Compare commits

..

65 Commits
v0.2 ... v1.2.0

Author SHA1 Message Date
Ettore Di Giacinto
ed954d66c3 Do not take all CPU by default (#50) 2023-04-21 00:55:19 +02:00
Ettore Di Giacinto
f816dfae65 Add support for stablelm (#48)
Signed-off-by: mudler <mudler@mocaccino.org>
2023-04-21 00:06:55 +02:00
Ettore Di Giacinto
142bcd66ca Cleanup makefile, fix dep versions (#46)
Signed-off-by: mudler <mudler@c3os.io>
2023-04-20 19:49:06 +02:00
Ettore Di Giacinto
1c4fbaae20 Add support for cerebras (#45)
Signed-off-by: mudler <mudler@c3os.io>
2023-04-20 19:33:36 +02:00
Ettore Di Giacinto
d517a54e28 Major API enhancements (#44) 2023-04-20 18:33:02 +02:00
Tyler Gillson
c905512bb0 Update example K8s manifests (#40) 2023-04-20 18:31:11 +02:00
Ettore Di Giacinto
1254951fab Add logo (#37)
Signed-off-by: mudler <mudler@c3os.io>
2023-04-19 19:03:12 +02:00
Ettore Di Giacinto
80f50e6ccd Rename project to LocalAI (#35)
Signed-off-by: mudler <mudler@c3os.io>
2023-04-19 18:43:10 +02:00
Ettore Di Giacinto
7fec26f5d3 Enhancements (#34)
Signed-off-by: mudler <mudler@c3os.io>
2023-04-19 17:10:29 +02:00
Ettore Di Giacinto
a9a875ee2b ⬆️ Bump llama.cpp (#33)
Signed-off-by: mudler <mudler@c3os.io>
2023-04-17 21:34:02 +02:00
Ettore Di Giacinto
db5ac715f3 Use a reasonable default context size (#31) 2023-04-17 18:45:42 +02:00
Ettore Di Giacinto
0b330d90ad feat: drop embedded webui (#27)
Signed-off-by: mudler <mudler@c3os.io>
2023-04-16 10:46:20 +02:00
Ettore Di Giacinto
63601fabd1 feat: drop default model and llama-specific API (#26)
Signed-off-by: mudler <mudler@c3os.io>
2023-04-16 10:40:50 +02:00
Ettore Di Giacinto
1370b4482f 📖 Add prompt-templates examples (#25)
Signed-off-by: mudler <mudler@c3os.io>
2023-04-16 10:24:15 +02:00
Ettore Di Giacinto
b062f3142b feat: enhance API, expose more parameters (#24)
Signed-off-by: mudler <mudler@c3os.io>
2023-04-16 10:16:48 +02:00
Marc R Kellerman
c37175271f feature: makefile & updates (#23)
Co-authored-by: mudler <mudler@c3os.io>
Co-authored-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2023-04-15 16:39:07 -07:00
Ettore Di Giacinto
e8eab66c30 Merge pull request #22 from go-skynet/update-llama.cpp
⬆️ Update go-llama.cpp to `llama.cpp-2f7c8e0`
2023-04-16 00:06:52 +02:00
mudler
a73a497143 Update llama.cpp 2023-04-15 23:57:00 +02:00
Ettore Di Giacinto
6aea515e1d Merge pull request #20 from go-skynet/mudler-patch-1
📖 Update README.md
2023-04-15 00:38:30 +02:00
Ettore Di Giacinto
dfc2b7e02a 📖 Update README.md 2023-04-15 00:38:18 +02:00
Ettore Di Giacinto
040290971c Merge pull request #19 from go-skynet/tags
Use tags for go-llama.cpp
2023-04-15 00:14:47 +02:00
mudler
553bad585e Use tags for go-llama.cpp 2023-04-15 00:07:39 +02:00
Ettore Di Giacinto
f76b612506 Merge pull request #17 from go-skynet/mudler-patch-1
Fix comment typo
2023-04-13 15:21:13 +02:00
Ettore Di Giacinto
c4e94c88d7 Fix comment typo
Thanks to @deadprogram for noticing it!
2023-04-13 15:20:51 +02:00
mudler
a9cd6b3ca3 ci: Fix tag detection for 'latest' 2023-04-13 01:37:09 +02:00
mudler
e786576b95 Update README 2023-04-13 01:28:15 +02:00
Ettore Di Giacinto
d426571789 Merge pull request #16 from go-skynet/fix_arm
Drop armv7 builds
2023-04-13 01:21:58 +02:00
mudler
a896a2b5ad Drop armv7 builds 2023-04-13 01:21:40 +02:00
Ettore Di Giacinto
8273cd5c04 Merge pull request #15 from go-skynet/docker-compose
Add docker-compose file
2023-04-13 01:17:44 +02:00
mudler
16f1281d38 Minor workflow fixes 2023-04-13 01:16:13 +02:00
mudler
8042e9a2d6 Add docker-compose
Fixes #14

Signed-off-by: mudler <mudler@c3os.io>
2023-04-13 01:13:14 +02:00
mudler
624092cb99 Update README 2023-04-12 00:07:30 +02:00
mudler
a422a883ac Minor rephrasing 2023-04-12 00:04:15 +02:00
mudler
7858a97254 Update README 2023-04-12 00:02:47 +02:00
mudler
5556aa46dd Small refinements and refactors 2023-04-12 00:02:39 +02:00
mudler
eb4257f946 Add .gitignore 2023-04-11 23:44:00 +02:00
mudler
ae30bd346d Reorganize repository layout 2023-04-11 23:43:43 +02:00
mudler
93d8977ba2 Return model list 2023-04-10 12:02:40 +02:00
mudler
f43aeeb4a1 Add both API endpoints (completion, chat) 2023-04-09 12:30:55 +02:00
mudler
c17dcc5e9d Allow to inject prompt as part of the call 2023-04-09 09:36:19 +02:00
mudler
4a932483e1 Small fixup to template loading 2023-04-08 11:59:40 +02:00
mudler
b710147b95 Add mutex on same models (parallel isn't supported yet) 2023-04-08 11:45:36 +02:00
mudler
ba70363330 Use template input 2023-04-08 11:24:25 +02:00
mudler
9fb581739b Allow to template model prompts inputs 2023-04-08 10:46:51 +02:00
mudler
48aca246e3 Drop unused interactive mode 2023-04-07 11:31:14 +02:00
mudler
12eee097b7 Make it compatible with openAI api, support multiple models
Signed-off-by: mudler <mudler@c3os.io>
2023-04-07 11:30:59 +02:00
mudler
b33d015b8c Use go-llama.cpp 2023-04-07 10:08:15 +02:00
Ettore Di Giacinto
b7c0a108f5 Update README.md 2023-04-05 22:28:03 +02:00
Ettore Di Giacinto
f694a89c28 Update README.md 2023-04-05 22:14:00 +02:00
Ettore Di Giacinto
be682e6c2f Update README.md
Add short-term roadmap and mention webui
2023-04-05 22:04:35 +02:00
mudler
bf85a31f9e Don't set a default model path 2023-04-05 22:00:15 +02:00
Ettore Di Giacinto
d69048e0b0 Update README.md 2023-04-05 00:41:02 +02:00
mudler
827f189163 Update README 2023-03-30 18:46:11 +02:00
mudler
a23deb5ec7 Drop duplicate target 2023-03-29 19:44:41 +02:00
mudler
999676b106 Add gpt4all instructions 2023-03-29 18:58:54 +02:00
mudler
c61b023bc8 Drop fat images, will document how to consume models 2023-03-29 18:55:24 +02:00
mudler
650a22aef1 Add compatibility to gpt4all models 2023-03-29 18:53:24 +02:00
mudler
17b1724f7c Update llama-go 2023-03-27 01:18:14 +02:00
mudler
e860e62036 Add mutex, build only lite images 2023-03-27 01:01:38 +02:00
Ettore Di Giacinto
1f45ff8cd6 Update README.md 2023-03-26 23:37:26 +02:00
mudler
abee34f60a Cleanup leftover 2023-03-25 01:10:50 +01:00
mudler
dbc70dc13c Add a simple web-page as index of the API for helping with inference testing 2023-03-25 01:09:51 +01:00
mudler
55142065eb Update README with building instructions 2023-03-24 01:11:13 +01:00
mudler
d83d2293b5 Update version in kubernetes deployment 2023-03-23 23:22:43 +01:00
mudler
467ce5a7aa Update models download instructions, update images 2023-03-23 22:06:41 +01:00
27 changed files with 1234 additions and 861 deletions

1
.dockerignore Normal file
View File

@@ -0,0 +1 @@
models

4
.env Normal file
View File

@@ -0,0 +1,4 @@
THREADS=14
CONTEXT_SIZE=512
MODELS_PATH=/models
# DEBUG=true

View File

@@ -2,6 +2,7 @@
name: 'build container images'
on:
pull_request:
push:
branches:
- master
@@ -12,68 +13,42 @@ jobs:
docker:
runs-on: ubuntu-latest
steps:
- name: Release space from worker
run: |
echo "Listing top largest packages"
pkgs=$(dpkg-query -Wf '${Installed-Size}\t${Package}\t${Status}\n' | awk '$NF == "installed"{print $1 "\t" $2}' | sort -nr)
head -n 30 <<< "${pkgs}"
echo
df -h
echo
sudo apt-get remove -y '^llvm-.*|^libllvm.*' || true
sudo apt-get remove --auto-remove android-sdk-platform-tools || true
sudo apt-get purge --auto-remove android-sdk-platform-tools || true
sudo rm -rf /usr/local/lib/android
sudo apt-get remove -y '^dotnet-.*|^aspnetcore-.*' || true
sudo rm -rf /usr/share/dotnet
sudo apt-get remove -y '^mono-.*' || true
sudo apt-get remove -y '^ghc-.*' || true
sudo apt-get remove -y '.*jdk.*|.*jre.*' || true
sudo apt-get remove -y 'php.*' || true
sudo apt-get remove -y hhvm powershell firefox monodoc-manual msbuild || true
sudo apt-get remove -y '^google-.*' || true
sudo apt-get remove -y azure-cli || true
sudo apt-get remove -y '^mongo.*-.*|^postgresql-.*|^mysql-.*|^mssql-.*' || true
sudo apt-get remove -y '^gfortran-.*' || true
sudo apt-get autoremove -y
sudo apt-get clean
echo
echo "Listing top largest packages"
pkgs=$(dpkg-query -Wf '${Installed-Size}\t${Package}\t${Status}\n' | awk '$NF == "installed"{print $1 "\t" $2}' | sort -nr)
head -n 30 <<< "${pkgs}"
echo
sudo rm -rfv build || true
df -h
- name: Checkout
uses: actions/checkout@v3
- name: Prepare
id: prep
run: |
DOCKER_IMAGE=quay.io/go-skynet/llama-cli
VERSION=latest
DOCKER_IMAGE=quay.io/go-skynet/local-ai
VERSION=master
SHORTREF=${GITHUB_SHA::8}
# If this is git tag, use the tag name as a docker tag
if [[ $GITHUB_REF == refs/tags/* ]]; then
VERSION=${GITHUB_REF#refs/tags/}
fi
TAGS="${DOCKER_IMAGE}:${VERSION},${DOCKER_IMAGE}:${SHORTREF}"
# If the VERSION looks like a version number, assume that
# this is the most recent version of the image and also
# tag it 'latest'.
if [[ $VERSION =~ ^[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}$ ]]; then
if [[ $VERSION =~ ^v[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}$ ]]; then
TAGS="$TAGS,${DOCKER_IMAGE}:latest"
fi
# Set output parameters.
echo ::set-output name=tags::${TAGS}
echo ::set-output name=docker_image::${DOCKER_IMAGE}
echo ::set-output name=image::${DOCKER_IMAGE}:${VERSION}
- name: Set up QEMU
uses: docker/setup-qemu-action@master
with:
platforms: all
- name: Set up Docker Buildx
id: buildx
uses: docker/setup-buildx-action@master
- name: Login to DockerHub
if: github.event_name != 'pull_request'
uses: docker/login-action@v2
@@ -81,9 +56,23 @@ jobs:
registry: quay.io
username: ${{ secrets.QUAY_USERNAME }}
password: ${{ secrets.QUAY_PASSWORD }}
- uses: earthly/actions/setup-earthly@v1
- name: Build
run: |
earthly config "global.conversion_parallelism" "1"
earthly config "global.buildkit_max_parallelism" "1"
earthly --push +image-all --IMAGE=${{ steps.prep.outputs.image }}
if: github.event_name != 'pull_request'
uses: docker/build-push-action@v4
with:
builder: ${{ steps.buildx.outputs.name }}
context: .
file: ./Dockerfile
platforms: linux/amd64,linux/arm64
push: true
tags: ${{ steps.prep.outputs.tags }}
- name: Build PRs
if: github.event_name == 'pull_request'
uses: docker/build-push-action@v4
with:
builder: ${{ steps.buildx.outputs.name }}
context: .
file: ./Dockerfile
platforms: linux/amd64
push: false
tags: ${{ steps.prep.outputs.tags }}

