Compare commits

...

37 Commits
v0.4 ... v0.9

Author SHA1 Message Date
Ettore Di Giacinto
e8eab66c30 Merge pull request #22 from go-skynet/update-llama.cpp
⬆️ Update go-llama.cpp to `llama.cpp-2f7c8e0`
2023-04-16 00:06:52 +02:00
mudler
a73a497143 Update llama.cpp 2023-04-15 23:57:00 +02:00
Ettore Di Giacinto
6aea515e1d Merge pull request #20 from go-skynet/mudler-patch-1
📖 Update README.md
2023-04-15 00:38:30 +02:00
Ettore Di Giacinto
dfc2b7e02a 📖 Update README.md 2023-04-15 00:38:18 +02:00
Ettore Di Giacinto
040290971c Merge pull request #19 from go-skynet/tags
Use tags for go-llama.cpp
2023-04-15 00:14:47 +02:00
mudler
553bad585e Use tags for go-llama.cpp 2023-04-15 00:07:39 +02:00
Ettore Di Giacinto
f76b612506 Merge pull request #17 from go-skynet/mudler-patch-1
Fix comment typo
2023-04-13 15:21:13 +02:00
Ettore Di Giacinto
c4e94c88d7 Fix comment typo
Thanks to @deadprogram for noticing it!
2023-04-13 15:20:51 +02:00
mudler
a9cd6b3ca3 ci: Fix tag detection for 'latest' 2023-04-13 01:37:09 +02:00
mudler
e786576b95 Update README 2023-04-13 01:28:15 +02:00
Ettore Di Giacinto
d426571789 Merge pull request #16 from go-skynet/fix_arm
Drop armv7 builds
2023-04-13 01:21:58 +02:00
mudler
a896a2b5ad Drop armv7 builds 2023-04-13 01:21:40 +02:00
Ettore Di Giacinto
8273cd5c04 Merge pull request #15 from go-skynet/docker-compose
Add docker-compose file
2023-04-13 01:17:44 +02:00
mudler
16f1281d38 Minor workflow fixes 2023-04-13 01:16:13 +02:00
mudler
8042e9a2d6 Add docker-compose
Fixes #14

Signed-off-by: mudler <mudler@c3os.io>
2023-04-13 01:13:14 +02:00
mudler
624092cb99 Update README 2023-04-12 00:07:30 +02:00
mudler
a422a883ac Minor rephrasing 2023-04-12 00:04:15 +02:00
mudler
7858a97254 Update README 2023-04-12 00:02:47 +02:00
mudler
5556aa46dd Small refinements and refactors 2023-04-12 00:02:39 +02:00
mudler
eb4257f946 Add .gitignore 2023-04-11 23:44:00 +02:00
mudler
ae30bd346d Reorganize repository layout 2023-04-11 23:43:43 +02:00
mudler
93d8977ba2 Return model list 2023-04-10 12:02:40 +02:00
mudler
f43aeeb4a1 Add both API endpoints (completion, chat) 2023-04-09 12:30:55 +02:00
mudler
c17dcc5e9d Allow to inject prompt as part of the call 2023-04-09 09:36:19 +02:00
mudler
4a932483e1 Small fixup to template loading 2023-04-08 11:59:40 +02:00
mudler
b710147b95 Add mutex on same models (parallel isn't supported yet) 2023-04-08 11:45:36 +02:00
mudler
ba70363330 Use template input 2023-04-08 11:24:25 +02:00
mudler
9fb581739b Allow to template model prompts inputs 2023-04-08 10:46:51 +02:00
mudler
48aca246e3 Drop unused interactive mode 2023-04-07 11:31:14 +02:00
mudler
12eee097b7 Make it compatible with openAI api, support multiple models
Signed-off-by: mudler <mudler@c3os.io>
2023-04-07 11:30:59 +02:00
mudler
b33d015b8c Use go-llama.cpp 2023-04-07 10:08:15 +02:00
Ettore Di Giacinto
b7c0a108f5 Update README.md 2023-04-05 22:28:03 +02:00
Ettore Di Giacinto
f694a89c28 Update README.md 2023-04-05 22:14:00 +02:00
Ettore Di Giacinto
be682e6c2f Update README.md
Add short-term roadmap and mention webui
2023-04-05 22:04:35 +02:00
mudler
bf85a31f9e Don't set a default model path 2023-04-05 22:00:15 +02:00
Ettore Di Giacinto
d69048e0b0 Update README.md 2023-04-05 00:41:02 +02:00
mudler
827f189163 Update README 2023-03-30 18:46:11 +02:00
18 changed files with 629 additions and 460 deletions

1
.dockerignore Normal file
View File

@@ -0,0 +1 @@
models/*.bin

1
.env Normal file
View File

@@ -0,0 +1 @@
THREADS=14

View File

@@ -2,6 +2,7 @@
name: 'build container images'
on:
pull_request:
push:
branches:
- master
@@ -12,68 +13,42 @@ jobs:
docker:
runs-on: ubuntu-latest
steps:
- name: Release space from worker
run: |
echo "Listing top largest packages"
pkgs=$(dpkg-query -Wf '${Installed-Size}\t${Package}\t${Status}\n' | awk '$NF == "installed"{print $1 "\t" $2}' | sort -nr)
head -n 30 <<< "${pkgs}"
echo
df -h
echo
sudo apt-get remove -y '^llvm-.*|^libllvm.*' || true
sudo apt-get remove --auto-remove android-sdk-platform-tools || true
sudo apt-get purge --auto-remove android-sdk-platform-tools || true
sudo rm -rf /usr/local/lib/android
sudo apt-get remove -y '^dotnet-.*|^aspnetcore-.*' || true
sudo rm -rf /usr/share/dotnet
sudo apt-get remove -y '^mono-.*' || true
sudo apt-get remove -y '^ghc-.*' || true
sudo apt-get remove -y '.*jdk.*|.*jre.*' || true
sudo apt-get remove -y 'php.*' || true
sudo apt-get remove -y hhvm powershell firefox monodoc-manual msbuild || true
sudo apt-get remove -y '^google-.*' || true
sudo apt-get remove -y azure-cli || true
sudo apt-get remove -y '^mongo.*-.*|^postgresql-.*|^mysql-.*|^mssql-.*' || true
sudo apt-get remove -y '^gfortran-.*' || true
sudo apt-get autoremove -y
sudo apt-get clean
echo
echo "Listing top largest packages"
pkgs=$(dpkg-query -Wf '${Installed-Size}\t${Package}\t${Status}\n' | awk '$NF == "installed"{print $1 "\t" $2}' | sort -nr)
head -n 30 <<< "${pkgs}"
echo
sudo rm -rfv build || true
df -h
- name: Checkout
uses: actions/checkout@v3
- name: Prepare
id: prep
run: |
DOCKER_IMAGE=quay.io/go-skynet/llama-cli
VERSION=latest
VERSION=master
SHORTREF=${GITHUB_SHA::8}
# If this is git tag, use the tag name as a docker tag
if [[ $GITHUB_REF == refs/tags/* ]]; then
VERSION=${GITHUB_REF#refs/tags/}
fi
TAGS="${DOCKER_IMAGE}:${VERSION},${DOCKER_IMAGE}:${SHORTREF}"
# If the VERSION looks like a version number, assume that
# this is the most recent version of the image and also
# tag it 'latest'.
if [[ $VERSION =~ ^[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}$ ]]; then
if [[ $VERSION =~ ^v[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}$ ]]; then
TAGS="$TAGS,${DOCKER_IMAGE}:latest"
fi
# Set output parameters.
echo ::set-output name=tags::${TAGS}
echo ::set-output name=docker_image::${DOCKER_IMAGE}
echo ::set-output name=image::${DOCKER_IMAGE}:${VERSION}
- name: Set up QEMU
uses: docker/setup-qemu-action@master
with:
platforms: all
- name: Set up Docker Buildx
id: buildx
uses: docker/setup-buildx-action@master
- name: Login to DockerHub
if: github.event_name != 'pull_request'
uses: docker/login-action@v2
@@ -81,9 +56,23 @@ jobs:
registry: quay.io
username: ${{ secrets.QUAY_USERNAME }}
password: ${{ secrets.QUAY_PASSWORD }}
- uses: earthly/actions/setup-earthly@v1
- name: Build
run: |
earthly config "global.conversion_parallelism" "1"
earthly config "global.buildkit_max_parallelism" "1"
earthly --push +image-all --IMAGE=${{ steps.prep.outputs.image }}
if: github.event_name != 'pull_request'
uses: docker/build-push-action@v4
with:
builder: ${{ steps.buildx.outputs.name }}
context: .
file: ./Dockerfile
platforms: linux/amd64,linux/arm64
push: true
tags: ${{ steps.prep.outputs.tags }}
- name: Build PRs
if: github.event_name == 'pull_request'
uses: docker/build-push-action@v4
with:
builder: ${{ steps.buildx.outputs.name }}
context: .
file: ./Dockerfile
platforms: linux/amd64
push: false
tags: ${{ steps.prep.outputs.tags }}

