mirror of
https://github.com/mudler/LocalAI.git
synced 2026-02-03 11:13:31 -05:00
Compare commits
487 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
d0025a7483 | ||
|
|
db0b29be51 | ||
|
|
7da07e8af9 | ||
|
|
6da892758b | ||
|
|
5e88930475 | ||
|
|
97b02f9765 | ||
|
|
7ee1b10dfb | ||
|
|
3932c15823 | ||
|
|
618fd1d417 | ||
|
|
151a6cf4c2 | ||
|
|
1766de814c | ||
|
|
0b351d6da2 | ||
|
|
6623ce9942 | ||
|
|
1dbc190fa6 | ||
|
|
46b9445fa6 | ||
|
|
d3d3187e51 | ||
|
|
6c94f3cd67 | ||
|
|
295f3030a9 | ||
|
|
1ba88258a9 | ||
|
|
10ddd72b58 | ||
|
|
1b7990d5d9 | ||
|
|
9f50b8024d | ||
|
|
7b9dcb05d4 | ||
|
|
e37361985c | ||
|
|
467e88d305 | ||
|
|
fe4a8fbc74 | ||
|
|
2328bbaea1 | ||
|
|
4cc834adcd | ||
|
|
5e49ff5072 | ||
|
|
f98680a18a | ||
|
|
2880221bb3 | ||
|
|
27887c74d8 | ||
|
|
6306885fe7 | ||
|
|
2a11f16c0f | ||
|
|
2297504fb3 | ||
|
|
897ac6e4e5 | ||
|
|
f20c12a1c0 | ||
|
|
5dea31385c | ||
|
|
58f0f63926 | ||
|
|
ed2bf48a6d | ||
|
|
e6c8ebb65c | ||
|
|
119733892e | ||
|
|
437f563128 | ||
|
|
ecad2261c8 | ||
|
|
182323a7fb | ||
|
|
30d06f9b12 | ||
|
|
6bb562272d | ||
|
|
3b3164b039 | ||
|
|
6f0bdbd01c | ||
|
|
ce2a1799ab | ||
|
|
d088bd3034 | ||
|
|
806e4c3a63 | ||
|
|
8532ce2002 | ||
|
|
84946e9275 | ||
|
|
c9bbba4872 | ||
|
|
ea9a651573 | ||
|
|
5abbb134d9 | ||
|
|
694dd4ad9e | ||
|
|
4af48e548a | ||
|
|
079dc197c7 | ||
|
|
77613169da | ||
|
|
2630e251ce | ||
|
|
0909a0637e | ||
|
|
d62aef2016 | ||
|
|
25e9483add | ||
|
|
c1be2bdeeb | ||
|
|
49a2b30350 | ||
|
|
472cd0fc2f | ||
|
|
dc9c43b6dd | ||
|
|
e1e23a6302 | ||
|
|
2e916abe15 | ||
|
|
3ebdb9b67e | ||
|
|
01f5046caf | ||
|
|
ac17d544e0 | ||
|
|
b447a2a719 | ||
|
|
ec4fd1d219 | ||
|
|
b503725dc7 | ||
|
|
e873fc7b71 | ||
|
|
3070e9503a | ||
|
|
d9130def39 | ||
|
|
cdf0a6e766 | ||
|
|
a0e0ac887f | ||
|
|
4ddc956462 | ||
|
|
203fd7b2e8 | ||
|
|
1bb85377e4 | ||
|
|
3892fafc2d | ||
|
|
8a34679a13 | ||
|
|
b64c1d8ac1 | ||
|
|
8fb86c13bc | ||
|
|
05edf59c91 | ||
|
|
b9f1f85433 | ||
|
|
f8e2e76698 | ||
|
|
29856f7527 | ||
|
|
aa6cdf16c8 | ||
|
|
96794851b3 | ||
|
|
51a1a721b3 | ||
|
|
695f3e5758 | ||
|
|
e875c1f64a | ||
|
|
19f92d7d55 | ||
|
|
5a8dd40918 | ||
|
|
1b766ab89c | ||
|
|
a63d6f6364 | ||
|
|
4422ca2235 | ||
|
|
78ad4813df | ||
|
|
42d753846e | ||
|
|
5c018c0437 | ||
|
|
07cee3f6ef | ||
|
|
c5cb2ff268 | ||
|
|
c8a4a4f4e9 | ||
|
|
3ba07a5928 | ||
|
|
7282668da1 | ||
|
|
451e803444 | ||
|
|
d70c55231b | ||
|
|
275c124701 | ||
|
|
87a6bbd251 | ||
|
|
8fd4c7afcc | ||
|
|
eee3f83d98 | ||
|
|
28ee180283 | ||
|
|
432b0223f1 | ||
|
|
16050a32c7 | ||
|
|
898ca62b55 | ||
|
|
5623a7c331 | ||
|
|
9e3ca6d1a3 | ||
|
|
fa58965bbc | ||
|
|
b8ef9028f1 | ||
|
|
f711d35377 | ||
|
|
abd3c62194 | ||
|
|
2f3c3b1867 | ||
|
|
11af09faf3 | ||
|
|
577d36b596 | ||
|
|
6d71dd7d98 | ||
|
|
49ce24984c | ||
|
|
f401181cb5 | ||
|
|
ff8295a97c | ||
|
|
aacb96df7a | ||
|
|
ca9115d6d0 | ||
|
|
2c91837865 | ||
|
|
2272324fd6 | ||
|
|
171b50bb1c | ||
|
|
04d6bd7922 | ||
|
|
2abdac7003 | ||
|
|
190f01dbe3 | ||
|
|
18a701355c | ||
|
|
3911957d34 | ||
|
|
f5146bde18 | ||
|
|
b57ea10c94 | ||
|
|
821cfed6c0 | ||
|
|
728f297bb8 | ||
|
|
4c0013fd79 | ||
|
|
65d06285d8 | ||
|
|
e0d1a8995d | ||
|
|
425beea6c5 | ||
|
|
cdfb930a69 | ||
|
|
09641b9790 | ||
|
|
aac9a57500 | ||
|
|
59f7953249 | ||
|
|
217dbb448e | ||
|
|
76c881043e | ||
|
|
835a20610b | ||
|
|
74e808b8c3 | ||
|
|
53c83f2fae | ||
|
|
62365fa31d | ||
|
|
a44c8e9b4e | ||
|
|
320e430c7f | ||
|
|
8615646827 | ||
|
|
925d7c3057 | ||
|
|
e350924ac1 | ||
|
|
e891a46740 | ||
|
|
cd9285bbe6 | ||
|
|
917ff13c86 | ||
|
|
2a40f44023 | ||
|
|
c22d06c780 | ||
|
|
babbd23744 | ||
|
|
eee41cbe2b | ||
|
|
bf54b78270 | ||
|
|
589dfae89f | ||
|
|
c8cc197ddd | ||
|
|
76c561a908 | ||
|
|
04797a80e1 | ||
|
|
29583a5ea5 | ||
|
|
d12c1f7a4a | ||
|
|
505572dae8 | ||
|
|
3ddea794e1 | ||
|
|
10e03bde35 | ||
|
|
e969604d75 | ||
|
|
c822e18f0d | ||
|
|
891af1c524 | ||
|
|
5807d0b766 | ||
|
|
9decd0813c | ||
|
|
43d3fb3eba | ||
|
|
f5f8c687be | ||
|
|
9e5cd0f10b | ||
|
|
231a3e7c02 | ||
|
|
57172e2e30 | ||
|
|
043399dd07 | ||
|
|
6b19356740 | ||
|
|
1cbe6a7067 | ||
|
|
2912f9870f | ||
|
|
9630be56e1 | ||
|
|
4aa78843c0 | ||
|
|
b36d9f3776 | ||
|
|
6f54cab3f0 | ||
|
|
ed5df1e68e | ||
|
|
3c07e11e73 | ||
|
|
91bdad1d12 | ||
|
|
482a83886e | ||
|
|
b8f52d67e1 | ||
|
|
9ed82199c5 | ||
|
|
864aaf8c4d | ||
|
|
c7056756d5 | ||
|
|
93cc8569c3 | ||
|
|
05a3d569b0 | ||
|
|
7bc08797f9 | ||
|
|
5b22704799 | ||
|
|
9609e4392b | ||
|
|
d0c033d09b | ||
|
|
4e381cbe92 | ||
|
|
ffaf3b1d36 | ||
|
|
465a3b755d | ||
|
|
91fc52bfb7 | ||
|
|
b425954b9e | ||
|
|
2e64ed6255 | ||
|
|
bf3d936aea | ||
|
|
19deea986a | ||
|
|
aa7a18f131 | ||
|
|
837ce2cb31 | ||
|
|
cadce540f9 | ||
|
|
1fade53a61 | ||
|
|
207ce81e4a | ||
|
|
fc59f74849 | ||
|
|
9d3c5ead93 | ||
|
|
549a01b62e | ||
|
|
5a6d9d4e5b | ||
|
|
1a7587ee48 | ||
|
|
cc9aa9eb3f | ||
|
|
5617e50ebc | ||
|
|
b83e8b950d | ||
|
|
d15fc5371a | ||
|
|
3f739575d8 | ||
|
|
7e4616646f | ||
|
|
44ffaf86ad | ||
|
|
d096644c67 | ||
|
|
1428600de4 | ||
|
|
17b18df600 | ||
|
|
cd81dbae1c | ||
|
|
76be06ed56 | ||
|
|
c2026e01c0 | ||
|
|
cdca286be1 | ||
|
|
41de6efca9 | ||
|
|
63a4ccebdc | ||
|
|
9237c1e91d | ||
|
|
9d051c5d4f | ||
|
|
acd03d15f2 | ||
|
|
a035de2fdd | ||
|
|
76a1267799 | ||
|
|
e533b008d4 | ||
|
|
a4380228e3 | ||
|
|
2a9d7474ce | ||
|
|
850a690290 | ||
|
|
39edd9ff73 | ||
|
|
b82bbbfc6b | ||
|
|
023c065812 | ||
|
|
a627a6c4e2 | ||
|
|
6c9ddff8e9 | ||
|
|
c5318587b8 | ||
|
|
c3622299ce | ||
|
|
de36a48861 | ||
|
|
961ca93219 | ||
|
|
557ccc5ad8 | ||
|
|
2488c445b6 | ||
|
|
b4241d0a0d | ||
|
|
8250391e49 | ||
|
|
fd1df4e971 | ||
|
|
5115b2faa3 | ||
|
|
93e82a8bf4 | ||
|
|
4413defca5 | ||
|
|
f359e1c6c4 | ||
|
|
1bc87d582d | ||
|
|
a86a383357 | ||
|
|
16f02c7b30 | ||
|
|
fe2706890c | ||
|
|
85f0f8227d | ||
|
|
59e3c02002 | ||
|
|
032dee256f | ||
|
|
6b5e2b2bf5 | ||
|
|
6fc303de87 | ||
|
|
6ad6e4873d | ||
|
|
d6d7391da8 | ||
|
|
11675932ac | ||
|
|
f02202e1e1 | ||
|
|
f8ee20991c | ||
|
|
e6db14e2f1 | ||
|
|
d00886abea | ||
|
|
4873d2bfa1 | ||
|
|
9f426578cf | ||
|
|
9d01b695a8 | ||
|
|
93829ab228 | ||
|
|
dd234f86d5 | ||
|
|
3daff6f1aa | ||
|
|
89dfa0f5fc | ||
|
|
bc03c492a0 | ||
|
|
f50a4c1454 | ||
|
|
d13d4d95ce | ||
|
|
428790ec06 | ||
|
|
4f551ce414 | ||
|
|
6ed7b10273 | ||
|
|
02979566ee | ||
|
|
cbdcc839f3 | ||
|
|
e1c8f087f4 | ||
|
|
3a90ea44a5 | ||
|
|
e55492475d | ||
|
|
07ec2e441d | ||
|
|
38d7e0b43c | ||
|
|
3411bfd00d | ||
|
|
7e5fe35ae4 | ||
|
|
8c8cf38d4d | ||
|
|
75b25297fd | ||
|
|
009ee47fe2 | ||
|
|
ec2adc2c03 | ||
|
|
ad301e6ed7 | ||
|
|
d094381e5d | ||
|
|
3ff9bbd217 | ||
|
|
e62ee2bc06 | ||
|
|
b49721cdd1 | ||
|
|
64c0a7967f | ||
|
|
e96eadab40 | ||
|
|
e73283121b | ||
|
|
857d13e8d6 | ||
|
|
91db3d4d5c | ||
|
|
961cf29217 | ||
|
|
c839b334eb | ||
|
|
714bfcd45b | ||
|
|
77ce8b953e | ||
|
|
01ada95941 | ||
|
|
eabdc5042a | ||
|
|
96267d9437 | ||
|
|
9497a24127 | ||
|
|
fdf75c6d0e | ||
|
|
6352308882 | ||
|
|
a8172a0f4e | ||
|
|
ebcd10d66f | ||
|
|
885642915f | ||
|
|
2e424491c0 | ||
|
|
aa6faef8f7 | ||
|
|
b3254baf60 | ||
|
|
0a43d27f0e | ||
|
|
3fe11fe24d | ||
|
|
af18fdc749 | ||
|
|
32b5eddd7d | ||
|
|
07c3aa1869 | ||
|
|
e59bad89e7 | ||
|
|
b971807980 | ||
|
|
c974dad799 | ||
|
|
4eae570ef5 | ||
|
|
67992a7d99 | ||
|
|
0a4899f366 | ||
|
|
1eb02f6c91 | ||
|
|
575874e4fb | ||
|
|
751b7eca62 | ||
|
|
1ae7150810 | ||
|
|
70caf9bf8c | ||
|
|
0b226ac027 | ||
|
|
220d6fd59b | ||
|
|
0a00a4b58e | ||
|
|
156e15a4fa | ||
|
|
271d3f6673 | ||
|
|
fec4ab93c5 | ||
|
|
38a7a7a54d | ||
|
|
0db0704e2c | ||
|
|
88f472e5d2 | ||
|
|
92452d46da | ||
|
|
ac70252d70 | ||
|
|
f6451d2518 | ||
|
|
2473f9d19b | ||
|
|
bc583385a9 | ||
|
|
8286bfbab7 | ||
|
|
d129fabe3b | ||
|
|
2539867247 | ||
|
|
69fedb92d9 | ||
|
|
54b5eadcc4 | ||
|
|
16773e2a35 | ||
|
|
78503c62b7 | ||
|
|
a330c9cee5 | ||
|
|
ff0867996e | ||
|
|
1bf8f996d1 | ||
|
|
52f4d993c1 | ||
|
|
d0ceebc5d7 | ||
|
|
9122af3ae1 | ||
|
|
b8533428bc | ||
|
|
677905334c | ||
|
|
d1d55d29a0 | ||
|
|
e07dba7ad6 | ||
|
|
062f832510 | ||
|
|
d0330bb64b | ||
|
|
91a23ec6ec | ||
|
|
0b000dd043 | ||
|
|
c73ba91a66 | ||
|
|
dfc00f8bc1 | ||
|
|
a18ff9c9b3 | ||
|
|
d0199279ad | ||
|
|
9ede1e12d8 | ||
|
|
c806eae0de | ||
|
|
4e2061636e | ||
|
|
e3ef171968 | ||
|
|
12d83a4184 | ||
|
|
045412e8dd | ||
|
|
9896a9a58b | ||
|
|
b9011bda59 | ||
|
|
2b2f5fa36a | ||
|
|
43c557dc5c | ||
|
|
7abb2c9bd7 | ||
|
|
7a9ea4480a | ||
|
|
31bcc558de | ||
|
|
676e15f785 | ||
|
|
3e71c90949 | ||
|
|
550ae9c968 | ||
|
|
1c872ec326 | ||
|
|
05f35b182c | ||
|
|
79791438fe | ||
|
|
bf20cc34f6 | ||
|
|
5cba71de70 | ||
|
|
4b7e83056d | ||
|
|
ed954d66c3 | ||
|
|
f816dfae65 | ||
|
|
142bcd66ca | ||
|
|
1c4fbaae20 | ||
|
|
d517a54e28 | ||
|
|
c905512bb0 | ||
|
|
1254951fab | ||
|
|
80f50e6ccd | ||
|
|
7fec26f5d3 | ||
|
|
a9a875ee2b | ||
|
|
db5ac715f3 | ||
|
|
0b330d90ad | ||
|
|
63601fabd1 | ||
|
|
1370b4482f | ||
|
|
b062f3142b | ||
|
|
c37175271f | ||
|
|
e8eab66c30 | ||
|
|
a73a497143 | ||
|
|
6aea515e1d | ||
|
|
dfc2b7e02a | ||
|
|
040290971c | ||
|
|
553bad585e | ||
|
|
f76b612506 | ||
|
|
c4e94c88d7 | ||
|
|
a9cd6b3ca3 | ||
|
|
e786576b95 | ||
|
|
d426571789 | ||
|
|
a896a2b5ad | ||
|
|
8273cd5c04 | ||
|
|
16f1281d38 | ||
|
|
8042e9a2d6 | ||
|
|
624092cb99 | ||
|
|
a422a883ac | ||
|
|
7858a97254 | ||
|
|
5556aa46dd | ||
|
|
eb4257f946 | ||
|
|
ae30bd346d | ||
|
|
93d8977ba2 | ||
|
|
f43aeeb4a1 | ||
|
|
c17dcc5e9d | ||
|
|
4a932483e1 | ||
|
|
b710147b95 | ||
|
|
ba70363330 | ||
|
|
9fb581739b | ||
|
|
48aca246e3 | ||
|
|
12eee097b7 | ||
|
|
b33d015b8c | ||
|
|
b7c0a108f5 | ||
|
|
f694a89c28 | ||
|
|
be682e6c2f | ||
|
|
bf85a31f9e | ||
|
|
d69048e0b0 | ||
|
|
827f189163 | ||
|
|
a23deb5ec7 | ||
|
|
999676b106 | ||
|
|
c61b023bc8 | ||
|
|
650a22aef1 | ||
|
|
17b1724f7c | ||
|
|
e860e62036 | ||
|
|
1f45ff8cd6 | ||
|
|
abee34f60a | ||
|
|
dbc70dc13c | ||
|
|
55142065eb | ||
|
|
d83d2293b5 | ||
|
|
467ce5a7aa |
6
.dockerignore
Normal file
6
.dockerignore
Normal file
@@ -0,0 +1,6 @@
|
||||
.git
|
||||
.idea
|
||||
models
|
||||
examples/chatbot-ui/models
|
||||
examples/rwkv/models
|
||||
examples/**/models
|
||||
30
.env
Normal file
30
.env
Normal file
@@ -0,0 +1,30 @@
|
||||
## Set number of threads.
|
||||
## Note: prefer the number of physical cores. Overbooking the CPU degrades performance notably.
|
||||
# THREADS=14
|
||||
|
||||
## Specify a different bind address (defaults to ":8080")
|
||||
# ADDRESS=127.0.0.1:8080
|
||||
|
||||
## Default models context size
|
||||
# CONTEXT_SIZE=512
|
||||
|
||||
## Default path for models
|
||||
MODELS_PATH=/models
|
||||
|
||||
## Enable debug mode
|
||||
# DEBUG=true
|
||||
|
||||
## Specify a build type. Available: cublas, openblas.
|
||||
# BUILD_TYPE=openblas
|
||||
|
||||
## Uncomment and set to false to disable rebuilding from source
|
||||
# REBUILD=false
|
||||
|
||||
## Enable image generation with stablediffusion (requires REBUILD=true)
|
||||
# GO_TAGS=stablediffusion
|
||||
|
||||
## Path where to store generated images
|
||||
# IMAGE_PATH=/tmp
|
||||
|
||||
## Specify a default upload limit in MB (whisper)
|
||||
# UPLOAD_LIMIT
|
||||
31
.github/ISSUE_TEMPLATE/bug_report.md
vendored
Normal file
31
.github/ISSUE_TEMPLATE/bug_report.md
vendored
Normal file
@@ -0,0 +1,31 @@
|
||||
---
|
||||
name: Bug report
|
||||
about: Create a report to help us improve
|
||||
title: ''
|
||||
labels: bug
|
||||
assignees: mudler
|
||||
|
||||
---
|
||||
|
||||
<!-- Thanks for helping us to improve LocalAI! We welcome all bug reports. Please fill out each area of the template so we can better help you. Comments like this will be hidden when you post but you can delete them if you wish. -->
|
||||
|
||||
**LocalAI version:**
|
||||
<!-- Container Image or LocalAI tag/commit -->
|
||||
|
||||
**Environment, CPU architecture, OS, and Version:**
|
||||
<!-- Provide the output from "uname -a", HW specs, if it's a VM -->
|
||||
|
||||
**Describe the bug**
|
||||
<!-- A clear and concise description of what the bug is. -->
|
||||
|
||||
**To Reproduce**
|
||||
<!-- Steps to reproduce the behavior, including the LocalAI command used, if any -->
|
||||
|
||||
**Expected behavior**
|
||||
<!-- A clear and concise description of what you expected to happen. -->
|
||||
|
||||
**Logs**
|
||||
<!-- If applicable, add logs while running LocalAI in debug mode (`--debug` or `DEBUG=true`) to help explain your problem. -->
|
||||
|
||||
**Additional context**
|
||||
<!-- Add any other context about the problem here. -->
|
||||
8
.github/ISSUE_TEMPLATE/config.yml
vendored
Normal file
8
.github/ISSUE_TEMPLATE/config.yml
vendored
Normal file
@@ -0,0 +1,8 @@
|
||||
blank_issues_enabled: false
|
||||
contact_links:
|
||||
- name: Community Support
|
||||
url: https://github.com/go-skynet/LocalAI/discussions
|
||||
about: Please ask and answer questions here.
|
||||
- name: Discord
|
||||
url: https://discord.gg/uJAeKSAGDy
|
||||
about: Join our community on Discord!
|
||||
22
.github/ISSUE_TEMPLATE/feature_request.md
vendored
Normal file
22
.github/ISSUE_TEMPLATE/feature_request.md
vendored
Normal file
@@ -0,0 +1,22 @@
|
||||
---
|
||||
name: Feature request
|
||||
about: Suggest an idea for this project
|
||||
title: ''
|
||||
labels: enhancement
|
||||
assignees: mudler
|
||||
|
||||
---
|
||||
|
||||
<!-- Thanks for helping us to improve LocalAI! We welcome all feature requests. Please fill out each area of the template so we can better help you. Comments like this will be hidden when you post but you can delete them if you wish. -->
|
||||
|
||||
**Is your feature request related to a problem? Please describe.**
|
||||
<!-- A clear and concise description of what the problem is. Ex. I'm always frustrated when [...] -->
|
||||
|
||||
**Describe the solution you'd like**
|
||||
<!-- A clear and concise description of what you want to happen. -->
|
||||
|
||||
**Describe alternatives you've considered**
|
||||
<!-- A clear and concise description of any alternative solutions or features you've considered. -->
|
||||
|
||||
**Additional context**
|
||||
<!-- Add any other context or screenshots about the feature request here. -->
|
||||
23
.github/PULL_REQUEST_TEMPLATE.md
vendored
Normal file
23
.github/PULL_REQUEST_TEMPLATE.md
vendored
Normal file
@@ -0,0 +1,23 @@
|
||||
**Description**
|
||||
|
||||
This PR fixes #
|
||||
|
||||
**Notes for Reviewers**
|
||||
|
||||
|
||||
**[Signed commits](../CONTRIBUTING.md#signing-off-on-commits-developer-certificate-of-origin)**
|
||||
- [ ] Yes, I signed my commits.
|
||||
|
||||
|
||||
<!--
|
||||
Thank you for contributing to LocalAI!
|
||||
|
||||
Contributing Conventions:
|
||||
|
||||
1. Include descriptive PR titles with [<component-name>] prepended.
|
||||
2. Build and test your changes before submitting a PR.
|
||||
3. Sign your commits
|
||||
|
||||
By following the community's contribution conventions upfront, the review process will
|
||||
be accelerated and your PR merged more quickly.
|
||||
-->
|
||||
9
.github/bump_deps.sh
vendored
Executable file
9
.github/bump_deps.sh
vendored
Executable file
@@ -0,0 +1,9 @@
|
||||
#!/bin/bash
|
||||
set -xe
|
||||
REPO=$1
|
||||
BRANCH=$2
|
||||
VAR=$3
|
||||
|
||||
LAST_COMMIT=$(curl -s -H "Accept: application/vnd.github.VERSION.sha" "https://api.github.com/repos/$REPO/commits/$BRANCH")
|
||||
|
||||
sed -i Makefile -e "s/$VAR?=.*/$VAR?=$LAST_COMMIT/"
|
||||
24
.github/release.yml
vendored
Normal file
24
.github/release.yml
vendored
Normal file
@@ -0,0 +1,24 @@
|
||||
# .github/release.yml
|
||||
|
||||
changelog:
|
||||
exclude:
|
||||
labels:
|
||||
- ignore-for-release
|
||||
categories:
|
||||
- title: Breaking Changes 🛠
|
||||
labels:
|
||||
- Semver-Major
|
||||
- breaking-change
|
||||
- title: "Bug fixes :bug:"
|
||||
labels:
|
||||
- bug
|
||||
- title: Exciting New Features 🎉
|
||||
labels:
|
||||
- Semver-Minor
|
||||
- enhancement
|
||||
- title: 👒 Dependencies
|
||||
labels:
|
||||
- dependencies
|
||||
- title: Other Changes
|
||||
labels:
|
||||
- "*"
|
||||
18
.github/stale.yml
vendored
Normal file
18
.github/stale.yml
vendored
Normal file
@@ -0,0 +1,18 @@
|
||||
# Number of days of inactivity before an issue becomes stale
|
||||
daysUntilStale: 45
|
||||
# Number of days of inactivity before a stale issue is closed
|
||||
daysUntilClose: 10
|
||||
# Issues with these labels will never be considered stale
|
||||
exemptLabels:
|
||||
- issue/willfix
|
||||
# Label to use when marking an issue as stale
|
||||
staleLabel: issue/stale
|
||||
# Comment to post when marking an issue as stale. Set to `false` to disable
|
||||
markComment: >
|
||||
This issue has been automatically marked as stale because it has not had
|
||||
recent activity. It will be closed if no further activity occurs. Thank you
|
||||
for your contributions.
|
||||
# Comment to post when closing a stale issue. Set to `false` to disable
|
||||
closeComment: >
|
||||
This issue is being automatically closed due to inactivity.
|
||||
However, you may choose to reopen this issue.
|
||||
51
.github/workflows/bump_deps.yaml
vendored
Normal file
51
.github/workflows/bump_deps.yaml
vendored
Normal file
@@ -0,0 +1,51 @@
|
||||
name: Bump dependencies
|
||||
on:
|
||||
schedule:
|
||||
- cron: 0 20 * * *
|
||||
workflow_dispatch:
|
||||
jobs:
|
||||
bump:
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
include:
|
||||
- repository: "go-skynet/go-llama.cpp"
|
||||
variable: "GOLLAMA_VERSION"
|
||||
branch: "master"
|
||||
- repository: "go-skynet/go-ggml-transformers.cpp"
|
||||
variable: "GOGGMLTRANSFORMERS_VERSION"
|
||||
branch: "master"
|
||||
- repository: "donomii/go-rwkv.cpp"
|
||||
variable: "RWKV_VERSION"
|
||||
branch: "main"
|
||||
- repository: "ggerganov/whisper.cpp"
|
||||
variable: "WHISPER_CPP_VERSION"
|
||||
branch: "master"
|
||||
- repository: "go-skynet/go-bert.cpp"
|
||||
variable: "BERT_VERSION"
|
||||
branch: "master"
|
||||
- repository: "go-skynet/bloomz.cpp"
|
||||
variable: "BLOOMZ_VERSION"
|
||||
branch: "main"
|
||||
- repository: "nomic-ai/gpt4all"
|
||||
variable: "GPT4ALL_VERSION"
|
||||
branch: "main"
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- name: Bump dependencies 🔧
|
||||
run: |
|
||||
bash .github/bump_deps.sh ${{ matrix.repository }} ${{ matrix.branch }} ${{ matrix.variable }}
|
||||
- name: Create Pull Request
|
||||
uses: peter-evans/create-pull-request@v5
|
||||
with:
|
||||
token: ${{ secrets.UPDATE_BOT_TOKEN }}
|
||||
push-to-fork: ci-forks/LocalAI
|
||||
commit-message: ':arrow_up: Update ${{ matrix.repository }}'
|
||||
title: ':arrow_up: Update ${{ matrix.repository }}'
|
||||
branch: "update/${{ matrix.variable }}"
|
||||
body: Bump of ${{ matrix.repository }} version
|
||||
signoff: true
|
||||
|
||||
|
||||
|
||||
142
.github/workflows/image.yml
vendored
142
.github/workflows/image.yml
vendored
@@ -2,88 +2,108 @@
|
||||
name: 'build container images'
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
push:
|
||||
branches:
|
||||
- master
|
||||
tags:
|
||||
- '*'
|
||||
|
||||
concurrency:
|
||||
group: ci-${{ github.head_ref || github.ref }}-${{ github.repository }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
docker:
|
||||
strategy:
|
||||
matrix:
|
||||
include:
|
||||
- build-type: ''
|
||||
platforms: 'linux/amd64,linux/arm64'
|
||||
tag-latest: 'auto'
|
||||
tag-suffix: ''
|
||||
ffmpeg: ''
|
||||
- build-type: 'cublas'
|
||||
cuda-major-version: 11
|
||||
cuda-minor-version: 7
|
||||
platforms: 'linux/amd64'
|
||||
tag-latest: 'false'
|
||||
tag-suffix: '-cublas-cuda11'
|
||||
ffmpeg: ''
|
||||
- build-type: 'cublas'
|
||||
cuda-major-version: 12
|
||||
cuda-minor-version: 1
|
||||
platforms: 'linux/amd64'
|
||||
tag-latest: 'false'
|
||||
tag-suffix: '-cublas-cuda12'
|
||||
ffmpeg: ''
|
||||
- build-type: ''
|
||||
platforms: 'linux/amd64,linux/arm64'
|
||||
tag-latest: 'false'
|
||||
tag-suffix: '-ffmpeg'
|
||||
ffmpeg: 'true'
|
||||
- build-type: 'cublas'
|
||||
cuda-major-version: 11
|
||||
cuda-minor-version: 7
|
||||
platforms: 'linux/amd64'
|
||||
tag-latest: 'false'
|
||||
tag-suffix: '-cublas-cuda11-ffmpeg'
|
||||
ffmpeg: 'true'
|
||||
- build-type: 'cublas'
|
||||
cuda-major-version: 12
|
||||
cuda-minor-version: 1
|
||||
platforms: 'linux/amd64'
|
||||
tag-latest: 'false'
|
||||
tag-suffix: '-cublas-cuda12-ffmpeg'
|
||||
ffmpeg: 'true'
|
||||
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Release space from worker
|
||||
run: |
|
||||
echo "Listing top largest packages"
|
||||
pkgs=$(dpkg-query -Wf '${Installed-Size}\t${Package}\t${Status}\n' | awk '$NF == "installed"{print $1 "\t" $2}' | sort -nr)
|
||||
head -n 30 <<< "${pkgs}"
|
||||
echo
|
||||
df -h
|
||||
echo
|
||||
sudo apt-get remove -y '^llvm-.*|^libllvm.*' || true
|
||||
sudo apt-get remove --auto-remove android-sdk-platform-tools || true
|
||||
sudo apt-get purge --auto-remove android-sdk-platform-tools || true
|
||||
sudo rm -rf /usr/local/lib/android
|
||||
sudo apt-get remove -y '^dotnet-.*|^aspnetcore-.*' || true
|
||||
sudo rm -rf /usr/share/dotnet
|
||||
sudo apt-get remove -y '^mono-.*' || true
|
||||
sudo apt-get remove -y '^ghc-.*' || true
|
||||
sudo apt-get remove -y '.*jdk.*|.*jre.*' || true
|
||||
sudo apt-get remove -y 'php.*' || true
|
||||
sudo apt-get remove -y hhvm powershell firefox monodoc-manual msbuild || true
|
||||
sudo apt-get remove -y '^google-.*' || true
|
||||
sudo apt-get remove -y azure-cli || true
|
||||
sudo apt-get remove -y '^mongo.*-.*|^postgresql-.*|^mysql-.*|^mssql-.*' || true
|
||||
sudo apt-get remove -y '^gfortran-.*' || true
|
||||
sudo apt-get autoremove -y
|
||||
sudo apt-get clean
|
||||
echo
|
||||
echo "Listing top largest packages"
|
||||
pkgs=$(dpkg-query -Wf '${Installed-Size}\t${Package}\t${Status}\n' | awk '$NF == "installed"{print $1 "\t" $2}' | sort -nr)
|
||||
head -n 30 <<< "${pkgs}"
|
||||
echo
|
||||
sudo rm -rfv build || true
|
||||
df -h
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v3
|
||||
- name: Prepare
|
||||
id: prep
|
||||
run: |
|
||||
DOCKER_IMAGE=quay.io/go-skynet/llama-cli
|
||||
VERSION=latest
|
||||
SHORTREF=${GITHUB_SHA::8}
|
||||
# If this is git tag, use the tag name as a docker tag
|
||||
if [[ $GITHUB_REF == refs/tags/* ]]; then
|
||||
VERSION=${GITHUB_REF#refs/tags/}
|
||||
fi
|
||||
TAGS="${DOCKER_IMAGE}:${VERSION},${DOCKER_IMAGE}:${SHORTREF}"
|
||||
# If the VERSION looks like a version number, assume that
|
||||
# this is the most recent version of the image and also
|
||||
# tag it 'latest'.
|
||||
if [[ $VERSION =~ ^[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}$ ]]; then
|
||||
TAGS="$TAGS,${DOCKER_IMAGE}:latest"
|
||||
fi
|
||||
# Set output parameters.
|
||||
echo ::set-output name=tags::${TAGS}
|
||||
echo ::set-output name=docker_image::${DOCKER_IMAGE}
|
||||
echo ::set-output name=image::${DOCKER_IMAGE}:${VERSION}
|
||||
|
||||
- name: Docker meta
|
||||
id: meta
|
||||
uses: docker/metadata-action@v4
|
||||
with:
|
||||
images: quay.io/go-skynet/local-ai
|
||||
tags: |
|
||||
type=ref,event=branch
|
||||
type=semver,pattern={{raw}}
|
||||
type=sha
|
||||
flavor: |
|
||||
latest=${{ matrix.tag-latest }}
|
||||
suffix=${{ matrix.tag-suffix }}
|
||||
|
||||
- name: Set up QEMU
|
||||
uses: docker/setup-qemu-action@master
|
||||
with:
|
||||
platforms: all
|
||||
|
||||
- name: Set up Docker Buildx
|
||||
id: buildx
|
||||
uses: docker/setup-buildx-action@master
|
||||
|
||||
- name: Login to DockerHub
|
||||
if: github.event_name != 'pull_request'
|
||||
uses: docker/login-action@v2
|
||||
with:
|
||||
registry: quay.io
|
||||
username: ${{ secrets.QUAY_USERNAME }}
|
||||
password: ${{ secrets.QUAY_PASSWORD }}
|
||||
- uses: earthly/actions/setup-earthly@v1
|
||||
- name: Build
|
||||
run: |
|
||||
earthly config "global.conversion_parallelism" "1"
|
||||
earthly config "global.buildkit_max_parallelism" "1"
|
||||
earthly --push +image-all --IMAGE=${{ steps.prep.outputs.image }}
|
||||
username: ${{ secrets.LOCALAI_REGISTRY_USERNAME }}
|
||||
password: ${{ secrets.LOCALAI_REGISTRY_PASSWORD }}
|
||||
|
||||
- name: Build and push
|
||||
uses: docker/build-push-action@v4
|
||||
with:
|
||||
builder: ${{ steps.buildx.outputs.name }}
|
||||
build-args: |
|
||||
BUILD_TYPE=${{ matrix.build-type }}
|
||||
CUDA_MAJOR_VERSION=${{ matrix.cuda-major-version }}
|
||||
CUDA_MINOR_VERSION=${{ matrix.cuda-minor-version }}
|
||||
FFMPEG=${{ matrix.ffmpeg }}
|
||||
context: .