11
.gitignore vendored Normal file
View File

@@ -0,0 +1,11 @@
# go-llama build artifacts
go-llama
go-gpt4all-j
# LocalAI build binary
LocalAI
local-ai
# Ignore models
models/*.bin
models/ggml-*

View File

@@ -1,5 +1,5 @@
# Make sure to check the documentation at http://goreleaser.com
project_name: llama-cli
project_name: local-ai
builds:
- ldflags:
- -w -s

16
.vscode/launch.json vendored Normal file
View File

@@ -0,0 +1,16 @@
{
"version": "0.2.0",
"configurations": [
{
"name": "Launch Go",
"type": "go",
"request": "launch",
"mode": "debug",
"program": "${workspaceFolder}/main.go",
"args": [
"api"
]
}
]
}

12
Dockerfile Normal file
View File

@@ -0,0 +1,12 @@
ARG GO_VERSION=1.20
ARG DEBIAN_VERSION=11
FROM golang:$GO_VERSION as builder
WORKDIR /build
RUN apt-get update && apt-get install -y cmake
COPY . .
ARG BUILD_TYPE=
RUN make build${BUILD_TYPE}
FROM debian:$DEBIAN_VERSION
COPY --from=builder /build/local-ai /usr/bin/local-ai
ENTRYPOINT [ "/usr/bin/local-ai" ]

View File

@@ -1,47 +1,5 @@
VERSION 0.7
go-deps:
ARG GO_VERSION=1.20
FROM golang:$GO_VERSION
WORKDIR /build
COPY go.mod ./
COPY go.sum ./
RUN go mod download
RUN apt-get update
SAVE ARTIFACT go.mod AS LOCAL go.mod
SAVE ARTIFACT go.sum AS LOCAL go.sum
model-image:
ARG MODEL_IMAGE=quay.io/go-skynet/models:ggml2-alpaca-7b-v0.2
FROM $MODEL_IMAGE
SAVE ARTIFACT /models/model.bin
build:
FROM +go-deps
WORKDIR /build
RUN git clone https://github.com/go-skynet/llama
RUN cd llama && make libllama.a
COPY . .
RUN C_INCLUDE_PATH=/build/llama LIBRARY_PATH=/build/llama go build -o llama-cli ./
SAVE ARTIFACT llama-cli AS LOCAL llama-cli
image:
FROM +go-deps
ARG IMAGE=alpaca-cli
COPY +model-image/model.bin /model.bin
COPY +build/llama-cli /llama-cli
ENV MODEL_PATH=/model.bin
ENTRYPOINT [ "/llama-cli" ]
SAVE IMAGE --push $IMAGE
lite-image:
FROM +go-deps
ARG IMAGE=alpaca-cli-nomodel
COPY +build/llama-cli /llama-cli
ENV MODEL_PATH=/model.bin
ENTRYPOINT [ "/llama-cli" ]
SAVE IMAGE --push $IMAGE-lite
image-all:
BUILD --platform=linux/amd64 --platform=linux/arm64 +image
BUILD --platform=linux/amd64 --platform=linux/arm64 +lite-image
FROM DOCKERFILE -f Dockerfile .
SAVE ARTIFACT /usr/bin/local-ai AS LOCAL local-ai

104
Makefile Normal file
View File

@@ -0,0 +1,104 @@
GOCMD=go
GOTEST=$(GOCMD) test
GOVET=$(GOCMD) vet
BINARY_NAME=local-ai
GOLLAMA_VERSION?=llama.cpp-5ecff35
GOGPT4ALLJ_VERSION?=1f548782d80d48b9a0fac33aae6f129358787bc0
GOGPT2_VERSION?=1c24f5b86ac428cd5e81dae1f1427b1463bd2b06
GREEN := $(shell tput -Txterm setaf 2)
YELLOW := $(shell tput -Txterm setaf 3)
WHITE := $(shell tput -Txterm setaf 7)
CYAN := $(shell tput -Txterm setaf 6)
RESET := $(shell tput -Txterm sgr0)
.PHONY: all test build vendor
all: help
## Build:
build: prepare ## Build the project
C_INCLUDE_PATH=$(shell pwd)/go-llama.cpp:$(shell pwd)/go-gpt4all-j:$(shell pwd)/go-gpt2.cpp LIBRARY_PATH=$(shell pwd)/go-llama.cpp:$(shell pwd)/go-gpt4all-j:$(shell pwd)/go-gpt2.cpp $(GOCMD) build -o $(BINARY_NAME) ./
buildgeneric: prepare-generic ## Build the project
C_INCLUDE_PATH=$(shell pwd)/go-llama.cpp:$(shell pwd)/go-gpt4all-j:$(shell pwd)/go-gpt2.cpp LIBRARY_PATH=$(shell pwd)/go-llama.cpp:$(shell pwd)/go-gpt4all-j:$(shell pwd)/go-gpt2.cpp $(GOCMD) build -o $(BINARY_NAME) ./
## GPT4ALL-J
go-gpt4all-j:
git clone --recurse-submodules https://github.com/go-skynet/go-gpt4all-j.cpp go-gpt4all-j && cd go-gpt4all-j && git checkout -b build $(GOGPT4ALLJ_VERSION)
# This is hackish, but needed as both go-llama and go-gpt4allj have their own version of ggml..
@find ./go-gpt4all-j -type f -name "*.c" -exec sed -i'' -e 's/ggml_/ggml_gptj_/g' {} +
@find ./go-gpt4all-j -type f -name "*.cpp" -exec sed -i'' -e 's/ggml_/ggml_gptj_/g' {} +
@find ./go-gpt4all-j -type f -name "*.h" -exec sed -i'' -e 's/ggml_/ggml_gptj_/g' {} +
@find ./go-gpt4all-j -type f -name "*.cpp" -exec sed -i'' -e 's/gpt_/gptj_/g' {} +
@find ./go-gpt4all-j -type f -name "*.h" -exec sed -i'' -e 's/gpt_/gptj_/g' {} +
@find ./go-gpt4all-j -type f -name "*.cpp" -exec sed -i'' -e 's/json_/json_gptj_/g' {} +
@find ./go-gpt4all-j -type f -name "*.cpp" -exec sed -i'' -e 's/void replace/void json_gptj_replace/g' {} +
@find ./go-gpt4all-j -type f -name "*.cpp" -exec sed -i'' -e 's/::replace/::json_gptj_replace/g' {} +
go-gpt4all-j/libgptj.a: go-gpt4all-j
$(MAKE) -C go-gpt4all-j libgptj.a
go-gpt4all-j/libgptj.a-generic: go-gpt4all-j
$(MAKE) -C go-gpt4all-j generic-libgptj.a
# CEREBRAS GPT
go-gpt2.cpp:
git clone --recurse-submodules https://github.com/go-skynet/go-gpt2.cpp go-gpt2.cpp && cd go-gpt2.cpp && git checkout -b build $(GOGPT2_VERSION)
# This is hackish, but needed as both go-llama and go-gpt4allj have their own version of ggml..
@find ./go-gpt2.cpp -type f -name "*.c" -exec sed -i'' -e 's/ggml_/ggml_gpt2_/g' {} +
@find ./go-gpt2.cpp -type f -name "*.cpp" -exec sed -i'' -e 's/ggml_/ggml_gpt2_/g' {} +
@find ./go-gpt2.cpp -type f -name "*.h" -exec sed -i'' -e 's/ggml_/ggml_gpt2_/g' {} +
@find ./go-gpt2.cpp -type f -name "*.cpp" -exec sed -i'' -e 's/gpt_/gpt2_/g' {} +
@find ./go-gpt2.cpp -type f -name "*.h" -exec sed -i'' -e 's/gpt_/gpt2_/g' {} +
@find ./go-gpt2.cpp -type f -name "*.cpp" -exec sed -i'' -e 's/json_/json_gpt2_/g' {} +
go-gpt2.cpp/libgpt2.a: go-gpt2.cpp
$(MAKE) -C go-gpt2.cpp libgpt2.a
go-gpt2.cpp/libgpt2.a-generic: go-gpt2.cpp
$(MAKE) -C go-gpt2.cpp generic-libgpt2.a
go-llama:
git clone -b $(GOLLAMA_VERSION) --recurse-submodules https://github.com/go-skynet/go-llama.cpp go-llama
$(MAKE) -C go-llama libbinding.a
go-llama-generic:
git clone -b $(GOLLAMA_VERSION) --recurse-submodules https://github.com/go-skynet/go-llama.cpp go-llama
$(MAKE) -C go-llama generic-libbinding.a
replace:
$(GOCMD) mod edit -replace github.com/go-skynet/go-llama.cpp=$(shell pwd)/go-llama
$(GOCMD) mod edit -replace github.com/go-skynet/go-gpt4all-j.cpp=$(shell pwd)/go-gpt4all-j
$(GOCMD) mod edit -replace github.com/go-skynet/go-gpt2.cpp=$(shell pwd)/go-gpt2.cpp
prepare: go-llama go-gpt4all-j/libgptj.a go-gpt2.cpp/libgpt2.a replace
prepare-generic: go-llama-generic go-gpt4all-j/libgptj.a-generic go-gpt2.cpp/libgpt2.a-generic replace
clean: ## Remove build related file
rm -fr ./go-llama
rm -rf ./go-gpt4all-j
rm -rf ./go-gpt2.cpp
rm -rf $(BINARY_NAME)
## Run:
run: prepare
$(GOCMD) run ./ api
## Test:
test: ## Run the tests of the project
$(GOTEST) -v -race ./... $(OUTPUT_OPTIONS)
## Help:
help: ## Show this help.
@echo ''
@echo 'Usage:'
@echo ' ${YELLOW}make${RESET} ${GREEN}<target>${RESET}'
@echo ''
@echo 'Targets:'
@awk 'BEGIN {FS = ":.*?## "} { \
if (/^[a-zA-Z_-]+:.*?##.*$$/) {printf " ${YELLOW}%-20s${GREEN}%s${RESET}\n", $$1, $$2} \
else if (/^## .*$$/) {printf " ${CYAN}%s${RESET}\n", substr($$1,4)} \
}' $(MAKEFILE_LIST)