2
.gitignore vendored Normal file
View File

@@ -0,0 +1,2 @@
llama-cli
models/*.bin

18
Dockerfile Normal file
View File

@@ -0,0 +1,18 @@
ARG GO_VERSION=1.20
ARG DEBIAN_VERSION=11
FROM golang:$GO_VERSION as builder
WORKDIR /build
ARG GO_LLAMA_CPP_TAG=llama.cpp-2f7c8e0
RUN git clone -b $GO_LLAMA_CPP_TAG --recurse-submodules https://github.com/go-skynet/go-llama.cpp
RUN cd go-llama.cpp && make libbinding.a
COPY go.mod ./
COPY go.sum ./
RUN go mod download
RUN apt-get update
COPY . .
RUN go mod edit -replace github.com/go-skynet/go-llama.cpp=/build/go-llama.cpp
RUN C_INCLUDE_PATH=/build/go-llama.cpp LIBRARY_PATH=/build/go-llama.cpp go build -o llama-cli ./
FROM debian:$DEBIAN_VERSION
COPY --from=builder /build/llama-cli /usr/bin/llama-cli
ENTRYPOINT [ "/usr/bin/llama-cli" ]

View File

@@ -1,32 +1,5 @@
VERSION 0.7
go-deps:
ARG GO_VERSION=1.20
FROM golang:$GO_VERSION
WORKDIR /build
COPY go.mod ./
COPY go.sum ./
RUN go mod download
RUN apt-get update
SAVE ARTIFACT go.mod AS LOCAL go.mod
SAVE ARTIFACT go.sum AS LOCAL go.sum
build:
FROM +go-deps
WORKDIR /build
RUN git clone https://github.com/go-skynet/llama
RUN cd llama && make libllama.a
COPY . .
RUN C_INCLUDE_PATH=/build/llama LIBRARY_PATH=/build/llama go build -o llama-cli ./
SAVE ARTIFACT llama-cli AS LOCAL llama-cli
image:
FROM +go-deps
ARG IMAGE=alpaca-cli-nomodel
COPY +build/llama-cli /llama-cli
ENV MODEL_PATH=/model.bin
ENTRYPOINT [ "/llama-cli" ]
SAVE IMAGE --push $IMAGE
image-all:
BUILD --platform=linux/amd64 --platform=linux/arm64 +image
FROM DOCKERFILE -f Dockerfile .
SAVE ARTIFACT /usr/bin/llama-cli AS LOCAL llama-cli