|
||||
file: ./Dockerfile
|
||||
platforms: ${{ matrix.platforms }}
|
||||
push: ${{ github.event_name != 'pull_request' }}
|
||||
tags: ${{ steps.meta.outputs.tags }}
|
||||
labels: ${{ steps.meta.outputs.labels }}
|
||||
|
||||
79
.github/workflows/release.yaml
vendored
Normal file
79
.github/workflows/release.yaml
vendored
Normal file
@@ -0,0 +1,79 @@
|
||||
name: Build and Release
|
||||
|
||||
on: push
|
||||
|
||||
permissions:
|
||||
contents: write
|
||||
|
||||
jobs:
|
||||
build-linux:
|
||||
strategy:
|
||||
matrix:
|
||||
include:
|
||||
- build: 'avx2'
|
||||
defines: ''
|
||||
- build: 'avx'
|
||||
defines: '-DLLAMA_AVX2=OFF'
|
||||
- build: 'avx512'
|
||||
defines: '-DLLAMA_AVX512=ON'
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v3
|
||||
with:
|
||||
submodules: true
|
||||
- name: Dependencies
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential ffmpeg
|
||||
- name: Build
|
||||
id: build
|
||||
env:
|
||||
CMAKE_ARGS: "${{ matrix.defines }}"
|
||||
BUILD_ID: "${{ matrix.build }}"
|
||||
run: |
|
||||
STATIC=true make dist
|
||||
- uses: actions/upload-artifact@v3
|
||||
with:
|
||||
name: ${{ matrix.build }}
|
||||
path: release/
|
||||
- name: Release
|
||||
uses: softprops/action-gh-release@v1
|
||||
if: startsWith(github.ref, 'refs/tags/')
|
||||
with:
|
||||
files: |
|
||||
release/*
|
||||
|
||||
build-macOS:
|
||||
strategy:
|
||||
matrix:
|
||||
include:
|
||||
- build: 'avx2'
|
||||
defines: ''
|
||||
- build: 'avx'
|
||||
defines: '-DLLAMA_AVX2=OFF'
|
||||
- build: 'avx512'
|
||||
defines: '-DLLAMA_AVX512=ON'
|
||||
runs-on: macOS-latest
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v3
|
||||
with:
|
||||
submodules: true
|
||||
- name: Build
|
||||
id: build
|
||||
env:
|
||||
CMAKE_ARGS: "${{ matrix.defines }}"
|
||||
BUILD_ID: "${{ matrix.build }}"
|
||||
run: |
|
||||
make dist
|
||||
- uses: actions/upload-artifact@v3
|
||||
with:
|
||||
name: ${{ matrix.build }}
|
||||
path: release/
|
||||
- name: Release
|
||||
uses: softprops/action-gh-release@v1
|
||||
if: startsWith(github.ref, 'refs/tags/')
|
||||
with:
|
||||
files: |
|
||||
release/*
|
||||
26
.github/workflows/release.yml.disabled
vendored
26
.github/workflows/release.yml.disabled
vendored
@@ -1,26 +0,0 @@
|
||||
name: goreleaser
|
||||
|
||||
on:
|
||||
push:
|
||||
tags:
|
||||
- 'v*'
|
||||
|
||||
jobs:
|
||||
goreleaser:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v3
|
||||
with:
|
||||
fetch-depth: 0
|
||||
- name: Set up Go
|
||||
uses: actions/setup-go@v3
|
||||
with:
|
||||
go-version: 1.18
|
||||
- name: Run GoReleaser
|
||||
uses: goreleaser/goreleaser-action@v4
|
||||
with:
|
||||
version: latest
|
||||
args: release --clean
|
||||
env:
|
||||
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
44
.github/workflows/test.yml
vendored
Normal file
44
.github/workflows/test.yml
vendored
Normal file
@@ -0,0 +1,44 @@
|
||||
---
|
||||
name: 'tests'
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
push:
|
||||
branches:
|
||||
- master
|
||||
tags:
|
||||
- '*'
|
||||
|
||||
concurrency:
|
||||
group: ci-tests-${{ github.head_ref || github.ref }}-${{ github.repository }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
ubuntu-latest:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v3
|
||||
with:
|
||||
submodules: true
|
||||
- name: Dependencies
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential ffmpeg
|
||||
- name: Test
|
||||
run: |
|
||||
make test
|
||||
|
||||
macOS-latest:
|
||||
runs-on: macOS-latest
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v3
|
||||
with:
|
||||
submodules: true
|
||||
|
||||
- name: Test
|
||||
run: |
|
||||
CMAKE_ARGS="-DLLAMA_F16C=OFF -DLLAMA_AVX512=OFF -DLLAMA_AVX2=OFF -DLLAMA_FMA=OFF" make test
|
||||
32
.gitignore
vendored
Normal file
32
.gitignore
vendored
Normal file
@@ -0,0 +1,32 @@
|
||||
# go-llama build artifacts
|
||||
go-llama
|
||||
gpt4all
|
||||
go-stable-diffusion
|
||||
go-ggml-transformers
|
||||
go-gpt2
|
||||
go-rwkv
|
||||
whisper.cpp
|
||||
bloomz
|
||||
go-bert
|
||||
|
||||
# LocalAI build binary
|
||||
LocalAI
|
||||
local-ai
|
||||
# prevent above rules from omitting the helm chart
|
||||
!charts/*
|
||||
|
||||
# Ignore models
|
||||
models/*
|
||||
test-models/
|
||||
test-dir/
|
||||
|
||||
release/
|
||||
|
||||
# just in case
|
||||
.DS_Store
|
||||
.idea
|
||||
|
||||
# Generated during build
|
||||
backend-assets/
|
||||
|
||||
/ggml-metal.metal
|
||||
@@ -1,15 +0,0 @@
|
||||
# Make sure to check the documentation at http://goreleaser.com
|
||||
project_name: llama-cli
|
||||
builds:
|
||||
- ldflags:
|
||||
- -w -s
|
||||
env:
|
||||
- CGO_ENABLED=0
|
||||
goos:
|
||||
- linux
|
||||
- darwin
|
||||
- windows
|
||||
goarch:
|
||||
- amd64
|
||||
- arm64
|
||||
binary: '{{ .ProjectName }}'
|
||||
33
.vscode/launch.json
vendored
Normal file
33
.vscode/launch.json
vendored
Normal file
@@ -0,0 +1,33 @@
|
||||
{
|
||||
"version": "0.2.0",
|
||||
"configurations": [
|
||||
{
|
||||
"name": "Python: Current File",
|
||||
"type": "python",
|
||||
"request": "launch",
|
||||
"program": "${file}",
|
||||
"console": "integratedTerminal",
|
||||
"justMyCode": false,
|
||||
"cwd": "${workspaceFolder}/examples/langchain-chroma",
|
||||
"env": {
|
||||
"OPENAI_API_BASE": "http://localhost:8080/v1",
|
||||
"OPENAI_API_KEY": "abc"
|
||||
}
|
||||
},
|
||||
{
|
||||
"name": "Launch LocalAI API",
|
||||
"type": "go",
|
||||
"request": "launch",
|
||||
"mode": "debug",
|
||||
"program": "${workspaceFolder}/main.go",
|
||||
"args": [
|
||||
"api"
|
||||
],
|
||||
"env": {
|
||||
"C_INCLUDE_PATH": "${workspaceFolder}/go-llama:${workspaceFolder}/go-stable-diffusion/:${workspaceFolder}/gpt4all/gpt4all-bindings/golang/:${workspaceFolder}/go-gpt2:${workspaceFolder}/go-rwkv:${workspaceFolder}/whisper.cpp:${workspaceFolder}/go-bert:${workspaceFolder}/bloomz",
|
||||
"LIBRARY_PATH": "${workspaceFolder}/go-llama:${workspaceFolder}/go-stable-diffusion/:${workspaceFolder}/gpt4all/gpt4all-bindings/golang/:${workspaceFolder}/go-gpt2:${workspaceFolder}/go-rwkv:${workspaceFolder}/whisper.cpp:${workspaceFolder}/go-bert:${workspaceFolder}/bloomz",
|
||||
"DEBUG": "true"
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
70
Dockerfile
Normal file
70
Dockerfile
Normal file
@@ -0,0 +1,70 @@
|
||||
ARG GO_VERSION=1.20-bullseye
|
||||
|
||||
FROM golang:$GO_VERSION as requirements
|
||||
|
||||
ARG BUILD_TYPE
|
||||
ARG CUDA_MAJOR_VERSION=11
|
||||
ARG CUDA_MINOR_VERSION=7
|
||||
|
||||
ENV BUILD_TYPE=${BUILD_TYPE}
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y ca-certificates cmake curl patch
|
||||
|
||||
# CuBLAS requirements
|
||||
RUN if [ "${BUILD_TYPE}" = "cublas" ]; then \
|
||||
apt-get install -y software-properties-common && \
|
||||
apt-add-repository contrib && \
|
||||
curl -O https://developer.download.nvidia.com/compute/cuda/repos/debian11/x86_64/cuda-keyring_1.0-1_all.deb && \
|
||||
dpkg -i cuda-keyring_1.0-1_all.deb && \
|
||||
rm -f cuda-keyring_1.0-1_all.deb && \
|
||||
apt-get update && \
|
||||
apt-get install -y cuda-nvcc-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} libcublas-dev-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} \
|
||||
; fi
|
||||
ENV PATH /usr/local/cuda/bin:${PATH}
|
||||
|
||||
# OpenBLAS requirements
|
||||
RUN apt-get install -y libopenblas-dev
|
||||
|
||||
# Stable Diffusion requirements
|
||||
RUN apt-get install -y libopencv-dev && \
|
||||
ln -s /usr/include/opencv4/opencv2 /usr/include/opencv2
|
||||
|
||||
FROM requirements as builder
|
||||
|
||||
ARG GO_TAGS=stablediffusion
|
||||
|
||||
ENV GO_TAGS=${GO_TAGS}
|
||||
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
|
||||
ENV NVIDIA_REQUIRE_CUDA="cuda>=${CUDA_MAJOR_VERSION}.0"
|
||||
ENV NVIDIA_VISIBLE_DEVICES=all
|
||||
|
||||
WORKDIR /build
|
||||
|
||||
COPY . .
|
||||
RUN make build
|
||||
|
||||
FROM requirements
|
||||
|
||||
ARG FFMPEG
|
||||
|
||||
ENV REBUILD=true
|
||||
ENV HEALTHCHECK_ENDPOINT=http://localhost:8080/readyz
|
||||
|
||||
# Add FFmpeg
|
||||
RUN if [ "${FFMPEG}" = "true" ]; then \
|
||||
apt-get install -y ffmpeg \
|
||||
; fi
|
||||
|
||||
WORKDIR /build
|
||||
|
||||
COPY . .
|
||||
RUN make prepare-sources
|
||||
COPY --from=builder /build/local-ai ./
|
||||
|
||||
# Define the health check command
|
||||
HEALTHCHECK --interval=1m --timeout=10m --retries=10 \
|
||||
CMD curl -f $HEALTHCHECK_ENDPOINT || exit 1
|
||||
|
||||
EXPOSE 8080
|
||||
ENTRYPOINT [ "/build/entrypoint.sh" ]
|
||||
46
Earthfile
46
Earthfile
@@ -1,47 +1,5 @@
|
||||
VERSION 0.7
|
||||
|
||||
go-deps:
|
||||
ARG GO_VERSION=1.20
|
||||
FROM golang:$GO_VERSION
|
||||
WORKDIR /build
|
||||
COPY go.mod ./
|
||||
COPY go.sum ./
|
||||
RUN go mod download
|
||||
RUN apt-get update
|
||||
SAVE ARTIFACT go.mod AS LOCAL go.mod
|
||||
SAVE ARTIFACT go.sum AS LOCAL go.sum
|
||||
|
||||
model-image:
|
||||
ARG MODEL_IMAGE=quay.io/go-skynet/models:ggml2-alpaca-7b-v0.2
|
||||
FROM $MODEL_IMAGE
|
||||
SAVE ARTIFACT /models/model.bin
|
||||
|
||||
build:
|
||||
FROM +go-deps
|
||||
WORKDIR /build
|
||||
RUN git clone https://github.com/go-skynet/llama
|
||||
RUN cd llama && make libllama.a
|
||||
COPY . .
|
||||
RUN C_INCLUDE_PATH=/build/llama LIBRARY_PATH=/build/llama go build -o llama-cli ./
|
||||
SAVE ARTIFACT llama-cli AS LOCAL llama-cli
|
||||
|
||||
image:
|
||||
FROM +go-deps
|
||||
ARG IMAGE=alpaca-cli
|
||||
COPY +model-image/model.bin /model.bin
|
||||
COPY +build/llama-cli /llama-cli
|
||||
ENV MODEL_PATH=/model.bin
|
||||
ENTRYPOINT [ "/llama-cli" ]
|
||||
SAVE IMAGE --push $IMAGE
|
||||
|
||||
lite-image:
|
||||
FROM +go-deps
|
||||
ARG IMAGE=alpaca-cli-nomodel
|
||||
COPY +build/llama-cli /llama-cli
|
||||
ENV MODEL_PATH=/model.bin
|
||||
ENTRYPOINT [ "/llama-cli" ]
|
||||
SAVE IMAGE --push $IMAGE-lite
|
||||
|
||||
image-all:
|
||||
BUILD --platform=linux/amd64 --platform=linux/arm64 +image
|
||||
BUILD --platform=linux/amd64 --platform=linux/arm64 +lite-image
|
||||
FROM DOCKERFILE -f Dockerfile .
|
||||
SAVE ARTIFACT /usr/bin/local-ai AS LOCAL local-ai
|
||||
|
||||
2
LICENSE
2
LICENSE
@@ -1,6 +1,6 @@
|
||||
MIT License
|
||||
|
||||
Copyright (c) 2023 go-skynet authors
|
||||
Copyright (c) 2023 Ettore Di Giacinto
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
|
||||
266
Makefile
Normal file
266
Makefile
Normal file
@@ -0,0 +1,266 @@
|
||||
GOCMD=go
|
||||
GOTEST=$(GOCMD) test
|
||||
GOVET=$(GOCMD) vet
|
||||
BINARY_NAME=local-ai
|
||||
|
||||
GOLLAMA_VERSION?=7ad833b67070fd3ec46d838f5e38d21111013f98
|
||||
GPT4ALL_REPO?=https://github.com/nomic-ai/gpt4all
|
||||
GPT4ALL_VERSION?=2b6cc99a31a124f1f27f2dc6515b94b84d35b254
|
||||
GOGGMLTRANSFORMERS_VERSION?=661669258dd0a752f3f3607358b168bc1d928135
|
||||
RWKV_REPO?=https://github.com/donomii/go-rwkv.cpp
|
||||
RWKV_VERSION?=930a774fa0152426ed2279cb1005b3490bb0eba6
|
||||
WHISPER_CPP_VERSION?=57543c169e27312e7546d07ed0d8c6eb806ebc36
|
||||
BERT_VERSION?=6069103f54b9969c02e789d0fb12a23bd614285f
|
||||
BLOOMZ_VERSION?=1834e77b83faafe912ad4092ccf7f77937349e2f
|
||||
export BUILD_TYPE?=
|
||||
CGO_LDFLAGS?=
|
||||
CUDA_LIBPATH?=/usr/local/cuda/lib64/
|
||||
STABLEDIFFUSION_VERSION?=d89260f598afb809279bc72aa0107b4292587632
|
||||
GO_TAGS?=
|
||||
BUILD_ID?=git
|
||||
LD_FLAGS=?=
|
||||
OPTIONAL_TARGETS?=
|
||||
|
||||
OS := $(shell uname -s)
|
||||
ARCH := $(shell uname -m)
|
||||
GREEN := $(shell tput -Txterm setaf 2)
|
||||
YELLOW := $(shell tput -Txterm setaf 3)
|
||||
WHITE := $(shell tput -Txterm setaf 7)
|
||||
CYAN := $(shell tput -Txterm setaf 6)
|
||||
RESET := $(shell tput -Txterm sgr0)
|
||||
|
||||
C_INCLUDE_PATH=$(shell pwd)/go-llama:$(shell pwd)/go-stable-diffusion/:$(shell pwd)/gpt4all/gpt4all-bindings/golang/:$(shell pwd)/go-ggml-transformers:$(shell pwd)/go-rwkv:$(shell pwd)/whisper.cpp:$(shell pwd)/go-bert:$(shell pwd)/bloomz
|
||||
LIBRARY_PATH=$(shell pwd)/go-llama:$(shell pwd)/go-stable-diffusion/:$(shell pwd)/gpt4all/gpt4all-bindings/golang/:$(shell pwd)/go-ggml-transformers:$(shell pwd)/go-rwkv:$(shell pwd)/whisper.cpp:$(shell pwd)/go-bert:$(shell pwd)/bloomz
|
||||
|
||||
ifeq ($(BUILD_TYPE),openblas)
|
||||
CGO_LDFLAGS+=-lopenblas
|
||||
endif
|
||||
|
||||
ifeq ($(BUILD_TYPE),cublas)
|
||||
CGO_LDFLAGS+=-lcublas -lcudart -L$(CUDA_LIBPATH)
|
||||
export LLAMA_CUBLAS=1
|
||||
endif
|
||||
|
||||
ifeq ($(BUILD_TYPE),metal)
|
||||
CGO_LDFLAGS+=-framework Foundation -framework Metal -framework MetalKit -framework MetalPerformanceShaders
|
||||
export LLAMA_METAL=1
|
||||
endif
|
||||
|
||||
ifeq ($(BUILD_TYPE),clblas)
|
||||
CGO_LDFLAGS+=-lOpenCL -lclblast
|
||||
endif
|
||||
|
||||
# glibc-static or glibc-devel-static required
|
||||
ifeq ($(STATIC),true)
|
||||
LD_FLAGS=-linkmode external -extldflags -static
|
||||
endif
|
||||
|
||||
ifeq ($(GO_TAGS),stablediffusion)
|
||||
OPTIONAL_TARGETS+=go-stable-diffusion/libstablediffusion.a
|
||||
endif
|
||||
|
||||
.PHONY: all test build vendor
|
||||
|
||||
all: help
|
||||
|
||||
## GPT4ALL
|
||||
gpt4all:
|
||||
git clone --recurse-submodules $(GPT4ALL_REPO) gpt4all
|
||||
cd gpt4all && git checkout -b build $(GPT4ALL_VERSION) && git submodule update --init --recursive --depth 1
|
||||
# This is hackish, but needed as both go-llama and go-gpt4allj have their own version of ggml..
|
||||
@find ./gpt4all -type f -name "*.c" -exec sed -i'' -e 's/ggml_/ggml_gpt4all_/g' {} +
|
||||
@find ./gpt4all -type f -name "*.cpp" -exec sed -i'' -e 's/ggml_/ggml_gpt4all_/g' {} +
|
||||
@find ./gpt4all -type f -name "*.m" -exec sed -i'' -e 's/ggml_/ggml_gpt4all_/g' {} +
|
||||
@find ./gpt4all -type f -name "*.h" -exec sed -i'' -e 's/ggml_/ggml_gpt4all_/g' {} +
|
||||
@find ./gpt4all -type f -name "*.c" -exec sed -i'' -e 's/llama_/llama_gpt4all_/g' {} +
|
||||
@find ./gpt4all -type f -name "*.cpp" -exec sed -i'' -e 's/llama_/llama_gpt4all_/g' {} +
|
||||
@find ./gpt4all -type f -name "*.h" -exec sed -i'' -e 's/llama_/llama_gpt4all_/g' {} +
|
||||
@find ./gpt4all/gpt4all-backend -type f -name "llama_util.h" -execdir mv {} "llama_gpt4all_util.h" \;
|
||||
@find ./gpt4all -type f -name "*.cmake" -exec sed -i'' -e 's/llama_util/llama_gpt4all_util/g' {} +
|
||||
@find ./gpt4all -type f -name "*.txt" -exec sed -i'' -e 's/llama_util/llama_gpt4all_util/g' {} +
|
||||
@find ./gpt4all/gpt4all-bindings/golang -type f -name "*.cpp" -exec sed -i'' -e 's/load_model/load_gpt4all_model/g' {} +
|
||||
@find ./gpt4all/gpt4all-bindings/golang -type f -name "*.go" -exec sed -i'' -e 's/load_model/load_gpt4all_model/g' {} +
|
||||
@find ./gpt4all/gpt4all-bindings/golang -type f -name "*.h" -exec sed -i'' -e 's/load_model/load_gpt4all_model/g' {} +
|
||||
|
||||
|
||||
## BERT embeddings
|
||||
go-bert:
|
||||
git clone --recurse-submodules https://github.com/go-skynet/go-bert.cpp go-bert
|
||||
cd go-bert && git checkout -b build $(BERT_VERSION) && git submodule update --init --recursive --depth 1
|
||||
@find ./go-bert -type f -name "*.c" -exec sed -i'' -e 's/ggml_/ggml_bert_/g' {} +
|
||||
@find ./go-bert -type f -name "*.cpp" -exec sed -i'' -e 's/ggml_/ggml_bert_/g' {} +
|
||||
@find ./go-bert -type f -name "*.h" -exec sed -i'' -e 's/ggml_/ggml_bert_/g' {} +
|
||||
|
||||
## stable diffusion
|
||||
go-stable-diffusion:
|
||||
git clone --recurse-submodules https://github.com/mudler/go-stable-diffusion go-stable-diffusion
|
||||
cd go-stable-diffusion && git checkout -b build $(STABLEDIFFUSION_VERSION) && git submodule update --init --recursive --depth 1
|
||||
|
||||
go-stable-diffusion/libstablediffusion.a:
|
||||
$(MAKE) -C go-stable-diffusion libstablediffusion.a
|
||||
|
||||
## RWKV
|
||||
go-rwkv:
|
||||
git clone --recurse-submodules $(RWKV_REPO) go-rwkv
|
||||
cd go-rwkv && git checkout -b build $(RWKV_VERSION) && git submodule update --init --recursive --depth 1
|
||||
@find ./go-rwkv -type f -name "*.c" -exec sed -i'' -e 's/ggml_/ggml_rwkv_/g' {} +
|
||||
@find ./go-rwkv -type f -name "*.cpp" -exec sed -i'' -e 's/ggml_/ggml_rwkv_/g' {} +
|
||||
@find ./go-rwkv -type f -name "*.h" -exec sed -i'' -e 's/ggml_/ggml_rwkv_/g' {} +
|
||||
|
||||
go-rwkv/librwkv.a: go-rwkv
|
||||
cd go-rwkv && cd rwkv.cpp && cmake . -DRWKV_BUILD_SHARED_LIBRARY=OFF && cmake --build . && cp librwkv.a ..
|
||||
|
||||
## bloomz
|
||||
bloomz:
|
||||
git clone --recurse-submodules https://github.com/go-skynet/bloomz.cpp bloomz
|
||||
@find ./bloomz -type f -name "*.c" -exec sed -i'' -e 's/ggml_/ggml_bloomz_/g' {} +
|
||||
@find ./bloomz -type f -name "*.cpp" -exec sed -i'' -e 's/ggml_/ggml_bloomz_/g' {} +
|
||||
@find ./bloomz -type f -name "*.h" -exec sed -i'' -e 's/ggml_/ggml_bloomz_/g' {} +
|
||||
@find ./bloomz -type f -name "*.cpp" -exec sed -i'' -e 's/gpt_/gpt_bloomz_/g' {} +
|
||||
@find ./bloomz -type f -name "*.h" -exec sed -i'' -e 's/gpt_/gpt_bloomz_/g' {} +
|
||||
@find ./bloomz -type f -name "*.cpp" -exec sed -i'' -e 's/void replace/void json_bloomz_replace/g' {} +
|
||||
@find ./bloomz -type f -name "*.cpp" -exec sed -i'' -e 's/::replace/::json_bloomz_replace/g' {} +
|
||||
|
||||
bloomz/libbloomz.a: bloomz
|
||||
cd bloomz && make libbloomz.a
|
||||
|
||||
go-bert/libgobert.a: go-bert
|
||||
$(MAKE) -C go-bert libgobert.a
|
||||
|
||||
backend-assets/gpt4all: gpt4all/gpt4all-bindings/golang/libgpt4all.a
|
||||
mkdir -p backend-assets/gpt4all
|
||||
@cp gpt4all/gpt4all-bindings/golang/buildllm/*.so backend-assets/gpt4all/ || true
|
||||
@cp gpt4all/gpt4all-bindings/golang/buildllm/*.dylib backend-assets/gpt4all/ || true
|
||||
@cp gpt4all/gpt4all-bindings/golang/buildllm/*.dll backend-assets/gpt4all/ || true
|
||||
|
||||
gpt4all/gpt4all-bindings/golang/libgpt4all.a: gpt4all
|
||||
$(MAKE) -C gpt4all/gpt4all-bindings/golang/ libgpt4all.a
|
||||
|
||||
## CEREBRAS GPT
|
||||
go-ggml-transformers:
|
||||
git clone --recurse-submodules https://github.com/go-skynet/go-ggml-transformers.cpp go-ggml-transformers
|
||||
cd go-ggml-transformers && git checkout -b build $(GOGPT2_VERSION) && git submodule update --init --recursive --depth 1
|
||||
# This is hackish, but needed as both go-llama and go-gpt4allj have their own version of ggml..
|
||||
@find ./go-ggml-transformers -type f -name "*.c" -exec sed -i'' -e 's/ggml_/ggml_gpt2_/g' {} +
|
||||
@find ./go-ggml-transformers -type f -name "*.cpp" -exec sed -i'' -e 's/ggml_/ggml_gpt2_/g' {} +
|
||||
@find ./go-ggml-transformers -type f -name "*.h" -exec sed -i'' -e 's/ggml_/ggml_gpt2_/g' {} +
|
||||
@find ./go-ggml-transformers -type f -name "*.cpp" -exec sed -i'' -e 's/gpt_print_usage/gpt2_print_usage/g' {} +
|
||||
@find ./go-ggml-transformers -type f -name "*.h" -exec sed -i'' -e 's/gpt_print_usage/gpt2_print_usage/g' {} +
|
||||
@find ./go-ggml-transformers -type f -name "*.cpp" -exec sed -i'' -e 's/gpt_params_parse/gpt2_params_parse/g' {} +
|
||||
@find ./go-ggml-transformers -type f -name "*.h" -exec sed -i'' -e 's/gpt_params_parse/gpt2_params_parse/g' {} +
|
||||
@find ./go-ggml-transformers -type f -name "*.cpp" -exec sed -i'' -e 's/gpt_random_prompt/gpt2_random_prompt/g' {} +
|
||||
@find ./go-ggml-transformers -type f -name "*.h" -exec sed -i'' -e 's/gpt_random_prompt/gpt2_random_prompt/g' {} +
|
||||
@find ./go-ggml-transformers -type f -name "*.cpp" -exec sed -i'' -e 's/json_/json_gpt2_/g' {} +
|
||||
|
||||
go-ggml-transformers/libtransformers.a: go-ggml-transformers
|
||||
$(MAKE) -C go-ggml-transformers libtransformers.a
|
||||
|
||||
whisper.cpp:
|
||||
git clone https://github.com/ggerganov/whisper.cpp.git
|
||||
cd whisper.cpp && git checkout -b build $(WHISPER_CPP_VERSION) && git submodule update --init --recursive --depth 1
|
||||
@find ./whisper.cpp -type f -name "*.c" -exec sed -i'' -e 's/ggml_/ggml_whisper_/g' {} +
|
||||
@find ./whisper.cpp -type f -name "*.cpp" -exec sed -i'' -e 's/ggml_/ggml_whisper_/g' {} +
|
||||
@find ./whisper.cpp -type f -name "*.h" -exec sed -i'' -e 's/ggml_/ggml_whisper_/g' {} +
|
||||
|
||||
whisper.cpp/libwhisper.a: whisper.cpp
|
||||
cd whisper.cpp && make libwhisper.a
|
||||
|
||||
go-llama:
|
||||
git clone --recurse-submodules https://github.com/go-skynet/go-llama.cpp go-llama
|
||||
cd go-llama && git checkout -b build $(GOLLAMA_VERSION) && git submodule update --init --recursive --depth 1
|
||||
|
||||
go-llama/libbinding.a: go-llama
|
||||
$(MAKE) -C go-llama BUILD_TYPE=$(BUILD_TYPE) libbinding.a
|
||||
|
||||
replace:
|
||||
$(GOCMD) mod edit -replace github.com/go-skynet/go-llama.cpp=$(shell pwd)/go-llama
|
||||
$(GOCMD) mod edit -replace github.com/nomic-ai/gpt4all/gpt4all-bindings/golang=$(shell pwd)/gpt4all/gpt4all-bindings/golang
|
||||
$(GOCMD) mod edit -replace github.com/go-skynet/go-ggml-transformers.cpp=$(shell pwd)/go-ggml-transformers
|
||||
$(GOCMD) mod edit -replace github.com/donomii/go-rwkv.cpp=$(shell pwd)/go-rwkv
|
||||
$(GOCMD) mod edit -replace github.com/ggerganov/whisper.cpp=$(shell pwd)/whisper.cpp
|
||||
$(GOCMD) mod edit -replace github.com/go-skynet/go-bert.cpp=$(shell pwd)/go-bert
|
||||
$(GOCMD) mod edit -replace github.com/go-skynet/bloomz.cpp=$(shell pwd)/bloomz
|
||||
$(GOCMD) mod edit -replace github.com/mudler/go-stable-diffusion=$(shell pwd)/go-stable-diffusion
|
||||
|
||||
prepare-sources: go-llama go-ggml-transformers gpt4all go-rwkv whisper.cpp go-bert bloomz go-stable-diffusion replace
|
||||
$(GOCMD) mod download
|
||||
|
||||
## GENERIC
|
||||
rebuild: ## Rebuilds the project
|
||||
$(MAKE) -C go-llama clean
|
||||
$(MAKE) -C gpt4all/gpt4all-bindings/golang/ clean
|
||||
$(MAKE) -C go-ggml-transformers clean
|
||||
$(MAKE) -C go-rwkv clean
|
||||
$(MAKE) -C whisper.cpp clean
|
||||
$(MAKE) -C go-stable-diffusion clean
|
||||
$(MAKE) -C go-bert clean
|
||||
$(MAKE) -C bloomz clean
|
||||
$(MAKE) build
|
||||
|
||||
prepare: prepare-sources backend-assets/gpt4all $(OPTIONAL_TARGETS) go-llama/libbinding.a go-bert/libgobert.a go-ggml-transformers/libtransformers.a go-rwkv/librwkv.a whisper.cpp/libwhisper.a bloomz/libbloomz.a ## Prepares for building
|
||||
|
||||
clean: ## Remove build related file
|
||||
rm -fr ./go-llama
|
||||
rm -rf ./gpt4all
|
||||
rm -rf ./go-gpt2
|
||||
rm -rf ./go-stable-diffusion
|
||||
rm -rf ./go-ggml-transformers
|
||||
rm -rf ./backend-assets
|
||||
rm -rf ./go-rwkv
|
||||
rm -rf ./go-bert
|
||||
rm -rf ./bloomz
|
||||
rm -rf ./whisper.cpp
|
||||
rm -rf $(BINARY_NAME)
|
||||
rm -rf release/
|
||||
|
||||
## Build:
|
||||
|
||||
build: prepare ## Build the project
|
||||
$(info ${GREEN}I local-ai build info:${RESET})
|
||||
$(info ${GREEN}I BUILD_TYPE: ${YELLOW}$(BUILD_TYPE)${RESET})
|
||||
$(info ${GREEN}I GO_TAGS: ${YELLOW}$(GO_TAGS)${RESET})
|
||||
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=${C_INCLUDE_PATH} LIBRARY_PATH=${LIBRARY_PATH} $(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o $(BINARY_NAME) ./
|
||||
ifeq ($(BUILD_TYPE),metal)
|
||||
cp go-llama/build/bin/ggml-metal.metal .
|
||||
endif
|
||||
|
||||
dist: build
|
||||
mkdir -p release
|
||||
cp $(BINARY_NAME) release/$(BINARY_NAME)-$(BUILD_ID)-$(OS)-$(ARCH)
|
||||
|
||||
generic-build: ## Build the project using generic
|
||||
BUILD_TYPE="generic" $(MAKE) build
|
||||
|
||||
## Run
|
||||
run: prepare ## run local-ai
|
||||
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=${C_INCLUDE_PATH} LIBRARY_PATH=${LIBRARY_PATH} $(GOCMD) run ./
|
||||
|
||||
test-models/testmodel:
|
||||
mkdir test-models
|
||||
mkdir test-dir
|
||||
wget https://huggingface.co/nnakasato/ggml-model-test/resolve/main/ggml-model-q4.bin -O test-models/testmodel
|
||||
wget https://huggingface.co/ggerganov/whisper.cpp/resolve/main/ggml-base.en.bin -O test-models/whisper-en
|
||||
wget https://huggingface.co/skeskinen/ggml/resolve/main/all-MiniLM-L6-v2/ggml-model-q4_0.bin -O test-models/bert
|
||||
wget https://cdn.openai.com/whisper/draft-20220913a/micro-machines.wav -O test-dir/audio.wav
|
||||
wget https://huggingface.co/mudler/rwkv-4-raven-1.5B-ggml/resolve/main/RWKV-4-Raven-1B5-v11-Eng99%2525-Other1%2525-20230425-ctx4096_Q4_0.bin -O test-models/rwkv
|
||||
wget https://raw.githubusercontent.com/saharNooby/rwkv.cpp/5eb8f09c146ea8124633ab041d9ea0b1f1db4459/rwkv/20B_tokenizer.json -O test-models/rwkv.tokenizer.json
|
||||
cp tests/models_fixtures/* test-models
|
||||
|
||||
test: prepare test-models/testmodel
|
||||
cp -r backend-assets api
|
||||
cp tests/models_fixtures/* test-models
|
||||
C_INCLUDE_PATH=${C_INCLUDE_PATH} LIBRARY_PATH=${LIBRARY_PATH} TEST_DIR=$(abspath ./)/test-dir/ FIXTURES=$(abspath ./)/tests/fixtures CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models $(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="!gpt4all && !llama" --flake-attempts 5 -v -r ./api ./pkg
|
||||
C_INCLUDE_PATH=${C_INCLUDE_PATH} LIBRARY_PATH=${LIBRARY_PATH} TEST_DIR=$(abspath ./)/test-dir/ FIXTURES=$(abspath ./)/tests/fixtures CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models $(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="gpt4all" --flake-attempts 5 -v -r ./api ./pkg
|
||||
C_INCLUDE_PATH=${C_INCLUDE_PATH} LIBRARY_PATH=${LIBRARY_PATH} TEST_DIR=$(abspath ./)/test-dir/ FIXTURES=$(abspath ./)/tests/fixtures CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models $(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="llama" --flake-attempts 5 -v -r ./api ./pkg
|
||||
|
||||
## Help:
|
||||
help: ## Show this help.