274
README.md
View File

@@ -1,60 +1,97 @@
## :camel: llama-cli
<h1 align="center">
<br>
<img height="300" src="https://user-images.githubusercontent.com/2420543/233147843-88697415-6dbf-4368-a862-ab217f9f7342.jpeg"> <br>
LocalAI
<br>
</h1>
> :warning: This project has been renamed from `llama-cli` to `LocalAI` to reflect the fact that we are focusing on a fast drop-in OpenAI API rather on the CLI interface. We think that there are already many projects that can be used as a CLI interface already, for instance [llama.cpp](https://github.com/ggerganov/llama.cpp) and [gpt4all](https://github.com/nomic-ai/gpt4all). If you are were using `llama-cli` for CLI interactions and want to keep using it, use older versions or please open up an issue - contributions are welcome!
llama-cli is a straightforward golang CLI interface for [llama.cpp](https://github.com/ggerganov/llama.cpp), providing a simple API and a command line interface that allows text generation using a GPT-based model like llama directly from the terminal.
LocalAI is a straightforward, drop-in replacement API compatible with OpenAI for local CPU inferencing, based on [llama.cpp](https://github.com/ggerganov/llama.cpp), [gpt4all](https://github.com/nomic-ai/gpt4all) and [ggml](https://github.com/ggerganov/ggml), including support GPT4ALL-J which is Apache 2.0 Licensed and can be used for commercial purposes.
## Container images
- OpenAI compatible API
- Supports multiple-models
- Once loaded the first time, it keep models loaded in memory for faster inference
- Support for prompt templates
- Doesn't shell-out, but uses C bindings for a faster inference and better performance. Uses [go-llama.cpp](https://github.com/go-skynet/go-llama.cpp) and [go-gpt4all-j.cpp](https://github.com/go-skynet/go-gpt4all-j.cpp).
The `llama-cli` [container images](https://quay.io/repository/go-skynet/llama-cli?tab=tags&tag=latest) come preloaded with the [alpaca.cpp 7B](https://github.com/antimatter15/alpaca.cpp) model, enabling you to start making predictions immediately! To begin, run:
## Model compatibility
```
docker run -ti --rm quay.io/go-skynet/llama-cli:v0.2 --instruction "What's an alpaca?" --topk 10000
It is compatible with the models supported by [llama.cpp](https://github.com/ggerganov/llama.cpp) supports also [GPT4ALL-J](https://github.com/nomic-ai/gpt4all) and [cerebras-GPT with ggml](https://huggingface.co/lxe/Cerebras-GPT-2.7B-Alpaca-SP-ggml).
Tested with:
- Vicuna
- Alpaca
- [GPT4ALL](https://github.com/nomic-ai/gpt4all)
- [GPT4ALL-J](https://gpt4all.io/models/ggml-gpt4all-j.bin)
- Koala
- [cerebras-GPT with ggml](https://huggingface.co/lxe/Cerebras-GPT-2.7B-Alpaca-SP-ggml)
It should also be compatible with StableLM and GPTNeoX ggml models (untested)
Note: You might need to convert older models to the new format, see [here](https://github.com/ggerganov/llama.cpp#using-gpt4all) for instance to run `gpt4all`.
## Usage
> `LocalAI` comes by default as a container image. You can check out all the available images with corresponding tags [here](https://quay.io/repository/go-skynet/local-ai?tab=tags&tag=latest).
The easiest way to run LocalAI is by using `docker-compose`:
```bash
git clone https://github.com/go-skynet/LocalAI
cd LocalAI
# copy your models to models/
cp your-model.bin models/
# (optional) Edit the .env file to set things like context size and threads
# vim .env
# start with docker-compose
docker compose up -d --build
# Now API is accessible at localhost:8080
curl http://localhost:8080/v1/models
# {"object":"list","data":[{"id":"your-model.bin","object":"model"}]}
curl http://localhost:8080/v1/completions -H "Content-Type: application/json" -d '{
"model": "your-model.bin",
"prompt": "A long time ago in a galaxy far, far away",
"temperature": 0.7
}'
```
You will receive a response like the following:
## Prompt templates
The API doesn't inject a default prompt for talking to the model. You have to use a prompt similar to what's described in the standford-alpaca docs: https://github.com/tatsu-lab/stanford_alpaca#data-release.
<details>
You can use a default template for every model present in your model path, by creating a corresponding file with the `.tmpl` suffix next to your model. For instance, if the model is called `foo.bin`, you can create a sibiling file, `foo.bin.tmpl` which will be used as a default prompt, for instance this can be used with alpaca:
```
An alpaca is a member of the South American Camelid family, which includes the llama, guanaco and vicuña. It is a domesticated species that originates from the Andes mountain range in South America. Alpacas are used in the textile industry for their fleece, which is much softer than wool. Alpacas are also used for meat, milk, and fiber.
Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{{.Input}}
### Response:
```
## Basic usage
See the [prompt-templates](https://github.com/go-skynet/LocalAI/tree/master/prompt-templates) directory in this repository for templates for most popular models.
To use llama-cli, specify a pre-trained GPT-based model, an input text, and an instruction for text generation. llama-cli takes the following arguments when running from the CLI:
</details>
```
llama-cli --model <model_path> --instruction <instruction> [--input <input>] [--template <template_path>] [--tokens <num_tokens>] [--threads <num_threads>] [--temperature <temperature>] [--topp <top_p>] [--topk <top_k>]
```
## API
| Parameter | Environment Variable | Default Value | Description |
| ------------ | -------------------- | ------------- | -------------------------------------- |
| template | TEMPLATE | | A file containing a template for output formatting (optional). |
| instruction | INSTRUCTION | | Input prompt text or instruction. "-" for STDIN. |
| input | INPUT | - | Path to text or "-" for STDIN. |
| model | MODEL_PATH | | The path to the pre-trained GPT-based model. |
| tokens | TOKENS | 128 | The maximum number of tokens to generate. |
| threads | THREADS | NumCPU() | The number of threads to use for text generation. |
| temperature | TEMPERATURE | 0.95 | Sampling temperature for model output. ( values between `0.1` and `1.0` ) |
| top_p | TOP_P | 0.85 | The cumulative probability for top-p sampling. |
| top_k | TOP_K | 20 | The number of top-k tokens to consider for text generation. |
| context-size | CONTEXT_SIZE | 512 | Default token context size. |
| alpaca | ALPACA | true | Set to true for alpaca models. |
Here's an example of using `llama-cli`:
```
llama-cli --model ~/ggml-alpaca-7b-q4.bin --instruction "What's an alpaca?"
```
This will generate text based on the given model and instruction.
## Advanced usage
`llama-cli` also provides an API for running text generation as a service.
`LocalAI` provides an API for running text generation as a service, that follows the OpenAI reference and can be used as a drop-in. The models once loaded the first time will be kept in memory.
<details>
Example of starting the API with `docker`:
```bash
docker run -p 8080:8080 -ti --rm quay.io/go-skynet/llama-cli:v0.2 api
docker run -p 8080:8080 -ti --rm quay.io/go-skynet/local-ai:latest --models-path /path/to/models --context-size 700 --threads 4
```
And you'll see:
@@ -72,101 +109,118 @@ And you'll see:
You can control the API server options with command line arguments:
```
llama-cli api --model <model_path> [--address <address>] [--threads <num_threads>]
local-api --models-path <model_path> [--address <address>] [--threads <num_threads>]
```
The API takes takes the following:
The API takes takes the following parameters:
| Parameter | Environment Variable | Default Value | Description |
| ------------ | -------------------- | ------------- | -------------------------------------- |
| model | MODEL_PATH | | The path to the pre-trained GPT-based model. |
| threads | THREADS | CPU cores | The number of threads to use for text generation. |
| models-path | MODELS_PATH | | The path where you have models (ending with `.bin`). |
| threads | THREADS | Number of Physical cores | The number of threads to use for text generation. |
| address | ADDRESS | :8080 | The address and port to listen on. |
| context-size | CONTEXT_SIZE | 512 | Default token context size. |
| alpaca | ALPACA | true | Set to true for alpaca models. |
Once the server is running, you can start making requests to it using HTTP, using the OpenAI API.
Once the server is running, you can make requests to it using HTTP. For example, to generate text based on an instruction, you can send a POST request to the `/predict` endpoint with the instruction as the request body:
</details>
### Supported OpenAI API endpoints
You can check out the [OpenAI API reference](https://platform.openai.com/docs/api-reference/chat/create).
Following the list of endpoints/parameters supported.
#### Chat completions
For example, to generate a chat completion, you can send a POST request to the `/v1/chat/completions` endpoint with the instruction as the request body:
```
curl --location --request POST 'http://localhost:8080/predict' --header 'Content-Type: application/json' --data-raw '{
"text": "What is an alpaca?",
"topP": 0.8,
"topK": 50,
"temperature": 0.7,
"tokens": 100
}'
curl http://localhost:8080/v1/chat/completions -H "Content-Type: application/json" -d '{
"model": "ggml-koala-7b-model-q4_0-r2.bin",
"messages": [{"role": "user", "content": "Say this is a test!"}],
"temperature": 0.7
}'
```
Note: The API doesn't inject a template for talking to the instance, while the CLI does. You have to use a prompt similar to what's described in the standford-alpaca docs: https://github.com/tatsu-lab/stanford_alpaca#data-release, for instance:
Available additional parameters: `top_p`, `top_k`, `max_tokens`
#### Completions
For example, to generate a comletion, you can send a POST request to the `/v1/completions` endpoint with the instruction as the request body:
```
curl http://localhost:8080/v1/completions -H "Content-Type: application/json" -d '{
"model": "ggml-koala-7b-model-q4_0-r2.bin",
"prompt": "A long time ago in a galaxy far, far away",
"temperature": 0.7
}'
```
Available additional parameters: `top_p`, `top_k`, `max_tokens`
#### List models
You can list all the models available with:
```
Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Response:
curl http://localhost:8080/v1/models
```
## Using other models
You can use the lite images ( for example `quay.io/go-skynet/llama-cli:v0.2-lite`) that don't ship any model, and specify a model binary to be used for inference with `--model`.
gpt4all (https://github.com/nomic-ai/gpt4all) works as well, however the original model needs to be converted (same applies for old alpaca models, too):
13B and 30B models are known to work:
### 13B
```
# Download the model image, extract the model
docker run --name model --entrypoint /models quay.io/go-skynet/models:ggml2-alpaca-13b-v0.2
docker cp model:/models/model.bin ./
# Use the model with llama-cli
docker run -v $PWD:/models -p 8080:8080 -ti --rm quay.io/go-skynet/llama-cli:v0.2-lite api --model /models/model.bin
```bash
wget -O tokenizer.model https://huggingface.co/decapoda-research/llama-30b-hf/resolve/main/tokenizer.model
mkdir models
cp gpt4all.. models/
git clone https://gist.github.com/eiz/828bddec6162a023114ce19146cb2b82
pip install sentencepiece
python 828bddec6162a023114ce19146cb2b82/gistfile1.txt models tokenizer.model
# There will be a new model with the ".tmp" extension, you have to use that one!
```
### 30B
### Windows compatibility
```
# Download the model image, extract the model
docker run --name model --entrypoint /models quay.io/go-skynet/models:ggml2-alpaca-30b-v0.2
docker cp model:/models/model.bin ./
# Use the model with llama-cli
docker run -v $PWD:/models -p 8080:8080 -ti --rm quay.io/go-skynet/llama-cli:v0.2-lite api --model /models/model.bin
```
### Golang client API
The `llama-cli` codebase has also a small client in go that can be used alongside with the api:
```golang
package main
import (
"fmt"
client "github.com/go-skynet/llama-cli/client"
)
func main() {
cli := client.NewClient("http://ip:30007")
out, err := cli.Predict("What's an alpaca?")
if err != nil {
panic(err)
}
fmt.Println(out)
}
```
It should work, however you need to make sure you give enough resources to the container. See https://github.com/go-skynet/LocalAI/issues/2
### Kubernetes
You can run the API directly in Kubernetes:
You can run the API in Kubernetes, see an example deployment in [kubernetes](https://github.com/go-skynet/LocalAI/tree/master/kubernetes)
```bash
kubectl apply -f https://raw.githubusercontent.com/go-skynet/llama-cli/master/kubernetes/deployment.yaml
```
### Build locally
Pre-built images might fit well for most of the modern hardware, however you can and might need to build the images manually.
In order to build the `LocalAI` container image locally you can use `docker`:
```
# build the image
docker build -t LocalAI .
docker run LocalAI
```
Or build the binary with `make`:
```
make build
```
## Short-term roadmap
- [x] Mimic OpenAI API (https://github.com/go-skynet/LocalAI/issues/10)
- Binary releases (https://github.com/go-skynet/LocalAI/issues/6)
- Upstream our golang bindings to llama.cpp (https://github.com/ggerganov/llama.cpp/issues/351)
- [x] Multi-model support
- Have a webUI!
## License
MIT
## Acknowledgements
- [llama.cpp](https://github.com/ggerganov/llama.cpp)
- https://github.com/tatsu-lab/stanford_alpaca
- https://github.com/cornelk/llama-go for the initial ideas
- https://github.com/antimatter15/alpaca.cpp for the light model version (this is compatible and tested only with that checkpoint model!)

78
api.go
View File

@@ -1,78 +0,0 @@
package main
import (
"strconv"
llama "github.com/go-skynet/llama/go"
"github.com/gofiber/fiber/v2"
)
func api(l *llama.LLama, listenAddr string, threads int) error {
app := fiber.New()
/*
curl --location --request POST 'http://localhost:8080/predict' --header 'Content-Type: application/json' --data-raw '{
"text": "What is an alpaca?",
"topP": 0.8,
"topK": 50,
"temperature": 0.7,
"tokens": 100
}'
*/
// Endpoint to generate the prediction
app.Post("/predict", func(c *fiber.Ctx) error {
// Get input data from the request body
input := new(struct {
Text string `json:"text"`
})
if err := c.BodyParser(input); err != nil {
return err
}
// Set the parameters for the language model prediction
topP, err := strconv.ParseFloat(c.Query("topP", "0.9"), 64) // Default value of topP is 0.9
if err != nil {
return err
}
topK, err := strconv.Atoi(c.Query("topK", "40")) // Default value of topK is 40
if err != nil {
return err
}
temperature, err := strconv.ParseFloat(c.Query("temperature", "0.5"), 64) // Default value of temperature is 0.5
if err != nil {
return err
}
tokens, err := strconv.Atoi(c.Query("tokens", "128")) // Default value of tokens is 128
if err != nil {
return err
}
// Generate the prediction using the language model
prediction, err := l.Predict(
input.Text,
llama.SetTemperature(temperature),
llama.SetTopP(topP),
llama.SetTopK(topK),
llama.SetTokens(tokens),
llama.SetThreads(threads),
)
if err != nil {
return err
}
// Return the prediction in the response body
return c.JSON(struct {
Prediction string `json:"prediction"`
}{
Prediction: prediction,
})
})
// Start the server
app.Listen(":8080")
return nil
}