170
README.md
View File

@@ -1,14 +1,70 @@
## :camel: llama-cli
llama-cli is a straightforward golang CLI interface for [llama.cpp](https://github.com/ggerganov/llama.cpp), providing a simple API and a command line interface that allows text generation using a GPT-based model like llama directly from the terminal.
llama-cli is a straightforward golang CLI interface and API compatible with OpenAI for [llama.cpp](https://github.com/ggerganov/llama.cpp), it supports multiple-models and also provides a simple command line interface that allows text generation using a GPT-based model like llama directly from the terminal.
It is compatible with the models supported by `llama.cpp`. You might need to convert older models to the new format, see [here](https://github.com/ggerganov/llama.cpp#using-gpt4all) for instance to run `gpt4all`.
`llama-cli` doesn't shell-out, it uses https://github.com/go-skynet/go-llama.cpp, which is a golang binding of [llama.cpp](https://github.com/ggerganov/llama.cpp).
## Usage
You can use `docker-compose`:
```bash
git clone https://github.com/go-skynet/llama-cli
cd llama-cli
# copy your models to models/
cp your-model.bin models/
# (optional) Edit the .env file to set the number of concurrent threads used for inference
# echo "THREADS=14" > .env
# start with docker-compose
docker compose up -d --build
# Now API is accessible at localhost:8080
curl http://localhost:8080/v1/models
# {"object":"list","data":[{"id":"your-model.bin","object":"model"}]}
curl http://localhost:8080/v1/completions -H "Content-Type: application/json" -d '{
"model": "your-model.bin",
"prompt": "A long time ago in a galaxy far, far away",
"temperature": 0.7
}'
```
Note: You can use a default template for every model in your model path, by creating a corresponding file with the `.tmpl` suffix next to your model. For instance, if the model is called `foo.bin`, you can create a sibiling file, `foo.bin.tmpl` which will be used as a default prompt, for instance this can be used with alpaca:
```
Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{{.Input}}
### Response:
```
## Container images
`llama-cli` comes by default as a container image. You can check out all the available images with corresponding tags [here](https://quay.io/repository/go-skynet/llama-cli?tab=tags&tag=latest)
To begin, run:
```
docker run -ti --rm quay.io/go-skynet/llama-cli:v0.3 --instruction "What's an alpaca?" --topk 10000
docker run -ti --rm quay.io/go-skynet/llama-cli:latest --instruction "What's an alpaca?" --topk 10000 --model ...
```
Where `--model` is the path of the model you want to use.
Note: you need to mount a volume to the docker container in order to load a model, for instance:
```
# assuming your model is in /path/to/your/models/foo.bin
docker run -v /path/to/your/models:/models -ti --rm quay.io/go-skynet/llama-cli:latest --instruction "What's an alpaca?" --topk 10000 --model /models/foo.bin
```
You will receive a response like the following:
@@ -37,8 +93,6 @@ llama-cli --model <model_path> --instruction <instruction> [--input <input>] [--
| top_p | TOP_P | 0.85 | The cumulative probability for top-p sampling. |
| top_k | TOP_K | 20 | The number of top-k tokens to consider for text generation. |
| context-size | CONTEXT_SIZE | 512 | Default token context size. |
| alpaca | ALPACA | true | Set to true for alpaca models. |
| gpt4all | GPT4ALL | false | Set to true for gpt4all models. |
Here's an example of using `llama-cli`:
@@ -48,14 +102,14 @@ llama-cli --model ~/ggml-alpaca-7b-q4.bin --instruction "What's an alpaca?"
This will generate text based on the given model and instruction.
## Advanced usage
## API
`llama-cli` also provides an API for running text generation as a service. The model will be pre-loaded and kept in memory.
`llama-cli` also provides an API for running text generation as a service. The models once loaded the first time will be kept in memory.
Example of starting the API with `docker`:
```bash
docker run -p 8080:8080 -ti --rm quay.io/go-skynet/llama-cli:v0.3 api --context-size 700 --threads 4
docker run -p 8080:8080 -ti --rm quay.io/go-skynet/llama-cli:latest api --models-path /path/to/models --context-size 700 --threads 4
```
And you'll see:
@@ -70,36 +124,70 @@ And you'll see:
└───────────────────────────────────────────────────┘
```
Note: Models have to end up with `.bin`.
You can control the API server options with command line arguments:
```
llama-cli api --model <model_path> [--address <address>] [--threads <num_threads>]
llama-cli api --models-path <model_path> [--address <address>] [--threads <num_threads>]
```
The API takes takes the following:
| Parameter | Environment Variable | Default Value | Description |
| ------------ | -------------------- | ------------- | -------------------------------------- |
| model | MODEL_PATH | | The path to the pre-trained GPT-based model. |
| models-path | MODELS_PATH | | The path where you have models (ending with `.bin`). |
| threads | THREADS | CPU cores | The number of threads to use for text generation. |
| address | ADDRESS | :8080 | The address and port to listen on. |
| context-size | CONTEXT_SIZE | 512 | Default token context size. |
| alpaca | ALPACA | true | Set to true for alpaca models. |
| gpt4all | GPT4ALL | false | Set to true for gpt4all models. |
Once the server is running, you can start making requests to it using HTTP, using the OpenAI API.
Once the server is running, you can make requests to it using HTTP. For example, to generate text based on an instruction, you can send a POST request to the `/predict` endpoint with the instruction as the request body:
### Supported OpenAI API endpoints
You can check out the [OpenAI API reference](https://platform.openai.com/docs/api-reference/chat/create).
Following the list of endpoints/parameters supported.
#### Chat completions
For example, to generate a chat completion, you can send a POST request to the `/v1/chat/completions` endpoint with the instruction as the request body:
```
curl --location --request POST 'http://localhost:8080/predict' --header 'Content-Type: application/json' --data-raw '{
"text": "What is an alpaca?",
"topP": 0.8,
"topK": 50,
"temperature": 0.7,
"tokens": 100
}'
curl http://localhost:8080/v1/chat/completions -H "Content-Type: application/json" -d '{
"model": "ggml-koala-7b-model-q4_0-r2.bin",
"messages": [{"role": "user", "content": "Say this is a test!"}],
"temperature": 0.7
}'
```
Available additional parameters: `top_p`, `top_k`, `max_tokens`
#### Completions
For example, to generate a comletion, you can send a POST request to the `/v1/completions` endpoint with the instruction as the request body:
```
curl http://localhost:8080/v1/completions -H "Content-Type: application/json" -d '{