|
||||
@echo ''
|
||||
@echo 'Usage:'
|
||||
@echo ' ${YELLOW}make${RESET} ${GREEN}<target>${RESET}'
|
||||
@echo ''
|
||||
@echo 'Targets:'
|
||||
@awk 'BEGIN {FS = ":.*?## "} { \
|
||||
if (/^[a-zA-Z_-]+:.*?##.*$$/) {printf " ${YELLOW}%-20s${GREEN}%s${RESET}\n", $$1, $$2} \
|
||||
else if (/^## .*$$/) {printf " ${CYAN}%s${RESET}\n", substr($$1,4)} \
|
||||
}' $(MAKEFILE_LIST)
|
||||
348
README.md
348
README.md
@@ -1,172 +1,218 @@
|
||||
## :camel: llama-cli
|
||||
<h1 align="center">
|
||||
<br>
|
||||
<img height="300" src="https://user-images.githubusercontent.com/2420543/233147843-88697415-6dbf-4368-a862-ab217f9f7342.jpeg"> <br>
|
||||
LocalAI
|
||||
<br>
|
||||
</h1>
|
||||
|
||||
[](https://github.com/go-skynet/LocalAI/actions/workflows/test.yml) [](https://github.com/go-skynet/LocalAI/actions/workflows/image.yml)
|
||||
|
||||
[](https://discord.gg/uJAeKSAGDy)
|
||||
|
||||
**LocalAI** is a drop-in replacement REST API that’s compatible with OpenAI API specifications for local inferencing. It allows you to run LLMs (and not only) locally or on-prem with consumer grade hardware, supporting multiple model families that are compatible with the ggml format. Does not require GPU.
|
||||
|
||||
For a list of the supported model families, please see [the model compatibility table](https://localai.io/model-compatibility/index.html#model-compatibility-table).
|
||||
|
||||
In a nutshell:
|
||||
|
||||
- Local, OpenAI drop-in alternative REST API. You own your data.
|
||||
- NO GPU required. NO Internet access is required either. Optional, GPU Acceleration is available in `llama.cpp`-compatible LLMs. [See building instructions](https://localai.io/basics/build/index.html).
|
||||
- Supports multiple models, Audio transcription, Text generation with GPTs, Image generation with stable diffusion (experimental)
|
||||
- Once loaded the first time, it keep models loaded in memory for faster inference
|
||||
- Doesn't shell-out, but uses C++ bindings for a faster inference and better performance.
|
||||
|
||||
LocalAI was created by [Ettore Di Giacinto](https://github.com/mudler/) and is a community-driven project, focused on making the AI accessible to anyone. Any contribution, feedback and PR is welcome!
|
||||
|
||||
| [ChatGPT OSS alternative](https://github.com/go-skynet/LocalAI/tree/master/examples/chatbot-ui) | [Image generation](https://localai.io/api-endpoints/index.html#image-generation) |
|
||||
|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
|
||||
|  |  |
|
||||
|
||||
|
||||
llama-cli is a straightforward golang CLI interface for [llama.cpp](https://github.com/ggerganov/llama.cpp), providing a simple API and a command line interface that allows text generation using a GPT-based model like llama directly from the terminal.
|
||||
See the [Getting started](https://localai.io/basics/getting_started/index.html) and [examples](https://github.com/go-skynet/LocalAI/tree/master/examples/) sections to learn how to use LocalAI. For a list of curated models check out the [model gallery](https://localai.io/models/).
|
||||
|
||||
## Container images
|
||||
## News
|
||||
|
||||
The `llama-cli` [container images](https://quay.io/repository/go-skynet/llama-cli?tab=tags&tag=latest) come preloaded with the [alpaca.cpp 7B](https://github.com/antimatter15/alpaca.cpp) model, enabling you to start making predictions immediately! To begin, run:
|
||||
- 🔥🔥🔥 06-06-2023: **v1.18.0**: Many updates, new features, and much more 🚀, check out the [Changelog](https://localai.io/basics/news/index.html#-06-06-2023-__v1180__-)!
|
||||
- 29-05-2023: LocalAI now has a website, [https://localai.io](https://localai.io)! check the news in the [dedicated section](https://localai.io/basics/news/index.html)!
|
||||
|
||||
```
|
||||
docker run -ti --rm quay.io/go-skynet/llama-cli:v0.2 --instruction "What's an alpaca?" --topk 10000
|
||||
```
|
||||
For latest news, follow also on Twitter [@LocalAI_API](https://twitter.com/LocalAI_API) and [@mudler_it](https://twitter.com/mudler_it)
|
||||
|
||||
You will receive a response like the following:
|
||||
## Contribute and help
|
||||
|
||||
```
|
||||
An alpaca is a member of the South American Camelid family, which includes the llama, guanaco and vicuña. It is a domesticated species that originates from the Andes mountain range in South America. Alpacas are used in the textile industry for their fleece, which is much softer than wool. Alpacas are also used for meat, milk, and fiber.
|
||||
```
|
||||
To help the project you can:
|
||||
|
||||
## Basic usage
|
||||
- Upvote the [Reddit post](https://www.reddit.com/r/selfhosted/comments/12w4p2f/localai_openai_compatible_api_to_run_llm_models/) about LocalAI.
|
||||
|
||||
To use llama-cli, specify a pre-trained GPT-based model, an input text, and an instruction for text generation. llama-cli takes the following arguments when running from the CLI:
|
||||
- [Hacker news post](https://news.ycombinator.com/item?id=35726934) - help us out by voting if you like this project.
|
||||
|
||||
```
|
||||
llama-cli --model <model_path> --instruction <instruction> [--input <input>] [--template <template_path>] [--tokens <num_tokens>] [--threads <num_threads>] [--temperature <temperature>] [--topp <top_p>] [--topk <top_k>]
|
||||
```
|
||||
- If you have technological skills and want to contribute to development, have a look at the open issues. If you are new you can have a look at the [good-first-issue](https://github.com/go-skynet/LocalAI/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22) and [help-wanted](https://github.com/go-skynet/LocalAI/issues?q=is%3Aissue+is%3Aopen+label%3A%22help+wanted%22) labels.
|
||||
|
||||
| Parameter | Environment Variable | Default Value | Description |
|
||||
| ------------ | -------------------- | ------------- | -------------------------------------- |
|
||||
| template | TEMPLATE | | A file containing a template for output formatting (optional). |
|
||||
| instruction | INSTRUCTION | | Input prompt text or instruction. "-" for STDIN. |
|
||||
| input | INPUT | - | Path to text or "-" for STDIN. |
|
||||
| model | MODEL_PATH | | The path to the pre-trained GPT-based model. |
|
||||
| tokens | TOKENS | 128 | The maximum number of tokens to generate. |
|
||||
| threads | THREADS | NumCPU() | The number of threads to use for text generation. |
|
||||
| temperature | TEMPERATURE | 0.95 | Sampling temperature for model output. ( values between `0.1` and `1.0` ) |
|
||||
| top_p | TOP_P | 0.85 | The cumulative probability for top-p sampling. |
|
||||
| top_k | TOP_K | 20 | The number of top-k tokens to consider for text generation. |
|
||||
| context-size | CONTEXT_SIZE | 512 | Default token context size. |
|
||||
| alpaca | ALPACA | true | Set to true for alpaca models. |
|
||||
- If you don't have technological skills you can still help improving documentation or add examples or share your user-stories with our community, any help and contribution is welcome!
|
||||
|
||||
Here's an example of using `llama-cli`:
|
||||
## Usage
|
||||
|
||||
```
|
||||
llama-cli --model ~/ggml-alpaca-7b-q4.bin --instruction "What's an alpaca?"
|
||||
```
|
||||
Check out the [Getting started](https://localai.io/basics/getting_started/index.html) section. Here below you will find generic, quick instructions to get ready and use LocalAI.
|
||||
|
||||
This will generate text based on the given model and instruction.
|
||||
|
||||
## Advanced usage
|
||||
|
||||
`llama-cli` also provides an API for running text generation as a service.
|
||||
|
||||
Example of starting the API with `docker`:
|
||||
The easiest way to run LocalAI is by using `docker-compose` (to build locally, see [building LocalAI](https://localai.io/basics/build/index.html)):
|
||||
|
||||
```bash
|
||||
docker run -p 8080:8080 -ti --rm quay.io/go-skynet/llama-cli:v0.2 api
|
||||
|
||||
git clone https://github.com/go-skynet/LocalAI
|
||||
|
||||
cd LocalAI
|
||||
|
||||
# (optional) Checkout a specific LocalAI tag
|
||||
# git checkout -b build <TAG>
|
||||
|
||||
# copy your models to models/
|
||||
cp your-model.bin models/
|
||||
|
||||
# (optional) Edit the .env file to set things like context size and threads
|
||||
# vim .env
|
||||
|
||||
# start with docker-compose
|
||||
docker-compose up -d --pull always
|
||||
# or you can build the images with:
|
||||
# docker-compose up -d --build
|
||||
|
||||
# Now API is accessible at localhost:8080
|
||||
curl http://localhost:8080/v1/models
|
||||
# {"object":"list","data":[{"id":"your-model.bin","object":"model"}]}
|
||||
|
||||
curl http://localhost:8080/v1/completions -H "Content-Type: application/json" -d '{
|
||||
"model": "your-model.bin",
|
||||
"prompt": "A long time ago in a galaxy far, far away",
|
||||
"temperature": 0.7
|
||||
}'
|
||||
```
|
||||
|
||||
And you'll see:
|
||||
```
|
||||
┌───────────────────────────────────────────────────┐
|
||||
│ Fiber v2.42.0 │
|
||||
│ http://127.0.0.1:8080 │
|
||||
│ (bound on host 0.0.0.0 and port 8080) │
|
||||
│ │
|
||||
│ Handlers ............. 1 Processes ........... 1 │
|
||||
│ Prefork ....... Disabled PID ................. 1 │
|
||||
└───────────────────────────────────────────────────┘
|
||||
```
|
||||
### Example: Use GPT4ALL-J model
|
||||
|
||||
You can control the API server options with command line arguments:
|
||||
|
||||
```
|
||||
llama-cli api --model <model_path> [--address <address>] [--threads <num_threads>]
|
||||
```
|
||||
|
||||
The API takes takes the following:
|
||||
|
||||
| Parameter | Environment Variable | Default Value | Description |
|
||||
| ------------ | -------------------- | ------------- | -------------------------------------- |
|
||||
| model | MODEL_PATH | | The path to the pre-trained GPT-based model. |
|
||||
| threads | THREADS | CPU cores | The number of threads to use for text generation. |
|
||||
| address | ADDRESS | :8080 | The address and port to listen on. |
|
||||
| context-size | CONTEXT_SIZE | 512 | Default token context size. |
|
||||
| alpaca | ALPACA | true | Set to true for alpaca models. |
|
||||
|
||||
|
||||
Once the server is running, you can make requests to it using HTTP. For example, to generate text based on an instruction, you can send a POST request to the `/predict` endpoint with the instruction as the request body:
|
||||
|
||||
```
|
||||
curl --location --request POST 'http://localhost:8080/predict' --header 'Content-Type: application/json' --data-raw '{
|
||||
"text": "What is an alpaca?",
|
||||
"topP": 0.8,
|
||||
"topK": 50,
|
||||
"temperature": 0.7,
|
||||
"tokens": 100
|
||||
}'
|
||||
```
|
||||
|
||||
Note: The API doesn't inject a template for talking to the instance, while the CLI does. You have to use a prompt similar to what's described in the standford-alpaca docs: https://github.com/tatsu-lab/stanford_alpaca#data-release, for instance:
|
||||
|
||||
```
|
||||
Below is an instruction that describes a task. Write a response that appropriately completes the request.
|
||||
|
||||
### Instruction:
|
||||
{instruction}
|
||||
|
||||
### Response:
|
||||
```
|
||||
|
||||
## Using other models
|
||||
|
||||
You can use the lite images ( for example `quay.io/go-skynet/llama-cli:v0.2-lite`) that don't ship any model, and specify a model binary to be used for inference with `--model`.
|
||||
|
||||
13B and 30B models are known to work:
|
||||
|
||||
### 13B
|
||||
|
||||
```
|
||||
# Download the model image, extract the model
|
||||
docker run --name model --entrypoint /models quay.io/go-skynet/models:ggml2-alpaca-13b-v0.2
|
||||
docker cp model:/models/model.bin ./
|
||||
|
||||
# Use the model with llama-cli
|
||||
docker run -v $PWD:/models -p 8080:8080 -ti --rm quay.io/go-skynet/llama-cli:v0.2-lite api --model /models/model.bin
|
||||
```
|
||||
|
||||
### 30B
|
||||
|
||||
```
|
||||
# Download the model image, extract the model
|
||||
docker run --name model --entrypoint /models quay.io/go-skynet/models:ggml2-alpaca-30b-v0.2
|
||||
docker cp model:/models/model.bin ./
|
||||
|
||||
# Use the model with llama-cli
|
||||
docker run -v $PWD:/models -p 8080:8080 -ti --rm quay.io/go-skynet/llama-cli:v0.2-lite api --model /models/model.bin
|
||||
```
|
||||
|
||||
### Golang client API
|
||||
|
||||
The `llama-cli` codebase has also a small client in go that can be used alongside with the api:
|
||||
|
||||
```golang
|
||||
package main
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
|
||||
client "github.com/go-skynet/llama-cli/client"
|
||||
)
|
||||
|
||||
func main() {
|
||||
|
||||
cli := client.NewClient("http://ip:30007")
|
||||
|
||||
out, err := cli.Predict("What's an alpaca?")
|
||||
if err != nil {
|
||||
panic(err)
|
||||
}
|
||||
|
||||
fmt.Println(out)
|
||||
}
|
||||
```
|
||||
|
||||
### Kubernetes
|
||||
|
||||
You can run the API directly in Kubernetes:
|
||||
<details>
|
||||
|
||||
```bash
|
||||
kubectl apply -f https://raw.githubusercontent.com/go-skynet/llama-cli/master/kubernetes/deployment.yaml
|
||||
```
|
||||
# Clone LocalAI
|
||||
git clone https://github.com/go-skynet/LocalAI
|
||||
|
||||
cd LocalAI
|
||||
|
||||
# (optional) Checkout a specific LocalAI tag
|
||||
# git checkout -b build <TAG>
|
||||
|
||||
# Download gpt4all-j to models/
|
||||
wget https://gpt4all.io/models/ggml-gpt4all-j.bin -O models/ggml-gpt4all-j
|
||||
|
||||
# Use a template from the examples
|
||||
cp -rf prompt-templates/ggml-gpt4all-j.tmpl models/
|
||||
|
||||
# (optional) Edit the .env file to set things like context size and threads
|
||||
# vim .env
|
||||
|
||||
# start with docker-compose
|
||||
docker-compose up -d --pull always
|
||||
# or you can build the images with:
|
||||
# docker-compose up -d --build
|
||||
# Now API is accessible at localhost:8080
|
||||
curl http://localhost:8080/v1/models
|
||||
# {"object":"list","data":[{"id":"ggml-gpt4all-j","object":"model"}]}
|
||||
|
||||
curl http://localhost:8080/v1/chat/completions -H "Content-Type: application/json" -d '{
|
||||
"model": "ggml-gpt4all-j",
|
||||
"messages": [{"role": "user", "content": "How are you?"}],
|
||||
"temperature": 0.9
|
||||
}'
|
||||
|
||||
# {"model":"ggml-gpt4all-j","choices":[{"message":{"role":"assistant","content":"I'm doing well, thanks. How about you?"}}]}
|
||||
```
|
||||
</details>
|
||||
|
||||
|
||||
### Build locally
|
||||
|
||||
<details>
|
||||
|
||||
In order to build the `LocalAI` container image locally you can use `docker`:
|
||||
|
||||
```
|
||||
# build the image
|
||||
docker build -t localai .
|
||||
docker run localai
|
||||
```
|
||||
|
||||
Or you can build the binary with `make`:
|
||||
|
||||
```
|
||||
make build
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
See the [build section](https://localai.io/basics/build/index.html) in our documentation for detailed instructions.
|
||||
|
||||
### Run LocalAI in Kubernetes
|
||||
|
||||
LocalAI can be installed inside Kubernetes with helm. See [installation instructions](https://localai.io/basics/getting_started/index.html#run-localai-in-kubernetes).
|
||||
|
||||
## Supported API endpoints
|
||||
|
||||
See the [list of the supported API endpoints](https://localai.io/api-endpoints/index.html) and how to configure image generation and audio transcription.
|
||||
|
||||
## Frequently asked questions
|
||||
|
||||
See [the FAQ](https://localai.io/faq/index.html) section for a list of common questions.
|
||||
|
||||
## Projects already using LocalAI to run local models
|
||||
|
||||
Feel free to open up a PR to get your project listed!
|
||||
|
||||
- [Kairos](https://github.com/kairos-io/kairos)
|
||||
- [k8sgpt](https://github.com/k8sgpt-ai/k8sgpt#running-local-models)
|
||||
- [Spark](https://github.com/cedriking/spark)
|
||||
- [autogpt4all](https://github.com/aorumbayev/autogpt4all)
|
||||
- [Mods](https://github.com/charmbracelet/mods)
|
||||
- [Flowise](https://github.com/FlowiseAI/Flowise)
|
||||
|
||||
## Short-term roadmap
|
||||
|
||||
- [x] Mimic OpenAI API (https://github.com/go-skynet/LocalAI/issues/10)
|
||||
- [ ] Binary releases (https://github.com/go-skynet/LocalAI/issues/6)
|
||||
- [ ] Upstream our golang bindings to llama.cpp (https://github.com/ggerganov/llama.cpp/issues/351) and [gpt4all](https://github.com/go-skynet/LocalAI/issues/85)
|
||||
- [x] Multi-model support
|
||||
- [x] Have a webUI!
|
||||
- [x] Allow configuration of defaults for models.
|
||||
- [x] Support for embeddings
|
||||
- [x] Support for audio transcription with https://github.com/ggerganov/whisper.cpp
|
||||
- [ ] GPU/CUDA support ( https://github.com/go-skynet/LocalAI/issues/69 )
|
||||
- [ ] Enable automatic downloading of models from a curated gallery, with only free-licensed models, directly from the webui.
|
||||
|
||||
## Star history
|
||||
|
||||
[](https://star-history.com/#go-skynet/LocalAI&Date)
|
||||
|
||||
## License
|
||||
|
||||
LocalAI is a community-driven project created by [Ettore Di Giacinto](https://github.com/mudler/).
|
||||
|
||||
MIT
|
||||
|
||||
## Author
|
||||
|
||||
Ettore Di Giacinto and others
|
||||
|
||||
## Acknowledgements
|
||||
|
||||
LocalAI couldn't have been built without the help of great software already available from the community. Thank you!
|
||||
|
||||
- [llama.cpp](https://github.com/ggerganov/llama.cpp)
|
||||
- https://github.com/tatsu-lab/stanford_alpaca
|
||||
- https://github.com/cornelk/llama-go for the initial ideas
|
||||
- https://github.com/antimatter15/alpaca.cpp
|
||||
- https://github.com/EdVince/Stable-Diffusion-NCNN
|
||||
- https://github.com/ggerganov/whisper.cpp
|
||||
- https://github.com/saharNooby/rwkv.cpp
|
||||
|
||||
## Contributors
|
||||
|
||||
<a href="https://github.com/go-skynet/LocalAI/graphs/contributors">
|
||||
<img src="https://contrib.rocks/image?repo=go-skynet/LocalAI" />
|
||||
</a>
|
||||
|
||||
78
api.go
78
api.go
@@ -1,78 +0,0 @@
|
||||
package main
|
||||
|
||||
import (
|
||||
"strconv"
|
||||
|
||||
llama "github.com/go-skynet/llama/go"
|
||||
"github.com/gofiber/fiber/v2"
|
||||
)
|
||||
|
||||
func api(l *llama.LLama, listenAddr string, threads int) error {
|
||||
app := fiber.New()
|
||||
|
||||
/*
|
||||
curl --location --request POST 'http://localhost:8080/predict' --header 'Content-Type: application/json' --data-raw '{
|
||||
"text": "What is an alpaca?",
|
||||
"topP": 0.8,
|
||||
"topK": 50,
|
||||
"temperature": 0.7,
|
||||
"tokens": 100
|
||||
}'
|
||||
*/
|
||||
|
||||
// Endpoint to generate the prediction
|
||||
app.Post("/predict", func(c *fiber.Ctx) error {
|
||||
// Get input data from the request body
|
||||
input := new(struct {
|
||||
Text string `json:"text"`
|
||||
})
|
||||
if err := c.BodyParser(input); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
// Set the parameters for the language model prediction
|
||||
topP, err := strconv.ParseFloat(c.Query("topP", "0.9"), 64) // Default value of topP is 0.9
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
topK, err := strconv.Atoi(c.Query("topK", "40")) // Default value of topK is 40
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
temperature, err := strconv.ParseFloat(c.Query("temperature", "0.5"), 64) // Default value of temperature is 0.5
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
tokens, err := strconv.Atoi(c.Query("tokens", "128")) // Default value of tokens is 128
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
// Generate the prediction using the language model
|
||||
prediction, err := l.Predict(
|
||||
input.Text,
|
||||
llama.SetTemperature(temperature),
|
||||
llama.SetTopP(topP),
|
||||
llama.SetTopK(topK),
|
||||
llama.SetTokens(tokens),
|
||||
llama.SetThreads(threads),
|
||||
)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
// Return the prediction in the response body
|
||||
return c.JSON(struct {
|
||||
Prediction string `json:"prediction"`
|
||||
}{
|
||||
Prediction: prediction,
|
||||
})
|
||||
})
|
||||
|
||||
// Start the server
|
||||
app.Listen(":8080")
|
||||
return nil
|
||||
}
|
||||
152
api/api.go
Normal file
152
api/api.go
Normal file
@@ -0,0 +1,152 @@
|
||||
package api
|
||||
|
||||
import (
|
||||
"errors"
|
||||
|
||||
"github.com/go-skynet/LocalAI/pkg/assets"
|
||||
"github.com/gofiber/fiber/v2"
|
||||
"github.com/gofiber/fiber/v2/middleware/cors"
|
||||
"github.com/gofiber/fiber/v2/middleware/logger"
|
||||
"github.com/gofiber/fiber/v2/middleware/recover"
|
||||
"github.com/rs/zerolog"
|
||||
"github.com/rs/zerolog/log"
|
||||
)
|
||||
|
||||
func App(opts ...AppOption) (*fiber.App, error) {
|
||||
options := newOptions(opts...)
|
||||
|
||||
zerolog.SetGlobalLevel(zerolog.InfoLevel)
|
||||
if options.debug {
|
||||
zerolog.SetGlobalLevel(zerolog.DebugLevel)
|
||||
}
|
||||
|
||||
// Return errors as JSON responses
|
||||
app := fiber.New(fiber.Config{
|
||||
BodyLimit: options.uploadLimitMB * 1024 * 1024, // this is the default limit of 4MB
|
||||
DisableStartupMessage: options.disableMessage,
|
||||
// Override default error handler
|
||||
ErrorHandler: func(ctx *fiber.Ctx, err error) error {
|
||||
// Status code defaults to 500
|
||||
code := fiber.StatusInternalServerError
|
||||
|
||||
// Retrieve the custom status code if it's a *fiber.Error
|
||||
var e *fiber.Error
|
||||
if errors.As(err, &e) {
|
||||
code = e.Code
|
||||
}
|
||||
|
||||
// Send custom error page
|
||||
return ctx.Status(code).JSON(
|
||||
ErrorResponse{
|
||||
Error: &APIError{Message: err.Error(), Code: code},
|
||||
},
|
||||
)
|
||||
},
|
||||
})
|
||||
|
||||
if options.debug {
|
||||
app.Use(logger.New(logger.Config{
|
||||
Format: "[${ip}]:${port} ${status} - ${method} ${path}\n",
|
||||
}))
|
||||
}
|
||||
|
||||
cm := NewConfigMerger()
|
||||
if err := cm.LoadConfigs(options.loader.ModelPath); err != nil {
|
||||
log.Error().Msgf("error loading config files: %s", err.Error())
|
||||
}
|
||||
|
||||
if options.configFile != "" {
|
||||
if err := cm.LoadConfigFile(options.configFile); err != nil {
|
||||
log.Error().Msgf("error loading config file: %s", err.Error())
|
||||
}
|
||||
}
|
||||
|
||||
if options.debug {
|
||||
for _, v := range cm.ListConfigs() {
|
||||
cfg, _ := cm.GetConfig(v)
|
||||
log.Debug().Msgf("Model: %s (config: %+v)", v, cfg)
|
||||
}
|
||||
}
|
||||
|
||||
if options.assetsDestination != "" {
|
||||
// Extract files from the embedded FS
|
||||
err := assets.ExtractFiles(options.backendAssets, options.assetsDestination)
|
||||
if err != nil {
|
||||
log.Warn().Msgf("Failed extracting backend assets files: %s (might be required for some backends to work properly, like gpt4all)", err)
|
||||
}
|
||||
}
|
||||
|
||||
// Default middleware config
|
||||
app.Use(recover.New())
|
||||
|
||||
if options.preloadJSONModels != "" {
|
||||
if err := ApplyGalleryFromString(options.loader.ModelPath, options.preloadJSONModels, cm); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
}
|
||||
|
||||
if options.preloadModelsFromPath != "" {
|
||||
if err := ApplyGalleryFromFile(options.loader.ModelPath, options.preloadModelsFromPath, cm); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
}
|
||||
|
||||
if options.cors {
|
||||
if options.corsAllowOrigins == "" {
|
||||
app.Use(cors.New())
|
||||
} else {
|
||||
app.Use(cors.New(cors.Config{
|
||||
AllowOrigins: options.corsAllowOrigins,
|
||||
}))
|
||||
}
|
||||
}
|
||||
|
||||
// LocalAI API endpoints
|
||||
applier := newGalleryApplier(options.loader.ModelPath)
|
||||
applier.start(options.context, cm)
|
||||
app.Post("/models/apply", applyModelGallery(options.loader.ModelPath, cm, applier.C))
|
||||
app.Get("/models/jobs/:uuid", getOpStatus(applier))
|
||||
|
||||
// openAI compatible API endpoint
|
||||
|
||||
// chat
|
||||
app.Post("/v1/chat/completions", chatEndpoint(cm, options))
|
||||
app.Post("/chat/completions", chatEndpoint(cm, options))
|
||||
|
||||
// edit
|
||||
app.Post("/v1/edits", editEndpoint(cm, options))
|
||||
app.Post("/edits", editEndpoint(cm, options))
|
||||
|
||||
// completion
|
||||
app.Post("/v1/completions", completionEndpoint(cm, options))
|
||||
app.Post("/completions", completionEndpoint(cm, options))
|
||||
|
||||
// embeddings
|
||||
app.Post("/v1/embeddings", embeddingsEndpoint(cm, options))
|
||||
app.Post("/embeddings", embeddingsEndpoint(cm, options))
|
||||
app.Post("/v1/engines/:model/embeddings", embeddingsEndpoint(cm, options))
|
||||
|
||||
// audio
|
||||
app.Post("/v1/audio/transcriptions", transcriptEndpoint(cm, options))
|
||||
|
||||
// images
|
||||
app.Post("/v1/images/generations", imageEndpoint(cm, options))
|
||||
|
||||
if options.imageDir != "" {
|
||||
app.Static("/generated-images", options.imageDir)
|
||||
}
|
||||
|
||||
ok := func(c *fiber.Ctx) error {
|
||||
return c.SendStatus(200)
|
||||
}
|
||||
|
||||
// Kubernetes health checks
|
||||
app.Get("/healthz", ok)
|
||||
app.Get("/readyz", ok)
|
||||
|
||||
// models
|
||||
app.Get("/v1/models", listModels(options.loader, cm))
|
||||
app.Get("/models", listModels(options.loader, cm))
|
||||
|
||||
return app, nil
|
||||
}
|
||||
429
api/api_test.go
Normal file
429
api/api_test.go
Normal file
@@ -0,0 +1,429 @@
|
||||
package api_test
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"context"
|
||||
"embed"
|
||||
"encoding/json"
|
||||
"fmt"
|
||||
"io/ioutil"
|
||||
"net/http"
|
||||
"os"
|
||||
"path/filepath"
|
||||
"runtime"
|
||||
|
||||
. "github.com/go-skynet/LocalAI/api"
|
||||
"github.com/go-skynet/LocalAI/pkg/model"
|
||||
"github.com/gofiber/fiber/v2"
|
||||
. "github.com/onsi/ginkgo/v2"
|
||||
. "github.com/onsi/gomega"
|
||||
"gopkg.in/yaml.v3"
|
||||
|
||||
openaigo "github.com/otiai10/openaigo"
|
||||
"github.com/sashabaranov/go-openai"
|
||||
)
|
||||
|
||||
type modelApplyRequest struct {
|
||||
URL string `json:"url"`
|
||||
Name string `json:"name"`
|
||||
Overrides map[string]string `json:"overrides"`
|
||||
}
|
||||
|
||||
func getModelStatus(url string) (response map[string]interface{}) {
|
||||
// Create the HTTP request
|
||||
resp, err := http.Get(url)
|
||||
if err != nil {
|
||||
fmt.Println("Error creating request:", err)
|
||||
return
|
||||
}
|
||||
defer resp.Body.Close()
|
||||
|
||||
body, err := ioutil.ReadAll(resp.Body)
|
||||
if err != nil {
|
||||
fmt.Println("Error reading response body:", err)
|
||||
return
|
||||
}
|
||||
|
||||
// Unmarshal the response into a map[string]interface{}
|
||||
err = json.Unmarshal(body, &response)
|
||||
if err != nil {
|
||||
fmt.Println("Error unmarshaling JSON response:", err)
|
||||
return
|
||||
}
|
||||
return
|
||||
}
|
||||
func postModelApplyRequest(url string, request modelApplyRequest) (response map[string]interface{}) {
|
||||
|
||||
//url := "http://localhost:AI/models/apply"
|
||||
|
||||
// Create the request payload
|
||||
|
||||
payload, err := json.Marshal(request)
|
||||
if err != nil {
|
||||
fmt.Println("Error marshaling JSON:", err)
|
||||
return
|
||||
}
|
||||
|
||||
// Create the HTTP request
|
||||
req, err := http.NewRequest("POST", url, bytes.NewBuffer(payload))
|
||||
if err != nil {
|
||||
fmt.Println("Error creating request:", err)
|
||||
return
|
||||
}
|
||||
req.Header.Set("Content-Type", "application/json")
|
||||
|
||||
// Make the request
|
||||
client := &http.Client{}
|
||||
resp, err := client.Do(req)
|
||||
if err != nil {
|
||||
fmt.Println("Error making request:", err)
|
||||
return
|
||||
}
|
||||
defer resp.Body.Close()
|
||||
|
||||
body, err := ioutil.ReadAll(resp.Body)
|
||||
if err != nil {
|
||||
fmt.Println("Error reading response body:", err)
|
||||
return
|
||||
}
|
||||
|
||||
// Unmarshal the response into a map[string]interface{}
|
||||
err = json.Unmarshal(body, &response)
|
||||
if err != nil {
|
||||
fmt.Println("Error unmarshaling JSON response:", err)
|
||||
return
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
//go:embed backend-assets/*
|
||||
var backendAssets embed.FS
|
||||
|
||||
var _ = Describe("API test", func() {
|
||||
|
||||
var app *fiber.App
|
||||
var modelLoader *model.ModelLoader
|
||||
var client *openai.Client
|
||||
var client2 *openaigo.Client
|
||||
var c context.Context
|
||||
var cancel context.CancelFunc
|
||||
var tmpdir string
|
||||
|
||||
Context("API with ephemeral models", func() {
|
||||
BeforeEach(func() {
|
||||
var err error
|
||||
tmpdir, err = os.MkdirTemp("", "")
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
|
||||
modelLoader = model.NewModelLoader(tmpdir)
|
||||
c, cancel = context.WithCancel(context.Background())
|
||||
|
||||
app, err = App(WithContext(c), WithModelLoader(modelLoader), WithBackendAssets(backendAssets), WithBackendAssetsOutput(tmpdir))
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
go app.Listen("127.0.0.1:9090")
|
||||
|
||||
defaultConfig := openai.DefaultConfig("")
|
||||
defaultConfig.BaseURL = "http://127.0.0.1:9090/v1"
|
||||
|
||||
client2 = openaigo.NewClient("")
|
||||
client2.BaseURL = defaultConfig.BaseURL
|
||||
|
||||
// Wait for API to be ready
|
||||
client = openai.NewClientWithConfig(defaultConfig)
|
||||
Eventually(func() error {
|
||||
_, err := client.ListModels(context.TODO())
|
||||
return err
|
||||
}, "2m").ShouldNot(HaveOccurred())
|
||||
})
|
||||
|
||||
AfterEach(func() {
|
||||
cancel()
|
||||
app.Shutdown()
|
||||
os.RemoveAll(tmpdir)
|
||||
})
|
||||
|
||||
Context("Applying models", func() {
|
||||
It("overrides models", func() {
|
||||
response := postModelApplyRequest("http://127.0.0.1:9090/models/apply", modelApplyRequest{
|
||||
URL: "https://raw.githubusercontent.com/go-skynet/model-gallery/main/bert-embeddings.yaml",
|
||||
Name: "bert",
|
||||
Overrides: map[string]string{
|
||||
"backend": "llama",
|
||||
},
|
||||
})
|
||||
|
||||
Expect(response["uuid"]).ToNot(BeEmpty(), fmt.Sprint(response))
|
||||
|
||||
uuid := response["uuid"].(string)
|
||||
|
||||
Eventually(func() bool {
|
||||
response := getModelStatus("http://127.0.0.1:9090/models/jobs/" + uuid)
|
||||
fmt.Println(response)
|
||||
return response["processed"].(bool)
|
||||
}, "360s").Should(Equal(true))
|
||||
|
||||
dat, err := os.ReadFile(filepath.Join(tmpdir, "bert.yaml"))
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
|
||||
content := map[string]interface{}{}
|
||||
err = yaml.Unmarshal(dat, &content)
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
Expect(content["backend"]).To(Equal("llama"))
|
||||
})
|
||||
It("apply models without overrides", func() {
|
||||
response := postModelApplyRequest("http://127.0.0.1:9090/models/apply", modelApplyRequest{
|
||||
URL: "https://raw.githubusercontent.com/go-skynet/model-gallery/main/bert-embeddings.yaml",
|
||||
Name: "bert",
|
||||
Overrides: map[string]string{},
|
||||
})
|
||||
|
||||
Expect(response["uuid"]).ToNot(BeEmpty(), fmt.Sprint(response))
|
||||
|
||||
uuid := response["uuid"].(string)
|
||||
|
||||
Eventually(func() bool {
|
||||
response := getModelStatus("http://127.0.0.1:9090/models/jobs/" + uuid)
|
||||
fmt.Println(response)
|
||||
return response["processed"].(bool)
|
||||
}, "360s").Should(Equal(true))
|
||||
|
||||
dat, err := os.ReadFile(filepath.Join(tmpdir, "bert.yaml"))
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
|
||||
content := map[string]interface{}{}
|
||||
err = yaml.Unmarshal(dat, &content)
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
Expect(content["backend"]).To(Equal("bert-embeddings"))
|
||||
})
|
||||
|
||||
It("runs openllama", Label("llama"), func() {
|
||||
if runtime.GOOS != "linux" {
|
||||
Skip("test supported only on linux")
|
||||
}
|
||||
response := postModelApplyRequest("http://127.0.0.1:9090/models/apply", modelApplyRequest{
|
||||
URL: "github:go-skynet/model-gallery/openllama_3b.yaml",
|
||||
Name: "openllama_3b",
|
||||
Overrides: map[string]string{},
|
||||
})
|
||||
|
||||
Expect(response["uuid"]).ToNot(BeEmpty(), fmt.Sprint(response))
|
||||
|
||||
uuid := response["uuid"].(string)
|
||||
|
||||
Eventually(func() bool {
|
||||
response := getModelStatus("http://127.0.0.1:9090/models/jobs/" + uuid)
|
||||
fmt.Println(response)
|
||||
return response["processed"].(bool)
|
||||
}, "360s").Should(Equal(true))
|
||||
|
||||
resp, err := client.CreateCompletion(context.TODO(), openai.CompletionRequest{Model: "openllama_3b", Prompt: "Count up to five: one, two, three, four, "})
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
Expect(len(resp.Choices)).To(Equal(1))
|
||||
Expect(resp.Choices[0].Text).To(ContainSubstring("five"))
|
||||
})
|
||||
|
||||
It("runs gpt4all", Label("gpt4all"), func() {
|
||||
if runtime.GOOS != "linux" {
|
||||
Skip("test supported only on linux")
|
||||
}
|
||||
|
||||
response := postModelApplyRequest("http://127.0.0.1:9090/models/apply", modelApplyRequest{
|
||||
URL: "github:go-skynet/model-gallery/gpt4all-j.yaml",
|
||||
Name: "gpt4all-j",
|
||||
Overrides: map[string]string{},
|
||||
})
|
||||
|
||||
Expect(response["uuid"]).ToNot(BeEmpty(), fmt.Sprint(response))
|
||||
|
||||
uuid := response["uuid"].(string)
|
||||
|
||||
Eventually(func() bool {
|
||||
response := getModelStatus("http://127.0.0.1:9090/models/jobs/" + uuid)
|
||||
fmt.Println(response)
|
||||
return response["processed"].(bool)
|
||||
}, "360s").Should(Equal(true))
|
||||
|
||||
resp, err := client.CreateChatCompletion(context.TODO(), openai.ChatCompletionRequest{Model: "gpt4all-j", Messages: []openai.ChatCompletionMessage{openai.ChatCompletionMessage{Role: "user", Content: "How are you?"}}})
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
Expect(len(resp.Choices)).To(Equal(1))
|
||||
Expect(resp.Choices[0].Message.Content).To(ContainSubstring("well"))
|
||||
})
|
||||
})
|
||||
})
|
||||
|
||||
Context("API query", func() {
|
||||
BeforeEach(func() {
|
||||
modelLoader = model.NewModelLoader(os.Getenv("MODELS_PATH"))
|
||||
c, cancel = context.WithCancel(context.Background())
|
||||
|
||||
var err error
|
||||
app, err = App(WithContext(c), WithModelLoader(modelLoader))
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
go app.Listen("127.0.0.1:9090")
|
||||
|
||||
defaultConfig := openai.DefaultConfig("")
|
||||
defaultConfig.BaseURL = "http://127.0.0.1:9090/v1"
|
||||
|
||||
client2 = openaigo.NewClient("")
|
||||
client2.BaseURL = defaultConfig.BaseURL
|
||||
|
||||
// Wait for API to be ready
|
||||
client = openai.NewClientWithConfig(defaultConfig)
|
||||
Eventually(func() error {
|
||||
_, err := client.ListModels(context.TODO())
|
||||
return err
|
||||
}, "2m").ShouldNot(HaveOccurred())
|
||||
})
|
||||
AfterEach(func() {
|
||||
cancel()
|
||||
app.Shutdown()
|
||||
})
|
||||
It("returns the models list", func() {
|
||||
models, err := client.ListModels(context.TODO())
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
Expect(len(models.Models)).To(Equal(10))
|
||||
})
|
||||
It("can generate completions", func() {
|
||||
resp, err := client.CreateCompletion(context.TODO(), openai.CompletionRequest{Model: "testmodel", Prompt: "abcdedfghikl"})
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
Expect(len(resp.Choices)).To(Equal(1))
|
||||
Expect(resp.Choices[0].Text).ToNot(BeEmpty())
|
||||
})
|
||||
|
||||
It("can generate chat completions ", func() {
|
||||
resp, err := client.CreateChatCompletion(context.TODO(), openai.ChatCompletionRequest{Model: "testmodel", Messages: []openai.ChatCompletionMessage{openai.ChatCompletionMessage{Role: "user", Content: "abcdedfghikl"}}})
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
Expect(len(resp.Choices)).To(Equal(1))
|
||||
Expect(resp.Choices[0].Message.Content).ToNot(BeEmpty())
|
||||
})
|
||||
|
||||
It("can generate completions from model configs", func() {
|
||||
resp, err := client.CreateCompletion(context.TODO(), openai.CompletionRequest{Model: "gpt4all", Prompt: "abcdedfghikl"})
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
Expect(len(resp.Choices)).To(Equal(1))
|
||||
Expect(resp.Choices[0].Text).ToNot(BeEmpty())
|
||||
})
|
||||
|
||||
It("can generate chat completions from model configs", func() {
|
||||
resp, err := client.CreateChatCompletion(context.TODO(), openai.ChatCompletionRequest{Model: "gpt4all-2", Messages: []openai.ChatCompletionMessage{openai.ChatCompletionMessage{Role: "user", Content: "abcdedfghikl"}}})
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
Expect(len(resp.Choices)).To(Equal(1))
|
||||
Expect(resp.Choices[0].Message.Content).ToNot(BeEmpty())
|
||||
})
|
||||
|
||||
It("returns errors", func() {
|
||||
_, err := client.CreateCompletion(context.TODO(), openai.CompletionRequest{Model: "foomodel", Prompt: "abcdedfghikl"})
|
||||
Expect(err).To(HaveOccurred())
|
||||
Expect(err.Error()).To(ContainSubstring("error, status code: 500, message: could not load model - all backends returned error: 11 errors occurred:"))
|
||||
})
|
||||
It("transcribes audio", func() {
|
||||
if runtime.GOOS != "linux" {
|
||||
Skip("test supported only on linux")
|
||||
}
|
||||
resp, err := client.CreateTranscription(
|
||||
context.Background(),
|
||||
openai.AudioRequest{
|
||||
Model: openai.Whisper1,
|
||||
FilePath: filepath.Join(os.Getenv("TEST_DIR"), "audio.wav"),
|
||||
},
|
||||
)
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
Expect(resp.Text).To(ContainSubstring("This is the Micro Machine Man presenting"))
|
||||
})
|
||||
|
||||
It("calculate embeddings", func() {
|
||||
if runtime.GOOS != "linux" {
|
||||
Skip("test supported only on linux")
|
||||
}
|
||||
resp, err := client.CreateEmbeddings(
|
||||
context.Background(),
|
||||
openai.EmbeddingRequest{
|
||||
Model: openai.AdaEmbeddingV2,
|
||||
Input: []string{"sun", "cat"},
|
||||
},
|
||||
)
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
Expect(len(resp.Data[0].Embedding)).To(BeNumerically("==", 384))
|
||||
Expect(len(resp.Data[1].Embedding)).To(BeNumerically("==", 384))
|
||||
|
||||
sunEmbedding := resp.Data[0].Embedding
|
||||
resp2, err := client.CreateEmbeddings(
|
||||
context.Background(),
|
||||
openai.EmbeddingRequest{
|
||||
Model: openai.AdaEmbeddingV2,
|
||||
Input: []string{"sun"},
|
||||
},
|
||||
)
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
Expect(resp2.Data[0].Embedding).To(Equal(sunEmbedding))
|
||||
})
|
||||
|
||||
Context("backends", func() {
|
||||
It("runs rwkv", func() {
|
||||
if runtime.GOOS != "linux" {
|
||||
Skip("test supported only on linux")
|
||||
}
|
||||
resp, err := client.CreateCompletion(context.TODO(), openai.CompletionRequest{Model: "rwkv_test", Prompt: "Count up to five: one, two, three, four,"})
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
Expect(len(resp.Choices) > 0).To(BeTrue())
|
||||
Expect(resp.Choices[0].Text).To(Equal(" five."))