386
api/api.go Normal file
View File

@@ -0,0 +1,386 @@
package api
import (
"encoding/json"
"errors"
"fmt"
"strings"
"sync"
model "github.com/go-skynet/LocalAI/pkg/model"
gpt2 "github.com/go-skynet/go-gpt2.cpp"
gptj "github.com/go-skynet/go-gpt4all-j.cpp"
llama "github.com/go-skynet/go-llama.cpp"
"github.com/gofiber/fiber/v2"
"github.com/gofiber/fiber/v2/middleware/cors"
"github.com/gofiber/fiber/v2/middleware/recover"
"github.com/rs/zerolog/log"
)
type OpenAIResponse struct {
Created int `json:"created,omitempty"`
Object string `json:"chat.completion,omitempty"`
ID string `json:"id,omitempty"`
Model string `json:"model,omitempty"`
Choices []Choice `json:"choices,omitempty"`
}
type Choice struct {
Index int `json:"index,omitempty"`
FinishReason string `json:"finish_reason,omitempty"`
Message *Message `json:"message,omitempty"`
Text string `json:"text,omitempty"`
}
type Message struct {
Role string `json:"role,omitempty"`
Content string `json:"content,omitempty"`
}
type OpenAIModel struct {
ID string `json:"id"`
Object string `json:"object"`
}
type OpenAIRequest struct {
Model string `json:"model"`
// Prompt is read only by completion API calls
Prompt string `json:"prompt"`
// Messages is read only by chat/completion API calls
Messages []Message `json:"messages"`
Echo bool `json:"echo"`
// Common options between all the API calls
TopP float64 `json:"top_p"`
TopK int `json:"top_k"`
Temperature float64 `json:"temperature"`
Maxtokens int `json:"max_tokens"`
N int `json:"n"`
// Custom parameters - not present in the OpenAI API
Batch int `json:"batch"`
F16 bool `json:"f16kv"`
IgnoreEOS bool `json:"ignore_eos"`
Seed int `json:"seed"`
}
// https://platform.openai.com/docs/api-reference/completions
func openAIEndpoint(chat bool, loader *model.ModelLoader, threads, ctx int, f16 bool, mutexMap *sync.Mutex, mutexes map[string]*sync.Mutex) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
var err error
var model *llama.LLama
var gptModel *gptj.GPTJ
var gpt2Model *gpt2.GPT2
var stableLMModel *gpt2.StableLM
input := new(OpenAIRequest)
// Get input data from the request body
if err := c.BodyParser(input); err != nil {
return err
}
modelFile := input.Model
received, _ := json.Marshal(input)
log.Debug().Msgf("Request received: %s", string(received))
// Set model from bearer token, if available
bearer := strings.TrimLeft(c.Get("authorization"), "Bearer ")
bearerExists := bearer != "" && loader.ExistsInModelPath(bearer)
if modelFile == "" && !bearerExists {
return fmt.Errorf("no model specified")
}
if bearerExists { // model specified in bearer token takes precedence
log.Debug().Msgf("Using model from bearer token: %s", bearer)
modelFile = bearer
}
// Try to load the model with both
var llamaerr, gpt2err, gptjerr, stableerr error
llamaOpts := []llama.ModelOption{}
if ctx != 0 {
llamaOpts = append(llamaOpts, llama.SetContext(ctx))
}
if f16 {
llamaOpts = append(llamaOpts, llama.EnableF16Memory)
}
// TODO: this is ugly, better identifying the model somehow! however, it is a good stab for a first implementation..
model, llamaerr = loader.LoadLLaMAModel(modelFile, llamaOpts...)
if llamaerr != nil {
gptModel, gptjerr = loader.LoadGPTJModel(modelFile)
if gptjerr != nil {
gpt2Model, gpt2err = loader.LoadGPT2Model(modelFile)
if gpt2err != nil {
stableLMModel, stableerr = loader.LoadStableLMModel(modelFile)
if stableerr != nil {
return fmt.Errorf("llama: %s gpt: %s gpt2: %s stableLM: %s", llamaerr.Error(), gptjerr.Error(), gpt2err.Error(), stableerr.Error()) // llama failed first, so we want to catch both errors
}
}
}
}
// This is still needed, see: https://github.com/ggerganov/llama.cpp/discussions/784
mutexMap.Lock()
l, ok := mutexes[modelFile]
if !ok {
m := &sync.Mutex{}
mutexes[modelFile] = m
l = m
}
mutexMap.Unlock()
l.Lock()
defer l.Unlock()
// Set the parameters for the language model prediction
topP := input.TopP
if topP == 0 {
topP = 0.7
}
topK := input.TopK
if topK == 0 {
topK = 80
}
temperature := input.Temperature
if temperature == 0 {
temperature = 0.9
}
tokens := input.Maxtokens
if tokens == 0 {
tokens = 512
}
predInput := input.Prompt
if chat {
mess := []string{}
// TODO: encode roles
for _, i := range input.Messages {
mess = append(mess, i.Content)
}
predInput = strings.Join(mess, "\n")
}
// A model can have a "file.bin.tmpl" file associated with a prompt template prefix
templatedInput, err := loader.TemplatePrefix(modelFile, struct {
Input string
}{Input: predInput})
if err == nil {
predInput = templatedInput
log.Debug().Msgf("Template found, input modified to: %s", predInput)
}
result := []Choice{}
n := input.N
if input.N == 0 {
n = 1
}
var predFunc func() (string, error)
switch {
case stableLMModel != nil:
predFunc = func() (string, error) {
// Generate the prediction using the language model
predictOptions := []gpt2.PredictOption{
gpt2.SetTemperature(temperature),
gpt2.SetTopP(topP),
gpt2.SetTopK(topK),
gpt2.SetTokens(tokens),
gpt2.SetThreads(threads),
}
if input.Batch != 0 {
predictOptions = append(predictOptions, gpt2.SetBatch(input.Batch))
}
if input.Seed != 0 {
predictOptions = append(predictOptions, gpt2.SetSeed(input.Seed))
}
return stableLMModel.Predict(
predInput,
predictOptions...,
)
}
case gpt2Model != nil:
predFunc = func() (string, error) {
// Generate the prediction using the language model
predictOptions := []gpt2.PredictOption{
gpt2.SetTemperature(temperature),
gpt2.SetTopP(topP),
gpt2.SetTopK(topK),
gpt2.SetTokens(tokens),
gpt2.SetThreads(threads),
}
if input.Batch != 0 {
predictOptions = append(predictOptions, gpt2.SetBatch(input.Batch))
}
if input.Seed != 0 {
predictOptions = append(predictOptions, gpt2.SetSeed(input.Seed))
}
return gpt2Model.Predict(
predInput,
predictOptions...,
)
}
case gptModel != nil:
predFunc = func() (string, error) {
// Generate the prediction using the language model
predictOptions := []gptj.PredictOption{
gptj.SetTemperature(temperature),
gptj.SetTopP(topP),
gptj.SetTopK(topK),
gptj.SetTokens(tokens),
gptj.SetThreads(threads),
}
if input.Batch != 0 {
predictOptions = append(predictOptions, gptj.SetBatch(input.Batch))
}
if input.Seed != 0 {
predictOptions = append(predictOptions, gptj.SetSeed(input.Seed))
}
return gptModel.Predict(
predInput,
predictOptions...,
)
}
case model != nil:
predFunc = func() (string, error) {
// Generate the prediction using the language model
predictOptions := []llama.PredictOption{
llama.SetTemperature(temperature),
llama.SetTopP(topP),
llama.SetTopK(topK),
llama.SetTokens(tokens),
llama.SetThreads(threads),
}
if input.Batch != 0 {
predictOptions = append(predictOptions, llama.SetBatch(input.Batch))
}
if input.F16 {
predictOptions = append(predictOptions, llama.EnableF16KV)
}
if input.IgnoreEOS {
predictOptions = append(predictOptions, llama.IgnoreEOS)
}
if input.Seed != 0 {
predictOptions = append(predictOptions, llama.SetSeed(input.Seed))
}
return model.Predict(
predInput,
predictOptions...,
)
}
}
for i := 0; i < n; i++ {
prediction, err := predFunc()
if err != nil {
return err
}
if input.Echo {
prediction = predInput + prediction
}
if chat {
result = append(result, Choice{Message: &Message{Role: "assistant", Content: prediction}})
} else {
result = append(result, Choice{Text: prediction})
}
}
jsonResult, _ := json.Marshal(result)
log.Debug().Msgf("Response: %s", jsonResult)
// Return the prediction in the response body
return c.JSON(OpenAIResponse{
Model: input.Model, // we have to return what the user sent here, due to OpenAI spec.
Choices: result,
})
}
}
func listModels(loader *model.ModelLoader) func(ctx *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
models, err := loader.ListModels()
if err != nil {
return err
}
dataModels := []OpenAIModel{}
for _, m := range models {
dataModels = append(dataModels, OpenAIModel{ID: m, Object: "model"})
}
return c.JSON(struct {
Object string `json:"object"`
Data []OpenAIModel `json:"data"`
}{
Object: "list",
Data: dataModels,
})
}
}
func Start(loader *model.ModelLoader, listenAddr string, threads, ctxSize int, f16 bool) error {
// Return errors as JSON responses
app := fiber.New(fiber.Config{
// Override default error handler
ErrorHandler: func(ctx *fiber.Ctx, err error) error {
// Status code defaults to 500
code := fiber.StatusInternalServerError
// Retrieve the custom status code if it's a *fiber.Error
var e *fiber.Error
if errors.As(err, &e) {
code = e.Code
}
// Send custom error page
return ctx.Status(code).JSON(struct {
Error string `json:"error"`
}{Error: err.Error()})
},
})
// Default middleware config
app.Use(recover.New())
app.Use(cors.New())
// This is still needed, see: https://github.com/ggerganov/llama.cpp/discussions/784
mu := map[string]*sync.Mutex{}
var mumutex = &sync.Mutex{}
// openAI compatible API endpoint
app.Post("/v1/chat/completions", openAIEndpoint(true, loader, threads, ctxSize, f16, mumutex, mu))
app.Post("/chat/completions", openAIEndpoint(true, loader, threads, ctxSize, f16, mumutex, mu))
app.Post("/v1/completions", openAIEndpoint(false, loader, threads, ctxSize, f16, mumutex, mu))
app.Post("/completions", openAIEndpoint(false, loader, threads, ctxSize, f16, mumutex, mu))
app.Get("/v1/models", listModels(loader))
app.Get("/models", listModels(loader))
// Start the server
app.Listen(listenAddr)
return nil
}

View File

@@ -1,75 +0,0 @@
package client
import (
"bytes"
"encoding/json"
"fmt"
"net/http"
)
type Prediction struct {
Prediction string `json:"prediction"`
}
type Client struct {
baseURL string
client *http.Client
endpoint string
}
func NewClient(baseURL string) *Client {
return &Client{
baseURL: baseURL,
client: &http.Client{},
endpoint: "/predict",
}
}
type InputData struct {
Text string `json:"text"`
TopP float64 `json:"topP,omitempty"`
TopK int `json:"topK,omitempty"`
Temperature float64 `json:"temperature,omitempty"`
Tokens int `json:"tokens,omitempty"`
}
func (c *Client) Predict(text string, opts ...InputOption) (string, error) {
input := NewInputData(opts...)
input.Text = text
// encode input data to JSON format
inputBytes, err := json.Marshal(input)
if err != nil {
return "", err
}
// create HTTP request
url := c.baseURL + c.endpoint
req, err := http.NewRequest("POST", url, bytes.NewBuffer(inputBytes))
if err != nil {
return "", err
}
// set request headers
req.Header.Set("Content-Type", "application/json")
// send request and get response
resp, err := c.client.Do(req)
if err != nil {
return "", err
}
defer resp.Body.Close()
if resp.StatusCode != http.StatusOK {
return "", fmt.Errorf("request failed with status %d", resp.StatusCode)
}
// decode response body to Prediction struct
var prediction Prediction
err = json.NewDecoder(resp.Body).Decode(&prediction)
if err != nil {
return "", err
}
return prediction.Prediction, nil
}

View File

@@ -1,51 +0,0 @@
package client
import "net/http"
type ClientOption func(c *Client)
func WithHTTPClient(httpClient *http.Client) ClientOption {
return func(c *Client) {
c.client = httpClient
}
}
func WithEndpoint(endpoint string) ClientOption {
return func(c *Client) {
c.endpoint = endpoint
}
}
type InputOption func(d *InputData)
func NewInputData(opts ...InputOption) *InputData {
data := &InputData{}
for _, opt := range opts {
opt(data)
}
return data
}
func WithTopP(topP float64) InputOption {
return func(d *InputData) {
d.TopP = topP
}
}
func WithTopK(topK int) InputOption {
return func(d *InputData) {
d.TopK = topK
}
}
func WithTemperature(temperature float64) InputOption {
return func(d *InputData) {
d.Temperature = temperature
}
}
func WithTokens(tokens int) InputOption {
return func(d *InputData) {
d.Tokens = tokens
}
}

19
docker-compose.yaml Normal file
View File

@@ -0,0 +1,19 @@
version: '3.6'
services:
api:
image: quay.io/go-skynet/local-ai:latest
build:
context: .
dockerfile: Dockerfile
# args:
# BUILD_TYPE: generic # Uncomment to build CPU generic code that works on most HW
ports:
- 8080:8080
environment:
- MODELS_PATH=$MODELS_PATH
- CONTEXT_SIZE=$CONTEXT_SIZE
- THREADS=$THREADS
- DEBUG=$DEBUG
volumes:
- ./models:/models:cached