"model": "ggml-koala-7b-model-q4_0-r2.bin",
"prompt": "A long time ago in a galaxy far, far away",
"temperature": 0.7
}'
```
Available additional parameters: `top_p`, `top_k`, `max_tokens`
#### List models
You can list all the models available with:
```
curl http://localhost:8080/v1/models
```
## Web interface
There is also available a simple web interface (for instance, http://localhost:8080/) which can be used as a playground.
Note: The API doesn't inject a template for talking to the instance, while the CLI does. You have to use a prompt similar to what's described in the standford-alpaca docs: https://github.com/tatsu-lab/stanford_alpaca#data-release, for instance:
```
@@ -111,19 +199,10 @@ Below is an instruction that describes a task. Write a response that appropriate
### Response:
```
## Using other models
You can specify a model binary to be used for inference with `--model`.
13B and 30B alpaca models are known to work:
```
# Download the model image, extract the model
# Use the model with llama-cli
docker run -v $PWD:/models -p 8080:8080 -ti --rm quay.io/go-skynet/llama-cli:v0.3-lite api --model /models/model.bin
```
gpt4all (https://github.com/nomic-ai/gpt4all) works as well, however the original model needs to be converted:
gpt4all (https://github.com/nomic-ai/gpt4all) works as well, however the original model needs to be converted (same applies for old alpaca models, too):
```bash
wget -O tokenizer.model https://huggingface.co/decapoda-research/llama-30b-hf/resolve/main/tokenizer.model
@@ -132,6 +211,7 @@ cp gpt4all.. models/
git clone https://gist.github.com/eiz/828bddec6162a023114ce19146cb2b82
pip install sentencepiece
python 828bddec6162a023114ce19146cb2b82/gistfile1.txt models tokenizer.model
# There will be a new model with the ".tmp" extension, you have to use that one!
```
### Golang client API
@@ -149,7 +229,7 @@ import (
func main() {
cli := client.NewClient("http://ip:30007")
cli := client.NewClient("http://ip:port")
out, err := cli.Predict("What's an alpaca?")
if err != nil {
@@ -160,6 +240,10 @@ func main() {
}
```
### Windows compatibility
It should work, however you need to make sure you give enough resources to the container. See https://github.com/go-skynet/llama-cli/issues/2
### Kubernetes
You can run the API directly in Kubernetes:
@@ -176,9 +260,8 @@ In order to build the `llama-cli` container image locally you can use `docker`:
```
# build the image as "alpaca-image"
docker run --privileged -v /var/run/docker.sock:/var/run/docker.sock --rm -t -v "$(pwd)":/workspace -v earthly-tmp:/tmp/earthly:rw earthly/earthly:v0.7.2 +image --IMAGE=alpaca-image
# run the image
docker run alpaca-image --instruction "What's an alpaca?"
docker build -t llama-cli .
docker run llama-cli --instruction "What's an alpaca?"
```
Or build the binary with:
@@ -189,3 +272,22 @@ docker run --privileged -v /var/run/docker.sock:/var/run/docker.sock --rm -t -v
# run the binary
./llama-cli --instruction "What's an alpaca?"
```
## Short-term roadmap
- [x] Mimic OpenAI API (https://github.com/go-skynet/llama-cli/issues/10)
- Binary releases (https://github.com/go-skynet/llama-cli/issues/6)
- Upstream our golang bindings to llama.cpp (https://github.com/ggerganov/llama.cpp/issues/351)
- [x] Multi-model support
- Have a webUI!
## License
MIT
## Acknowledgements
- [llama.cpp](https://github.com/ggerganov/llama.cpp)
- https://github.com/tatsu-lab/stanford_alpaca
- https://github.com/cornelk/llama-go for the initial ideas
- https://github.com/antimatter15/alpaca.cpp for the light model version (this is compatible and tested only with that checkpoint model!)

91
api.go
View File

@@ -1,91 +0,0 @@
package main
import (
"embed"
"net/http"
"strconv"
"sync"
llama "github.com/go-skynet/llama/go"
"github.com/gofiber/fiber/v2"
"github.com/gofiber/fiber/v2/middleware/filesystem"
)
//go:embed index.html
var indexHTML embed.FS
func api(l *llama.LLama, listenAddr string, threads int) error {
app := fiber.New()
app.Use("/", filesystem.New(filesystem.Config{
Root: http.FS(indexHTML),
NotFoundFile: "index.html",
}))
/*
curl --location --request POST 'http://localhost:8080/predict' --header 'Content-Type: application/json' --data-raw '{
"text": "What is an alpaca?",
"topP": 0.8,
"topK": 50,
"temperature": 0.7,
"tokens": 100
}'
*/
var mutex = &sync.Mutex{}
// Endpoint to generate the prediction
app.Post("/predict", func(c *fiber.Ctx) error {
mutex.Lock()
defer mutex.Unlock()
// Get input data from the request body
input := new(struct {
Text string `json:"text"`
})
if err := c.BodyParser(input); err != nil {
return err
}
// Set the parameters for the language model prediction
topP, err := strconv.ParseFloat(c.Query("topP", "0.9"), 64) // Default value of topP is 0.9
if err != nil {
return err
}
topK, err := strconv.Atoi(c.Query("topK", "40")) // Default value of topK is 40
if err != nil {
return err
}
temperature, err := strconv.ParseFloat(c.Query("temperature", "0.5"), 64) // Default value of temperature is 0.5
if err != nil {
return err
}
tokens, err := strconv.Atoi(c.Query("tokens", "128")) // Default value of tokens is 128
if err != nil {
return err
}
// Generate the prediction using the language model
prediction, err := l.Predict(
input.Text,
llama.SetTemperature(temperature),
llama.SetTopP(topP),
llama.SetTopK(topK),
llama.SetTokens(tokens),
llama.SetThreads(threads),
)
if err != nil {
return err
}
// Return the prediction in the response body
return c.JSON(struct {
Prediction string `json:"prediction"`
}{
Prediction: prediction,
})
})
// Start the server
app.Listen(":8080")
return nil
}

276
api/api.go Normal file
View File

@@ -0,0 +1,276 @@
package api
import (
"embed"
"fmt"
"net/http"
"strconv"
"strings"
"sync"
model "github.com/go-skynet/llama-cli/pkg/model"
llama "github.com/go-skynet/go-llama.cpp"
"github.com/gofiber/fiber/v2"
"github.com/gofiber/fiber/v2/middleware/cors"
"github.com/gofiber/fiber/v2/middleware/filesystem"
"github.com/gofiber/fiber/v2/middleware/recover"
)
type OpenAIResponse struct {
Created int `json:"created,omitempty"`
Object string `json:"chat.completion,omitempty"`
ID string `json:"id,omitempty"`
Model string `json:"model,omitempty"`
Choices []Choice `json:"choices,omitempty"`
}
type Choice struct {
Index int `json:"index,omitempty"`
FinishReason string `json:"finish_reason,omitempty"`
Message Message `json:"message,omitempty"`
Text string `json:"text,omitempty"`
}
type Message struct {
Role string `json:"role,omitempty"`
Content string `json:"content,omitempty"`
}
type OpenAIModel struct {
ID string `json:"id"`
Object string `json:"object"`
}
type OpenAIRequest struct {
Model string `json:"model"`
// Prompt is read only by completion API calls
Prompt string `json:"prompt"`