|
||||
})
|
||||
})
|
||||
})
|
||||
|
||||
Context("Config file", func() {
|
||||
BeforeEach(func() {
|
||||
modelLoader = model.NewModelLoader(os.Getenv("MODELS_PATH"))
|
||||
c, cancel = context.WithCancel(context.Background())
|
||||
|
||||
var err error
|
||||
app, err = App(WithContext(c), WithModelLoader(modelLoader), WithConfigFile(os.Getenv("CONFIG_FILE")))
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
go app.Listen("127.0.0.1:9090")
|
||||
|
||||
defaultConfig := openai.DefaultConfig("")
|
||||
defaultConfig.BaseURL = "http://127.0.0.1:9090/v1"
|
||||
client2 = openaigo.NewClient("")
|
||||
client2.BaseURL = defaultConfig.BaseURL
|
||||
// Wait for API to be ready
|
||||
client = openai.NewClientWithConfig(defaultConfig)
|
||||
Eventually(func() error {
|
||||
_, err := client.ListModels(context.TODO())
|
||||
return err
|
||||
}, "2m").ShouldNot(HaveOccurred())
|
||||
})
|
||||
AfterEach(func() {
|
||||
cancel()
|
||||
app.Shutdown()
|
||||
})
|
||||
It("can generate chat completions from config file", func() {
|
||||
models, err := client.ListModels(context.TODO())
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
Expect(len(models.Models)).To(Equal(12))
|
||||
})
|
||||
It("can generate chat completions from config file", func() {
|
||||
resp, err := client.CreateChatCompletion(context.TODO(), openai.ChatCompletionRequest{Model: "list1", Messages: []openai.ChatCompletionMessage{openai.ChatCompletionMessage{Role: "user", Content: "abcdedfghikl"}}})
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
Expect(len(resp.Choices)).To(Equal(1))
|
||||
Expect(resp.Choices[0].Message.Content).ToNot(BeEmpty())
|
||||
})
|
||||
It("can generate chat completions from config file", func() {
|
||||
resp, err := client.CreateChatCompletion(context.TODO(), openai.ChatCompletionRequest{Model: "list2", Messages: []openai.ChatCompletionMessage{openai.ChatCompletionMessage{Role: "user", Content: "abcdedfghikl"}}})
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
Expect(len(resp.Choices)).To(Equal(1))
|
||||
Expect(resp.Choices[0].Message.Content).ToNot(BeEmpty())
|
||||
})
|
||||
It("can generate edit completions from config file", func() {
|
||||
request := openaigo.EditCreateRequestBody{
|
||||
Model: "list2",
|
||||
Instruction: "foo",
|
||||
Input: "bar",
|
||||
}
|
||||
resp, err := client2.CreateEdit(context.Background(), request)
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
Expect(len(resp.Choices)).To(Equal(1))
|
||||
Expect(resp.Choices[0].Text).ToNot(BeEmpty())
|
||||
})
|
||||
|
||||
})
|
||||
})
|
||||
13
api/apt_suite_test.go
Normal file
13
api/apt_suite_test.go
Normal file
@@ -0,0 +1,13 @@
|
||||
package api_test
|
||||
|
||||
import (
|
||||
"testing"
|
||||
|
||||
. "github.com/onsi/ginkgo/v2"
|
||||
. "github.com/onsi/gomega"
|
||||
)
|
||||
|
||||
func TestLocalAI(t *testing.T) {
|
||||
RegisterFailHandler(Fail)
|
||||
RunSpecs(t, "LocalAI test suite")
|
||||
}
|
||||
354
api/config.go
Normal file
354
api/config.go
Normal file
@@ -0,0 +1,354 @@
|
||||
package api
|
||||
|
||||
import (
|
||||
"encoding/json"
|
||||
"fmt"
|
||||
"io/fs"
|
||||
"os"
|
||||
"path/filepath"
|
||||
"strings"
|
||||
"sync"
|
||||
|
||||
model "github.com/go-skynet/LocalAI/pkg/model"
|
||||
"github.com/gofiber/fiber/v2"
|
||||
"github.com/rs/zerolog/log"
|
||||
"gopkg.in/yaml.v3"
|
||||
)
|
||||
|
||||
type Config struct {
|
||||
OpenAIRequest `yaml:"parameters"`
|
||||
Name string `yaml:"name"`
|
||||
StopWords []string `yaml:"stopwords"`
|
||||
Cutstrings []string `yaml:"cutstrings"`
|
||||
TrimSpace []string `yaml:"trimspace"`
|
||||
ContextSize int `yaml:"context_size"`
|
||||
F16 bool `yaml:"f16"`
|
||||
Threads int `yaml:"threads"`
|
||||
Debug bool `yaml:"debug"`
|
||||
Roles map[string]string `yaml:"roles"`
|
||||
Embeddings bool `yaml:"embeddings"`
|
||||
Backend string `yaml:"backend"`
|
||||
TemplateConfig TemplateConfig `yaml:"template"`
|
||||
MirostatETA float64 `yaml:"mirostat_eta"`
|
||||
MirostatTAU float64 `yaml:"mirostat_tau"`
|
||||
Mirostat int `yaml:"mirostat"`
|
||||
NGPULayers int `yaml:"gpu_layers"`
|
||||
MMap bool `yaml:"mmap"`
|
||||
MMlock bool `yaml:"mmlock"`
|
||||
|
||||
TensorSplit string `yaml:"tensor_split"`
|
||||
MainGPU string `yaml:"main_gpu"`
|
||||
ImageGenerationAssets string `yaml:"asset_dir"`
|
||||
|
||||
PromptCachePath string `yaml:"prompt_cache_path"`
|
||||
PromptCacheAll bool `yaml:"prompt_cache_all"`
|
||||
PromptCacheRO bool `yaml:"prompt_cache_ro"`
|
||||
|
||||
PromptStrings, InputStrings []string
|
||||
InputToken [][]int
|
||||
}
|
||||
|
||||
type TemplateConfig struct {
|
||||
Completion string `yaml:"completion"`
|
||||
Chat string `yaml:"chat"`
|
||||
Edit string `yaml:"edit"`
|
||||
}
|
||||
|
||||
type ConfigMerger struct {
|
||||
configs map[string]Config
|
||||
sync.Mutex
|
||||
}
|
||||
|
||||
func defaultConfig(modelFile string) *Config {
|
||||
return &Config{
|
||||
OpenAIRequest: defaultRequest(modelFile),
|
||||
}
|
||||
}
|
||||
|
||||
func NewConfigMerger() *ConfigMerger {
|
||||
return &ConfigMerger{
|
||||
configs: make(map[string]Config),
|
||||
}
|
||||
}
|
||||
func ReadConfigFile(file string) ([]*Config, error) {
|
||||
c := &[]*Config{}
|
||||
f, err := os.ReadFile(file)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("cannot read config file: %w", err)
|
||||
}
|
||||
if err := yaml.Unmarshal(f, c); err != nil {
|
||||
return nil, fmt.Errorf("cannot unmarshal config file: %w", err)
|
||||
}
|
||||
|
||||
return *c, nil
|
||||
}
|
||||
|
||||
func ReadConfig(file string) (*Config, error) {
|
||||
c := &Config{}
|
||||
f, err := os.ReadFile(file)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("cannot read config file: %w", err)
|
||||
}
|
||||
if err := yaml.Unmarshal(f, c); err != nil {
|
||||
return nil, fmt.Errorf("cannot unmarshal config file: %w", err)
|
||||
}
|
||||
|
||||
return c, nil
|
||||
}
|
||||
|
||||
func (cm ConfigMerger) LoadConfigFile(file string) error {
|
||||
cm.Lock()
|
||||
defer cm.Unlock()
|
||||
c, err := ReadConfigFile(file)
|
||||
if err != nil {
|
||||
return fmt.Errorf("cannot load config file: %w", err)
|
||||
}
|
||||
|
||||
for _, cc := range c {
|
||||
cm.configs[cc.Name] = *cc
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
func (cm ConfigMerger) LoadConfig(file string) error {
|
||||
cm.Lock()
|
||||
defer cm.Unlock()
|
||||
c, err := ReadConfig(file)
|
||||
if err != nil {
|
||||
return fmt.Errorf("cannot read config file: %w", err)
|
||||
}
|
||||
|
||||
cm.configs[c.Name] = *c
|
||||
return nil
|
||||
}
|
||||
|
||||
func (cm ConfigMerger) GetConfig(m string) (Config, bool) {
|
||||
cm.Lock()
|
||||
defer cm.Unlock()
|
||||
v, exists := cm.configs[m]
|
||||
return v, exists
|
||||
}
|
||||
|
||||
func (cm ConfigMerger) ListConfigs() []string {
|
||||
cm.Lock()
|
||||
defer cm.Unlock()
|
||||
var res []string
|
||||
for k := range cm.configs {
|
||||
res = append(res, k)
|
||||
}
|
||||
return res
|
||||
}
|
||||
|
||||
func (cm ConfigMerger) LoadConfigs(path string) error {
|
||||
cm.Lock()
|
||||
defer cm.Unlock()
|
||||
entries, err := os.ReadDir(path)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
files := make([]fs.FileInfo, 0, len(entries))
|
||||
for _, entry := range entries {
|
||||
info, err := entry.Info()
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
files = append(files, info)
|
||||
}
|
||||
for _, file := range files {
|
||||
// Skip templates, YAML and .keep files
|
||||
if !strings.Contains(file.Name(), ".yaml") {
|
||||
continue
|
||||
}
|
||||
c, err := ReadConfig(filepath.Join(path, file.Name()))
|
||||
if err == nil {
|
||||
cm.configs[c.Name] = *c
|
||||
}
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
func updateConfig(config *Config, input *OpenAIRequest) {
|
||||
if input.Echo {
|
||||
config.Echo = input.Echo
|
||||
}
|
||||
if input.TopK != 0 {
|
||||
config.TopK = input.TopK
|
||||
}
|
||||
if input.TopP != 0 {
|
||||
config.TopP = input.TopP
|
||||
}
|
||||
|
||||
if input.Temperature != 0 {
|
||||
config.Temperature = input.Temperature
|
||||
}
|
||||
|
||||
if input.Maxtokens != 0 {
|
||||
config.Maxtokens = input.Maxtokens
|
||||
}
|
||||
|
||||
switch stop := input.Stop.(type) {
|
||||
case string:
|
||||
if stop != "" {
|
||||
config.StopWords = append(config.StopWords, stop)
|
||||
}
|
||||
case []interface{}:
|
||||
for _, pp := range stop {
|
||||
if s, ok := pp.(string); ok {
|
||||
config.StopWords = append(config.StopWords, s)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if input.RepeatPenalty != 0 {
|
||||
config.RepeatPenalty = input.RepeatPenalty
|
||||
}
|
||||
|
||||
if input.Keep != 0 {
|
||||
config.Keep = input.Keep
|
||||
}
|
||||
|
||||
if input.Batch != 0 {
|
||||
config.Batch = input.Batch
|
||||
}
|
||||
|
||||
if input.F16 {
|
||||
config.F16 = input.F16
|
||||
}
|
||||
|
||||
if input.IgnoreEOS {
|
||||
config.IgnoreEOS = input.IgnoreEOS
|
||||
}
|
||||
|
||||
if input.Seed != 0 {
|
||||
config.Seed = input.Seed
|
||||
}
|
||||
|
||||
if input.Mirostat != 0 {
|
||||
config.Mirostat = input.Mirostat
|
||||
}
|
||||
|
||||
if input.MirostatETA != 0 {
|
||||
config.MirostatETA = input.MirostatETA
|
||||
}
|
||||
|
||||
if input.MirostatTAU != 0 {
|
||||
config.MirostatTAU = input.MirostatTAU
|
||||
}
|
||||
|
||||
if input.TypicalP != 0 {
|
||||
config.TypicalP = input.TypicalP
|
||||
}
|
||||
|
||||
switch inputs := input.Input.(type) {
|
||||
case string:
|
||||
if inputs != "" {
|
||||
config.InputStrings = append(config.InputStrings, inputs)
|
||||
}
|
||||
case []interface{}:
|
||||
for _, pp := range inputs {
|
||||
switch i := pp.(type) {
|
||||
case string:
|
||||
config.InputStrings = append(config.InputStrings, i)
|
||||
case []interface{}:
|
||||
tokens := []int{}
|
||||
for _, ii := range i {
|
||||
tokens = append(tokens, int(ii.(float64)))
|
||||
}
|
||||
config.InputToken = append(config.InputToken, tokens)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
switch p := input.Prompt.(type) {
|
||||
case string:
|
||||
config.PromptStrings = append(config.PromptStrings, p)
|
||||
case []interface{}:
|
||||
for _, pp := range p {
|
||||
if s, ok := pp.(string); ok {
|
||||
config.PromptStrings = append(config.PromptStrings, s)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
func readInput(c *fiber.Ctx, loader *model.ModelLoader, randomModel bool) (string, *OpenAIRequest, error) {
|
||||
input := new(OpenAIRequest)
|
||||
// Get input data from the request body
|
||||
if err := c.BodyParser(input); err != nil {
|
||||
return "", nil, err
|
||||
}
|
||||
|
||||
modelFile := input.Model
|
||||
|
||||
if c.Params("model") != "" {
|
||||
modelFile = c.Params("model")
|
||||
}
|
||||
|
||||
received, _ := json.Marshal(input)
|
||||
|
||||
log.Debug().Msgf("Request received: %s", string(received))
|
||||
|
||||
// Set model from bearer token, if available
|
||||
bearer := strings.TrimLeft(c.Get("authorization"), "Bearer ")
|
||||
bearerExists := bearer != "" && loader.ExistsInModelPath(bearer)
|
||||
|
||||
// If no model was specified, take the first available
|
||||
if modelFile == "" && !bearerExists && randomModel {
|
||||
models, _ := loader.ListModels()
|
||||
if len(models) > 0 {
|
||||
modelFile = models[0]
|
||||
log.Debug().Msgf("No model specified, using: %s", modelFile)
|
||||
} else {
|
||||
log.Debug().Msgf("No model specified, returning error")
|
||||
return "", nil, fmt.Errorf("no model specified")
|
||||
}
|
||||
}
|
||||
|
||||
// If a model is found in bearer token takes precedence
|
||||
if bearerExists {
|
||||
log.Debug().Msgf("Using model from bearer token: %s", bearer)
|
||||
modelFile = bearer
|
||||
}
|
||||
return modelFile, input, nil
|
||||
}
|
||||
|
||||
func readConfig(modelFile string, input *OpenAIRequest, cm *ConfigMerger, loader *model.ModelLoader, debug bool, threads, ctx int, f16 bool) (*Config, *OpenAIRequest, error) {
|
||||
// Load a config file if present after the model name
|
||||
modelConfig := filepath.Join(loader.ModelPath, modelFile+".yaml")
|
||||
if _, err := os.Stat(modelConfig); err == nil {
|
||||
if err := cm.LoadConfig(modelConfig); err != nil {
|
||||
return nil, nil, fmt.Errorf("failed loading model config (%s) %s", modelConfig, err.Error())
|
||||
}
|
||||
}
|
||||
|
||||
var config *Config
|
||||
cfg, exists := cm.GetConfig(modelFile)
|
||||
if !exists {
|
||||
config = defaultConfig(modelFile)
|
||||
config.ContextSize = ctx
|
||||
config.Threads = threads
|
||||
config.F16 = f16
|
||||
config.Debug = debug
|
||||
} else {
|
||||
config = &cfg
|
||||
}
|
||||
|
||||
// Set the parameters for the language model prediction
|
||||
updateConfig(config, input)
|
||||
|
||||
// Don't allow 0 as setting
|
||||
if config.Threads == 0 {
|
||||
if threads != 0 {
|
||||
config.Threads = threads
|
||||
} else {
|
||||
config.Threads = 4
|
||||
}
|
||||
}
|
||||
|
||||
// Enforce debug flag if passed from CLI
|
||||
if debug {
|
||||
config.Debug = true
|
||||
}
|
||||
|
||||
return config, input, nil
|
||||
}
|
||||
54
api/config_test.go
Normal file
54
api/config_test.go
Normal file
@@ -0,0 +1,54 @@
|
||||
package api
|
||||
|
||||
import (
|
||||
"os"
|
||||
|
||||
"github.com/go-skynet/LocalAI/pkg/model"
|
||||
. "github.com/onsi/ginkgo/v2"
|
||||
. "github.com/onsi/gomega"
|
||||
)
|
||||
|
||||
var _ = Describe("Test cases for config related functions", func() {
|
||||
|
||||
var (
|
||||
configFile string
|
||||
)
|
||||
|
||||
Context("Test Read configuration functions", func() {
|
||||
configFile = os.Getenv("CONFIG_FILE")
|
||||
It("Test ReadConfigFile", func() {
|
||||
config, err := ReadConfigFile(configFile)
|
||||
Expect(err).To(BeNil())
|
||||
Expect(config).ToNot(BeNil())
|
||||
// two configs in config.yaml
|
||||
Expect(config[0].Name).To(Equal("list1"))
|
||||
Expect(config[1].Name).To(Equal("list2"))
|
||||
})
|
||||
|
||||
It("Test LoadConfigs", func() {
|
||||
cm := NewConfigMerger()
|
||||
options := newOptions()
|
||||
modelLoader := model.NewModelLoader(os.Getenv("MODELS_PATH"))
|
||||
WithModelLoader(modelLoader)(options)
|
||||
|
||||
err := cm.LoadConfigs(options.loader.ModelPath)
|
||||
Expect(err).To(BeNil())
|
||||
Expect(cm.configs).ToNot(BeNil())
|
||||
|
||||
// config should includes gpt4all models's api.config
|
||||
Expect(cm.configs).To(HaveKey("gpt4all"))
|
||||
|
||||
// config should includes gpt2 models's api.config
|
||||
Expect(cm.configs).To(HaveKey("gpt4all-2"))
|
||||
|
||||
// config should includes text-embedding-ada-002 models's api.config
|
||||
Expect(cm.configs).To(HaveKey("text-embedding-ada-002"))
|
||||
|
||||
// config should includes rwkv_test models's api.config
|
||||
Expect(cm.configs).To(HaveKey("rwkv_test"))
|
||||
|
||||
// config should includes whisper-1 models's api.config
|
||||
Expect(cm.configs).To(HaveKey("whisper-1"))
|
||||
})
|
||||
})
|
||||
})
|
||||
267
api/gallery.go
Normal file
267
api/gallery.go
Normal file
@@ -0,0 +1,267 @@
|
||||
package api
|
||||
|
||||
import (
|
||||
"context"
|
||||
"encoding/json"
|
||||
"fmt"
|
||||
"io/ioutil"
|
||||
"net/http"
|
||||
"net/url"
|
||||
"os"
|
||||
"strings"
|
||||
"sync"
|
||||
"time"
|
||||
|
||||
"github.com/go-skynet/LocalAI/pkg/gallery"
|
||||
"github.com/gofiber/fiber/v2"
|
||||
"github.com/google/uuid"
|
||||
"github.com/rs/zerolog/log"
|
||||
"gopkg.in/yaml.v3"
|
||||
)
|
||||
|
||||
type galleryOp struct {
|
||||
req ApplyGalleryModelRequest
|
||||
id string
|
||||
}
|
||||
|
||||
type galleryOpStatus struct {
|
||||
Error error `json:"error"`
|
||||
Processed bool `json:"processed"`
|
||||
Message string `json:"message"`
|
||||
Progress float64 `json:"progress"`
|
||||
TotalFileSize string `json:"file_size"`
|
||||
DownloadedFileSize string `json:"downloaded_size"`
|
||||
}
|
||||
|
||||
type galleryApplier struct {
|
||||
modelPath string
|
||||
sync.Mutex
|
||||
C chan galleryOp
|
||||
statuses map[string]*galleryOpStatus
|
||||
}
|
||||
|
||||
func newGalleryApplier(modelPath string) *galleryApplier {
|
||||
return &galleryApplier{
|
||||
modelPath: modelPath,
|
||||
C: make(chan galleryOp),
|
||||
statuses: make(map[string]*galleryOpStatus),
|
||||
}
|
||||
}
|
||||
|
||||
func applyGallery(modelPath string, req ApplyGalleryModelRequest, cm *ConfigMerger, downloadStatus func(string, string, string, float64)) error {
|
||||
url, err := req.DecodeURL()
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
// Send a GET request to the URL
|
||||
response, err := http.Get(url)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
defer response.Body.Close()
|
||||
|
||||
// Read the response body
|
||||
body, err := ioutil.ReadAll(response.Body)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
// Unmarshal YAML data into a Config struct
|
||||
var config gallery.Config
|
||||
err = yaml.Unmarshal(body, &config)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
config.Files = append(config.Files, req.AdditionalFiles...)