32
go.mod
View File

@@ -1,34 +1,33 @@
module github.com/go-skynet/llama-cli
module github.com/go-skynet/LocalAI
go 1.19
require (
github.com/charmbracelet/bubbles v0.15.0
github.com/charmbracelet/bubbletea v0.23.2
github.com/charmbracelet/lipgloss v0.7.1
github.com/go-skynet/llama v0.0.0-20230321172246-7be5326e18cc
github.com/go-skynet/go-gpt2.cpp v0.0.0-20230420213900-1c24f5b86ac4
github.com/go-skynet/go-gpt4all-j.cpp v0.0.0-20230419091210-303cf2a59a94
github.com/go-skynet/go-llama.cpp v0.0.0-20230415213228-bac222030640
github.com/gofiber/fiber/v2 v2.42.0
github.com/jaypipes/ghw v0.10.0
github.com/rs/zerolog v1.29.1
github.com/urfave/cli/v2 v2.25.0
)
require (
github.com/StackExchange/wmi v1.2.1 // indirect
github.com/andybalholm/brotli v1.0.4 // indirect
github.com/atotto/clipboard v0.1.4 // indirect
github.com/aymanbagabas/go-osc52/v2 v2.0.1 // indirect
github.com/containerd/console v1.0.3 // indirect
github.com/cpuguy83/go-md2man/v2 v2.0.2 // indirect
github.com/ghodss/yaml v1.0.0 // indirect
github.com/go-ole/go-ole v1.2.6 // indirect
github.com/google/uuid v1.3.0 // indirect
github.com/jaypipes/pcidb v1.0.0 // indirect
github.com/klauspost/compress v1.15.9 // indirect
github.com/lucasb-eyer/go-colorful v1.2.0 // indirect
github.com/kr/text v0.2.0 // indirect
github.com/mattn/go-colorable v0.1.13 // indirect
github.com/mattn/go-isatty v0.0.17 // indirect
github.com/mattn/go-localereader v0.0.1 // indirect
github.com/mattn/go-runewidth v0.0.14 // indirect
github.com/muesli/ansi v0.0.0-20211018074035-2e021307bc4b // indirect
github.com/muesli/cancelreader v0.2.2 // indirect
github.com/muesli/reflow v0.3.0 // indirect
github.com/muesli/termenv v0.15.1 // indirect
github.com/mitchellh/go-homedir v1.1.0 // indirect
github.com/philhofer/fwd v1.1.1 // indirect
github.com/pkg/errors v0.9.1 // indirect
github.com/rivo/uniseg v0.2.0 // indirect
github.com/russross/blackfriday/v2 v2.1.0 // indirect
github.com/savsgio/dictpool v0.0.0-20221023140959-7bf2e61cea94 // indirect
@@ -38,8 +37,7 @@ require (
github.com/valyala/fasthttp v1.44.0 // indirect
github.com/valyala/tcplisten v1.0.0 // indirect
github.com/xrash/smetrics v0.0.0-20201216005158-039620a65673 // indirect
golang.org/x/sync v0.1.0 // indirect
golang.org/x/sys v0.6.0 // indirect
golang.org/x/term v0.0.0-20210927222741-03fcf44c2211 // indirect
golang.org/x/text v0.3.7 // indirect
gopkg.in/yaml.v2 v2.4.0 // indirect
howett.net/plist v1.0.0 // indirect
)