// Messages is read only by chat/completion API calls
Messages []Message `json:"messages"`
// Common options between all the API calls
TopP float64 `json:"top_p"`
TopK int `json:"top_k"`
Temperature float64 `json:"temperature"`
Maxtokens int `json:"max_tokens"`
}
//go:embed index.html
var indexHTML embed.FS
func openAIEndpoint(chat bool, defaultModel *llama.LLama, loader *model.ModelLoader, threads int, defaultMutex *sync.Mutex, mutexMap *sync.Mutex, mutexes map[string]*sync.Mutex) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
var err error
var model *llama.LLama
input := new(OpenAIRequest)
// Get input data from the request body
if err := c.BodyParser(input); err != nil {
return err
}
if input.Model == "" {
if defaultModel == nil {
return fmt.Errorf("no default model loaded, and no model specified")
}
model = defaultModel
} else {
model, err = loader.LoadModel(input.Model)
if err != nil {
return err
}
}
// This is still needed, see: https://github.com/ggerganov/llama.cpp/discussions/784
if input.Model != "" {
mutexMap.Lock()
l, ok := mutexes[input.Model]
if !ok {
m := &sync.Mutex{}
mutexes[input.Model] = m
l = m
}
mutexMap.Unlock()
l.Lock()
defer l.Unlock()
} else {
defaultMutex.Lock()
defer defaultMutex.Unlock()
}
// Set the parameters for the language model prediction
topP := input.TopP
if topP == 0 {
topP = 0.7
}
topK := input.TopK
if topK == 0 {
topK = 80
}
temperature := input.Temperature
if temperature == 0 {
temperature = 0.9
}
tokens := input.Maxtokens
if tokens == 0 {
tokens = 512
}
predInput := input.Prompt
if chat {
mess := []string{}
for _, i := range input.Messages {
mess = append(mess, i.Content)
}
predInput = strings.Join(mess, "\n")
}
// A model can have a "file.bin.tmpl" file associated with a prompt template prefix
templatedInput, err := loader.TemplatePrefix(input.Model, struct {
Input string
}{Input: predInput})
if err == nil {
predInput = templatedInput
}
// Generate the prediction using the language model
prediction, err := model.Predict(
predInput,
llama.SetTemperature(temperature),
llama.SetTopP(topP),
llama.SetTopK(topK),
llama.SetTokens(tokens),
llama.SetThreads(threads),
)
if err != nil {
return err
}
if chat {
// Return the chat prediction in the response body
return c.JSON(OpenAIResponse{
Model: input.Model,
Choices: []Choice{{Message: Message{Role: "assistant", Content: prediction}}},
})
}
// Return the prediction in the response body
return c.JSON(OpenAIResponse{
Model: input.Model,
Choices: []Choice{{Text: prediction}},
})
}
}
func Start(defaultModel *llama.LLama, loader *model.ModelLoader, listenAddr string, threads int) error {
app := fiber.New()
// Default middleware config
app.Use(recover.New())
app.Use(cors.New())
// This is still needed, see: https://github.com/ggerganov/llama.cpp/discussions/784
var mutex = &sync.Mutex{}
mu := map[string]*sync.Mutex{}
var mumutex = &sync.Mutex{}
// openAI compatible API endpoint
app.Post("/v1/chat/completions", openAIEndpoint(true, defaultModel, loader, threads, mutex, mumutex, mu))
app.Post("/v1/completions", openAIEndpoint(false, defaultModel, loader, threads, mutex, mumutex, mu))
app.Get("/v1/models", func(c *fiber.Ctx) error {
models, err := loader.ListModels()
if err != nil {
return err
}
dataModels := []OpenAIModel{}
for _, m := range models {
dataModels = append(dataModels, OpenAIModel{ID: m, Object: "model"})
}
return c.JSON(struct {
Object string `json:"object"`
Data []OpenAIModel `json:"data"`
}{
Object: "list",
Data: dataModels,
})
})
app.Use("/", filesystem.New(filesystem.Config{
Root: http.FS(indexHTML),
NotFoundFile: "index.html",
}))
/*
curl --location --request POST 'http://localhost:8080/predict' --header 'Content-Type: application/json' --data-raw '{
"text": "What is an alpaca?",
"topP": 0.8,
"topK": 50,
"temperature": 0.7,
"tokens": 100
}'
*/
// Endpoint to generate the prediction
app.Post("/predict", func(c *fiber.Ctx) error {
mutex.Lock()
defer mutex.Unlock()
// Get input data from the request body
input := new(struct {
Text string `json:"text"`
})
if err := c.BodyParser(input); err != nil {
return err
}
// Set the parameters for the language model prediction
topP, err := strconv.ParseFloat(c.Query("topP", "0.9"), 64) // Default value of topP is 0.9
if err != nil {
return err
}
topK, err := strconv.Atoi(c.Query("topK", "40")) // Default value of topK is 40
if err != nil {
return err
}
temperature, err := strconv.ParseFloat(c.Query("temperature", "0.5"), 64) // Default value of temperature is 0.5
if err != nil {
return err
}
tokens, err := strconv.Atoi(c.Query("tokens", "128")) // Default value of tokens is 128
if err != nil {
return err
}
// Generate the prediction using the language model
prediction, err := defaultModel.Predict(
input.Text,
llama.SetTemperature(temperature),
llama.SetTopP(topP),
llama.SetTopK(topK),
llama.SetTokens(tokens),
llama.SetThreads(threads),
)
if err != nil {
return err
}
// Return the prediction in the response body
return c.JSON(struct {
Prediction string `json:"prediction"`
}{
Prediction: prediction,
})
})
// Start the server
app.Listen(listenAddr)
return nil
}

View File

15
docker-compose.yaml Normal file
View File

@@ -0,0 +1,15 @@
version: '3.6'
services:
api:
image: quay.io/go-skynet/llama-cli:latest
build: .
volumes:
- ./models:/models
ports:
- 8080:8080
environment:
- MODELS_PATH=/models
- CONTEXT_SIZE=700
- THREADS=$THREADS
command: api

17
go.mod
View File

@@ -3,31 +3,19 @@ module github.com/go-skynet/llama-cli
go 1.19
require (
github.com/charmbracelet/bubbles v0.15.0
github.com/charmbracelet/bubbletea v0.23.2
github.com/charmbracelet/lipgloss v0.7.1
github.com/go-skynet/llama v0.0.0-20230329165201-84efc8db3647
github.com/go-skynet/go-llama.cpp v0.0.0-20230415155049-9260bfd28bc4
github.com/gofiber/fiber/v2 v2.42.0
github.com/urfave/cli/v2 v2.25.0
)
require (
github.com/andybalholm/brotli v1.0.4 // indirect
github.com/atotto/clipboard v0.1.4 // indirect
github.com/aymanbagabas/go-osc52/v2 v2.0.1 // indirect
github.com/containerd/console v1.0.3 // indirect
github.com/cpuguy83/go-md2man/v2 v2.0.2 // indirect
github.com/google/uuid v1.3.0 // indirect
github.com/klauspost/compress v1.15.9 // indirect
github.com/lucasb-eyer/go-colorful v1.2.0 // indirect
github.com/mattn/go-colorable v0.1.13 // indirect
github.com/mattn/go-isatty v0.0.17 // indirect
github.com/mattn/go-localereader v0.0.1 // indirect
github.com/mattn/go-runewidth v0.0.14 // indirect
github.com/muesli/ansi v0.0.0-20211018074035-2e021307bc4b // indirect
github.com/muesli/cancelreader v0.2.2 // indirect
github.com/muesli/reflow v0.3.0 // indirect
github.com/muesli/termenv v0.15.1 // indirect
github.com/philhofer/fwd v1.1.1 // indirect
github.com/rivo/uniseg v0.2.0 // indirect
github.com/russross/blackfriday/v2 v2.1.0 // indirect
@@ -38,8 +26,5 @@ require (
github.com/valyala/fasthttp v1.44.0 // indirect
github.com/valyala/tcplisten v1.0.0 // indirect
github.com/xrash/smetrics v0.0.0-20201216005158-039620a65673 // indirect
golang.org/x/sync v0.1.0 // indirect
golang.org/x/sys v0.6.0 // indirect
golang.org/x/term v0.5.0 // indirect
golang.org/x/text v0.7.0 // indirect
)

67
go.sum
View File

@@ -1,72 +1,34 @@
github.com/andybalholm/brotli v1.0.4 h1:V7DdXeJtZscaqfNuAdSRuRFzuiKlHSC/Zh3zl9qY3JY=
github.com/andybalholm/brotli v1.0.4/go.mod h1:fO7iG3H7G2nSZ7m0zPUDn85XEX2GTukHGRSepvi9Eig=
github.com/atotto/clipboard v0.1.4 h1:EH0zSVneZPSuFR11BlR9YppQTVDbh5+16AmcJi4g1z4=
github.com/atotto/clipboard v0.1.4/go.mod h1:ZY9tmq7sm5xIbd9bOK4onWV4S6X0u6GY7Vn0Yu86PYI=
github.com/aymanbagabas/go-osc52 v1.0.3/go.mod h1:zT8H+Rk4VSabYN90pWyugflM3ZhpTZNC7cASDfUCdT4=
github.com/aymanbagabas/go-osc52 v1.2.1/go.mod h1:zT8H+Rk4VSabYN90pWyugflM3ZhpTZNC7cASDfUCdT4=
github.com/aymanbagabas/go-osc52/v2 v2.0.1 h1:HwpRHbFMcZLEVr42D4p7XBqjyuxQH5SMiErDT4WkJ2k=
github.com/aymanbagabas/go-osc52/v2 v2.0.1/go.mod h1:uYgXzlJ7ZpABp8OJ+exZzJJhRNQ2ASbcXHWsFqH8hp8=
github.com/charmbracelet/bubbles v0.15.0 h1:c5vZ3woHV5W2b8YZI1q7v4ZNQaPetfHuoHzx+56Z6TI=
github.com/charmbracelet/bubbles v0.15.0/go.mod h1:Y7gSFbBzlMpUDR/XM9MhZI374Q+1p1kluf1uLl8iK74=
github.com/charmbracelet/bubbletea v0.23.1/go.mod h1:JAfGK/3/pPKHTnAS8JIE2u9f61BjWTQY57RbT25aMXU=
github.com/charmbracelet/bubbletea v0.23.2 h1:vuUJ9HJ7b/COy4I30e8xDVQ+VRDUEFykIjryPfgsdps=
github.com/charmbracelet/bubbletea v0.23.2/go.mod h1:FaP3WUivcTM0xOKNmhciz60M6I+weYLF76mr1JyI7sM=
github.com/charmbracelet/harmonica v0.2.0/go.mod h1:KSri/1RMQOZLbw7AHqgcBycp8pgJnQMYYT8QZRqZ1Ao=
github.com/charmbracelet/lipgloss v0.6.0/go.mod h1:tHh2wr34xcHjC2HCXIlGSG1jaDF0S0atAUvBMP6Ppuk=
github.com/charmbracelet/lipgloss v0.7.1 h1:17WMwi7N1b1rVWOjMT+rCh7sQkvDU75B2hbZpc5Kc1E=
github.com/charmbracelet/lipgloss v0.7.1/go.mod h1:yG0k3giv8Qj8edTCbbg6AlQ5e8KNWpFujkNawKNhE2c=
github.com/containerd/console v1.0.3 h1:lIr7SlA5PxZyMV30bDW0MGbiOPXwc63yRuCP0ARubLw=
github.com/containerd/console v1.0.3/go.mod h1:7LqA/THxQ86k76b8c/EMSiaJ3h1eZkMkXar0TQ1gf3U=
github.com/cpuguy83/go-md2man/v2 v2.0.2 h1:p1EgwI/C7NhT0JmVkwCD2ZBK8j4aeHQX2pMHHBfMQ6w=
github.com/cpuguy83/go-md2man/v2 v2.0.2/go.mod h1:tgQtvFlXSQOSOSIRvRPT7W67SCa46tRHOmNcaadrF8o=
github.com/go-skynet/llama v0.0.0-20230321172246-7be5326e18cc h1:NcmO8mA7iRZIX0Qy2SjcsSaV14+g87MiTey1neUJaFQ=
github.com/go-skynet/llama v0.0.0-20230321172246-7be5326e18cc/go.mod h1:ZtYsAIud4cvP9VTTI9uhdgR1uCwaO/gGKnZZ95h9i7w=
github.com/go-skynet/llama v0.0.0-20230325223742-a3563a2690ba h1:u6OhAqlWFHsTjfWKePdK2kP4/mTyXX5vsmKwrK5QX6o=
github.com/go-skynet/llama v0.0.0-20230325223742-a3563a2690ba/go.mod h1:ZtYsAIud4cvP9VTTI9uhdgR1uCwaO/gGKnZZ95h9i7w=
github.com/go-skynet/llama v0.0.0-20230329165201-84efc8db3647 h1:W6qHHD/Bv6wRXSzdv38gWMAXgw3fklHyEblfw88uEUU=
github.com/go-skynet/llama v0.0.0-20230329165201-84efc8db3647/go.mod h1:ZtYsAIud4cvP9VTTI9uhdgR1uCwaO/gGKnZZ95h9i7w=
github.com/go-logr/logr v1.2.3 h1:2DntVwHkVopvECVRSlL5PSo9eG+cAkDCuckLubN+rq0=
github.com/go-skynet/go-llama.cpp v0.0.0-20230415155049-9260bfd28bc4 h1:u/y9MlPHOeIj636IQmrf9ptMjjdgCVIcsfb7lMFh39M=
github.com/go-skynet/go-llama.cpp v0.0.0-20230415155049-9260bfd28bc4/go.mod h1:35AKIEMY+YTKCBJIa/8GZcNGJ2J+nQk1hQiWo/OnEWw=
github.com/go-task/slim-sprig v0.0.0-20230315185526-52ccab3ef572 h1:tfuBGBXKqDEevZMzYi5KSi8KkcZtzBcTgAUUtapy0OI=
github.com/gofiber/fiber/v2 v2.42.0 h1:Fnp7ybWvS+sjNQsFvkhf4G8OhXswvB6Vee8hM/LyS+8=
github.com/gofiber/fiber/v2 v2.42.0/go.mod h1:3+SGNjqMh5VQH5Vz2Wdi43zTIV16ktlFd3x3R6O1Zlc=
github.com/google/go-cmp v0.5.9 h1:O2Tfq5qg4qc4AmwVlvv0oLiVAGB7enBSJ2x2DqQFi38=
github.com/google/pprof v0.0.0-20210407192527-94a9f03dee38 h1:yAJXTCF9TqKcTiHJAE8dj7HMvPfh66eeA2JYW7eFpSE=
github.com/google/uuid v1.3.0 h1:t6JiXgmwXMjEs8VusXIJk2BXHsn+wx8BZdTaoZ5fu7I=
github.com/google/uuid v1.3.0/go.mod h1:TIyPZe4MgqvfeYDBFedMoGGpEw/LqOeaOT+nhxU+yHo=
github.com/klauspost/compress v1.15.9 h1:wKRjX6JRtDdrE9qwa4b/Cip7ACOshUI4smpCQanqjSY=
github.com/klauspost/compress v1.15.9/go.mod h1:PhcZ0MbTNciWF3rruxRgKxI5NkcHHrHUDtV4Yw2GlzU=
github.com/kylelemons/godebug v1.1.0/go.mod h1:9/0rRGxNHcop5bhtWyNeEfOS8JIWk580+fNqagV/RAw=
github.com/lucasb-eyer/go-colorful v1.2.0 h1:1nnpGOrhyZZuNyfu1QjKiUICQ74+3FNCN69Aj6K7nkY=
github.com/lucasb-eyer/go-colorful v1.2.0/go.mod h1:R4dSotOR9KMtayYi1e77YzuveK+i7ruzyGqttikkLy0=
github.com/mattn/go-colorable v0.1.13 h1:fFA4WZxdEF4tXPZVKMLwD8oUnCTTo08duU7wxecdEvA=
github.com/mattn/go-colorable v0.1.13/go.mod h1:7S9/ev0klgBDR4GtXTXX8a3vIGJpMovkB8vQcUbaXHg=
github.com/mattn/go-isatty v0.0.14/go.mod h1:7GGIvUiUoEMVVmxf/4nioHXj79iQHKdU27kJ6hsGG94=
github.com/mattn/go-isatty v0.0.16/go.mod h1:kYGgaQfpe5nmfYZH+SKPsOc2e4SrIfOl2e/yFXSvRLM=
github.com/mattn/go-isatty v0.0.17 h1:BTarxUcIeDqL27Mc+vyvdWYSL28zpIhv3RoTdsLMPng=
github.com/mattn/go-isatty v0.0.17/go.mod h1:kYGgaQfpe5nmfYZH+SKPsOc2e4SrIfOl2e/yFXSvRLM=
github.com/mattn/go-localereader v0.0.1 h1:ygSAOl7ZXTx4RdPYinUpg6W99U8jWvWi9Ye2JC/oIi4=
github.com/mattn/go-localereader v0.0.1/go.mod h1:8fBrzywKY7BI3czFoHkuzRoWE9C+EiG4R1k4Cjx5p88=
github.com/mattn/go-runewidth v0.0.10/go.mod h1:RAqKPSqVFrSLVXbA8x7dzmKdmGzieGRCM46jaSJTDAk=
github.com/mattn/go-runewidth v0.0.12/go.mod h1:RAqKPSqVFrSLVXbA8x7dzmKdmGzieGRCM46jaSJTDAk=
github.com/mattn/go-runewidth v0.0.13/go.mod h1:Jdepj2loyihRzMpdS35Xk/zdY8IAYHsh153qUoGf23w=
github.com/mattn/go-runewidth v0.0.14 h1:+xnbZSEeDbOIg5/mE6JF0w6n9duR1l3/WmbinWVwUuU=
github.com/mattn/go-runewidth v0.0.14/go.mod h1:Jdepj2loyihRzMpdS35Xk/zdY8IAYHsh153qUoGf23w=
github.com/muesli/ansi v0.0.0-20211018074035-2e021307bc4b h1:1XF24mVaiu7u+CFywTdcDo2ie1pzzhwjt6RHqzpMU34=
github.com/muesli/ansi v0.0.0-20211018074035-2e021307bc4b/go.mod h1:fQuZ0gauxyBcmsdE3ZT4NasjaRdxmbCS0jRHsrWu3Ho=
github.com/muesli/cancelreader v0.2.2 h1:3I4Kt4BQjOR54NavqnDogx/MIoWBFa0StPA8ELUXHmA=
github.com/muesli/cancelreader v0.2.2/go.mod h1:3XuTXfFS2VjM+HTLZY9Ak0l6eUKfijIfMUZ4EgX0QYo=
github.com/muesli/reflow v0.2.1-0.20210115123740-9e1d0d53df68/go.mod h1:Xk+z4oIWdQqJzsxyjgl3P22oYZnHdZ8FFTHAQQt5BMQ=
github.com/muesli/reflow v0.3.0 h1:IFsN6K9NfGtjeggFP+68I4chLZV2yIKsXJFNZ+eWh6s=
github.com/muesli/reflow v0.3.0/go.mod h1:pbwTDkVPibjO2kyvBQRBxTWEEGDGq0FlB1BIKtnHY/8=
github.com/muesli/termenv v0.11.1-0.20220204035834-5ac8409525e0/go.mod h1:Bd5NYQ7pd+SrtBSrSNoBBmXlcY8+Xj4BMJgh8qcZrvs=
github.com/muesli/termenv v0.13.0/go.mod h1:sP1+uffeLaEYpyOTb8pLCUctGcGLnoFjSn4YJK5e2bc=
github.com/muesli/termenv v0.14.0/go.mod h1:kG/pF1E7fh949Xhe156crRUrHNyK221IuGO7Ez60Uc8=
github.com/muesli/termenv v0.15.1 h1:UzuTb/+hhlBugQz28rpzey4ZuKcZ03MeKsoG7IJZIxs=
github.com/muesli/termenv v0.15.1/go.mod h1:HeAQPTzpfs016yGtA4g00CsdYnVLJvxsS4ANqrZs2sQ=