|
||||
|
||||
if err := gallery.Apply(modelPath, req.Name, &config, req.Overrides, downloadStatus); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
// Reload models
|
||||
return cm.LoadConfigs(modelPath)
|
||||
}
|
||||
|
||||
func (g *galleryApplier) updatestatus(s string, op *galleryOpStatus) {
|
||||
g.Lock()
|
||||
defer g.Unlock()
|
||||
g.statuses[s] = op
|
||||
}
|
||||
|
||||
func (g *galleryApplier) getstatus(s string) *galleryOpStatus {
|
||||
g.Lock()
|
||||
defer g.Unlock()
|
||||
|
||||
return g.statuses[s]
|
||||
}
|
||||
|
||||
func (g *galleryApplier) start(c context.Context, cm *ConfigMerger) {
|
||||
go func() {
|
||||
for {
|
||||
select {
|
||||
case <-c.Done():
|
||||
return
|
||||
case op := <-g.C:
|
||||
g.updatestatus(op.id, &galleryOpStatus{Message: "processing", Progress: 0})
|
||||
|
||||
updateError := func(e error) {
|
||||
g.updatestatus(op.id, &galleryOpStatus{Error: e, Processed: true})
|
||||
}
|
||||
|
||||
if err := applyGallery(g.modelPath, op.req, cm, func(fileName string, current string, total string, percentage float64) {
|
||||
g.updatestatus(op.id, &galleryOpStatus{Message: "processing", Progress: percentage, TotalFileSize: total, DownloadedFileSize: current})
|
||||
displayDownload(fileName, current, total, percentage)
|
||||
}); err != nil {
|
||||
updateError(err)
|
||||
continue
|
||||
}
|
||||
|
||||
g.updatestatus(op.id, &galleryOpStatus{Processed: true, Message: "completed", Progress: 100})
|
||||
}
|
||||
}
|
||||
}()
|
||||
}
|
||||
|
||||
var lastProgress time.Time = time.Now()
|
||||
var startTime time.Time = time.Now()
|
||||
|
||||
func displayDownload(fileName string, current string, total string, percentage float64) {
|
||||
currentTime := time.Now()
|
||||
|
||||
if currentTime.Sub(lastProgress) >= 5*time.Second {
|
||||
|
||||
lastProgress = currentTime
|
||||
|
||||
// calculate ETA based on percentage and elapsed time
|
||||
var eta time.Duration
|
||||
if percentage > 0 {
|
||||
elapsed := currentTime.Sub(startTime)
|
||||
eta = time.Duration(float64(elapsed)*(100/percentage) - float64(elapsed))
|
||||
}
|
||||
|
||||
if total != "" {
|
||||
log.Debug().Msgf("Downloading %s: %s/%s (%.2f%%) ETA: %s", fileName, current, total, percentage, eta)
|
||||
} else {
|
||||
log.Debug().Msgf("Downloading: %s", current)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func ApplyGalleryFromFile(modelPath, s string, cm *ConfigMerger) error {
|
||||
dat, err := os.ReadFile(s)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
var requests []ApplyGalleryModelRequest
|
||||
err = json.Unmarshal(dat, &requests)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
for _, r := range requests {
|
||||
if err := applyGallery(modelPath, r, cm, displayDownload); err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
func ApplyGalleryFromString(modelPath, s string, cm *ConfigMerger) error {
|
||||
var requests []ApplyGalleryModelRequest
|
||||
err := json.Unmarshal([]byte(s), &requests)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
for _, r := range requests {
|
||||
if err := applyGallery(modelPath, r, cm, displayDownload); err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
// endpoints
|
||||
|
||||
type ApplyGalleryModelRequest struct {
|
||||
URL string `json:"url"`
|
||||
Name string `json:"name"`
|
||||
Overrides map[string]interface{} `json:"overrides"`
|
||||
AdditionalFiles []gallery.File `json:"files"`
|
||||
}
|
||||
|
||||
const (
|
||||
githubURI = "github:"
|
||||
)
|
||||
|
||||
func (request ApplyGalleryModelRequest) DecodeURL() (string, error) {
|
||||
input := request.URL
|
||||
var rawURL string
|
||||
|
||||
if strings.HasPrefix(input, githubURI) {
|
||||
parts := strings.Split(input, ":")
|
||||
repoParts := strings.Split(parts[1], "@")
|
||||
branch := "main"
|
||||
|
||||
if len(repoParts) > 1 {
|
||||
branch = repoParts[1]
|
||||
}
|
||||
|
||||
repoPath := strings.Split(repoParts[0], "/")
|
||||
org := repoPath[0]
|
||||
project := repoPath[1]
|
||||
projectPath := strings.Join(repoPath[2:], "/")
|
||||
|
||||
rawURL = fmt.Sprintf("https://raw.githubusercontent.com/%s/%s/%s/%s", org, project, branch, projectPath)
|
||||
} else if strings.HasPrefix(input, "http://") || strings.HasPrefix(input, "https://") {
|
||||
// Handle regular URLs
|
||||
u, err := url.Parse(input)
|
||||
if err != nil {
|
||||
return "", fmt.Errorf("invalid URL: %w", err)
|
||||
}
|
||||
rawURL = u.String()
|
||||
} else {
|
||||
return "", fmt.Errorf("invalid URL format")
|
||||
}
|
||||
|
||||
return rawURL, nil
|
||||
}
|
||||
|
||||
func getOpStatus(g *galleryApplier) func(c *fiber.Ctx) error {
|
||||
return func(c *fiber.Ctx) error {
|
||||
|
||||
status := g.getstatus(c.Params("uuid"))
|
||||
if status == nil {
|
||||
return fmt.Errorf("could not find any status for ID")
|
||||
}
|
||||
|
||||
return c.JSON(status)
|
||||
}
|
||||
}
|
||||
|
||||
func applyModelGallery(modelPath string, cm *ConfigMerger, g chan galleryOp) func(c *fiber.Ctx) error {
|
||||
return func(c *fiber.Ctx) error {
|
||||
input := new(ApplyGalleryModelRequest)
|
||||
// Get input data from the request body
|
||||
if err := c.BodyParser(input); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
uuid, err := uuid.NewUUID()
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
g <- galleryOp{
|
||||
req: *input,
|
||||
id: uuid.String(),
|
||||
}
|
||||
return c.JSON(struct {
|
||||
ID string `json:"uuid"`
|
||||
StatusURL string `json:"status"`
|
||||
}{ID: uuid.String(), StatusURL: c.BaseURL() + "/models/jobs/" + uuid.String()})
|
||||
}
|
||||
}
|
||||
30
api/gallery_test.go
Normal file
30
api/gallery_test.go
Normal file
@@ -0,0 +1,30 @@
|
||||
package api_test
|
||||
|
||||
import (
|
||||
. "github.com/go-skynet/LocalAI/api"
|
||||
. "github.com/onsi/ginkgo/v2"
|
||||
. "github.com/onsi/gomega"
|
||||
)
|
||||
|
||||
var _ = Describe("Gallery API tests", func() {
|
||||
Context("requests", func() {
|
||||
It("parses github with a branch", func() {
|
||||
req := ApplyGalleryModelRequest{URL: "github:go-skynet/model-gallery/gpt4all-j.yaml@main"}
|
||||
str, err := req.DecodeURL()
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
Expect(str).To(Equal("https://raw.githubusercontent.com/go-skynet/model-gallery/main/gpt4all-j.yaml"))
|
||||
})
|
||||
It("parses github without a branch", func() {
|
||||
req := ApplyGalleryModelRequest{URL: "github:go-skynet/model-gallery/gpt4all-j.yaml"}
|
||||
str, err := req.DecodeURL()
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
Expect(str).To(Equal("https://raw.githubusercontent.com/go-skynet/model-gallery/main/gpt4all-j.yaml"))
|
||||
})
|
||||
It("parses URLS", func() {
|
||||
req := ApplyGalleryModelRequest{URL: "https://raw.githubusercontent.com/go-skynet/model-gallery/main/gpt4all-j.yaml"}
|
||||
str, err := req.DecodeURL()
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
Expect(str).To(Equal("https://raw.githubusercontent.com/go-skynet/model-gallery/main/gpt4all-j.yaml"))
|
||||
})
|
||||
})
|
||||
})
|
||||
755
api/openai.go
Normal file
755
api/openai.go
Normal file
@@ -0,0 +1,755 @@
|
||||
package api
|
||||
|
||||
import (
|
||||
"bufio"
|
||||
"bytes"
|
||||
"encoding/base64"
|
||||
"encoding/json"
|
||||
"errors"
|
||||
"fmt"
|
||||
"io"
|
||||
"io/ioutil"
|
||||
"net/http"
|
||||
"os"
|
||||
"path"
|
||||
"path/filepath"
|
||||
"strconv"
|
||||
"strings"
|
||||
|
||||
"github.com/ggerganov/whisper.cpp/bindings/go/pkg/whisper"
|
||||
model "github.com/go-skynet/LocalAI/pkg/model"
|
||||
whisperutil "github.com/go-skynet/LocalAI/pkg/whisper"
|
||||
llama "github.com/go-skynet/go-llama.cpp"
|
||||
"github.com/gofiber/fiber/v2"
|
||||
"github.com/rs/zerolog/log"
|
||||
"github.com/valyala/fasthttp"
|
||||
)
|
||||
|
||||
// APIError provides error information returned by the OpenAI API.
|
||||
type APIError struct {
|
||||
Code any `json:"code,omitempty"`
|
||||
Message string `json:"message"`
|
||||
Param *string `json:"param,omitempty"`
|
||||
Type string `json:"type"`
|
||||
}
|
||||
|
||||
type ErrorResponse struct {
|
||||
Error *APIError `json:"error,omitempty"`
|
||||
}
|
||||
|
||||
type OpenAIUsage struct {
|
||||
PromptTokens int `json:"prompt_tokens"`
|
||||
CompletionTokens int `json:"completion_tokens"`
|
||||
TotalTokens int `json:"total_tokens"`
|
||||
}
|
||||
|
||||
type Item struct {
|
||||
Embedding []float32 `json:"embedding"`
|
||||
Index int `json:"index"`
|
||||
Object string `json:"object,omitempty"`
|
||||
|
||||
// Images
|
||||
URL string `json:"url,omitempty"`
|
||||
B64JSON string `json:"b64_json,omitempty"`
|
||||
}
|
||||
|
||||
type OpenAIResponse struct {
|
||||
Created int `json:"created,omitempty"`
|
||||
Object string `json:"object,omitempty"`
|
||||
ID string `json:"id,omitempty"`
|
||||
Model string `json:"model,omitempty"`
|
||||
Choices []Choice `json:"choices,omitempty"`
|
||||
Data []Item `json:"data,omitempty"`
|
||||
|
||||
Usage OpenAIUsage `json:"usage"`
|
||||
}
|
||||
|
||||
type Choice struct {
|
||||
Index int `json:"index,omitempty"`
|
||||
FinishReason string `json:"finish_reason,omitempty"`
|
||||
Message *Message `json:"message,omitempty"`
|
||||
Delta *Message `json:"delta,omitempty"`
|
||||
Text string `json:"text,omitempty"`
|
||||
}
|
||||
|
||||
type Message struct {
|
||||
Role string `json:"role,omitempty" yaml:"role"`
|
||||
Content string `json:"content,omitempty" yaml:"content"`
|
||||
}
|
||||
|
||||
type OpenAIModel struct {
|
||||
ID string `json:"id"`
|
||||
Object string `json:"object"`
|
||||
}
|
||||
|
||||
type OpenAIRequest struct {
|
||||
Model string `json:"model" yaml:"model"`
|
||||
|
||||
// whisper
|
||||
File string `json:"file" validate:"required"`
|
||||
Language string `json:"language"`
|
||||
//whisper/image
|
||||
ResponseFormat string `json:"response_format"`
|
||||
// image
|
||||
Size string `json:"size"`
|
||||
// Prompt is read only by completion/image API calls
|
||||
Prompt interface{} `json:"prompt" yaml:"prompt"`
|
||||
|
||||
// Edit endpoint
|
||||
Instruction string `json:"instruction" yaml:"instruction"`
|
||||
Input interface{} `json:"input" yaml:"input"`
|
||||
|
||||
Stop interface{} `json:"stop" yaml:"stop"`
|
||||
|
||||
// Messages is read only by chat/completion API calls
|
||||
Messages []Message `json:"messages" yaml:"messages"`
|
||||
|
||||
Stream bool `json:"stream"`
|
||||
Echo bool `json:"echo"`
|
||||
// Common options between all the API calls
|
||||
TopP float64 `json:"top_p" yaml:"top_p"`
|
||||
TopK int `json:"top_k" yaml:"top_k"`
|
||||
Temperature float64 `json:"temperature" yaml:"temperature"`
|
||||
Maxtokens int `json:"max_tokens" yaml:"max_tokens"`
|
||||
|
||||
N int `json:"n"`
|
||||
|
||||
// Custom parameters - not present in the OpenAI API
|
||||
Batch int `json:"batch" yaml:"batch"`
|
||||
F16 bool `json:"f16" yaml:"f16"`
|
||||
IgnoreEOS bool `json:"ignore_eos" yaml:"ignore_eos"`
|
||||
RepeatPenalty float64 `json:"repeat_penalty" yaml:"repeat_penalty"`
|
||||
Keep int `json:"n_keep" yaml:"n_keep"`
|
||||
|
||||
MirostatETA float64 `json:"mirostat_eta" yaml:"mirostat_eta"`
|
||||
MirostatTAU float64 `json:"mirostat_tau" yaml:"mirostat_tau"`
|
||||
Mirostat int `json:"mirostat" yaml:"mirostat"`
|
||||
|
||||
FrequencyPenalty float64 `json:"frequency_penalty" yaml:"frequency_penalty"`
|
||||
TFZ float64 `json:"tfz" yaml:"tfz"`
|
||||
|
||||
Seed int `json:"seed" yaml:"seed"`
|
||||
|
||||
// Image (not supported by OpenAI)
|
||||
Mode int `json:"mode"`
|
||||
Step int `json:"step"`
|
||||
|
||||
TypicalP float64 `json:"typical_p" yaml:"typical_p"`
|
||||
}
|
||||
|
||||
func defaultRequest(modelFile string) OpenAIRequest {
|
||||
return OpenAIRequest{
|
||||
TopP: 0.7,
|
||||
TopK: 80,
|
||||
Maxtokens: 512,
|
||||
Temperature: 0.9,
|
||||
Model: modelFile,
|
||||
}
|
||||
}
|
||||
|
||||
// https://platform.openai.com/docs/api-reference/completions
|
||||
func completionEndpoint(cm *ConfigMerger, o *Option) func(c *fiber.Ctx) error {
|
||||
process := func(s string, req *OpenAIRequest, config *Config, loader *model.ModelLoader, responses chan OpenAIResponse) {
|
||||
ComputeChoices(s, req, config, o, loader, func(s string, c *[]Choice) {}, func(s string) bool {
|
||||
resp := OpenAIResponse{
|
||||
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
|
||||
Choices: []Choice{{Text: s}},
|
||||
Object: "text_completion",
|
||||
}
|
||||
log.Debug().Msgf("Sending goroutine: %s", s)
|
||||
|
||||
responses <- resp
|
||||
return true
|
||||
})
|
||||
close(responses)
|
||||
}
|
||||
|
||||
return func(c *fiber.Ctx) error {
|
||||
model, input, err := readInput(c, o.loader, true)
|
||||
if err != nil {
|
||||
return fmt.Errorf("failed reading parameters from request:%w", err)
|
||||
}
|
||||
|
||||
log.Debug().Msgf("`input`: %+v", input)
|
||||
|
||||
config, input, err := readConfig(model, input, cm, o.loader, o.debug, o.threads, o.ctxSize, o.f16)
|
||||
if err != nil {
|
||||
return fmt.Errorf("failed reading parameters from request:%w", err)
|
||||
}
|
||||
|
||||
log.Debug().Msgf("Parameter Config: %+v", config)
|
||||
|
||||
if input.Stream {
|
||||
log.Debug().Msgf("Stream request received")
|
||||
c.Context().SetContentType("text/event-stream")
|
||||
//c.Response().Header.SetContentType(fiber.MIMETextHTMLCharsetUTF8)
|
||||
//c.Set("Content-Type", "text/event-stream")
|
||||
c.Set("Cache-Control", "no-cache")
|
||||
c.Set("Connection", "keep-alive")
|
||||
c.Set("Transfer-Encoding", "chunked")
|
||||
}
|
||||
|
||||
templateFile := config.Model
|
||||
|
||||
if config.TemplateConfig.Completion != "" {
|
||||
templateFile = config.TemplateConfig.Completion
|
||||
}
|
||||
|
||||
if input.Stream {
|
||||
if len(config.PromptStrings) > 1 {
|
||||
return errors.New("cannot handle more than 1 `PromptStrings` when `Stream`ing")
|
||||
}
|
||||
|
||||
predInput := config.PromptStrings[0]
|
||||
|
||||
// A model can have a "file.bin.tmpl" file associated with a prompt template prefix
|
||||
templatedInput, err := o.loader.TemplatePrefix(templateFile, struct {
|
||||
Input string
|
||||
}{Input: predInput})
|
||||
if err == nil {
|
||||
predInput = templatedInput
|
||||
log.Debug().Msgf("Template found, input modified to: %s", predInput)
|
||||
}
|
||||
|
||||
responses := make(chan OpenAIResponse)
|
||||
|
||||
go process(predInput, input, config, o.loader, responses)
|
||||
|
||||
c.Context().SetBodyStreamWriter(fasthttp.StreamWriter(func(w *bufio.Writer) {
|
||||
|
||||
for ev := range responses {
|
||||
var buf bytes.Buffer
|
||||
enc := json.NewEncoder(&buf)
|
||||
enc.Encode(ev)
|
||||
|
||||
log.Debug().Msgf("Sending chunk: %s", buf.String())
|
||||
fmt.Fprintf(w, "data: %v\n", buf.String())
|
||||
w.Flush()
|
||||
}
|
||||
|
||||
resp := &OpenAIResponse{
|
||||
Model: input.Model, // we have to return what the user sent here, due to OpenAI spec.
|
||||
Choices: []Choice{{FinishReason: "stop"}},
|
||||
}
|
||||
respData, _ := json.Marshal(resp)
|
||||
|
||||
w.WriteString(fmt.Sprintf("data: %s\n\n", respData))
|
||||
w.WriteString("data: [DONE]\n\n")
|
||||
w.Flush()
|
||||
}))
|
||||
return nil
|
||||
}
|
||||
|
||||
var result []Choice
|
||||
for _, i := range config.PromptStrings {
|
||||
// A model can have a "file.bin.tmpl" file associated with a prompt template prefix
|
||||
templatedInput, err := o.loader.TemplatePrefix(templateFile, struct {
|
||||
Input string
|
||||
}{Input: i})
|
||||
if err == nil {
|
||||
i = templatedInput
|
||||
log.Debug().Msgf("Template found, input modified to: %s", i)
|
||||
}
|
||||
|
||||
r, err := ComputeChoices(i, input, config, o, o.loader, func(s string, c *[]Choice) {
|
||||
*c = append(*c, Choice{Text: s})
|
||||
}, nil)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
result = append(result, r...)
|
||||
}
|
||||
|
||||
resp := &OpenAIResponse{
|
||||
Model: input.Model, // we have to return what the user sent here, due to OpenAI spec.
|
||||
Choices: result,
|
||||
Object: "text_completion",
|
||||
}
|
||||
|
||||
jsonResult, _ := json.Marshal(resp)
|
||||
log.Debug().Msgf("Response: %s", jsonResult)
|
||||
|
||||
// Return the prediction in the response body
|
||||
return c.JSON(resp)
|
||||
}
|
||||
}
|
||||
|
||||
// https://platform.openai.com/docs/api-reference/embeddings
|
||||
func embeddingsEndpoint(cm *ConfigMerger, o *Option) func(c *fiber.Ctx) error {
|
||||
return func(c *fiber.Ctx) error {
|
||||
model, input, err := readInput(c, o.loader, true)
|
||||
if err != nil {
|
||||
return fmt.Errorf("failed reading parameters from request:%w", err)
|
||||
}
|
||||
|
||||
config, input, err := readConfig(model, input, cm, o.loader, o.debug, o.threads, o.ctxSize, o.f16)
|
||||
if err != nil {
|
||||
return fmt.Errorf("failed reading parameters from request:%w", err)
|
||||
}
|
||||
|
||||
log.Debug().Msgf("Parameter Config: %+v", config)
|
||||
items := []Item{}
|
||||
|
||||
for i, s := range config.InputToken {
|
||||
// get the model function to call for the result
|
||||
embedFn, err := ModelEmbedding("", s, o.loader, *config, o)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
embeddings, err := embedFn()
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
items = append(items, Item{Embedding: embeddings, Index: i, Object: "embedding"})
|
||||
}
|
||||
|
||||
for i, s := range config.InputStrings {
|
||||
// get the model function to call for the result
|
||||
embedFn, err := ModelEmbedding(s, []int{}, o.loader, *config, o)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
embeddings, err := embedFn()
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
items = append(items, Item{Embedding: embeddings, Index: i, Object: "embedding"})
|
||||
}
|
||||
|
||||
resp := &OpenAIResponse{
|
||||
Model: input.Model, // we have to return what the user sent here, due to OpenAI spec.
|
||||
Data: items,
|
||||
Object: "list",
|
||||
}
|
||||
|
||||
jsonResult, _ := json.Marshal(resp)
|
||||
log.Debug().Msgf("Response: %s", jsonResult)
|
||||
|
||||
// Return the prediction in the response body
|
||||
return c.JSON(resp)
|
||||
}
|
||||
}
|
||||
|
||||
func chatEndpoint(cm *ConfigMerger, o *Option) func(c *fiber.Ctx) error {
|
||||
|
||||
process := func(s string, req *OpenAIRequest, config *Config, loader *model.ModelLoader, responses chan OpenAIResponse) {
|
||||
initialMessage := OpenAIResponse{
|
||||
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
|
||||
Choices: []Choice{{Delta: &Message{Role: "assistant"}}},
|
||||
Object: "chat.completion.chunk",
|
||||
}
|
||||
responses <- initialMessage
|
||||
|
||||
ComputeChoices(s, req, config, o, loader, func(s string, c *[]Choice) {}, func(s string) bool {
|
||||
resp := OpenAIResponse{
|
||||
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
|
||||
Choices: []Choice{{Delta: &Message{Content: s}}},
|
||||
Object: "chat.completion.chunk",
|
||||
}
|
||||
log.Debug().Msgf("Sending goroutine: %s", s)
|
||||
|
||||
responses <- resp
|
||||
return true
|
||||
})
|
||||
close(responses)
|
||||
}
|
||||
return func(c *fiber.Ctx) error {
|
||||
model, input, err := readInput(c, o.loader, true)
|
||||
if err != nil {
|
||||
return fmt.Errorf("failed reading parameters from request:%w", err)
|
||||
}
|
||||
|
||||
config, input, err := readConfig(model, input, cm, o.loader, o.debug, o.threads, o.ctxSize, o.f16)
|
||||
if err != nil {
|
||||
return fmt.Errorf("failed reading parameters from request:%w", err)
|
||||
}
|
||||
|
||||
log.Debug().Msgf("Parameter Config: %+v", config)
|
||||
|
||||
var predInput string
|
||||
|
||||
mess := []string{}
|
||||
for _, i := range input.Messages {
|
||||
var content string
|
||||
r := config.Roles[i.Role]
|
||||
if r != "" {
|
||||
content = fmt.Sprint(r, " ", i.Content)
|
||||
} else {
|
||||
content = i.Content
|
||||
}
|
||||
|
||||
mess = append(mess, content)
|
||||
}
|
||||
|
||||
predInput = strings.Join(mess, "\n")
|
||||
|
||||
if input.Stream {
|
||||
log.Debug().Msgf("Stream request received")
|
||||
c.Context().SetContentType("text/event-stream")
|
||||
//c.Response().Header.SetContentType(fiber.MIMETextHTMLCharsetUTF8)
|
||||
// c.Set("Content-Type", "text/event-stream")
|
||||
c.Set("Cache-Control", "no-cache")
|
||||
c.Set("Connection", "keep-alive")
|
||||
c.Set("Transfer-Encoding", "chunked")
|
||||
}
|
||||
|
||||
templateFile := config.Model
|
||||
|
||||
if config.TemplateConfig.Chat != "" {
|
||||
templateFile = config.TemplateConfig.Chat
|
||||
}
|
||||
|
||||
// A model can have a "file.bin.tmpl" file associated with a prompt template prefix
|
||||
templatedInput, err := o.loader.TemplatePrefix(templateFile, struct {
|
||||
Input string
|
||||
}{Input: predInput})
|
||||
if err == nil {
|
||||
predInput = templatedInput
|
||||
log.Debug().Msgf("Template found, input modified to: %s", predInput)
|
||||
}
|
||||
|
||||
if input.Stream {
|
||||
responses := make(chan OpenAIResponse)
|
||||
|
||||
go process(predInput, input, config, o.loader, responses)
|
||||
|
||||
c.Context().SetBodyStreamWriter(fasthttp.StreamWriter(func(w *bufio.Writer) {
|
||||
|
||||
for ev := range responses {
|
||||
var buf bytes.Buffer
|
||||
enc := json.NewEncoder(&buf)
|
||||
enc.Encode(ev)
|
||||
|
||||
log.Debug().Msgf("Sending chunk: %s", buf.String())
|
||||
fmt.Fprintf(w, "data: %v\n", buf.String())
|
||||
w.Flush()
|
||||
}
|
||||
|
||||
resp := &OpenAIResponse{
|
||||
Model: input.Model, // we have to return what the user sent here, due to OpenAI spec.
|
||||
Choices: []Choice{{FinishReason: "stop"}},
|
||||
}
|
||||
respData, _ := json.Marshal(resp)
|
||||
|
||||
w.WriteString(fmt.Sprintf("data: %s\n\n", respData))
|
||||
w.WriteString("data: [DONE]\n\n")
|
||||
w.Flush()
|
||||
}))
|
||||
return nil
|
||||
}
|
||||
|
||||
result, err := ComputeChoices(predInput, input, config, o, o.loader, func(s string, c *[]Choice) {
|
||||
*c = append(*c, Choice{Message: &Message{Role: "assistant", Content: s}})
|
||||
}, nil)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
resp := &OpenAIResponse{
|
||||
Model: input.Model, // we have to return what the user sent here, due to OpenAI spec.
|
||||
Choices: result,
|
||||
Object: "chat.completion",
|
||||
}
|
||||
respData, _ := json.Marshal(resp)
|
||||
log.Debug().Msgf("Response: %s", respData)
|
||||
|
||||
// Return the prediction in the response body
|
||||
return c.JSON(resp)
|
||||
}
|
||||
}
|
||||
|
||||
func editEndpoint(cm *ConfigMerger, o *Option) func(c *fiber.Ctx) error {
|
||||
return func(c *fiber.Ctx) error {
|
||||
model, input, err := readInput(c, o.loader, true)
|
||||
if err != nil {
|
||||
return fmt.Errorf("failed reading parameters from request:%w", err)
|
||||
}
|
||||
|
||||
config, input, err := readConfig(model, input, cm, o.loader, o.debug, o.threads, o.ctxSize, o.f16)
|
||||
if err != nil {
|
||||
return fmt.Errorf("failed reading parameters from request:%w", err)
|
||||
}
|
||||
|
||||
log.Debug().Msgf("Parameter Config: %+v", config)
|
||||
|
||||
templateFile := config.Model
|
||||
|
||||
if config.TemplateConfig.Edit != "" {
|
||||
templateFile = config.TemplateConfig.Edit
|
||||
}
|
||||
|
||||
var result []Choice
|
||||
for _, i := range config.InputStrings {
|
||||
// A model can have a "file.bin.tmpl" file associated with a prompt template prefix
|
||||
templatedInput, err := o.loader.TemplatePrefix(templateFile, struct {
|
||||
Input string
|
||||
Instruction string
|
||||
}{Input: i})
|
||||
if err == nil {
|
||||
i = templatedInput
|
||||
log.Debug().Msgf("Template found, input modified to: %s", i)
|
||||
}
|
||||
|
||||
r, err := ComputeChoices(i, input, config, o, o.loader, func(s string, c *[]Choice) {
|
||||
*c = append(*c, Choice{Text: s})
|
||||
}, nil)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
result = append(result, r...)
|
||||
}
|
||||
|
||||
resp := &OpenAIResponse{
|
||||
Model: input.Model, // we have to return what the user sent here, due to OpenAI spec.
|
||||
Choices: result,
|
||||
Object: "edit",
|
||||
}
|
||||
|
||||
jsonResult, _ := json.Marshal(resp)
|
||||
log.Debug().Msgf("Response: %s", jsonResult)
|
||||
|
||||
// Return the prediction in the response body
|
||||
return c.JSON(resp)
|
||||
}
|
||||
}
|
||||
|
||||
// https://platform.openai.com/docs/api-reference/images/create
|
||||
|
||||
/*
|
||||
*
|
||||
|
||||
curl http://localhost:8080/v1/images/generations \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
"prompt": "A cute baby sea otter",
|
||||
"n": 1,
|
||||
"size": "512x512"
|
||||
}'
|
||||
|
||||
*
|
||||
*/
|
||||
func imageEndpoint(cm *ConfigMerger, o *Option) func(c *fiber.Ctx) error {
|
||||
return func(c *fiber.Ctx) error {
|
||||
m, input, err := readInput(c, o.loader, false)
|
||||
if err != nil {
|
||||
return fmt.Errorf("failed reading parameters from request:%w", err)
|
||||
}
|
||||
|
||||
if m == "" {
|
||||
m = model.StableDiffusionBackend
|
||||
}
|
||||
log.Debug().Msgf("Loading model: %+v", m)
|
||||
|
||||
config, input, err := readConfig(m, input, cm, o.loader, o.debug, 0, 0, false)
|
||||
if err != nil {
|
||||
return fmt.Errorf("failed reading parameters from request:%w", err)
|
||||
}
|
||||
|
||||
log.Debug().Msgf("Parameter Config: %+v", config)
|
||||
|
||||
// XXX: Only stablediffusion is supported for now
|
||||
if config.Backend == "" {
|
||||
config.Backend = model.StableDiffusionBackend
|
||||
}
|
||||
|
||||
sizeParts := strings.Split(input.Size, "x")
|
||||
if len(sizeParts) != 2 {
|
||||
return fmt.Errorf("Invalid value for 'size'")
|
||||
}
|
||||
width, err := strconv.Atoi(sizeParts[0])
|
||||
if err != nil {
|
||||
return fmt.Errorf("Invalid value for 'size'")
|
||||
}
|
||||
height, err := strconv.Atoi(sizeParts[1])
|
||||
if err != nil {
|
||||
return fmt.Errorf("Invalid value for 'size'")
|
||||
}
|
||||
|
||||
b64JSON := false
|
||||
if input.ResponseFormat == "b64_json" {
|
||||
b64JSON = true
|
||||
}
|
||||
|
||||
var result []Item
|
||||
for _, i := range config.PromptStrings {
|
||||
n := input.N
|
||||
if input.N == 0 {
|
||||
n = 1
|
||||
}
|
||||
for j := 0; j < n; j++ {
|
||||
prompts := strings.Split(i, "|")
|
||||
positive_prompt := prompts[0]
|
||||
negative_prompt := ""
|
||||
if len(prompts) > 1 {
|
||||
negative_prompt = prompts[1]
|
||||
}
|
||||
|
||||
mode := 0
|
||||
step := 15
|
||||
|
||||
if input.Mode != 0 {
|
||||
mode = input.Mode
|
||||
}
|
||||
|
||||
if input.Step != 0 {
|
||||
step = input.Step
|
||||
}
|
||||
|
||||
tempDir := ""
|
||||
if !b64JSON {
|
||||
tempDir = o.imageDir
|
||||
}
|
||||
// Create a temporary file
|
||||
outputFile, err := ioutil.TempFile(tempDir, "b64")
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
outputFile.Close()
|
||||
output := outputFile.Name() + ".png"
|
||||
// Rename the temporary file
|
||||
err = os.Rename(outputFile.Name(), output)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
baseURL := c.BaseURL()
|
||||
|
||||
fn, err := ImageGeneration(height, width, mode, step, input.Seed, positive_prompt, negative_prompt, output, o.loader, *config, o)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
if err := fn(); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
item := &Item{}
|
||||
|
||||
if b64JSON {
|
||||
defer os.RemoveAll(output)
|
||||
data, err := os.ReadFile(output)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
item.B64JSON = base64.StdEncoding.EncodeToString(data)
|
||||
} else {
|
||||
base := filepath.Base(output)
|
||||
item.URL = baseURL + "/generated-images/" + base
|
||||
}
|
||||
|
||||
result = append(result, *item)
|
||||
}
|
||||
}
|
||||
|
||||
resp := &OpenAIResponse{
|
||||
Data: result,
|
||||
}
|
||||
|
||||
jsonResult, _ := json.Marshal(resp)
|
||||
log.Debug().Msgf("Response: %s", jsonResult)
|
||||
|
||||
// Return the prediction in the response body
|
||||
return c.JSON(resp)
|
||||
}
|
||||
}
|
||||
|
||||
// https://platform.openai.com/docs/api-reference/audio/create
|
||||
func transcriptEndpoint(cm *ConfigMerger, o *Option) func(c *fiber.Ctx) error {
|
||||
return func(c *fiber.Ctx) error {
|
||||
m, input, err := readInput(c, o.loader, false)
|
||||
if err != nil {
|
||||
return fmt.Errorf("failed reading parameters from request:%w", err)
|
||||
}
|
||||
|
||||
config, input, err := readConfig(m, input, cm, o.loader, o.debug, o.threads, o.ctxSize, o.f16)
|
||||
if err != nil {
|
||||
return fmt.Errorf("failed reading parameters from request:%w", err)
|
||||
}
|
||||
// retrieve the file data from the request
|
||||
file, err := c.FormFile("file")
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
f, err := file.Open()
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
defer f.Close()
|
||||
|
||||
dir, err := os.MkdirTemp("", "whisper")
|
||||
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
defer os.RemoveAll(dir)
|
||||
|
||||
dst := filepath.Join(dir, path.Base(file.Filename))
|
||||
dstFile, err := os.Create(dst)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if _, err := io.Copy(dstFile, f); err != nil {
|
||||
log.Debug().Msgf("Audio file copying error %+v - %+v - err %+v", file.Filename, dst, err)
|
||||
return err
|
||||
}
|
||||
|
||||
log.Debug().Msgf("Audio file copied to: %+v", dst)
|
||||
|
||||
whisperModel, err := o.loader.BackendLoader(model.WhisperBackend, config.Model, []llama.ModelOption{}, uint32(config.Threads), o.assetsDestination)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if whisperModel == nil {
|
||||
return fmt.Errorf("could not load whisper model")
|
||||
}
|
||||
|
||||
w, ok := whisperModel.(whisper.Model)
|
||||
if !ok {
|
||||
return fmt.Errorf("loader returned non-whisper object")
|
||||
}
|
||||
|
||||
tr, err := whisperutil.Transcript(w, dst, input.Language, uint(config.Threads))
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
log.Debug().Msgf("Trascribed: %+v", tr)
|
||||
// TODO: handle different outputs here
|
||||
return c.Status(http.StatusOK).JSON(fiber.Map{"text": tr})
|
||||
}
|
||||
}
|
||||
|
||||
func listModels(loader *model.ModelLoader, cm *ConfigMerger) func(ctx *fiber.Ctx) error {
|
||||
return func(c *fiber.Ctx) error {
|
||||
models, err := loader.ListModels()
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
var mm map[string]interface{} = map[string]interface{}{}
|
||||
|
||||
dataModels := []OpenAIModel{}
|
||||
for _, m := range models {
|
||||
mm[m] = nil
|
||||
dataModels = append(dataModels, OpenAIModel{ID: m, Object: "model"})
|
||||
}
|
||||
|
||||
for _, k := range cm.ListConfigs() {
|
||||
if _, exists := mm[k]; !exists {
|
||||
dataModels = append(dataModels, OpenAIModel{ID: k, Object: "model"})
|
||||
}
|
||||
}
|
||||
|
||||
return c.JSON(struct {
|
||||
Object string `json:"object"`
|
||||
Data []OpenAIModel `json:"data"`
|
||||
}{
|
||||
Object: "list",
|
||||
Data: dataModels,
|
||||
})
|
||||
}
|
||||
}
|
||||
137
api/options.go
Normal file
137
api/options.go
Normal file
@@ -0,0 +1,137 @@
|
||||
package api
|
||||
|
||||
import (
|
||||
"context"
|
||||
"embed"
|
||||
|
||||
model "github.com/go-skynet/LocalAI/pkg/model"
|
||||
)
|
||||
|
||||
type Option struct {
|
||||
context context.Context
|
||||
configFile string
|
||||
loader *model.ModelLoader
|
||||
uploadLimitMB, threads, ctxSize int
|
||||
f16 bool
|
||||
debug, disableMessage bool
|
||||
imageDir string
|
||||
cors bool
|
||||
preloadJSONModels string
|
||||
preloadModelsFromPath string
|
||||
corsAllowOrigins string
|
||||
|
||||
backendAssets embed.FS
|
||||
assetsDestination string
|
||||
}
|
||||
|
||||
type AppOption func(*Option)
|
||||
|
||||
func newOptions(o ...AppOption) *Option {
|
||||
opt := &Option{
|
||||
context: context.Background(),
|
||||
uploadLimitMB: 15,
|
||||
threads: 1,
|
||||
ctxSize: 512,
|
||||
debug: true,
|
||||
disableMessage: true,
|
||||
}
|
||||
for _, oo := range o {
|
||||
oo(opt)
|
||||
}
|
||||
return opt
|
||||
}
|
||||
|
||||
func WithCors(b bool) AppOption {
|
||||
return func(o *Option) {
|
||||
o.cors = b
|
||||
}
|
||||
}
|
||||
|
||||
func WithCorsAllowOrigins(b string) AppOption {
|
||||
return func(o *Option) {
|
||||
o.corsAllowOrigins = b
|
||||
}
|
||||
}
|
||||
|
||||
func WithBackendAssetsOutput(out string) AppOption {
|
||||
return func(o *Option) {
|
||||
o.assetsDestination = out
|
||||
}
|
||||
}
|
||||
|
||||
func WithBackendAssets(f embed.FS) AppOption {
|
||||
return func(o *Option) {
|
||||
o.backendAssets = f
|
||||
}
|
||||
}
|
||||
|
||||
func WithContext(ctx context.Context) AppOption {
|
||||
return func(o *Option) {
|
||||
o.context = ctx
|
||||
}
|
||||
}
|
||||
|
||||
func WithYAMLConfigPreload(configFile string) AppOption {
|
||||
return func(o *Option) {
|
||||
o.preloadModelsFromPath = configFile
|
||||
}
|
||||
}
|
||||
|
||||
func WithJSONStringPreload(configFile string) AppOption {
|
||||
return func(o *Option) {
|
||||
o.preloadJSONModels = configFile
|
||||
}
|
||||
}
|
||||
func WithConfigFile(configFile string) AppOption {
|
||||
return func(o *Option) {
|
||||
o.configFile = configFile
|
||||
}
|
||||
}
|
||||
|
||||
func WithModelLoader(loader *model.ModelLoader) AppOption {
|
||||
return func(o *Option) {
|
||||
o.loader = loader
|
||||
}
|
||||
}
|
||||
|
||||
func WithUploadLimitMB(limit int) AppOption {
|
||||
return func(o *Option) {
|
||||
o.uploadLimitMB = limit
|
||||
}
|
||||
}
|
||||
|
||||
func WithThreads(threads int) AppOption {
|
||||
return func(o *Option) {
|
||||
o.threads = threads
|
||||
}
|
||||
}
|
||||
|
||||
func WithContextSize(ctxSize int) AppOption {
|
||||
return func(o *Option) {
|
||||
o.ctxSize = ctxSize
|
||||
}
|
||||
}
|
||||
|
||||
func WithF16(f16 bool) AppOption {
|
||||
return func(o *Option) {
|
||||
o.f16 = f16
|
||||
}
|
||||
}
|
||||
|
||||
func WithDebug(debug bool) AppOption {
|
||||
return func(o *Option) {
|
||||
o.debug = debug
|
||||
}
|
||||
}
|
||||
|
||||
func WithDisableMessage(disableMessage bool) AppOption {
|
||||
return func(o *Option) {
|
||||
o.disableMessage = disableMessage
|
||||
}
|
||||
}
|
||||
|
||||
func WithImageDir(imageDir string) AppOption {
|
||||
return func(o *Option) {
|
||||
o.imageDir = imageDir
|
||||
}
|
||||
}
|
||||
639
api/prediction.go
Normal file
639
api/prediction.go
Normal file
@@ -0,0 +1,639 @@
|
||||
package api
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"os"
|
||||
"path/filepath"
|
||||
"regexp"
|
||||
"strings"
|
||||
"sync"
|
||||
|
||||
"github.com/donomii/go-rwkv.cpp"
|
||||
"github.com/go-skynet/LocalAI/pkg/langchain"
|
||||
model "github.com/go-skynet/LocalAI/pkg/model"
|
||||
"github.com/go-skynet/LocalAI/pkg/stablediffusion"
|
||||
"github.com/go-skynet/bloomz.cpp"
|
||||
bert "github.com/go-skynet/go-bert.cpp"
|
||||
transformers "github.com/go-skynet/go-ggml-transformers.cpp"
|
||||
llama "github.com/go-skynet/go-llama.cpp"
|
||||
gpt4all "github.com/nomic-ai/gpt4all/gpt4all-bindings/golang"
|
||||
)
|
||||
|
||||
// mutex still needed, see: https://github.com/ggerganov/llama.cpp/discussions/784
|
||||
var mutexMap sync.Mutex
|
||||
var mutexes map[string]*sync.Mutex = make(map[string]*sync.Mutex)
|
||||
|
||||
func defaultLLamaOpts(c Config) []llama.ModelOption {
|
||||
llamaOpts := []llama.ModelOption{}
|
||||
if c.ContextSize != 0 {
|
||||
llamaOpts = append(llamaOpts, llama.SetContext(c.ContextSize))
|
||||
}
|
||||
if c.F16 {
|
||||
llamaOpts = append(llamaOpts, llama.EnableF16Memory)
|
||||
}
|
||||
if c.Embeddings {
|
||||
llamaOpts = append(llamaOpts, llama.EnableEmbeddings)
|
||||
}
|
||||
|
||||
if c.NGPULayers != 0 {
|
||||
llamaOpts = append(llamaOpts, llama.SetGPULayers(c.NGPULayers))
|
||||
}
|
||||
|
||||
llamaOpts = append(llamaOpts, llama.SetMMap(c.MMap))
|
||||
llamaOpts = append(llamaOpts, llama.SetMainGPU(c.MainGPU))
|
||||
llamaOpts = append(llamaOpts, llama.SetTensorSplit(c.TensorSplit))
|
||||
if c.Batch != 0 {
|
||||
llamaOpts = append(llamaOpts, llama.SetNBatch(c.Batch))
|
||||
} else {
|
||||
llamaOpts = append(llamaOpts, llama.SetNBatch(512))
|
||||
}
|
||||
|
||||
return llamaOpts
|
||||
}
|
||||
|
||||
func ImageGeneration(height, width, mode, step, seed int, positive_prompt, negative_prompt, dst string, loader *model.ModelLoader, c Config, o *Option) (func() error, error) {
|
||||
if c.Backend != model.StableDiffusionBackend {
|
||||
return nil, fmt.Errorf("endpoint only working with stablediffusion models")
|
||||
}
|
||||
inferenceModel, err := loader.BackendLoader(c.Backend, c.ImageGenerationAssets, []llama.ModelOption{}, uint32(c.Threads), o.assetsDestination)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
var fn func() error
|
||||
switch model := inferenceModel.(type) {
|
||||
case *stablediffusion.StableDiffusion:
|
||||
fn = func() error {
|
||||
return model.GenerateImage(height, width, mode, step, seed, positive_prompt, negative_prompt, dst)
|
||||
}
|
||||
|
||||
default:
|
||||
fn = func() error {
|
||||
return fmt.Errorf("creation of images not supported by the backend")
|
||||
}
|
||||
}
|
||||
|
||||
return func() error {
|
||||
// This is still needed, see: https://github.com/ggerganov/llama.cpp/discussions/784
|
||||
mutexMap.Lock()
|
||||
l, ok := mutexes[c.Backend]
|
||||
if !ok {
|
||||
m := &sync.Mutex{}
|
||||
mutexes[c.Backend] = m
|
||||
l = m
|
||||
}
|
||||
mutexMap.Unlock()
|
||||
l.Lock()
|
||||
defer l.Unlock()
|
||||
|
||||
return fn()
|
||||
}, nil
|
||||
}
|
||||
|
||||
func ModelEmbedding(s string, tokens []int, loader *model.ModelLoader, c Config, o *Option) (func() ([]float32, error), error) {
|
||||
if !c.Embeddings {
|
||||
return nil, fmt.Errorf("endpoint disabled for this model by API configuration")
|
||||
}
|
||||
|
||||
modelFile := c.Model
|
||||
|
||||
llamaOpts := defaultLLamaOpts(c)
|
||||
|
||||
var inferenceModel interface{}
|
||||
var err error
|
||||
if c.Backend == "" {
|
||||
inferenceModel, err = loader.GreedyLoader(modelFile, llamaOpts, uint32(c.Threads), o.assetsDestination)
|
||||
} else {
|
||||
inferenceModel, err = loader.BackendLoader(c.Backend, modelFile, llamaOpts, uint32(c.Threads), o.assetsDestination)
|
||||
}
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
var fn func() ([]float32, error)
|
||||
switch model := inferenceModel.(type) {
|
||||
case *llama.LLama:
|
||||
fn = func() ([]float32, error) {
|
||||
predictOptions := buildLLamaPredictOptions(c, loader.ModelPath)
|
||||
if len(tokens) > 0 {
|
||||
return model.TokenEmbeddings(tokens, predictOptions...)
|
||||
}
|
||||
return model.Embeddings(s, predictOptions...)
|
||||
}
|
||||
// bert embeddings
|
||||
case *bert.Bert:
|
||||
fn = func() ([]float32, error) {
|
||||
if len(tokens) > 0 {
|
||||
return model.TokenEmbeddings(tokens, bert.SetThreads(c.Threads))
|
||||
}
|
||||
return model.Embeddings(s, bert.SetThreads(c.Threads))
|
||||
}
|
||||
default:
|
||||
fn = func() ([]float32, error) {
|
||||
return nil, fmt.Errorf("embeddings not supported by the backend")
|
||||
}
|
||||
}
|
||||
|
||||
return func() ([]float32, error) {
|
||||
// This is still needed, see: https://github.com/ggerganov/llama.cpp/discussions/784
|
||||
mutexMap.Lock()
|
||||
l, ok := mutexes[modelFile]
|
||||
if !ok {
|
||||
m := &sync.Mutex{}
|
||||
mutexes[modelFile] = m
|
||||
l = m
|
||||
}
|
||||
mutexMap.Unlock()
|
||||
l.Lock()
|
||||
defer l.Unlock()
|
||||
|
||||
embeds, err := fn()
|
||||
if err != nil {
|
||||
return embeds, err
|
||||
}
|
||||
// Remove trailing 0s
|
||||
for i := len(embeds) - 1; i >= 0; i-- {
|
||||
if embeds[i] == 0.0 {
|
||||
embeds = embeds[:i]
|
||||
} else {
|
||||
break
|
||||
}
|
||||
}
|
||||
return embeds, nil
|
||||
}, nil
|
||||
}
|
||||
|
||||
func buildLLamaPredictOptions(c Config, modelPath string) []llama.PredictOption {
|
||||
// Generate the prediction using the language model
|
||||
predictOptions := []llama.PredictOption{
|
||||
llama.SetTemperature(c.Temperature),
|
||||
llama.SetTopP(c.TopP),
|
||||
llama.SetTopK(c.TopK),
|
||||
llama.SetTokens(c.Maxtokens),
|
||||
llama.SetThreads(c.Threads),
|
||||
}
|
||||
|
||||
if c.PromptCacheAll {
|
||||
predictOptions = append(predictOptions, llama.EnablePromptCacheAll)
|
||||
}
|
||||
|
||||
if c.PromptCacheRO {
|
||||
predictOptions = append(predictOptions, llama.EnablePromptCacheRO)
|
||||
}
|
||||
|
||||
if c.PromptCachePath != "" {
|
||||
// Create parent directory
|
||||
p := filepath.Join(modelPath, c.PromptCachePath)
|
||||
os.MkdirAll(filepath.Dir(p), 0755)
|
||||
predictOptions = append(predictOptions, llama.SetPathPromptCache(p))
|
||||
}
|
||||
|
||||
if c.Mirostat != 0 {
|
||||
predictOptions = append(predictOptions, llama.SetMirostat(c.Mirostat))
|
||||
}
|
||||
|
||||
if c.MirostatETA != 0 {
|
||||
predictOptions = append(predictOptions, llama.SetMirostatETA(c.MirostatETA))
|
||||
}
|
||||
|
||||
if c.MirostatTAU != 0 {
|
||||
predictOptions = append(predictOptions, llama.SetMirostatTAU(c.MirostatTAU))
|
||||
}
|
||||
|
||||
if c.Debug {
|
||||
predictOptions = append(predictOptions, llama.Debug)
|
||||
}
|
||||
|
||||
predictOptions = append(predictOptions, llama.SetStopWords(c.StopWords...))
|
||||
|
||||
if c.RepeatPenalty != 0 {
|
||||
predictOptions = append(predictOptions, llama.SetPenalty(c.RepeatPenalty))
|
||||
}
|
||||
|
||||
if c.Keep != 0 {
|
||||
predictOptions = append(predictOptions, llama.SetNKeep(c.Keep))
|
||||
}
|
||||
|
||||
if c.Batch != 0 {
|
||||
predictOptions = append(predictOptions, llama.SetBatch(c.Batch))
|
||||
}
|
||||
|
||||
if c.F16 {
|
||||
predictOptions = append(predictOptions, llama.EnableF16KV)
|
||||
}
|
||||
|
||||
if c.IgnoreEOS {
|
||||
predictOptions = append(predictOptions, llama.IgnoreEOS)
|
||||
}
|
||||
|
||||
if c.Seed != 0 {
|
||||
predictOptions = append(predictOptions, llama.SetSeed(c.Seed))
|
||||
}
|
||||
|
||||
//predictOptions = append(predictOptions, llama.SetLogitBias(c.Seed))
|
||||
|
||||
predictOptions = append(predictOptions, llama.SetFrequencyPenalty(c.FrequencyPenalty))
|
||||
predictOptions = append(predictOptions, llama.SetMlock(c.MMlock))
|
||||
predictOptions = append(predictOptions, llama.SetMemoryMap(c.MMap))
|
||||
predictOptions = append(predictOptions, llama.SetPredictionMainGPU(c.MainGPU))
|
||||
predictOptions = append(predictOptions, llama.SetPredictionTensorSplit(c.TensorSplit))
|
||||
predictOptions = append(predictOptions, llama.SetTailFreeSamplingZ(c.TFZ))
|
||||
predictOptions = append(predictOptions, llama.SetTypicalP(c.TypicalP))
|
||||
|
||||
return predictOptions
|
||||
}
|
||||
|
||||
func ModelInference(s string, loader *model.ModelLoader, c Config, o *Option, tokenCallback func(string) bool) (func() (string, error), error) {
|
||||
supportStreams := false
|
||||
modelFile := c.Model
|
||||
|
||||
llamaOpts := defaultLLamaOpts(c)
|
||||
|
||||
var inferenceModel interface{}
|
||||
var err error
|
||||
if c.Backend == "" {
|
||||
inferenceModel, err = loader.GreedyLoader(modelFile, llamaOpts, uint32(c.Threads), o.assetsDestination)
|
||||
} else {
|
||||
inferenceModel, err = loader.BackendLoader(c.Backend, modelFile, llamaOpts, uint32(c.Threads), o.assetsDestination)
|
||||
}
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
var fn func() (string, error)
|
||||
|
||||
switch model := inferenceModel.(type) {
|
||||
case *rwkv.RwkvState:
|
||||
supportStreams = true
|
||||
|
||||
fn = func() (string, error) {
|
||||
stopWord := "\n"
|
||||
if len(c.StopWords) > 0 {
|
||||
stopWord = c.StopWords[0]
|
||||
}
|
||||
|
||||
if err := model.ProcessInput(s); err != nil {
|
||||
return "", err
|
||||
}
|
||||
|
||||
response := model.GenerateResponse(c.Maxtokens, stopWord, float32(c.Temperature), float32(c.TopP), tokenCallback)
|
||||
|
||||
return response, nil
|
||||
}
|
||||
case *transformers.GPTNeoX:
|
||||
fn = func() (string, error) {
|
||||
// Generate the prediction using the language model
|
||||
predictOptions := []transformers.PredictOption{
|
||||
transformers.SetTemperature(c.Temperature),
|
||||
transformers.SetTopP(c.TopP),
|
||||
transformers.SetTopK(c.TopK),
|
||||
transformers.SetTokens(c.Maxtokens),
|
||||
transformers.SetThreads(c.Threads),
|
||||
}
|
||||
|
||||
if c.Batch != 0 {
|
||||
predictOptions = append(predictOptions, transformers.SetBatch(c.Batch))
|
||||
}
|
||||
|
||||
if c.Seed != 0 {
|
||||
predictOptions = append(predictOptions, transformers.SetSeed(c.Seed))
|
||||
}
|
||||
|
||||
return model.Predict(
|
||||
s,
|
||||
predictOptions...,
|
||||
)
|
||||
}
|
||||
case *transformers.Replit:
|
||||
fn = func() (string, error) {
|
||||
// Generate the prediction using the language model
|
||||
predictOptions := []transformers.PredictOption{
|
||||
transformers.SetTemperature(c.Temperature),
|
||||
transformers.SetTopP(c.TopP),
|
||||
transformers.SetTopK(c.TopK),
|
||||
transformers.SetTokens(c.Maxtokens),
|
||||
transformers.SetThreads(c.Threads),
|
||||
}
|
||||
|
||||
if c.Batch != 0 {
|
||||
predictOptions = append(predictOptions, transformers.SetBatch(c.Batch))
|
||||
}
|
||||
|
||||
if c.Seed != 0 {
|
||||
predictOptions = append(predictOptions, transformers.SetSeed(c.Seed))
|
||||
}
|
||||
|
||||
return model.Predict(
|
||||
s,
|
||||
predictOptions...,
|
||||
)
|
||||
}
|
||||
case *transformers.Starcoder:
|
||||
fn = func() (string, error) {
|
||||
// Generate the prediction using the language model
|
||||
predictOptions := []transformers.PredictOption{
|
||||
transformers.SetTemperature(c.Temperature),
|
||||
transformers.SetTopP(c.TopP),
|
||||
transformers.SetTopK(c.TopK),
|
||||
transformers.SetTokens(c.Maxtokens),
|
||||
transformers.SetThreads(c.Threads),
|
||||
}
|
||||
|
||||
if c.Batch != 0 {
|
||||
predictOptions = append(predictOptions, transformers.SetBatch(c.Batch))
|
||||
}
|
||||
|
||||
if c.Seed != 0 {
|
||||
predictOptions = append(predictOptions, transformers.SetSeed(c.Seed))
|
||||
}
|
||||
|
||||
return model.Predict(
|
||||
s,
|
||||
predictOptions...,
|
||||
)
|
||||
}
|
||||
case *transformers.MPT:
|
||||
fn = func() (string, error) {
|
||||
// Generate the prediction using the language model
|
||||
predictOptions := []transformers.PredictOption{
|
||||
transformers.SetTemperature(c.Temperature),
|
||||
transformers.SetTopP(c.TopP),
|
||||
transformers.SetTopK(c.TopK),
|
||||
transformers.SetTokens(c.Maxtokens),
|
||||
transformers.SetThreads(c.Threads),
|
||||
}
|
||||
|
||||
if c.Batch != 0 {
|
||||
predictOptions = append(predictOptions, transformers.SetBatch(c.Batch))
|
||||
}
|
||||
|
||||
if c.Seed != 0 {
|
||||
predictOptions = append(predictOptions, transformers.SetSeed(c.Seed))
|
||||
}
|
||||
|
||||
return model.Predict(
|
||||
s,
|
||||
predictOptions...,
|
||||
)
|
||||
}
|
||||
case *bloomz.Bloomz:
|
||||
fn = func() (string, error) {
|
||||
// Generate the prediction using the language model
|
||||
predictOptions := []bloomz.PredictOption{
|
||||
bloomz.SetTemperature(c.Temperature),
|
||||
bloomz.SetTopP(c.TopP),
|
||||
bloomz.SetTopK(c.TopK),
|
||||
bloomz.SetTokens(c.Maxtokens),
|
||||
bloomz.SetThreads(c.Threads),
|
||||
}
|
||||
|
||||
if c.Seed != 0 {
|
||||
predictOptions = append(predictOptions, bloomz.SetSeed(c.Seed))
|
||||
}
|
||||
|
||||
return model.Predict(
|
||||
s,
|
||||
predictOptions...,
|
||||
)
|
||||
}
|
||||
case *transformers.Falcon:
|
||||
fn = func() (string, error) {
|
||||
// Generate the prediction using the language model
|
||||
predictOptions := []transformers.PredictOption{
|
||||
transformers.SetTemperature(c.Temperature),
|
||||
transformers.SetTopP(c.TopP),
|
||||
transformers.SetTopK(c.TopK),
|
||||
transformers.SetTokens(c.Maxtokens),
|
||||
transformers.SetThreads(c.Threads),
|
||||
}
|
||||
|
||||
if c.Batch != 0 {
|
||||
predictOptions = append(predictOptions, transformers.SetBatch(c.Batch))
|
||||
}
|
||||
|
||||
if c.Seed != 0 {
|
||||
predictOptions = append(predictOptions, transformers.SetSeed(c.Seed))
|
||||
}
|
||||
|
||||
return model.Predict(
|
||||
s,
|
||||
predictOptions...,
|
||||
)
|
||||
}
|
||||
case *transformers.GPTJ:
|
||||
fn = func() (string, error) {
|
||||
// Generate the prediction using the language model
|
||||
predictOptions := []transformers.PredictOption{
|
||||
transformers.SetTemperature(c.Temperature),
|
||||
transformers.SetTopP(c.TopP),
|
||||
transformers.SetTopK(c.TopK),
|
||||
transformers.SetTokens(c.Maxtokens),
|
||||
transformers.SetThreads(c.Threads),
|
||||
}
|
||||
|
||||
if c.Batch != 0 {
|
||||
predictOptions = append(predictOptions, transformers.SetBatch(c.Batch))
|
||||
}
|
||||
|
||||
if c.Seed != 0 {
|
||||
predictOptions = append(predictOptions, transformers.SetSeed(c.Seed))
|
||||
}
|
||||
|
||||
return model.Predict(
|
||||
s,
|
||||
predictOptions...,
|
||||
)
|
||||
}
|
||||
case *transformers.Dolly:
|
||||
fn = func() (string, error) {
|
||||
// Generate the prediction using the language model
|
||||
predictOptions := []transformers.PredictOption{
|
||||
transformers.SetTemperature(c.Temperature),
|
||||
transformers.SetTopP(c.TopP),
|
||||
transformers.SetTopK(c.TopK),
|
||||
transformers.SetTokens(c.Maxtokens),
|
||||
transformers.SetThreads(c.Threads),
|
||||
}
|
||||
|
||||
if c.Batch != 0 {
|
||||
predictOptions = append(predictOptions, transformers.SetBatch(c.Batch))
|
||||
}
|
||||
|
||||
if c.Seed != 0 {
|
||||
predictOptions = append(predictOptions, transformers.SetSeed(c.Seed))
|
||||
}
|
||||
|
||||
return model.Predict(
|
||||
s,
|
||||
predictOptions...,
|
||||
)
|
||||
}
|
||||
case *transformers.GPT2:
|
||||
fn = func() (string, error) {
|
||||
// Generate the prediction using the language model
|
||||
predictOptions := []transformers.PredictOption{
|
||||
transformers.SetTemperature(c.Temperature),
|
||||
transformers.SetTopP(c.TopP),
|
||||
transformers.SetTopK(c.TopK),
|
||||
transformers.SetTokens(c.Maxtokens),
|
||||
transformers.SetThreads(c.Threads),
|
||||
}
|
||||
|
||||
if c.Batch != 0 {
|
||||
predictOptions = append(predictOptions, transformers.SetBatch(c.Batch))
|
||||
}
|
||||
|
||||
if c.Seed != 0 {
|
||||
predictOptions = append(predictOptions, transformers.SetSeed(c.Seed))
|
||||
}
|
||||
|
||||
return model.Predict(
|
||||
s,
|
||||
predictOptions...,
|
||||
)
|
||||
}
|
||||
case *gpt4all.Model:
|
||||
supportStreams = true
|
||||
|
||||
fn = func() (string, error) {
|
||||
if tokenCallback != nil {
|
||||
model.SetTokenCallback(tokenCallback)
|
||||
}
|
||||
|
||||
// Generate the prediction using the language model
|
||||
predictOptions := []gpt4all.PredictOption{
|
||||
gpt4all.SetTemperature(c.Temperature),
|
||||
gpt4all.SetTopP(c.TopP),
|
||||
gpt4all.SetTopK(c.TopK),
|
||||
gpt4all.SetTokens(c.Maxtokens),
|
||||
}
|
||||
|
||||
if c.Batch != 0 {
|
||||
predictOptions = append(predictOptions, gpt4all.SetBatch(c.Batch))
|
||||
}
|
||||
|
||||
str, er := model.Predict(
|
||||
s,
|
||||
predictOptions...,
|
||||
)
|
||||
// Seems that if we don't free the callback explicitly we leave functions registered (that might try to send on closed channels)
|
||||
// For instance otherwise the API returns: {"error":{"code":500,"message":"send on closed channel","type":""}}
|
||||
// after a stream event has occurred
|
||||
model.SetTokenCallback(nil)
|
||||
return str, er
|
||||
}
|
||||
case *llama.LLama:
|
||||
supportStreams = true
|
||||
fn = func() (string, error) {
|
||||
|
||||
if tokenCallback != nil {
|
||||
model.SetTokenCallback(tokenCallback)
|
||||
}
|
||||
|
||||
predictOptions := buildLLamaPredictOptions(c, loader.ModelPath)
|
||||
|
||||
str, er := model.Predict(
|
||||
s,
|
||||
predictOptions...,
|
||||
)
|
||||
// Seems that if we don't free the callback explicitly we leave functions registered (that might try to send on closed channels)
|
||||
// For instance otherwise the API returns: {"error":{"code":500,"message":"send on closed channel","type":""}}
|
||||
// after a stream event has occurred
|
||||
model.SetTokenCallback(nil)
|
||||
return str, er
|
||||
}
|
||||
case *langchain.HuggingFace:
|
||||
fn = func() (string, error) {
|
||||
|
||||
// Generate the prediction using the language model
|
||||
predictOptions := []langchain.PredictOption{
|
||||
langchain.SetModel(c.Model),
|
||||
langchain.SetMaxTokens(c.Maxtokens),
|
||||
langchain.SetTemperature(c.Temperature),
|
||||
langchain.SetStopWords(c.StopWords),
|
||||
}
|
||||
|
||||
pred, er := model.PredictHuggingFace(s, predictOptions...)
|
||||
if er != nil {
|
||||
return "", er
|
||||
}
|
||||
return pred.Completion, nil
|
||||
}
|
||||
}
|
||||
|
||||
return func() (string, error) {
|
||||
// This is still needed, see: https://github.com/ggerganov/llama.cpp/discussions/784
|
||||
mutexMap.Lock()
|
||||
l, ok := mutexes[modelFile]
|
||||
if !ok {
|
||||
m := &sync.Mutex{}
|
||||
mutexes[modelFile] = m
|
||||
l = m
|
||||
}
|
||||
mutexMap.Unlock()
|
||||
l.Lock()
|
||||
defer l.Unlock()
|
||||
|
||||
res, err := fn()
|
||||
if tokenCallback != nil && !supportStreams {
|
||||
tokenCallback(res)
|
||||
}
|
||||
return res, err
|
||||
}, nil
|
||||
}
|
||||
|
||||
func ComputeChoices(predInput string, input *OpenAIRequest, config *Config, o *Option, loader *model.ModelLoader, cb func(string, *[]Choice), tokenCallback func(string) bool) ([]Choice, error) {
|
||||
result := []Choice{}
|
||||
|
||||
n := input.N
|
||||
|
||||
if input.N == 0 {
|
||||
n = 1
|
||||
}
|
||||
|
||||
// get the model function to call for the result
|
||||
predFunc, err := ModelInference(predInput, loader, *config, o, tokenCallback)
|
||||
if err != nil {
|
||||
return result, err
|
||||
}
|
||||
|
||||
for i := 0; i < n; i++ {
|
||||
prediction, err := predFunc()
|
||||
if err != nil {
|
||||
return result, err
|
||||
}
|
||||
|
||||
prediction = Finetune(*config, predInput, prediction)
|
||||
cb(prediction, &result)
|
||||
|
||||
//result = append(result, Choice{Text: prediction})
|
||||
|
||||
}
|
||||
return result, err
|
||||
}
|
||||
|
||||
var cutstrings map[string]*regexp.Regexp = make(map[string]*regexp.Regexp)
|
||||
var mu sync.Mutex = sync.Mutex{}
|
||||
|
||||
func Finetune(config Config, input, prediction string) string {
|
||||
if config.Echo {
|
||||
prediction = input + prediction
|
||||
}
|
||||
|
||||
for _, c := range config.Cutstrings {
|
||||
mu.Lock()
|
||||
reg, ok := cutstrings[c]
|
||||
if !ok {
|
||||
cutstrings[c] = regexp.MustCompile(c)
|
||||
reg = cutstrings[c]
|
||||
}
|
||||
mu.Unlock()
|
||||
prediction = reg.ReplaceAllString(prediction, "")
|
||||
}
|
||||
|
||||
for _, c := range config.TrimSpace {
|
||||
prediction = strings.TrimSpace(strings.TrimPrefix(prediction, c))
|
||||
}
|
||||
return prediction
|
||||
|
||||
}
|
||||
6
assets.go
Normal file
6
assets.go
Normal file
@@ -0,0 +1,6 @@
|
||||
package main
|
||||
|
||||
import "embed"
|
||||
|
||||
//go:embed backend-assets/*
|
||||
var backendAssets embed.FS
|
||||
@@ -1,75 +0,0 @@
|
||||
package client
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"encoding/json"
|
||||
"fmt"
|
||||
"net/http"
|
||||
)
|
||||
|
||||
type Prediction struct {
|
||||
Prediction string `json:"prediction"`
|
||||
}
|
||||
|
||||
type Client struct {
|
||||
baseURL string
|
||||
client *http.Client
|
||||
endpoint string
|
||||
}
|
||||
|
||||
func NewClient(baseURL string) *Client {
|
||||
return &Client{
|
||||
baseURL: baseURL,
|
||||
client: &http.Client{},
|
||||
endpoint: "/predict",
|
||||
}
|
||||
}
|
||||
|
||||
type InputData struct {
|
||||
Text string `json:"text"`
|
||||
TopP float64 `json:"topP,omitempty"`
|
||||
TopK int `json:"topK,omitempty"`
|
||||
Temperature float64 `json:"temperature,omitempty"`
|
||||
Tokens int `json:"tokens,omitempty"`
|
||||
}
|
||||
|
||||
func (c *Client) Predict(text string, opts ...InputOption) (string, error) {
|
||||
input := NewInputData(opts...)
|
||||
input.Text = text
|
||||
|
||||
// encode input data to JSON format
|
||||
inputBytes, err := json.Marshal(input)
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
|
||||
// create HTTP request
|
||||
url := c.baseURL + c.endpoint
|
||||
req, err := http.NewRequest("POST", url, bytes.NewBuffer(inputBytes))
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
|
||||
// set request headers
|
||||
req.Header.Set("Content-Type", "application/json")
|
||||
|
||||
// send request and get response
|
||||
resp, err := c.client.Do(req)
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
defer resp.Body.Close()
|
||||
|
||||
if resp.StatusCode != http.StatusOK {
|
||||
return "", fmt.Errorf("request failed with status %d", resp.StatusCode)
|
||||
}
|
||||
|
||||
// decode response body to Prediction struct
|
||||
var prediction Prediction
|
||||
err = json.NewDecoder(resp.Body).Decode(&prediction)
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
|
||||
return prediction.Prediction, nil
|
||||
}
|
||||
@@ -1,51 +0,0 @@
|
||||
package client
|
||||
|
||||
import "net/http"
|
||||
|
||||
type ClientOption func(c *Client)
|
||||
|
||||
func WithHTTPClient(httpClient *http.Client) ClientOption {
|
||||
return func(c *Client) {
|
||||
c.client = httpClient
|
||||
}
|
||||
}
|
||||
|
||||
func WithEndpoint(endpoint string) ClientOption {
|
||||
return func(c *Client) {
|
||||
c.endpoint = endpoint
|
||||
}
|
||||
}
|
||||
|
||||
type InputOption func(d *InputData)
|
||||
|
||||
func NewInputData(opts ...InputOption) *InputData {
|
||||
data := &InputData{}
|
||||
for _, opt := range opts {
|
||||
opt(data)
|
||||
}
|
||||
return data
|
||||
}
|
||||
|
||||
func WithTopP(topP float64) InputOption {
|
||||
return func(d *InputData) {
|
||||
d.TopP = topP
|
||||
}
|
||||
}
|
||||
|
||||
func WithTopK(topK int) InputOption {
|
||||
return func(d *InputData) {
|
||||
d.TopK = topK
|
||||
}
|
||||
}
|
||||
|
||||
func WithTemperature(temperature float64) InputOption {
|
||||
return func(d *InputData) {
|
||||
d.Temperature = temperature
|
||||
}
|
||||
}
|
||||
|
||||
func WithTokens(tokens int) InputOption {
|
||||
return func(d *InputData) {
|
||||
d.Tokens = tokens
|
||||
}
|
||||
}
|
||||
15
docker-compose.yaml
Normal file
15
docker-compose.yaml
Normal file
@@ -0,0 +1,15 @@
|
||||
version: '3.6'
|
||||
|
||||
services:
|
||||
api:
|
||||
image: quay.io/go-skynet/local-ai:latest
|
||||
build:
|
||||
context: .
|
||||
dockerfile: Dockerfile
|
||||
ports:
|
||||
- 8080:8080
|
||||
env_file:
|
||||
- .env
|
||||
volumes:
|
||||
- ./models:/models:cached
|
||||
command: ["/usr/bin/local-ai" ]
|
||||
11
entrypoint.sh
Executable file
11
entrypoint.sh
Executable file
@@ -0,0 +1,11 @@
|
||||
#!/bin/bash
|
||||
set -e
|
||||
|
||||
cd /build
|
||||
|
||||
if [ "$REBUILD" != "false" ]; then
|
||||
rm -rf ./local-ai
|
||||
make build
|
||||
fi
|
||||
|
||||
./local-ai "$@"
|
||||
137
examples/README.md
Normal file
137
examples/README.md
Normal file
@@ -0,0 +1,137 @@
|
||||
# Examples
|
||||
|
||||
Here is a list of projects that can easily be integrated with the LocalAI backend.
|
||||
|
||||
### Projects
|
||||
|
||||
### AutoGPT
|
||||
|
||||
_by [@mudler](https://github.com/mudler)_
|
||||
|
||||
This example shows how to use AutoGPT with LocalAI.
|
||||
|
||||
[Check it out here](https://github.com/go-skynet/LocalAI/tree/master/examples/autoGPT/)
|
||||
|
||||
### Chatbot-UI
|
||||
|
||||
_by [@mkellerman](https://github.com/mkellerman)_
|
||||
|
||||

|
||||
|
||||
This integration shows how to use LocalAI with [mckaywrigley/chatbot-ui](https://github.com/mckaywrigley/chatbot-ui).
|
||||
|
||||
[Check it out here](https://github.com/go-skynet/LocalAI/tree/master/examples/chatbot-ui/)
|
||||
|
||||
There is also a separate example to show how to manually setup a model: [example](https://github.com/go-skynet/LocalAI/tree/master/examples/chatbot-ui-manual/)
|
||||
|
||||
### K8sGPT
|
||||
|
||||
_by [@mudler](https://github.com/mudler)_
|
||||
|
||||
This example show how to use LocalAI inside Kubernetes with [k8sgpt](https://k8sgpt.ai).
|
||||
|
||||

|
||||
|
||||
### Flowise
|
||||
|
||||
_by [@mudler](https://github.com/mudler)_
|
||||
|
||||
This example shows how to use [FlowiseAI/Flowise](https://github.com/FlowiseAI/Flowise) with LocalAI.
|
||||
|
||||
[Check it out here](https://github.com/go-skynet/LocalAI/tree/master/examples/flowise/)
|
||||
|
||||
### Discord bot
|
||||
|
||||
_by [@mudler](https://github.com/mudler)_
|
||||
|
||||
Run a discord bot which lets you talk directly with a model
|
||||
|
||||
[Check it out here](https://github.com/go-skynet/LocalAI/tree/master/examples/discord-bot/), or for a live demo you can talk with our bot in #random-bot in our discord server.
|
||||
|
||||
### Langchain
|
||||
|
||||
_by [@dave-gray101](https://github.com/dave-gray101)_
|
||||
|
||||
A ready to use example to show e2e how to integrate LocalAI with langchain
|
||||
|
||||
[Check it out here](https://github.com/go-skynet/LocalAI/tree/master/examples/langchain/)
|
||||
|
||||
### Langchain Python
|
||||
|
||||
_by [@mudler](https://github.com/mudler)_
|
||||
|
||||
A ready to use example to show e2e how to integrate LocalAI with langchain
|
||||
|
||||
[Check it out here](https://github.com/go-skynet/LocalAI/tree/master/examples/langchain-python/)
|
||||
|
||||
### LocalAI WebUI
|
||||
|
||||
_by [@dhruvgera](https://github.com/dhruvgera)_
|
||||
|
||||

|
||||
|
||||
A light, community-maintained web interface for LocalAI
|
||||
|
||||
[Check it out here](https://github.com/go-skynet/LocalAI/tree/master/examples/localai-webui/)
|
||||
|
||||
### How to run rwkv models
|
||||
|
||||
_by [@mudler](https://github.com/mudler)_
|
||||
|
||||
A full example on how to run RWKV models with LocalAI
|
||||
|
||||
[Check it out here](https://github.com/go-skynet/LocalAI/tree/master/examples/rwkv/)
|
||||
|
||||
### PrivateGPT
|
||||
|
||||
_by [@mudler](https://github.com/mudler)_
|
||||
|
||||
A full example on how to run PrivateGPT with LocalAI
|
||||
|
||||
[Check it out here](https://github.com/go-skynet/LocalAI/tree/master/examples/privateGPT/)
|
||||
|
||||
### Slack bot
|
||||
|
||||
_by [@mudler](https://github.com/mudler)_
|
||||
|
||||
Run a slack bot which lets you talk directly with a model
|
||||
|
||||
[Check it out here](https://github.com/go-skynet/LocalAI/tree/master/examples/slack-bot/)
|
||||
|
||||
### Question answering on documents with llama-index
|
||||
|
||||
_by [@mudler](https://github.com/mudler)_
|
||||
|
||||
Shows how to integrate with [Llama-Index](https://gpt-index.readthedocs.io/en/stable/getting_started/installation.html) to enable question answering on a set of documents.
|
||||
|
||||
[Check it out here](https://github.com/go-skynet/LocalAI/tree/master/examples/query_data/)
|
||||
|
||||
### Question answering on documents with langchain and chroma
|
||||
|
||||
_by [@mudler](https://github.com/mudler)_
|
||||
|
||||
Shows how to integrate with `Langchain` and `Chroma` to enable question answering on a set of documents.
|
||||
|
||||
[Check it out here](https://github.com/go-skynet/LocalAI/tree/master/examples/langchain-chroma/)
|
||||
|
||||
### Telegram bot
|
||||
|
||||
_by [@mudler](https://github.com/mudler)
|
||||
|
||||

|
||||
|
||||
Use LocalAI to power a Telegram bot assistant, with Image generation and audio support!
|
||||
|
||||
[Check it out here](https://github.com/go-skynet/LocalAI/tree/master/examples/telegram-bot/)
|
||||
|
||||
### Template for Runpod.io
|
||||
|
||||
_by [@fHachenberg](https://github.com/fHachenberg)_
|
||||
|
||||
Allows to run any LocalAI-compatible model as a backend on the servers of https://runpod.io
|
||||
|
||||
[Check it out here](https://runpod.io/gsc?template=uv9mtqnrd0&ref=984wlcra)
|
||||
|
||||
## Want to contribute?
|
||||
|
||||
Create an issue, and put `Example: <description>` in the title! We will post your examples here.
|
||||
5
examples/autoGPT/.env
Normal file
5
examples/autoGPT/.env
Normal file
@@ -0,0 +1,5 @@
|
||||
OPENAI_API_KEY=sk---anystringhere
|
||||
OPENAI_API_BASE=http://api:8080/v1
|
||||
# Models to preload at start
|
||||
# Here we configure gpt4all as gpt-3.5-turbo and bert as embeddings
|
||||
PRELOAD_MODELS=[{"url": "github:go-skynet/model-gallery/gpt4all-j.yaml", "name": "gpt-3.5-turbo"}, { "url": "github:go-skynet/model-gallery/bert-embeddings.yaml", "name": "text-embedding-ada-002"}]
|
||||
32
examples/autoGPT/README.md
Normal file
32
examples/autoGPT/README.md
Normal file
@@ -0,0 +1,32 @@
|
||||
# AutoGPT
|
||||
|
||||
Example of integration with [AutoGPT](https://github.com/Significant-Gravitas/Auto-GPT).
|
||||
|
||||
## Run
|
||||
|
||||
```bash
|
||||
# Clone LocalAI
|
||||
git clone https://github.com/go-skynet/LocalAI
|
||||
|
||||
cd LocalAI/examples/autoGPT
|
||||
|
||||
docker-compose run --rm auto-gpt
|
||||
```
|
||||
|
||||
Note: The example automatically downloads the `gpt4all` model as it is under a permissive license. The GPT4All model does not seem to be enough to run AutoGPT. WizardLM-7b-uncensored seems to perform better (with `f16: true`).
|
||||
|
||||
See the `.env` configuration file to set a different model with the [model-gallery](https://github.com/go-skynet/model-gallery) by editing `PRELOAD_MODELS`.
|
||||
|
||||
## Without docker
|
||||
|
||||
Run AutoGPT with `OPENAI_API_BASE` pointing to the LocalAI endpoint. If you run it locally for instance:
|
||||
|
||||
```
|
||||
OPENAI_API_BASE=http://localhost:8080 python ...
|
||||
```
|
||||
|
||||
Note: you need a model named `gpt-3.5-turbo` and `text-embedding-ada-002`. You can preload those in LocalAI at start by setting in the env:
|
||||
|
||||
```
|
||||
PRELOAD_MODELS=[{"url": "github:go-skynet/model-gallery/gpt4all-j.yaml", "name": "gpt-3.5-turbo"}, { "url": "github:go-skynet/model-gallery/bert-embeddings.yaml", "name": "text-embedding-ada-002"}]
|
||||
```
|
||||
42
examples/autoGPT/docker-compose.yaml
Normal file
42
examples/autoGPT/docker-compose.yaml
Normal file
@@ -0,0 +1,42 @@
|
||||
version: "3.9"
|
||||
services:
|
||||
api:
|
||||
image: quay.io/go-skynet/local-ai:latest
|
||||
ports:
|
||||
- 8080:8080
|
||||
env_file:
|
||||
- .env
|
||||
environment:
|
||||
- DEBUG=true
|
||||
- MODELS_PATH=/models
|
||||
volumes:
|
||||
- ./models:/models:cached
|
||||
command: ["/usr/bin/local-ai" ]
|
||||
auto-gpt:
|
||||
image: significantgravitas/auto-gpt
|
||||
depends_on:
|
||||
api:
|
||||
condition: service_healthy
|
||||
redis:
|
||||
condition: service_started
|
||||
env_file:
|
||||
- .env
|
||||
environment:
|
||||
MEMORY_BACKEND: ${MEMORY_BACKEND:-redis}
|
||||
REDIS_HOST: ${REDIS_HOST:-redis}
|
||||
profiles: ["exclude-from-up"]
|
||||
volumes:
|
||||
- ./auto_gpt_workspace:/app/autogpt/auto_gpt_workspace
|
||||
- ./data:/app/data
|
||||
## allow auto-gpt to write logs to disk
|
||||
- ./logs:/app/logs
|
||||
## uncomment following lines if you want to make use of these files
|
||||
## you must have them existing in the same folder as this docker-compose.yml
|
||||
#- type: bind
|
||||
# source: ./azure.yaml
|
||||
# target: /app/azure.yaml
|
||||
#- type: bind
|
||||
# source: ./ai_settings.yaml
|
||||
# target: /app/ai_settings.yaml
|
||||
redis:
|
||||
image: "redis/redis-stack-server:latest"
|
||||
48
examples/chatbot-ui-manual/README.md
Normal file
48
examples/chatbot-ui-manual/README.md
Normal file
@@ -0,0 +1,48 @@
|
||||
# chatbot-ui
|
||||
|
||||
Example of integration with [mckaywrigley/chatbot-ui](https://github.com/mckaywrigley/chatbot-ui).
|
||||
|
||||

|
||||
|
||||
## Setup
|
||||
|
||||
```bash
|
||||
# Clone LocalAI
|
||||
git clone https://github.com/go-skynet/LocalAI
|
||||
|
||||
cd LocalAI/examples/chatbot-ui
|
||||
|
||||
# (optional) Checkout a specific LocalAI tag
|
||||
# git checkout -b build <TAG>
|
||||
|
||||
# Download gpt4all-j to models/
|
||||
wget https://gpt4all.io/models/ggml-gpt4all-j.bin -O models/ggml-gpt4all-j
|
||||
|
||||
# start with docker-compose
|
||||
docker-compose up -d --pull always
|
||||
# or you can build the images with:
|
||||
# docker-compose up -d --build
|
||||
```
|
||||
|
||||
## Pointing chatbot-ui to a separately managed LocalAI service
|
||||
|
||||
If you want to use the [chatbot-ui example](https://github.com/go-skynet/LocalAI/tree/master/examples/chatbot-ui) with an externally managed LocalAI service, you can alter the `docker-compose` file so that it looks like the below. You will notice the file is smaller, because we have removed the section that would normally start the LocalAI service. Take care to update the IP address (or FQDN) that the chatbot-ui service tries to access (marked `<<LOCALAI_IP>>` below):
|
||||
```
|
||||
version: '3.6'
|
||||
|
||||
services:
|
||||
chatgpt:
|
||||
image: ghcr.io/mckaywrigley/chatbot-ui:main
|
||||
ports:
|
||||
- 3000:3000
|
||||
environment:
|
||||
- 'OPENAI_API_KEY=sk-XXXXXXXXXXXXXXXXXXXX'
|
||||
- 'OPENAI_API_HOST=http://<<LOCALAI_IP>>:8080'
|
||||
```
|
||||
|
||||
Once you've edited the Dockerfile, you can start it with `docker compose up`, then browse to `http://localhost:3000`.
|
||||
|
||||
## Accessing chatbot-ui
|
||||
|
||||
Open http://localhost:3000 for the Web UI.
|
||||
|
||||
24
examples/chatbot-ui-manual/docker-compose.yaml
Normal file
24
examples/chatbot-ui-manual/docker-compose.yaml
Normal file
@@ -0,0 +1,24 @@
|
||||
version: '3.6'
|
||||
|
||||
services:
|
||||
api:
|
||||
image: quay.io/go-skynet/local-ai:latest
|
||||
build:
|
||||
context: ../../
|
||||
dockerfile: Dockerfile
|
||||
ports:
|
||||
- 8080:8080
|
||||
environment:
|
||||
- DEBUG=true
|
||||
- MODELS_PATH=/models
|
||||
volumes:
|
||||
- ./models:/models:cached
|
||||
command: ["/usr/bin/local-ai" ]
|
||||
|
||||
chatgpt:
|
||||
image: ghcr.io/mckaywrigley/chatbot-ui:main
|
||||
ports:
|
||||
- 3000:3000
|
||||
environment:
|
||||
- 'OPENAI_API_KEY=sk-XXXXXXXXXXXXXXXXXXXX'
|
||||
- 'OPENAI_API_HOST=http://api:8080'
|
||||
1
examples/chatbot-ui-manual/models/completion.tmpl
Normal file
1
examples/chatbot-ui-manual/models/completion.tmpl
Normal file
@@ -0,0 +1 @@
|
||||
{{.Input}}
|
||||
16
examples/chatbot-ui-manual/models/gpt-3.5-turbo.yaml
Normal file
16
examples/chatbot-ui-manual/models/gpt-3.5-turbo.yaml
Normal file
@@ -0,0 +1,16 @@
|
||||
name: gpt-3.5-turbo
|
||||
parameters:
|
||||
model: ggml-gpt4all-j
|
||||
top_k: 80
|
||||
temperature: 0.2
|
||||
top_p: 0.7
|
||||
context_size: 1024
|
||||
stopwords:
|
||||
- "HUMAN:"
|
||||
- "GPT:"
|
||||
roles:
|
||||
user: " "
|
||||
system: " "
|
||||
template:
|
||||
completion: completion
|
||||
chat: gpt4all
|
||||
4
examples/chatbot-ui-manual/models/gpt4all.tmpl
Normal file
4
examples/chatbot-ui-manual/models/gpt4all.tmpl
Normal file
@@ -0,0 +1,4 @@
|
||||
The prompt below is a question to answer, a task to complete, or a conversation to respond to; decide which and write an appropriate response.
|
||||
### Prompt:
|
||||
{{.Input}}
|
||||
### Response:
|
||||
44
examples/chatbot-ui/README.md
Normal file
44
examples/chatbot-ui/README.md
Normal file
@@ -0,0 +1,44 @@
|
||||
# chatbot-ui
|
||||
|
||||
Example of integration with [mckaywrigley/chatbot-ui](https://github.com/mckaywrigley/chatbot-ui).
|
||||
|
||||

|
||||
|
||||
## Run
|
||||
|
||||
In this example LocalAI will download the gpt4all model and set it up as "gpt-3.5-turbo". See the `docker-compose.yaml`
|
||||
```bash
|
||||
# Clone LocalAI
|
||||
git clone https://github.com/go-skynet/LocalAI
|
||||
|
||||
cd LocalAI/examples/chatbot-ui
|
||||
|
||||
# start with docker-compose
|
||||
docker-compose up --pull always
|
||||
|
||||
# or you can build the images with:
|
||||
# docker-compose up -d --build
|
||||
```
|
||||
|
||||
## Pointing chatbot-ui to a separately managed LocalAI service
|
||||
|
||||
If you want to use the [chatbot-ui example](https://github.com/go-skynet/LocalAI/tree/master/examples/chatbot-ui) with an externally managed LocalAI service, you can alter the `docker-compose` file so that it looks like the below. You will notice the file is smaller, because we have removed the section that would normally start the LocalAI service. Take care to update the IP address (or FQDN) that the chatbot-ui service tries to access (marked `<<LOCALAI_IP>>` below):
|
||||
```
|
||||
version: '3.6'
|
||||
|
||||
services:
|
||||
chatgpt:
|
||||
image: ghcr.io/mckaywrigley/chatbot-ui:main
|
||||
ports:
|
||||
- 3000:3000
|
||||
environment:
|
||||
- 'OPENAI_API_KEY=sk-XXXXXXXXXXXXXXXXXXXX'
|
||||
- 'OPENAI_API_HOST=http://<<LOCALAI_IP>>:8080'
|
||||
```
|
||||
|
||||
Once you've edited the Dockerfile, you can start it with `docker compose up`, then browse to `http://localhost:3000`.
|
||||
|
||||
## Accessing chatbot-ui
|
||||
|
||||
Open http://localhost:3000 for the Web UI.
|
||||
|
||||
37
examples/chatbot-ui/docker-compose.yaml
Normal file
37
examples/chatbot-ui/docker-compose.yaml
Normal file
@@ -0,0 +1,37 @@
|
||||
version: '3.6'
|
||||
|
||||
services:
|
||||
api:
|
||||
image: quay.io/go-skynet/local-ai:latest
|
||||
# As initially LocalAI will download the models defined in PRELOAD_MODELS
|
||||
# you might need to tweak the healthcheck values here according to your network connection.
|
||||
# Here we give a timespan of 20m to download all the required files.
|
||||
healthcheck:
|
||||
test: ["CMD", "curl", "-f", "http://localhost:8080/readyz"]
|
||||
interval: 1m
|
||||
timeout: 20m
|
||||
retries: 20
|
||||
build:
|
||||
context: ../../
|
||||
dockerfile: Dockerfile
|
||||
ports:
|
||||
- 8080:8080
|
||||
environment:
|
||||
- DEBUG=true
|
||||
- MODELS_PATH=/models
|
||||
# You can preload different models here as well.
|
||||
# See: https://github.com/go-skynet/model-gallery
|
||||
- 'PRELOAD_MODELS=[{"url": "github:go-skynet/model-gallery/gpt4all-j.yaml", "name": "gpt-3.5-turbo"}]'
|
||||
volumes:
|
||||
- ./models:/models:cached
|
||||
command: ["/usr/bin/local-ai" ]
|
||||
chatgpt:
|
||||
depends_on:
|
||||
api:
|
||||
condition: service_healthy
|
||||
image: ghcr.io/mckaywrigley/chatbot-ui:main
|
||||
ports:
|
||||
- 3000:3000
|
||||
environment:
|
||||
- 'OPENAI_API_KEY=sk-XXXXXXXXXXXXXXXXXXXX'
|
||||
- 'OPENAI_API_HOST=http://api:8080'
|
||||
6
examples/discord-bot/.env.example
Normal file
6
examples/discord-bot/.env.example
Normal file
@@ -0,0 +1,6 @@
|
||||
OPENAI_API_KEY=x
|
||||
DISCORD_BOT_TOKEN=x
|
||||
DISCORD_CLIENT_ID=x
|
||||
OPENAI_API_BASE=http://api:8080
|
||||
ALLOWED_SERVER_IDS=x
|
||||
SERVER_TO_MODERATION_CHANNEL=1:1
|
||||
76
examples/discord-bot/README.md
Normal file
76
examples/discord-bot/README.md
Normal file
@@ -0,0 +1,76 @@
|
||||
# discord-bot
|
||||
|
||||

|
||||
|
||||
## Setup
|
||||
|
||||
```bash
|
||||
# Clone LocalAI
|
||||
git clone https://github.com/go-skynet/LocalAI
|
||||
|
||||
cd LocalAI/examples/discord-bot
|
||||
|
||||
# (optional) Checkout a specific LocalAI tag
|
||||
# git checkout -b build <TAG>
|
||||
|
||||
# Download gpt4all-j to models/
|
||||
wget https://gpt4all.io/models/ggml-gpt4all-j.bin -O models/ggml-gpt4all-j
|
||||
|
||||
# Set the discord bot options (see: https://github.com/go-skynet/gpt-discord-bot#setup)
|
||||
cp -rfv .env.example .env
|
||||
vim .env
|
||||
|
||||
# start with docker-compose
|
||||
docker-compose up -d --build
|
||||
```
|
||||
|
||||
Note: see setup options here: https://github.com/go-skynet/gpt-discord-bot#setup
|
||||
|
||||
Open up the URL in the console and give permission to the bot in your server. Start a thread with `/chat ..`
|
||||
|
||||
## Kubernetes
|
||||
|
||||
- install the local-ai chart first
|
||||
- change OPENAI_API_BASE to point to the API address and apply the discord-bot manifest:
|
||||
|
||||
```yaml
|
||||
apiVersion: v1
|
||||
kind: Namespace
|
||||
metadata:
|
||||
name: discord-bot
|
||||
---
|
||||
apiVersion: apps/v1
|
||||
kind: Deployment
|
||||
metadata:
|
||||
name: localai
|
||||
namespace: discord-bot
|
||||
labels:
|
||||
app: localai
|
||||
spec:
|
||||
selector:
|
||||
matchLabels:
|
||||
app: localai
|
||||
replicas: 1
|
||||
template:
|
||||
metadata:
|
||||
labels:
|
||||
app: localai
|
||||
name: localai
|
||||
spec:
|
||||
containers:
|
||||
- name: localai-discord
|
||||
env:
|
||||
- name: OPENAI_API_KEY
|
||||
value: "x"
|
||||
- name: DISCORD_BOT_TOKEN
|
||||
value: ""
|
||||
- name: DISCORD_CLIENT_ID
|
||||
value: ""
|
||||
- name: OPENAI_API_BASE
|
||||
value: "http://local-ai.default.svc.cluster.local:8080"
|
||||
- name: ALLOWED_SERVER_IDS
|
||||
value: "xx"
|
||||
- name: SERVER_TO_MODERATION_CHANNEL
|
||||
value: "1:1"
|
||||
image: quay.io/go-skynet/gpt-discord-bot:main
|
||||
```
|
||||
21
examples/discord-bot/docker-compose.yaml
Normal file
21
examples/discord-bot/docker-compose.yaml
Normal file
@@ -0,0 +1,21 @@
|
||||
version: '3.6'
|
||||
|
||||
services:
|
||||
api:
|
||||
image: quay.io/go-skynet/local-ai:latest
|
||||
build:
|
||||
context: ../../
|
||||
dockerfile: Dockerfile
|
||||
ports:
|
||||
- 8080:8080
|
||||
environment:
|
||||
- DEBUG=true
|
||||
- MODELS_PATH=/models
|
||||
volumes:
|
||||
- ./models:/models:cached
|
||||
command: ["/usr/bin/local-ai" ]
|
||||
|
||||
bot:
|
||||
image: quay.io/go-skynet/gpt-discord-bot:main
|
||||
env_file:
|
||||
- .env
|
||||
1
examples/discord-bot/models
Symbolic link
1
examples/discord-bot/models
Symbolic link
@@ -0,0 +1 @@
|
||||
../chatbot-ui/models/
|
||||
30
examples/flowise/README.md
Normal file
30
examples/flowise/README.md
Normal file
@@ -0,0 +1,30 @@
|
||||
# flowise
|
||||
|
||||
Example of integration with [FlowiseAI/Flowise](https://github.com/FlowiseAI/Flowise).
|
||||
|
||||

|
||||
|
||||
You can check a demo video in the Flowise PR: https://github.com/FlowiseAI/Flowise/pull/123
|
||||
|
||||
## Run
|
||||
|
||||
In this example LocalAI will download the gpt4all model and set it up as "gpt-3.5-turbo". See the `docker-compose.yaml`
|
||||
```bash
|
||||
# Clone LocalAI
|
||||
git clone https://github.com/go-skynet/LocalAI
|
||||
|
||||
cd LocalAI/examples/flowise
|
||||
|
||||
# start with docker-compose
|
||||
docker-compose up --pull always
|
||||
|
||||
```
|
||||
|
||||
## Accessing flowise
|
||||
|
||||
Open http://localhost:3000.
|
||||
|
||||
## Using LocalAI
|
||||
|
||||
Search for LocalAI in the integration, and use the `http://api:8080/` as URL.
|
||||
|
||||
37
examples/flowise/docker-compose.yaml
Normal file
37
examples/flowise/docker-compose.yaml
Normal file
@@ -0,0 +1,37 @@
|
||||
version: '3.6'
|
||||
|
||||
services:
|
||||
api:
|
||||
image: quay.io/go-skynet/local-ai:latest
|
||||
# As initially LocalAI will download the models defined in PRELOAD_MODELS
|
||||
# you might need to tweak the healthcheck values here according to your network connection.
|
||||
# Here we give a timespan of 20m to download all the required files.
|
||||
healthcheck:
|
||||
test: ["CMD", "curl", "-f", "http://localhost:8080/readyz"]
|
||||
interval: 1m
|
||||
timeout: 20m
|
||||
retries: 20
|
||||
build:
|
||||
context: ../../
|
||||
dockerfile: Dockerfile
|
||||
ports:
|
||||
- 8080:8080
|
||||
environment:
|
||||
- DEBUG=true
|
||||
- MODELS_PATH=/models
|
||||
# You can preload different models here as well.
|
||||
# See: https://github.com/go-skynet/model-gallery
|
||||
- 'PRELOAD_MODELS=[{"url": "github:go-skynet/model-gallery/gpt4all-j.yaml", "name": "gpt-3.5-turbo"}]'
|
||||
volumes:
|
||||
- ./models:/models:cached
|
||||
command: ["/usr/bin/local-ai" ]
|
||||
flowise:
|
||||
depends_on:
|
||||
api:
|
||||
condition: service_healthy
|
||||
image: flowiseai/flowise
|
||||
ports:
|
||||
- 3000:3000
|
||||
volumes:
|
||||
- ~/.flowise:/root/.flowise
|
||||
command: /bin/sh -c "sleep 3; flowise start"
|
||||
70
examples/k8sgpt/README.md
Normal file
70
examples/k8sgpt/README.md
Normal file
@@ -0,0 +1,70 @@
|
||||
# k8sgpt example
|
||||
|
||||
This example show how to use LocalAI with k8sgpt
|
||||
|
||||

|
||||
|
||||
## Create the cluster locally with Kind (optional)
|
||||
|
||||
If you want to test this locally without a remote Kubernetes cluster, you can use kind.
|
||||
|
||||
Install [kind](https://kind.sigs.k8s.io/) and create a cluster:
|
||||
|
||||
```
|
||||
kind create cluster
|
||||
```
|
||||
|
||||
## Setup LocalAI
|
||||
|
||||
We will use [helm](https://helm.sh/docs/intro/install/):
|
||||
|
||||
```
|
||||
helm repo add go-skynet https://go-skynet.github.io/helm-charts/
|
||||
helm repo update
|
||||
|
||||
# Clone LocalAI
|
||||
git clone https://github.com/go-skynet/LocalAI
|
||||
|
||||
cd LocalAI/examples/k8sgpt
|
||||
|
||||
# modify values.yaml preload_models with the models you want to install.
|
||||
# CHANGE the URL to a model in huggingface.
|
||||
helm install local-ai go-skynet/local-ai --create-namespace --namespace local-ai --values values.yaml
|
||||
```
|
||||
|
||||
## Setup K8sGPT
|
||||
|
||||
```
|
||||
# Install k8sgpt
|
||||
helm repo add k8sgpt https://charts.k8sgpt.ai/
|
||||
helm repo update
|
||||
helm install release k8sgpt/k8sgpt-operator -n k8sgpt-operator-system --create-namespace
|
||||
```
|
||||
|
||||
Apply the k8sgpt-operator configuration:
|
||||
|
||||
```
|
||||
kubectl apply -f - << EOF
|
||||
apiVersion: core.k8sgpt.ai/v1alpha1
|
||||
kind: K8sGPT
|
||||
metadata:
|
||||
name: k8sgpt-local-ai
|
||||
namespace: default
|
||||
spec:
|
||||
backend: localai
|
||||
baseUrl: http://local-ai.local-ai.svc.cluster.local:8080/v1
|
||||
noCache: false
|
||||
model: gpt-3.5-turbo
|
||||
noCache: false
|
||||
version: v0.3.0
|
||||
enableAI: true
|
||||
EOF
|
||||
```
|
||||
|
||||
## Test
|
||||
|
||||
Apply a broken pod:
|
||||
|
||||
```
|
||||
kubectl apply -f broken-pod.yaml
|
||||
```
|
||||
14
examples/k8sgpt/broken-pod.yaml
Normal file
14
examples/k8sgpt/broken-pod.yaml
Normal file
@@ -0,0 +1,14 @@
|
||||
apiVersion: v1
|
||||
kind: Pod
|
||||
metadata:
|
||||
name: broken-pod
|
||||
spec:
|
||||
containers:
|
||||
- name: broken-pod
|
||||
image: nginx:1.a.b.c
|
||||
livenessProbe:
|
||||
httpGet:
|
||||
path: /
|
||||
port: 90
|
||||
initialDelaySeconds: 3
|
||||
periodSeconds: 3
|
||||
95
examples/k8sgpt/values.yaml
Normal file
95
examples/k8sgpt/values.yaml
Normal file
@@ -0,0 +1,95 @@
|
||||
replicaCount: 1
|
||||
|
||||
deployment:
|
||||
# https://quay.io/repository/go-skynet/local-ai?tab=tags
|
||||
image: quay.io/go-skynet/local-ai:latest
|
||||
env:
|
||||
threads: 4
|
||||
debug: "true"
|
||||
context_size: 512
|
||||
preload_models: '[{ "url": "github:go-skynet/model-gallery/wizard.yaml", "name": "gpt-3.5-turbo", "overrides": { "parameters": { "model": "WizardLM-7B-uncensored.ggmlv3.q5_1" }},"files": [ { "uri": "https://huggingface.co//WizardLM-7B-uncensored-GGML/resolve/main/WizardLM-7B-uncensored.ggmlv3.q5_1.bin", "sha256": "d92a509d83a8ea5e08ba4c2dbaf08f29015932dc2accd627ce0665ac72c2bb2b", "filename": "WizardLM-7B-uncensored.ggmlv3.q5_1" }]}]'
|
||||
modelsPath: "/models"
|
||||
|
||||
resources:
|
||||
{}
|
||||
# We usually recommend not to specify default resources and to leave this as a conscious
|
||||
# choice for the user. This also increases chances charts run on environments with little
|
||||
# resources, such as Minikube. If you do want to specify resources, uncomment the following
|
||||
# lines, adjust them as necessary, and remove the curly braces after 'resources:'.
|
||||
# limits:
|
||||
# cpu: 100m
|
||||
# memory: 128Mi
|
||||
# requests:
|
||||
# cpu: 100m
|
||||
# memory: 128Mi
|
||||
|
||||
# Prompt templates to include
|
||||
# Note: the keys of this map will be the names of the prompt template files
|
||||
promptTemplates:
|
||||
{}
|
||||
# ggml-gpt4all-j.tmpl: |
|
||||
# The prompt below is a question to answer, a task to complete, or a conversation to respond to; decide which and write an appropriate response.
|
||||
# ### Prompt:
|
||||
# {{.Input}}
|
||||
# ### Response:
|
||||
|
||||
# Models to download at runtime
|
||||
models:
|
||||
# Whether to force download models even if they already exist
|
||||
forceDownload: false
|
||||
|
||||
# The list of URLs to download models from
|
||||
# Note: the name of the file will be the name of the loaded model
|
||||
list:
|
||||
#- url: "https://gpt4all.io/models/ggml-gpt4all-j.bin"
|
||||
# basicAuth: base64EncodedCredentials
|
||||
|
||||
# Persistent storage for models and prompt templates.
|
||||
# PVC and HostPath are mutually exclusive. If both are enabled,
|
||||
# PVC configuration takes precedence. If neither are enabled, ephemeral
|
||||
# storage is used.
|
||||
persistence:
|
||||
pvc:
|
||||
enabled: false
|
||||
size: 6Gi
|
||||
accessModes:
|
||||
- ReadWriteOnce
|
||||
|
||||
annotations: {}
|
||||
|
||||
# Optional
|
||||
storageClass: ~
|
||||
|
||||
hostPath:
|
||||
enabled: false
|
||||
path: "/models"
|
||||
|
||||
service:
|
||||
type: ClusterIP
|
||||
port: 8080
|
||||
annotations: {}
|
||||
# If using an AWS load balancer, you'll need to override the default 60s load balancer idle timeout
|
||||
# service.beta.kubernetes.io/aws-load-balancer-connection-idle-timeout: "1200"
|
||||
|
||||
ingress:
|
||||
enabled: false
|
||||
className: ""
|
||||
annotations:
|
||||
{}
|
||||
# kubernetes.io/ingress.class: nginx
|
||||
# kubernetes.io/tls-acme: "true"
|
||||
hosts:
|
||||
- host: chart-example.local
|
||||
paths:
|
||||
- path: /
|
||||
pathType: ImplementationSpecific
|
||||
tls: []
|
||||
# - secretName: chart-example-tls
|
||||
# hosts:
|
||||
# - chart-example.local
|
||||
|
||||
nodeSelector: {}
|
||||
|
||||
tolerations: []
|
||||
|
||||
affinity: {}
|
||||
5
examples/langchain-chroma/.env.example
Normal file
5
examples/langchain-chroma/.env.example
Normal file
@@ -0,0 +1,5 @@
|
||||
THREADS=4
|
||||
CONTEXT_SIZE=512
|
||||
MODELS_PATH=/models
|
||||
DEBUG=true
|
||||
# BUILD_TYPE=generic
|
||||
4
examples/langchain-chroma/.gitignore
vendored
Normal file
4
examples/langchain-chroma/.gitignore
vendored
Normal file
@@ -0,0 +1,4 @@
|
||||
db/
|
||||
state_of_the_union.txt
|
||||
models/bert
|
||||
models/ggml-gpt4all-j
|
||||
63
examples/langchain-chroma/README.md
Normal file
63
examples/langchain-chroma/README.md
Normal file
@@ -0,0 +1,63 @@
|
||||
# Data query example
|
||||
|
||||
This example makes use of [langchain and chroma](https://blog.langchain.dev/langchain-chroma/) to enable question answering on a set of documents.
|
||||
|
||||
## Setup
|
||||
|
||||
Download the models and start the API:
|
||||
|
||||
```bash
|
||||
# Clone LocalAI
|
||||
git clone https://github.com/go-skynet/LocalAI
|
||||
|
||||
cd LocalAI/examples/langchain-chroma
|
||||
|
||||
wget https://huggingface.co/skeskinen/ggml/resolve/main/all-MiniLM-L6-v2/ggml-model-q4_0.bin -O models/bert
|
||||
wget https://gpt4all.io/models/ggml-gpt4all-j.bin -O models/ggml-gpt4all-j
|
||||
|
||||
# configure your .env
|
||||
# NOTE: ensure that THREADS does not exceed your machine's CPU cores
|
||||
mv .env.example .env
|
||||
|
||||
# start with docker-compose
|
||||
docker-compose up -d --build
|
||||
|
||||
# tail the logs & wait until the build completes
|
||||
docker logs -f langchain-chroma-api-1
|
||||
```
|
||||
|
||||
### Python requirements
|
||||
|
||||
```
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
### Create a storage
|
||||
|
||||
In this step we will create a local vector database from our document set, so later we can ask questions on it with the LLM.
|
||||
|
||||
Note: **OPENAI_API_KEY** is not required. However the library might fail if no API_KEY is passed by, so an arbitrary string can be used.
|
||||
|
||||
```bash
|
||||
export OPENAI_API_BASE=http://localhost:8080/v1
|
||||
export OPENAI_API_KEY=sk-
|
||||
|
||||
wget https://raw.githubusercontent.com/hwchase17/chat-your-data/master/state_of_the_union.txt
|
||||
python store.py
|
||||
```
|
||||
|
||||
After it finishes, a directory "db" will be created with the vector index database.
|
||||
|
||||
## Query
|
||||
|
||||
We can now query the dataset.
|
||||
|
||||
```bash
|
||||
export OPENAI_API_BASE=http://localhost:8080/v1
|
||||
export OPENAI_API_KEY=sk-
|
||||
|
||||
python query.py
|
||||
# President Trump recently stated during a press conference regarding tax reform legislation that "we're getting rid of all these loopholes." He also mentioned that he wants to simplify the system further through changes such as increasing the standard deduction amount and making other adjustments aimed at reducing taxpayers' overall burden.
|
||||
```
|
||||
|
||||
Keep in mind now things are hit or miss!