98
go.sum
View File

@@ -1,68 +1,65 @@
github.com/StackExchange/wmi v1.2.1 h1:VIkavFPXSjcnS+O8yTq7NI32k0R5Aj+v39y29VYDOSA=
github.com/StackExchange/wmi v1.2.1/go.mod h1:rcmrprowKIVzvc+NUiLncP2uuArMWLCbu9SBzvHz7e8=
github.com/andybalholm/brotli v1.0.4 h1:V7DdXeJtZscaqfNuAdSRuRFzuiKlHSC/Zh3zl9qY3JY=
github.com/andybalholm/brotli v1.0.4/go.mod h1:fO7iG3H7G2nSZ7m0zPUDn85XEX2GTukHGRSepvi9Eig=
github.com/atotto/clipboard v0.1.4 h1:EH0zSVneZPSuFR11BlR9YppQTVDbh5+16AmcJi4g1z4=
github.com/atotto/clipboard v0.1.4/go.mod h1:ZY9tmq7sm5xIbd9bOK4onWV4S6X0u6GY7Vn0Yu86PYI=
github.com/aymanbagabas/go-osc52 v1.0.3/go.mod h1:zT8H+Rk4VSabYN90pWyugflM3ZhpTZNC7cASDfUCdT4=
github.com/aymanbagabas/go-osc52 v1.2.1/go.mod h1:zT8H+Rk4VSabYN90pWyugflM3ZhpTZNC7cASDfUCdT4=
github.com/aymanbagabas/go-osc52/v2 v2.0.1 h1:HwpRHbFMcZLEVr42D4p7XBqjyuxQH5SMiErDT4WkJ2k=
github.com/aymanbagabas/go-osc52/v2 v2.0.1/go.mod h1:uYgXzlJ7ZpABp8OJ+exZzJJhRNQ2ASbcXHWsFqH8hp8=
github.com/charmbracelet/bubbles v0.15.0 h1:c5vZ3woHV5W2b8YZI1q7v4ZNQaPetfHuoHzx+56Z6TI=
github.com/charmbracelet/bubbles v0.15.0/go.mod h1:Y7gSFbBzlMpUDR/XM9MhZI374Q+1p1kluf1uLl8iK74=
github.com/charmbracelet/bubbletea v0.23.1/go.mod h1:JAfGK/3/pPKHTnAS8JIE2u9f61BjWTQY57RbT25aMXU=
github.com/charmbracelet/bubbletea v0.23.2 h1:vuUJ9HJ7b/COy4I30e8xDVQ+VRDUEFykIjryPfgsdps=
github.com/charmbracelet/bubbletea v0.23.2/go.mod h1:FaP3WUivcTM0xOKNmhciz60M6I+weYLF76mr1JyI7sM=
github.com/charmbracelet/harmonica v0.2.0/go.mod h1:KSri/1RMQOZLbw7AHqgcBycp8pgJnQMYYT8QZRqZ1Ao=
github.com/charmbracelet/lipgloss v0.6.0/go.mod h1:tHh2wr34xcHjC2HCXIlGSG1jaDF0S0atAUvBMP6Ppuk=
github.com/charmbracelet/lipgloss v0.7.1 h1:17WMwi7N1b1rVWOjMT+rCh7sQkvDU75B2hbZpc5Kc1E=
github.com/charmbracelet/lipgloss v0.7.1/go.mod h1:yG0k3giv8Qj8edTCbbg6AlQ5e8KNWpFujkNawKNhE2c=
github.com/containerd/console v1.0.3 h1:lIr7SlA5PxZyMV30bDW0MGbiOPXwc63yRuCP0ARubLw=
github.com/containerd/console v1.0.3/go.mod h1:7LqA/THxQ86k76b8c/EMSiaJ3h1eZkMkXar0TQ1gf3U=
github.com/coreos/go-systemd/v22 v22.5.0/go.mod h1:Y58oyj3AT4RCenI/lSvhwexgC+NSVTIJ3seZv2GcEnc=
github.com/cpuguy83/go-md2man/v2 v2.0.2 h1:p1EgwI/C7NhT0JmVkwCD2ZBK8j4aeHQX2pMHHBfMQ6w=
github.com/cpuguy83/go-md2man/v2 v2.0.2/go.mod h1:tgQtvFlXSQOSOSIRvRPT7W67SCa46tRHOmNcaadrF8o=
github.com/go-skynet/llama v0.0.0-20230321172246-7be5326e18cc h1:NcmO8mA7iRZIX0Qy2SjcsSaV14+g87MiTey1neUJaFQ=
github.com/go-skynet/llama v0.0.0-20230321172246-7be5326e18cc/go.mod h1:ZtYsAIud4cvP9VTTI9uhdgR1uCwaO/gGKnZZ95h9i7w=
github.com/creack/pty v1.1.9/go.mod h1:oKZEueFk5CKHvIhNR5MUki03XCEU+Q6VDXinZuGJ33E=
github.com/ghodss/yaml v1.0.0 h1:wQHKEahhL6wmXdzwWG11gIVCkOv05bNOh+Rxn0yngAk=
github.com/ghodss/yaml v1.0.0/go.mod h1:4dBDuWmgqj2HViK6kFavaiC9ZROes6MMH2rRYeMEF04=
github.com/go-logr/logr v1.2.3 h1:2DntVwHkVopvECVRSlL5PSo9eG+cAkDCuckLubN+rq0=
github.com/go-ole/go-ole v1.2.5/go.mod h1:pprOEPIfldk/42T2oK7lQ4v4JSDwmV0As9GaiUsvbm0=
github.com/go-ole/go-ole v1.2.6 h1:/Fpf6oFPoeFik9ty7siob0G6Ke8QvQEuVcuChpwXzpY=
github.com/go-ole/go-ole v1.2.6/go.mod h1:pprOEPIfldk/42T2oK7lQ4v4JSDwmV0As9GaiUsvbm0=
github.com/go-skynet/go-gpt2.cpp v0.0.0-20230420213900-1c24f5b86ac4 h1:GkGuqnhDFKlCsT6Bo8sdY00A7rFXCzfU1nBOSS4ZnYM=
github.com/go-skynet/go-gpt2.cpp v0.0.0-20230420213900-1c24f5b86ac4/go.mod h1:1Wj/xbkMfwQSOrhNYK178IzqQHstZbRfhx4s8p1M5VM=
github.com/go-skynet/go-gpt4all-j.cpp v0.0.0-20230419091210-303cf2a59a94 h1:rtrrMvlIq+g0/ltXjDdLeNtz0uc4wJ4Qs15GFU4ba4c=
github.com/go-skynet/go-gpt4all-j.cpp v0.0.0-20230419091210-303cf2a59a94/go.mod h1:5VZ9XbcINI0XcHhkcX8GPK8TplFGAzu1Hrg4tNiMCtI=
github.com/go-skynet/go-llama.cpp v0.0.0-20230415213228-bac222030640 h1:8SSVbQ3yvq7JnfLCLF4USV0PkQnnduUkaNCv/hHDa3E=
github.com/go-skynet/go-llama.cpp v0.0.0-20230415213228-bac222030640/go.mod h1:35AKIEMY+YTKCBJIa/8GZcNGJ2J+nQk1hQiWo/OnEWw=
github.com/go-task/slim-sprig v0.0.0-20230315185526-52ccab3ef572 h1:tfuBGBXKqDEevZMzYi5KSi8KkcZtzBcTgAUUtapy0OI=
github.com/godbus/dbus/v5 v5.0.4/go.mod h1:xhWf0FNVPg57R7Z0UbKHbJfkEywrmjJnf7w5xrFpKfA=
github.com/gofiber/fiber/v2 v2.42.0 h1:Fnp7ybWvS+sjNQsFvkhf4G8OhXswvB6Vee8hM/LyS+8=
github.com/gofiber/fiber/v2 v2.42.0/go.mod h1:3+SGNjqMh5VQH5Vz2Wdi43zTIV16ktlFd3x3R6O1Zlc=
github.com/google/go-cmp v0.5.9 h1:O2Tfq5qg4qc4AmwVlvv0oLiVAGB7enBSJ2x2DqQFi38=
github.com/google/pprof v0.0.0-20210407192527-94a9f03dee38 h1:yAJXTCF9TqKcTiHJAE8dj7HMvPfh66eeA2JYW7eFpSE=
github.com/google/uuid v1.3.0 h1:t6JiXgmwXMjEs8VusXIJk2BXHsn+wx8BZdTaoZ5fu7I=
github.com/google/uuid v1.3.0/go.mod h1:TIyPZe4MgqvfeYDBFedMoGGpEw/LqOeaOT+nhxU+yHo=
github.com/jaypipes/ghw v0.10.0 h1:UHu9UX08Py315iPojADFPOkmjTsNzHj4g4adsNKKteY=
github.com/jaypipes/ghw v0.10.0/go.mod h1:jeJGbkRB2lL3/gxYzNYzEDETV1ZJ56OKr+CSeSEym+g=
github.com/jaypipes/pcidb v1.0.0 h1:vtZIfkiCUE42oYbJS0TAq9XSfSmcsgo9IdxSm9qzYU8=
github.com/jaypipes/pcidb v1.0.0/go.mod h1:TnYUvqhPBzCKnH34KrIX22kAeEbDCSRJ9cqLRCuNDfk=
github.com/jessevdk/go-flags v1.4.0/go.mod h1:4FA24M0QyGHXBuZZK/XkWh8h0e1EYbRYJSGM75WSRxI=
github.com/klauspost/compress v1.15.9 h1:wKRjX6JRtDdrE9qwa4b/Cip7ACOshUI4smpCQanqjSY=
github.com/klauspost/compress v1.15.9/go.mod h1:PhcZ0MbTNciWF3rruxRgKxI5NkcHHrHUDtV4Yw2GlzU=
github.com/kylelemons/godebug v1.1.0/go.mod h1:9/0rRGxNHcop5bhtWyNeEfOS8JIWk580+fNqagV/RAw=
github.com/lucasb-eyer/go-colorful v1.2.0 h1:1nnpGOrhyZZuNyfu1QjKiUICQ74+3FNCN69Aj6K7nkY=
github.com/lucasb-eyer/go-colorful v1.2.0/go.mod h1:R4dSotOR9KMtayYi1e77YzuveK+i7ruzyGqttikkLy0=
github.com/kr/pretty v0.1.0 h1:L/CwN0zerZDmRFUapSPitk6f+Q3+0za1rQkzVuMiMFI=
github.com/kr/text v0.2.0 h1:5Nx0Ya0ZqY2ygV366QzturHI13Jq95ApcVaJBhpS+AY=
github.com/kr/text v0.2.0/go.mod h1:eLer722TekiGuMkidMxC/pM04lWEeraHUUmBw8l2grE=
github.com/mattn/go-colorable v0.1.12/go.mod h1:u5H1YNBxpqRaxsYJYSkiCWKzEfiAb1Gb520KVy5xxl4=
github.com/mattn/go-colorable v0.1.13 h1:fFA4WZxdEF4tXPZVKMLwD8oUnCTTo08duU7wxecdEvA=
github.com/mattn/go-colorable v0.1.13/go.mod h1:7S9/ev0klgBDR4GtXTXX8a3vIGJpMovkB8vQcUbaXHg=
github.com/mattn/go-isatty v0.0.14/go.mod h1:7GGIvUiUoEMVVmxf/4nioHXj79iQHKdU27kJ6hsGG94=
github.com/mattn/go-isatty v0.0.16/go.mod h1:kYGgaQfpe5nmfYZH+SKPsOc2e4SrIfOl2e/yFXSvRLM=
github.com/mattn/go-isatty v0.0.17 h1:BTarxUcIeDqL27Mc+vyvdWYSL28zpIhv3RoTdsLMPng=
github.com/mattn/go-isatty v0.0.17/go.mod h1:kYGgaQfpe5nmfYZH+SKPsOc2e4SrIfOl2e/yFXSvRLM=
github.com/mattn/go-localereader v0.0.1 h1:ygSAOl7ZXTx4RdPYinUpg6W99U8jWvWi9Ye2JC/oIi4=
github.com/mattn/go-localereader v0.0.1/go.mod h1:8fBrzywKY7BI3czFoHkuzRoWE9C+EiG4R1k4Cjx5p88=
github.com/mattn/go-runewidth v0.0.10/go.mod h1:RAqKPSqVFrSLVXbA8x7dzmKdmGzieGRCM46jaSJTDAk=
github.com/mattn/go-runewidth v0.0.12/go.mod h1:RAqKPSqVFrSLVXbA8x7dzmKdmGzieGRCM46jaSJTDAk=
github.com/mattn/go-runewidth v0.0.13/go.mod h1:Jdepj2loyihRzMpdS35Xk/zdY8IAYHsh153qUoGf23w=
github.com/mattn/go-runewidth v0.0.14 h1:+xnbZSEeDbOIg5/mE6JF0w6n9duR1l3/WmbinWVwUuU=
github.com/mattn/go-runewidth v0.0.14/go.mod h1:Jdepj2loyihRzMpdS35Xk/zdY8IAYHsh153qUoGf23w=
github.com/muesli/ansi v0.0.0-20211018074035-2e021307bc4b h1:1XF24mVaiu7u+CFywTdcDo2ie1pzzhwjt6RHqzpMU34=
github.com/muesli/ansi v0.0.0-20211018074035-2e021307bc4b/go.mod h1:fQuZ0gauxyBcmsdE3ZT4NasjaRdxmbCS0jRHsrWu3Ho=
github.com/muesli/cancelreader v0.2.2 h1:3I4Kt4BQjOR54NavqnDogx/MIoWBFa0StPA8ELUXHmA=
github.com/muesli/cancelreader v0.2.2/go.mod h1:3XuTXfFS2VjM+HTLZY9Ak0l6eUKfijIfMUZ4EgX0QYo=
github.com/muesli/reflow v0.2.1-0.20210115123740-9e1d0d53df68/go.mod h1:Xk+z4oIWdQqJzsxyjgl3P22oYZnHdZ8FFTHAQQt5BMQ=
github.com/muesli/reflow v0.3.0 h1:IFsN6K9NfGtjeggFP+68I4chLZV2yIKsXJFNZ+eWh6s=
github.com/muesli/reflow v0.3.0/go.mod h1:pbwTDkVPibjO2kyvBQRBxTWEEGDGq0FlB1BIKtnHY/8=
github.com/muesli/termenv v0.11.1-0.20220204035834-5ac8409525e0/go.mod h1:Bd5NYQ7pd+SrtBSrSNoBBmXlcY8+Xj4BMJgh8qcZrvs=
github.com/muesli/termenv v0.13.0/go.mod h1:sP1+uffeLaEYpyOTb8pLCUctGcGLnoFjSn4YJK5e2bc=
github.com/muesli/termenv v0.14.0/go.mod h1:kG/pF1E7fh949Xhe156crRUrHNyK221IuGO7Ez60Uc8=
github.com/muesli/termenv v0.15.1 h1:UzuTb/+hhlBugQz28rpzey4ZuKcZ03MeKsoG7IJZIxs=
github.com/muesli/termenv v0.15.1/go.mod h1:HeAQPTzpfs016yGtA4g00CsdYnVLJvxsS4ANqrZs2sQ=
github.com/mitchellh/go-homedir v1.1.0 h1:lukF9ziXFxDFPkA1vsr5zpc1XuPDn/wFntq5mG+4E0Y=
github.com/mitchellh/go-homedir v1.1.0/go.mod h1:SfyaCUpYCn1Vlf4IUYiD9fPX4A5wJrkLzIz1N1q0pr0=
github.com/onsi/ginkgo/v2 v2.9.2 h1:BA2GMJOtfGAfagzYtrAlufIP0lq6QERkFmHLMLPwFSU=
github.com/onsi/gomega v1.27.6 h1:ENqfyGeS5AX/rlXDd/ETokDz93u0YufY1Pgxuy/PvWE=
github.com/philhofer/fwd v1.1.1 h1:GdGcTjf5RNAxwS4QLsiMzJYj5KEvPJD3Abr261yRQXQ=
github.com/philhofer/fwd v1.1.1/go.mod h1:gk3iGcWd9+svBvR0sR+KPcfE+RNWozjowpeBVG3ZVNU=
github.com/rivo/uniseg v0.1.0/go.mod h1:J6wj4VEh+S6ZtnVlnTBMWIodfgj8LQOQFoIToxlJtxc=
github.com/pkg/errors v0.9.1 h1:FEBLx1zS214owpjy7qsBeixbURkuhQAwrK5UwLGTwt4=
github.com/pkg/errors v0.9.1/go.mod h1:bwawxfHBFNV+L2hUp1rHADufV3IMtnDRdf1r5NINEl0=
github.com/rivo/uniseg v0.2.0 h1:S1pD9weZBuJdFmowNwbpi7BJ8TNftyUImj/0WQi72jY=
github.com/rivo/uniseg v0.2.0/go.mod h1:J6wj4VEh+S6ZtnVlnTBMWIodfgj8LQOQFoIToxlJtxc=
github.com/rs/xid v1.4.0/go.mod h1:trrq9SKmegXys3aeAKXMUTdJsYXVwGY3RLcfgqegfbg=
github.com/rs/zerolog v1.29.1 h1:cO+d60CHkknCbvzEWxP0S9K6KqyTjrCNUy1LdQLCGPc=
github.com/rs/zerolog v1.29.1/go.mod h1:Le6ESbR7hc+DP6Lt1THiV8CQSdkkNrd3R0XbEgp3ZBU=
github.com/russross/blackfriday/v2 v2.1.0 h1:JIOH55/0cWyOuilr9/qlrm0BSXldqnqwMsf35Ld67mk=
github.com/russross/blackfriday/v2 v2.1.0/go.mod h1:+Rmxgy9KzJVeS9/2gXHxylqXiyQDYRxCVz55jmeOWTM=
github.com/sahilm/fuzzy v0.1.0/go.mod h1:VFvziUEIMCrT6A6tw2RFIXPXXmzXbOsSHF0DOI8ZK9Y=
github.com/savsgio/dictpool v0.0.0-20221023140959-7bf2e61cea94 h1:rmMl4fXJhKMNWl+K+r/fq4FbbKI+Ia2m9hYBLm2h4G4=
github.com/savsgio/dictpool v0.0.0-20221023140959-7bf2e61cea94/go.mod h1:90zrgN3D/WJsDd1iXHT96alCoN2KJo6/4x1DZC3wZs8=
github.com/savsgio/gotils v0.0.0-20220530130905-52f3993e8d6d h1:Q+gqLBOPkFGHyCJxXMRqtUgUbTjI8/Ze8vu8GGyNFwo=
@@ -90,34 +87,41 @@ golang.org/x/net v0.0.0-20190620200207-3b0461eec859/go.mod h1:z5CRVTTTmAJ677TzLL
golang.org/x/net v0.0.0-20201021035429-f5854403a974/go.mod h1:sp8m0HH+o8qH0wwXwYZr8TS3Oi6o0r6Gce1SSxlDquU=
golang.org/x/net v0.0.0-20211112202133-69e39bad7dc2/go.mod h1:9nx3DQGgdP8bBQD5qxJ1jj9UTztislL4KSBs9R2vV5Y=
golang.org/x/net v0.0.0-20220906165146-f3363e06e74c/go.mod h1:YDH+HFinaLZZlnHAfSS6ZXJJ9M9t4Dl22yv3iI2vPwk=
golang.org/x/net v0.8.0 h1:Zrh2ngAOFYneWTAIAPethzeaQLuHwhuBkuV6ZiRnUaQ=
golang.org/x/sync v0.0.0-20190423024810-112230192c58/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
golang.org/x/sync v0.0.0-20201020160332-67f06af15bc9/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
golang.org/x/sync v0.1.0 h1:wsuoTGHzEhffawBOhz5CYhcrV4IdKZbEyZjBMuTp12o=
golang.org/x/sync v0.1.0/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
golang.org/x/sys v0.0.0-20190215142949-d0b11bdaac8a/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
golang.org/x/sys v0.0.0-20190412213103-97732733099d/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/sys v0.0.0-20190916202348-b4ddaad3f8a3/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/sys v0.0.0-20200930185726-fdedc70b468f/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/sys v0.0.0-20201119102817-f84b799fce68/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/sys v0.0.0-20210124154548-22da62e12c0c/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/sys v0.0.0-20210423082822-04245dca01da/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/sys v0.0.0-20210615035016-665e8c7367d1/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.0.0-20210630005230-0f9fa26af87c/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.0.0-20220204135822-1c1b9b1eba6a/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.0.0-20210927094055-39ccf1dd6fa6/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.0.0-20220728004956-3c1f35247d10/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.0.0-20220811171246-fbc7d0a398ab/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.6.0 h1:MVltZSvRTcU2ljQOhs94SXPftV6DCNnZViHeQps87pQ=
golang.org/x/sys v0.6.0/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/term v0.0.0-20201126162022-7de9c90e9dd1/go.mod h1:bj7SfCRtBDWHUb9snDiAeCFNEtKQo2Wmx5Cou7ajbmo=
golang.org/x/term v0.0.0-20210927222741-03fcf44c2211 h1:JGgROgKl9N8DuW20oFS5gxc+lE67/N3FcwmBPMe7ArY=
golang.org/x/term v0.0.0-20210927222741-03fcf44c2211/go.mod h1:jbD1KX2456YbFQfuXm/mYQcufACuNUgVhRMnK/tPxf8=
golang.org/x/text v0.3.0/go.mod h1:NqM8EUOU14njkJ3fqMW+pc6Ldnwhi/IjpwHt7yyuwOQ=
golang.org/x/text v0.3.3/go.mod h1:5Zoc/QRtKVWzQhOtBMvqHzDpF6irO9z98xDceosuGiQ=
golang.org/x/text v0.3.6/go.mod h1:5Zoc/QRtKVWzQhOtBMvqHzDpF6irO9z98xDceosuGiQ=
golang.org/x/text v0.3.7 h1:olpwvP2KacW1ZWvsR7uQhoyTYvKAupfQrRGBFM352Gk=
golang.org/x/text v0.3.7/go.mod h1:u+2+/6zg+i71rQMx5EYifcz6MCKuco9NR6JIITiCfzQ=
golang.org/x/text v0.8.0 h1:57P1ETyNKtuIjB4SRd15iJxuhj8Gc416Y78H3qgMh68=
golang.org/x/tools v0.0.0-20180917221912-90fa682c2a6e/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ=
golang.org/x/tools v0.0.0-20191119224855-298f0cb1881e/go.mod h1:b+2E5dAYhXwXZwtnZ6UAqBI28+e2cm9otk0dWdXHAEo=
golang.org/x/tools v0.0.0-20201022035929-9cf592e881e9/go.mod h1:emZCQorbCU4vsT4fOWvOPXz4eW1wZW4PmDk9uLelYpA=
golang.org/x/tools v0.7.0 h1:W4OVu8VVOaIO0yzWMNdepAulS7YfoS3Zabrm8DOXXU4=
golang.org/x/xerrors v0.0.0-20190717185122-a985d3407aa7/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
golang.org/x/xerrors v0.0.0-20191011141410-1b5146add898/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
golang.org/x/xerrors v0.0.0-20200804184101-5ec99f83aff1/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
gopkg.in/check.v1 v0.0.0-20161208181325-20d25e280405/go.mod h1:Co6ibVJAznAaIkqp8huTwlJQCZ016jof/cbN4VW5Yz0=
gopkg.in/check.v1 v1.0.0-20180628173108-788fd7840127 h1:qIbj1fsPNlZgppZ+VLlY7N33q108Sa+fhmuc+sWQYwY=
gopkg.in/yaml.v1 v1.0.0-20140924161607-9f9df34309c0/go.mod h1:WDnlLJ4WF5VGsH/HVa3CI79GS0ol3YnhVnKP89i0kNg=
gopkg.in/yaml.v2 v2.4.0 h1:D8xgwECY7CYvx+Y2n4sBz93Jn9JRvxdiyyo8CTfuKaY=
gopkg.in/yaml.v2 v2.4.0/go.mod h1:RDklbk79AGWmwhnvt/jBztapEOGDOx6ZbXqjP6csGnQ=
gopkg.in/yaml.v3 v3.0.1 h1:fxVm/GzAzEWqLHuvctI91KS9hhNmmWOoWu0XTYJS7CA=
howett.net/plist v1.0.0 h1:7CrbWYbPPO/PyNy38b2EB/+gYbjCe2DXBxgtOOZbSQM=
howett.net/plist v1.0.0/go.mod h1:lqaXoTrLY4hg8tnEzNru53gicrbv7rrk+2xJA/7hw9g=