github.com/onsi/ginkgo/v2 v2.9.2 h1:BA2GMJOtfGAfagzYtrAlufIP0lq6QERkFmHLMLPwFSU=
github.com/onsi/gomega v1.27.6 h1:ENqfyGeS5AX/rlXDd/ETokDz93u0YufY1Pgxuy/PvWE=
github.com/philhofer/fwd v1.1.1 h1:GdGcTjf5RNAxwS4QLsiMzJYj5KEvPJD3Abr261yRQXQ=
github.com/philhofer/fwd v1.1.1/go.mod h1:gk3iGcWd9+svBvR0sR+KPcfE+RNWozjowpeBVG3ZVNU=
github.com/rivo/uniseg v0.1.0/go.mod h1:J6wj4VEh+S6ZtnVlnTBMWIodfgj8LQOQFoIToxlJtxc=
github.com/rivo/uniseg v0.2.0 h1:S1pD9weZBuJdFmowNwbpi7BJ8TNftyUImj/0WQi72jY=
github.com/rivo/uniseg v0.2.0/go.mod h1:J6wj4VEh+S6ZtnVlnTBMWIodfgj8LQOQFoIToxlJtxc=
github.com/russross/blackfriday/v2 v2.1.0 h1:JIOH55/0cWyOuilr9/qlrm0BSXldqnqwMsf35Ld67mk=
github.com/russross/blackfriday/v2 v2.1.0/go.mod h1:+Rmxgy9KzJVeS9/2gXHxylqXiyQDYRxCVz55jmeOWTM=
github.com/sahilm/fuzzy v0.1.0/go.mod h1:VFvziUEIMCrT6A6tw2RFIXPXXmzXbOsSHF0DOI8ZK9Y=
github.com/savsgio/dictpool v0.0.0-20221023140959-7bf2e61cea94 h1:rmMl4fXJhKMNWl+K+r/fq4FbbKI+Ia2m9hYBLm2h4G4=
github.com/savsgio/dictpool v0.0.0-20221023140959-7bf2e61cea94/go.mod h1:90zrgN3D/WJsDd1iXHT96alCoN2KJo6/4x1DZC3wZs8=
github.com/savsgio/gotils v0.0.0-20220530130905-52f3993e8d6d h1:Q+gqLBOPkFGHyCJxXMRqtUgUbTjI8/Ze8vu8GGyNFwo=
@@ -94,36 +56,31 @@ golang.org/x/net v0.0.0-20190620200207-3b0461eec859/go.mod h1:z5CRVTTTmAJ677TzLL
golang.org/x/net v0.0.0-20201021035429-f5854403a974/go.mod h1:sp8m0HH+o8qH0wwXwYZr8TS3Oi6o0r6Gce1SSxlDquU=
golang.org/x/net v0.0.0-20211112202133-69e39bad7dc2/go.mod h1:9nx3DQGgdP8bBQD5qxJ1jj9UTztislL4KSBs9R2vV5Y=
golang.org/x/net v0.0.0-20220906165146-f3363e06e74c/go.mod h1:YDH+HFinaLZZlnHAfSS6ZXJJ9M9t4Dl22yv3iI2vPwk=
golang.org/x/net v0.8.0 h1:Zrh2ngAOFYneWTAIAPethzeaQLuHwhuBkuV6ZiRnUaQ=
golang.org/x/sync v0.0.0-20190423024810-112230192c58/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
golang.org/x/sync v0.0.0-20201020160332-67f06af15bc9/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
golang.org/x/sync v0.1.0 h1:wsuoTGHzEhffawBOhz5CYhcrV4IdKZbEyZjBMuTp12o=
golang.org/x/sync v0.1.0/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
golang.org/x/sys v0.0.0-20190215142949-d0b11bdaac8a/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
golang.org/x/sys v0.0.0-20190412213103-97732733099d/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/sys v0.0.0-20200930185726-fdedc70b468f/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/sys v0.0.0-20201119102817-f84b799fce68/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/sys v0.0.0-20210124154548-22da62e12c0c/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/sys v0.0.0-20210423082822-04245dca01da/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/sys v0.0.0-20210615035016-665e8c7367d1/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.0.0-20210630005230-0f9fa26af87c/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.0.0-20220204135822-1c1b9b1eba6a/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.0.0-20220728004956-3c1f35247d10/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.0.0-20220811171246-fbc7d0a398ab/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.6.0 h1:MVltZSvRTcU2ljQOhs94SXPftV6DCNnZViHeQps87pQ=
golang.org/x/sys v0.6.0/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/term v0.0.0-20201126162022-7de9c90e9dd1/go.mod h1:bj7SfCRtBDWHUb9snDiAeCFNEtKQo2Wmx5Cou7ajbmo=
golang.org/x/term v0.0.0-20210927222741-03fcf44c2211/go.mod h1:jbD1KX2456YbFQfuXm/mYQcufACuNUgVhRMnK/tPxf8=
golang.org/x/term v0.5.0 h1:n2a8QNdAb0sZNpU9R1ALUXBbY+w51fCQDN+7EdxNBsY=
golang.org/x/term v0.5.0/go.mod h1:jMB1sMXY+tzblOD4FWmEbocvup2/aLOaQEp7JmGp78k=
golang.org/x/text v0.3.0/go.mod h1:NqM8EUOU14njkJ3fqMW+pc6Ldnwhi/IjpwHt7yyuwOQ=
golang.org/x/text v0.3.3/go.mod h1:5Zoc/QRtKVWzQhOtBMvqHzDpF6irO9z98xDceosuGiQ=
golang.org/x/text v0.3.6/go.mod h1:5Zoc/QRtKVWzQhOtBMvqHzDpF6irO9z98xDceosuGiQ=
golang.org/x/text v0.3.7/go.mod h1:u+2+/6zg+i71rQMx5EYifcz6MCKuco9NR6JIITiCfzQ=
golang.org/x/text v0.7.0 h1:4BRB4x83lYWy72KwLD/qYDuTu7q9PjSagHvijDw7cLo=
golang.org/x/text v0.7.0/go.mod h1:mrYo+phRRbMaCq/xk9113O4dZlRixOauAjOtrjsXDZ8=
golang.org/x/text v0.8.0 h1:57P1ETyNKtuIjB4SRd15iJxuhj8Gc416Y78H3qgMh68=
golang.org/x/tools v0.0.0-20180917221912-90fa682c2a6e/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ=
golang.org/x/tools v0.0.0-20191119224855-298f0cb1881e/go.mod h1:b+2E5dAYhXwXZwtnZ6UAqBI28+e2cm9otk0dWdXHAEo=
golang.org/x/tools v0.0.0-20201022035929-9cf592e881e9/go.mod h1:emZCQorbCU4vsT4fOWvOPXz4eW1wZW4PmDk9uLelYpA=
golang.org/x/tools v0.7.0 h1:W4OVu8VVOaIO0yzWMNdepAulS7YfoS3Zabrm8DOXXU4=
golang.org/x/xerrors v0.0.0-20190717185122-a985d3407aa7/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
golang.org/x/xerrors v0.0.0-20191011141410-1b5146add898/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
golang.org/x/xerrors v0.0.0-20200804184101-5ec99f83aff1/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
gopkg.in/yaml.v3 v3.0.1 h1:fxVm/GzAzEWqLHuvctI91KS9hhNmmWOoWu0XTYJS7CA=

View File

@@ -1,142 +0,0 @@
package main
// A simple program demonstrating the text area component from the Bubbles
// component library.
import (
"fmt"
"strings"
"github.com/charmbracelet/bubbles/textarea"
"github.com/charmbracelet/bubbles/viewport"
tea "github.com/charmbracelet/bubbletea"
"github.com/charmbracelet/lipgloss"
llama "github.com/go-skynet/llama/go"
)
func startInteractive(l *llama.LLama, opts ...llama.PredictOption) error {
p := tea.NewProgram(initialModel(l, opts...))
_, err := p.Run()
return err
}
type (
errMsg error
)
type model struct {
viewport viewport.Model
messages *[]string
textarea textarea.Model
senderStyle lipgloss.Style
err error
l *llama.LLama
opts []llama.PredictOption
predictC chan string
}
func initialModel(l *llama.LLama, opts ...llama.PredictOption) model {
ta := textarea.New()
ta.Placeholder = "Send a message..."
ta.Focus()
ta.Prompt = "┃ "
ta.CharLimit = 280
ta.SetWidth(200)
ta.SetHeight(3)
// Remove cursor line styling
ta.FocusedStyle.CursorLine = lipgloss.NewStyle()
ta.ShowLineNumbers = false
vp := viewport.New(200, 5)
vp.SetContent(`Welcome to llama-cli. Type a message and press Enter to send. Alpaca doesn't keep context of the whole chat (yet).`)
ta.KeyMap.InsertNewline.SetEnabled(false)
predictChannel := make(chan string)
messages := []string{}
m := model{
textarea: ta,
messages: &messages,
viewport: vp,
senderStyle: lipgloss.NewStyle().Foreground(lipgloss.Color("5")),
err: nil,
l: l,
opts: opts,
predictC: predictChannel,
}
go func() {
for p := range predictChannel {
str, _ := templateString(emptyInput, struct {
Instruction string
Input string
}{Instruction: p})
res, _ := l.Predict(
str,
opts...,
)
mm := *m.messages
*m.messages = mm[:len(mm)-1]
*m.messages = append(*m.messages, m.senderStyle.Render("llama: ")+res)
m.viewport.SetContent(strings.Join(*m.messages, "\n"))
ta.Reset()
m.viewport.GotoBottom()
}
}()
return m
}
func (m model) Init() tea.Cmd {
return textarea.Blink
}
func (m model) Update(msg tea.Msg) (tea.Model, tea.Cmd) {
var (
tiCmd tea.Cmd
vpCmd tea.Cmd
)
m.textarea, tiCmd = m.textarea.Update(msg)
m.viewport, vpCmd = m.viewport.Update(msg)
switch msg := msg.(type) {
case tea.WindowSizeMsg:
// m.viewport.Width = msg.Width
// m.viewport.Height = msg.Height
case tea.KeyMsg:
switch msg.Type {
case tea.KeyCtrlC, tea.KeyEsc:
fmt.Println(m.textarea.Value())
return m, tea.Quit
case tea.KeyEnter:
*m.messages = append(*m.messages, m.senderStyle.Render("You: ")+m.textarea.Value(), m.senderStyle.Render("Loading response..."))
m.predictC <- m.textarea.Value()
m.viewport.SetContent(strings.Join(*m.messages, "\n"))
m.textarea.Reset()
m.viewport.GotoBottom()
}
// We handle errors just like any other message
case errMsg:
m.err = msg
return m, nil
}
return m, tea.Batch(tiCmd, vpCmd)
}
func (m model) View() string {
return fmt.Sprintf(
"%s\n\n%s",
m.viewport.View(),
m.textarea.View(),
) + "\n\n"
}

View File

@@ -25,7 +25,7 @@ spec:
- name: llama
args:
- api
image: quay.io/go-skynet/llama-cli:v0.3
image: quay.io/go-skynet/llama-cli:latest
---
apiVersion: v1
kind: Service

73
main.go
View File

@@ -8,7 +8,10 @@ import (
"runtime"
"text/template"
llama "github.com/go-skynet/llama/go"
llama "github.com/go-skynet/go-llama.cpp"
api "github.com/go-skynet/llama-cli/api"
model "github.com/go-skynet/llama-cli/pkg/model"
"github.com/urfave/cli/v2"
)
@@ -33,12 +36,6 @@ var nonEmptyInput string = `Below is an instruction that describes a task, paire
func llamaFromOptions(ctx *cli.Context) (*llama.LLama, error) {
opts := []llama.ModelOption{llama.SetContext(ctx.Int("context-size"))}
if ctx.Bool("alpaca") {
opts = append(opts, llama.EnableAlpaca)
}
if ctx.Bool("gpt4all") {
opts = append(opts, llama.EnableGPT4All)
}
return llama.New(ctx.String("model"), opts...)
}
@@ -92,16 +89,6 @@ var modelFlags = []cli.Flag{
EnvVars: []string{"TOP_K"},
Value: 20,
},
&cli.BoolFlag{
Name: "alpaca",
EnvVars: []string{"ALPACA"},
Value: true,
},
&cli.BoolFlag{
Name: "gpt4all",
EnvVars: []string{"GPT4ALL"},
Value: false,
},
}
func main() {
@@ -134,24 +121,6 @@ echo "An Alpaca (Vicugna pacos) is a domesticated species of South American came
`,
Copyright: "go-skynet authors",
Commands: []*cli.Command{
{
Flags: modelFlags,
Name: "interactive",
Action: func(ctx *cli.Context) error {
l, err := llamaFromOptions(ctx)
if err != nil {
fmt.Println("Loading the model failed:", err.Error())
os.Exit(1)
}
return startInteractive(l, llama.SetTemperature(ctx.Float64("temperature")),
llama.SetTopP(ctx.Float64("topp")),
llama.SetTopK(ctx.Int("topk")),
llama.SetTokens(ctx.Int("tokens")),
llama.SetThreads(ctx.Int("threads")))
},
},
{
Name: "api",
@@ -162,24 +131,18 @@ echo "An Alpaca (Vicugna pacos) is a domesticated species of South American came
Value: runtime.NumCPU(),
},
&cli.StringFlag{
Name: "model",
EnvVars: []string{"MODEL_PATH"},
Name: "models-path",
EnvVars: []string{"MODELS_PATH"},
},
&cli.StringFlag{
Name: "default-model",
EnvVars: []string{"default-model"},
},
&cli.StringFlag{
Name: "address",
EnvVars: []string{"ADDRESS"},
Value: ":8080",
},
&cli.BoolFlag{
Name: "alpaca",
EnvVars: []string{"ALPACA"},
Value: true,
},
&cli.BoolFlag{
Name: "gpt4all",
EnvVars: []string{"GPT4ALL"},
Value: false,
},
&cli.IntFlag{
Name: "context-size",
EnvVars: []string{"CONTEXT_SIZE"},
@@ -187,13 +150,19 @@ echo "An Alpaca (Vicugna pacos) is a domesticated species of South American came
},
},
Action: func(ctx *cli.Context) error {
l, err := llamaFromOptions(ctx)
if err != nil {
fmt.Println("Loading the model failed:", err.Error())
os.Exit(1)
var defaultModel *llama.LLama
defModel := ctx.String("default-model")
if defModel != "" {
opts := []llama.ModelOption{llama.SetContext(ctx.Int("context-size"))}
var err error
defaultModel, err = llama.New(ctx.String("default-model"), opts...)
if err != nil {
return err
}
}
return api(l, ctx.String("address"), ctx.Int("threads"))
return api.Start(defaultModel, model.NewModelLoader(ctx.String("models-path")), ctx.String("address"), ctx.Int("threads"))
},
},
},

0
models/.keep Normal file
View File

114
pkg/model/loader.go Normal file
View File

@@ -0,0 +1,114 @@
package model
import (
"bytes"
"fmt"
"io/ioutil"
"os"
"path/filepath"
"strings"
"sync"
"text/template"
llama "github.com/go-skynet/go-llama.cpp"
)
type ModelLoader struct {
modelPath string
mu sync.Mutex
models map[string]*llama.LLama
promptsTemplates map[string]*template.Template
}
func NewModelLoader(modelPath string) *ModelLoader {
return &ModelLoader{modelPath: modelPath, models: make(map[string]*llama.LLama), promptsTemplates: make(map[string]*template.Template)}
}
func (ml *ModelLoader) ListModels() ([]string, error) {
files, err := ioutil.ReadDir(ml.modelPath)
if err != nil {
return []string{}, err
}
models := []string{}
for _, file := range files {
if strings.HasSuffix(file.Name(), ".bin") {
models = append(models, strings.TrimRight(file.Name(), ".bin"))
}
}
return models, nil
}
func (ml *ModelLoader) TemplatePrefix(modelName string, in interface{}) (string, error) {
ml.mu.Lock()
defer ml.mu.Unlock()
m, ok := ml.promptsTemplates[modelName]
if !ok {
// try to find a s.bin
modelBin := fmt.Sprintf("%s.bin", modelName)
m, ok = ml.promptsTemplates[modelBin]
if !ok {
return "", fmt.Errorf("no prompt template available")
}
}
var buf bytes.Buffer
if err := m.Execute(&buf, in); err != nil {
return "", err
}
return buf.String(), nil
}
func (ml *ModelLoader) LoadModel(modelName string, opts ...llama.ModelOption) (*llama.LLama, error) {
ml.mu.Lock()
defer ml.mu.Unlock()
// Check if we already have a loaded model
modelFile := filepath.Join(ml.modelPath, modelName)
if m, ok := ml.models[modelFile]; ok {
return m, nil
}
// Check if the model path exists
if _, err := os.Stat(modelFile); os.IsNotExist(err) {
// try to find a s.bin
modelBin := fmt.Sprintf("%s.bin", modelFile)
if _, err := os.Stat(modelBin); os.IsNotExist(err) {
return nil, err
} else {
modelName = fmt.Sprintf("%s.bin", modelName)
modelFile = modelBin
}
}
// Load the model and keep it in memory for later use
model, err := llama.New(modelFile, opts...)
if err != nil {
return nil, err
}
// If there is a prompt template, load it
modelTemplateFile := fmt.Sprintf("%s.tmpl", modelFile)
// Check if the model path exists
if _, err := os.Stat(modelTemplateFile); err == nil {
dat, err := os.ReadFile(modelTemplateFile)
if err != nil {
return nil, err
}
// Parse the template
tmpl, err := template.New("prompt").Parse(string(dat))
if err != nil {
return nil, err
}
ml.promptsTemplates[modelName] = tmpl
}
ml.models[modelFile] = model
return model, err
}