|
||||
15
examples/langchain-chroma/docker-compose.yml
Normal file
15
examples/langchain-chroma/docker-compose.yml
Normal file
@@ -0,0 +1,15 @@
|
||||
version: '3.6'
|
||||
|
||||
services:
|
||||
api:
|
||||
image: quay.io/go-skynet/local-ai:latest
|
||||
build:
|
||||
context: ../../
|
||||
dockerfile: Dockerfile
|
||||
ports:
|
||||
- 8080:8080
|
||||
env_file:
|
||||
- ../../.env
|
||||
volumes:
|
||||
- ./models:/models:cached
|
||||
command: ["/usr/bin/local-ai"]
|
||||
1
examples/langchain-chroma/models/completion.tmpl
Normal file
1
examples/langchain-chroma/models/completion.tmpl
Normal file
@@ -0,0 +1 @@
|
||||
{{.Input}}
|
||||
6
examples/langchain-chroma/models/embeddings.yaml
Normal file
6
examples/langchain-chroma/models/embeddings.yaml
Normal file
@@ -0,0 +1,6 @@
|
||||
name: text-embedding-ada-002
|
||||
parameters:
|
||||
model: bert
|
||||
threads: 4
|
||||
backend: bert-embeddings
|
||||
embeddings: true
|
||||
16
examples/langchain-chroma/models/gpt-3.5-turbo.yaml
Normal file
16
examples/langchain-chroma/models/gpt-3.5-turbo.yaml
Normal file
@@ -0,0 +1,16 @@
|
||||
name: gpt-3.5-turbo
|
||||
parameters:
|
||||
model: ggml-gpt4all-j
|
||||
top_k: 80
|
||||
temperature: 0.2
|
||||
top_p: 0.7
|
||||
context_size: 1024
|
||||
stopwords:
|
||||
- "HUMAN:"
|
||||
- "GPT:"
|
||||
roles:
|
||||
user: " "
|
||||
system: " "
|
||||
template:
|
||||
completion: completion
|
||||
chat: gpt4all
|
||||
4
examples/langchain-chroma/models/gpt4all.tmpl
Normal file
4
examples/langchain-chroma/models/gpt4all.tmpl
Normal file
@@ -0,0 +1,4 @@
|
||||
The prompt below is a question to answer, a task to complete, or a conversation to respond to; decide which and write an appropriate response.
|
||||
### Prompt:
|
||||
{{.Input}}
|
||||
### Response:
|
||||
23
examples/langchain-chroma/query.py
Normal file
23
examples/langchain-chroma/query.py
Normal file
@@ -0,0 +1,23 @@
|
||||
|
||||
import os
|
||||
from langchain.vectorstores import Chroma
|
||||
from langchain.embeddings import OpenAIEmbeddings
|
||||
from langchain.chat_models import ChatOpenAI
|
||||
from langchain.chains import RetrievalQA
|
||||
from langchain.vectorstores.base import VectorStoreRetriever
|
||||
|
||||
base_path = os.environ.get('OPENAI_API_BASE', 'http://localhost:8080/v1')
|
||||
|
||||
# Load and process the text
|
||||
embedding = OpenAIEmbeddings()
|
||||
persist_directory = 'db'
|
||||
|
||||
# Now we can load the persisted database from disk, and use it as normal.
|
||||
llm = ChatOpenAI(temperature=0, model_name="gpt-3.5-turbo", openai_api_base=base_path)
|
||||
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding)
|
||||
retriever = VectorStoreRetriever(vectorstore=vectordb)
|
||||
qa = RetrievalQA.from_llm(llm=llm, retriever=retriever)
|
||||
|
||||
query = "What the president said about taxes ?"
|
||||
print(qa.run(query))
|
||||
|
||||
4
examples/langchain-chroma/requirements.txt
Normal file
4
examples/langchain-chroma/requirements.txt
Normal file
@@ -0,0 +1,4 @@
|
||||
langchain==0.0.160
|
||||
openai==0.27.6
|
||||
chromadb==0.3.21
|
||||
llama-index==0.6.2
|
||||
25
examples/langchain-chroma/store.py
Executable file
25
examples/langchain-chroma/store.py
Executable file
@@ -0,0 +1,25 @@
|
||||
|
||||
import os
|
||||
from langchain.vectorstores import Chroma
|
||||
from langchain.embeddings import OpenAIEmbeddings
|
||||
from langchain.text_splitter import CharacterTextSplitter
|
||||
from langchain.document_loaders import TextLoader
|
||||
|
||||
base_path = os.environ.get('OPENAI_API_BASE', 'http://localhost:8080/v1')
|
||||
|
||||
# Load and process the text
|
||||
loader = TextLoader('state_of_the_union.txt')
|
||||
documents = loader.load()
|
||||
|
||||
text_splitter = CharacterTextSplitter(chunk_size=300, chunk_overlap=70)
|
||||
texts = text_splitter.split_documents(documents)
|
||||
|
||||
# Embed and store the texts
|
||||
# Supplying a persist_directory will store the embeddings on disk
|
||||
persist_directory = 'db'
|
||||
|
||||
embedding = OpenAIEmbeddings(model="text-embedding-ada-002")
|
||||
vectordb = Chroma.from_documents(documents=texts, embedding=embedding, persist_directory=persist_directory)
|
||||
|
||||
vectordb.persist()
|
||||
vectordb = None
|
||||
68
examples/langchain-huggingface/README.md
Normal file
68
examples/langchain-huggingface/README.md
Normal file
@@ -0,0 +1,68 @@
|
||||
# Data query example
|
||||
|
||||
Example of integration with HuggingFace Inference API with help of [langchaingo](https://github.com/tmc/langchaingo).
|
||||
|
||||
## Setup
|
||||
|
||||
Download the LocalAI and start the API:
|
||||
|
||||
```bash
|
||||
# Clone LocalAI
|
||||
git clone https://github.com/go-skynet/LocalAI
|
||||
|
||||
cd LocalAI/examples/langchain-huggingface
|
||||
|
||||
docker-compose up -d
|
||||
```
|
||||
|
||||
Node: Ensure you've set `HUGGINGFACEHUB_API_TOKEN` environment variable, you can generate it
|
||||
on [Settings / Access Tokens](https://huggingface.co/settings/tokens) page of HuggingFace site.
|
||||
|
||||
This is an example `.env` file for LocalAI:
|
||||
|
||||
```ini
|
||||
MODELS_PATH=/models
|
||||
CONTEXT_SIZE=512
|
||||
HUGGINGFACEHUB_API_TOKEN=hg_123456
|
||||
```
|
||||
|
||||
## Using remote models
|
||||
|
||||
Now you can use any remote models available via HuggingFace API, for example let's enable using of
|
||||
[gpt2](https://huggingface.co/gpt2) model in `gpt-3.5-turbo.yaml` config:
|
||||
|
||||
```yml
|
||||
name: gpt-3.5-turbo
|
||||
parameters:
|
||||
model: gpt2
|
||||
top_k: 80
|
||||
temperature: 0.2
|
||||
top_p: 0.7
|
||||
context_size: 1024
|
||||
backend: "langchain-huggingface"
|
||||
stopwords:
|
||||
- "HUMAN:"
|
||||
- "GPT:"
|
||||
roles:
|
||||
user: " "
|
||||
system: " "
|
||||
template:
|
||||
completion: completion
|
||||
chat: gpt4all
|
||||
```
|
||||
|
||||
Here is you can see in field `parameters.model` equal `gpt2` and `backend` equal `langchain-huggingface`.
|
||||
|
||||
## How to use
|
||||
|
||||
```shell
|
||||
# Now API is accessible at localhost:8080
|
||||
curl http://localhost:8080/v1/models
|
||||
# {"object":"list","data":[{"id":"gpt-3.5-turbo","object":"model"}]}
|
||||
|
||||
curl http://localhost:8080/v1/completions -H "Content-Type: application/json" -d '{
|
||||
"model": "gpt-3.5-turbo",
|
||||
"prompt": "A long time ago in a galaxy far, far away",
|
||||
"temperature": 0.7
|
||||
}'
|
||||
```
|
||||
15
examples/langchain-huggingface/docker-compose.yml
Normal file
15
examples/langchain-huggingface/docker-compose.yml
Normal file
@@ -0,0 +1,15 @@
|
||||
version: '3.6'
|
||||
|
||||
services:
|
||||
api:
|
||||
image: quay.io/go-skynet/local-ai:latest
|
||||
build:
|
||||
context: ../../
|
||||
dockerfile: Dockerfile
|
||||
ports:
|
||||
- 8080:8080
|
||||
env_file:
|
||||
- ../../.env
|
||||
volumes:
|
||||
- ./models:/models:cached
|
||||
command: ["/usr/bin/local-ai"]
|
||||
1
examples/langchain-huggingface/models/completion.tmpl
Normal file
1
examples/langchain-huggingface/models/completion.tmpl
Normal file
@@ -0,0 +1 @@
|
||||
{{.Input}}
|
||||
17
examples/langchain-huggingface/models/gpt-3.5-turbo.yaml
Normal file
17
examples/langchain-huggingface/models/gpt-3.5-turbo.yaml
Normal file
@@ -0,0 +1,17 @@
|
||||
name: gpt-3.5-turbo
|
||||
parameters:
|
||||
model: gpt2
|
||||
top_k: 80
|
||||
temperature: 0.2
|
||||
top_p: 0.7
|
||||
context_size: 1024
|
||||
backend: "langchain-huggingface"
|
||||
stopwords:
|
||||
- "HUMAN:"
|
||||
- "GPT:"
|
||||
roles:
|
||||
user: " "
|
||||
system: " "
|
||||
template:
|
||||
completion: completion
|
||||
chat: gpt4all
|
||||
4
examples/langchain-huggingface/models/gpt4all.tmpl
Normal file
4
examples/langchain-huggingface/models/gpt4all.tmpl
Normal file
@@ -0,0 +1,4 @@
|
||||
The prompt below is a question to answer, a task to complete, or a conversation to respond to; decide which and write an appropriate response.
|
||||
### Prompt:
|
||||
{{.Input}}
|
||||
### Response:
|
||||
29
examples/langchain-python/README.md
Normal file
29
examples/langchain-python/README.md
Normal file
@@ -0,0 +1,29 @@
|
||||
## Langchain-python
|
||||
|
||||
Langchain example from [quickstart](https://python.langchain.com/en/latest/getting_started/getting_started.html).
|
||||
|
||||
To interact with langchain, you can just set the `OPENAI_API_BASE` URL and provide a token with a random string.
|
||||
|
||||
See the example below:
|
||||
|
||||
```
|
||||
# Clone LocalAI
|
||||
git clone https://github.com/go-skynet/LocalAI
|
||||
|
||||
cd LocalAI/examples/langchain-python
|
||||
|
||||
# start with docker-compose
|
||||
docker-compose up --pull always
|
||||
|
||||
pip install langchain
|
||||
pip install openai
|
||||
|
||||
export OPENAI_API_BASE=http://localhost:8080
|
||||
# Note: **OPENAI_API_KEY** is not required. However the library might fail if no API_KEY is passed by, so an arbitrary string can be used.
|
||||
export OPENAI_API_KEY=sk-
|
||||
|
||||
python test.py
|
||||
# A good company name for a company that makes colorful socks would be "Colorsocks".
|
||||
|
||||
python agent.py
|
||||
```
|
||||
44
examples/langchain-python/agent.py
Normal file
44
examples/langchain-python/agent.py
Normal file
@@ -0,0 +1,44 @@
|
||||
## This is a fork/based from https://gist.github.com/wiseman/4a706428eaabf4af1002a07a114f61d6
|
||||
|
||||
from io import StringIO
|
||||
import sys
|
||||
import os
|
||||
from typing import Dict, Optional
|
||||
|
||||
from langchain.agents import load_tools
|
||||
from langchain.agents import initialize_agent
|
||||
from langchain.agents.tools import Tool
|
||||
from langchain.llms import OpenAI
|
||||
|
||||
base_path = os.environ.get('OPENAI_API_BASE', 'http://localhost:8080/v1')
|
||||
model_name = os.environ.get('MODEL_NAME', 'gpt-3.5-turbo')
|
||||
|
||||
class PythonREPL:
|
||||
"""Simulates a standalone Python REPL."""
|
||||
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
def run(self, command: str) -> str:
|
||||
"""Run command and returns anything printed."""
|
||||
old_stdout = sys.stdout
|
||||
sys.stdout = mystdout = StringIO()
|
||||
try:
|
||||
exec(command, globals())
|
||||
sys.stdout = old_stdout
|
||||
output = mystdout.getvalue()
|
||||
except Exception as e:
|
||||
sys.stdout = old_stdout
|
||||
output = str(e)
|
||||
return output
|
||||
|
||||
llm = OpenAI(temperature=0.0, openai_api_base=base_path, model_name=model_name)
|
||||
python_repl = Tool(
|
||||
"Python REPL",
|
||||
PythonREPL().run,
|
||||
"""A Python shell. Use this to execute python commands. Input should be a valid python command.
|
||||
If you expect output it should be printed out.""",
|
||||
)
|
||||
tools = [python_repl]
|
||||
agent = initialize_agent(tools, llm, agent="zero-shot-react-description", verbose=True)
|
||||
agent.run("What is the 10th fibonacci number?")
|
||||
27
examples/langchain-python/docker-compose.yaml
Normal file
27
examples/langchain-python/docker-compose.yaml
Normal file
@@ -0,0 +1,27 @@
|
||||
version: '3.6'
|
||||
|
||||
services:
|
||||
api:
|
||||
image: quay.io/go-skynet/local-ai:latest
|
||||
# As initially LocalAI will download the models defined in PRELOAD_MODELS
|
||||
# you might need to tweak the healthcheck values here according to your network connection.
|
||||
# Here we give a timespan of 20m to download all the required files.
|
||||
healthcheck:
|
||||
test: ["CMD", "curl", "-f", "http://localhost:8080/readyz"]
|
||||
interval: 1m
|
||||
timeout: 20m
|
||||
retries: 20
|
||||
build:
|
||||
context: ../../
|
||||
dockerfile: Dockerfile
|
||||
ports:
|
||||
- 8080:8080
|
||||
environment:
|
||||
- DEBUG=true
|
||||
- MODELS_PATH=/models
|
||||
# You can preload different models here as well.
|
||||
# See: https://github.com/go-skynet/model-gallery
|
||||
- 'PRELOAD_MODELS=[{"url": "github:go-skynet/model-gallery/gpt4all-j.yaml", "name": "gpt-3.5-turbo"}]'
|
||||
volumes:
|
||||
- ./models:/models:cached
|
||||
command: ["/usr/bin/local-ai" ]
|
||||
6
examples/langchain-python/test.py
Normal file
6
examples/langchain-python/test.py
Normal file
@@ -0,0 +1,6 @@
|
||||
|
||||
from langchain.llms import OpenAI
|
||||
|
||||
llm = OpenAI(temperature=0.9,model_name="gpt-3.5-turbo")
|
||||
text = "What would be a good company name for a company that makes colorful socks?"
|
||||
print(llm(text))
|
||||
2
examples/langchain/.gitignore
vendored
Normal file
2
examples/langchain/.gitignore
vendored
Normal file
@@ -0,0 +1,2 @@
|
||||
models/ggml-koala-13B-4bit-128g
|
||||
models/ggml-gpt4all-j
|
||||
6
examples/langchain/JS.Dockerfile
Normal file
6
examples/langchain/JS.Dockerfile
Normal file
@@ -0,0 +1,6 @@
|
||||
FROM node:latest
|
||||
COPY ./langchainjs-localai-example /app
|
||||
WORKDIR /app
|
||||
RUN npm install
|
||||
RUN npm run build
|
||||
ENTRYPOINT [ "npm", "run", "start" ]
|
||||
5
examples/langchain/PY.Dockerfile
Normal file
5
examples/langchain/PY.Dockerfile
Normal file
@@ -0,0 +1,5 @@
|
||||
FROM python:3.10-bullseye
|
||||
COPY ./langchainpy-localai-example /app
|
||||
WORKDIR /app
|
||||
RUN pip install --no-cache-dir -r requirements.txt
|
||||
ENTRYPOINT [ "python", "./full_demo.py" ];
|
||||
30
examples/langchain/README.md
Normal file
30
examples/langchain/README.md
Normal file
@@ -0,0 +1,30 @@
|
||||
# langchain
|
||||
|
||||
Example of using langchain, with the standard OpenAI llm module, and LocalAI. Has docker compose profiles for both the Typescript and Python versions.
|
||||
|
||||
**Please Note** - This is a tech demo example at this time. ggml-gpt4all-j has pretty terrible results for most langchain applications with the settings used in this example.
|
||||
|
||||
## Setup
|
||||
|
||||
```bash
|
||||
# Clone LocalAI
|
||||
git clone https://github.com/go-skynet/LocalAI
|
||||
|
||||
cd LocalAI/examples/langchain
|
||||
|
||||
# (optional) - Edit the example code in typescript.
|
||||
# vi ./langchainjs-localai-example/index.ts
|
||||
|
||||
# Download gpt4all-j to models/
|
||||
wget https://gpt4all.io/models/ggml-gpt4all-j.bin -O models/ggml-gpt4all-j
|
||||
|
||||
# start with docker-compose for typescript!
|
||||
docker-compose --profile ts up --build
|
||||
|
||||
# or start with docker-compose for python!
|
||||
docker-compose --profile py up --build
|
||||
```
|
||||
|
||||
## Copyright
|
||||
|
||||
Some of the example code in index.mts and full_demo.py is adapted from the langchainjs project and is Copyright (c) Harrison Chase. Used under the terms of the MIT license, as is the remainder of this code.
|
||||
43
examples/langchain/docker-compose.yaml
Normal file
43
examples/langchain/docker-compose.yaml
Normal file
@@ -0,0 +1,43 @@
|
||||
version: '3.6'
|
||||
|
||||
services:
|
||||
api:
|
||||
image: quay.io/go-skynet/local-ai:latest
|
||||
build:
|
||||
context: ../../
|
||||
dockerfile: Dockerfile
|
||||
ports:
|
||||
- 8080:8080
|
||||
environment:
|
||||
- DEBUG=true
|
||||
- MODELS_PATH=/models
|
||||
volumes:
|
||||
- ./models:/models:cached
|
||||
command: ["/usr/bin/local-ai" ]
|
||||
|
||||
js:
|
||||
build:
|
||||
context: .
|
||||
dockerfile: JS.Dockerfile
|
||||
profiles:
|
||||
- js
|
||||
- ts
|
||||
depends_on:
|
||||
- "api"
|
||||
environment:
|
||||
- 'OPENAI_API_KEY=sk-XXXXXXXXXXXXXXXXXXXX'
|
||||
- 'OPENAI_API_BASE=http://api:8080/v1'
|
||||
- 'MODEL_NAME=gpt-3.5-turbo' #gpt-3.5-turbo' # ggml-gpt4all-j' # ggml-koala-13B-4bit-128g'
|
||||
|
||||
py:
|
||||
build:
|
||||
context: .
|
||||
dockerfile: PY.Dockerfile
|
||||
profiles:
|
||||
- py
|
||||
depends_on:
|
||||
- "api"
|
||||
environment:
|
||||
- 'OPENAI_API_KEY=sk-XXXXXXXXXXXXXXXXXXXX'
|
||||
- 'OPENAI_API_BASE=http://api:8080/v1'
|
||||
- 'MODEL_NAME=gpt-3.5-turbo' #gpt-3.5-turbo' # ggml-gpt4all-j' # ggml-koala-13B-4bit-128g'
|
||||
2
examples/langchain/langchainjs-localai-example/.gitignore
vendored
Normal file
2
examples/langchain/langchainjs-localai-example/.gitignore
vendored
Normal file
@@ -0,0 +1,2 @@
|
||||
node_modules/
|
||||
dist/
|
||||
20
examples/langchain/langchainjs-localai-example/.vscode/launch.json
vendored
Normal file
20
examples/langchain/langchainjs-localai-example/.vscode/launch.json
vendored
Normal file
@@ -0,0 +1,20 @@
|
||||
{
|
||||
// Use IntelliSense to learn about possible attributes.
|
||||
// Hover to view descriptions of existing attributes.
|
||||
// For more information, visit: https://go.microsoft.com/fwlink/?linkid=830387
|
||||
"version": "0.2.0",
|
||||
"configurations": [
|
||||
{
|
||||
"type": "node",
|
||||
"request": "launch",
|
||||
"name": "Launch Program",
|
||||
// "skipFiles": [
|
||||
// "<node_internals>/**"
|
||||
// ],
|
||||
"program": "${workspaceFolder}\\dist\\index.mjs",
|
||||
"outFiles": [
|
||||
"${workspaceFolder}/**/*.js"
|
||||
]
|
||||
}
|
||||
]
|
||||
}
|
||||
1951
examples/langchain/langchainjs-localai-example/package-lock.json
generated
Normal file
1951
examples/langchain/langchainjs-localai-example/package-lock.json
generated
Normal file
File diff suppressed because it is too large
Load Diff
21
examples/langchain/langchainjs-localai-example/package.json
Normal file
21
examples/langchain/langchainjs-localai-example/package.json
Normal file
@@ -0,0 +1,21 @@
|
||||
{
|
||||
"name": "langchainjs-localai-example",
|
||||
"version": "0.1.0",
|
||||
"description": "Trivial Example of using langchain + the OpenAI API + LocalAI together",
|
||||
"main": "index.mjs",
|
||||
"scripts": {
|
||||
"build": "tsc --build",
|
||||
"clean": "tsc --build --clean",
|
||||
"start": "node --trace-warnings dist/index.mjs"
|
||||
},
|
||||
"author": "dave@gray101.com",
|
||||
"license": "MIT",
|
||||
"devDependencies": {
|
||||
"@types/node": "^18.16.4",
|
||||
"typescript": "^5.0.4"
|
||||
},
|
||||
"dependencies": {
|
||||
"langchain": "^0.0.67",
|
||||
"typeorm": "^0.3.15"
|
||||
}
|
||||
}
|
||||
79
examples/langchain/langchainjs-localai-example/src/index.mts
Normal file
79
examples/langchain/langchainjs-localai-example/src/index.mts
Normal file
@@ -0,0 +1,79 @@
|
||||
import { OpenAIChat } from "langchain/llms/openai";
|
||||
import { loadQAStuffChain } from "langchain/chains";
|
||||
import { Document } from "langchain/document";
|
||||
import { initializeAgentExecutorWithOptions } from "langchain/agents";
|
||||
import {Calculator} from "langchain/tools/calculator";
|
||||
|
||||
const pathToLocalAi = process.env['OPENAI_API_BASE'] || 'http://api:8080/v1';
|
||||
const fakeApiKey = process.env['OPENAI_API_KEY'] || '-';
|
||||
const modelName = process.env['MODEL_NAME'] || 'gpt-3.5-turbo';
|
||||
|
||||
function getModel(): OpenAIChat {
|
||||
return new OpenAIChat({
|
||||
prefixMessages: [
|
||||
{
|
||||
role: "system",
|
||||
content: "You are a helpful assistant that answers in pirate language",
|
||||
},
|
||||
],
|
||||
modelName: modelName,
|
||||
maxTokens: 50,
|
||||
openAIApiKey: fakeApiKey,
|
||||
maxRetries: 2
|
||||
}, {
|
||||
basePath: pathToLocalAi,
|
||||
apiKey: fakeApiKey,
|
||||
});
|
||||
}
|
||||
|
||||
// Minimal example.
|
||||
export const run = async () => {
|
||||
const model = getModel();
|
||||
console.log(`about to model.call at ${new Date().toUTCString()}`);
|
||||
const res = await model.call(
|
||||
"What would be a good company name a company that makes colorful socks?"
|
||||
);
|
||||
console.log(`${new Date().toUTCString()}`);
|
||||
console.log({ res });
|
||||
};
|
||||
|
||||
await run();
|
||||
|
||||
// This example uses the `StuffDocumentsChain`
|
||||
export const run2 = async () => {
|
||||
const model = getModel();
|
||||
const chainA = loadQAStuffChain(model);
|
||||
const docs = [
|
||||
new Document({ pageContent: "Harrison went to Harvard." }),
|
||||
new Document({ pageContent: "Ankush went to Princeton." }),
|
||||
];
|
||||
const resA = await chainA.call({
|
||||
input_documents: docs,
|
||||
question: "Where did Harrison go to college?",
|
||||
});
|
||||
console.log({ resA });
|
||||
};
|
||||
|
||||
await run2();
|
||||
|
||||
// Quickly thrown together example of using tools + agents.
|
||||
// This seems like it should work, but it doesn't yet.
|
||||
export const temporarilyBrokenToolTest = async () => {
|
||||
const model = getModel();
|
||||
|
||||
const executor = await initializeAgentExecutorWithOptions([new Calculator(true)], model, {
|
||||
agentType: "zero-shot-react-description",
|
||||
});
|
||||
|
||||
console.log("Loaded agent.");
|
||||
|
||||
const input = `What is the value of (500 *2) + 350 - 13?`;
|
||||
|
||||
console.log(`Executing with input "${input}"...`);
|
||||
|
||||
const result = await executor.call({ input });
|
||||
|
||||
console.log(`Got output ${result.output}`);
|
||||
}
|
||||
|
||||
await temporarilyBrokenToolTest();
|
||||
15
examples/langchain/langchainjs-localai-example/tsconfig.json
Normal file
15
examples/langchain/langchainjs-localai-example/tsconfig.json
Normal file
@@ -0,0 +1,15 @@
|
||||
{
|
||||
"compilerOptions": {
|
||||
"target": "es2022",
|
||||
"lib": ["ES2022", "DOM"],
|
||||
"module": "ES2022",
|
||||
"moduleResolution": "node",
|
||||
"strict": true,
|
||||
"esModuleInterop": true,
|
||||
"allowSyntheticDefaultImports": true,
|
||||
"isolatedModules": true,
|
||||
"outDir": "./dist"
|
||||
},
|
||||
"include": ["src", "test"],
|
||||
"exclude": ["node_modules", "dist"]
|
||||
}
|
||||
24
examples/langchain/langchainpy-localai-example/.vscode/launch.json
vendored
Normal file
24
examples/langchain/langchainpy-localai-example/.vscode/launch.json
vendored
Normal file
@@ -0,0 +1,24 @@
|
||||
{
|
||||
"version": "0.2.0",
|
||||
"configurations": [
|
||||
{
|
||||
"name": "Python: Current File",
|
||||
"type": "python",
|
||||
"request": "launch",
|
||||
"program": "${file}",
|
||||
"console": "integratedTerminal",
|
||||
"redirectOutput": true,
|
||||
"justMyCode": false
|
||||
},
|
||||
{
|
||||
"name": "Python: Attach to Port 5678",
|
||||
"type": "python",
|
||||
"request": "attach",
|
||||
"connect": {
|
||||
"host": "localhost",
|
||||
"port": 5678
|
||||
},
|
||||
"justMyCode": false
|
||||
}
|
||||
]
|
||||
}
|
||||
3
examples/langchain/langchainpy-localai-example/.vscode/settings.json
vendored
Normal file
3
examples/langchain/langchainpy-localai-example/.vscode/settings.json
vendored
Normal file
@@ -0,0 +1,3 @@
|
||||
{
|
||||
"python.defaultInterpreterPath": "${workspaceFolder}/.venv/Scripts/python"
|
||||
}
|
||||
46
examples/langchain/langchainpy-localai-example/full_demo.py
Normal file
46
examples/langchain/langchainpy-localai-example/full_demo.py
Normal file
@@ -0,0 +1,46 @@
|
||||
import os
|
||||
import logging
|
||||
|
||||
from langchain.chat_models import ChatOpenAI
|
||||
from langchain import PromptTemplate, LLMChain
|
||||
from langchain.prompts.chat import (
|
||||
ChatPromptTemplate,
|
||||
SystemMessagePromptTemplate,
|
||||
AIMessagePromptTemplate,
|
||||
HumanMessagePromptTemplate,
|
||||
)
|
||||
from langchain.schema import (
|
||||
AIMessage,
|
||||
HumanMessage,
|
||||
SystemMessage
|
||||
)
|
||||
|
||||
# This logging incantation makes it easy to see that you're actually reaching your LocalAI instance rather than OpenAI.
|
||||
logging.basicConfig(level=logging.DEBUG)
|
||||
|
||||
print('Langchain + LocalAI PYTHON Tests')
|
||||
|
||||
base_path = os.environ.get('OPENAI_API_BASE', 'http://api:8080/v1')
|
||||
key = os.environ.get('OPENAI_API_KEY', '-')
|
||||
model_name = os.environ.get('MODEL_NAME', 'gpt-3.5-turbo')
|
||||
|
||||
|
||||
chat = ChatOpenAI(temperature=0, openai_api_base=base_path, openai_api_key=key, model_name=model_name, max_tokens=100)
|
||||
|
||||
print("Created ChatOpenAI for ", chat.model_name)
|
||||
|
||||
template = "You are a helpful assistant that translates {input_language} to {output_language}. The next message will be a sentence in {input_language}. Respond ONLY with the translation in {output_language}. Do not respond in {input_language}!"
|
||||
system_message_prompt = SystemMessagePromptTemplate.from_template(template)
|
||||
human_template = "{text}"
|
||||
human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)
|
||||
|
||||
chat_prompt = ChatPromptTemplate.from_messages([system_message_prompt, human_message_prompt])
|
||||
|
||||
print("ABOUT to execute")
|
||||
|
||||
# get a chat completion from the formatted messages
|
||||
response = chat(chat_prompt.format_prompt(input_language="English", output_language="French", text="I love programming.").to_messages())
|
||||
|
||||
print(response)
|
||||
|
||||
print(".");
|
||||
@@ -0,0 +1,32 @@
|
||||
aiohttp==3.8.4
|
||||
aiosignal==1.3.1
|
||||
async-timeout==4.0.2
|
||||
attrs==23.1.0
|
||||
certifi==2022.12.7
|
||||
charset-normalizer==3.1.0
|
||||
colorama==0.4.6
|
||||
dataclasses-json==0.5.7
|
||||
debugpy==1.6.7
|
||||
frozenlist==1.3.3
|
||||
greenlet==2.0.2
|
||||
idna==3.4
|
||||
langchain==0.0.159
|
||||
marshmallow==3.19.0
|
||||
marshmallow-enum==1.5.1
|
||||
multidict==6.0.4
|
||||
mypy-extensions==1.0.0
|
||||
numexpr==2.8.4
|
||||
numpy==1.24.3
|
||||
openai==0.27.6
|
||||
openapi-schema-pydantic==1.2.4
|
||||
packaging==23.1
|
||||
pydantic==1.10.7
|
||||
PyYAML==6.0
|
||||
requests==2.29.0
|
||||
SQLAlchemy==2.0.12
|
||||
tenacity==8.2.2
|
||||
tqdm==4.65.0
|
||||
typing-inspect==0.8.0
|
||||
typing_extensions==4.5.0
|
||||
urllib3==1.26.15
|
||||
yarl==1.9.2
|
||||
@@ -0,0 +1,6 @@
|
||||
|
||||
from langchain.llms import OpenAI
|
||||
|
||||
llm = OpenAI(temperature=0.9,model_name="gpt-3.5-turbo")
|
||||
text = "What would be a good company name for a company that makes colorful socks?"
|
||||
print(llm(text))
|
||||
1
examples/langchain/models/completion.tmpl
Normal file
1
examples/langchain/models/completion.tmpl
Normal file
@@ -0,0 +1 @@
|
||||
{{.Input}}
|
||||
17
examples/langchain/models/gpt-3.5-turbo.yaml
Normal file
17
examples/langchain/models/gpt-3.5-turbo.yaml
Normal file
@@ -0,0 +1,17 @@
|
||||
name: gpt-3.5-turbo
|
||||
parameters:
|
||||
model: ggml-gpt4all-j # ggml-koala-13B-4bit-128g
|
||||
top_k: 80
|
||||
temperature: 0.2
|
||||
top_p: 0.7
|
||||
context_size: 1024
|
||||
stopwords:
|
||||
- "HUMAN:"
|
||||
- "GPT:"
|
||||
roles:
|
||||
user: " "
|
||||
system: " "
|
||||
backend: "gptj"
|
||||
template:
|
||||
completion: completion
|
||||
chat: gpt4all
|
||||
4
examples/langchain/models/gpt4all.tmpl
Normal file
4
examples/langchain/models/gpt4all.tmpl
Normal file
@@ -0,0 +1,4 @@
|
||||
The prompt below is a question to answer, a task to complete, or a conversation to respond to; decide which and write an appropriate response.
|
||||
### Prompt:
|
||||
{{.Input}}
|
||||
### Response:
|
||||
26
examples/localai-webui/README.md
Normal file
26
examples/localai-webui/README.md
Normal file
@@ -0,0 +1,26 @@
|
||||
# localai-webui
|
||||
|
||||
Example of integration with [dhruvgera/localai-frontend](https://github.com/Dhruvgera/LocalAI-frontend).
|
||||
|
||||

|
||||
|
||||
## Setup
|
||||
|
||||
```bash
|
||||
# Clone LocalAI
|
||||
git clone https://github.com/go-skynet/LocalAI
|
||||
|
||||
cd LocalAI/examples/localai-webui
|
||||
|
||||
# (optional) Checkout a specific LocalAI tag
|
||||
# git checkout -b build <TAG>
|
||||
|
||||
# Download any desired models to models/ in the parent LocalAI project dir
|
||||
# For example: wget https://gpt4all.io/models/ggml-gpt4all-j.bin
|
||||
|
||||
# start with docker-compose
|
||||
docker-compose up -d --build
|
||||
```
|
||||
|
||||
Open http://localhost:3000 for the Web UI.
|
||||
|
||||
20
examples/localai-webui/docker-compose.yml
Normal file
20
examples/localai-webui/docker-compose.yml
Normal file
@@ -0,0 +1,20 @@
|
||||
version: '3.6'
|
||||
|
||||
services:
|
||||
api:
|
||||
image: quay.io/go-skynet/local-ai:latest
|
||||
build:
|
||||
context: .
|
||||
dockerfile: Dockerfile
|
||||
ports:
|
||||
- 8080:8080
|
||||
env_file:
|
||||
- .env
|
||||
volumes:
|
||||
- ./models:/models:cached
|
||||
command: ["/usr/bin/local-ai"]
|
||||
|
||||
frontend:
|
||||
image: quay.io/go-skynet/localai-frontend:master
|
||||
ports:
|
||||
- 3000:3000
|
||||
25
examples/privateGPT/README.md
Normal file
25
examples/privateGPT/README.md
Normal file
@@ -0,0 +1,25 @@
|
||||
# privateGPT
|
||||
|
||||
This example is a re-adaptation of https://github.com/imartinez/privateGPT to work with LocalAI and OpenAI endpoints. We have a fork with the changes required to work with privateGPT here https://github.com/go-skynet/privateGPT ( PR: https://github.com/imartinez/privateGPT/pull/408 ).
|
||||
|
||||
Follow the instructions in https://github.com/go-skynet/privateGPT:
|
||||
|
||||
```bash
|
||||
git clone git@github.com:go-skynet/privateGPT.git
|
||||
cd privateGPT
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
Rename `example.env` to `.env` and edit the variables appropriately.
|
||||
|
||||
This is an example `.env` file for LocalAI:
|
||||
|
||||
```
|
||||
PERSIST_DIRECTORY=db
|
||||
# Set to OpenAI here
|
||||
MODEL_TYPE=OpenAI
|
||||
EMBEDDINGS_MODEL_NAME=all-MiniLM-L6-v2
|
||||
MODEL_N_CTX=1000
|
||||
# LocalAI URL
|
||||
OPENAI_API_BASE=http://localhost:8080/v1
|
||||
```
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user