View File

@@ -1,142 +0,0 @@
package main
// A simple program demonstrating the text area component from the Bubbles
// component library.
import (
"fmt"
"strings"
"github.com/charmbracelet/bubbles/textarea"
"github.com/charmbracelet/bubbles/viewport"
tea "github.com/charmbracelet/bubbletea"
"github.com/charmbracelet/lipgloss"
llama "github.com/go-skynet/llama/go"
)
func startInteractive(l *llama.LLama, opts ...llama.PredictOption) error {
p := tea.NewProgram(initialModel(l, opts...))
_, err := p.Run()
return err
}
type (
errMsg error
)
type model struct {
viewport viewport.Model
messages *[]string
textarea textarea.Model
senderStyle lipgloss.Style
err error
l *llama.LLama
opts []llama.PredictOption
predictC chan string
}
func initialModel(l *llama.LLama, opts ...llama.PredictOption) model {
ta := textarea.New()
ta.Placeholder = "Send a message..."
ta.Focus()
ta.Prompt = "┃ "
ta.CharLimit = 280
ta.SetWidth(200)
ta.SetHeight(3)
// Remove cursor line styling
ta.FocusedStyle.CursorLine = lipgloss.NewStyle()
ta.ShowLineNumbers = false
vp := viewport.New(200, 5)
vp.SetContent(`Welcome to llama-cli. Type a message and press Enter to send. Alpaca doesn't keep context of the whole chat (yet).`)
ta.KeyMap.InsertNewline.SetEnabled(false)
predictChannel := make(chan string)
messages := []string{}
m := model{
textarea: ta,
messages: &messages,
viewport: vp,
senderStyle: lipgloss.NewStyle().Foreground(lipgloss.Color("5")),
err: nil,
l: l,
opts: opts,
predictC: predictChannel,
}
go func() {
for p := range predictChannel {
str, _ := templateString(emptyInput, struct {
Instruction string
Input string
}{Instruction: p})
res, _ := l.Predict(
str,
opts...,
)
mm := *m.messages
*m.messages = mm[:len(mm)-1]
*m.messages = append(*m.messages, m.senderStyle.Render("llama: ")+res)
m.viewport.SetContent(strings.Join(*m.messages, "\n"))
ta.Reset()
m.viewport.GotoBottom()
}
}()
return m
}
func (m model) Init() tea.Cmd {
return textarea.Blink
}
func (m model) Update(msg tea.Msg) (tea.Model, tea.Cmd) {
var (
tiCmd tea.Cmd
vpCmd tea.Cmd
)
m.textarea, tiCmd = m.textarea.Update(msg)
m.viewport, vpCmd = m.viewport.Update(msg)
switch msg := msg.(type) {
case tea.WindowSizeMsg:
// m.viewport.Width = msg.Width
// m.viewport.Height = msg.Height
case tea.KeyMsg:
switch msg.Type {
case tea.KeyCtrlC, tea.KeyEsc:
fmt.Println(m.textarea.Value())
return m, tea.Quit
case tea.KeyEnter:
*m.messages = append(*m.messages, m.senderStyle.Render("You: ")+m.textarea.Value(), m.senderStyle.Render("Loading response..."))
m.predictC <- m.textarea.Value()
m.viewport.SetContent(strings.Join(*m.messages, "\n"))
m.textarea.Reset()
m.viewport.GotoBottom()
}
// We handle errors just like any other message
case errMsg:
m.err = msg
return m, nil
}
return m, tea.Batch(tiCmd, vpCmd)
}
func (m model) View() string {
return fmt.Sprintf(
"%s\n\n%s",
m.viewport.View(),
m.textarea.View(),
) + "\n\n"
}

View File

@@ -0,0 +1,28 @@
# Create a PVC containing a model binary, sourced from an arbitrary HTTP server
# (requires https://github.com/kubevirt/containerized-data-importer)
apiVersion: cdi.kubevirt.io/v1beta1
kind: DataVolume
metadata:
name: models
namespace: local-ai
spec:
contentType: archive
source:
http:
url: http://<model_server>/koala-7B-4bit-128g.GGML.tar
secretRef: model-secret
pvc:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 5Gi
---
apiVersion: v1
kind: Secret
metadata:
name: model-secret
namespace: local-ai
data:
accessKeyId: <model_server_username_base64_encoded>
secretKey: <model_server_password_base64_encoded>

View File

@@ -1,40 +1,55 @@
apiVersion: v1
kind: Namespace
metadata:
name: llama
name: local-ai
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: llama
namespace: llama
name: local-ai
namespace: local-ai
labels:
app: llama
app: local-ai
spec:
selector:
matchLabels:
app: llama
app: local-ai
replicas: 1
template:
metadata:
labels:
app: llama
name: llama
app: local-ai
name: local-ai
spec:
containers:
- name: llama
args:
- api
image: quay.io/go-skynet/llama-cli:v0.1
- name: local-ai
image: quay.io/go-skynet/local-ai:latest
env:
- name: THREADS
value: "14"
- name: CONTEXT_SIZE
value: "512"
- name: MODELS_PATH
value: /models
volumeMounts:
- mountPath: /models
name: models
volumes:
- name: models
persistentVolumeClaim:
claimName: models
---
apiVersion: v1
kind: Service
metadata:
name: llama
namespace: llama
name: local-ai
namespace: local-ai
# If using AWS, you'll need to override the default 60s load balancer idle timeout
# annotations:
# service.beta.kubernetes.io/aws-load-balancer-connection-idle-timeout: "1200"
spec:
selector:
app: llama
app: local-ai
type: LoadBalancer
ports:
- protocol: TCP

311
main.go
View File

@@ -1,267 +1,96 @@
package main
import (
"bytes"
"fmt"
"io/ioutil"
"os"
"runtime"
"text/template"
llama "github.com/go-skynet/llama/go"
api "github.com/go-skynet/LocalAI/api"
model "github.com/go-skynet/LocalAI/pkg/model"
"github.com/jaypipes/ghw"
"github.com/rs/zerolog"
"github.com/rs/zerolog/log"
"github.com/urfave/cli/v2"
)
// Define the template string
var emptyInput string = `Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{{.Instruction}}
### Response:`
var nonEmptyInput string = `Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{{.Instruction}}
### Input:
{{.Input}}
### Response:
`
func llamaFromOptions(ctx *cli.Context) (*llama.LLama, error) {
opts := []llama.ModelOption{llama.SetContext(ctx.Int("context-size"))}
if ctx.Bool("alpaca") {
opts = append(opts, llama.EnableAlpaca)
}
return llama.New(ctx.String("model"), opts...)
}
func templateString(t string, in interface{}) (string, error) {
// Parse the template
tmpl, err := template.New("prompt").Parse(t)
if err != nil {
return "", err
}
var buf bytes.Buffer
err = tmpl.Execute(&buf, in)
if err != nil {
return "", err
}
return buf.String(), nil
}
var modelFlags = []cli.Flag{
&cli.StringFlag{
Name: "model",
EnvVars: []string{"MODEL_PATH"},
},
&cli.IntFlag{
Name: "tokens",
EnvVars: []string{"TOKENS"},
Value: 128,
},
&cli.IntFlag{
Name: "context-size",
EnvVars: []string{"CONTEXT_SIZE"},
Value: 512,
},
&cli.IntFlag{
Name: "threads",
EnvVars: []string{"THREADS"},
Value: runtime.NumCPU(),
},
&cli.Float64Flag{
Name: "temperature",
EnvVars: []string{"TEMPERATURE"},
Value: 0.95,
},
&cli.Float64Flag{
Name: "topp",
EnvVars: []string{"TOP_P"},
Value: 0.85,
},
&cli.IntFlag{
Name: "topk",
EnvVars: []string{"TOP_K"},
Value: 20,
},
&cli.BoolFlag{
Name: "alpaca",
EnvVars: []string{"ALPACA"},
Value: true,
},
}
func main() {
log.Logger = log.Output(zerolog.ConsoleWriter{Out: os.Stderr})
path, err := os.Getwd()
if err != nil {
log.Error().Msgf("error: %s", err.Error())
os.Exit(1)
}
threads := 4
cpu, err := ghw.CPU()
if err == nil {
threads = int(cpu.TotalCores)
}
app := &cli.App{
Name: "llama-cli",
Version: "0.1",
Usage: "llama-cli --model ... --instruction 'What is an alpaca?'",
Flags: append(modelFlags,
&cli.StringFlag{
Name: "template",
EnvVars: []string{"TEMPLATE"},
Name: "LocalAI",
Usage: "OpenAI compatible API for running LLaMA/GPT models locally on CPU with consumer grade hardware.",
Flags: []cli.Flag{
&cli.BoolFlag{
Name: "f16",
EnvVars: []string{"F16"},
},
&cli.BoolFlag{
Name: "debug",
EnvVars: []string{"DEBUG"},
},
&cli.IntFlag{
Name: "threads",
DefaultText: "Number of threads used for parallel computation. Usage of the number of physical cores in the system is suggested.",
EnvVars: []string{"THREADS"},
Value: threads,
},
&cli.StringFlag{
Name: "instruction",
EnvVars: []string{"INSTRUCTION"},
Name: "models-path",
DefaultText: "Path containing models used for inferencing",
EnvVars: []string{"MODELS_PATH"},
Value: path,
},
&cli.StringFlag{
Name: "input",
EnvVars: []string{"INPUT"},
}),
Description: `Run llama.cpp inference`,
UsageText: `
llama-cli --model ~/ggml-alpaca-7b-q4.bin --instruction "What's an alpaca?"
An Alpaca (Vicugna pacos) is a domesticated species of South American camelid, related to llamas and originally from Peru but now found throughout much of Andean region. They are bred for their fleeces which can be spun into wool or knitted items such as hats, sweaters, blankets etc
echo "An Alpaca (Vicugna pacos) is a domesticated species of South American camelid, related to llamas and originally from Peru but now found throughout much of Andean region. They are bred for their fleeces which can be spun into wool or knitted items such as hats, sweaters, blankets etc" | llama-cli --model ~/ggml-alpaca-7b-q4.bin --instruction "Proofread, improving clarity and flow" --input "-"
An Alpaca (Vicugna pacos) is a domesticated species from South America that's related to llamas. Originating in Peru but now found throughout the Andean region, they are bred for their fleeces which can be spun into wool or knitted items such as hats and sweaters—blankets too!
`,
Copyright: "go-skynet authors",
Commands: []*cli.Command{
{
Flags: modelFlags,
Name: "interactive",
Action: func(ctx *cli.Context) error {
l, err := llamaFromOptions(ctx)
if err != nil {
fmt.Println("Loading the model failed:", err.Error())
os.Exit(1)
}
return startInteractive(l, llama.SetTemperature(ctx.Float64("temperature")),
llama.SetTopP(ctx.Float64("topp")),
llama.SetTopK(ctx.Int("topk")),
llama.SetTokens(ctx.Int("tokens")),
llama.SetThreads(ctx.Int("threads")))
},
Name: "address",
DefaultText: "Bind address for the API server.",
EnvVars: []string{"ADDRESS"},
Value: ":8080",
},
{
Name: "api",
Flags: []cli.Flag{
&cli.IntFlag{
Name: "threads",
EnvVars: []string{"THREADS"},
Value: runtime.NumCPU(),
},
&cli.StringFlag{
Name: "model",
EnvVars: []string{"MODEL_PATH"},
},
&cli.StringFlag{
Name: "address",
EnvVars: []string{"ADDRESS"},
Value: ":8080",
},
&cli.BoolFlag{
Name: "alpaca",
EnvVars: []string{"ALPACA"},
Value: true,
},
&cli.IntFlag{
Name: "context-size",
EnvVars: []string{"CONTEXT_SIZE"},
Value: 512,
},
},
Action: func(ctx *cli.Context) error {
l, err := llamaFromOptions(ctx)
if err != nil {
fmt.Println("Loading the model failed:", err.Error())
os.Exit(1)
}
return api(l, ctx.String("address"), ctx.Int("threads"))
},
&cli.IntFlag{
Name: "context-size",
DefaultText: "Default context size of the model",
EnvVars: []string{"CONTEXT_SIZE"},
Value: 512,
},
},
Description: `
LocalAI is a drop-in replacement OpenAI API which runs inference locally.
Some of the models compatible are:
- Vicuna
- Koala
- GPT4ALL
- GPT4ALL-J
- Cerebras
- Alpaca
- StableLM (ggml quantized)
It uses llama.cpp, ggml and gpt4all as backend with golang c bindings.
`,
UsageText: `local-ai [options]`,
Copyright: "go-skynet authors",
Action: func(ctx *cli.Context) error {
instruction := ctx.String("instruction")
input := ctx.String("input")
templ := ctx.String("template")
promptTemplate := ""
if input != "" {
promptTemplate = nonEmptyInput
} else {
promptTemplate = emptyInput
zerolog.SetGlobalLevel(zerolog.InfoLevel)
if ctx.Bool("debug") {
zerolog.SetGlobalLevel(zerolog.DebugLevel)
}
if templ != "" {
dat, err := os.ReadFile(templ)
if err != nil {
fmt.Printf("Failed reading file: %s", err.Error())
os.Exit(1)
}
promptTemplate = string(dat)
}
if instruction == "-" {
dat, err := ioutil.ReadAll(os.Stdin)
if err != nil {
fmt.Printf("reading stdin failed: %s", err)
os.Exit(1)
}
instruction = string(dat)
}
if input == "-" {
dat, err := ioutil.ReadAll(os.Stdin)
if err != nil {
fmt.Printf("reading stdin failed: %s", err)
os.Exit(1)
}
input = string(dat)
}
str, err := templateString(promptTemplate, struct {
Instruction string
Input string
}{Instruction: instruction, Input: input})
if err != nil {
fmt.Println("Templating the input failed:", err.Error())
os.Exit(1)
}
l, err := llamaFromOptions(ctx)
if err != nil {
fmt.Println("Loading the model failed:", err.Error())
os.Exit(1)
}
res, err := l.Predict(
str,
llama.SetTemperature(ctx.Float64("temperature")),
llama.SetTopP(ctx.Float64("topp")),
llama.SetTopK(ctx.Int("topk")),
llama.SetTokens(ctx.Int("tokens")),
llama.SetThreads(ctx.Int("threads")),
)
if err != nil {
fmt.Printf("predicting failed: %s", err)
os.Exit(1)
}
fmt.Println(res)
return nil
return api.Start(model.NewModelLoader(ctx.String("models-path")), ctx.String("address"), ctx.Int("threads"), ctx.Int("context-size"), ctx.Bool("f16"))
},
}
err := app.Run(os.Args)
err = app.Run(os.Args)
if err != nil {
fmt.Println(err)
log.Error().Msgf("error: %s", err.Error())
os.Exit(1)
}
}

