Binary releases (https://github.com/go-skynet/llama-cli/issues/6)
|
||||
- Upstream our golang bindings to llama.cpp (https://github.com/ggerganov/llama.cpp/issues/351)
|
||||
- [x] Multi-model support
|
||||
- Have a webUI!
|
||||
|
||||
## License
|
||||
|
||||
MIT
|
||||
|
||||
## Acknowledgements
|
||||
|
||||
- [llama.cpp](https://github.com/ggerganov/llama.cpp)
|
||||
- https://github.com/tatsu-lab/stanford_alpaca
|
||||
- https://github.com/cornelk/llama-go for the initial ideas
|
||||
- https://github.com/antimatter15/alpaca.cpp for the light model version (this is compatible and tested only with that checkpoint model!)
|
||||
|
||||
83
api.go
83
api.go
@@ -1,83 +0,0 @@
|
||||
package main
|
||||
|
||||
import (
|
||||
"strconv"
|
||||
|
||||
llama "github.com/go-skynet/llama/go"
|
||||
"github.com/gofiber/fiber/v2"
|
||||
)
|
||||
|
||||
func api(model, listenAddr string, threads int) error {
|
||||
app := fiber.New()
|
||||
|
||||
l, err := llama.New(model)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
/*
|
||||
curl --location --request POST 'http://localhost:8080/predict' --header 'Content-Type: application/json' --data-raw '{
|
||||
"text": "What is an alpaca?",
|
||||
"topP": 0.8,
|
||||
"topK": 50,
|
||||
"temperature": 0.7,
|
||||
"tokens": 100
|
||||
}'
|
||||
*/
|
||||
|
||||
// Endpoint to generate the prediction
|
||||
app.Post("/predict", func(c *fiber.Ctx) error {
|
||||
// Get input data from the request body
|
||||
input := new(struct {
|
||||
Text string `json:"text"`
|
||||
})
|
||||
if err := c.BodyParser(input); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
// Set the parameters for the language model prediction
|
||||
topP, err := strconv.ParseFloat(c.Query("topP", "0.9"), 64) // Default value of topP is 0.9
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
topK, err := strconv.Atoi(c.Query("topK", "40")) // Default value of topK is 40
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
temperature, err := strconv.ParseFloat(c.Query("temperature", "0.5"), 64) // Default value of temperature is 0.5
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
tokens, err := strconv.Atoi(c.Query("tokens", "128")) // Default value of tokens is 128
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
// Generate the prediction using the language model
|
||||
prediction, err := l.Predict(
|
||||
input.Text,
|
||||
llama.SetTemperature(temperature),
|
||||
llama.SetTopP(topP),
|
||||
llama.SetTopK(topK),
|
||||
llama.SetTokens(tokens),
|
||||
llama.SetThreads(threads),
|
||||
)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
// Return the prediction in the response body
|
||||
return c.JSON(struct {
|
||||
Prediction string `json:"prediction"`
|
||||
}{
|
||||
Prediction: prediction,
|
||||
})
|
||||
})
|
||||
|
||||
// Start the server
|
||||
app.Listen(":8080")
|
||||
return nil
|
||||
}
|
||||
290
api/api.go
Normal file
290
api/api.go
Normal file
@@ -0,0 +1,290 @@
|
||||
package api
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"strings"
|
||||
"sync"
|
||||
|
||||
model "github.com/go-skynet/llama-cli/pkg/model"
|
||||
|
||||
gptj "github.com/go-skynet/go-gpt4all-j.cpp"
|
||||
llama "github.com/go-skynet/go-llama.cpp"
|
||||
"github.com/gofiber/fiber/v2"
|
||||
"github.com/gofiber/fiber/v2/middleware/cors"
|
||||
"github.com/gofiber/fiber/v2/middleware/recover"
|
||||
)
|
||||
|
||||
type OpenAIResponse struct {
|
||||
Created int `json:"created,omitempty"`
|
||||
Object string `json:"chat.completion,omitempty"`
|
||||
ID string `json:"id,omitempty"`
|
||||
Model string `json:"model,omitempty"`
|
||||
Choices []Choice `json:"choices,omitempty"`
|
||||
}
|
||||
|
||||
type Choice struct {
|
||||
Index int `json:"index,omitempty"`
|
||||
FinishReason string `json:"finish_reason,omitempty"`
|
||||
Message *Message `json:"message,omitempty"`
|
||||
Text string `json:"text,omitempty"`
|
||||
}
|
||||
|
||||
type Message struct {
|
||||
Role string `json:"role,omitempty"`
|
||||
Content string `json:"content,omitempty"`
|
||||
}
|
||||
|
||||
type OpenAIModel struct {
|
||||
ID string `json:"id"`
|
||||
Object string `json:"object"`
|
||||
}
|
||||
|
||||
type OpenAIRequest struct {
|
||||
Model string `json:"model"`
|
||||
|
||||
// Prompt is read only by completion API calls
|
||||
Prompt string `json:"prompt"`
|
||||
|
||||
// Messages is read only by chat/completion API calls
|
||||
Messages []Message `json:"messages"`
|
||||
|
||||
Echo bool `json:"echo"`
|
||||
// Common options between all the API calls
|
||||
TopP float64 `json:"top_p"`
|
||||
TopK int `json:"top_k"`
|
||||
Temperature float64 `json:"temperature"`
|
||||
Maxtokens int `json:"max_tokens"`
|
||||
|
||||
N int `json:"n"`
|
||||
|
||||
// Custom parameters - not present in the OpenAI API
|
||||
Batch int `json:"batch"`
|
||||
F16 bool `json:"f16kv"`
|
||||
IgnoreEOS bool `json:"ignore_eos"`
|
||||
|
||||
Seed int `json:"seed"`
|
||||
}
|
||||
|
||||
// https://platform.openai.com/docs/api-reference/completions
|
||||
func openAIEndpoint(chat bool, loader *model.ModelLoader, threads, ctx int, f16 bool, defaultMutex *sync.Mutex, mutexMap *sync.Mutex, mutexes map[string]*sync.Mutex) func(c *fiber.Ctx) error {
|
||||
return func(c *fiber.Ctx) error {
|
||||
var err error
|
||||
var model *llama.LLama
|
||||
var gptModel *gptj.GPTJ
|
||||
|
||||
input := new(OpenAIRequest)
|
||||
// Get input data from the request body
|
||||
if err := c.BodyParser(input); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if input.Model == "" {
|
||||
return fmt.Errorf("no model specified")
|
||||
} else {
|
||||
// Try to load the model with both
|
||||
var llamaerr error
|
||||
llamaOpts := []llama.ModelOption{}
|
||||
if ctx != 0 {
|
||||
llamaOpts = append(llamaOpts, llama.SetContext(ctx))
|
||||
}
|
||||
if f16 {
|
||||
llamaOpts = append(llamaOpts, llama.EnableF16Memory)
|
||||
}
|
||||
|
||||
model, llamaerr = loader.LoadLLaMAModel(input.Model, llamaOpts...)
|
||||
if llamaerr != nil {
|
||||
gptModel, err = loader.LoadGPTJModel(input.Model)
|
||||
if err != nil {
|
||||
return fmt.Errorf("llama: %s gpt: %s", llamaerr.Error(), err.Error()) // llama failed first, so we want to catch both errors
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// This is still needed, see: https://github.com/ggerganov/llama.cpp/discussions/784
|
||||
if input.Model != "" {
|
||||
mutexMap.Lock()
|
||||
l, ok := mutexes[input.Model]
|
||||
if !ok {
|
||||
m := &sync.Mutex{}
|
||||
mutexes[input.Model] = m
|
||||
l = m
|
||||
}
|
||||
mutexMap.Unlock()
|
||||
l.Lock()
|
||||
defer l.Unlock()
|
||||
} else {
|
||||
defaultMutex.Lock()
|
||||
defer defaultMutex.Unlock()
|
||||
}
|
||||
|
||||
// Set the parameters for the language model prediction
|
||||
topP := input.TopP
|
||||
if topP == 0 {
|
||||
topP = 0.7
|
||||
}
|
||||
topK := input.TopK
|
||||
if topK == 0 {
|
||||
topK = 80
|
||||
}
|
||||
|
||||
temperature := input.Temperature
|
||||
if temperature == 0 {
|
||||
temperature = 0.9
|
||||
}
|
||||
|
||||
tokens := input.Maxtokens
|
||||
if tokens == 0 {
|
||||
tokens = 512
|
||||
}
|
||||
|
||||
predInput := input.Prompt
|
||||
if chat {
|
||||
mess := []string{}
|
||||
for _, i := range input.Messages {
|
||||
mess = append(mess, i.Content)
|
||||
}
|
||||
|
||||
predInput = strings.Join(mess, "\n")
|
||||
}
|
||||
|
||||
// A model can have a "file.bin.tmpl" file associated with a prompt template prefix
|
||||
templatedInput, err := loader.TemplatePrefix(input.Model, struct {
|
||||
Input string
|
||||
}{Input: predInput})
|
||||
if err == nil {
|
||||
predInput = templatedInput
|
||||
}
|
||||
|
||||
result := []Choice{}
|
||||
|
||||
n := input.N
|
||||
|
||||
if input.N == 0 {
|
||||
n = 1
|
||||
}
|
||||
|
||||
var predFunc func() (string, error)
|
||||
switch {
|
||||
case gptModel != nil:
|
||||
predFunc = func() (string, error) {
|
||||
// Generate the prediction using the language model
|
||||
predictOptions := []gptj.PredictOption{
|
||||
gptj.SetTemperature(temperature),
|
||||
gptj.SetTopP(topP),
|
||||
gptj.SetTopK(topK),
|
||||
gptj.SetTokens(tokens),
|
||||
gptj.SetThreads(threads),
|
||||
}
|
||||
|
||||
if input.Batch != 0 {
|
||||
predictOptions = append(predictOptions, gptj.SetBatch(input.Batch))
|
||||
}
|
||||
|
||||
if input.Seed != 0 {
|
||||
predictOptions = append(predictOptions, gptj.SetSeed(input.Seed))
|
||||
}
|
||||
|
||||
return gptModel.Predict(
|
||||
predInput,
|
||||
predictOptions...,
|
||||
)
|
||||
}
|
||||
case model != nil:
|
||||
predFunc = func() (string, error) {
|
||||
// Generate the prediction using the language model
|
||||
predictOptions := []llama.PredictOption{
|
||||
llama.SetTemperature(temperature),
|
||||
llama.SetTopP(topP),
|
||||
llama.SetTopK(topK),
|
||||
llama.SetTokens(tokens),
|
||||
llama.SetThreads(threads),
|
||||
}
|
||||
|
||||
if input.Batch != 0 {
|
||||
predictOptions = append(predictOptions, llama.SetBatch(input.Batch))
|
||||
}
|
||||
|
||||
if input.F16 {
|
||||
predictOptions = append(predictOptions, llama.EnableF16KV)
|
||||
}
|
||||
|
||||
if input.IgnoreEOS {
|
||||
predictOptions = append(predictOptions, llama.IgnoreEOS)
|
||||
}
|
||||
|
||||
if input.Seed != 0 {
|
||||
predictOptions = append(predictOptions, llama.SetSeed(input.Seed))
|
||||
}
|
||||
|
||||
return model.Predict(
|
||||
predInput,
|
||||
predictOptions...,
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
for i := 0; i < n; i++ {
|
||||
var prediction string
|
||||
|
||||
prediction, err := predFunc()
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if input.Echo {
|
||||
prediction = predInput + prediction
|
||||
}
|
||||
|
||||
if chat {
|
||||
result = append(result, Choice{Message: &Message{Role: "assistant", Content: prediction}})
|
||||
} else {
|
||||
result = append(result, Choice{Text: prediction})
|
||||
}
|
||||
}
|
||||
|
||||
// Return the prediction in the response body
|
||||
return c.JSON(OpenAIResponse{
|
||||
Model: input.Model,
|
||||
Choices: result,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func Start(loader *model.ModelLoader, listenAddr string, threads, ctxSize int, f16 bool) error {
|
||||
app := fiber.New()
|
||||
|
||||
// Default middleware config
|
||||
app.Use(recover.New())
|
||||
app.Use(cors.New())
|
||||
|
||||
// This is still needed, see: https://github.com/ggerganov/llama.cpp/discussions/784
|
||||
var mutex = &sync.Mutex{}
|
||||
mu := map[string]*sync.Mutex{}
|
||||
var mumutex = &sync.Mutex{}
|
||||
|
||||
// openAI compatible API endpoint
|
||||
app.Post("/v1/chat/completions", openAIEndpoint(true, loader, threads, ctxSize, f16, mutex, mumutex, mu))
|
||||
app.Post("/v1/completions", openAIEndpoint(false, loader, threads, ctxSize, f16, mutex, mumutex, mu))
|
||||
app.Get("/v1/models", func(c *fiber.Ctx) error {
|
||||
models, err := loader.ListModels()
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
dataModels := []OpenAIModel{}
|
||||
for _, m := range models {
|
||||
dataModels = append(dataModels, OpenAIModel{ID: m, Object: "model"})
|
||||
}
|
||||
return c.JSON(struct {
|
||||
Object string `json:"object"`
|
||||
Data []OpenAIModel `json:"data"`
|
||||
}{
|
||||
Object: "list",
|
||||
Data: dataModels,
|
||||
})
|
||||
})
|
||||
|
||||
// Start the server
|
||||
app.Listen(listenAddr)
|
||||
return nil
|
||||
}
|
||||
30
docker-compose.yaml
Normal file
30
docker-compose.yaml
Normal file
@@ -0,0 +1,30 @@
|
||||
version: '3.6'
|
||||
|
||||
services:
|
||||
|
||||
# chatgpt:
|
||||
# image: ghcr.io/mckaywrigley/chatbot-ui:main
|
||||
# # platform: linux/amd64
|
||||
# ports:
|
||||
# - 3000:3000
|
||||
# environment:
|
||||
# - 'OPENAI_API_KEY=sk-000000000000000'
|
||||
# - 'OPENAI_API_HOST=http://api:8080'
|
||||
|
||||
api:
|
||||
image: quay.io/go-skynet/llama-cli:latest
|
||||
build:
|
||||
context: .
|
||||
dockerfile: Dockerfile
|
||||
# args:
|
||||
# BUILD_TYPE: generic # Uncomment to build CPU generic code that works on most HW
|
||||
ports:
|
||||
- 8080:8080
|
||||
environment:
|
||||
- MODELS_PATH=$MODELS_PATH
|
||||
- CONTEXT_SIZE=$CONTEXT_SIZE
|
||||
- THREADS=$THREADS
|
||||
volumes:
|
||||
- ./models:/models:cached
|
||||
command: api
|
||||
|
||||
5
go.mod
5
go.mod
@@ -3,7 +3,7 @@ module github.com/go-skynet/llama-cli
|
||||
go 1.19
|
||||
|
||||
require (
|
||||
github.com/go-skynet/llama v0.0.0-20230319223917-0076188dd548
|
||||
github.com/go-skynet/go-llama.cpp v0.0.0-20230415213228-bac222030640
|
||||
github.com/gofiber/fiber/v2 v2.42.0
|
||||
github.com/urfave/cli/v2 v2.25.0
|
||||
)
|
||||
@@ -11,6 +11,7 @@ require (
|
||||
require (
|
||||
github.com/andybalholm/brotli v1.0.4 // indirect
|
||||
github.com/cpuguy83/go-md2man/v2 v2.0.2 // indirect
|
||||
github.com/go-skynet/go-gpt4all-j.cpp v0.0.0-20230419091210-303cf2a59a94 // indirect
|
||||
github.com/google/uuid v1.3.0 // indirect
|
||||
github.com/klauspost/compress v1.15.9 // indirect
|
||||
github.com/mattn/go-colorable v0.1.13 // indirect
|
||||
@@ -26,5 +27,5 @@ require (
|
||||
github.com/valyala/fasthttp v1.44.0 // indirect
|
||||
github.com/valyala/tcplisten v1.0.0 // indirect
|
||||
github.com/xrash/smetrics v0.0.0-20201216005158-039620a65673 // indirect
|
||||
golang.org/x/sys v0.0.0-20220811171246-fbc7d0a398ab // indirect
|
||||
golang.org/x/sys v0.6.0 // indirect
|
||||
)
|
||||
|
||||
19
go.sum
19
go.sum
@@ -2,10 +2,16 @@ github.com/andybalholm/brotli v1.0.4 h1:V7DdXeJtZscaqfNuAdSRuRFzuiKlHSC/Zh3zl9qY
|
||||
github.com/andybalholm/brotli v1.0.4/go.mod h1:fO7iG3H7G2nSZ7m0zPUDn85XEX2GTukHGRSepvi9Eig=
|
||||
github.com/cpuguy83/go-md2man/v2 v2.0.2 h1:p1EgwI/C7NhT0JmVkwCD2ZBK8j4aeHQX2pMHHBfMQ6w=
|
||||
github.com/cpuguy83/go-md2man/v2 v2.0.2/go.mod h1:tgQtvFlXSQOSOSIRvRPT7W67SCa46tRHOmNcaadrF8o=
|
||||
github.com/go-skynet/llama v0.0.0-20230319223917-0076188dd548 h1:wXcEESf+zNXidrSZoDKBoIJQDDMzUwVysLIbCkWGYvM=
|
||||
github.com/go-skynet/llama v0.0.0-20230319223917-0076188dd548/go.mod h1:ZtYsAIud4cvP9VTTI9uhdgR1uCwaO/gGKnZZ95h9i7w=
|
||||
github.com/go-logr/logr v1.2.3 h1:2DntVwHkVopvECVRSlL5PSo9eG+cAkDCuckLubN+rq0=
|
||||
github.com/go-skynet/go-gpt4all-j.cpp v0.0.0-20230419091210-303cf2a59a94 h1:rtrrMvlIq+g0/ltXjDdLeNtz0uc4wJ4Qs15GFU4ba4c=
|
||||
github.com/go-skynet/go-gpt4all-j.cpp v0.0.0-20230419091210-303cf2a59a94/go.mod h1:5VZ9XbcINI0XcHhkcX8GPK8TplFGAzu1Hrg4tNiMCtI=
|
||||
github.com/go-skynet/go-llama.cpp v0.0.0-20230415213228-bac222030640 h1:8SSVbQ3yvq7JnfLCLF4USV0PkQnnduUkaNCv/hHDa3E=
|
||||
github.com/go-skynet/go-llama.cpp v0.0.0-20230415213228-bac222030640/go.mod h1:35AKIEMY+YTKCBJIa/8GZcNGJ2J+nQk1hQiWo/OnEWw=
|
||||
github.com/go-task/slim-sprig v0.0.0-20230315185526-52ccab3ef572 h1:tfuBGBXKqDEevZMzYi5KSi8KkcZtzBcTgAUUtapy0OI=
|
||||
github.com/gofiber/fiber/v2 v2.42.0 h1:Fnp7ybWvS+sjNQsFvkhf4G8OhXswvB6Vee8hM/LyS+8=
|
||||
github.com/gofiber/fiber/v2 v2.42.0/go.mod h1:3+SGNjqMh5VQH5Vz2Wdi43zTIV16ktlFd3x3R6O1Zlc=
|
||||
github.com/google/go-cmp v0.5.9 h1:O2Tfq5qg4qc4AmwVlvv0oLiVAGB7enBSJ2x2DqQFi38=
|
||||
github.com/google/pprof v0.0.0-20210407192527-94a9f03dee38 h1:yAJXTCF9TqKcTiHJAE8dj7HMvPfh66eeA2JYW7eFpSE=
|
||||
github.com/google/uuid v1.3.0 h1:t6JiXgmwXMjEs8VusXIJk2BXHsn+wx8BZdTaoZ5fu7I=
|
||||
github.com/google/uuid v1.3.0/go.mod h1:TIyPZe4MgqvfeYDBFedMoGGpEw/LqOeaOT+nhxU+yHo=
|
||||
github.com/klauspost/compress v1.15.9 h1:wKRjX6JRtDdrE9qwa4b/Cip7ACOshUI4smpCQanqjSY=
|
||||
@@ -17,6 +23,8 @@ github.com/mattn/go-isatty v0.0.17 h1:BTarxUcIeDqL27Mc+vyvdWYSL28zpIhv3RoTdsLMPn
|
||||
github.com/mattn/go-isatty v0.0.17/go.mod h1:kYGgaQfpe5nmfYZH+SKPsOc2e4SrIfOl2e/yFXSvRLM=
|
||||
github.com/mattn/go-runewidth v0.0.14 h1:+xnbZSEeDbOIg5/mE6JF0w6n9duR1l3/WmbinWVwUuU=
|
||||
github.com/mattn/go-runewidth v0.0.14/go.mod h1:Jdepj2loyihRzMpdS35Xk/zdY8IAYHsh153qUoGf23w=
|
||||
github.com/onsi/ginkgo/v2 v2.9.2 h1:BA2GMJOtfGAfagzYtrAlufIP0lq6QERkFmHLMLPwFSU=
|
||||
github.com/onsi/gomega v1.27.6 h1:ENqfyGeS5AX/rlXDd/ETokDz93u0YufY1Pgxuy/PvWE=
|
||||
github.com/philhofer/fwd v1.1.1 h1:GdGcTjf5RNAxwS4QLsiMzJYj5KEvPJD3Abr261yRQXQ=
|
||||
github.com/philhofer/fwd v1.1.1/go.mod h1:gk3iGcWd9+svBvR0sR+KPcfE+RNWozjowpeBVG3ZVNU=
|
||||
github.com/rivo/uniseg v0.2.0 h1:S1pD9weZBuJdFmowNwbpi7BJ8TNftyUImj/0WQi72jY=
|
||||
@@ -50,6 +58,7 @@ golang.org/x/net v0.0.0-20190620200207-3b0461eec859/go.mod h1:z5CRVTTTmAJ677TzLL
|
||||
golang.org/x/net v0.0.0-20201021035429-f5854403a974/go.mod h1:sp8m0HH+o8qH0wwXwYZr8TS3Oi6o0r6Gce1SSxlDquU=
|
||||
golang.org/x/net v0.0.0-20211112202133-69e39bad7dc2/go.mod h1:9nx3DQGgdP8bBQD5qxJ1jj9UTztislL4KSBs9R2vV5Y=
|
||||
golang.org/x/net v0.0.0-20220906165146-f3363e06e74c/go.mod h1:YDH+HFinaLZZlnHAfSS6ZXJJ9M9t4Dl22yv3iI2vPwk=
|
||||
golang.org/x/net v0.8.0 h1:Zrh2ngAOFYneWTAIAPethzeaQLuHwhuBkuV6ZiRnUaQ=
|
||||
golang.org/x/sync v0.0.0-20190423024810-112230192c58/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
|
||||
golang.org/x/sync v0.0.0-20201020160332-67f06af15bc9/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
|
||||
golang.org/x/sys v0.0.0-20190215142949-d0b11bdaac8a/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
|
||||
@@ -59,17 +68,21 @@ golang.org/x/sys v0.0.0-20201119102817-f84b799fce68/go.mod h1:h1NjWce9XRLGQEsW7w
|
||||
golang.org/x/sys v0.0.0-20210423082822-04245dca01da/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
|
||||
golang.org/x/sys v0.0.0-20210615035016-665e8c7367d1/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
|
||||
golang.org/x/sys v0.0.0-20220728004956-3c1f35247d10/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
|
||||
golang.org/x/sys v0.0.0-20220811171246-fbc7d0a398ab h1:2QkjZIsXupsJbJIdSjjUOgWK3aEtzyuh2mPt3l/CkeU=
|
||||
golang.org/x/sys v0.0.0-20220811171246-fbc7d0a398ab/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
|
||||
golang.org/x/sys v0.6.0 h1:MVltZSvRTcU2ljQOhs94SXPftV6DCNnZViHeQps87pQ=
|
||||
golang.org/x/sys v0.6.0/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
|
||||
golang.org/x/term v0.0.0-20201126162022-7de9c90e9dd1/go.mod h1:bj7SfCRtBDWHUb9snDiAeCFNEtKQo2Wmx5Cou7ajbmo=
|
||||
golang.org/x/term v0.0.0-20210927222741-03fcf44c2211/go.mod h1:jbD1KX2456YbFQfuXm/mYQcufACuNUgVhRMnK/tPxf8=
|
||||
golang.org/x/text v0.3.0/go.mod h1:NqM8EUOU14njkJ3fqMW+pc6Ldnwhi/IjpwHt7yyuwOQ=
|
||||
golang.org/x/text v0.3.3/go.mod h1:5Zoc/QRtKVWzQhOtBMvqHzDpF6irO9z98xDceosuGiQ=
|
||||
golang.org/x/text v0.3.6/go.mod h1:5Zoc/QRtKVWzQhOtBMvqHzDpF6irO9z98xDceosuGiQ=
|
||||
golang.org/x/text v0.3.7/go.mod h1:u+2+/6zg+i71rQMx5EYifcz6MCKuco9NR6JIITiCfzQ=
|
||||
golang.org/x/text v0.8.0 h1:57P1ETyNKtuIjB4SRd15iJxuhj8Gc416Y78H3qgMh68=
|
||||
golang.org/x/tools v0.0.0-20180917221912-90fa682c2a6e/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ=
|
||||
golang.org/x/tools v0.0.0-20191119224855-298f0cb1881e/go.mod h1:b+2E5dAYhXwXZwtnZ6UAqBI28+e2cm9otk0dWdXHAEo=
|
||||
golang.org/x/tools v0.0.0-20201022035929-9cf592e881e9/go.mod h1:emZCQorbCU4vsT4fOWvOPXz4eW1wZW4PmDk9uLelYpA=
|
||||
golang.org/x/tools v0.7.0 h1:W4OVu8VVOaIO0yzWMNdepAulS7YfoS3Zabrm8DOXXU4=
|
||||
golang.org/x/xerrors v0.0.0-20190717185122-a985d3407aa7/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
|
||||
golang.org/x/xerrors v0.0.0-20191011141410-1b5146add898/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
|
||||
golang.org/x/xerrors v0.0.0-20200804184101-5ec99f83aff1/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
|
||||
gopkg.in/yaml.v3 v3.0.1 h1:fxVm/GzAzEWqLHuvctI91KS9hhNmmWOoWu0XTYJS7CA=
|
||||
|
||||
@@ -39,4 +39,4 @@ spec:
|
||||
ports:
|
||||
- protocol: TCP
|
||||
port: 8080
|
||||
targetPort: 8080
|
||||
targetPort: 8080
|
||||
|
||||
97
main.go
97
main.go
@@ -8,7 +8,10 @@ import (
|
||||
"runtime"
|
||||
"text/template"
|
||||
|
||||
llama "github.com/go-skynet/llama/go"
|
||||
llama "github.com/go-skynet/go-llama.cpp"
|
||||
api "github.com/go-skynet/llama-cli/api"
|
||||
model "github.com/go-skynet/llama-cli/pkg/model"
|
||||
|
||||
"github.com/urfave/cli/v2"
|
||||
)
|
||||
|
||||
@@ -46,12 +49,49 @@ func templateString(t string, in interface{}) (string, error) {
|
||||
return buf.String(), nil
|
||||
}
|
||||
|
||||
var modelFlags = []cli.Flag{
|
||||
&cli.StringFlag{
|
||||
Name: "model",
|
||||
EnvVars: []string{"MODEL"},
|
||||
},
|
||||
&cli.IntFlag{
|
||||
Name: "tokens",
|
||||
EnvVars: []string{"TOKENS"},
|
||||
Value: 128,
|
||||
},
|
||||
&cli.IntFlag{
|
||||
Name: "context-size",
|
||||
EnvVars: []string{"CONTEXT_SIZE"},
|
||||
Value: 512,
|
||||
},
|
||||
&cli.IntFlag{
|
||||
Name: "threads",
|
||||
EnvVars: []string{"THREADS"},
|
||||
Value: runtime.NumCPU(),
|
||||
},
|
||||
&cli.Float64Flag{
|
||||
Name: "temperature",
|
||||
EnvVars: []string{"TEMPERATURE"},
|
||||
Value: 0.95,
|
||||
},
|
||||
&cli.Float64Flag{
|
||||
Name: "topp",
|
||||
EnvVars: []string{"TOP_P"},
|
||||
Value: 0.85,
|
||||
},
|
||||
&cli.IntFlag{
|
||||
Name: "topk",
|
||||
EnvVars: []string{"TOP_K"},
|
||||
Value: 20,
|
||||
},
|
||||
}
|
||||
|
||||
func main() {
|
||||
app := &cli.App{
|
||||
Name: "llama-cli",
|
||||
Version: "0.1",
|
||||
Usage: "llama-cli --model ... --instruction 'What is an alpaca?'",
|
||||
Flags: []cli.Flag{
|
||||
Flags: append(modelFlags,
|
||||
&cli.StringFlag{
|
||||
Name: "template",
|
||||
EnvVars: []string{"TEMPLATE"},
|
||||
@@ -63,37 +103,7 @@ func main() {
|
||||
&cli.StringFlag{
|
||||
Name: "input",
|
||||
EnvVars: []string{"INPUT"},
|
||||
},
|
||||
&cli.StringFlag{
|
||||
Name: "model",
|
||||
EnvVars: []string{"MODEL_PATH"},
|
||||
},
|
||||
&cli.IntFlag{
|
||||
Name: "tokens",
|
||||
EnvVars: []string{"TOKENS"},
|
||||
Value: 128,
|
||||
},
|
||||
&cli.IntFlag{
|
||||
Name: "threads",
|
||||
EnvVars: []string{"THREADS"},
|
||||
Value: runtime.NumCPU(),
|
||||
},
|
||||
&cli.Float64Flag{
|
||||
Name: "temperature",
|
||||
EnvVars: []string{"TEMPERATURE"},
|
||||
Value: 0.95,
|
||||
},
|
||||
&cli.Float64Flag{
|
||||
Name: "topp",
|
||||
EnvVars: []string{"TOP_P"},
|
||||
Value: 0.85,
|
||||
},
|
||||
&cli.IntFlag{
|
||||
Name: "topk",
|
||||
EnvVars: []string{"TOP_K"},
|
||||
Value: 20,
|
||||
},
|
||||
},
|
||||
}),
|
||||
Description: `Run llama.cpp inference`,
|
||||
UsageText: `
|
||||
llama-cli --model ~/ggml-alpaca-7b-q4.bin --instruction "What's an alpaca?"
|
||||
@@ -107,25 +117,35 @@ echo "An Alpaca (Vicugna pacos) is a domesticated species of South American came
|
||||
Copyright: "go-skynet authors",
|
||||
Commands: []*cli.Command{
|
||||
{
|
||||
|
||||
Name: "api",
|
||||
Flags: []cli.Flag{
|
||||
&cli.BoolFlag{
|
||||
Name: "f16",
|
||||
EnvVars: []string{"F16"},
|
||||
},
|
||||
&cli.IntFlag{
|
||||
Name: "threads",
|
||||
EnvVars: []string{"THREADS"},
|
||||
Value: runtime.NumCPU(),
|
||||
},
|
||||
&cli.StringFlag{
|
||||
Name: "model",
|
||||
EnvVars: []string{"MODEL_PATH"},
|
||||
Name: "models-path",
|
||||
EnvVars: []string{"MODELS_PATH"},
|
||||
},
|
||||
&cli.StringFlag{
|
||||
Name: "address",
|
||||
EnvVars: []string{"ADDRESS"},
|
||||
Value: ":8080",
|
||||
},
|
||||
&cli.IntFlag{
|
||||
Name: "context-size",
|
||||
EnvVars: []string{"CONTEXT_SIZE"},
|
||||
Value: 512,
|
||||
},
|
||||
},
|
||||
Action: func(ctx *cli.Context) error {
|
||||
return api(ctx.String("model"), ctx.String("address"), ctx.Int("threads"))
|
||||
return api.Start(model.NewModelLoader(ctx.String("models-path")), ctx.String("address"), ctx.Int("threads"), ctx.Int("context-size"), ctx.Bool("f16"))
|
||||
},
|
||||
},
|
||||
},
|
||||
@@ -179,11 +199,14 @@ echo "An Alpaca (Vicugna pacos) is a domesticated species of South American came
|
||||
fmt.Println("Templating the input failed:", err.Error())
|
||||
os.Exit(1)
|
||||
}
|
||||
l, err := llama.New(ctx.String("model"))
|
||||
|
||||
opts := []llama.ModelOption{llama.SetContext(ctx.Int("context-size"))}
|
||||
l, err := llama.New(ctx.String("model"), opts...)
|
||||
if err != nil {
|
||||
fmt.Println("Loading the model failed:", err.Error())
|
||||
os.Exit(1)
|
||||
}
|
||||
|
||||
res, err := l.Predict(
|
||||
str,
|
||||
llama.SetTemperature(ctx.Float64("temperature")),
|
||||
|
||||
0
models/.keep
Normal file
0
models/.keep
Normal file
168
pkg/model/loader.go
Normal file
168
pkg/model/loader.go
Normal file
@@ -0,0 +1,168 @@
|
||||
package model
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"fmt"
|
||||
"io/ioutil"
|
||||
"os"
|
||||
"path/filepath"
|
||||
"strings"
|
||||
"sync"
|
||||
"text/template"
|
||||
|
||||
gptj "github.com/go-skynet/go-gpt4all-j.cpp"
|
||||
llama "github.com/go-skynet/go-llama.cpp"
|
||||
)
|
||||
|
||||
type ModelLoader struct {
|
||||
modelPath string
|
||||
mu sync.Mutex
|
||||
models map[string]*llama.LLama
|
||||
gptmodels map[string]*gptj.GPTJ
|
||||
promptsTemplates map[string]*template.Template
|
||||
}
|
||||
|
||||
func NewModelLoader(modelPath string) *ModelLoader {
|
||||
return &ModelLoader{modelPath: modelPath, gptmodels: make(map[string]*gptj.GPTJ), models: make(map[string]*llama.LLama), promptsTemplates: make(map[string]*template.Template)}
|
||||
}
|
||||
|
||||
func (ml *ModelLoader) ListModels() ([]string, error) {
|
||||
files, err := ioutil.ReadDir(ml.modelPath)
|
||||
if err != nil {
|
||||
return []string{}, err
|
||||
}
|
||||
|
||||
models := []string{}
|
||||
for _, file := range files {
|
||||
if strings.HasSuffix(file.Name(), ".bin") {
|
||||
models = append(models, strings.TrimRight(file.Name(), ".bin"))
|
||||
}
|
||||
}
|
||||
|
||||
return models, nil
|
||||
}
|
||||
|
||||
func (ml *ModelLoader) TemplatePrefix(modelName string, in interface{}) (string, error) {
|
||||
ml.mu.Lock()
|
||||
defer ml.mu.Unlock()
|
||||
|
||||
m, ok := ml.promptsTemplates[modelName]
|
||||
if !ok {
|
||||
// try to find a s.bin
|
||||
modelBin := fmt.Sprintf("%s.bin", modelName)
|
||||
m, ok = ml.promptsTemplates[modelBin]
|
||||
if !ok {
|
||||
return "", fmt.Errorf("no prompt template available")
|
||||
}
|
||||
}
|
||||
|
||||
var buf bytes.Buffer
|
||||
|
||||
if err := m.Execute(&buf, in); err != nil {
|
||||
return "", err
|
||||
}
|
||||
return buf.String(), nil
|
||||
}
|
||||
|
||||
func (ml *ModelLoader) loadTemplate(modelName, modelFile string) error {
|
||||
modelTemplateFile := fmt.Sprintf("%s.tmpl", modelFile)
|
||||
|
||||
// Check if the model path exists
|
||||
if _, err := os.Stat(modelTemplateFile); err != nil {
|
||||
return nil
|
||||
}
|
||||
|
||||
dat, err := os.ReadFile(modelTemplateFile)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
// Parse the template
|
||||
tmpl, err := template.New("prompt").Parse(string(dat))
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
ml.promptsTemplates[modelName] = tmpl
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
func (ml *ModelLoader) LoadGPTJModel(modelName string) (*gptj.GPTJ, error) {
|
||||
ml.mu.Lock()
|
||||
defer ml.mu.Unlock()
|
||||
|
||||
// Check if we already have a loaded model
|
||||
modelFile := filepath.Join(ml.modelPath, modelName)
|
||||
|
||||
if m, ok := ml.gptmodels[modelFile]; ok {
|
||||
return m, nil
|
||||
}
|
||||
|
||||
// Check if the model path exists
|
||||
if _, err := os.Stat(modelFile); os.IsNotExist(err) {
|
||||
// try to find a s.bin
|
||||
modelBin := fmt.Sprintf("%s.bin", modelFile)
|
||||
if _, err := os.Stat(modelBin); os.IsNotExist(err) {
|
||||
return nil, err
|
||||
} else {
|
||||
modelName = fmt.Sprintf("%s.bin", modelName)
|
||||
modelFile = modelBin
|
||||
}
|
||||
}
|
||||
|
||||
// Load the model and keep it in memory for later use
|
||||
model, err := gptj.New(modelFile)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
// If there is a prompt template, load it
|
||||
if err := ml.loadTemplate(modelName, modelFile); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
ml.gptmodels[modelFile] = model
|
||||
return model, err
|
||||
}
|
||||
|
||||
func (ml *ModelLoader) LoadLLaMAModel(modelName string, opts ...llama.ModelOption) (*llama.LLama, error) {
|
||||
ml.mu.Lock()
|
||||
defer ml.mu.Unlock()
|
||||
|
||||
// Check if we already have a loaded model
|
||||
modelFile := filepath.Join(ml.modelPath, modelName)
|
||||
if m, ok := ml.models[modelFile]; ok {
|
||||
return m, nil
|
||||
}
|
||||
// TODO: This needs refactoring, it's really bad to have it in here
|
||||
// Check if we have a GPTJ model loaded instead
|
||||
if _, ok := ml.gptmodels[modelFile]; ok {
|
||||
return nil, fmt.Errorf("this model is a GPTJ one")
|
||||
}
|
||||
|
||||
// Check if the model path exists
|
||||
if _, err := os.Stat(modelFile); os.IsNotExist(err) {
|
||||
// try to find a s.bin
|
||||
modelBin := fmt.Sprintf("%s.bin", modelFile)
|
||||
if _, err := os.Stat(modelBin); os.IsNotExist(err) {
|
||||
return nil, err
|
||||
} else {
|
||||
modelName = fmt.Sprintf("%s.bin", modelName)
|
||||
modelFile = modelBin
|
||||
}
|
||||
}
|
||||
|
||||
// Load the model and keep it in memory for later use
|
||||
model, err := llama.New(modelFile, opts...)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
// If there is a prompt template, load it
|
||||
if err := ml.loadTemplate(modelName, modelFile); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
ml.models[modelFile] = model
|
||||
return model, err
|
||||
}
|
||||
6
prompt-templates/alpaca.tmpl
Normal file
6
prompt-templates/alpaca.tmpl
Normal file
@@ -0,0 +1,6 @@
|
||||
Below is an instruction that describes a task. Write a response that appropriately completes the request.
|
||||
|
||||
### Instruction:
|
||||
{{.Input}}
|
||||
|
||||
### Response:
|
||||
4
prompt-templates/ggml-gpt4all-j.tmpl
Normal file
4
prompt-templates/ggml-gpt4all-j.tmpl
Normal file
@@ -0,0 +1,4 @@
|
||||
The prompt below is a question to answer, a task to complete, or a conversation to respond to; decide which and write an appropriate response.
|
||||
### Prompt:
|
||||
{{.Input}}
|
||||
### Response:
|
||||
1
prompt-templates/koala.tmpl
Normal file
1
prompt-templates/koala.tmpl
Normal file
@@ -0,0 +1 @@
|
||||
BEGINNING OF CONVERSATION: USER: {{.Input}} GPT:
|
||||
6
prompt-templates/vicuna.tmpl
Normal file
6
prompt-templates/vicuna.tmpl
Normal file
@@ -0,0 +1,6 @@
|
||||
Below is an instruction that describes a task. Write a response that appropriately completes the request.
|
||||
|
||||
### Instruction:
|
||||
{{.Input}}
|
||||
|
||||
### Response:
|
||||
Reference in New Issue
Block a user