0
models/.keep Normal file
View File

274
pkg/model/loader.go Normal file
View File

@@ -0,0 +1,274 @@
package model
import (
"bytes"
"fmt"
"io/ioutil"
"os"
"path/filepath"
"strings"
"sync"
"text/template"
"github.com/rs/zerolog/log"
gpt2 "github.com/go-skynet/go-gpt2.cpp"
gptj "github.com/go-skynet/go-gpt4all-j.cpp"
llama "github.com/go-skynet/go-llama.cpp"
)
type ModelLoader struct {
modelPath string
mu sync.Mutex
models map[string]*llama.LLama
gptmodels map[string]*gptj.GPTJ
gpt2models map[string]*gpt2.GPT2
gptstablelmmodels map[string]*gpt2.StableLM
promptsTemplates map[string]*template.Template
}
func NewModelLoader(modelPath string) *ModelLoader {
return &ModelLoader{
modelPath: modelPath,
gpt2models: make(map[string]*gpt2.GPT2),
gptmodels: make(map[string]*gptj.GPTJ),
gptstablelmmodels: make(map[string]*gpt2.StableLM),
models: make(map[string]*llama.LLama),
promptsTemplates: make(map[string]*template.Template),
}
}
func (ml *ModelLoader) ExistsInModelPath(s string) bool {
_, err := os.Stat(filepath.Join(ml.modelPath, s))
return err == nil
}
func (ml *ModelLoader) ListModels() ([]string, error) {
files, err := ioutil.ReadDir(ml.modelPath)
if err != nil {
return []string{}, err
}
models := []string{}
for _, file := range files {
// Skip templates, YAML and .keep files
if strings.HasSuffix(file.Name(), ".tmpl") || strings.HasSuffix(file.Name(), ".keep") || strings.HasSuffix(file.Name(), ".yaml") || strings.HasSuffix(file.Name(), ".yml") {
continue
}
models = append(models, file.Name())
}
return models, nil
}
func (ml *ModelLoader) TemplatePrefix(modelName string, in interface{}) (string, error) {
ml.mu.Lock()
defer ml.mu.Unlock()
m, ok := ml.promptsTemplates[modelName]
if !ok {
return "", fmt.Errorf("no prompt template available")
}
var buf bytes.Buffer
if err := m.Execute(&buf, in); err != nil {
return "", err
}
return buf.String(), nil
}
func (ml *ModelLoader) loadTemplateIfExists(modelName, modelFile string) error {
// Check if the template was already loaded
if _, ok := ml.promptsTemplates[modelName]; ok {
return nil
}
// Check if the model path exists
// skip any error here - we run anyway if a template is not exist
modelTemplateFile := fmt.Sprintf("%s.tmpl", modelName)
if !ml.ExistsInModelPath(modelTemplateFile) {
return nil
}
dat, err := os.ReadFile(filepath.Join(ml.modelPath, modelTemplateFile))
if err != nil {
return err
}
// Parse the template
tmpl, err := template.New("prompt").Parse(string(dat))
if err != nil {
return err
}
ml.promptsTemplates[modelName] = tmpl
return nil
}
func (ml *ModelLoader) LoadStableLMModel(modelName string) (*gpt2.StableLM, error) {
ml.mu.Lock()
defer ml.mu.Unlock()
// Check if we already have a loaded model
if !ml.ExistsInModelPath(modelName) {
return nil, fmt.Errorf("model does not exist")
}
if m, ok := ml.gptstablelmmodels[modelName]; ok {
log.Debug().Msgf("Model already loaded in memory: %s", modelName)
return m, nil
}
// Load the model and keep it in memory for later use
modelFile := filepath.Join(ml.modelPath, modelName)
log.Debug().Msgf("Loading model in memory from file: %s", modelFile)
model, err := gpt2.NewStableLM(modelFile)
if err != nil {
return nil, err
}
// If there is a prompt template, load it
if err := ml.loadTemplateIfExists(modelName, modelFile); err != nil {
return nil, err
}
ml.gptstablelmmodels[modelName] = model
return model, err
}
func (ml *ModelLoader) LoadGPT2Model(modelName string) (*gpt2.GPT2, error) {
ml.mu.Lock()
defer ml.mu.Unlock()
// Check if we already have a loaded model
if !ml.ExistsInModelPath(modelName) {
return nil, fmt.Errorf("model does not exist")
}
if m, ok := ml.gpt2models[modelName]; ok {
log.Debug().Msgf("Model already loaded in memory: %s", modelName)
return m, nil
}
// TODO: This needs refactoring, it's really bad to have it in here
// Check if we have a GPTStable model loaded instead - if we do we return an error so the API tries with StableLM
if _, ok := ml.gptstablelmmodels[modelName]; ok {
log.Debug().Msgf("Model is GPTStableLM: %s", modelName)
return nil, fmt.Errorf("this model is a GPTStableLM one")
}
// Load the model and keep it in memory for later use
modelFile := filepath.Join(ml.modelPath, modelName)
log.Debug().Msgf("Loading model in memory from file: %s", modelFile)
model, err := gpt2.New(modelFile)
if err != nil {
return nil, err
}
// If there is a prompt template, load it
if err := ml.loadTemplateIfExists(modelName, modelFile); err != nil {
return nil, err
}
ml.gpt2models[modelName] = model
return model, err
}
func (ml *ModelLoader) LoadGPTJModel(modelName string) (*gptj.GPTJ, error) {
ml.mu.Lock()
defer ml.mu.Unlock()
// Check if we already have a loaded model
if !ml.ExistsInModelPath(modelName) {
return nil, fmt.Errorf("model does not exist")
}
if m, ok := ml.gptmodels[modelName]; ok {
log.Debug().Msgf("Model already loaded in memory: %s", modelName)
return m, nil
}
// TODO: This needs refactoring, it's really bad to have it in here
// Check if we have a GPT2 model loaded instead - if we do we return an error so the API tries with GPT2
if _, ok := ml.gpt2models[modelName]; ok {
log.Debug().Msgf("Model is GPT2: %s", modelName)
return nil, fmt.Errorf("this model is a GPT2 one")
}
if _, ok := ml.gptstablelmmodels[modelName]; ok {
log.Debug().Msgf("Model is GPTStableLM: %s", modelName)
return nil, fmt.Errorf("this model is a GPTStableLM one")
}
// Load the model and keep it in memory for later use
modelFile := filepath.Join(ml.modelPath, modelName)
log.Debug().Msgf("Loading model in memory from file: %s", modelFile)
model, err := gptj.New(modelFile)
if err != nil {
return nil, err
}
// If there is a prompt template, load it
if err := ml.loadTemplateIfExists(modelName, modelFile); err != nil {
return nil, err
}
ml.gptmodels[modelName] = model
return model, err
}
func (ml *ModelLoader) LoadLLaMAModel(modelName string, opts ...llama.ModelOption) (*llama.LLama, error) {
ml.mu.Lock()
defer ml.mu.Unlock()
log.Debug().Msgf("Loading model name: %s", modelName)
// Check if we already have a loaded model
if !ml.ExistsInModelPath(modelName) {
return nil, fmt.Errorf("model does not exist")
}
if m, ok := ml.models[modelName]; ok {
log.Debug().Msgf("Model already loaded in memory: %s", modelName)
return m, nil
}
// TODO: This needs refactoring, it's really bad to have it in here
// Check if we have a GPTJ model loaded instead - if we do we return an error so the API tries with GPTJ
if _, ok := ml.gptmodels[modelName]; ok {
log.Debug().Msgf("Model is GPTJ: %s", modelName)
return nil, fmt.Errorf("this model is a GPTJ one")
}
if _, ok := ml.gpt2models[modelName]; ok {
log.Debug().Msgf("Model is GPT2: %s", modelName)
return nil, fmt.Errorf("this model is a GPT2 one")
}
if _, ok := ml.gptstablelmmodels[modelName]; ok {
log.Debug().Msgf("Model is GPTStableLM: %s", modelName)
return nil, fmt.Errorf("this model is a GPTStableLM one")
}
// Load the model and keep it in memory for later use
modelFile := filepath.Join(ml.modelPath, modelName)
log.Debug().Msgf("Loading model in memory from file: %s", modelFile)
model, err := llama.New(modelFile, opts...)
if err != nil {
return nil, err
}
// If there is a prompt template, load it
if err := ml.loadTemplateIfExists(modelName, modelFile); err != nil {
return nil, err
}
ml.models[modelName] = model
return model, err
}

View File

@@ -0,0 +1,6 @@
Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{{.Input}}
### Response:

View File

@@ -0,0 +1,4 @@
The prompt below is a question to answer, a task to complete, or a conversation to respond to; decide which and write an appropriate response.
### Prompt:
{{.Input}}
### Response:

View File

@@ -0,0 +1 @@
BEGINNING OF CONVERSATION: USER: {{.Input}} GPT:

View File

@@ -0,0 +1,6 @@
Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{{.Input}}
### Response: