mirror of
https://github.com/mudler/LocalAI.git
synced 2026-02-03 11:13:31 -05:00
Compare commits
1197 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
495191a54a | ||
|
|
b790fca180 | ||
|
|
0663f66205 | ||
|
|
5826fb8e6d | ||
|
|
89351f1a7d | ||
|
|
ae2e4fc2fe | ||
|
|
db199f61da | ||
|
|
44adbd2c75 | ||
|
|
20136ca8b7 | ||
|
|
45d520f913 | ||
|
|
3882130911 | ||
|
|
a6b540737f | ||
|
|
f82065703d | ||
|
|
b423af001d | ||
|
|
b9e77d394b | ||
|
|
57222497ec | ||
|
|
5c5f07c1e7 | ||
|
|
f895d06605 | ||
|
|
bc8f648a91 | ||
|
|
8e57f4df31 | ||
|
|
a08cc5adbb | ||
|
|
595a73fce4 | ||
|
|
dc919e08e8 | ||
|
|
5d1018495f | ||
|
|
ad6fd7a991 | ||
|
|
e022b5959e | ||
|
|
db7f4955a1 | ||
|
|
5c69dd155f | ||
|
|
504f2e8bf4 | ||
|
|
e586dc2924 | ||
|
|
333f918005 | ||
|
|
c8e29033c2 | ||
|
|
d0bd961bde | ||
|
|
006511ee25 | ||
|
|
4ab72146cd | ||
|
|
b60a3fc879 | ||
|
|
a0eeb74957 | ||
|
|
daa0b8741c | ||
|
|
939411300a | ||
|
|
1c312685aa | ||
|
|
316de82f51 | ||
|
|
9068bc5271 | ||
|
|
31a4c9c9d3 | ||
|
|
c1966af2cf | ||
|
|
c665898652 | ||
|
|
f651a660aa | ||
|
|
ba672b51da | ||
|
|
be498c5dd9 | ||
|
|
6e95beccb9 | ||
|
|
c8be839481 | ||
|
|
c7e08813a5 | ||
|
|
d21a6b33ab | ||
|
|
9112cf153e | ||
|
|
3868ac8402 | ||
|
|
3f09010227 | ||
|
|
d6cf82aba3 | ||
|
|
dfe54639b1 | ||
|
|
bc5f5aa538 | ||
|
|
05818e0425 | ||
|
|
7f72a61104 | ||
|
|
8e45d47740 | ||
|
|
71771d1e9b | ||
|
|
aa098e4d0b | ||
|
|
0135e1e3b9 | ||
|
|
ff88c390bb | ||
|
|
d825821a22 | ||
|
|
cbed6ab1bb | ||
|
|
6fc122fa1a | ||
|
|
feba38be36 | ||
|
|
ba85d0bcad | ||
|
|
ad3623dd8d | ||
|
|
8292781045 | ||
|
|
54ec6348fa | ||
|
|
255748bcba | ||
|
|
594eb468df | ||
|
|
960d314e4f | ||
|
|
ed3b50622b | ||
|
|
9f2235c208 | ||
|
|
4ec50bfc41 | ||
|
|
51b67a247a | ||
|
|
01205fd4c0 | ||
|
|
c72808f18b | ||
|
|
6b539a2972 | ||
|
|
2151d21862 | ||
|
|
fb0a4c5d9a | ||
|
|
e690bf387a | ||
|
|
5e155fb081 | ||
|
|
39a6b562cf | ||
|
|
c56b6ddb1c | ||
|
|
2e61ff32ad | ||
|
|
02f6e18adc | ||
|
|
4436e62cf1 | ||
|
|
6e0eb96c61 | ||
|
|
fd68bf7084 | ||
|
|
58cdf97361 | ||
|
|
53dbe36f32 | ||
|
|
081bd07fd1 | ||
|
|
ef1306f703 | ||
|
|
3196967995 | ||
|
|
3875e5e0e5 | ||
|
|
fc8423392f | ||
|
|
f1f6035967 | ||
|
|
ddd21f1644 | ||
|
|
d0a6a35b55 | ||
|
|
e0632f2ce2 | ||
|
|
37e6974afe | ||
|
|
e23e490455 | ||
|
|
f76bb8954b | ||
|
|
d168c7c9dc | ||
|
|
fd9d060c94 | ||
|
|
d8b17795d7 | ||
|
|
ea7b33b0d2 | ||
|
|
8ace0a9ba7 | ||
|
|
98ad93d53e | ||
|
|
38e4ec0b2a | ||
|
|
f083a901fe | ||
|
|
df13ba655c | ||
|
|
7678b25755 | ||
|
|
c87ca4f320 | ||
|
|
3c24a70a1b | ||
|
|
e46db63e06 | ||
|
|
1c57f8d077 | ||
|
|
16cebf0390 | ||
|
|
555bc02665 | ||
|
|
c1bae1ee81 | ||
|
|
f2ed3df3da | ||
|
|
abd678e147 | ||
|
|
6ac5d814fb | ||
|
|
f928899338 | ||
|
|
5a6fd98839 | ||
|
|
072f71dfb7 | ||
|
|
670cee8274 | ||
|
|
9f1be45552 | ||
|
|
f1846ae5ac | ||
|
|
ac19998e5e | ||
|
|
cb7512734d | ||
|
|
3733250b3c | ||
|
|
da3cd8993d | ||
|
|
7690caf020 | ||
|
|
5e335eaead | ||
|
|
d5d82ba344 | ||
|
|
efe2883c5d | ||
|
|
47237c7c3c | ||
|
|
697c769b64 | ||
|
|
94261b1717 | ||
|
|
eaf85a30f9 | ||
|
|
6a88b030ea | ||
|
|
f538416fb3 | ||
|
|
06cd9ef98d | ||
|
|
f3d71f8819 | ||
|
|
b7127c2dc9 | ||
|
|
b2dc5fbd7e | ||
|
|
9e653d6abe | ||
|
|
52c9a7f45d | ||
|
|
ee42c9bfe6 | ||
|
|
e6c3e483a1 | ||
|
|
3a253c6cd7 | ||
|
|
e9c3bbc6d7 | ||
|
|
23d64ac53a | ||
|
|
34f9f20ff4 | ||
|
|
a4a72a79ae | ||
|
|
6ca4d38a01 | ||
|
|
b5c93f176a | ||
|
|
1aaf88098d | ||
|
|
6f447e613d | ||
|
|
dfb7c3b1aa | ||
|
|
b41eb5e1f3 | ||
|
|
9c2d264979 | ||
|
|
b996c3198c | ||
|
|
f879c07c86 | ||
|
|
441e2965ff | ||
|
|
cbe9a03e3c | ||
|
|
4ee7e73d00 | ||
|
|
1cca449726 | ||
|
|
faf7c1c325 | ||
|
|
58288494d6 | ||
|
|
72283dc744 | ||
|
|
b8240b4c18 | ||
|
|
5309da40b7 | ||
|
|
08b90b4720 | ||
|
|
2e890b3838 | ||
|
|
06656fc057 | ||
|
|
574fa67bdc | ||
|
|
e19d7226f8 | ||
|
|
0843fe6c65 | ||
|
|
62a02cd1fe | ||
|
|
949da7792d | ||
|
|
ce724a7e55 | ||
|
|
0a06c80801 | ||
|
|
edc55ade61 | ||
|
|
09e5d9007b | ||
|
|
db926896bd | ||
|
|
ab7b4d5ee9 | ||
|
|
bcf02449b3 | ||
|
|
d48faf35ab | ||
|
|
583bd28a5c | ||
|
|
7e1d8c489b | ||
|
|
de28867374 | ||
|
|
a1aa6cb7c2 | ||
|
|
85e2767dca | ||
|
|
fd48cb6506 | ||
|
|
522659eb59 | ||
|
|
f068efe509 | ||
|
|
726fe416bb | ||
|
|
66fa4f1767 | ||
|
|
d6565f3b99 | ||
|
|
27686ff20b | ||
|
|
a8b865022f | ||
|
|
c1888a8062 | ||
|
|
a95bb0521d | ||
|
|
e2311a145c | ||
|
|
d4e0bab6be | ||
|
|
5b0dc20e4c | ||
|
|
9723c3c21d | ||
|
|
9dc32275ad | ||
|
|
611c11f57b | ||
|
|
763d1f524a | ||
|
|
6428003c3b | ||
|
|
2eac4f93bb | ||
|
|
24adf9cbcb | ||
|
|
c45f581c47 | ||
|
|
ae0c48e6bd | ||
|
|
4ca649154d | ||
|
|
66dd387858 | ||
|
|
9789f5a96a | ||
|
|
cae7b197ec | ||
|
|
f7621b2c6c | ||
|
|
95eb72bfd3 | ||
|
|
7e2d101a46 | ||
|
|
6597881854 | ||
|
|
eaa899df63 | ||
|
|
16ed0bd0c5 | ||
|
|
939187a129 | ||
|
|
4b520c3343 | ||
|
|
51215d480a | ||
|
|
987f0041d3 | ||
|
|
a29de9bf50 | ||
|
|
9bd5831fda | ||
|
|
59f0f2f0fd | ||
|
|
9ae47d37e9 | ||
|
|
2b3ad7f41c | ||
|
|
51db10b18f | ||
|
|
b4b21a446b | ||
|
|
23eced1644 | ||
|
|
7741a6e75d | ||
|
|
d4210db0c9 | ||
|
|
17dde75107 | ||
|
|
1fc3a375df | ||
|
|
64a8471dd5 | ||
|
|
86a8df1c8b | ||
|
|
2eeed2287b | ||
|
|
3d83128f16 | ||
|
|
1c286c3c2f | ||
|
|
2f7beb6744 | ||
|
|
ab0370a0b9 | ||
|
|
3f9a41684a | ||
|
|
dd982acf2c | ||
|
|
fb6a5bc620 | ||
|
|
7641f92cde | ||
|
|
72325fd0a3 | ||
|
|
1b7ed5e2e6 | ||
|
|
86fac272d8 | ||
|
|
865e523ff1 | ||
|
|
9aa2a7ca13 | ||
|
|
e80cbca6b0 | ||
|
|
718a5d4a9e | ||
|
|
9222bec8b1 | ||
|
|
4a965e1b0e | ||
|
|
48e5380e45 | ||
|
|
831418612b | ||
|
|
89ff12309d | ||
|
|
3a4fb6fa4b | ||
|
|
b181503c30 | ||
|
|
887b3dff04 | ||
|
|
3822bd2369 | ||
|
|
4de2c6a421 | ||
|
|
6c4231fd35 | ||
|
|
adfa7aa1fa | ||
|
|
8b6e601405 | ||
|
|
6011911746 | ||
|
|
997119c27a | ||
|
|
2eb6865a27 | ||
|
|
2b2d6673ff | ||
|
|
563c5b7ea0 | ||
|
|
67966b623c | ||
|
|
9fc3fd04be | ||
|
|
238fec244a | ||
|
|
3d71bc9b64 | ||
|
|
3923024d84 | ||
|
|
710b195be1 | ||
|
|
6e408137ee | ||
|
|
9b205cfcfc | ||
|
|
42a80d1b8b | ||
|
|
d6073ac18e | ||
|
|
1c450d46cf | ||
|
|
6b312a8522 | ||
|
|
2b2007ae9e | ||
|
|
e94a34be8c | ||
|
|
c3fb4b1d8e | ||
|
|
e3ca1a7dbe | ||
|
|
2d64d8b444 | ||
|
|
9b98be160a | ||
|
|
9f708ff318 | ||
|
|
4e0ad33d92 | ||
|
|
519285bf38 | ||
|
|
fd1b7b3f22 | ||
|
|
687730a7f5 | ||
|
|
b7821361c3 | ||
|
|
63e1f8fffd | ||
|
|
824612f1b4 | ||
|
|
9482acfdfc | ||
|
|
c75bdd99e4 | ||
|
|
6f34e8f044 | ||
|
|
6d187af643 | ||
|
|
97e9598c79 | ||
|
|
5a6a6de3d7 | ||
|
|
b1a20effde | ||
|
|
ba5ab26f2e | ||
|
|
69f53211a1 | ||
|
|
9dddd1134d | ||
|
|
c5c77d2b0d | ||
|
|
763f94ca80 | ||
|
|
20d637e7b7 | ||
|
|
480b14c8dc | ||
|
|
999db4301a | ||
|
|
92cbc4d516 | ||
|
|
ff9afdb0fe | ||
|
|
3e35b20a02 | ||
|
|
9ea371d6cd | ||
|
|
7a0f9767da | ||
|
|
9d7363f2a7 | ||
|
|
8ee5cf38fd | ||
|
|
a6b788d220 | ||
|
|
ccd87cd9f0 | ||
|
|
b5af87fc6c | ||
|
|
3c9544b023 | ||
|
|
2f65671070 | ||
|
|
8c5436cbed | ||
|
|
548959b50f | ||
|
|
2addb9f99a | ||
|
|
fdd95d1d86 | ||
|
|
66a558ff41 | ||
|
|
733b612eb2 | ||
|
|
991ecce004 | ||
|
|
ad0e30bca5 | ||
|
|
55461188a4 | ||
|
|
5d2405fdef | ||
|
|
e9f1268225 | ||
|
|
803a0ac02a | ||
|
|
bde87d00b9 | ||
|
|
0eae727366 | ||
|
|
3b4c5d54d8 | ||
|
|
4e16bc2f13 | ||
|
|
562ac62f59 | ||
|
|
e7fa2e06f8 | ||
|
|
8123f009d0 | ||
|
|
622aaa9f7d | ||
|
|
7b1ee203ce | ||
|
|
f347e51927 | ||
|
|
9b17af18b3 | ||
|
|
23c7fbfe6b | ||
|
|
035fea676a | ||
|
|
6e1a234d15 | ||
|
|
5b596ea605 | ||
|
|
6bd56460de | ||
|
|
6ef7ea2635 | ||
|
|
f8c00fbaf1 | ||
|
|
d9a42cc4c5 | ||
|
|
fc0bc32814 | ||
|
|
c62504ac92 | ||
|
|
f227e918f9 | ||
|
|
c132dbadce | ||
|
|
b839eb80a1 | ||
|
|
23b03a7f03 | ||
|
|
9196583651 | ||
|
|
fd28252e55 | ||
|
|
94f20e2eb7 | ||
|
|
5ced99a8e7 | ||
|
|
c377e61ff0 | ||
|
|
a6fe0a020a | ||
|
|
bf2ed3d752 | ||
|
|
d17a92eef3 | ||
|
|
1a7be035d3 | ||
|
|
004baaa30f | ||
|
|
ef19268418 | ||
|
|
e82470341f | ||
|
|
88fa42de75 | ||
|
|
432513c3ba | ||
|
|
45370c212b | ||
|
|
e91f660eb1 | ||
|
|
3f3162e57c | ||
|
|
208d1fce58 | ||
|
|
128694213f | ||
|
|
8034ed3473 | ||
|
|
d22069c59e | ||
|
|
5a04d32b39 | ||
|
|
ab65f3a17d | ||
|
|
4e23cbebcf | ||
|
|
63418c1afc | ||
|
|
8ca671761a | ||
|
|
81a5ed9f31 | ||
|
|
528b9d9206 | ||
|
|
1a4c57fac2 | ||
|
|
44a7045732 | ||
|
|
8ac7186185 | ||
|
|
975387f7ae | ||
|
|
d793b5af5e | ||
|
|
5188776224 | ||
|
|
07249c0446 | ||
|
|
188301f403 | ||
|
|
e660721a0c | ||
|
|
e029cc66bc | ||
|
|
e34b5f0119 | ||
|
|
c223364816 | ||
|
|
74fd5844ca | ||
|
|
4ebc86df84 | ||
|
|
8cd03eff58 | ||
|
|
46660a16a0 | ||
|
|
27b097309e | ||
|
|
d0fa1f8e94 | ||
|
|
55e38fea0e | ||
|
|
274ace2898 | ||
|
|
a8cc3709c6 | ||
|
|
a28ab18987 | ||
|
|
048b81373d | ||
|
|
aea1d62ae6 | ||
|
|
601e54000d | ||
|
|
7bdf707dd3 | ||
|
|
4a7e7e9fdb | ||
|
|
bdf3f95346 | ||
|
|
453e9c5da9 | ||
|
|
3a69bd3ef5 | ||
|
|
a69c0f765e | ||
|
|
97d1367764 | ||
|
|
880e21288e | ||
|
|
2ba9762255 | ||
|
|
30f120ee6a | ||
|
|
28a36e20aa | ||
|
|
a8fb4d23f8 | ||
|
|
f37a4ec9c8 | ||
|
|
31ed13094b | ||
|
|
8ccf5b2044 | ||
|
|
247d85b523 | ||
|
|
54688db994 | ||
|
|
8590f5a599 | ||
|
|
289d51c049 | ||
|
|
813eaa867c | ||
|
|
abffb16292 | ||
|
|
50e439f633 | ||
|
|
25eb1415df | ||
|
|
0b28220f2b | ||
|
|
5661740990 | ||
|
|
255c31bddf | ||
|
|
7888fefeea | ||
|
|
0937835802 | ||
|
|
ea806b37ac | ||
|
|
d6614f3149 | ||
|
|
9a50a39848 | ||
|
|
2793e8f327 | ||
|
|
c0bb5c4bf6 | ||
|
|
cc74fc93b4 | ||
|
|
44b39195d6 | ||
|
|
2454110d81 | ||
|
|
ee59e7d45f | ||
|
|
605c319157 | ||
|
|
dc307a1cc0 | ||
|
|
e7981152b2 | ||
|
|
b3eb5c860b | ||
|
|
1c2f7409e3 | ||
|
|
57d41a3f94 | ||
|
|
f9d2bd24eb | ||
|
|
0e7e8eec53 | ||
|
|
9a30a246d8 | ||
|
|
c332499252 | ||
|
|
005f289632 | ||
|
|
3d7553317f | ||
|
|
8e4f6b2ee5 | ||
|
|
d5cad7d3ae | ||
|
|
355e9d4fb5 | ||
|
|
629185e10a | ||
|
|
deeef5fc24 | ||
|
|
b905c07650 | ||
|
|
1ff30034e8 | ||
|
|
c64b59c80c | ||
|
|
9a869bbaf6 | ||
|
|
fe1b54b713 | ||
|
|
cc84dfd50f | ||
|
|
158c7867e7 | ||
|
|
997c39ccd5 | ||
|
|
3bab307904 | ||
|
|
02704e38d3 | ||
|
|
9e5fb29965 | ||
|
|
7dba131d5f | ||
|
|
ce0b771217 | ||
|
|
44bc7aa3d0 | ||
|
|
7f0c88ed3e | ||
|
|
d15508f52c | ||
|
|
b111423b9c | ||
|
|
215a51c4c1 | ||
|
|
1120847f72 | ||
|
|
704323b805 | ||
|
|
10b0e13882 | ||
|
|
901f0709c5 | ||
|
|
0d6165e481 | ||
|
|
6583eed6b2 | ||
|
|
a9ca70ad4a | ||
|
|
ab5b75eb01 | ||
|
|
cc060a283d | ||
|
|
28db83e17b | ||
|
|
dbb1f86455 | ||
|
|
02f7c555af | ||
|
|
d982b38f76 | ||
|
|
bc2e4b952e | ||
|
|
afdc0ebfd7 | ||
|
|
1079b18ff7 | ||
|
|
8cb1061c11 | ||
|
|
2bacd0180d | ||
|
|
ddf9bc2335 | ||
|
|
a1afd940e3 | ||
|
|
8bb76201c0 | ||
|
|
ede71d398c | ||
|
|
0c73a637f1 | ||
|
|
37700f2d98 | ||
|
|
0ec695f9e4 | ||
|
|
7ffd21dbc8 | ||
|
|
48b3920656 | ||
|
|
63d91af555 | ||
|
|
a96c3bc885 | ||
|
|
77e1ae3d70 | ||
|
|
9cc8d90865 | ||
|
|
a6c621ef7f | ||
|
|
328289099a | ||
|
|
22ffd5f490 | ||
|
|
81708bb1e6 | ||
|
|
c81e9d8d1f | ||
|
|
ff3ab5fcca | ||
|
|
1d1cae8e4d | ||
|
|
8c781a6a44 | ||
|
|
93a4bec06b | ||
|
|
c93f57efd6 | ||
|
|
0e4f93c5cf | ||
|
|
5b3fedebfe | ||
|
|
219751bb21 | ||
|
|
bb7772a364 | ||
|
|
3c8fc37c56 | ||
|
|
39805b09e5 | ||
|
|
63b01199fe | ||
|
|
b09bae3443 | ||
|
|
de6fb98bed | ||
|
|
433605e282 | ||
|
|
a843e64fc2 | ||
|
|
71611d2dec | ||
|
|
abf48e8a5d | ||
|
|
ac5ea0cd4d | ||
|
|
a46fcacedd | ||
|
|
df947fc933 | ||
|
|
91d49cfe9f | ||
|
|
19d15f83db | ||
|
|
cde61cc518 | ||
|
|
acd829a7a0 | ||
|
|
4aa5dac768 | ||
|
|
08b59b5cc5 | ||
|
|
6b900e28cd | ||
|
|
5ca21ee398 | ||
|
|
953e30814a | ||
|
|
a65344cf25 | ||
|
|
7fb8b4191f | ||
|
|
fc8aec7324 | ||
|
|
c309aac8f5 | ||
|
|
1e37ec727d | ||
|
|
ae36bae59d | ||
|
|
e663beebf0 | ||
|
|
9d0292e9e1 | ||
|
|
fe27bb7982 | ||
|
|
d603a9cbb5 | ||
|
|
c1fc22e746 | ||
|
|
85d3710924 | ||
|
|
a0324245f1 | ||
|
|
ce8e9dc690 | ||
|
|
32ca7efbeb | ||
|
|
27520eb169 | ||
|
|
9843adb4f1 | ||
|
|
8e8d474ae8 | ||
|
|
6151ea1c4d | ||
|
|
d969025f87 | ||
|
|
18e1cb9c92 | ||
|
|
e7ceb9e8f5 | ||
|
|
3a4675c8c3 | ||
|
|
5ce0f216cf | ||
|
|
688f150463 | ||
|
|
00ccb8d4f1 | ||
|
|
e70b91aaef | ||
|
|
8b90ac2b1a | ||
|
|
f085baa77d | ||
|
|
fa4de05c14 | ||
|
|
dde12b492b | ||
|
|
096d98c3d9 | ||
|
|
147cae9ed8 | ||
|
|
c63709014b | ||
|
|
9b307799ce | ||
|
|
78e36779cf | ||
|
|
90ae35e2e4 | ||
|
|
b96e30e66c | ||
|
|
0af0df7423 | ||
|
|
0883d324d9 | ||
|
|
77597e6a16 | ||
|
|
eae6b36d03 | ||
|
|
c4bc7c41b1 | ||
|
|
c79ddd6fc4 | ||
|
|
ae58fb8821 | ||
|
|
569c1d1163 | ||
|
|
12fe0932c4 | ||
|
|
72e3e236de | ||
|
|
ab59b238b3 | ||
|
|
bed9570e48 | ||
|
|
c6bf67f446 | ||
|
|
5ee186b8e5 | ||
|
|
94817b557c | ||
|
|
26e1496075 | ||
|
|
92fca8ae74 | ||
|
|
7fa5b8401d | ||
|
|
0eac0402e1 | ||
|
|
c71c729bc2 | ||
|
|
e459f114cd | ||
|
|
982a7e86a8 | ||
|
|
94916749c5 | ||
|
|
5ce5f87a26 | ||
|
|
1d2ae46ddc | ||
|
|
71ac331f90 | ||
|
|
47cc95fc9f | ||
|
|
3feb632eb4 | ||
|
|
236497e331 | ||
|
|
a38dc497b2 | ||
|
|
28ed52fa94 | ||
|
|
e995b95c94 | ||
|
|
8379cce209 | ||
|
|
3c6b798522 | ||
|
|
c18770a61a | ||
|
|
6352448b72 | ||
|
|
fb6cce487f | ||
|
|
3079cc4167 | ||
|
|
27ef8b1eb7 | ||
|
|
c00435d72b | ||
|
|
d0e67cce75 | ||
|
|
6ec315e540 | ||
|
|
cf4e6f909c | ||
|
|
b3a99166fd | ||
|
|
107008331e | ||
|
|
accd9f9044 | ||
|
|
17294ae5e5 | ||
|
|
3c3a9b765a | ||
|
|
526c5bcdad | ||
|
|
a1bbe75d43 | ||
|
|
572a311639 | ||
|
|
cb5d6f6e3a | ||
|
|
e3cabb555d | ||
|
|
f193f56564 | ||
|
|
c0a91ab548 | ||
|
|
26e510bf28 | ||
|
|
98e73ed67a | ||
|
|
7f3de3ca4a | ||
|
|
189cb3a7be | ||
|
|
1d0ed95a54 | ||
|
|
5dcfdbe51d | ||
|
|
f2f1d7fe72 | ||
|
|
ae533cadef | ||
|
|
58f6aab637 | ||
|
|
b816009db0 | ||
|
|
a84dee1be1 | ||
|
|
30e4ddbf10 | ||
|
|
296a5b6707 | ||
|
|
b0520dcb59 | ||
|
|
f42967ed86 | ||
|
|
966675c8e3 | ||
|
|
f68df1624b | ||
|
|
42cade808b | ||
|
|
d59211982b | ||
|
|
7aaa10680d | ||
|
|
dcf35dd25f | ||
|
|
e70322676c | ||
|
|
b3f43ab938 | ||
|
|
bbc4468908 | ||
|
|
4de7f55f2f | ||
|
|
def23e4ee2 | ||
|
|
55befe396a | ||
|
|
483fddccf9 | ||
|
|
c4495ad8f2 | ||
|
|
05aed255db | ||
|
|
0f1326b2bd | ||
|
|
1668489b00 | ||
|
|
7dd292cbb3 | ||
|
|
c0578031b5 | ||
|
|
a5b64b6a41 | ||
|
|
b722e7eb7e | ||
|
|
6d19a8bdb5 | ||
|
|
f09ddd2983 | ||
|
|
a6839fd238 | ||
|
|
f3063f98d3 | ||
|
|
70674d3c58 | ||
|
|
3829aba869 | ||
|
|
92614b91d7 | ||
|
|
bf5acf646e | ||
|
|
0780be022c | ||
|
|
c756b5d054 | ||
|
|
e3db6496d7 | ||
|
|
1f1c95c618 | ||
|
|
5ea032cf81 | ||
|
|
1e6542a5ca | ||
|
|
218e7bc8df | ||
|
|
a06e467a1a | ||
|
|
730645b3c6 | ||
|
|
3dd632fd5a | ||
|
|
365d4d3756 | ||
|
|
d22053a5e6 | ||
|
|
e3ac561d30 | ||
|
|
69367a7948 | ||
|
|
85a38a8122 | ||
|
|
d2cf1954fc | ||
|
|
70712e3445 | ||
|
|
85eea1189e | ||
|
|
ed2344ab9b | ||
|
|
935bd51510 | ||
|
|
3593cb0c87 | ||
|
|
e130b208ab | ||
|
|
02136531a3 | ||
|
|
d3a486a4f8 | ||
|
|
2b957df56c | ||
|
|
c2dec387aa | ||
|
|
a1ed6fbd96 | ||
|
|
ad81e37672 | ||
|
|
78f3c3da48 | ||
|
|
d18f85df46 | ||
|
|
6213da330a | ||
|
|
53f8d73101 | ||
|
|
2cfc9a2706 | ||
|
|
0ba94bf33f | ||
|
|
06570d1e41 | ||
|
|
be1667c387 | ||
|
|
eb39d908d0 | ||
|
|
60db5957d3 | ||
|
|
2a45a99737 | ||
|
|
91a67d5ee0 | ||
|
|
55cf9d5792 | ||
|
|
a7bb029d23 | ||
|
|
cc31c58235 | ||
|
|
4e831307a8 | ||
|
|
445067f6ad | ||
|
|
11bfd0de76 | ||
|
|
dc7b8ad23b | ||
|
|
2f5feb4841 | ||
|
|
4e3c319e83 | ||
|
|
d0025a7483 | ||
|
|
db0b29be51 | ||
|
|
7da07e8af9 | ||
|
|
6da892758b | ||
|
|
5e88930475 | ||
|
|
97b02f9765 | ||
|
|
7ee1b10dfb | ||
|
|
3932c15823 | ||
|
|
618fd1d417 | ||
|
|
151a6cf4c2 | ||
|
|
1766de814c | ||
|
|
0b351d6da2 | ||
|
|
6623ce9942 | ||
|
|
1dbc190fa6 | ||
|
|
46b9445fa6 | ||
|
|
d3d3187e51 | ||
|
|
6c94f3cd67 | ||
|
|
295f3030a9 | ||
|
|
1ba88258a9 | ||
|
|
10ddd72b58 | ||
|
|
1b7990d5d9 | ||
|
|
9f50b8024d | ||
|
|
7b9dcb05d4 | ||
|
|
e37361985c | ||
|
|
467e88d305 | ||
|
|
fe4a8fbc74 | ||
|
|
2328bbaea1 | ||
|
|
4cc834adcd | ||
|
|
5e49ff5072 | ||
|
|
f98680a18a | ||
|
|
2880221bb3 | ||
|
|
27887c74d8 | ||
|
|
6306885fe7 | ||
|
|
2a11f16c0f | ||
|
|
2297504fb3 | ||
|
|
897ac6e4e5 | ||
|
|
f20c12a1c0 | ||
|
|
5dea31385c | ||
|
|
58f0f63926 | ||
|
|
ed2bf48a6d | ||
|
|
e6c8ebb65c | ||
|
|
119733892e | ||
|
|
437f563128 | ||
|
|
ecad2261c8 | ||
|
|
182323a7fb | ||
|
|
30d06f9b12 | ||
|
|
6bb562272d | ||
|
|
3b3164b039 | ||
|
|
6f0bdbd01c | ||
|
|
ce2a1799ab | ||
|
|
d088bd3034 | ||
|
|
806e4c3a63 | ||
|
|
8532ce2002 | ||
|
|
84946e9275 | ||
|
|
c9bbba4872 | ||
|
|
ea9a651573 | ||
|
|
5abbb134d9 | ||
|
|
694dd4ad9e | ||
|
|
4af48e548a | ||
|
|
079dc197c7 | ||
|
|
77613169da | ||
|
|
2630e251ce | ||
|
|
0909a0637e | ||
|
|
d62aef2016 | ||
|
|
25e9483add | ||
|
|
c1be2bdeeb | ||
|
|
49a2b30350 | ||
|
|
472cd0fc2f | ||
|
|
dc9c43b6dd | ||
|
|
e1e23a6302 | ||
|
|
2e916abe15 | ||
|
|
3ebdb9b67e | ||
|
|
01f5046caf | ||
|
|
ac17d544e0 | ||
|
|
b447a2a719 | ||
|
|
ec4fd1d219 | ||
|
|
b503725dc7 | ||
|
|
e873fc7b71 | ||
|
|
3070e9503a | ||
|
|
d9130def39 | ||
|
|
cdf0a6e766 | ||
|
|
a0e0ac887f | ||
|
|
4ddc956462 | ||
|
|
203fd7b2e8 | ||
|
|
1bb85377e4 | ||
|
|
3892fafc2d | ||
|
|
8a34679a13 | ||
|
|
b64c1d8ac1 | ||
|
|
8fb86c13bc | ||
|
|
05edf59c91 | ||
|
|
b9f1f85433 | ||
|
|
f8e2e76698 | ||
|
|
29856f7527 | ||
|
|
aa6cdf16c8 | ||
|
|
96794851b3 | ||
|
|
51a1a721b3 | ||
|
|
695f3e5758 | ||
|
|
e875c1f64a | ||
|
|
19f92d7d55 | ||
|
|
5a8dd40918 | ||
|
|
1b766ab89c | ||
|
|
a63d6f6364 | ||
|
|
4422ca2235 | ||
|
|
78ad4813df | ||
|
|
42d753846e | ||
|
|
5c018c0437 | ||
|
|
07cee3f6ef | ||
|
|
c5cb2ff268 | ||
|
|
c8a4a4f4e9 | ||
|
|
3ba07a5928 | ||
|
|
7282668da1 | ||
|
|
451e803444 | ||
|
|
d70c55231b | ||
|
|
275c124701 | ||
|
|
87a6bbd251 | ||
|
|
8fd4c7afcc | ||
|
|
eee3f83d98 | ||
|
|
28ee180283 | ||
|
|
432b0223f1 | ||
|
|
16050a32c7 | ||
|
|
898ca62b55 | ||
|
|
5623a7c331 | ||
|
|
9e3ca6d1a3 | ||
|
|
fa58965bbc | ||
|
|
b8ef9028f1 | ||
|
|
f711d35377 | ||
|
|
abd3c62194 | ||
|
|
2f3c3b1867 | ||
|
|
11af09faf3 | ||
|
|
577d36b596 | ||
|
|
6d71dd7d98 | ||
|
|
49ce24984c | ||
|
|
f401181cb5 | ||
|
|
ff8295a97c | ||
|
|
aacb96df7a | ||
|
|
ca9115d6d0 | ||
|
|
2c91837865 | ||
|
|
2272324fd6 | ||
|
|
171b50bb1c | ||
|
|
04d6bd7922 | ||
|
|
2abdac7003 | ||
|
|
190f01dbe3 | ||
|
|
18a701355c | ||
|
|
3911957d34 | ||
|
|
f5146bde18 | ||
|
|
b57ea10c94 | ||
|
|
821cfed6c0 | ||
|
|
728f297bb8 | ||
|
|
4c0013fd79 | ||
|
|
65d06285d8 | ||
|
|
e0d1a8995d | ||
|
|
425beea6c5 | ||
|
|
cdfb930a69 | ||
|
|
09641b9790 | ||
|
|
aac9a57500 | ||
|
|
59f7953249 | ||
|
|
217dbb448e | ||
|
|
76c881043e | ||
|
|
835a20610b | ||
|
|
74e808b8c3 | ||
|
|
53c83f2fae | ||
|
|
62365fa31d | ||
|
|
a44c8e9b4e | ||
|
|
320e430c7f | ||
|
|
8615646827 | ||
|
|
925d7c3057 | ||
|
|
e350924ac1 | ||
|
|
e891a46740 | ||
|
|
cd9285bbe6 | ||
|
|
917ff13c86 | ||
|
|
2a40f44023 | ||
|
|
c22d06c780 | ||
|
|
babbd23744 | ||
|
|
eee41cbe2b | ||
|
|
bf54b78270 | ||
|
|
589dfae89f | ||
|
|
c8cc197ddd | ||
|
|
76c561a908 | ||
|
|
04797a80e1 | ||
|
|
29583a5ea5 | ||
|
|
d12c1f7a4a | ||
|
|
505572dae8 | ||
|
|
3ddea794e1 | ||
|
|
10e03bde35 | ||
|
|
e969604d75 | ||
|
|
c822e18f0d | ||
|
|
891af1c524 | ||
|
|
5807d0b766 | ||
|
|
9decd0813c | ||
|
|
43d3fb3eba | ||
|
|
f5f8c687be | ||
|
|
9e5cd0f10b | ||
|
|
231a3e7c02 | ||
|
|
57172e2e30 | ||
|
|
043399dd07 | ||
|
|
6b19356740 | ||
|
|
1cbe6a7067 | ||
|
|
2912f9870f | ||
|
|
9630be56e1 | ||
|
|
4aa78843c0 | ||
|
|
b36d9f3776 | ||
|
|
6f54cab3f0 | ||
|
|
ed5df1e68e | ||
|
|
3c07e11e73 | ||
|
|
91bdad1d12 | ||
|
|
482a83886e | ||
|
|
b8f52d67e1 | ||
|
|
9ed82199c5 | ||
|
|
864aaf8c4d | ||
|
|
c7056756d5 | ||
|
|
93cc8569c3 | ||
|
|
05a3d569b0 | ||
|
|
7bc08797f9 | ||
|
|
5b22704799 | ||
|
|
9609e4392b | ||
|
|
d0c033d09b | ||
|
|
4e381cbe92 | ||
|
|
ffaf3b1d36 | ||
|
|
465a3b755d | ||
|
|
91fc52bfb7 | ||
|
|
b425954b9e | ||
|
|
2e64ed6255 | ||
|
|
bf3d936aea | ||
|
|
19deea986a | ||
|
|
aa7a18f131 | ||
|
|
837ce2cb31 | ||
|
|
cadce540f9 | ||
|
|
1fade53a61 | ||
|
|
207ce81e4a | ||
|
|
fc59f74849 | ||
|
|
9d3c5ead93 | ||
|
|
549a01b62e | ||
|
|
5a6d9d4e5b | ||
|
|
1a7587ee48 | ||
|
|
cc9aa9eb3f | ||
|
|
5617e50ebc | ||
|
|
b83e8b950d | ||
|
|
d15fc5371a | ||
|
|
3f739575d8 | ||
|
|
7e4616646f | ||
|
|
44ffaf86ad | ||
|
|
d096644c67 | ||
|
|
1428600de4 | ||
|
|
17b18df600 | ||
|
|
cd81dbae1c | ||
|
|
76be06ed56 | ||
|
|
c2026e01c0 | ||
|
|
cdca286be1 | ||
|
|
41de6efca9 | ||
|
|
63a4ccebdc | ||
|
|
9237c1e91d | ||
|
|
9d051c5d4f | ||
|
|
acd03d15f2 | ||
|
|
a035de2fdd | ||
|
|
76a1267799 | ||
|
|
e533b008d4 | ||
|
|
a4380228e3 | ||
|
|
2a9d7474ce | ||
|
|
850a690290 | ||
|
|
39edd9ff73 | ||
|
|
b82bbbfc6b | ||
|
|
023c065812 | ||
|
|
a627a6c4e2 | ||
|
|
6c9ddff8e9 | ||
|
|
c5318587b8 | ||
|
|
c3622299ce | ||
|
|
de36a48861 | ||
|
|
961ca93219 | ||
|
|
557ccc5ad8 | ||
|
|
2488c445b6 | ||
|
|
b4241d0a0d | ||
|
|
8250391e49 | ||
|
|
fd1df4e971 | ||
|
|
5115b2faa3 | ||
|
|
93e82a8bf4 | ||
|
|
4413defca5 | ||
|
|
f359e1c6c4 | ||
|
|
1bc87d582d | ||
|
|
a86a383357 | ||
|
|
16f02c7b30 | ||
|
|
fe2706890c | ||
|
|
85f0f8227d | ||
|
|
59e3c02002 | ||
|
|
032dee256f | ||
|
|
6b5e2b2bf5 | ||
|
|
6fc303de87 | ||
|
|
6ad6e4873d | ||
|
|
d6d7391da8 | ||
|
|
11675932ac | ||
|
|
f02202e1e1 | ||
|
|
f8ee20991c | ||
|
|
e6db14e2f1 | ||
|
|
d00886abea | ||
|
|
4873d2bfa1 | ||
|
|
9f426578cf | ||
|
|
9d01b695a8 | ||
|
|
93829ab228 | ||
|
|
dd234f86d5 | ||
|
|
3daff6f1aa | ||
|
|
89dfa0f5fc | ||
|
|
bc03c492a0 | ||
|
|
f50a4c1454 | ||
|
|
d13d4d95ce | ||
|
|
428790ec06 | ||
|
|
4f551ce414 | ||
|
|
6ed7b10273 | ||
|
|
02979566ee | ||
|
|
cbdcc839f3 | ||
|
|
e1c8f087f4 | ||
|
|
3a90ea44a5 | ||
|
|
e55492475d | ||
|
|
07ec2e441d | ||
|
|
38d7e0b43c | ||
|
|
3411bfd00d | ||
|
|
7e5fe35ae4 | ||
|
|
8c8cf38d4d | ||
|
|
75b25297fd | ||
|
|
009ee47fe2 | ||
|
|
ec2adc2c03 | ||
|
|
ad301e6ed7 | ||
|
|
d094381e5d | ||
|
|
3ff9bbd217 | ||
|
|
e62ee2bc06 | ||
|
|
b49721cdd1 | ||
|
|
64c0a7967f | ||
|
|
e96eadab40 | ||
|
|
e73283121b | ||
|
|
857d13e8d6 | ||
|
|
91db3d4d5c | ||
|
|
961cf29217 | ||
|
|
c839b334eb | ||
|
|
714bfcd45b | ||
|
|
77ce8b953e | ||
|
|
01ada95941 | ||
|
|
eabdc5042a | ||
|
|
96267d9437 | ||
|
|
9497a24127 | ||
|
|
fdf75c6d0e | ||
|
|
6352308882 | ||
|
|
a8172a0f4e | ||
|
|
ebcd10d66f | ||
|
|
885642915f | ||
|
|
2e424491c0 | ||
|
|
aa6faef8f7 | ||
|
|
b3254baf60 | ||
|
|
0a43d27f0e | ||
|
|
3fe11fe24d | ||
|
|
af18fdc749 | ||
|
|
32b5eddd7d | ||
|
|
07c3aa1869 | ||
|
|
e59bad89e7 | ||
|
|
b971807980 | ||
|
|
c974dad799 | ||
|
|
4eae570ef5 | ||
|
|
67992a7d99 | ||
|
|
0a4899f366 | ||
|
|
1eb02f6c91 | ||
|
|
575874e4fb | ||
|
|
751b7eca62 | ||
|
|
1ae7150810 | ||
|
|
70caf9bf8c | ||
|
|
0b226ac027 | ||
|
|
220d6fd59b | ||
|
|
0a00a4b58e | ||
|
|
156e15a4fa | ||
|
|
271d3f6673 | ||
|
|
fec4ab93c5 | ||
|
|
38a7a7a54d | ||
|
|
0db0704e2c | ||
|
|
88f472e5d2 | ||
|
|
92452d46da | ||
|
|
ac70252d70 | ||
|
|
f6451d2518 | ||
|
|
2473f9d19b | ||
|
|
bc583385a9 | ||
|
|
8286bfbab7 | ||
|
|
d129fabe3b | ||
|
|
2539867247 | ||
|
|
69fedb92d9 | ||
|
|
54b5eadcc4 | ||
|
|
16773e2a35 | ||
|
|
78503c62b7 | ||
|
|
a330c9cee5 | ||
|
|
ff0867996e | ||
|
|
1bf8f996d1 | ||
|
|
52f4d993c1 | ||
|
|
d0ceebc5d7 | ||
|
|
9122af3ae1 | ||
|
|
b8533428bc | ||
|
|
677905334c | ||
|
|
d1d55d29a0 | ||
|
|
e07dba7ad6 | ||
|
|
062f832510 | ||
|
|
d0330bb64b | ||
|
|
91a23ec6ec | ||
|
|
0b000dd043 | ||
|
|
c73ba91a66 | ||
|
|
dfc00f8bc1 | ||
|
|
a18ff9c9b3 | ||
|
|
d0199279ad | ||
|
|
9ede1e12d8 | ||
|
|
c806eae0de | ||
|
|
4e2061636e | ||
|
|
e3ef171968 | ||
|
|
12d83a4184 | ||
|
|
045412e8dd | ||
|
|
9896a9a58b | ||
|
|
b9011bda59 | ||
|
|
2b2f5fa36a | ||
|
|
43c557dc5c | ||
|
|
7abb2c9bd7 | ||
|
|
7a9ea4480a | ||
|
|
31bcc558de | ||
|
|
676e15f785 | ||
|
|
3e71c90949 | ||
|
|
550ae9c968 | ||
|
|
1c872ec326 | ||
|
|
05f35b182c | ||
|
|
79791438fe | ||
|
|
bf20cc34f6 | ||
|
|
5cba71de70 | ||
|
|
4b7e83056d | ||
|
|
ed954d66c3 | ||
|
|
f816dfae65 | ||
|
|
142bcd66ca | ||
|
|
1c4fbaae20 | ||
|
|
d517a54e28 | ||
|
|
c905512bb0 | ||
|
|
1254951fab | ||
|
|
80f50e6ccd | ||
|
|
7fec26f5d3 | ||
|
|
a9a875ee2b | ||
|
|
db5ac715f3 | ||
|
|
0b330d90ad | ||
|
|
63601fabd1 | ||
|
|
1370b4482f | ||
|
|
b062f3142b | ||
|
|
c37175271f | ||
|
|
e8eab66c30 | ||
|
|
a73a497143 | ||
|
|
6aea515e1d | ||
|
|
dfc2b7e02a | ||
|
|
040290971c | ||
|
|
553bad585e | ||
|
|
f76b612506 | ||
|
|
c4e94c88d7 |
@@ -1 +1,6 @@
|
||||
models/*.bin
|
||||
.idea
|
||||
models
|
||||
examples/chatbot-ui/models
|
||||
examples/rwkv/models
|
||||
examples/**/models
|
||||
Dockerfile
|
||||
90
.env
90
.env
@@ -1 +1,89 @@
|
||||
THREADS=14
|
||||
## Set number of threads.
|
||||
## Note: prefer the number of physical cores. Overbooking the CPU degrades performance notably.
|
||||
# THREADS=14
|
||||
|
||||
## Specify a different bind address (defaults to ":8080")
|
||||
# ADDRESS=127.0.0.1:8080
|
||||
|
||||
## Default models context size
|
||||
# CONTEXT_SIZE=512
|
||||
#
|
||||
## Define galleries.
|
||||
## models will to install will be visible in `/models/available`
|
||||
# GALLERIES=[{"name":"model-gallery", "url":"github:go-skynet/model-gallery/index.yaml"}]
|
||||
|
||||
## CORS settings
|
||||
# CORS=true
|
||||
# CORS_ALLOW_ORIGINS=*
|
||||
|
||||
## Default path for models
|
||||
#
|
||||
# MODELS_PATH=/models
|
||||
|
||||
## Enable debug mode
|
||||
# DEBUG=true
|
||||
|
||||
## Disables COMPEL (Diffusers)
|
||||
# COMPEL=0
|
||||
|
||||
## Enable/Disable single backend (useful if only one GPU is available)
|
||||
# SINGLE_ACTIVE_BACKEND=true
|
||||
|
||||
## Specify a build type. Available: cublas, openblas, clblas.
|
||||
## cuBLAS: This is a GPU-accelerated version of the complete standard BLAS (Basic Linear Algebra Subprograms) library. It's provided by Nvidia and is part of their CUDA toolkit.
|
||||
## OpenBLAS: This is an open-source implementation of the BLAS library that aims to provide highly optimized code for various platforms. It includes support for multi-threading and can be compiled to use hardware-specific features for additional performance. OpenBLAS can run on many kinds of hardware, including CPUs from Intel, AMD, and ARM.
|
||||
## clBLAS: This is an open-source implementation of the BLAS library that uses OpenCL, a framework for writing programs that execute across heterogeneous platforms consisting of CPUs, GPUs, and other processors. clBLAS is designed to take advantage of the parallel computing power of GPUs but can also run on any hardware that supports OpenCL. This includes hardware from different vendors like Nvidia, AMD, and Intel.
|
||||
# BUILD_TYPE=openblas
|
||||
|
||||
## Uncomment and set to true to enable rebuilding from source
|
||||
# REBUILD=true
|
||||
|
||||
## Enable go tags, available: stablediffusion, tts
|
||||
## stablediffusion: image generation with stablediffusion
|
||||
## tts: enables text-to-speech with go-piper
|
||||
## (requires REBUILD=true)
|
||||
#
|
||||
# GO_TAGS=stablediffusion
|
||||
|
||||
## Path where to store generated images
|
||||
# IMAGE_PATH=/tmp
|
||||
|
||||
## Specify a default upload limit in MB (whisper)
|
||||
# UPLOAD_LIMIT
|
||||
|
||||
## List of external GRPC backends (note on the container image this variable is already set to use extra backends available in extra/)
|
||||
# EXTERNAL_GRPC_BACKENDS=my-backend:127.0.0.1:9000,my-backend2:/usr/bin/backend.py
|
||||
|
||||
### Advanced settings ###
|
||||
### Those are not really used by LocalAI, but from components in the stack ###
|
||||
##
|
||||
### Preload libraries
|
||||
# LD_PRELOAD=
|
||||
|
||||
### Huggingface cache for models
|
||||
# HUGGINGFACE_HUB_CACHE=/usr/local/huggingface
|
||||
|
||||
### Python backends GRPC max workers
|
||||
### Default number of workers for GRPC Python backends.
|
||||
### This actually controls wether a backend can process multiple requests or not.
|
||||
# PYTHON_GRPC_MAX_WORKERS=1
|
||||
|
||||
### Define the number of parallel LLAMA.cpp workers (Defaults to 1)
|
||||
# LLAMACPP_PARALLEL=1
|
||||
|
||||
### Enable to run parallel requests
|
||||
# PARALLEL_REQUESTS=true
|
||||
|
||||
### Watchdog settings
|
||||
###
|
||||
# Enables watchdog to kill backends that are inactive for too much time
|
||||
# WATCHDOG_IDLE=true
|
||||
#
|
||||
# Enables watchdog to kill backends that are busy for too much time
|
||||
# WATCHDOG_BUSY=true
|
||||
#
|
||||
# Time in duration format (e.g. 1h30m) after which a backend is considered idle
|
||||
# WATCHDOG_IDLE_TIMEOUT=5m
|
||||
#
|
||||
# Time in duration format (e.g. 1h30m) after which a backend is considered busy
|
||||
# WATCHDOG_BUSY_TIMEOUT=5m
|
||||
1
.gitattributes
vendored
Normal file
1
.gitattributes
vendored
Normal file
@@ -0,0 +1 @@
|
||||
*.sh text eol=lf
|
||||
5
.github/FUNDING.yml
vendored
Normal file
5
.github/FUNDING.yml
vendored
Normal file
@@ -0,0 +1,5 @@
|
||||
# These are supported funding model platforms
|
||||
|
||||
github: [mudler]
|
||||
custom:
|
||||
- https://www.buymeacoffee.com/mudler
|
||||
29
.github/ISSUE_TEMPLATE/bug_report.md
vendored
Normal file
29
.github/ISSUE_TEMPLATE/bug_report.md
vendored
Normal file
@@ -0,0 +1,29 @@
|
||||
---
|
||||
name: Bug report
|
||||
about: Create a report to help us improve
|
||||
title: ''
|
||||
labels: bug, unconfirmed, up-for-grabs
|
||||
---
|
||||
|
||||
<!-- Thanks for helping us to improve LocalAI! We welcome all bug reports. Please fill out each area of the template so we can better help you. Comments like this will be hidden when you post but you can delete them if you wish. -->
|
||||
|
||||
**LocalAI version:**
|
||||
<!-- Container Image or LocalAI tag/commit -->
|
||||
|
||||
**Environment, CPU architecture, OS, and Version:**
|
||||
<!-- Provide the output from "uname -a", HW specs, if it's a VM -->
|
||||
|
||||
**Describe the bug**
|
||||
<!-- A clear and concise description of what the bug is. -->
|
||||
|
||||
**To Reproduce**
|
||||
<!-- Steps to reproduce the behavior, including the LocalAI command used, if any -->
|
||||
|
||||
**Expected behavior**
|
||||
<!-- A clear and concise description of what you expected to happen. -->
|
||||
|
||||
**Logs**
|
||||
<!-- If applicable, add logs while running LocalAI in debug mode (`--debug` or `DEBUG=true`) to help explain your problem. -->
|
||||
|
||||
**Additional context**
|
||||
<!-- Add any other context about the problem here. -->
|
||||
8
.github/ISSUE_TEMPLATE/config.yml
vendored
Normal file
8
.github/ISSUE_TEMPLATE/config.yml
vendored
Normal file
@@ -0,0 +1,8 @@
|
||||
blank_issues_enabled: false
|
||||
contact_links:
|
||||
- name: Community Support
|
||||
url: https://github.com/go-skynet/LocalAI/discussions
|
||||
about: Please ask and answer questions here.
|
||||
- name: Discord
|
||||
url: https://discord.gg/uJAeKSAGDy
|
||||
about: Join our community on Discord!
|
||||
20
.github/ISSUE_TEMPLATE/feature_request.md
vendored
Normal file
20
.github/ISSUE_TEMPLATE/feature_request.md
vendored
Normal file
@@ -0,0 +1,20 @@
|
||||
---
|
||||
name: Feature request
|
||||
about: Suggest an idea for this project
|
||||
title: ''
|
||||
labels: enhancement, up-for-grabs
|
||||
---
|
||||
|
||||
<!-- Thanks for helping us to improve LocalAI! We welcome all feature requests. Please fill out each area of the template so we can better help you. Comments like this will be hidden when you post but you can delete them if you wish. -->
|
||||
|
||||
**Is your feature request related to a problem? Please describe.**
|
||||
<!-- A clear and concise description of what the problem is. Ex. I'm always frustrated when [...] -->
|
||||
|
||||
**Describe the solution you'd like**
|
||||
<!-- A clear and concise description of what you want to happen. -->
|
||||
|
||||
**Describe alternatives you've considered**
|
||||
<!-- A clear and concise description of any alternative solutions or features you've considered. -->
|
||||
|
||||
**Additional context**
|
||||
<!-- Add any other context or screenshots about the feature request here. -->
|
||||
31
.github/PULL_REQUEST_TEMPLATE.md
vendored
Normal file
31
.github/PULL_REQUEST_TEMPLATE.md
vendored
Normal file
@@ -0,0 +1,31 @@
|
||||
**Description**
|
||||
|
||||
This PR fixes #
|
||||
|
||||
**Notes for Reviewers**
|
||||
|
||||
|
||||
**[Signed commits](../CONTRIBUTING.md#signing-off-on-commits-developer-certificate-of-origin)**
|
||||
- [ ] Yes, I signed my commits.
|
||||
|
||||
<!--
|
||||
Thank you for contributing to LocalAI!
|
||||
|
||||
Contributing Conventions
|
||||
-------------------------
|
||||
|
||||
The draft above helps to give a quick overview of your PR.
|
||||
|
||||
Remember to remove this comment and to at least:
|
||||
|
||||
1. Include descriptive PR titles with [<component-name>] prepended. We use [conventional commits](https://www.conventionalcommits.org/en/v1.0.0/).
|
||||
2. Build and test your changes before submitting a PR (`make build`).
|
||||
3. Sign your commits
|
||||
4. **Tag maintainer:** for a quicker response, tag the relevant maintainer (see below).
|
||||
5. **X/Twitter handle:** we announce bigger features on X/Twitter. If your PR gets announced, and you'd like a mention, we'll gladly shout you out!
|
||||
|
||||
By following the community's contribution conventions upfront, the review process will
|
||||
be accelerated and your PR merged more quickly.
|
||||
|
||||
If no one reviews your PR within a few days, please @-mention @mudler.
|
||||
-->
|
||||
9
.github/bump_deps.sh
vendored
Executable file
9
.github/bump_deps.sh
vendored
Executable file
@@ -0,0 +1,9 @@
|
||||
#!/bin/bash
|
||||
set -xe
|
||||
REPO=$1
|
||||
BRANCH=$2
|
||||
VAR=$3
|
||||
|
||||
LAST_COMMIT=$(curl -s -H "Accept: application/vnd.github.VERSION.sha" "https://api.github.com/repos/$REPO/commits/$BRANCH")
|
||||
|
||||
sed -i Makefile -e "s/$VAR?=.*/$VAR?=$LAST_COMMIT/"
|
||||
7
.github/bump_docs.sh
vendored
Executable file
7
.github/bump_docs.sh
vendored
Executable file
@@ -0,0 +1,7 @@
|
||||
#!/bin/bash
|
||||
set -xe
|
||||
REPO=$1
|
||||
|
||||
LATEST_TAG=$(curl -s "https://api.github.com/repos/$REPO/releases/latest" | jq -r '.name')
|
||||
|
||||
cat <<< $(jq ".version = \"$LATEST_TAG\"" docs/data/version.json) > docs/data/version.json
|
||||
24
.github/release.yml
vendored
Normal file
24
.github/release.yml
vendored
Normal file
@@ -0,0 +1,24 @@
|
||||
# .github/release.yml
|
||||
|
||||
changelog:
|
||||
exclude:
|
||||
labels:
|
||||
- ignore-for-release
|
||||
categories:
|
||||
- title: Breaking Changes 🛠
|
||||
labels:
|
||||
- Semver-Major
|
||||
- breaking-change
|
||||
- title: "Bug fixes :bug:"
|
||||
labels:
|
||||
- bug
|
||||
- title: Exciting New Features 🎉
|
||||
labels:
|
||||
- Semver-Minor
|
||||
- enhancement
|
||||
- title: 👒 Dependencies
|
||||
labels:
|
||||
- dependencies
|
||||
- title: Other Changes
|
||||
labels:
|
||||
- "*"
|
||||
18
.github/stale.yml
vendored
Normal file
18
.github/stale.yml
vendored
Normal file
@@ -0,0 +1,18 @@
|
||||
# Number of days of inactivity before an issue becomes stale
|
||||
daysUntilStale: 45
|
||||
# Number of days of inactivity before a stale issue is closed
|
||||
daysUntilClose: 10
|
||||
# Issues with these labels will never be considered stale
|
||||
exemptLabels:
|
||||
- issue/willfix
|
||||
# Label to use when marking an issue as stale
|
||||
staleLabel: issue/stale
|
||||
# Comment to post when marking an issue as stale. Set to `false` to disable
|
||||
markComment: >
|
||||
This issue has been automatically marked as stale because it has not had
|
||||
recent activity. It will be closed if no further activity occurs. Thank you
|
||||
for your contributions.
|
||||
# Comment to post when closing a stale issue. Set to `false` to disable
|
||||
closeComment: >
|
||||
This issue is being automatically closed due to inactivity.
|
||||
However, you may choose to reopen this issue.
|
||||
63
.github/workflows/bump_deps.yaml
vendored
Normal file
63
.github/workflows/bump_deps.yaml
vendored
Normal file
@@ -0,0 +1,63 @@
|
||||
name: Bump dependencies
|
||||
on:
|
||||
schedule:
|
||||
- cron: 0 20 * * *
|
||||
workflow_dispatch:
|
||||
jobs:
|
||||
bump:
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
include:
|
||||
- repository: "go-skynet/go-llama.cpp"
|
||||
variable: "GOLLAMA_VERSION"
|
||||
branch: "master"
|
||||
- repository: "ggerganov/llama.cpp"
|
||||
variable: "CPPLLAMA_VERSION"
|
||||
branch: "master"
|
||||
- repository: "go-skynet/go-ggml-transformers.cpp"
|
||||
variable: "GOGGMLTRANSFORMERS_VERSION"
|
||||
branch: "master"
|
||||
- repository: "donomii/go-rwkv.cpp"
|
||||
variable: "RWKV_VERSION"
|
||||
branch: "main"
|
||||
- repository: "ggerganov/whisper.cpp"
|
||||
variable: "WHISPER_CPP_VERSION"
|
||||
branch: "master"
|
||||
- repository: "go-skynet/go-bert.cpp"
|
||||
variable: "BERT_VERSION"
|
||||
branch: "master"
|
||||
- repository: "go-skynet/bloomz.cpp"
|
||||
variable: "BLOOMZ_VERSION"
|
||||
branch: "main"
|
||||
- repository: "nomic-ai/gpt4all"
|
||||
variable: "GPT4ALL_VERSION"
|
||||
branch: "main"
|
||||
- repository: "mudler/go-ggllm.cpp"
|
||||
variable: "GOGGLLM_VERSION"
|
||||
branch: "master"
|
||||
- repository: "mudler/go-stable-diffusion"
|
||||
variable: "STABLEDIFFUSION_VERSION"
|
||||
branch: "master"
|
||||
- repository: "mudler/go-piper"
|
||||
variable: "PIPER_VERSION"
|
||||
branch: "master"
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- name: Bump dependencies 🔧
|
||||
run: |
|
||||
bash .github/bump_deps.sh ${{ matrix.repository }} ${{ matrix.branch }} ${{ matrix.variable }}
|
||||
- name: Create Pull Request
|
||||
uses: peter-evans/create-pull-request@v5
|
||||
with:
|
||||
token: ${{ secrets.UPDATE_BOT_TOKEN }}
|
||||
push-to-fork: ci-forks/LocalAI
|
||||
commit-message: ':arrow_up: Update ${{ matrix.repository }}'
|
||||
title: ':arrow_up: Update ${{ matrix.repository }}'
|
||||
branch: "update/${{ matrix.variable }}"
|
||||
body: Bump of ${{ matrix.repository }} version
|
||||
signoff: true
|
||||
|
||||
|
||||
|
||||
31
.github/workflows/bump_docs.yaml
vendored
Normal file
31
.github/workflows/bump_docs.yaml
vendored
Normal file
@@ -0,0 +1,31 @@
|
||||
name: Bump dependencies
|
||||
on:
|
||||
schedule:
|
||||
- cron: 0 20 * * *
|
||||
workflow_dispatch:
|
||||
jobs:
|
||||
bump:
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
include:
|
||||
- repository: "mudler/LocalAI"
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- name: Bump dependencies 🔧
|
||||
run: |
|
||||
bash .github/bump_docs.sh ${{ matrix.repository }}
|
||||
- name: Create Pull Request
|
||||
uses: peter-evans/create-pull-request@v5
|
||||
with:
|
||||
token: ${{ secrets.UPDATE_BOT_TOKEN }}
|
||||
push-to-fork: ci-forks/LocalAI
|
||||
commit-message: ':arrow_up: Update docs version ${{ matrix.repository }}'
|
||||
title: ':arrow_up: Update docs version ${{ matrix.repository }}'
|
||||
branch: "update/docs"
|
||||
body: Bump of ${{ matrix.repository }} version inside docs
|
||||
signoff: true
|
||||
|
||||
|
||||
|
||||
63
.github/workflows/disabled/test-gpu.yml
vendored
Normal file
63
.github/workflows/disabled/test-gpu.yml
vendored
Normal file
@@ -0,0 +1,63 @@
|
||||
---
|
||||
name: 'GPU tests'
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
push:
|
||||
branches:
|
||||
- master
|
||||
tags:
|
||||
- '*'
|
||||
|
||||
concurrency:
|
||||
group: ci-gpu-tests-${{ github.head_ref || github.ref }}-${{ github.repository }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
ubuntu-latest:
|
||||
runs-on: gpu
|
||||
strategy:
|
||||
matrix:
|
||||
go-version: ['1.21.x']
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
submodules: true
|
||||
- name: Setup Go ${{ matrix.go-version }}
|
||||
uses: actions/setup-go@v4
|
||||
with:
|
||||
go-version: ${{ matrix.go-version }}
|
||||
# You can test your matrix by printing the current Go version
|
||||
- name: Display Go version
|
||||
run: go version
|
||||
- name: Dependencies
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo DEBIAN_FRONTEND=noninteractive apt-get install -y make wget
|
||||
- name: Build
|
||||
run: |
|
||||
if [ ! -e /run/systemd/system ]; then
|
||||
sudo mkdir /run/systemd/system
|
||||
fi
|
||||
sudo mkdir -p /host/tests/${{ github.head_ref || github.ref }}
|
||||
sudo chmod -R 777 /host/tests/${{ github.head_ref || github.ref }}
|
||||
make \
|
||||
TEST_DIR="/host/tests/${{ github.head_ref || github.ref }}" \
|
||||
BUILD_TYPE=cublas \
|
||||
prepare-e2e run-e2e-image test-e2e
|
||||
- name: Release space from worker ♻
|
||||
if: always()
|
||||
run: |
|
||||
sudo rm -rf build || true
|
||||
sudo rm -rf bin || true
|
||||
sudo rm -rf dist || true
|
||||
sudo docker logs $(sudo docker ps -q --filter ancestor=localai-tests) > logs.txt
|
||||
sudo cat logs.txt || true
|
||||
sudo rm -rf logs.txt
|
||||
make clean || true
|
||||
make \
|
||||
TEST_DIR="/host/tests/${{ github.head_ref || github.ref }}" \
|
||||
teardown-e2e || true
|
||||
sudo rm -rf /host/tests/${{ github.head_ref || github.ref }} || true
|
||||
docker system prune -f -a --volumes || true
|
||||
116
.github/workflows/image-pr.yml
vendored
Normal file
116
.github/workflows/image-pr.yml
vendored
Normal file
@@ -0,0 +1,116 @@
|
||||
---
|
||||
name: 'build container images tests'
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
|
||||
concurrency:
|
||||
group: ci-${{ github.head_ref || github.ref }}-${{ github.repository }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
extras-image-build:
|
||||
uses: ./.github/workflows/image_build.yml
|
||||
with:
|
||||
tag-latest: ${{ matrix.tag-latest }}
|
||||
tag-suffix: ${{ matrix.tag-suffix }}
|
||||
ffmpeg: ${{ matrix.ffmpeg }}
|
||||
image-type: ${{ matrix.image-type }}
|
||||
build-type: ${{ matrix.build-type }}
|
||||
cuda-major-version: ${{ matrix.cuda-major-version }}
|
||||
cuda-minor-version: ${{ matrix.cuda-minor-version }}
|
||||
platforms: ${{ matrix.platforms }}
|
||||
runs-on: ${{ matrix.runs-on }}
|
||||
base-image: ${{ matrix.base-image }}
|
||||
secrets:
|
||||
dockerUsername: ${{ secrets.DOCKERHUB_USERNAME }}
|
||||
dockerPassword: ${{ secrets.DOCKERHUB_PASSWORD }}
|
||||
quayUsername: ${{ secrets.LOCALAI_REGISTRY_USERNAME }}
|
||||
quayPassword: ${{ secrets.LOCALAI_REGISTRY_PASSWORD }}
|
||||
strategy:
|
||||
# Pushing with all jobs in parallel
|
||||
# eats the bandwidth of all the nodes
|
||||
max-parallel: ${{ github.event_name != 'pull_request' && 2 || 4 }}
|
||||
matrix:
|
||||
include:
|
||||
- build-type: ''
|
||||
platforms: 'linux/amd64'
|
||||
tag-latest: 'false'
|
||||
tag-suffix: '-ffmpeg'
|
||||
ffmpeg: 'true'
|
||||
image-type: 'extras'
|
||||
runs-on: 'arc-runner-set'
|
||||
base-image: "ubuntu:22.04"
|
||||
- build-type: 'cublas'
|
||||
cuda-major-version: "12"
|
||||
cuda-minor-version: "1"
|
||||
platforms: 'linux/amd64'
|
||||
tag-latest: 'false'
|
||||
tag-suffix: '-cublas-cuda12-ffmpeg'
|
||||
ffmpeg: 'true'
|
||||
image-type: 'extras'
|
||||
runs-on: 'arc-runner-set'
|
||||
base-image: "ubuntu:22.04"
|
||||
- build-type: 'hipblas'
|
||||
platforms: 'linux/amd64'
|
||||
tag-latest: 'false'
|
||||
tag-suffix: '-hipblas'
|
||||
ffmpeg: 'false'
|
||||
image-type: 'extras'
|
||||
base-image: "rocm/dev-ubuntu-22.04:6.0-complete"
|
||||
runs-on: 'arc-runner-set'
|
||||
- build-type: 'sycl_f16'
|
||||
platforms: 'linux/amd64'
|
||||
tag-latest: 'false'
|
||||
base-image: "intel/oneapi-basekit:2024.0.1-devel-ubuntu22.04"
|
||||
tag-suffix: 'sycl-f16-ffmpeg'
|
||||
ffmpeg: 'true'
|
||||
image-type: 'extras'
|
||||
runs-on: 'arc-runner-set'
|
||||
core-image-build:
|
||||
uses: ./.github/workflows/image_build.yml
|
||||
with:
|
||||
tag-latest: ${{ matrix.tag-latest }}
|
||||
tag-suffix: ${{ matrix.tag-suffix }}
|
||||
ffmpeg: ${{ matrix.ffmpeg }}
|
||||
image-type: ${{ matrix.image-type }}
|
||||
build-type: ${{ matrix.build-type }}
|
||||
cuda-major-version: ${{ matrix.cuda-major-version }}
|
||||
cuda-minor-version: ${{ matrix.cuda-minor-version }}
|
||||
platforms: ${{ matrix.platforms }}
|
||||
runs-on: ${{ matrix.runs-on }}
|
||||
base-image: ${{ matrix.base-image }}
|
||||
secrets:
|
||||
dockerUsername: ${{ secrets.DOCKERHUB_USERNAME }}
|
||||
dockerPassword: ${{ secrets.DOCKERHUB_PASSWORD }}
|
||||
quayUsername: ${{ secrets.LOCALAI_REGISTRY_USERNAME }}
|
||||
quayPassword: ${{ secrets.LOCALAI_REGISTRY_PASSWORD }}
|
||||
strategy:
|
||||
matrix:
|
||||
include:
|
||||
- build-type: ''
|
||||
platforms: 'linux/amd64'
|
||||
tag-latest: 'false'
|
||||
tag-suffix: '-ffmpeg-core'
|
||||
ffmpeg: 'true'
|
||||
image-type: 'core'
|
||||
runs-on: 'ubuntu-latest'
|
||||
base-image: "ubuntu:22.04"
|
||||
- build-type: 'sycl_f16'
|
||||
platforms: 'linux/amd64'
|
||||
tag-latest: 'false'
|
||||
base-image: "intel/oneapi-basekit:2024.0.1-devel-ubuntu22.04"
|
||||
tag-suffix: 'sycl-f16-ffmpeg-core'
|
||||
ffmpeg: 'true'
|
||||
image-type: 'core'
|
||||
runs-on: 'arc-runner-set'
|
||||
- build-type: 'cublas'
|
||||
cuda-major-version: "12"
|
||||
cuda-minor-version: "1"
|
||||
platforms: 'linux/amd64'
|
||||
tag-latest: 'false'
|
||||
tag-suffix: '-cublas-cuda12-ffmpeg-core'
|
||||
ffmpeg: 'true'
|
||||
image-type: 'core'
|
||||
runs-on: 'ubuntu-latest'
|
||||
base-image: "ubuntu:22.04"
|
||||
313
.github/workflows/image.yml
vendored
313
.github/workflows/image.yml
vendored
@@ -2,77 +2,256 @@
|
||||
name: 'build container images'
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
push:
|
||||
branches:
|
||||
- master
|
||||
tags:
|
||||
- '*'
|
||||
|
||||
concurrency:
|
||||
group: ci-${{ github.head_ref || github.ref }}-${{ github.repository }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
docker:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v3
|
||||
|
||||
- name: Prepare
|
||||
id: prep
|
||||
run: |
|
||||
DOCKER_IMAGE=quay.io/go-skynet/llama-cli
|
||||
VERSION=master
|
||||
SHORTREF=${GITHUB_SHA::8}
|
||||
|
||||
# If this is git tag, use the tag name as a docker tag
|
||||
if [[ $GITHUB_REF == refs/tags/* ]]; then
|
||||
VERSION=${GITHUB_REF#refs/tags/}
|
||||
fi
|
||||
TAGS="${DOCKER_IMAGE}:${VERSION},${DOCKER_IMAGE}:${SHORTREF}"
|
||||
|
||||
# If the VERSION looks like a version number, assume that
|
||||
# this is the most recent version of the image and also
|
||||
# tag it 'latest'.
|
||||
if [[ $VERSION =~ ^v[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}$ ]]; then
|
||||
TAGS="$TAGS,${DOCKER_IMAGE}:latest"
|
||||
fi
|
||||
|
||||
# Set output parameters.
|
||||
echo ::set-output name=tags::${TAGS}
|
||||
echo ::set-output name=docker_image::${DOCKER_IMAGE}
|
||||
|
||||
- name: Set up QEMU
|
||||
uses: docker/setup-qemu-action@master
|
||||
with:
|
||||
platforms: all
|
||||
|
||||
- name: Set up Docker Buildx
|
||||
id: buildx
|
||||
uses: docker/setup-buildx-action@master
|
||||
|
||||
- name: Login to DockerHub
|
||||
if: github.event_name != 'pull_request'
|
||||
uses: docker/login-action@v2
|
||||
with:
|
||||
registry: quay.io
|
||||
username: ${{ secrets.QUAY_USERNAME }}
|
||||
password: ${{ secrets.QUAY_PASSWORD }}
|
||||
- name: Build
|
||||
if: github.event_name != 'pull_request'
|
||||
uses: docker/build-push-action@v4
|
||||
with:
|
||||
builder: ${{ steps.buildx.outputs.name }}
|
||||
context: .
|
||||
file: ./Dockerfile
|
||||
platforms: linux/amd64,linux/arm64
|
||||
push: true
|
||||
tags: ${{ steps.prep.outputs.tags }}
|
||||
- name: Build PRs
|
||||
if: github.event_name == 'pull_request'
|
||||
uses: docker/build-push-action@v4
|
||||
with:
|
||||
builder: ${{ steps.buildx.outputs.name }}
|
||||
context: .
|
||||
file: ./Dockerfile
|
||||
platforms: linux/amd64
|
||||
push: false
|
||||
tags: ${{ steps.prep.outputs.tags }}
|
||||
self-hosted-jobs:
|
||||
uses: ./.github/workflows/image_build.yml
|
||||
with:
|
||||
tag-latest: ${{ matrix.tag-latest }}
|
||||
tag-suffix: ${{ matrix.tag-suffix }}
|
||||
ffmpeg: ${{ matrix.ffmpeg }}
|
||||
image-type: ${{ matrix.image-type }}
|
||||
build-type: ${{ matrix.build-type }}
|
||||
cuda-major-version: ${{ matrix.cuda-major-version }}
|
||||
cuda-minor-version: ${{ matrix.cuda-minor-version }}
|
||||
platforms: ${{ matrix.platforms }}
|
||||
runs-on: ${{ matrix.runs-on }}
|
||||
base-image: ${{ matrix.base-image }}
|
||||
secrets:
|
||||
dockerUsername: ${{ secrets.DOCKERHUB_USERNAME }}
|
||||
dockerPassword: ${{ secrets.DOCKERHUB_PASSWORD }}
|
||||
quayUsername: ${{ secrets.LOCALAI_REGISTRY_USERNAME }}
|
||||
quayPassword: ${{ secrets.LOCALAI_REGISTRY_PASSWORD }}
|
||||
strategy:
|
||||
# Pushing with all jobs in parallel
|
||||
# eats the bandwidth of all the nodes
|
||||
max-parallel: ${{ github.event_name != 'pull_request' && 2 || 4 }}
|
||||
matrix:
|
||||
include:
|
||||
# Extra images
|
||||
- build-type: ''
|
||||
#platforms: 'linux/amd64,linux/arm64'
|
||||
platforms: 'linux/amd64'
|
||||
tag-latest: 'auto'
|
||||
tag-suffix: ''
|
||||
ffmpeg: ''
|
||||
image-type: 'extras'
|
||||
runs-on: 'arc-runner-set'
|
||||
base-image: "ubuntu:22.04"
|
||||
- build-type: ''
|
||||
platforms: 'linux/amd64'
|
||||
tag-latest: 'false'
|
||||
tag-suffix: '-ffmpeg'
|
||||
ffmpeg: 'true'
|
||||
image-type: 'extras'
|
||||
runs-on: 'arc-runner-set'
|
||||
base-image: "ubuntu:22.04"
|
||||
- build-type: 'cublas'
|
||||
cuda-major-version: "11"
|
||||
cuda-minor-version: "7"
|
||||
platforms: 'linux/amd64'
|
||||
tag-latest: 'false'
|
||||
tag-suffix: '-cublas-cuda11'
|
||||
ffmpeg: ''
|
||||
image-type: 'extras'
|
||||
runs-on: 'arc-runner-set'
|
||||
base-image: "ubuntu:22.04"
|
||||
- build-type: 'cublas'
|
||||
cuda-major-version: "12"
|
||||
cuda-minor-version: "1"
|
||||
platforms: 'linux/amd64'
|
||||
tag-latest: 'false'
|
||||
tag-suffix: '-cublas-cuda12'
|
||||
ffmpeg: ''
|
||||
image-type: 'extras'
|
||||
runs-on: 'arc-runner-set'
|
||||
base-image: "ubuntu:22.04"
|
||||
- build-type: 'cublas'
|
||||
cuda-major-version: "11"
|
||||
cuda-minor-version: "7"
|
||||
platforms: 'linux/amd64'
|
||||
tag-latest: 'false'
|
||||
tag-suffix: '-cublas-cuda11-ffmpeg'
|
||||
ffmpeg: 'true'
|
||||
image-type: 'extras'
|
||||
runs-on: 'arc-runner-set'
|
||||
base-image: "ubuntu:22.04"
|
||||
- build-type: 'cublas'
|
||||
cuda-major-version: "12"
|
||||
cuda-minor-version: "1"
|
||||
platforms: 'linux/amd64'
|
||||
tag-latest: 'false'
|
||||
tag-suffix: '-cublas-cuda12-ffmpeg'
|
||||
ffmpeg: 'true'
|
||||
image-type: 'extras'
|
||||
runs-on: 'arc-runner-set'
|
||||
base-image: "ubuntu:22.04"
|
||||
- build-type: ''
|
||||
#platforms: 'linux/amd64,linux/arm64'
|
||||
platforms: 'linux/amd64'
|
||||
tag-latest: 'auto'
|
||||
tag-suffix: ''
|
||||
ffmpeg: ''
|
||||
image-type: 'extras'
|
||||
base-image: "ubuntu:22.04"
|
||||
runs-on: 'arc-runner-set'
|
||||
- build-type: 'hipblas'
|
||||
platforms: 'linux/amd64'
|
||||
tag-latest: 'false'
|
||||
tag-suffix: '-hipblas-ffmpeg'
|
||||
ffmpeg: 'true'
|
||||
image-type: 'extras'
|
||||
base-image: "rocm/dev-ubuntu-22.04:6.0-complete"
|
||||
runs-on: 'arc-runner-set'
|
||||
- build-type: 'hipblas'
|
||||
platforms: 'linux/amd64'
|
||||
tag-latest: 'false'
|
||||
tag-suffix: '-hipblas'
|
||||
ffmpeg: 'false'
|
||||
image-type: 'extras'
|
||||
base-image: "rocm/dev-ubuntu-22.04:6.0-complete"
|
||||
runs-on: 'arc-runner-set'
|
||||
- build-type: 'sycl_f16'
|
||||
platforms: 'linux/amd64'
|
||||
tag-latest: 'false'
|
||||
base-image: "intel/oneapi-basekit:2024.0.1-devel-ubuntu22.04"
|
||||
tag-suffix: '-sycl-f16-ffmpeg'
|
||||
ffmpeg: 'true'
|
||||
image-type: 'extras'
|
||||
runs-on: 'arc-runner-set'
|
||||
- build-type: 'sycl_f32'
|
||||
platforms: 'linux/amd64'
|
||||
tag-latest: 'false'
|
||||
base-image: "intel/oneapi-basekit:2024.0.1-devel-ubuntu22.04"
|
||||
tag-suffix: '-sycl-f32-ffmpeg'
|
||||
ffmpeg: 'true'
|
||||
image-type: 'extras'
|
||||
runs-on: 'arc-runner-set'
|
||||
# Core images
|
||||
- build-type: 'sycl_f16'
|
||||
platforms: 'linux/amd64'
|
||||
tag-latest: 'false'
|
||||
base-image: "intel/oneapi-basekit:2024.0.1-devel-ubuntu22.04"
|
||||
tag-suffix: '-sycl-f16-core'
|
||||
ffmpeg: 'false'
|
||||
image-type: 'core'
|
||||
runs-on: 'arc-runner-set'
|
||||
- build-type: 'sycl_f32'
|
||||
platforms: 'linux/amd64'
|
||||
tag-latest: 'false'
|
||||
base-image: "intel/oneapi-basekit:2024.0.1-devel-ubuntu22.04"
|
||||
tag-suffix: '-sycl-f32-core'
|
||||
ffmpeg: 'false'
|
||||
image-type: 'core'
|
||||
runs-on: 'arc-runner-set'
|
||||
- build-type: 'sycl_f16'
|
||||
platforms: 'linux/amd64'
|
||||
tag-latest: 'false'
|
||||
base-image: "intel/oneapi-basekit:2024.0.1-devel-ubuntu22.04"
|
||||
tag-suffix: '-sycl-f16-ffmpeg-core'
|
||||
ffmpeg: 'true'
|
||||
image-type: 'core'
|
||||
runs-on: 'arc-runner-set'
|
||||
- build-type: 'sycl_f32'
|
||||
platforms: 'linux/amd64'
|
||||
tag-latest: 'false'
|
||||
base-image: "intel/oneapi-basekit:2024.0.1-devel-ubuntu22.04"
|
||||
tag-suffix: '-sycl-f32-ffmpeg-core'
|
||||
ffmpeg: 'true'
|
||||
image-type: 'core'
|
||||
runs-on: 'arc-runner-set'
|
||||
- build-type: 'hipblas'
|
||||
platforms: 'linux/amd64'
|
||||
tag-latest: 'false'
|
||||
tag-suffix: '-hipblas-ffmpeg-core'
|
||||
ffmpeg: 'true'
|
||||
image-type: 'core'
|
||||
base-image: "rocm/dev-ubuntu-22.04:6.0-complete"
|
||||
runs-on: 'arc-runner-set'
|
||||
- build-type: 'hipblas'
|
||||
platforms: 'linux/amd64'
|
||||
tag-latest: 'false'
|
||||
tag-suffix: '-hipblas-core'
|
||||
ffmpeg: 'false'
|
||||
image-type: 'core'
|
||||
base-image: "rocm/dev-ubuntu-22.04:6.0-complete"
|
||||
runs-on: 'arc-runner-set'
|
||||
|
||||
core-image-build:
|
||||
uses: ./.github/workflows/image_build.yml
|
||||
with:
|
||||
tag-latest: ${{ matrix.tag-latest }}
|
||||
tag-suffix: ${{ matrix.tag-suffix }}
|
||||
ffmpeg: ${{ matrix.ffmpeg }}
|
||||
image-type: ${{ matrix.image-type }}
|
||||
build-type: ${{ matrix.build-type }}
|
||||
cuda-major-version: ${{ matrix.cuda-major-version }}
|
||||
cuda-minor-version: ${{ matrix.cuda-minor-version }}
|
||||
platforms: ${{ matrix.platforms }}
|
||||
runs-on: ${{ matrix.runs-on }}
|
||||
base-image: ${{ matrix.base-image }}
|
||||
secrets:
|
||||
dockerUsername: ${{ secrets.DOCKERHUB_USERNAME }}
|
||||
dockerPassword: ${{ secrets.DOCKERHUB_PASSWORD }}
|
||||
quayUsername: ${{ secrets.LOCALAI_REGISTRY_USERNAME }}
|
||||
quayPassword: ${{ secrets.LOCALAI_REGISTRY_PASSWORD }}
|
||||
strategy:
|
||||
matrix:
|
||||
include:
|
||||
- build-type: ''
|
||||
platforms: 'linux/amd64'
|
||||
tag-latest: 'false'
|
||||
tag-suffix: '-ffmpeg-core'
|
||||
ffmpeg: 'true'
|
||||
image-type: 'core'
|
||||
base-image: "ubuntu:22.04"
|
||||
runs-on: 'ubuntu-latest'
|
||||
- build-type: 'cublas'
|
||||
cuda-major-version: "11"
|
||||
cuda-minor-version: "7"
|
||||
platforms: 'linux/amd64'
|
||||
tag-latest: 'false'
|
||||
tag-suffix: '-cublas-cuda11-core'
|
||||
ffmpeg: ''
|
||||
image-type: 'core'
|
||||
base-image: "ubuntu:22.04"
|
||||
runs-on: 'ubuntu-latest'
|
||||
- build-type: 'cublas'
|
||||
cuda-major-version: "12"
|
||||
cuda-minor-version: "1"
|
||||
platforms: 'linux/amd64'
|
||||
tag-latest: 'false'
|
||||
tag-suffix: '-cublas-cuda12-core'
|
||||
ffmpeg: ''
|
||||
image-type: 'core'
|
||||
base-image: "ubuntu:22.04"
|
||||
runs-on: 'ubuntu-latest'
|
||||
- build-type: 'cublas'
|
||||
cuda-major-version: "11"
|
||||
cuda-minor-version: "7"
|
||||
platforms: 'linux/amd64'
|
||||
tag-latest: 'false'
|
||||
tag-suffix: '-cublas-cuda11-ffmpeg-core'
|
||||
ffmpeg: 'true'
|
||||
image-type: 'core'
|
||||
runs-on: 'ubuntu-latest'
|
||||
base-image: "ubuntu:22.04"
|
||||
- build-type: 'cublas'
|
||||
cuda-major-version: "12"
|
||||
cuda-minor-version: "1"
|
||||
platforms: 'linux/amd64'
|
||||
tag-latest: 'false'
|
||||
tag-suffix: '-cublas-cuda12-ffmpeg-core'
|
||||
ffmpeg: 'true'
|
||||
image-type: 'core'
|
||||
runs-on: 'ubuntu-latest'
|
||||
base-image: "ubuntu:22.04"
|
||||
|
||||
171
.github/workflows/image_build.yml
vendored
Normal file
171
.github/workflows/image_build.yml
vendored
Normal file
@@ -0,0 +1,171 @@
|
||||
---
|
||||
name: 'build container images (reusable)'
|
||||
|
||||
on:
|
||||
workflow_call:
|
||||
inputs:
|
||||
base-image:
|
||||
description: 'Base image'
|
||||
required: false
|
||||
default: ''
|
||||
type: string
|
||||
build-type:
|
||||
description: 'Build type'
|
||||
default: ''
|
||||
type: string
|
||||
cuda-major-version:
|
||||
description: 'CUDA major version'
|
||||
default: "11"
|
||||
type: string
|
||||
cuda-minor-version:
|
||||
description: 'CUDA minor version'
|
||||
default: "7"
|
||||
type: string
|
||||
platforms:
|
||||
description: 'Platforms'
|
||||
default: ''
|
||||
type: string
|
||||
tag-latest:
|
||||
description: 'Tag latest'
|
||||
default: ''
|
||||
type: string
|
||||
tag-suffix:
|
||||
description: 'Tag suffix'
|
||||
default: ''
|
||||
type: string
|
||||
ffmpeg:
|
||||
description: 'FFMPEG'
|
||||
default: ''
|
||||
type: string
|
||||
image-type:
|
||||
description: 'Image type'
|
||||
default: ''
|
||||
type: string
|
||||
runs-on:
|
||||
description: 'Runs on'
|
||||
required: true
|
||||
default: ''
|
||||
type: string
|
||||
secrets:
|
||||
dockerUsername:
|
||||
required: true
|
||||
dockerPassword:
|
||||
required: true
|
||||
quayUsername:
|
||||
required: true
|
||||
quayPassword:
|
||||
required: true
|
||||
jobs:
|
||||
reusable_image-build:
|
||||
runs-on: ${{ inputs.runs-on }}
|
||||
steps:
|
||||
- name: Force Install GIT latest
|
||||
run: |
|
||||
sudo apt-get update \
|
||||
&& sudo apt-get install -y software-properties-common \
|
||||
&& sudo apt-get update \
|
||||
&& sudo add-apt-repository -y ppa:git-core/ppa \
|
||||
&& sudo apt-get update \
|
||||
&& sudo apt-get install -y git
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v4
|
||||
- name: Release space from worker
|
||||
if: inputs.runs-on == 'ubuntu-latest'
|
||||
run: |
|
||||
echo "Listing top largest packages"
|
||||
pkgs=$(dpkg-query -Wf '${Installed-Size}\t${Package}\t${Status}\n' | awk '$NF == "installed"{print $1 "\t" $2}' | sort -nr)
|
||||
head -n 30 <<< "${pkgs}"
|
||||
echo
|
||||
df -h
|
||||
echo
|
||||
sudo apt-get remove -y '^llvm-.*|^libllvm.*' || true
|
||||
sudo apt-get remove --auto-remove android-sdk-platform-tools || true
|
||||
sudo apt-get purge --auto-remove android-sdk-platform-tools || true
|
||||
sudo rm -rf /usr/local/lib/android
|
||||
sudo apt-get remove -y '^dotnet-.*|^aspnetcore-.*' || true
|
||||
sudo rm -rf /usr/share/dotnet
|
||||
sudo apt-get remove -y '^mono-.*' || true
|
||||
sudo apt-get remove -y '^ghc-.*' || true
|
||||
sudo apt-get remove -y '.*jdk.*|.*jre.*' || true
|
||||
sudo apt-get remove -y 'php.*' || true
|
||||
sudo apt-get remove -y hhvm powershell firefox monodoc-manual msbuild || true
|
||||
sudo apt-get remove -y '^google-.*' || true
|
||||
sudo apt-get remove -y azure-cli || true
|
||||
sudo apt-get remove -y '^mongo.*-.*|^postgresql-.*|^mysql-.*|^mssql-.*' || true
|
||||
sudo apt-get remove -y '^gfortran-.*' || true
|
||||
sudo apt-get remove -y microsoft-edge-stable || true
|
||||
sudo apt-get remove -y firefox || true
|
||||
sudo apt-get remove -y powershell || true
|
||||
sudo apt-get remove -y r-base-core || true
|
||||
sudo apt-get autoremove -y
|
||||
sudo apt-get clean
|
||||
echo
|
||||
echo "Listing top largest packages"
|
||||
pkgs=$(dpkg-query -Wf '${Installed-Size}\t${Package}\t${Status}\n' | awk '$NF == "installed"{print $1 "\t" $2}' | sort -nr)
|
||||
head -n 30 <<< "${pkgs}"
|
||||
echo
|
||||
sudo rm -rfv build || true
|
||||
sudo rm -rf /usr/share/dotnet || true
|
||||
sudo rm -rf /opt/ghc || true
|
||||
sudo rm -rf "/usr/local/share/boost" || true
|
||||
sudo rm -rf "$AGENT_TOOLSDIRECTORY" || true
|
||||
df -h
|
||||
- name: Docker meta
|
||||
id: meta
|
||||
uses: docker/metadata-action@v5
|
||||
with:
|
||||
images: |
|
||||
quay.io/go-skynet/local-ai
|
||||
localai/localai
|
||||
tags: |
|
||||
type=ref,event=branch
|
||||
type=semver,pattern={{raw}}
|
||||
type=sha
|
||||
flavor: |
|
||||
latest=${{ inputs.tag-latest }}
|
||||
suffix=${{ inputs.tag-suffix }}
|
||||
|
||||
- name: Set up QEMU
|
||||
uses: docker/setup-qemu-action@master
|
||||
with:
|
||||
platforms: all
|
||||
|
||||
- name: Set up Docker Buildx
|
||||
id: buildx
|
||||
uses: docker/setup-buildx-action@master
|
||||
|
||||
- name: Login to DockerHub
|
||||
if: github.event_name != 'pull_request'
|
||||
uses: docker/login-action@v3
|
||||
with:
|
||||
username: ${{ secrets.dockerUsername }}
|
||||
password: ${{ secrets.dockerPassword }}
|
||||
|
||||
- name: Login to DockerHub
|
||||
if: github.event_name != 'pull_request'
|
||||
uses: docker/login-action@v3
|
||||
with:
|
||||
registry: quay.io
|
||||
username: ${{ secrets.quayUsername }}
|
||||
password: ${{ secrets.quayPassword }}
|
||||
|
||||
- name: Build and push
|
||||
uses: docker/build-push-action@v5
|
||||
with:
|
||||
builder: ${{ steps.buildx.outputs.name }}
|
||||
build-args: |
|
||||
BUILD_TYPE=${{ inputs.build-type }}
|
||||
CUDA_MAJOR_VERSION=${{ inputs.cuda-major-version }}
|
||||
CUDA_MINOR_VERSION=${{ inputs.cuda-minor-version }}
|
||||
FFMPEG=${{ inputs.ffmpeg }}
|
||||
IMAGE_TYPE=${{ inputs.image-type }}
|
||||
BASE_IMAGE=${{ inputs.base-image }}
|
||||
context: .
|
||||
file: ./Dockerfile
|
||||
platforms: ${{ inputs.platforms }}
|
||||
push: ${{ github.event_name != 'pull_request' }}
|
||||
tags: ${{ steps.meta.outputs.tags }}
|
||||
labels: ${{ steps.meta.outputs.labels }}
|
||||
- name: job summary
|
||||
run: |
|
||||
echo "Built image: ${{ steps.meta.outputs.labels }}" >> $GITHUB_STEP_SUMMARY
|
||||
161
.github/workflows/release.yaml
vendored
Normal file
161
.github/workflows/release.yaml
vendored
Normal file
@@ -0,0 +1,161 @@
|
||||
name: Build and Release
|
||||
|
||||
on: push
|
||||
|
||||
permissions:
|
||||
contents: write
|
||||
|
||||
concurrency:
|
||||
group: ci-releases-${{ github.head_ref || github.ref }}-${{ github.repository }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
build-linux:
|
||||
strategy:
|
||||
matrix:
|
||||
include:
|
||||
- build: 'avx2'
|
||||
defines: ''
|
||||
- build: 'avx'
|
||||
defines: '-DLLAMA_AVX2=OFF'
|
||||
- build: 'avx512'
|
||||
defines: '-DLLAMA_AVX512=ON'
|
||||
- build: 'cuda12'
|
||||
defines: ''
|
||||
- build: 'cuda11'
|
||||
defines: ''
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
submodules: true
|
||||
- uses: actions/setup-go@v4
|
||||
with:
|
||||
go-version: '>=1.21.0'
|
||||
- name: Dependencies
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential ffmpeg
|
||||
- name: Install CUDA Dependencies
|
||||
if: ${{ matrix.build == 'cuda12' || matrix.build == 'cuda11' }}
|
||||
run: |
|
||||
if [ "${{ matrix.build }}" == "cuda12" ]; then
|
||||
export CUDA_VERSION=12-3
|
||||
else
|
||||
export CUDA_VERSION=11-7
|
||||
fi
|
||||
curl -O https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-keyring_1.1-1_all.deb
|
||||
sudo dpkg -i cuda-keyring_1.1-1_all.deb
|
||||
sudo apt-get update
|
||||
sudo apt-get install -y cuda-nvcc-${CUDA_VERSION} libcublas-dev-${CUDA_VERSION}
|
||||
- name: Cache grpc
|
||||
id: cache-grpc
|
||||
uses: actions/cache@v3
|
||||
with:
|
||||
path: grpc
|
||||
key: ${{ runner.os }}-grpc
|
||||
- name: Build grpc
|
||||
if: steps.cache-grpc.outputs.cache-hit != 'true'
|
||||
run: |
|
||||
git clone --recurse-submodules -b v1.58.0 --depth 1 --shallow-submodules https://github.com/grpc/grpc && \
|
||||
cd grpc && mkdir -p cmake/build && cd cmake/build && cmake -DgRPC_INSTALL=ON \
|
||||
-DgRPC_BUILD_TESTS=OFF \
|
||||
../.. && sudo make -j12
|
||||
- name: Install gRPC
|
||||
run: |
|
||||
cd grpc && cd cmake/build && sudo make -j12 install
|
||||
- name: Build
|
||||
id: build
|
||||
env:
|
||||
CMAKE_ARGS: "${{ matrix.defines }}"
|
||||
BUILD_ID: "${{ matrix.build }}"
|
||||
run: |
|
||||
if [ "${{ matrix.build }}" == "cuda12" ] || [ "${{ matrix.build }}" == "cuda11" ]; then
|
||||
export BUILD_TYPE=cublas
|
||||
export PATH=/usr/local/cuda/bin:$PATH
|
||||
make dist
|
||||
else
|
||||
STATIC=true make dist
|
||||
fi
|
||||
- uses: actions/upload-artifact@v3
|
||||
with:
|
||||
name: ${{ matrix.build }}
|
||||
path: release/
|
||||
- name: Release
|
||||
uses: softprops/action-gh-release@v1
|
||||
if: startsWith(github.ref, 'refs/tags/')
|
||||
with:
|
||||
files: |
|
||||
release/*
|
||||
|
||||
build-stablediffusion:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
submodules: true
|
||||
- uses: actions/setup-go@v4
|
||||
with:
|
||||
go-version: '>=1.21.0'
|
||||
- name: Dependencies
|
||||
run: |
|
||||
sudo apt-get install -y --no-install-recommends libopencv-dev
|
||||
sudo ln -s /usr/include/opencv4/opencv2 /usr/include/opencv2
|
||||
- name: Build stablediffusion
|
||||
run: |
|
||||
make backend-assets/grpc/stablediffusion
|
||||
mkdir -p release && cp backend-assets/grpc/stablediffusion release
|
||||
- uses: actions/upload-artifact@v3
|
||||
with:
|
||||
name: stablediffusion
|
||||
path: release/
|
||||
- name: Release
|
||||
uses: softprops/action-gh-release@v1
|
||||
if: startsWith(github.ref, 'refs/tags/')
|
||||
with:
|
||||
files: |
|
||||
release/*
|
||||
|
||||
build-macOS:
|
||||
strategy:
|
||||
matrix:
|
||||
include:
|
||||
- build: 'avx2'
|
||||
defines: ''
|
||||
- build: 'avx'
|
||||
defines: '-DLLAMA_AVX2=OFF'
|
||||
- build: 'avx512'
|
||||
defines: '-DLLAMA_AVX512=ON'
|
||||
runs-on: macOS-latest
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
submodules: true
|
||||
- uses: actions/setup-go@v4
|
||||
with:
|
||||
go-version: '>=1.21.0'
|
||||
- name: Dependencies
|
||||
run: |
|
||||
brew install protobuf grpc
|
||||
- name: Build
|
||||
id: build
|
||||
env:
|
||||
CMAKE_ARGS: "${{ matrix.defines }}"
|
||||
BUILD_ID: "${{ matrix.build }}"
|
||||
run: |
|
||||
export C_INCLUDE_PATH=/usr/local/include
|
||||
export CPLUS_INCLUDE_PATH=/usr/local/include
|
||||
make dist
|
||||
- uses: actions/upload-artifact@v3
|
||||
with:
|
||||
name: ${{ matrix.build }}
|
||||
path: release/
|
||||
- name: Release
|
||||
uses: softprops/action-gh-release@v1
|
||||
if: startsWith(github.ref, 'refs/tags/')
|
||||
with:
|
||||
files: |
|
||||
release/*
|
||||
26
.github/workflows/release.yml.disabled
vendored
26
.github/workflows/release.yml.disabled
vendored
@@ -1,26 +0,0 @@
|
||||
name: goreleaser
|
||||
|
||||
on:
|
||||
push:
|
||||
tags:
|
||||
- 'v*'
|
||||
|
||||
jobs:
|
||||
goreleaser:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v3
|
||||
with:
|
||||
fetch-depth: 0
|
||||
- name: Set up Go
|
||||
uses: actions/setup-go@v3
|
||||
with:
|
||||
go-version: 1.18
|
||||
- name: Run GoReleaser
|
||||
uses: goreleaser/goreleaser-action@v4
|
||||
with:
|
||||
version: latest
|
||||
args: release --clean
|
||||
env:
|
||||
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
317
.github/workflows/test-extra.yml
vendored
Normal file
317
.github/workflows/test-extra.yml
vendored
Normal file
@@ -0,0 +1,317 @@
|
||||
---
|
||||
name: 'Tests extras backends'
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
push:
|
||||
branches:
|
||||
- master
|
||||
tags:
|
||||
- '*'
|
||||
|
||||
concurrency:
|
||||
group: ci-tests-extra-${{ github.head_ref || github.ref }}-${{ github.repository }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
tests-transformers:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
submodules: true
|
||||
- name: Dependencies
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential ffmpeg
|
||||
curl https://repo.anaconda.com/pkgs/misc/gpgkeys/anaconda.asc | gpg --dearmor > conda.gpg && \
|
||||
sudo install -o root -g root -m 644 conda.gpg /usr/share/keyrings/conda-archive-keyring.gpg && \
|
||||
gpg --keyring /usr/share/keyrings/conda-archive-keyring.gpg --no-default-keyring --fingerprint 34161F5BF5EB1D4BFBBB8F0A8AEB4F8B29D82806 && \
|
||||
sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" > /etc/apt/sources.list.d/conda.list' && \
|
||||
sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" | tee -a /etc/apt/sources.list.d/conda.list' && \
|
||||
sudo apt-get update && \
|
||||
sudo apt-get install -y conda
|
||||
sudo apt-get install -y ca-certificates cmake curl patch
|
||||
sudo apt-get install -y libopencv-dev && sudo ln -s /usr/include/opencv4/opencv2 /usr/include/opencv2
|
||||
|
||||
sudo rm -rfv /usr/bin/conda || true
|
||||
|
||||
- name: Test transformers
|
||||
run: |
|
||||
export PATH=$PATH:/opt/conda/bin
|
||||
make -C backend/python/transformers
|
||||
make -C backend/python/transformers test
|
||||
|
||||
tests-sentencetransformers:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
submodules: true
|
||||
- name: Dependencies
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential ffmpeg
|
||||
curl https://repo.anaconda.com/pkgs/misc/gpgkeys/anaconda.asc | gpg --dearmor > conda.gpg && \
|
||||
sudo install -o root -g root -m 644 conda.gpg /usr/share/keyrings/conda-archive-keyring.gpg && \
|
||||
gpg --keyring /usr/share/keyrings/conda-archive-keyring.gpg --no-default-keyring --fingerprint 34161F5BF5EB1D4BFBBB8F0A8AEB4F8B29D82806 && \
|
||||
sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" > /etc/apt/sources.list.d/conda.list' && \
|
||||
sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" | tee -a /etc/apt/sources.list.d/conda.list' && \
|
||||
sudo apt-get update && \
|
||||
sudo apt-get install -y conda
|
||||
sudo apt-get install -y ca-certificates cmake curl patch
|
||||
sudo apt-get install -y libopencv-dev && sudo ln -s /usr/include/opencv4/opencv2 /usr/include/opencv2
|
||||
|
||||
sudo rm -rfv /usr/bin/conda || true
|
||||
|
||||
- name: Test sentencetransformers
|
||||
run: |
|
||||
export PATH=$PATH:/opt/conda/bin
|
||||
make -C backend/python/sentencetransformers
|
||||
make -C backend/python/sentencetransformers test
|
||||
|
||||
tests-diffusers:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
submodules: true
|
||||
- name: Dependencies
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential ffmpeg
|
||||
curl https://repo.anaconda.com/pkgs/misc/gpgkeys/anaconda.asc | gpg --dearmor > conda.gpg && \
|
||||
sudo install -o root -g root -m 644 conda.gpg /usr/share/keyrings/conda-archive-keyring.gpg && \
|
||||
gpg --keyring /usr/share/keyrings/conda-archive-keyring.gpg --no-default-keyring --fingerprint 34161F5BF5EB1D4BFBBB8F0A8AEB4F8B29D82806 && \
|
||||
sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" > /etc/apt/sources.list.d/conda.list' && \
|
||||
sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" | tee -a /etc/apt/sources.list.d/conda.list' && \
|
||||
sudo apt-get update && \
|
||||
sudo apt-get install -y conda
|
||||
sudo apt-get install -y ca-certificates cmake curl patch
|
||||
sudo apt-get install -y libopencv-dev && sudo ln -s /usr/include/opencv4/opencv2 /usr/include/opencv2
|
||||
|
||||
sudo rm -rfv /usr/bin/conda || true
|
||||
|
||||
- name: Test diffusers
|
||||
run: |
|
||||
export PATH=$PATH:/opt/conda/bin
|
||||
make -C backend/python/diffusers
|
||||
make -C backend/python/diffusers test
|
||||
|
||||
|
||||
tests-transformers-musicgen:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
submodules: true
|
||||
- name: Dependencies
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential ffmpeg
|
||||
curl https://repo.anaconda.com/pkgs/misc/gpgkeys/anaconda.asc | gpg --dearmor > conda.gpg && \
|
||||
sudo install -o root -g root -m 644 conda.gpg /usr/share/keyrings/conda-archive-keyring.gpg && \
|
||||
gpg --keyring /usr/share/keyrings/conda-archive-keyring.gpg --no-default-keyring --fingerprint 34161F5BF5EB1D4BFBBB8F0A8AEB4F8B29D82806 && \
|
||||
sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" > /etc/apt/sources.list.d/conda.list' && \
|
||||
sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" | tee -a /etc/apt/sources.list.d/conda.list' && \
|
||||
sudo apt-get update && \
|
||||
sudo apt-get install -y conda
|
||||
sudo apt-get install -y ca-certificates cmake curl patch
|
||||
sudo apt-get install -y libopencv-dev && sudo ln -s /usr/include/opencv4/opencv2 /usr/include/opencv2
|
||||
|
||||
sudo rm -rfv /usr/bin/conda || true
|
||||
|
||||
- name: Test transformers-musicgen
|
||||
run: |
|
||||
export PATH=$PATH:/opt/conda/bin
|
||||
make -C backend/python/transformers-musicgen
|
||||
make -C backend/python/transformers-musicgen test
|
||||
|
||||
|
||||
|
||||
tests-petals:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
submodules: true
|
||||
- name: Dependencies
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential ffmpeg
|
||||
curl https://repo.anaconda.com/pkgs/misc/gpgkeys/anaconda.asc | gpg --dearmor > conda.gpg && \
|
||||
sudo install -o root -g root -m 644 conda.gpg /usr/share/keyrings/conda-archive-keyring.gpg && \
|
||||
gpg --keyring /usr/share/keyrings/conda-archive-keyring.gpg --no-default-keyring --fingerprint 34161F5BF5EB1D4BFBBB8F0A8AEB4F8B29D82806 && \
|
||||
sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" > /etc/apt/sources.list.d/conda.list' && \
|
||||
sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" | tee -a /etc/apt/sources.list.d/conda.list' && \
|
||||
sudo apt-get update && \
|
||||
sudo apt-get install -y conda
|
||||
sudo apt-get install -y ca-certificates cmake curl patch
|
||||
sudo apt-get install -y libopencv-dev && sudo ln -s /usr/include/opencv4/opencv2 /usr/include/opencv2
|
||||
|
||||
sudo rm -rfv /usr/bin/conda || true
|
||||
|
||||
- name: Test petals
|
||||
run: |
|
||||
export PATH=$PATH:/opt/conda/bin
|
||||
make -C backend/python/petals
|
||||
make -C backend/python/petals test
|
||||
|
||||
|
||||
|
||||
# tests-bark:
|
||||
# runs-on: ubuntu-latest
|
||||
# steps:
|
||||
# - name: Release space from worker
|
||||
# run: |
|
||||
# echo "Listing top largest packages"
|
||||
# pkgs=$(dpkg-query -Wf '${Installed-Size}\t${Package}\t${Status}\n' | awk '$NF == "installed"{print $1 "\t" $2}' | sort -nr)
|
||||
# head -n 30 <<< "${pkgs}"
|
||||
# echo
|
||||
# df -h
|
||||
# echo
|
||||
# sudo apt-get remove -y '^llvm-.*|^libllvm.*' || true
|
||||
# sudo apt-get remove --auto-remove android-sdk-platform-tools || true
|
||||
# sudo apt-get purge --auto-remove android-sdk-platform-tools || true
|
||||
# sudo rm -rf /usr/local/lib/android
|
||||
# sudo apt-get remove -y '^dotnet-.*|^aspnetcore-.*' || true
|
||||
# sudo rm -rf /usr/share/dotnet
|
||||
# sudo apt-get remove -y '^mono-.*' || true
|
||||
# sudo apt-get remove -y '^ghc-.*' || true
|
||||
# sudo apt-get remove -y '.*jdk.*|.*jre.*' || true
|
||||
# sudo apt-get remove -y 'php.*' || true
|
||||
# sudo apt-get remove -y hhvm powershell firefox monodoc-manual msbuild || true
|
||||
# sudo apt-get remove -y '^google-.*' || true
|
||||
# sudo apt-get remove -y azure-cli || true
|
||||
# sudo apt-get remove -y '^mongo.*-.*|^postgresql-.*|^mysql-.*|^mssql-.*' || true
|
||||
# sudo apt-get remove -y '^gfortran-.*' || true
|
||||
# sudo apt-get remove -y microsoft-edge-stable || true
|
||||
# sudo apt-get remove -y firefox || true
|
||||
# sudo apt-get remove -y powershell || true
|
||||
# sudo apt-get remove -y r-base-core || true
|
||||
# sudo apt-get autoremove -y
|
||||
# sudo apt-get clean
|
||||
# echo
|
||||
# echo "Listing top largest packages"
|
||||
# pkgs=$(dpkg-query -Wf '${Installed-Size}\t${Package}\t${Status}\n' | awk '$NF == "installed"{print $1 "\t" $2}' | sort -nr)
|
||||
# head -n 30 <<< "${pkgs}"
|
||||
# echo
|
||||
# sudo rm -rfv build || true
|
||||
# sudo rm -rf /usr/share/dotnet || true
|
||||
# sudo rm -rf /opt/ghc || true
|
||||
# sudo rm -rf "/usr/local/share/boost" || true
|
||||
# sudo rm -rf "$AGENT_TOOLSDIRECTORY" || true
|
||||
# df -h
|
||||
# - name: Clone
|
||||
# uses: actions/checkout@v4
|
||||
# with:
|
||||
# submodules: true
|
||||
# - name: Dependencies
|
||||
# run: |
|
||||
# sudo apt-get update
|
||||
# sudo apt-get install build-essential ffmpeg
|
||||
# curl https://repo.anaconda.com/pkgs/misc/gpgkeys/anaconda.asc | gpg --dearmor > conda.gpg && \
|
||||
# sudo install -o root -g root -m 644 conda.gpg /usr/share/keyrings/conda-archive-keyring.gpg && \
|
||||
# gpg --keyring /usr/share/keyrings/conda-archive-keyring.gpg --no-default-keyring --fingerprint 34161F5BF5EB1D4BFBBB8F0A8AEB4F8B29D82806 && \
|
||||
# sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" > /etc/apt/sources.list.d/conda.list' && \
|
||||
# sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" | tee -a /etc/apt/sources.list.d/conda.list' && \
|
||||
# sudo apt-get update && \
|
||||
# sudo apt-get install -y conda
|
||||
# sudo apt-get install -y ca-certificates cmake curl patch
|
||||
# sudo apt-get install -y libopencv-dev && sudo ln -s /usr/include/opencv4/opencv2 /usr/include/opencv2
|
||||
|
||||
# sudo rm -rfv /usr/bin/conda || true
|
||||
|
||||
# - name: Test bark
|
||||
# run: |
|
||||
# export PATH=$PATH:/opt/conda/bin
|
||||
# make -C backend/python/bark
|
||||
# make -C backend/python/bark test
|
||||
|
||||
|
||||
# Below tests needs GPU. Commented out for now
|
||||
# TODO: Re-enable as soon as we have GPU nodes
|
||||
# tests-vllm:
|
||||
# runs-on: ubuntu-latest
|
||||
# steps:
|
||||
# - name: Clone
|
||||
# uses: actions/checkout@v4
|
||||
# with:
|
||||
# submodules: true
|
||||
# - name: Dependencies
|
||||
# run: |
|
||||
# sudo apt-get update
|
||||
# sudo apt-get install build-essential ffmpeg
|
||||
# curl https://repo.anaconda.com/pkgs/misc/gpgkeys/anaconda.asc | gpg --dearmor > conda.gpg && \
|
||||
# sudo install -o root -g root -m 644 conda.gpg /usr/share/keyrings/conda-archive-keyring.gpg && \
|
||||
# gpg --keyring /usr/share/keyrings/conda-archive-keyring.gpg --no-default-keyring --fingerprint 34161F5BF5EB1D4BFBBB8F0A8AEB4F8B29D82806 && \
|
||||
# sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" > /etc/apt/sources.list.d/conda.list' && \
|
||||
# sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" | tee -a /etc/apt/sources.list.d/conda.list' && \
|
||||
# sudo apt-get update && \
|
||||
# sudo apt-get install -y conda
|
||||
# sudo apt-get install -y ca-certificates cmake curl patch
|
||||
# sudo apt-get install -y libopencv-dev && sudo ln -s /usr/include/opencv4/opencv2 /usr/include/opencv2
|
||||
# sudo rm -rfv /usr/bin/conda || true
|
||||
# - name: Test vllm
|
||||
# run: |
|
||||
# export PATH=$PATH:/opt/conda/bin
|
||||
# make -C backend/python/vllm
|
||||
# make -C backend/python/vllm test
|
||||
tests-vallex:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
submodules: true
|
||||
- name: Dependencies
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential ffmpeg
|
||||
curl https://repo.anaconda.com/pkgs/misc/gpgkeys/anaconda.asc | gpg --dearmor > conda.gpg && \
|
||||
sudo install -o root -g root -m 644 conda.gpg /usr/share/keyrings/conda-archive-keyring.gpg && \
|
||||
gpg --keyring /usr/share/keyrings/conda-archive-keyring.gpg --no-default-keyring --fingerprint 34161F5BF5EB1D4BFBBB8F0A8AEB4F8B29D82806 && \
|
||||
sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" > /etc/apt/sources.list.d/conda.list' && \
|
||||
sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" | tee -a /etc/apt/sources.list.d/conda.list' && \
|
||||
sudo apt-get update && \
|
||||
sudo apt-get install -y conda
|
||||
sudo apt-get install -y ca-certificates cmake curl patch
|
||||
sudo apt-get install -y libopencv-dev && sudo ln -s /usr/include/opencv4/opencv2 /usr/include/opencv2
|
||||
sudo rm -rfv /usr/bin/conda || true
|
||||
- name: Test vall-e-x
|
||||
run: |
|
||||
export PATH=$PATH:/opt/conda/bin
|
||||
make -C backend/python/vall-e-x
|
||||
make -C backend/python/vall-e-x test
|
||||
|
||||
tests-coqui:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
submodules: true
|
||||
- name: Dependencies
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential ffmpeg
|
||||
curl https://repo.anaconda.com/pkgs/misc/gpgkeys/anaconda.asc | gpg --dearmor > conda.gpg && \
|
||||
sudo install -o root -g root -m 644 conda.gpg /usr/share/keyrings/conda-archive-keyring.gpg && \
|
||||
gpg --keyring /usr/share/keyrings/conda-archive-keyring.gpg --no-default-keyring --fingerprint 34161F5BF5EB1D4BFBBB8F0A8AEB4F8B29D82806 && \
|
||||
sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" > /etc/apt/sources.list.d/conda.list' && \
|
||||
sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" | tee -a /etc/apt/sources.list.d/conda.list' && \
|
||||
sudo apt-get update && \
|
||||
sudo apt-get install -y conda
|
||||
sudo apt-get install -y ca-certificates cmake curl patch espeak espeak-ng
|
||||
sudo rm -rfv /usr/bin/conda || true
|
||||
|
||||
- name: Test coqui
|
||||
run: |
|
||||
export PATH=$PATH:/opt/conda/bin
|
||||
make -C backend/python/coqui
|
||||
make -C backend/python/coqui test
|
||||
133
.github/workflows/test.yml
vendored
Normal file
133
.github/workflows/test.yml
vendored
Normal file
@@ -0,0 +1,133 @@
|
||||
---
|
||||
name: 'tests'
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
push:
|
||||
branches:
|
||||
- master
|
||||
tags:
|
||||
- '*'
|
||||
|
||||
concurrency:
|
||||
group: ci-tests-${{ github.head_ref || github.ref }}-${{ github.repository }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
tests-linux:
|
||||
runs-on: ubuntu-latest
|
||||
strategy:
|
||||
matrix:
|
||||
go-version: ['1.21.x']
|
||||
steps:
|
||||
- name: Release space from worker
|
||||
run: |
|
||||
echo "Listing top largest packages"
|
||||
pkgs=$(dpkg-query -Wf '${Installed-Size}\t${Package}\t${Status}\n' | awk '$NF == "installed"{print $1 "\t" $2}' | sort -nr)
|
||||
head -n 30 <<< "${pkgs}"
|
||||
echo
|
||||
df -h
|
||||
echo
|
||||
sudo apt-get remove -y '^llvm-.*|^libllvm.*' || true
|
||||
sudo apt-get remove --auto-remove android-sdk-platform-tools || true
|
||||
sudo apt-get purge --auto-remove android-sdk-platform-tools || true
|
||||
sudo rm -rf /usr/local/lib/android
|
||||
sudo apt-get remove -y '^dotnet-.*|^aspnetcore-.*' || true
|
||||
sudo rm -rf /usr/share/dotnet
|
||||
sudo apt-get remove -y '^mono-.*' || true
|
||||
sudo apt-get remove -y '^ghc-.*' || true
|
||||
sudo apt-get remove -y '.*jdk.*|.*jre.*' || true
|
||||
sudo apt-get remove -y 'php.*' || true
|
||||
sudo apt-get remove -y hhvm powershell firefox monodoc-manual msbuild || true
|
||||
sudo apt-get remove -y '^google-.*' || true
|
||||
sudo apt-get remove -y azure-cli || true
|
||||
sudo apt-get remove -y '^mongo.*-.*|^postgresql-.*|^mysql-.*|^mssql-.*' || true
|
||||
sudo apt-get remove -y '^gfortran-.*' || true
|
||||
sudo apt-get autoremove -y
|
||||
sudo apt-get clean
|
||||
echo
|
||||
echo "Listing top largest packages"
|
||||
pkgs=$(dpkg-query -Wf '${Installed-Size}\t${Package}\t${Status}\n' | awk '$NF == "installed"{print $1 "\t" $2}' | sort -nr)
|
||||
head -n 30 <<< "${pkgs}"
|
||||
echo
|
||||
sudo rm -rfv build || true
|
||||
df -h
|
||||
- name: Clone
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
submodules: true
|
||||
- name: Setup Go ${{ matrix.go-version }}
|
||||
uses: actions/setup-go@v4
|
||||
with:
|
||||
go-version: ${{ matrix.go-version }}
|
||||
# You can test your matrix by printing the current Go version
|
||||
- name: Display Go version
|
||||
run: go version
|
||||
- name: Dependencies
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential ffmpeg
|
||||
curl https://repo.anaconda.com/pkgs/misc/gpgkeys/anaconda.asc | gpg --dearmor > conda.gpg && \
|
||||
sudo install -o root -g root -m 644 conda.gpg /usr/share/keyrings/conda-archive-keyring.gpg && \
|
||||
gpg --keyring /usr/share/keyrings/conda-archive-keyring.gpg --no-default-keyring --fingerprint 34161F5BF5EB1D4BFBBB8F0A8AEB4F8B29D82806 && \
|
||||
sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" > /etc/apt/sources.list.d/conda.list' && \
|
||||
sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" | tee -a /etc/apt/sources.list.d/conda.list' && \
|
||||
sudo apt-get update && \
|
||||
sudo apt-get install -y conda
|
||||
sudo apt-get install -y ca-certificates cmake curl patch
|
||||
sudo apt-get install -y libopencv-dev && sudo ln -s /usr/include/opencv4/opencv2 /usr/include/opencv2
|
||||
|
||||
sudo rm -rfv /usr/bin/conda || true
|
||||
PATH=$PATH:/opt/conda/bin make -C backend/python/sentencetransformers
|
||||
|
||||
# Pre-build piper before we start tests in order to have shared libraries in place
|
||||
make sources/go-piper && \
|
||||
GO_TAGS="tts" make -C sources/go-piper piper.o && \
|
||||
sudo cp -rfv sources/go-piper/piper-phonemize/pi/lib/. /usr/lib/ && \
|
||||
# Pre-build stable diffusion before we install a newer version of abseil (not compatible with stablediffusion-ncn)
|
||||
GO_TAGS="stablediffusion tts" GRPC_BACKENDS=backend-assets/grpc/stablediffusion make build
|
||||
- name: Cache grpc
|
||||
id: cache-grpc
|
||||
uses: actions/cache@v3
|
||||
with:
|
||||
path: grpc
|
||||
key: ${{ runner.os }}-grpc
|
||||
- name: Build grpc
|
||||
if: steps.cache-grpc.outputs.cache-hit != 'true'
|
||||
run: |
|
||||
git clone --recurse-submodules -b v1.58.0 --depth 1 --shallow-submodules https://github.com/grpc/grpc && \
|
||||
cd grpc && mkdir -p cmake/build && cd cmake/build && cmake -DgRPC_INSTALL=ON \
|
||||
-DgRPC_BUILD_TESTS=OFF \
|
||||
../.. && sudo make -j12
|
||||
- name: Install gRPC
|
||||
run: |
|
||||
cd grpc && cd cmake/build && sudo make -j12 install
|
||||
- name: Test
|
||||
run: |
|
||||
GO_TAGS="stablediffusion tts" make test
|
||||
|
||||
tests-apple:
|
||||
runs-on: macOS-latest
|
||||
strategy:
|
||||
matrix:
|
||||
go-version: ['1.21.x']
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
submodules: true
|
||||
- name: Setup Go ${{ matrix.go-version }}
|
||||
uses: actions/setup-go@v4
|
||||
with:
|
||||
go-version: ${{ matrix.go-version }}
|
||||
# You can test your matrix by printing the current Go version
|
||||
- name: Display Go version
|
||||
run: go version
|
||||
- name: Dependencies
|
||||
run: |
|
||||
brew install protobuf grpc
|
||||
- name: Test
|
||||
run: |
|
||||
export C_INCLUDE_PATH=/usr/local/include
|
||||
export CPLUS_INCLUDE_PATH=/usr/local/include
|
||||
CMAKE_ARGS="-DLLAMA_F16C=OFF -DLLAMA_AVX512=OFF -DLLAMA_AVX2=OFF -DLLAMA_FMA=OFF" make test
|
||||
43
.gitignore
vendored
43
.gitignore
vendored
@@ -1,2 +1,41 @@
|
||||
llama-cli
|
||||
models/*.bin
|
||||
# go-llama build artifacts
|
||||
/sources/
|
||||
__pycache__/
|
||||
*.a
|
||||
get-sources
|
||||
prepare-sources
|
||||
/backend/cpp/llama/grpc-server
|
||||
/backend/cpp/llama/llama.cpp
|
||||
|
||||
go-ggml-transformers
|
||||
go-gpt2
|
||||
go-rwkv
|
||||
whisper.cpp
|
||||
/bloomz
|
||||
go-bert
|
||||
|
||||
# LocalAI build binary
|
||||
LocalAI
|
||||
local-ai
|
||||
# prevent above rules from omitting the helm chart
|
||||
!charts/*
|
||||
# prevent above rules from omitting the api/localai folder
|
||||
!api/localai
|
||||
!core/**/localai
|
||||
|
||||
# Ignore models
|
||||
models/*
|
||||
test-models/
|
||||
test-dir/
|
||||
|
||||
release/
|
||||
|
||||
# just in case
|
||||
.DS_Store
|
||||
.idea
|
||||
|
||||
# Generated during build
|
||||
backend-assets/*
|
||||
!backend-assets/.keep
|
||||
prepare
|
||||
/ggml-metal.metal
|
||||
|
||||
6
.gitmodules
vendored
Normal file
6
.gitmodules
vendored
Normal file
@@ -0,0 +1,6 @@
|
||||
[submodule "docs/themes/hugo-theme-relearn"]
|
||||
path = docs/themes/hugo-theme-relearn
|
||||
url = https://github.com/McShelby/hugo-theme-relearn.git
|
||||
[submodule "docs/themes/lotusdocs"]
|
||||
path = docs/themes/lotusdocs
|
||||
url = https://github.com/colinwilson/lotusdocs
|
||||
@@ -1,15 +0,0 @@
|
||||
# Make sure to check the documentation at http://goreleaser.com
|
||||
project_name: llama-cli
|
||||
builds:
|
||||
- ldflags:
|
||||
- -w -s
|
||||
env:
|
||||
- CGO_ENABLED=0
|
||||
goos:
|
||||
- linux
|
||||
- darwin
|
||||
- windows
|
||||
goarch:
|
||||
- amd64
|
||||
- arm64
|
||||
binary: '{{ .ProjectName }}'
|
||||
33
.vscode/launch.json
vendored
Normal file
33
.vscode/launch.json
vendored
Normal file
@@ -0,0 +1,33 @@
|
||||
{
|
||||
"version": "0.2.0",
|
||||
"configurations": [
|
||||
{
|
||||
"name": "Python: Current File",
|
||||
"type": "python",
|
||||
"request": "launch",
|
||||
"program": "${file}",
|
||||
"console": "integratedTerminal",
|
||||
"justMyCode": false,
|
||||
"cwd": "${workspaceFolder}/examples/langchain-chroma",
|
||||
"env": {
|
||||
"OPENAI_API_BASE": "http://localhost:8080/v1",
|
||||
"OPENAI_API_KEY": "abc"
|
||||
}
|
||||
},
|
||||
{
|
||||
"name": "Launch LocalAI API",
|
||||
"type": "go",
|
||||
"request": "launch",
|
||||
"mode": "debug",
|
||||
"program": "${workspaceFolder}/main.go",
|
||||
"args": [
|
||||
"api"
|
||||
],
|
||||
"env": {
|
||||
"C_INCLUDE_PATH": "${workspaceFolder}/go-llama:${workspaceFolder}/go-stable-diffusion/:${workspaceFolder}/gpt4all/gpt4all-bindings/golang/:${workspaceFolder}/go-gpt2:${workspaceFolder}/go-rwkv:${workspaceFolder}/whisper.cpp:${workspaceFolder}/go-bert:${workspaceFolder}/bloomz",
|
||||
"LIBRARY_PATH": "${workspaceFolder}/go-llama:${workspaceFolder}/go-stable-diffusion/:${workspaceFolder}/gpt4all/gpt4all-bindings/golang/:${workspaceFolder}/go-gpt2:${workspaceFolder}/go-rwkv:${workspaceFolder}/whisper.cpp:${workspaceFolder}/go-bert:${workspaceFolder}/bloomz",
|
||||
"DEBUG": "true"
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
72
CONTRIBUTING.md
Normal file
72
CONTRIBUTING.md
Normal file
@@ -0,0 +1,72 @@
|
||||
# Contributing to localAI
|
||||
|
||||
Thank you for your interest in contributing to LocalAI! We appreciate your time and effort in helping to improve our project. Before you get started, please take a moment to review these guidelines.
|
||||
|
||||
## Table of Contents
|
||||
|
||||
- [Getting Started](#getting-started)
|
||||
- [Prerequisites](#prerequisites)
|
||||
- [Setting up the Development Environment](#setting-up-the-development-environment)
|
||||
- [Contributing](#contributing)
|
||||
- [Submitting an Issue](#submitting-an-issue)
|
||||
- [Creating a Pull Request (PR)](#creating-a-pull-request-pr)
|
||||
- [Coding Guidelines](#coding-guidelines)
|
||||
- [Testing](#testing)
|
||||
- [Documentation](#documentation)
|
||||
- [Community and Communication](#community-and-communication)
|
||||
|
||||
|
||||
|
||||
## Getting Started
|
||||
|
||||
### Prerequisites
|
||||
|
||||
- Golang [1.21]
|
||||
- Git
|
||||
- macOS/Linux
|
||||
|
||||
### Setting up the Development Environment and running localAI in the local environment
|
||||
|
||||
1. Clone the repository: `git clone https://github.com/go-skynet/LocalAI.git`
|
||||
2. Navigate to the project directory: `cd LocalAI`
|
||||
3. Install the required dependencies: `make prepare`
|
||||
4. Run LocalAI: `make run`
|
||||
|
||||
## Contributing
|
||||
|
||||
We welcome contributions from everyone! To get started, follow these steps:
|
||||
|
||||
### Submitting an Issue
|
||||
|
||||
If you find a bug, have a feature request, or encounter any issues, please check the [issue tracker](https://github.com/go-skynet/LocalAI/issues) to see if a similar issue has already been reported. If not, feel free to [create a new issue](https://github.com/go-skynet/LocalAI/issues/new) and provide as much detail as possible.
|
||||
|
||||
### Creating a Pull Request (PR)
|
||||
|
||||
1. Fork the repository.
|
||||
2. Create a new branch with a descriptive name: `git checkout -b [branch name]`
|
||||
3. Make your changes and commit them.
|
||||
4. Push the changes to your fork: `git push origin [branch name]`
|
||||
5. Create a new pull request from your branch to the main project's `main` or `master` branch.
|
||||
6. Provide a clear description of your changes in the pull request.
|
||||
7. Make any requested changes during the review process.
|
||||
8. Once your PR is approved, it will be merged into the main project.
|
||||
|
||||
## Coding Guidelines
|
||||
|
||||
- No specific coding guidelines at the moment. Please make sure the code can be tested. The most popular lint tools like []`golangci-lint`](https://golangci-lint.run) can help you here.
|
||||
|
||||
## Testing
|
||||
|
||||
`make test` cannot handle all the model now. Please be sure to add a test case for the new features or the part was changed.
|
||||
|
||||
## Documentation
|
||||
|
||||
- We are welcome the contribution of the documents, please open new PR in the official document repo [localai-website](https://github.com/go-skynet/localai-website)
|
||||
|
||||
## Community and Communication
|
||||
|
||||
- You can reach out via the Github issue tracker.
|
||||
- Open a new discussion at [Discussion](https://github.com/go-skynet/LocalAI/discussions)
|
||||
- Join the Discord channel [Discord](https://discord.gg/uJAeKSAGDy)
|
||||
|
||||
---
|
||||
247
Dockerfile
247
Dockerfile
@@ -1,19 +1,236 @@
|
||||
ARG GO_VERSION=1.20
|
||||
ARG DEBIAN_VERSION=11
|
||||
ARG IMAGE_TYPE=extras
|
||||
ARG BASE_IMAGE=ubuntu:22.04
|
||||
|
||||
FROM golang:$GO_VERSION as builder
|
||||
# extras or core
|
||||
FROM ${BASE_IMAGE} as requirements-core
|
||||
|
||||
USER root
|
||||
|
||||
ARG GO_VERSION=1.21.7
|
||||
ARG BUILD_TYPE
|
||||
ARG CUDA_MAJOR_VERSION=11
|
||||
ARG CUDA_MINOR_VERSION=7
|
||||
ARG TARGETARCH
|
||||
ARG TARGETVARIANT
|
||||
|
||||
ENV BUILD_TYPE=${BUILD_TYPE}
|
||||
ENV DEBIAN_FRONTEND=noninteractive
|
||||
ENV EXTERNAL_GRPC_BACKENDS="coqui:/build/backend/python/coqui/run.sh,huggingface-embeddings:/build/backend/python/sentencetransformers/run.sh,petals:/build/backend/python/petals/run.sh,transformers:/build/backend/python/transformers/run.sh,sentencetransformers:/build/backend/python/sentencetransformers/run.sh,autogptq:/build/backend/python/autogptq/run.sh,bark:/build/backend/python/bark/run.sh,diffusers:/build/backend/python/diffusers/run.sh,exllama:/build/backend/python/exllama/run.sh,vall-e-x:/build/backend/python/vall-e-x/run.sh,vllm:/build/backend/python/vllm/run.sh,mamba:/build/backend/python/mamba/run.sh,exllama2:/build/backend/python/exllama2/run.sh,transformers-musicgen:/build/backend/python/transformers-musicgen/run.sh"
|
||||
|
||||
ARG GO_TAGS="stablediffusion tinydream tts"
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y ca-certificates curl patch pip cmake git && apt-get clean
|
||||
|
||||
# Install Go
|
||||
RUN curl -L -s https://go.dev/dl/go$GO_VERSION.linux-$TARGETARCH.tar.gz | tar -C /usr/local -xz
|
||||
ENV PATH $PATH:/usr/local/go/bin
|
||||
|
||||
COPY --chmod=644 custom-ca-certs/* /usr/local/share/ca-certificates/
|
||||
RUN update-ca-certificates
|
||||
|
||||
# Use the variables in subsequent instructions
|
||||
RUN echo "Target Architecture: $TARGETARCH"
|
||||
RUN echo "Target Variant: $TARGETVARIANT"
|
||||
|
||||
# CuBLAS requirements
|
||||
RUN if [ "${BUILD_TYPE}" = "cublas" ]; then \
|
||||
apt-get install -y software-properties-common && \
|
||||
curl -O https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-keyring_1.1-1_all.deb && \
|
||||
dpkg -i cuda-keyring_1.1-1_all.deb && \
|
||||
rm -f cuda-keyring_1.1-1_all.deb && \
|
||||
apt-get update && \
|
||||
apt-get install -y cuda-nvcc-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} libcurand-dev-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} libcublas-dev-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} libcusparse-dev-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} libcusolver-dev-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} && apt-get clean \
|
||||
; fi
|
||||
|
||||
# Cuda
|
||||
ENV PATH /usr/local/cuda/bin:${PATH}
|
||||
|
||||
# HipBLAS requirements
|
||||
ENV PATH /opt/rocm/bin:${PATH}
|
||||
|
||||
# OpenBLAS requirements and stable diffusion
|
||||
RUN apt-get install -y \
|
||||
libopenblas-dev \
|
||||
libopencv-dev \
|
||||
&& apt-get clean
|
||||
|
||||
# Set up OpenCV
|
||||
RUN ln -s /usr/include/opencv4/opencv2 /usr/include/opencv2
|
||||
|
||||
WORKDIR /build
|
||||
RUN git clone --recurse-submodules https://github.com/go-skynet/go-llama.cpp
|
||||
RUN cd go-llama.cpp && make libbinding.a
|
||||
COPY go.mod ./
|
||||
COPY go.sum ./
|
||||
RUN go mod download
|
||||
RUN apt-get update
|
||||
COPY . .
|
||||
RUN go mod edit -replace github.com/go-skynet/go-llama.cpp=/build/go-llama.cpp
|
||||
RUN C_INCLUDE_PATH=/build/go-llama.cpp LIBRARY_PATH=/build/go-llama.cpp go build -o llama-cli ./
|
||||
|
||||
FROM debian:$DEBIAN_VERSION
|
||||
COPY --from=builder /build/llama-cli /usr/bin/llama-cli
|
||||
ENTRYPOINT [ "/usr/bin/llama-cli" ]
|
||||
RUN test -n "$TARGETARCH" \
|
||||
|| (echo 'warn: missing $TARGETARCH, either set this `ARG` manually, or run using `docker buildkit`')
|
||||
|
||||
# Extras requirements
|
||||
FROM requirements-core as requirements-extras
|
||||
|
||||
RUN curl https://repo.anaconda.com/pkgs/misc/gpgkeys/anaconda.asc | gpg --dearmor > conda.gpg && \
|
||||
install -o root -g root -m 644 conda.gpg /usr/share/keyrings/conda-archive-keyring.gpg && \
|
||||
gpg --keyring /usr/share/keyrings/conda-archive-keyring.gpg --no-default-keyring --fingerprint 34161F5BF5EB1D4BFBBB8F0A8AEB4F8B29D82806 && \
|
||||
echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" > /etc/apt/sources.list.d/conda.list && \
|
||||
echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" | tee -a /etc/apt/sources.list.d/conda.list && \
|
||||
apt-get update && \
|
||||
apt-get install -y conda && apt-get clean
|
||||
|
||||
ENV PATH="/root/.cargo/bin:${PATH}"
|
||||
RUN apt-get install -y python3-pip && apt-get clean
|
||||
RUN pip install --upgrade pip
|
||||
|
||||
RUN curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh -s -- -y
|
||||
RUN apt-get install -y espeak-ng espeak && apt-get clean
|
||||
|
||||
RUN if [ ! -e /usr/bin/python ]; then \
|
||||
ln -s /usr/bin/python3 /usr/bin/python \
|
||||
; fi
|
||||
|
||||
###################################
|
||||
###################################
|
||||
|
||||
FROM requirements-${IMAGE_TYPE} as builder
|
||||
|
||||
ARG GO_TAGS="stablediffusion tts"
|
||||
ARG GRPC_BACKENDS
|
||||
ARG BUILD_GRPC=true
|
||||
ENV GRPC_BACKENDS=${GRPC_BACKENDS}
|
||||
ENV GO_TAGS=${GO_TAGS}
|
||||
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
|
||||
ENV NVIDIA_REQUIRE_CUDA="cuda>=${CUDA_MAJOR_VERSION}.0"
|
||||
ENV NVIDIA_VISIBLE_DEVICES=all
|
||||
|
||||
WORKDIR /build
|
||||
|
||||
COPY . .
|
||||
COPY .git .
|
||||
RUN make prepare
|
||||
|
||||
# If we are building with clblas support, we need the libraries for the builds
|
||||
RUN if [ "${BUILD_TYPE}" = "clblas" ]; then \
|
||||
apt-get update && \
|
||||
apt-get install -y libclblast-dev && \
|
||||
apt-get clean \
|
||||
; fi
|
||||
|
||||
# stablediffusion does not tolerate a newer version of abseil, build it first
|
||||
RUN GRPC_BACKENDS=backend-assets/grpc/stablediffusion make build
|
||||
|
||||
RUN if [ "${BUILD_GRPC}" = "true" ]; then \
|
||||
git clone --recurse-submodules -b v1.58.0 --depth 1 --shallow-submodules https://github.com/grpc/grpc && \
|
||||
cd grpc && mkdir -p cmake/build && cd cmake/build && cmake -DgRPC_INSTALL=ON \
|
||||
-DgRPC_BUILD_TESTS=OFF \
|
||||
../.. && make -j12 install \
|
||||
; fi
|
||||
|
||||
# Rebuild with defaults backends
|
||||
RUN make build
|
||||
|
||||
RUN if [ ! -d "/build/sources/go-piper/piper-phonemize/pi/lib/" ]; then \
|
||||
mkdir -p /build/sources/go-piper/piper-phonemize/pi/lib/ \
|
||||
touch /build/sources/go-piper/piper-phonemize/pi/lib/keep \
|
||||
; fi
|
||||
|
||||
###################################
|
||||
###################################
|
||||
|
||||
FROM requirements-${IMAGE_TYPE}
|
||||
|
||||
ARG FFMPEG
|
||||
ARG BUILD_TYPE
|
||||
ARG TARGETARCH
|
||||
ARG IMAGE_TYPE=extras
|
||||
|
||||
ENV BUILD_TYPE=${BUILD_TYPE}
|
||||
ENV REBUILD=false
|
||||
ENV HEALTHCHECK_ENDPOINT=http://localhost:8080/readyz
|
||||
|
||||
ARG CUDA_MAJOR_VERSION=11
|
||||
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
|
||||
ENV NVIDIA_REQUIRE_CUDA="cuda>=${CUDA_MAJOR_VERSION}.0"
|
||||
ENV NVIDIA_VISIBLE_DEVICES=all
|
||||
ENV PIP_CACHE_PURGE=true
|
||||
|
||||
# Add FFmpeg
|
||||
RUN if [ "${FFMPEG}" = "true" ]; then \
|
||||
apt-get install -y ffmpeg && apt-get clean \
|
||||
; fi
|
||||
|
||||
# Add OpenCL
|
||||
RUN if [ "${BUILD_TYPE}" = "clblas" ]; then \
|
||||
apt-get update && \
|
||||
apt-get install -y libclblast1 && \
|
||||
apt-get clean \
|
||||
; fi
|
||||
|
||||
WORKDIR /build
|
||||
|
||||
# we start fresh & re-copy all assets because `make build` does not clean up nicely after itself
|
||||
# so when `entrypoint.sh` runs `make build` again (which it does by default), the build would fail
|
||||
# see https://github.com/go-skynet/LocalAI/pull/658#discussion_r1241971626 and
|
||||
# https://github.com/go-skynet/LocalAI/pull/434
|
||||
COPY . .
|
||||
|
||||
COPY --from=builder /build/sources ./sources/
|
||||
COPY --from=builder /build/grpc ./grpc/
|
||||
|
||||
RUN make prepare-sources && cd /build/grpc/cmake/build && make install && rm -rf grpc
|
||||
|
||||
# Copy the binary
|
||||
COPY --from=builder /build/local-ai ./
|
||||
|
||||
# Copy shared libraries for piper
|
||||
COPY --from=builder /build/sources/go-piper/piper-phonemize/pi/lib/* /usr/lib/
|
||||
|
||||
# do not let stablediffusion rebuild (requires an older version of absl)
|
||||
COPY --from=builder /build/backend-assets/grpc/stablediffusion ./backend-assets/grpc/stablediffusion
|
||||
|
||||
## Duplicated from Makefile to avoid having a big layer that's hard to push
|
||||
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
|
||||
make -C backend/python/autogptq \
|
||||
; fi
|
||||
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
|
||||
make -C backend/python/bark \
|
||||
; fi
|
||||
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
|
||||
make -C backend/python/diffusers \
|
||||
; fi
|
||||
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
|
||||
make -C backend/python/vllm \
|
||||
; fi
|
||||
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
|
||||
make -C backend/python/mamba \
|
||||
; fi
|
||||
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
|
||||
make -C backend/python/sentencetransformers \
|
||||
; fi
|
||||
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
|
||||
make -C backend/python/transformers \
|
||||
; fi
|
||||
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
|
||||
make -C backend/python/vall-e-x \
|
||||
; fi
|
||||
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
|
||||
make -C backend/python/exllama \
|
||||
; fi
|
||||
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
|
||||
make -C backend/python/exllama2 \
|
||||
; fi
|
||||
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
|
||||
make -C backend/python/petals \
|
||||
; fi
|
||||
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
|
||||
make -C backend/python/transformers-musicgen \
|
||||
; fi
|
||||
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
|
||||
make -C backend/python/coqui \
|
||||
; fi
|
||||
|
||||
# Make sure the models directory exists
|
||||
RUN mkdir -p /build/models
|
||||
|
||||
# Define the health check command
|
||||
HEALTHCHECK --interval=1m --timeout=10m --retries=10 \
|
||||
CMD curl -f $HEALTHCHECK_ENDPOINT || exit 1
|
||||
|
||||
EXPOSE 8080
|
||||
ENTRYPOINT [ "/build/entrypoint.sh" ]
|
||||
|
||||
@@ -2,4 +2,4 @@ VERSION 0.7
|
||||
|
||||
build:
|
||||
FROM DOCKERFILE -f Dockerfile .
|
||||
SAVE ARTIFACT /usr/bin/llama-cli AS LOCAL llama-cli
|
||||
SAVE ARTIFACT /usr/bin/local-ai AS LOCAL local-ai
|
||||
|
||||
10
Entitlements.plist
Normal file
10
Entitlements.plist
Normal file
@@ -0,0 +1,10 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
|
||||
<plist version="1.0">
|
||||
<dict>
|
||||
<key>com.apple.security.network.client</key>
|
||||
<true/>
|
||||
<key>com.apple.security.network.server</key>
|
||||
<true/>
|
||||
</dict>
|
||||
</plist>
|
||||
2
LICENSE
2
LICENSE
@@ -1,6 +1,6 @@
|
||||
MIT License
|
||||
|
||||
Copyright (c) 2023 go-skynet authors
|
||||
Copyright (c) 2023-2024 Ettore Di Giacinto (mudler@localai.io)
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
|
||||
566
Makefile
Normal file
566
Makefile
Normal file
@@ -0,0 +1,566 @@
|
||||
GOCMD=go
|
||||
GOTEST=$(GOCMD) test
|
||||
GOVET=$(GOCMD) vet
|
||||
BINARY_NAME=local-ai
|
||||
|
||||
# llama.cpp versions
|
||||
GOLLAMA_VERSION?=6a8041ef6b46d4712afc3ae791d1c2d73da0ad1c
|
||||
|
||||
GOLLAMA_STABLE_VERSION?=50cee7712066d9e38306eccadcfbb44ea87df4b7
|
||||
|
||||
CPPLLAMA_VERSION?=4755afd1cbd40d93c017e5b98c39796f52345314
|
||||
|
||||
# gpt4all version
|
||||
GPT4ALL_REPO?=https://github.com/nomic-ai/gpt4all
|
||||
GPT4ALL_VERSION?=27a8b020c36b0df8f8b82a252d261cda47cf44b8
|
||||
|
||||
# go-rwkv version
|
||||
RWKV_REPO?=https://github.com/donomii/go-rwkv.cpp
|
||||
RWKV_VERSION?=661e7ae26d442f5cfebd2a0881b44e8c55949ec6
|
||||
|
||||
# whisper.cpp version
|
||||
WHISPER_CPP_VERSION?=a56f435fd475afd7edf02bfbf9f8c77f527198c2
|
||||
|
||||
# bert.cpp version
|
||||
BERT_VERSION?=6abe312cded14042f6b7c3cd8edf082713334a4d
|
||||
|
||||
# go-piper version
|
||||
PIPER_VERSION?=9d0100873a7dbb0824dfea40e8cec70a1b110759
|
||||
|
||||
# stablediffusion version
|
||||
STABLEDIFFUSION_VERSION?=362df9da29f882dbf09ade61972d16a1f53c3485
|
||||
|
||||
# tinydream version
|
||||
TINYDREAM_VERSION?=772a9c0d9aaf768290e63cca3c904fe69faf677a
|
||||
|
||||
export BUILD_TYPE?=
|
||||
export STABLE_BUILD_TYPE?=$(BUILD_TYPE)
|
||||
export CMAKE_ARGS?=
|
||||
|
||||
CGO_LDFLAGS?=
|
||||
CUDA_LIBPATH?=/usr/local/cuda/lib64/
|
||||
GO_TAGS?=
|
||||
BUILD_ID?=git
|
||||
|
||||
TEST_DIR=/tmp/test
|
||||
|
||||
TEST_FLAKES?=5
|
||||
|
||||
RANDOM := $(shell bash -c 'echo $$RANDOM')
|
||||
|
||||
VERSION?=$(shell git describe --always --tags || echo "dev" )
|
||||
# go tool nm ./local-ai | grep Commit
|
||||
LD_FLAGS?=
|
||||
override LD_FLAGS += -X "github.com/go-skynet/LocalAI/internal.Version=$(VERSION)"
|
||||
override LD_FLAGS += -X "github.com/go-skynet/LocalAI/internal.Commit=$(shell git rev-parse HEAD)"
|
||||
|
||||
OPTIONAL_TARGETS?=
|
||||
|
||||
OS := $(shell uname -s)
|
||||
ARCH := $(shell uname -m)
|
||||
GREEN := $(shell tput -Txterm setaf 2)
|
||||
YELLOW := $(shell tput -Txterm setaf 3)
|
||||
WHITE := $(shell tput -Txterm setaf 7)
|
||||
CYAN := $(shell tput -Txterm setaf 6)
|
||||
RESET := $(shell tput -Txterm sgr0)
|
||||
|
||||
# Default Docker bridge IP
|
||||
E2E_BRIDGE_IP?=172.17.0.1
|
||||
|
||||
ifndef UNAME_S
|
||||
UNAME_S := $(shell uname -s)
|
||||
endif
|
||||
|
||||
ifeq ($(OS),Darwin)
|
||||
CGO_LDFLAGS += -lcblas -framework Accelerate
|
||||
ifeq ($(OSX_SIGNING_IDENTITY),)
|
||||
OSX_SIGNING_IDENTITY := $(shell security find-identity -v -p codesigning | grep '"' | head -n 1 | sed -E 's/.*"(.*)"/\1/')
|
||||
endif
|
||||
|
||||
# on OSX, if BUILD_TYPE is blank, we should default to use Metal
|
||||
ifeq ($(BUILD_TYPE),)
|
||||
BUILD_TYPE=metal
|
||||
# disable metal if on Darwin and any other value is explicitly passed.
|
||||
else ifneq ($(BUILD_TYPE),metal)
|
||||
CMAKE_ARGS+=-DLLAMA_METAL=OFF
|
||||
endif
|
||||
endif
|
||||
|
||||
ifeq ($(BUILD_TYPE),openblas)
|
||||
CGO_LDFLAGS+=-lopenblas
|
||||
export WHISPER_OPENBLAS=1
|
||||
endif
|
||||
|
||||
|
||||
ifeq ($(BUILD_TYPE),cublas)
|
||||
CGO_LDFLAGS+=-lcublas -lcudart -lculibos -lcublasLt -L$(CUDA_LIBPATH)
|
||||
export LLAMA_CUBLAS=1
|
||||
# required by whisper.cpp
|
||||
export WHISPER_CUBLAS=1
|
||||
CGO_LDFLAGS+=-L$(CUDA_PATH)/stubs -lcuda
|
||||
endif
|
||||
|
||||
ifeq ($(BUILD_TYPE),hipblas)
|
||||
ROCM_HOME ?= /opt/rocm
|
||||
ROCM_PATH ?= /opt/rocm
|
||||
LD_LIBRARY_PATH ?= /opt/rocm/lib:/opt/rocm/llvm/lib
|
||||
export CXX=$(ROCM_HOME)/llvm/bin/clang++
|
||||
export CC=$(ROCM_HOME)/llvm/bin/clang
|
||||
# llama-ggml has no hipblas support, so override it here.
|
||||
export STABLE_BUILD_TYPE=
|
||||
export WHISPER_HIPBLAS=1
|
||||
GPU_TARGETS ?= gfx900,gfx90a,gfx1030,gfx1031,gfx1100
|
||||
AMDGPU_TARGETS ?= "$(GPU_TARGETS)"
|
||||
CMAKE_ARGS+=-DLLAMA_HIPBLAS=ON -DAMDGPU_TARGETS="$(AMDGPU_TARGETS)" -DGPU_TARGETS="$(GPU_TARGETS)"
|
||||
CGO_LDFLAGS += -O3 --rtlib=compiler-rt -unwindlib=libgcc -lhipblas -lrocblas --hip-link -L${ROCM_HOME}/lib/llvm/lib
|
||||
endif
|
||||
|
||||
ifeq ($(BUILD_TYPE),metal)
|
||||
CGO_LDFLAGS+=-framework Foundation -framework Metal -framework MetalKit -framework MetalPerformanceShaders
|
||||
export LLAMA_METAL=1
|
||||
export WHISPER_METAL=1
|
||||
endif
|
||||
|
||||
ifeq ($(BUILD_TYPE),clblas)
|
||||
CGO_LDFLAGS+=-lOpenCL -lclblast
|
||||
export WHISPER_CLBLAST=1
|
||||
endif
|
||||
|
||||
# glibc-static or glibc-devel-static required
|
||||
ifeq ($(STATIC),true)
|
||||
LD_FLAGS=-linkmode external -extldflags -static
|
||||
endif
|
||||
|
||||
ifeq ($(findstring stablediffusion,$(GO_TAGS)),stablediffusion)
|
||||
# OPTIONAL_TARGETS+=go-stable-diffusion/libstablediffusion.a
|
||||
OPTIONAL_GRPC+=backend-assets/grpc/stablediffusion
|
||||
endif
|
||||
|
||||
ifeq ($(findstring tinydream,$(GO_TAGS)),tinydream)
|
||||
# OPTIONAL_TARGETS+=go-tiny-dream/libtinydream.a
|
||||
OPTIONAL_GRPC+=backend-assets/grpc/tinydream
|
||||
endif
|
||||
|
||||
ifeq ($(findstring tts,$(GO_TAGS)),tts)
|
||||
# OPTIONAL_TARGETS+=go-piper/libpiper_binding.a
|
||||
# OPTIONAL_TARGETS+=backend-assets/espeak-ng-data
|
||||
PIPER_CGO_CXXFLAGS+=-I$(CURDIR)/sources/go-piper/piper/src/cpp -I$(CURDIR)/sources/go-piper/piper/build/fi/include -I$(CURDIR)/sources/go-piper/piper/build/pi/include -I$(CURDIR)/sources/go-piper/piper/build/si/include
|
||||
PIPER_CGO_LDFLAGS+=-L$(CURDIR)/sources/go-piper/piper/build/fi/lib -L$(CURDIR)/sources/go-piper/piper/build/pi/lib -L$(CURDIR)/sources/go-piper/piper/build/si/lib -lfmt -lspdlog -lucd
|
||||
OPTIONAL_GRPC+=backend-assets/grpc/piper
|
||||
endif
|
||||
|
||||
ALL_GRPC_BACKENDS=backend-assets/grpc/langchain-huggingface
|
||||
ALL_GRPC_BACKENDS+=backend-assets/grpc/bert-embeddings
|
||||
ALL_GRPC_BACKENDS+=backend-assets/grpc/llama
|
||||
ALL_GRPC_BACKENDS+=backend-assets/grpc/llama-cpp
|
||||
ALL_GRPC_BACKENDS+=backend-assets/grpc/llama-ggml
|
||||
ALL_GRPC_BACKENDS+=backend-assets/grpc/gpt4all
|
||||
ALL_GRPC_BACKENDS+=backend-assets/grpc/rwkv
|
||||
ALL_GRPC_BACKENDS+=backend-assets/grpc/whisper
|
||||
ALL_GRPC_BACKENDS+=$(OPTIONAL_GRPC)
|
||||
|
||||
GRPC_BACKENDS?=$(ALL_GRPC_BACKENDS) $(OPTIONAL_GRPC)
|
||||
TEST_PATHS?=./api/... ./pkg/... ./core/...
|
||||
|
||||
# If empty, then we build all
|
||||
ifeq ($(GRPC_BACKENDS),)
|
||||
GRPC_BACKENDS=$(ALL_GRPC_BACKENDS)
|
||||
endif
|
||||
|
||||
ifeq ($(BUILD_API_ONLY),true)
|
||||
GRPC_BACKENDS=
|
||||
endif
|
||||
|
||||
.PHONY: all test build vendor
|
||||
|
||||
all: help
|
||||
|
||||
## GPT4ALL
|
||||
sources/gpt4all:
|
||||
git clone --recurse-submodules $(GPT4ALL_REPO) sources/gpt4all
|
||||
cd sources/gpt4all && git checkout -b build $(GPT4ALL_VERSION) && git submodule update --init --recursive --depth 1
|
||||
|
||||
## go-piper
|
||||
sources/go-piper:
|
||||
git clone --recurse-submodules https://github.com/mudler/go-piper sources/go-piper
|
||||
cd sources/go-piper && git checkout -b build $(PIPER_VERSION) && git submodule update --init --recursive --depth 1
|
||||
|
||||
## BERT embeddings
|
||||
sources/go-bert:
|
||||
git clone --recurse-submodules https://github.com/go-skynet/go-bert.cpp sources/go-bert
|
||||
cd sources/go-bert && git checkout -b build $(BERT_VERSION) && git submodule update --init --recursive --depth 1
|
||||
|
||||
## stable diffusion
|
||||
sources/go-stable-diffusion:
|
||||
git clone --recurse-submodules https://github.com/mudler/go-stable-diffusion sources/go-stable-diffusion
|
||||
cd sources/go-stable-diffusion && git checkout -b build $(STABLEDIFFUSION_VERSION) && git submodule update --init --recursive --depth 1
|
||||
|
||||
sources/go-stable-diffusion/libstablediffusion.a:
|
||||
$(MAKE) -C sources/go-stable-diffusion libstablediffusion.a
|
||||
|
||||
## tiny-dream
|
||||
sources/go-tiny-dream:
|
||||
git clone --recurse-submodules https://github.com/M0Rf30/go-tiny-dream sources/go-tiny-dream
|
||||
cd sources/go-tiny-dream && git checkout -b build $(TINYDREAM_VERSION) && git submodule update --init --recursive --depth 1
|
||||
|
||||
sources/go-tiny-dream/libtinydream.a:
|
||||
$(MAKE) -C sources/go-tiny-dream libtinydream.a
|
||||
|
||||
## RWKV
|
||||
sources/go-rwkv:
|
||||
git clone --recurse-submodules $(RWKV_REPO) sources/go-rwkv
|
||||
cd sources/go-rwkv && git checkout -b build $(RWKV_VERSION) && git submodule update --init --recursive --depth 1
|
||||
|
||||
sources/go-rwkv/librwkv.a: sources/go-rwkv
|
||||
cd sources/go-rwkv && cd rwkv.cpp && cmake . -DRWKV_BUILD_SHARED_LIBRARY=OFF && cmake --build . && cp librwkv.a ..
|
||||
|
||||
sources/go-bert/libgobert.a: sources/go-bert
|
||||
$(MAKE) -C sources/go-bert libgobert.a
|
||||
|
||||
backend-assets/gpt4all: sources/gpt4all/gpt4all-bindings/golang/libgpt4all.a
|
||||
mkdir -p backend-assets/gpt4all
|
||||
@cp sources/gpt4all/gpt4all-bindings/golang/buildllm/*.so backend-assets/gpt4all/ || true
|
||||
@cp sources/gpt4all/gpt4all-bindings/golang/buildllm/*.dylib backend-assets/gpt4all/ || true
|
||||
@cp sources/gpt4all/gpt4all-bindings/golang/buildllm/*.dll backend-assets/gpt4all/ || true
|
||||
|
||||
backend-assets/espeak-ng-data: sources/go-piper
|
||||
mkdir -p backend-assets/espeak-ng-data
|
||||
$(MAKE) -C sources/go-piper piper.o
|
||||
@cp -rf sources/go-piper/piper-phonemize/pi/share/espeak-ng-data/. backend-assets/espeak-ng-data
|
||||
|
||||
sources/gpt4all/gpt4all-bindings/golang/libgpt4all.a: sources/gpt4all
|
||||
$(MAKE) -C sources/gpt4all/gpt4all-bindings/golang/ libgpt4all.a
|
||||
|
||||
sources/whisper.cpp:
|
||||
git clone https://github.com/ggerganov/whisper.cpp.git sources/whisper.cpp
|
||||
cd sources/whisper.cpp && git checkout -b build $(WHISPER_CPP_VERSION) && git submodule update --init --recursive --depth 1
|
||||
|
||||
sources/whisper.cpp/libwhisper.a: sources/whisper.cpp
|
||||
cd sources/whisper.cpp && make libwhisper.a
|
||||
|
||||
sources/go-llama:
|
||||
git clone --recurse-submodules https://github.com/go-skynet/go-llama.cpp sources/go-llama
|
||||
cd sources/go-llama && git checkout -b build $(GOLLAMA_VERSION) && git submodule update --init --recursive --depth 1
|
||||
|
||||
sources/go-llama-ggml:
|
||||
git clone --recurse-submodules https://github.com/go-skynet/go-llama.cpp sources/go-llama-ggml
|
||||
cd sources/go-llama-ggml && git checkout -b build $(GOLLAMA_STABLE_VERSION) && git submodule update --init --recursive --depth 1
|
||||
|
||||
sources/go-llama/libbinding.a: sources/go-llama
|
||||
$(MAKE) -C sources/go-llama BUILD_TYPE=$(BUILD_TYPE) libbinding.a
|
||||
|
||||
sources/go-llama-ggml/libbinding.a: sources/go-llama-ggml
|
||||
$(MAKE) -C sources/go-llama-ggml BUILD_TYPE=$(STABLE_BUILD_TYPE) libbinding.a
|
||||
|
||||
sources/go-piper/libpiper_binding.a: sources/go-piper
|
||||
$(MAKE) -C sources/go-piper libpiper_binding.a example/main
|
||||
|
||||
backend/cpp/llama/llama.cpp:
|
||||
LLAMA_VERSION=$(CPPLLAMA_VERSION) $(MAKE) -C backend/cpp/llama llama.cpp
|
||||
|
||||
get-sources: backend/cpp/llama/llama.cpp sources/go-llama sources/go-llama-ggml sources/gpt4all sources/go-piper sources/go-rwkv sources/whisper.cpp sources/go-bert sources/go-stable-diffusion sources/go-tiny-dream
|
||||
touch $@
|
||||
|
||||
replace:
|
||||
$(GOCMD) mod edit -replace github.com/nomic-ai/gpt4all/gpt4all-bindings/golang=$(CURDIR)/sources/gpt4all/gpt4all-bindings/golang
|
||||
$(GOCMD) mod edit -replace github.com/donomii/go-rwkv.cpp=$(CURDIR)/sources/go-rwkv
|
||||
$(GOCMD) mod edit -replace github.com/ggerganov/whisper.cpp=$(CURDIR)/sources/whisper.cpp
|
||||
$(GOCMD) mod edit -replace github.com/ggerganov/whisper.cpp/bindings/go=$(CURDIR)/sources/whisper.cpp/bindings/go
|
||||
$(GOCMD) mod edit -replace github.com/go-skynet/go-bert.cpp=$(CURDIR)/sources/go-bert
|
||||
$(GOCMD) mod edit -replace github.com/mudler/go-stable-diffusion=$(CURDIR)/sources/go-stable-diffusion
|
||||
$(GOCMD) mod edit -replace github.com/M0Rf30/go-tiny-dream=$(CURDIR)/sources/go-tiny-dream
|
||||
$(GOCMD) mod edit -replace github.com/mudler/go-piper=$(CURDIR)/sources/go-piper
|
||||
|
||||
prepare-sources: get-sources replace
|
||||
$(GOCMD) mod download
|
||||
touch $@
|
||||
|
||||
## GENERIC
|
||||
rebuild: ## Rebuilds the project
|
||||
$(GOCMD) clean -cache
|
||||
$(MAKE) -C sources/go-llama clean
|
||||
$(MAKE) -C sources/go-llama-ggml clean
|
||||
$(MAKE) -C sources/gpt4all/gpt4all-bindings/golang/ clean
|
||||
$(MAKE) -C sources/go-rwkv clean
|
||||
$(MAKE) -C sources/whisper.cpp clean
|
||||
$(MAKE) -C sources/go-stable-diffusion clean
|
||||
$(MAKE) -C sources/go-bert clean
|
||||
$(MAKE) -C sources/go-piper clean
|
||||
$(MAKE) -C sources/go-tiny-dream clean
|
||||
$(MAKE) build
|
||||
|
||||
prepare: prepare-sources $(OPTIONAL_TARGETS)
|
||||
touch $@
|
||||
|
||||
clean: ## Remove build related file
|
||||
$(GOCMD) clean -cache
|
||||
rm -f prepare
|
||||
rm -rf ./sources
|
||||
rm -rf $(BINARY_NAME)
|
||||
rm -rf release/
|
||||
rm -rf backend-assets
|
||||
$(MAKE) -C backend/cpp/grpc clean
|
||||
$(MAKE) -C backend/cpp/llama clean
|
||||
|
||||
## Build:
|
||||
|
||||
build: backend-assets grpcs prepare ## Build the project
|
||||
$(info ${GREEN}I local-ai build info:${RESET})
|
||||
$(info ${GREEN}I BUILD_TYPE: ${YELLOW}$(BUILD_TYPE)${RESET})
|
||||
$(info ${GREEN}I GO_TAGS: ${YELLOW}$(GO_TAGS)${RESET})
|
||||
$(info ${GREEN}I LD_FLAGS: ${YELLOW}$(LD_FLAGS)${RESET})
|
||||
CGO_LDFLAGS="$(CGO_LDFLAGS)" $(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o $(BINARY_NAME) ./
|
||||
|
||||
dist: build
|
||||
mkdir -p release
|
||||
cp $(BINARY_NAME) release/$(BINARY_NAME)-$(BUILD_ID)-$(OS)-$(ARCH)
|
||||
|
||||
osx-signed: build
|
||||
codesign --deep --force --sign "$(OSX_SIGNING_IDENTITY)" --entitlements "./Entitlements.plist" "./$(BINARY_NAME)"
|
||||
|
||||
## Run
|
||||
run: prepare ## run local-ai
|
||||
CGO_LDFLAGS="$(CGO_LDFLAGS)" $(GOCMD) run ./
|
||||
|
||||
test-models/testmodel:
|
||||
mkdir test-models
|
||||
mkdir test-dir
|
||||
wget -q https://huggingface.co/TheBloke/orca_mini_3B-GGML/resolve/main/orca-mini-3b.ggmlv3.q4_0.bin -O test-models/testmodel
|
||||
wget -q https://huggingface.co/ggerganov/whisper.cpp/resolve/main/ggml-base.en.bin -O test-models/whisper-en
|
||||
wget -q https://huggingface.co/mudler/all-MiniLM-L6-v2/resolve/main/ggml-model-q4_0.bin -O test-models/bert
|
||||
wget -q https://cdn.openai.com/whisper/draft-20220913a/micro-machines.wav -O test-dir/audio.wav
|
||||
wget -q https://huggingface.co/mudler/rwkv-4-raven-1.5B-ggml/resolve/main/RWKV-4-Raven-1B5-v11-Eng99%2525-Other1%2525-20230425-ctx4096_Q4_0.bin -O test-models/rwkv
|
||||
wget -q https://raw.githubusercontent.com/saharNooby/rwkv.cpp/5eb8f09c146ea8124633ab041d9ea0b1f1db4459/rwkv/20B_tokenizer.json -O test-models/rwkv.tokenizer.json
|
||||
cp tests/models_fixtures/* test-models
|
||||
|
||||
prepare-test: grpcs
|
||||
cp -rf backend-assets core/http
|
||||
cp tests/models_fixtures/* test-models
|
||||
|
||||
test: prepare test-models/testmodel grpcs
|
||||
@echo 'Running tests'
|
||||
export GO_TAGS="tts stablediffusion"
|
||||
$(MAKE) prepare-test
|
||||
HUGGINGFACE_GRPC=$(abspath ./)/backend/python/sentencetransformers/run.sh TEST_DIR=$(abspath ./)/test-dir/ FIXTURES=$(abspath ./)/tests/fixtures CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models \
|
||||
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="!gpt4all && !llama && !llama-gguf" --flake-attempts $(TEST_FLAKES) --fail-fast -v -r $(TEST_PATHS)
|
||||
$(MAKE) test-gpt4all
|
||||
$(MAKE) test-llama
|
||||
$(MAKE) test-llama-gguf
|
||||
$(MAKE) test-tts
|
||||
$(MAKE) test-stablediffusion
|
||||
|
||||
prepare-e2e:
|
||||
mkdir -p $(TEST_DIR)
|
||||
cp -rfv $(abspath ./tests/e2e-fixtures)/gpu.yaml $(TEST_DIR)/gpu.yaml
|
||||
test -e $(TEST_DIR)/ggllm-test-model.bin || wget -q https://huggingface.co/TheBloke/CodeLlama-7B-Instruct-GGUF/resolve/main/codellama-7b-instruct.Q2_K.gguf -O $(TEST_DIR)/ggllm-test-model.bin
|
||||
docker build --build-arg BUILD_GRPC=true --build-arg GRPC_BACKENDS="$(GRPC_BACKENDS)" --build-arg IMAGE_TYPE=core --build-arg BUILD_TYPE=$(BUILD_TYPE) --build-arg CUDA_MAJOR_VERSION=11 --build-arg CUDA_MINOR_VERSION=7 --build-arg FFMPEG=true -t localai-tests .
|
||||
|
||||
run-e2e-image:
|
||||
ls -liah $(abspath ./tests/e2e-fixtures)
|
||||
docker run -p 5390:8080 -e MODELS_PATH=/models -e THREADS=1 -e DEBUG=true -d --rm -v $(TEST_DIR):/models --gpus all --name e2e-tests-$(RANDOM) localai-tests
|
||||
|
||||
test-e2e:
|
||||
@echo 'Running e2e tests'
|
||||
BUILD_TYPE=$(BUILD_TYPE) \
|
||||
LOCALAI_API=http://$(E2E_BRIDGE_IP):5390/v1 \
|
||||
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --flake-attempts 5 -v -r ./tests/e2e
|
||||
|
||||
teardown-e2e:
|
||||
rm -rf $(TEST_DIR) || true
|
||||
docker stop $$(docker ps -q --filter ancestor=localai-tests)
|
||||
|
||||
test-gpt4all: prepare-test
|
||||
TEST_DIR=$(abspath ./)/test-dir/ FIXTURES=$(abspath ./)/tests/fixtures CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models \
|
||||
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="gpt4all" --flake-attempts 5 -v -r $(TEST_PATHS)
|
||||
|
||||
test-llama: prepare-test
|
||||
TEST_DIR=$(abspath ./)/test-dir/ FIXTURES=$(abspath ./)/tests/fixtures CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models \
|
||||
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="llama" --flake-attempts 5 -v -r $(TEST_PATHS)
|
||||
|
||||
test-llama-gguf: prepare-test
|
||||
TEST_DIR=$(abspath ./)/test-dir/ FIXTURES=$(abspath ./)/tests/fixtures CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models \
|
||||
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="llama-gguf" --flake-attempts 5 -v -r $(TEST_PATHS)
|
||||
|
||||
test-tts: prepare-test
|
||||
TEST_DIR=$(abspath ./)/test-dir/ FIXTURES=$(abspath ./)/tests/fixtures CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models \
|
||||
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="tts" --flake-attempts 1 -v -r $(TEST_PATHS)
|
||||
|
||||
test-stablediffusion: prepare-test
|
||||
TEST_DIR=$(abspath ./)/test-dir/ FIXTURES=$(abspath ./)/tests/fixtures CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models \
|
||||
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="stablediffusion" --flake-attempts 1 -v -r $(TEST_PATHS)
|
||||
|
||||
test-container:
|
||||
docker build --target requirements -t local-ai-test-container .
|
||||
docker run -ti --rm --entrypoint /bin/bash -ti -v $(abspath ./):/build local-ai-test-container
|
||||
|
||||
## Help:
|
||||
help: ## Show this help.
|
||||
@echo ''
|
||||
@echo 'Usage:'
|
||||
@echo ' ${YELLOW}make${RESET} ${GREEN}<target>${RESET}'
|
||||
@echo ''
|
||||
@echo 'Targets:'
|
||||
@awk 'BEGIN {FS = ":.*?## "} { \
|
||||
if (/^[a-zA-Z_-]+:.*?##.*$$/) {printf " ${YELLOW}%-20s${GREEN}%s${RESET}\n", $$1, $$2} \
|
||||
else if (/^## .*$$/) {printf " ${CYAN}%s${RESET}\n", substr($$1,4)} \
|
||||
}' $(MAKEFILE_LIST)
|
||||
|
||||
protogen: protogen-go protogen-python
|
||||
|
||||
protogen-go:
|
||||
protoc -Ibackend/ --go_out=pkg/grpc/proto/ --go_opt=paths=source_relative --go-grpc_out=pkg/grpc/proto/ --go-grpc_opt=paths=source_relative \
|
||||
backend/backend.proto
|
||||
|
||||
protogen-python:
|
||||
python3 -m grpc_tools.protoc -Ibackend/ --python_out=backend/python/sentencetransformers/ --grpc_python_out=backend/python/sentencetransformers/ backend/backend.proto
|
||||
python3 -m grpc_tools.protoc -Ibackend/ --python_out=backend/python/transformers/ --grpc_python_out=backend/python/transformers/ backend/backend.proto
|
||||
python3 -m grpc_tools.protoc -Ibackend/ --python_out=backend/python/transformers-musicgen/ --grpc_python_out=backend/python/transformers-musicgen/ backend/backend.proto
|
||||
python3 -m grpc_tools.protoc -Ibackend/ --python_out=backend/python/autogptq/ --grpc_python_out=backend/python/autogptq/ backend/backend.proto
|
||||
python3 -m grpc_tools.protoc -Ibackend/ --python_out=backend/python/exllama/ --grpc_python_out=backend/python/exllama/ backend/backend.proto
|
||||
python3 -m grpc_tools.protoc -Ibackend/ --python_out=backend/python/bark/ --grpc_python_out=backend/python/bark/ backend/backend.proto
|
||||
python3 -m grpc_tools.protoc -Ibackend/ --python_out=backend/python/diffusers/ --grpc_python_out=backend/python/diffusers/ backend/backend.proto
|
||||
python3 -m grpc_tools.protoc -Ibackend/ --python_out=backend/python/coqui/ --grpc_python_out=backend/python/coqui/ backend/backend.proto
|
||||
python3 -m grpc_tools.protoc -Ibackend/ --python_out=backend/python/vall-e-x/ --grpc_python_out=backend/python/vall-e-x/ backend/backend.proto
|
||||
python3 -m grpc_tools.protoc -Ibackend/ --python_out=backend/python/vllm/ --grpc_python_out=backend/python/vllm/ backend/backend.proto
|
||||
python3 -m grpc_tools.protoc -Ibackend/ --python_out=backend/python/petals/ --grpc_python_out=backend/python/petals/ backend/backend.proto
|
||||
python3 -m grpc_tools.protoc -Ibackend/ --python_out=backend/python/mamba/ --grpc_python_out=backend/python/mamba/ backend/backend.proto
|
||||
python3 -m grpc_tools.protoc -Ibackend/ --python_out=backend/python/exllama2/ --grpc_python_out=backend/python/exllama2/ backend/backend.proto
|
||||
|
||||
## GRPC
|
||||
# Note: it is duplicated in the Dockerfile
|
||||
prepare-extra-conda-environments:
|
||||
$(MAKE) -C backend/python/autogptq
|
||||
$(MAKE) -C backend/python/bark
|
||||
$(MAKE) -C backend/python/coqui
|
||||
$(MAKE) -C backend/python/diffusers
|
||||
$(MAKE) -C backend/python/vllm
|
||||
$(MAKE) -C backend/python/mamba
|
||||
$(MAKE) -C backend/python/sentencetransformers
|
||||
$(MAKE) -C backend/python/transformers
|
||||
$(MAKE) -C backend/python/transformers-musicgen
|
||||
$(MAKE) -C backend/python/vall-e-x
|
||||
$(MAKE) -C backend/python/exllama
|
||||
$(MAKE) -C backend/python/petals
|
||||
$(MAKE) -C backend/python/exllama2
|
||||
|
||||
prepare-test-extra:
|
||||
$(MAKE) -C backend/python/transformers
|
||||
$(MAKE) -C backend/python/diffusers
|
||||
|
||||
test-extra: prepare-test-extra
|
||||
$(MAKE) -C backend/python/transformers test
|
||||
$(MAKE) -C backend/python/diffusers test
|
||||
|
||||
backend-assets:
|
||||
mkdir -p backend-assets
|
||||
ifeq ($(BUILD_API_ONLY),true)
|
||||
touch backend-assets/keep
|
||||
endif
|
||||
|
||||
backend-assets/grpc:
|
||||
mkdir -p backend-assets/grpc
|
||||
|
||||
backend-assets/grpc/llama: backend-assets/grpc sources/go-llama/libbinding.a
|
||||
$(GOCMD) mod edit -replace github.com/go-skynet/go-llama.cpp=$(CURDIR)/sources/go-llama
|
||||
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(CURDIR)/sources/go-llama LIBRARY_PATH=$(CURDIR)/sources/go-llama \
|
||||
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/llama ./backend/go/llm/llama/
|
||||
# TODO: every binary should have its own folder instead, so can have different implementations
|
||||
|
||||
## BACKEND CPP LLAMA START
|
||||
# Sets the variables in case it has to build the gRPC locally.
|
||||
INSTALLED_PACKAGES=$(CURDIR)/backend/cpp/grpc/installed_packages
|
||||
INSTALLED_LIB_CMAKE=$(INSTALLED_PACKAGES)/lib/cmake
|
||||
ADDED_CMAKE_ARGS=-Dabsl_DIR=${INSTALLED_LIB_CMAKE}/absl \
|
||||
-DProtobuf_DIR=${INSTALLED_LIB_CMAKE}/protobuf \
|
||||
-Dutf8_range_DIR=${INSTALLED_LIB_CMAKE}/utf8_range \
|
||||
-DgRPC_DIR=${INSTALLED_LIB_CMAKE}/grpc \
|
||||
-DCMAKE_CXX_STANDARD_INCLUDE_DIRECTORIES=${INSTALLED_PACKAGES}/include
|
||||
|
||||
backend/cpp/llama/grpc-server:
|
||||
ifdef BUILD_GRPC_FOR_BACKEND_LLAMA
|
||||
$(MAKE) -C backend/cpp/grpc build
|
||||
export _PROTOBUF_PROTOC=${INSTALLED_PACKAGES}/bin/proto && \
|
||||
export _GRPC_CPP_PLUGIN_EXECUTABLE=${INSTALLED_PACKAGES}/bin/grpc_cpp_plugin && \
|
||||
export PATH="${INSTALLED_PACKAGES}/bin:${PATH}" && \
|
||||
CMAKE_ARGS="${CMAKE_ARGS} ${ADDED_CMAKE_ARGS}" LLAMA_VERSION=$(CPPLLAMA_VERSION) $(MAKE) -C backend/cpp/llama grpc-server
|
||||
else
|
||||
echo "BUILD_GRPC_FOR_BACKEND_LLAMA is not defined."
|
||||
LLAMA_VERSION=$(CPPLLAMA_VERSION) $(MAKE) -C backend/cpp/llama grpc-server
|
||||
endif
|
||||
## BACKEND CPP LLAMA END
|
||||
|
||||
##
|
||||
backend-assets/grpc/llama-cpp: backend-assets/grpc backend/cpp/llama/grpc-server
|
||||
cp -rfv backend/cpp/llama/grpc-server backend-assets/grpc/llama-cpp
|
||||
# TODO: every binary should have its own folder instead, so can have different metal implementations
|
||||
ifeq ($(BUILD_TYPE),metal)
|
||||
cp backend/cpp/llama/llama.cpp/build/bin/default.metallib backend-assets/grpc/
|
||||
endif
|
||||
|
||||
backend-assets/grpc/llama-ggml: backend-assets/grpc sources/go-llama-ggml/libbinding.a
|
||||
$(GOCMD) mod edit -replace github.com/go-skynet/go-llama.cpp=$(CURDIR)/sources/go-llama-ggml
|
||||
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(CURDIR)/sources/go-llama-ggml LIBRARY_PATH=$(CURDIR)/sources/go-llama-ggml \
|
||||
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/llama-ggml ./backend/go/llm/llama-ggml/
|
||||
|
||||
backend-assets/grpc/gpt4all: backend-assets/grpc backend-assets/gpt4all sources/gpt4all/gpt4all-bindings/golang/libgpt4all.a
|
||||
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(CURDIR)/sources/gpt4all/gpt4all-bindings/golang/ LIBRARY_PATH=$(CURDIR)/sources/gpt4all/gpt4all-bindings/golang/ \
|
||||
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/gpt4all ./backend/go/llm/gpt4all/
|
||||
|
||||
backend-assets/grpc/rwkv: backend-assets/grpc sources/go-rwkv/librwkv.a
|
||||
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(CURDIR)/sources/go-rwkv LIBRARY_PATH=$(CURDIR)/sources/go-rwkv \
|
||||
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/rwkv ./backend/go/llm/rwkv
|
||||
|
||||
backend-assets/grpc/bert-embeddings: backend-assets/grpc sources/go-bert/libgobert.a
|
||||
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(CURDIR)/sources/go-bert LIBRARY_PATH=$(CURDIR)/sources/go-bert \
|
||||
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/bert-embeddings ./backend/go/llm/bert/
|
||||
|
||||
backend-assets/grpc/langchain-huggingface: backend-assets/grpc
|
||||
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/langchain-huggingface ./backend/go/llm/langchain/
|
||||
|
||||
backend-assets/grpc/stablediffusion: backend-assets/grpc
|
||||
if [ ! -f backend-assets/grpc/stablediffusion ]; then \
|
||||
$(MAKE) sources/go-stable-diffusion; \
|
||||
$(MAKE) sources/go-stable-diffusion/libstablediffusion.a; \
|
||||
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(CURDIR)/sources/go-stable-diffusion/ LIBRARY_PATH=$(CURDIR)/sources/go-stable-diffusion/ \
|
||||
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/stablediffusion ./backend/go/image/stablediffusion; \
|
||||
fi
|
||||
|
||||
backend-assets/grpc/tinydream: backend-assets/grpc sources/go-tiny-dream/libtinydream.a
|
||||
CGO_LDFLAGS="$(CGO_LDFLAGS)" LIBRARY_PATH=$(CURDIR)/go-tiny-dream \
|
||||
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/tinydream ./backend/go/image/tinydream
|
||||
|
||||
backend-assets/grpc/piper: backend-assets/grpc backend-assets/espeak-ng-data sources/go-piper/libpiper_binding.a
|
||||
CGO_CXXFLAGS="$(PIPER_CGO_CXXFLAGS)" CGO_LDFLAGS="$(PIPER_CGO_LDFLAGS)" LIBRARY_PATH=$(CURDIR)/sources/go-piper \
|
||||
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/piper ./backend/go/tts/
|
||||
|
||||
backend-assets/grpc/whisper: backend-assets/grpc sources/whisper.cpp/libwhisper.a
|
||||
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(CURDIR)/sources/whisper.cpp LIBRARY_PATH=$(CURDIR)/sources/whisper.cpp \
|
||||
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/whisper ./backend/go/transcribe/
|
||||
|
||||
grpcs: prepare $(GRPC_BACKENDS)
|
||||
|
||||
DOCKER_IMAGE?=local-ai
|
||||
IMAGE_TYPE?=core
|
||||
BASE_IMAGE?=ubuntu:22.04
|
||||
|
||||
docker:
|
||||
docker build \
|
||||
--build-arg BASE_IMAGE=$(BASE_IMAGE) \
|
||||
--build-arg IMAGE_TYPE=$(IMAGE_TYPE) \
|
||||
--build-arg GO_TAGS=$(GO_TAGS) \
|
||||
--build-arg BUILD_TYPE=$(BUILD_TYPE) \
|
||||
-t $(DOCKER_IMAGE) .
|
||||
|
||||
docker-image-intel:
|
||||
docker build \
|
||||
--build-arg BASE_IMAGE=intel/oneapi-basekit:2024.0.1-devel-ubuntu22.04 \
|
||||
--build-arg IMAGE_TYPE=$(IMAGE_TYPE) \
|
||||
--build-arg GO_TAGS="none" \
|
||||
--build-arg BUILD_TYPE=sycl_f32 -t $(DOCKER_IMAGE) .
|
||||
|
||||
docker-image-intel-xpu:
|
||||
docker build \
|
||||
--build-arg BASE_IMAGE=intel/oneapi-basekit:2024.0.1-devel-ubuntu22.04 \
|
||||
--build-arg IMAGE_TYPE=$(IMAGE_TYPE) \
|
||||
--build-arg GO_TAGS="none" \
|
||||
--build-arg BUILD_TYPE=sycl_f32 -t $(DOCKER_IMAGE) .
|
||||
404
README.md
404
README.md
@@ -1,293 +1,191 @@
|
||||
## :camel: llama-cli
|
||||
<h1 align="center">
|
||||
<br>
|
||||
<img height="300" src="https://github.com/go-skynet/LocalAI/assets/2420543/0966aa2a-166e-4f99-a3e5-6c915fc997dd"> <br>
|
||||
LocalAI
|
||||
<br>
|
||||
</h1>
|
||||
|
||||
<p align="center">
|
||||
<a href="https://github.com/go-skynet/LocalAI/fork" target="blank">
|
||||
<img src="https://img.shields.io/github/forks/go-skynet/LocalAI?style=for-the-badge" alt="LocalAI forks"/>
|
||||
</a>
|
||||
<a href="https://github.com/go-skynet/LocalAI/stargazers" target="blank">
|
||||
<img src="https://img.shields.io/github/stars/go-skynet/LocalAI?style=for-the-badge" alt="LocalAI stars"/>
|
||||
</a>
|
||||
<a href="https://github.com/go-skynet/LocalAI/pulls" target="blank">
|
||||
<img src="https://img.shields.io/github/issues-pr/go-skynet/LocalAI?style=for-the-badge" alt="LocalAI pull-requests"/>
|
||||
</a>
|
||||
<a href='https://github.com/go-skynet/LocalAI/releases'>
|
||||
<img src='https://img.shields.io/github/release/go-skynet/LocalAI?&label=Latest&style=for-the-badge'>
|
||||
</a>
|
||||
</p>
|
||||
|
||||
llama-cli is a straightforward golang CLI interface and API compatible with OpenAI for [llama.cpp](https://github.com/ggerganov/llama.cpp), it supports multiple-models and also provides a simple command line interface that allows text generation using a GPT-based model like llama directly from the terminal.
|
||||
[<img src="https://img.shields.io/badge/dockerhub-images-important.svg?logo=Docker">](https://hub.docker.com/r/localai/localai)
|
||||
[<img src="https://img.shields.io/badge/quay.io-images-important.svg?">](https://quay.io/repository/go-skynet/local-ai?tab=tags&tag=latest)
|
||||
|
||||
It is compatible with the models supported by `llama.cpp`. You might need to convert older models to the new format, see [here](https://github.com/ggerganov/llama.cpp#using-gpt4all) for instance to run `gpt4all`.
|
||||
> :bulb: Get help - [❓FAQ](https://localai.io/faq/) [💭Discussions](https://github.com/go-skynet/LocalAI/discussions) [:speech_balloon: Discord](https://discord.gg/uJAeKSAGDy) [:book: Documentation website](https://localai.io/)
|
||||
>
|
||||
> [💻 Quickstart](https://localai.io/basics/getting_started/) [📣 News](https://localai.io/basics/news/) [ 🛫 Examples ](https://github.com/go-skynet/LocalAI/tree/master/examples/) [ 🖼️ Models ](https://localai.io/models/) [ 🚀 Roadmap ](https://github.com/mudler/LocalAI/issues?q=is%3Aissue+is%3Aopen+label%3Aroadmap)
|
||||
|
||||
`llama-cli` doesn't shell-out, it uses https://github.com/go-skynet/go-llama.cpp, which is a golang binding of [llama.cpp](https://github.com/ggerganov/llama.cpp).
|
||||
[](https://github.com/go-skynet/LocalAI/actions/workflows/test.yml)[](https://github.com/go-skynet/LocalAI/actions/workflows/release.yaml)[](https://github.com/go-skynet/LocalAI/actions/workflows/image.yml)[](https://github.com/go-skynet/LocalAI/actions/workflows/bump_deps.yaml)[](https://artifacthub.io/packages/search?repo=localai)
|
||||
|
||||
## Usage
|
||||
<p align="center">
|
||||
<a href="https://twitter.com/LocalAI_API" target="blank">
|
||||
<img src="https://img.shields.io/twitter/follow/LocalAI_API?label=Follow: LocalAI_API&style=social" alt="Follow LocalAI_API"/>
|
||||
</a>
|
||||
<a href="https://discord.gg/uJAeKSAGDy" target="blank">
|
||||
<img src="https://dcbadge.vercel.app/api/server/uJAeKSAGDy?style=flat-square&theme=default-inverted" alt="Join LocalAI Discord Community"/>
|
||||
</a>
|
||||
|
||||
You can use `docker-compose`:
|
||||
**LocalAI** is the free, Open Source OpenAI alternative. LocalAI act as a drop-in replacement REST API that’s compatible with OpenAI API specifications for local inferencing. It allows you to run LLMs, generate images, audio (and not only) locally or on-prem with consumer grade hardware, supporting multiple model families. Does not require GPU.
|
||||
|
||||
```bash
|
||||
## 🔥🔥 Hot topics / Roadmap
|
||||
|
||||
git clone https://github.com/go-skynet/llama-cli
|
||||
cd llama-cli
|
||||
[Roadmap](https://github.com/mudler/LocalAI/issues?q=is%3Aissue+is%3Aopen+label%3Aroadmap)
|
||||
|
||||
# copy your models to models/
|
||||
cp your-model.bin models/
|
||||
- Parallel function calling: https://github.com/mudler/LocalAI/pull/1726
|
||||
- Upload file API: https://github.com/mudler/LocalAI/pull/1703
|
||||
- Tools API support: https://github.com/mudler/LocalAI/pull/1715
|
||||
- LLaVa 1.6: https://github.com/mudler/LocalAI/pull/1714
|
||||
- ROCm container images: https://github.com/mudler/LocalAI/pull/1595
|
||||
- Intel GPU support (sycl, transformers, diffusers): https://github.com/mudler/LocalAI/issues/1653
|
||||
- Deprecation of old backends: https://github.com/mudler/LocalAI/issues/1651
|
||||
- Mamba support: https://github.com/mudler/LocalAI/pull/1589
|
||||
- Start and share models with config file: https://github.com/mudler/LocalAI/pull/1522
|
||||
- 🐸 Coqui: https://github.com/mudler/LocalAI/pull/1489
|
||||
- Img2vid https://github.com/mudler/LocalAI/pull/1442
|
||||
|
||||
# (optional) Edit the .env file to set the number of concurrent threads used for inference
|
||||
# echo "THREADS=14" > .env
|
||||
Hot topics (looking for contributors):
|
||||
- Backends v2: https://github.com/mudler/LocalAI/issues/1126
|
||||
- Improving UX v2: https://github.com/mudler/LocalAI/issues/1373
|
||||
- Assistant API: https://github.com/mudler/LocalAI/issues/1273
|
||||
- Moderation endpoint: https://github.com/mudler/LocalAI/issues/999
|
||||
- Vulkan: https://github.com/mudler/LocalAI/issues/1647
|
||||
|
||||
# start with docker-compose
|
||||
docker compose up -d --build
|
||||
If you want to help and contribute, issues up for grabs: https://github.com/mudler/LocalAI/issues?q=is%3Aissue+is%3Aopen+label%3A%22up+for+grabs%22
|
||||
|
||||
# Now API is accessible at localhost:8080
|
||||
curl http://localhost:8080/v1/models
|
||||
# {"object":"list","data":[{"id":"your-model.bin","object":"model"}]}
|
||||
curl http://localhost:8080/v1/completions -H "Content-Type: application/json" -d '{
|
||||
"model": "your-model.bin",
|
||||
"prompt": "A long time ago in a galaxy far, far away",
|
||||
"temperature": 0.7
|
||||
}'
|
||||
## 💻 [Getting started](https://localai.io/basics/getting_started/index.html)
|
||||
|
||||
For a detailed step-by-step introduction, refer to the [Getting Started](https://localai.io/basics/getting_started/index.html) guide. For those in a hurry, here's a straightforward one-liner to launch a LocalAI instance with [phi-2](https://huggingface.co/microsoft/phi-2) using `docker`:
|
||||
|
||||
```
|
||||
|
||||
Note: You can use a use a default template for every model in your model path, by creating a corresponding file with the `.tmpl` suffix next to your model. For instance, if the model is called `foo.bin`, you can create a sibiling file, `foo.bin.tmpl` which will be used as a default prompt, for instance this can be used with alpaca:
|
||||
|
||||
```
|
||||
Below is an instruction that describes a task. Write a response that appropriately completes the request.
|
||||
|
||||
### Instruction:
|
||||
{{.Input}}
|
||||
|
||||
### Response:
|
||||
docker run -ti -p 8080:8080 localai/localai:v2.9.0-ffmpeg-core phi-2
|
||||
```
|
||||
|
||||
## Container images
|
||||
## 🚀 [Features](https://localai.io/features/)
|
||||
|
||||
`llama-cli` comes by default as a container image. You can check out all the available images with corresponding tags [here](https://quay.io/repository/go-skynet/llama-cli?tab=tags&tag=latest)
|
||||
- 📖 [Text generation with GPTs](https://localai.io/features/text-generation/) (`llama.cpp`, `gpt4all.cpp`, ... [:book: and more](https://localai.io/model-compatibility/index.html#model-compatibility-table))
|
||||
- 🗣 [Text to Audio](https://localai.io/features/text-to-audio/)
|
||||
- 🔈 [Audio to Text](https://localai.io/features/audio-to-text/) (Audio transcription with `whisper.cpp`)
|
||||
- 🎨 [Image generation with stable diffusion](https://localai.io/features/image-generation)
|
||||
- 🔥 [OpenAI functions](https://localai.io/features/openai-functions/) 🆕
|
||||
- 🧠 [Embeddings generation for vector databases](https://localai.io/features/embeddings/)
|
||||
- ✍️ [Constrained grammars](https://localai.io/features/constrained_grammars/)
|
||||
- 🖼️ [Download Models directly from Huggingface ](https://localai.io/models/)
|
||||
- 🆕 [Vision API](https://localai.io/features/gpt-vision/)
|
||||
|
||||
To begin, run:
|
||||
## 💻 Usage
|
||||
|
||||
Check out the [Getting started](https://localai.io/basics/getting_started/index.html) section in our documentation.
|
||||
|
||||
### 🔗 Community and integrations
|
||||
|
||||
Build and deploy custom containers:
|
||||
- https://github.com/sozercan/aikit
|
||||
|
||||
WebUIs:
|
||||
- https://github.com/Jirubizu/localai-admin
|
||||
- https://github.com/go-skynet/LocalAI-frontend
|
||||
|
||||
Model galleries
|
||||
- https://github.com/go-skynet/model-gallery
|
||||
|
||||
Other:
|
||||
- Helm chart https://github.com/go-skynet/helm-charts
|
||||
- VSCode extension https://github.com/badgooooor/localai-vscode-plugin
|
||||
- Local Smart assistant https://github.com/mudler/LocalAGI
|
||||
- Home Assistant https://github.com/sammcj/homeassistant-localai / https://github.com/drndos/hass-openai-custom-conversation
|
||||
- Discord bot https://github.com/mudler/LocalAGI/tree/main/examples/discord
|
||||
- Slack bot https://github.com/mudler/LocalAGI/tree/main/examples/slack
|
||||
- Telegram bot https://github.com/mudler/LocalAI/tree/master/examples/telegram-bot
|
||||
- Examples: https://github.com/mudler/LocalAI/tree/master/examples/
|
||||
|
||||
|
||||
### 🔗 Resources
|
||||
|
||||
- 🆕 New! [LLM finetuning guide](https://localai.io/docs/advanced/fine-tuning/)
|
||||
- [How to build locally](https://localai.io/basics/build/index.html)
|
||||
- [How to install in Kubernetes](https://localai.io/basics/getting_started/index.html#run-localai-in-kubernetes)
|
||||
- [Projects integrating LocalAI](https://localai.io/docs/integrations/)
|
||||
- [How tos section](https://io.midori-ai.xyz/howtos/) (curated by our community)
|
||||
|
||||
## :book: 🎥 [Media, Blogs, Social](https://localai.io/basics/news/#media-blogs-social)
|
||||
|
||||
- [Run LocalAI on AWS EKS with Pulumi](https://www.pulumi.com/ai/answers/tiZMDoZzZV6TLxgDXNBnFE/deploying-helm-charts-on-aws-eks)
|
||||
- [Run LocalAI on AWS](https://staleks.hashnode.dev/installing-localai-on-aws-ec2-instance)
|
||||
- [Create a slackbot for teams and OSS projects that answer to documentation](https://mudler.pm/posts/smart-slackbot-for-teams/)
|
||||
- [LocalAI meets k8sgpt](https://www.youtube.com/watch?v=PKrDNuJ_dfE)
|
||||
- [Question Answering on Documents locally with LangChain, LocalAI, Chroma, and GPT4All](https://mudler.pm/posts/localai-question-answering/)
|
||||
- [Tutorial to use k8sgpt with LocalAI](https://medium.com/@tyler_97636/k8sgpt-localai-unlock-kubernetes-superpowers-for-free-584790de9b65)
|
||||
|
||||
## Citation
|
||||
|
||||
If you utilize this repository, data in a downstream project, please consider citing it with:
|
||||
|
||||
```
|
||||
docker run -ti --rm quay.io/go-skynet/llama-cli:latest --instruction "What's an alpaca?" --topk 10000 --model ...
|
||||
@misc{localai,
|
||||
author = {Ettore Di Giacinto},
|
||||
title = {LocalAI: The free, Open source OpenAI alternative},
|
||||
year = {2023},
|
||||
publisher = {GitHub},
|
||||
journal = {GitHub repository},
|
||||
howpublished = {\url{https://github.com/go-skynet/LocalAI}},
|
||||
```
|
||||
|
||||
Where `--model` is the path of the model you want to use.
|
||||
## ❤️ Sponsors
|
||||
|
||||
Note: you need to mount a volume to the docker container in order to load a model, for instance:
|
||||
> Do you find LocalAI useful?
|
||||
|
||||
```
|
||||
# assuming your model is in /path/to/your/models/foo.bin
|
||||
docker run -v /path/to/your/models:/models -ti --rm quay.io/go-skynet/llama-cli:latest --instruction "What's an alpaca?" --topk 10000 --model /models/foo.bin
|
||||
```
|
||||
Support the project by becoming [a backer or sponsor](https://github.com/sponsors/mudler). Your logo will show up here with a link to your website.
|
||||
|
||||
You will receive a response like the following:
|
||||
A huge thank you to our generous sponsors who support this project:
|
||||
|
||||
```
|
||||
An alpaca is a member of the South American Camelid family, which includes the llama, guanaco and vicuña. It is a domesticated species that originates from the Andes mountain range in South America. Alpacas are used in the textile industry for their fleece, which is much softer than wool. Alpacas are also used for meat, milk, and fiber.
|
||||
```
|
||||
|  |
|
||||
|:-----------------------------------------------:|
|
||||
| [Spectro Cloud](https://www.spectrocloud.com/) |
|
||||
| Spectro Cloud kindly supports LocalAI by providing GPU and computing resources to run tests on lamdalabs! |
|
||||
|
||||
## Basic usage
|
||||
And a huge shout-out to individuals sponsoring the project by donating hardware or backing the project.
|
||||
|
||||
To use llama-cli, specify a pre-trained GPT-based model, an input text, and an instruction for text generation. llama-cli takes the following arguments when running from the CLI:
|
||||
- [Sponsor list](https://github.com/sponsors/mudler)
|
||||
- JDAM00 (donating HW for the CI)
|
||||
|
||||
```
|
||||
llama-cli --model <model_path> --instruction <instruction> [--input <input>] [--template <template_path>] [--tokens <num_tokens>] [--threads <num_threads>] [--temperature <temperature>] [--topp <top_p>] [--topk <top_k>]
|
||||
```
|
||||
## 🌟 Star history
|
||||
|
||||
| Parameter | Environment Variable | Default Value | Description |
|
||||
| ------------ | -------------------- | ------------- | -------------------------------------- |
|
||||
| template | TEMPLATE | | A file containing a template for output formatting (optional). |
|
||||
| instruction | INSTRUCTION | | Input prompt text or instruction. "-" for STDIN. |
|
||||
| input | INPUT | - | Path to text or "-" for STDIN. |
|
||||
| model | MODEL_PATH | | The path to the pre-trained GPT-based model. |
|
||||
| tokens | TOKENS | 128 | The maximum number of tokens to generate. |
|
||||
| threads | THREADS | NumCPU() | The number of threads to use for text generation. |
|
||||
| temperature | TEMPERATURE | 0.95 | Sampling temperature for model output. ( values between `0.1` and `1.0` ) |
|
||||
| top_p | TOP_P | 0.85 | The cumulative probability for top-p sampling. |
|
||||
| top_k | TOP_K | 20 | The number of top-k tokens to consider for text generation. |
|
||||
| context-size | CONTEXT_SIZE | 512 | Default token context size. |
|
||||
[](https://star-history.com/#go-skynet/LocalAI&Date)
|
||||
|
||||
Here's an example of using `llama-cli`:
|
||||
## 📖 License
|
||||
|
||||
```
|
||||
llama-cli --model ~/ggml-alpaca-7b-q4.bin --instruction "What's an alpaca?"
|
||||
```
|
||||
LocalAI is a community-driven project created by [Ettore Di Giacinto](https://github.com/mudler/).
|
||||
|
||||
This will generate text based on the given model and instruction.
|
||||
MIT - Author Ettore Di Giacinto
|
||||
|
||||
## API
|
||||
## 🙇 Acknowledgements
|
||||
|
||||
`llama-cli` also provides an API for running text generation as a service. The models once loaded the first time will be kept in memory.
|
||||
|
||||
Example of starting the API with `docker`:
|
||||
|
||||
```bash
|
||||
docker run -p 8080:8080 -ti --rm quay.io/go-skynet/llama-cli:latest api --models-path /path/to/models --context-size 700 --threads 4
|
||||
```
|
||||
|
||||
And you'll see:
|
||||
```
|
||||
┌───────────────────────────────────────────────────┐
|
||||
│ Fiber v2.42.0 │
|
||||
│ http://127.0.0.1:8080 │
|
||||
│ (bound on host 0.0.0.0 and port 8080) │
|
||||
│ │
|
||||
│ Handlers ............. 1 Processes ........... 1 │
|
||||
│ Prefork ....... Disabled PID ................. 1 │
|
||||
└───────────────────────────────────────────────────┘
|
||||
```
|
||||
|
||||
Note: Models have to end up with `.bin`.
|
||||
|
||||
You can control the API server options with command line arguments:
|
||||
|
||||
```
|
||||
llama-cli api --models-path <model_path> [--address <address>] [--threads <num_threads>]
|
||||
```
|
||||
|
||||
The API takes takes the following:
|
||||
|
||||
| Parameter | Environment Variable | Default Value | Description |
|
||||
| ------------ | -------------------- | ------------- | -------------------------------------- |
|
||||
| models-path | MODELS_PATH | | The path where you have models (ending with `.bin`). |
|
||||
| threads | THREADS | CPU cores | The number of threads to use for text generation. |
|
||||
| address | ADDRESS | :8080 | The address and port to listen on. |
|
||||
| context-size | CONTEXT_SIZE | 512 | Default token context size. |
|
||||
|
||||
Once the server is running, you can start making requests to it using HTTP, using the OpenAI API.
|
||||
|
||||
### Supported OpenAI API endpoints
|
||||
|
||||
You can check out the [OpenAI API reference](https://platform.openai.com/docs/api-reference/chat/create).
|
||||
|
||||
Following the list of endpoints/parameters supported.
|
||||
|
||||
#### Chat completions
|
||||
|
||||
For example, to generate a chat completion, you can send a POST request to the `/v1/chat/completions` endpoint with the instruction as the request body:
|
||||
|
||||
```
|
||||
curl http://localhost:8080/v1/chat/completions -H "Content-Type: application/json" -d '{
|
||||
"model": "ggml-koala-7b-model-q4_0-r2.bin",
|
||||
"messages": [{"role": "user", "content": "Say this is a test!"}],
|
||||
"temperature": 0.7
|
||||
}'
|
||||
```
|
||||
|
||||
Available additional parameters: `top_p`, `top_k`, `max_tokens`
|
||||
|
||||
#### Completions
|
||||
|
||||
For example, to generate a comletion, you can send a POST request to the `/v1/completions` endpoint with the instruction as the request body:
|
||||
```
|
||||
curl http://localhost:8080/v1/completions -H "Content-Type: application/json" -d '{
|
||||
"model": "ggml-koala-7b-model-q4_0-r2.bin",
|
||||
"prompt": "A long time ago in a galaxy far, far away",
|
||||
"temperature": 0.7
|
||||
}'
|
||||
```
|
||||
|
||||
Available additional parameters: `top_p`, `top_k`, `max_tokens`
|
||||
|
||||
#### List models
|
||||
|
||||
You can list all the models available with:
|
||||
|
||||
```
|
||||
curl http://localhost:8080/v1/models
|
||||
```
|
||||
|
||||
## Web interface
|
||||
|
||||
There is also available a simple web interface (for instance, http://localhost:8080/) which can be used as a playground.
|
||||
|
||||
Note: The API doesn't inject a template for talking to the instance, while the CLI does. You have to use a prompt similar to what's described in the standford-alpaca docs: https://github.com/tatsu-lab/stanford_alpaca#data-release, for instance:
|
||||
|
||||
```
|
||||
Below is an instruction that describes a task. Write a response that appropriately completes the request.
|
||||
|
||||
### Instruction:
|
||||
{instruction}
|
||||
|
||||
### Response:
|
||||
```
|
||||
|
||||
|
||||
## Using other models
|
||||
|
||||
gpt4all (https://github.com/nomic-ai/gpt4all) works as well, however the original model needs to be converted (same applies for old alpaca models, too):
|
||||
|
||||
```bash
|
||||
wget -O tokenizer.model https://huggingface.co/decapoda-research/llama-30b-hf/resolve/main/tokenizer.model
|
||||
mkdir models
|
||||
cp gpt4all.. models/
|
||||
git clone https://gist.github.com/eiz/828bddec6162a023114ce19146cb2b82
|
||||
pip install sentencepiece
|
||||
python 828bddec6162a023114ce19146cb2b82/gistfile1.txt models tokenizer.model
|
||||
# There will be a new model with the ".tmp" extension, you have to use that one!
|
||||
```
|
||||
|
||||
### Golang client API
|
||||
|
||||
The `llama-cli` codebase has also a small client in go that can be used alongside with the api:
|
||||
|
||||
```golang
|
||||
package main
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
|
||||
client "github.com/go-skynet/llama-cli/client"
|
||||
)
|
||||
|
||||
func main() {
|
||||
|
||||
cli := client.NewClient("http://ip:port")
|
||||
|
||||
out, err := cli.Predict("What's an alpaca?")
|
||||
if err != nil {
|
||||
panic(err)
|
||||
}
|
||||
|
||||
fmt.Println(out)
|
||||
}
|
||||
```
|
||||
|
||||
### Windows compatibility
|
||||
|
||||
It should work, however you need to make sure you give enough resources to the container. See https://github.com/go-skynet/llama-cli/issues/2
|
||||
|
||||
### Kubernetes
|
||||
|
||||
You can run the API directly in Kubernetes:
|
||||
|
||||
```bash
|
||||
kubectl apply -f https://raw.githubusercontent.com/go-skynet/llama-cli/master/kubernetes/deployment.yaml
|
||||
```
|
||||
|
||||
### Build locally
|
||||
|
||||
Pre-built images might fit well for most of the modern hardware, however you can and might need to build the images manually.
|
||||
|
||||
In order to build the `llama-cli` container image locally you can use `docker`:
|
||||
|
||||
```
|
||||
# build the image as "alpaca-image"
|
||||
docker build -t llama-cli .
|
||||
docker run llama-cli --instruction "What's an alpaca?"
|
||||
```
|
||||
|
||||
Or build the binary with:
|
||||
|
||||
```
|
||||
# build the image as "alpaca-image"
|
||||
docker run --privileged -v /var/run/docker.sock:/var/run/docker.sock --rm -t -v "$(pwd)":/workspace -v earthly-tmp:/tmp/earthly:rw earthly/earthly:v0.7.2 +build
|
||||
# run the binary
|
||||
./llama-cli --instruction "What's an alpaca?"
|
||||
```
|
||||
|
||||
## Short-term roadmap
|
||||
|
||||
- [x] Mimic OpenAI API (https://github.com/go-skynet/llama-cli/issues/10)
|
||||
- Binary releases (https://github.com/go-skynet/llama-cli/issues/6)
|
||||
- Upstream our golang bindings to llama.cpp (https://github.com/ggerganov/llama.cpp/issues/351)
|
||||
- [x] Multi-model support
|
||||
- Have a webUI!
|
||||
|
||||
## License
|
||||
|
||||
MIT
|
||||
|
||||
## Acknowledgements
|
||||
LocalAI couldn't have been built without the help of great software already available from the community. Thank you!
|
||||
|
||||
- [llama.cpp](https://github.com/ggerganov/llama.cpp)
|
||||
- https://github.com/tatsu-lab/stanford_alpaca
|
||||
- https://github.com/cornelk/llama-go for the initial ideas
|
||||
- https://github.com/antimatter15/alpaca.cpp for the light model version (this is compatible and tested only with that checkpoint model!)
|
||||
- https://github.com/antimatter15/alpaca.cpp
|
||||
- https://github.com/EdVince/Stable-Diffusion-NCNN
|
||||
- https://github.com/ggerganov/whisper.cpp
|
||||
- https://github.com/saharNooby/rwkv.cpp
|
||||
- https://github.com/rhasspy/piper
|
||||
|
||||
## 🤗 Contributors
|
||||
|
||||
This is a community project, a special thanks to our contributors! 🤗
|
||||
<a href="https://github.com/go-skynet/LocalAI/graphs/contributors">
|
||||
<img src="https://contrib.rocks/image?repo=go-skynet/LocalAI" />
|
||||
</a>
|
||||
|
||||
42
SECURITY.md
Normal file
42
SECURITY.md
Normal file
@@ -0,0 +1,42 @@
|
||||
# Security Policy
|
||||
|
||||
## Introduction
|
||||
|
||||
At LocalAI, we take the security of our software seriously. We understand the importance of protecting our community from vulnerabilities and are committed to ensuring the safety and security of our users.
|
||||
|
||||
## Supported Versions
|
||||
|
||||
We provide support and updates for certain versions of our software. The following table outlines which versions are currently supported with security updates:
|
||||
|
||||
| Version | Supported |
|
||||
| ------- | ------------------ |
|
||||
| > 2.0 | :white_check_mark: |
|
||||
| < 2.0 | :x: |
|
||||
|
||||
Please ensure that you are using a supported version to receive the latest security updates.
|
||||
|
||||
## Reporting a Vulnerability
|
||||
|
||||
We encourage the responsible disclosure of any security vulnerabilities. If you believe you've found a security issue in our software, we kindly ask you to follow the steps below to report it to us:
|
||||
|
||||
1. **Email Us:** Send an email to [security@localai.io](mailto:security@localai.io) with a detailed report. Please do not disclose the vulnerability publicly or to any third parties before it has been addressed by us.
|
||||
|
||||
2. **Expect a Response:** We aim to acknowledge receipt of vulnerability reports within 48 hours. Our security team will review your report and work closely with you to understand the impact and ensure a thorough investigation.
|
||||
|
||||
3. **Collaboration:** If the vulnerability is accepted, we will work with you and our community to address the issue promptly. We'll keep you informed throughout the resolution process and may request additional information or collaboration.
|
||||
|
||||
4. **Disclosure:** Once the vulnerability has been resolved, we encourage a coordinated disclosure. We believe in transparency and will work with you to ensure that our community is informed in a responsible manner.
|
||||
|
||||
## Use of Third-Party Platforms
|
||||
|
||||
As a Free and Open Source Software (FOSS) organization, we do not offer monetary bounties. However, researchers who wish to report vulnerabilities can also do so via [Huntr](https://huntr.dev/bounties), a platform that recognizes contributions to open source security.
|
||||
|
||||
## Contact
|
||||
|
||||
For any security-related inquiries beyond vulnerability reporting, please contact us at [security@localai.io](mailto:security@localai.io).
|
||||
|
||||
## Acknowledgments
|
||||
|
||||
We appreciate the efforts of those who contribute to the security of our project. Your responsible disclosure is invaluable to the safety and integrity of LocalAI.
|
||||
|
||||
Thank you for helping us keep LocalAI secure.
|
||||
275
api/api.go
275
api/api.go
@@ -1,275 +0,0 @@
|
||||
package api
|
||||
|
||||
import (
|
||||
"embed"
|
||||
"fmt"
|
||||
"net/http"
|
||||
"strconv"
|
||||
"strings"
|
||||
"sync"
|
||||
|
||||
model "github.com/go-skynet/llama-cli/pkg/model"
|
||||
|
||||
llama "github.com/go-skynet/go-llama.cpp"
|
||||
"github.com/gofiber/fiber/v2"
|
||||
"github.com/gofiber/fiber/v2/middleware/cors"
|
||||
"github.com/gofiber/fiber/v2/middleware/filesystem"
|
||||
"github.com/gofiber/fiber/v2/middleware/recover"
|
||||
)
|
||||
|
||||
type OpenAIResponse struct {
|
||||
Created int `json:"created,omitempty"`
|
||||
Object string `json:"chat.completion,omitempty"`
|
||||
ID string `json:"id,omitempty"`
|
||||
Model string `json:"model,omitempty"`
|
||||
Choices []Choice `json:"choices,omitempty"`
|
||||
}
|
||||
|
||||
type Choice struct {
|
||||
Index int `json:"index,omitempty"`
|
||||
FinishReason string `json:"finish_reason,omitempty"`
|
||||
Message Message `json:"message,omitempty"`
|
||||
Text string `json:"text,omitempty"`
|
||||
}
|
||||
|
||||
type Message struct {
|
||||
Role string `json:"role,omitempty"`
|
||||
Content string `json:"content,omitempty"`
|
||||
}
|
||||
|
||||
type OpenAIModel struct {
|
||||
ID string `json:"id"`
|
||||
Object string `json:"object"`
|
||||
}
|
||||
|
||||
type OpenAIRequest struct {
|
||||
Model string `json:"model"`
|
||||
|
||||
// Prompt is read only by completion API calls
|
||||
Prompt string `json:"prompt"`
|
||||
// Messages is readh only by chat/completion API calls
|
||||
Messages []Message `json:"messages"`
|
||||
|
||||
// Common options between all the API calls
|
||||
TopP float64 `json:"top_p"`
|
||||
TopK int `json:"top_k"`
|
||||
Temperature float64 `json:"temperature"`
|
||||
Maxtokens int `json:"max_tokens"`
|
||||
}
|
||||
|
||||
//go:embed index.html
|
||||
var indexHTML embed.FS
|
||||
|
||||
func openAIEndpoint(chat bool, defaultModel *llama.LLama, loader *model.ModelLoader, threads int, defaultMutex *sync.Mutex, mutexMap *sync.Mutex, mutexes map[string]*sync.Mutex) func(c *fiber.Ctx) error {
|
||||
return func(c *fiber.Ctx) error {
|
||||
var err error
|
||||
var model *llama.LLama
|
||||
|
||||
input := new(OpenAIRequest)
|
||||
// Get input data from the request body
|
||||
if err := c.BodyParser(input); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if input.Model == "" {
|
||||
if defaultModel == nil {
|
||||
return fmt.Errorf("no default model loaded, and no model specified")
|
||||
}
|
||||
model = defaultModel
|
||||
} else {
|
||||
model, err = loader.LoadModel(input.Model)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
|
||||
// This is still needed, see: https://github.com/ggerganov/llama.cpp/discussions/784
|
||||
if input.Model != "" {
|
||||
mutexMap.Lock()
|
||||
l, ok := mutexes[input.Model]
|
||||
if !ok {
|
||||
m := &sync.Mutex{}
|
||||
mutexes[input.Model] = m
|
||||
l = m
|
||||
}
|
||||
mutexMap.Unlock()
|
||||
l.Lock()
|
||||
defer l.Unlock()
|
||||
} else {
|
||||
defaultMutex.Lock()
|
||||
defer defaultMutex.Unlock()
|
||||
}
|
||||
|
||||
// Set the parameters for the language model prediction
|
||||
topP := input.TopP
|
||||
if topP == 0 {
|
||||
topP = 0.7
|
||||
}
|
||||
topK := input.TopK
|
||||
if topK == 0 {
|
||||
topK = 80
|
||||
}
|
||||
|
||||
temperature := input.Temperature
|
||||
if temperature == 0 {
|
||||
temperature = 0.9
|
||||
}
|
||||
|
||||
tokens := input.Maxtokens
|
||||
if tokens == 0 {
|
||||
tokens = 512
|
||||
}
|
||||
|
||||
predInput := input.Prompt
|
||||
if chat {
|
||||
mess := []string{}
|
||||
for _, i := range input.Messages {
|
||||
mess = append(mess, i.Content)
|
||||
}
|
||||
|
||||
predInput = strings.Join(mess, "\n")
|
||||
}
|
||||
|
||||
// A model can have a "file.bin.tmpl" file associated with a prompt template prefix
|
||||
templatedInput, err := loader.TemplatePrefix(input.Model, struct {
|
||||
Input string
|
||||
}{Input: predInput})
|
||||
if err == nil {
|
||||
predInput = templatedInput
|
||||
}
|
||||
|
||||
// Generate the prediction using the language model
|
||||
prediction, err := model.Predict(
|
||||
predInput,
|
||||
llama.SetTemperature(temperature),
|
||||
llama.SetTopP(topP),
|
||||
llama.SetTopK(topK),
|
||||
llama.SetTokens(tokens),
|
||||
llama.SetThreads(threads),
|
||||
)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if chat {
|
||||
// Return the chat prediction in the response body
|
||||
return c.JSON(OpenAIResponse{
|
||||
Model: input.Model,
|
||||
Choices: []Choice{{Message: Message{Role: "assistant", Content: prediction}}},
|
||||
})
|
||||
}
|
||||
|
||||
// Return the prediction in the response body
|
||||
return c.JSON(OpenAIResponse{
|
||||
Model: input.Model,
|
||||
Choices: []Choice{{Text: prediction}},
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func Start(defaultModel *llama.LLama, loader *model.ModelLoader, listenAddr string, threads int) error {
|
||||
app := fiber.New()
|
||||
|
||||
// Default middleware config
|
||||
app.Use(recover.New())
|
||||
app.Use(cors.New())
|
||||
|
||||
// This is still needed, see: https://github.com/ggerganov/llama.cpp/discussions/784
|
||||
var mutex = &sync.Mutex{}
|
||||
mu := map[string]*sync.Mutex{}
|
||||
var mumutex = &sync.Mutex{}
|
||||
|
||||
// openAI compatible API endpoint
|
||||
app.Post("/v1/chat/completions", openAIEndpoint(true, defaultModel, loader, threads, mutex, mumutex, mu))
|
||||
app.Post("/v1/completions", openAIEndpoint(false, defaultModel, loader, threads, mutex, mumutex, mu))
|
||||
app.Get("/v1/models", func(c *fiber.Ctx) error {
|
||||
models, err := loader.ListModels()
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
dataModels := []OpenAIModel{}
|
||||
for _, m := range models {
|
||||
dataModels = append(dataModels, OpenAIModel{ID: m, Object: "model"})
|
||||
}
|
||||
return c.JSON(struct {
|
||||
Object string `json:"object"`
|
||||
Data []OpenAIModel `json:"data"`
|
||||
}{
|
||||
Object: "list",
|
||||
Data: dataModels,
|
||||
})
|
||||
})
|
||||
|
||||
app.Use("/", filesystem.New(filesystem.Config{
|
||||
Root: http.FS(indexHTML),
|
||||
NotFoundFile: "index.html",
|
||||
}))
|
||||
|
||||
/*
|
||||
curl --location --request POST 'http://localhost:8080/predict' --header 'Content-Type: application/json' --data-raw '{
|
||||
"text": "What is an alpaca?",
|
||||
"topP": 0.8,
|
||||
"topK": 50,
|
||||
"temperature": 0.7,
|
||||
"tokens": 100
|
||||
}'
|
||||
*/
|
||||
// Endpoint to generate the prediction
|
||||
app.Post("/predict", func(c *fiber.Ctx) error {
|
||||
mutex.Lock()
|
||||
defer mutex.Unlock()
|
||||
// Get input data from the request body
|
||||
input := new(struct {
|
||||
Text string `json:"text"`
|
||||
})
|
||||
if err := c.BodyParser(input); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
// Set the parameters for the language model prediction
|
||||
topP, err := strconv.ParseFloat(c.Query("topP", "0.9"), 64) // Default value of topP is 0.9
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
topK, err := strconv.Atoi(c.Query("topK", "40")) // Default value of topK is 40
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
temperature, err := strconv.ParseFloat(c.Query("temperature", "0.5"), 64) // Default value of temperature is 0.5
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
tokens, err := strconv.Atoi(c.Query("tokens", "128")) // Default value of tokens is 128
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
// Generate the prediction using the language model
|
||||
prediction, err := defaultModel.Predict(
|
||||
input.Text,
|
||||
llama.SetTemperature(temperature),
|
||||
llama.SetTopP(topP),
|
||||
llama.SetTopK(topK),
|
||||
llama.SetTokens(tokens),
|
||||
llama.SetThreads(threads),
|
||||
)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
// Return the prediction in the response body
|
||||
return c.JSON(struct {
|
||||
Prediction string `json:"prediction"`
|
||||
}{
|
||||
Prediction: prediction,
|
||||
})
|
||||
})
|
||||
|
||||
// Start the server
|
||||
app.Listen(listenAddr)
|
||||
return nil
|
||||
}
|
||||
120
api/index.html
120
api/index.html
@@ -1,120 +0,0 @@
|
||||
<!DOCTYPE html>
|
||||
<html>
|
||||
<head>
|
||||
<title>llama-cli</title>
|
||||
<meta charset="UTF-8">
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1">
|
||||
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.15.3/css/all.min.css" crossorigin="anonymous" referrerpolicy="no-referrer" />
|
||||
<link rel="stylesheet" href="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/css/bootstrap.min.css">
|
||||
</head>
|
||||
<style>
|
||||
@keyframes rotating {
|
||||
from {
|
||||
transform: rotate(0deg);
|
||||
}
|
||||
to {
|
||||
transform: rotate(360deg);
|
||||
}
|
||||
}
|
||||
|
||||
.waiting {
|
||||
animation: rotating 1s linear infinite;
|
||||
}
|
||||
|
||||
</style>
|
||||
<body>
|
||||
|
||||
<div class="container mt-5" x-data="{ templates:[
|
||||
{
|
||||
name: 'Alpaca: Instruction without input',
|
||||
text: `Below is an instruction that describes a task. Write a response that appropriately completes the request.
|
||||
|
||||
### Instruction:
|
||||
{{.Instruction}}
|
||||
|
||||
### Response:`,
|
||||
},
|
||||
{
|
||||
name: 'Alpaca: Instruction with input',
|
||||
text: `Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
|
||||
|
||||
### Instruction:
|
||||
{{.Instruction}}
|
||||
|
||||
### Input:
|
||||
{{.Input}}
|
||||
|
||||
### Response:`,
|
||||
}
|
||||
], selectedTemplate: '', selectedTemplateText: '' }">
|
||||
<h1>llama-cli API</h1>
|
||||
<div class="form-group">
|
||||
<label for="inputText">Input Text:</label>
|
||||
<textarea class="form-control" id="inputText" rows="6" placeholder="Your text input here..." x-text="selectedTemplateText"></textarea>
|
||||
</div>
|
||||
<div class="form-group">
|
||||
<label for="templateSelect">Select Template:</label>
|
||||
<select class="form-control" id="templateSelect" x-model="selectedTemplateText">
|
||||
<option value="">None</option>
|
||||
<template x-for="(template, index) in templates" :key="index">
|
||||
<option :value="template.text" x-text="template.name"></option>
|
||||
</template>
|
||||
</select>
|
||||
</div>
|
||||
<div class="form-group">
|
||||
<label for="topP">Top P:</label>
|
||||
<input type="range" step="0.01" min="0" max="1" class="form-control" id="topP" value="0.20" name="topP" onchange="this.nextElementSibling.value = this.value" required>
|
||||
<output>0.20</output>
|
||||
</div>
|
||||
<div class="form-group">
|
||||
<label for="topK">Top K:</label>
|
||||
<input type="number" class="form-control" id="topK" value="10000" name="topK" required>
|
||||
</div>
|
||||
<div class="form-group">
|
||||
<label for="temperature">Temperature:</label>
|
||||
<input type="range" step="0.01" min="0" max="1" value="0.9" class="form-control" id="temperature" name="temperature" onchange="this.nextElementSibling.value = this.value" required>
|
||||
<output>0.9</output>
|
||||
</div>
|
||||
<div class="form-group">
|
||||
<label for="tokens">Tokens:</label>
|
||||
<input type="number" class="form-control" id="tokens" name="tokens" value="128" required>
|
||||
</div>
|
||||
<button class="btn btn-primary" x-on:click="submitRequest()">Submit <i class="fas fa-paper-plane"></i></button>
|
||||
<hr>
|
||||
<div class="form-group">
|
||||
<label for="outputText">Output Text:</label>
|
||||
<textarea class="form-control" id="outputText" rows="5" readonly></textarea>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<script defer src="https://cdn.jsdelivr.net/npm/alpinejs@3.x.x/dist/cdn.min.js"></script>
|
||||
<script>
|
||||
function submitRequest() {
|
||||
var button = document.querySelector("i.fa-paper-plane");
|
||||
button.classList.add("waiting");
|
||||
var text = document.getElementById("inputText").value;
|
||||
var url = "/predict";
|
||||
var data = {
|
||||
"text": text,
|
||||
"topP": document.getElementById("topP").value,
|
||||
"topK": document.getElementById("topK").value,
|
||||
"temperature": document.getElementById("temperature").value,
|
||||
"tokens": document.getElementById("tokens").value
|
||||
};
|
||||
fetch(url, {
|
||||
method: "POST",
|
||||
headers: {
|
||||
"Content-Type": "application/json"
|
||||
},
|
||||
body: JSON.stringify(data)
|
||||
})
|
||||
.then(response => response.json())
|
||||
.then(data => {
|
||||
document.getElementById("outputText").value = data.prediction;
|
||||
button.classList.remove("waiting");
|
||||
})
|
||||
.catch(error => { console.error(error); button.classList.remove("waiting"); });
|
||||
}
|
||||
</script>
|
||||
</body>
|
||||
</html>
|
||||
6
assets.go
Normal file
6
assets.go
Normal file
@@ -0,0 +1,6 @@
|
||||
package main
|
||||
|
||||
import "embed"
|
||||
|
||||
//go:embed backend-assets/*
|
||||
var backendAssets embed.FS
|
||||
216
backend/backend.proto
Normal file
216
backend/backend.proto
Normal file
@@ -0,0 +1,216 @@
|
||||
syntax = "proto3";
|
||||
|
||||
option go_package = "github.com/go-skynet/LocalAI/pkg/grpc/proto";
|
||||
option java_multiple_files = true;
|
||||
option java_package = "io.skynet.localai.backend";
|
||||
option java_outer_classname = "LocalAIBackend";
|
||||
|
||||
package backend;
|
||||
|
||||
service Backend {
|
||||
rpc Health(HealthMessage) returns (Reply) {}
|
||||
rpc Predict(PredictOptions) returns (Reply) {}
|
||||
rpc LoadModel(ModelOptions) returns (Result) {}
|
||||
rpc PredictStream(PredictOptions) returns (stream Reply) {}
|
||||
rpc Embedding(PredictOptions) returns (EmbeddingResult) {}
|
||||
rpc GenerateImage(GenerateImageRequest) returns (Result) {}
|
||||
rpc AudioTranscription(TranscriptRequest) returns (TranscriptResult) {}
|
||||
rpc TTS(TTSRequest) returns (Result) {}
|
||||
rpc TokenizeString(PredictOptions) returns (TokenizationResponse) {}
|
||||
rpc Status(HealthMessage) returns (StatusResponse) {}
|
||||
}
|
||||
|
||||
message HealthMessage {}
|
||||
|
||||
// The request message containing the user's name.
|
||||
message PredictOptions {
|
||||
string Prompt = 1;
|
||||
int32 Seed = 2;
|
||||
int32 Threads = 3;
|
||||
int32 Tokens = 4;
|
||||
int32 TopK = 5;
|
||||
int32 Repeat = 6;
|
||||
int32 Batch = 7;
|
||||
int32 NKeep = 8;
|
||||
float Temperature = 9;
|
||||
float Penalty = 10;
|
||||
bool F16KV = 11;
|
||||
bool DebugMode = 12;
|
||||
repeated string StopPrompts = 13;
|
||||
bool IgnoreEOS = 14;
|
||||
float TailFreeSamplingZ = 15;
|
||||
float TypicalP = 16;
|
||||
float FrequencyPenalty = 17;
|
||||
float PresencePenalty = 18;
|
||||
int32 Mirostat = 19;
|
||||
float MirostatETA = 20;
|
||||
float MirostatTAU = 21;
|
||||
bool PenalizeNL = 22;
|
||||
string LogitBias = 23;
|
||||
bool MLock = 25;
|
||||
bool MMap = 26;
|
||||
bool PromptCacheAll = 27;
|
||||
bool PromptCacheRO = 28;
|
||||
string Grammar = 29;
|
||||
string MainGPU = 30;
|
||||
string TensorSplit = 31;
|
||||
float TopP = 32;
|
||||
string PromptCachePath = 33;
|
||||
bool Debug = 34;
|
||||
repeated int32 EmbeddingTokens = 35;
|
||||
string Embeddings = 36;
|
||||
float RopeFreqBase = 37;
|
||||
float RopeFreqScale = 38;
|
||||
float NegativePromptScale = 39;
|
||||
string NegativePrompt = 40;
|
||||
int32 NDraft = 41;
|
||||
repeated string Images = 42;
|
||||
}
|
||||
|
||||
// The response message containing the result
|
||||
message Reply {
|
||||
bytes message = 1;
|
||||
}
|
||||
|
||||
message ModelOptions {
|
||||
string Model = 1;
|
||||
int32 ContextSize = 2;
|
||||
int32 Seed = 3;
|
||||
int32 NBatch = 4;
|
||||
bool F16Memory = 5;
|
||||
bool MLock = 6;
|
||||
bool MMap = 7;
|
||||
bool VocabOnly = 8;
|
||||
bool LowVRAM = 9;
|
||||
bool Embeddings = 10;
|
||||
bool NUMA = 11;
|
||||
int32 NGPULayers = 12;
|
||||
string MainGPU = 13;
|
||||
string TensorSplit = 14;
|
||||
int32 Threads = 15;
|
||||
string LibrarySearchPath = 16;
|
||||
float RopeFreqBase = 17;
|
||||
float RopeFreqScale = 18;
|
||||
float RMSNormEps = 19;
|
||||
int32 NGQA = 20;
|
||||
string ModelFile = 21;
|
||||
|
||||
// AutoGPTQ
|
||||
string Device = 22;
|
||||
bool UseTriton = 23;
|
||||
string ModelBaseName = 24;
|
||||
bool UseFastTokenizer = 25;
|
||||
|
||||
// Diffusers
|
||||
string PipelineType = 26;
|
||||
string SchedulerType = 27;
|
||||
bool CUDA = 28;
|
||||
float CFGScale = 29;
|
||||
bool IMG2IMG = 30;
|
||||
string CLIPModel = 31;
|
||||
string CLIPSubfolder = 32;
|
||||
int32 CLIPSkip = 33;
|
||||
string ControlNet = 48;
|
||||
|
||||
string Tokenizer = 34;
|
||||
|
||||
// LLM (llama.cpp)
|
||||
string LoraBase = 35;
|
||||
string LoraAdapter = 36;
|
||||
float LoraScale = 42;
|
||||
|
||||
bool NoMulMatQ = 37;
|
||||
string DraftModel = 39;
|
||||
|
||||
string AudioPath = 38;
|
||||
|
||||
// vllm
|
||||
string Quantization = 40;
|
||||
float GPUMemoryUtilization = 50;
|
||||
bool TrustRemoteCode = 51;
|
||||
bool EnforceEager = 52;
|
||||
int32 SwapSpace = 53;
|
||||
int32 MaxModelLen = 54;
|
||||
|
||||
string MMProj = 41;
|
||||
|
||||
string RopeScaling = 43;
|
||||
float YarnExtFactor = 44;
|
||||
float YarnAttnFactor = 45;
|
||||
float YarnBetaFast = 46;
|
||||
float YarnBetaSlow = 47;
|
||||
|
||||
string Type = 49;
|
||||
}
|
||||
|
||||
message Result {
|
||||
string message = 1;
|
||||
bool success = 2;
|
||||
}
|
||||
|
||||
message EmbeddingResult {
|
||||
repeated float embeddings = 1;
|
||||
}
|
||||
|
||||
message TranscriptRequest {
|
||||
string dst = 2;
|
||||
string language = 3;
|
||||
uint32 threads = 4;
|
||||
}
|
||||
|
||||
message TranscriptResult {
|
||||
repeated TranscriptSegment segments = 1;
|
||||
string text = 2;
|
||||
}
|
||||
|
||||
message TranscriptSegment {
|
||||
int32 id = 1;
|
||||
int64 start = 2;
|
||||
int64 end = 3;
|
||||
string text = 4;
|
||||
repeated int32 tokens = 5;
|
||||
}
|
||||
|
||||
message GenerateImageRequest {
|
||||
int32 height = 1;
|
||||
int32 width = 2;
|
||||
int32 mode = 3;
|
||||
int32 step = 4;
|
||||
int32 seed = 5;
|
||||
string positive_prompt = 6;
|
||||
string negative_prompt = 7;
|
||||
string dst = 8;
|
||||
string src = 9;
|
||||
|
||||
// Diffusers
|
||||
string EnableParameters = 10;
|
||||
int32 CLIPSkip = 11;
|
||||
}
|
||||
|
||||
message TTSRequest {
|
||||
string text = 1;
|
||||
string model = 2;
|
||||
string dst = 3;
|
||||
string voice = 4;
|
||||
}
|
||||
|
||||
message TokenizationResponse {
|
||||
int32 length = 1;
|
||||
repeated int32 tokens = 2;
|
||||
}
|
||||
|
||||
message MemoryUsageData {
|
||||
uint64 total = 1;
|
||||
map<string, uint64> breakdown = 2;
|
||||
}
|
||||
|
||||
message StatusResponse {
|
||||
enum State {
|
||||
UNINITIALIZED = 0;
|
||||
BUSY = 1;
|
||||
READY = 2;
|
||||
ERROR = -1;
|
||||
}
|
||||
State state = 1;
|
||||
MemoryUsageData memory = 2;
|
||||
}
|
||||
457
backend/backend_grpc.pb.go
Normal file
457
backend/backend_grpc.pb.go
Normal file
@@ -0,0 +1,457 @@
|
||||
// Code generated by protoc-gen-go-grpc. DO NOT EDIT.
|
||||
// versions:
|
||||
// - protoc-gen-go-grpc v1.2.0
|
||||
// - protoc v4.23.4
|
||||
// source: backend/backend.proto
|
||||
|
||||
package proto
|
||||
|
||||
import (
|
||||
context "context"
|
||||
grpc "google.golang.org/grpc"
|
||||
codes "google.golang.org/grpc/codes"
|
||||
status "google.golang.org/grpc/status"
|
||||
)
|
||||
|
||||
// This is a compile-time assertion to ensure that this generated file
|
||||
// is compatible with the grpc package it is being compiled against.
|
||||
// Requires gRPC-Go v1.32.0 or later.
|
||||
const _ = grpc.SupportPackageIsVersion7
|
||||
|
||||
// BackendClient is the client API for Backend service.
|
||||
//
|
||||
// For semantics around ctx use and closing/ending streaming RPCs, please refer to https://pkg.go.dev/google.golang.org/grpc/?tab=doc#ClientConn.NewStream.
|
||||
type BackendClient interface {
|
||||
Health(ctx context.Context, in *HealthMessage, opts ...grpc.CallOption) (*Reply, error)
|
||||
Predict(ctx context.Context, in *PredictOptions, opts ...grpc.CallOption) (*Reply, error)
|
||||
LoadModel(ctx context.Context, in *ModelOptions, opts ...grpc.CallOption) (*Result, error)
|
||||
PredictStream(ctx context.Context, in *PredictOptions, opts ...grpc.CallOption) (Backend_PredictStreamClient, error)
|
||||
Embedding(ctx context.Context, in *PredictOptions, opts ...grpc.CallOption) (*EmbeddingResult, error)
|
||||
GenerateImage(ctx context.Context, in *GenerateImageRequest, opts ...grpc.CallOption) (*Result, error)
|
||||
AudioTranscription(ctx context.Context, in *TranscriptRequest, opts ...grpc.CallOption) (*TranscriptResult, error)
|
||||
TTS(ctx context.Context, in *TTSRequest, opts ...grpc.CallOption) (*Result, error)
|
||||
TokenizeString(ctx context.Context, in *PredictOptions, opts ...grpc.CallOption) (*TokenizationResponse, error)
|
||||
Status(ctx context.Context, in *HealthMessage, opts ...grpc.CallOption) (*StatusResponse, error)
|
||||
}
|
||||
|
||||
type backendClient struct {
|
||||
cc grpc.ClientConnInterface
|
||||
}
|
||||
|
||||
func NewBackendClient(cc grpc.ClientConnInterface) BackendClient {
|
||||
return &backendClient{cc}
|
||||
}
|
||||
|
||||
func (c *backendClient) Health(ctx context.Context, in *HealthMessage, opts ...grpc.CallOption) (*Reply, error) {
|
||||
out := new(Reply)
|
||||
err := c.cc.Invoke(ctx, "/backend.Backend/Health", in, out, opts...)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
return out, nil
|
||||
}
|
||||
|
||||
func (c *backendClient) Predict(ctx context.Context, in *PredictOptions, opts ...grpc.CallOption) (*Reply, error) {
|
||||
out := new(Reply)
|
||||
err := c.cc.Invoke(ctx, "/backend.Backend/Predict", in, out, opts...)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
return out, nil
|
||||
}
|
||||
|
||||
func (c *backendClient) LoadModel(ctx context.Context, in *ModelOptions, opts ...grpc.CallOption) (*Result, error) {
|
||||
out := new(Result)
|
||||
err := c.cc.Invoke(ctx, "/backend.Backend/LoadModel", in, out, opts...)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
return out, nil
|
||||
}
|
||||
|
||||
func (c *backendClient) PredictStream(ctx context.Context, in *PredictOptions, opts ...grpc.CallOption) (Backend_PredictStreamClient, error) {
|
||||
stream, err := c.cc.NewStream(ctx, &Backend_ServiceDesc.Streams[0], "/backend.Backend/PredictStream", opts...)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
x := &backendPredictStreamClient{stream}
|
||||
if err := x.ClientStream.SendMsg(in); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
if err := x.ClientStream.CloseSend(); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
return x, nil
|
||||
}
|
||||
|
||||
type Backend_PredictStreamClient interface {
|
||||
Recv() (*Reply, error)
|
||||
grpc.ClientStream
|
||||
}
|
||||
|
||||
type backendPredictStreamClient struct {
|
||||
grpc.ClientStream
|
||||
}
|
||||
|
||||
func (x *backendPredictStreamClient) Recv() (*Reply, error) {
|
||||
m := new(Reply)
|
||||
if err := x.ClientStream.RecvMsg(m); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
return m, nil
|
||||
}
|
||||
|
||||
func (c *backendClient) Embedding(ctx context.Context, in *PredictOptions, opts ...grpc.CallOption) (*EmbeddingResult, error) {
|
||||
out := new(EmbeddingResult)
|
||||
err := c.cc.Invoke(ctx, "/backend.Backend/Embedding", in, out, opts...)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
return out, nil
|
||||
}
|
||||
|
||||
func (c *backendClient) GenerateImage(ctx context.Context, in *GenerateImageRequest, opts ...grpc.CallOption) (*Result, error) {
|
||||
out := new(Result)
|
||||
err := c.cc.Invoke(ctx, "/backend.Backend/GenerateImage", in, out, opts...)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
return out, nil
|
||||
}
|
||||
|
||||
func (c *backendClient) AudioTranscription(ctx context.Context, in *TranscriptRequest, opts ...grpc.CallOption) (*TranscriptResult, error) {
|
||||
out := new(TranscriptResult)
|
||||
err := c.cc.Invoke(ctx, "/backend.Backend/AudioTranscription", in, out, opts...)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
return out, nil
|
||||
}
|
||||
|
||||
func (c *backendClient) TTS(ctx context.Context, in *TTSRequest, opts ...grpc.CallOption) (*Result, error) {
|
||||
out := new(Result)
|
||||
err := c.cc.Invoke(ctx, "/backend.Backend/TTS", in, out, opts...)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
return out, nil
|
||||
}
|
||||
|
||||
func (c *backendClient) TokenizeString(ctx context.Context, in *PredictOptions, opts ...grpc.CallOption) (*TokenizationResponse, error) {
|
||||
out := new(TokenizationResponse)
|
||||
err := c.cc.Invoke(ctx, "/backend.Backend/TokenizeString", in, out, opts...)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
return out, nil
|
||||
}
|
||||
|
||||
func (c *backendClient) Status(ctx context.Context, in *HealthMessage, opts ...grpc.CallOption) (*StatusResponse, error) {
|
||||
out := new(StatusResponse)
|
||||
err := c.cc.Invoke(ctx, "/backend.Backend/Status", in, out, opts...)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
return out, nil
|
||||
}
|
||||
|
||||
// BackendServer is the server API for Backend service.
|
||||
// All implementations must embed UnimplementedBackendServer
|
||||
// for forward compatibility
|
||||
type BackendServer interface {
|
||||
Health(context.Context, *HealthMessage) (*Reply, error)
|
||||
Predict(context.Context, *PredictOptions) (*Reply, error)
|
||||
LoadModel(context.Context, *ModelOptions) (*Result, error)
|
||||
PredictStream(*PredictOptions, Backend_PredictStreamServer) error
|
||||
Embedding(context.Context, *PredictOptions) (*EmbeddingResult, error)
|
||||
GenerateImage(context.Context, *GenerateImageRequest) (*Result, error)
|
||||
AudioTranscription(context.Context, *TranscriptRequest) (*TranscriptResult, error)
|
||||
TTS(context.Context, *TTSRequest) (*Result, error)
|
||||
TokenizeString(context.Context, *PredictOptions) (*TokenizationResponse, error)
|
||||
Status(context.Context, *HealthMessage) (*StatusResponse, error)
|
||||
mustEmbedUnimplementedBackendServer()
|
||||
}
|
||||
|
||||
// UnimplementedBackendServer must be embedded to have forward compatible implementations.
|
||||
type UnimplementedBackendServer struct {
|
||||
}
|
||||
|
||||
func (UnimplementedBackendServer) Health(context.Context, *HealthMessage) (*Reply, error) {
|
||||
return nil, status.Errorf(codes.Unimplemented, "method Health not implemented")
|
||||
}
|
||||
func (UnimplementedBackendServer) Predict(context.Context, *PredictOptions) (*Reply, error) {
|
||||
return nil, status.Errorf(codes.Unimplemented, "method Predict not implemented")
|
||||
}
|
||||
func (UnimplementedBackendServer) LoadModel(context.Context, *ModelOptions) (*Result, error) {
|
||||
return nil, status.Errorf(codes.Unimplemented, "method LoadModel not implemented")
|
||||
}
|
||||
func (UnimplementedBackendServer) PredictStream(*PredictOptions, Backend_PredictStreamServer) error {
|
||||
return status.Errorf(codes.Unimplemented, "method PredictStream not implemented")
|
||||
}
|
||||
func (UnimplementedBackendServer) Embedding(context.Context, *PredictOptions) (*EmbeddingResult, error) {
|
||||
return nil, status.Errorf(codes.Unimplemented, "method Embedding not implemented")
|
||||
}
|
||||
func (UnimplementedBackendServer) GenerateImage(context.Context, *GenerateImageRequest) (*Result, error) {
|
||||
return nil, status.Errorf(codes.Unimplemented, "method GenerateImage not implemented")
|
||||
}
|
||||
func (UnimplementedBackendServer) AudioTranscription(context.Context, *TranscriptRequest) (*TranscriptResult, error) {
|
||||
return nil, status.Errorf(codes.Unimplemented, "method AudioTranscription not implemented")
|
||||
}
|
||||
func (UnimplementedBackendServer) TTS(context.Context, *TTSRequest) (*Result, error) {
|
||||
return nil, status.Errorf(codes.Unimplemented, "method TTS not implemented")
|
||||
}
|
||||
func (UnimplementedBackendServer) TokenizeString(context.Context, *PredictOptions) (*TokenizationResponse, error) {
|
||||
return nil, status.Errorf(codes.Unimplemented, "method TokenizeString not implemented")
|
||||
}
|
||||
func (UnimplementedBackendServer) Status(context.Context, *HealthMessage) (*StatusResponse, error) {
|
||||
return nil, status.Errorf(codes.Unimplemented, "method Status not implemented")
|
||||
}
|
||||
func (UnimplementedBackendServer) mustEmbedUnimplementedBackendServer() {}
|
||||
|
||||
// UnsafeBackendServer may be embedded to opt out of forward compatibility for this service.
|
||||
// Use of this interface is not recommended, as added methods to BackendServer will
|
||||
// result in compilation errors.
|
||||
type UnsafeBackendServer interface {
|
||||
mustEmbedUnimplementedBackendServer()
|
||||
}
|
||||
|
||||
func RegisterBackendServer(s grpc.ServiceRegistrar, srv BackendServer) {
|
||||
s.RegisterService(&Backend_ServiceDesc, srv)
|
||||
}
|
||||
|
||||
func _Backend_Health_Handler(srv interface{}, ctx context.Context, dec func(interface{}) error, interceptor grpc.UnaryServerInterceptor) (interface{}, error) {
|
||||
in := new(HealthMessage)
|
||||
if err := dec(in); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
if interceptor == nil {
|
||||
return srv.(BackendServer).Health(ctx, in)
|
||||
}
|
||||
info := &grpc.UnaryServerInfo{
|
||||
Server: srv,
|
||||
FullMethod: "/backend.Backend/Health",
|
||||
}
|
||||
handler := func(ctx context.Context, req interface{}) (interface{}, error) {
|
||||
return srv.(BackendServer).Health(ctx, req.(*HealthMessage))
|
||||
}
|
||||
return interceptor(ctx, in, info, handler)
|
||||
}
|
||||
|
||||
func _Backend_Predict_Handler(srv interface{}, ctx context.Context, dec func(interface{}) error, interceptor grpc.UnaryServerInterceptor) (interface{}, error) {
|
||||
in := new(PredictOptions)
|
||||
if err := dec(in); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
if interceptor == nil {
|
||||
return srv.(BackendServer).Predict(ctx, in)
|
||||
}
|
||||
info := &grpc.UnaryServerInfo{
|
||||
Server: srv,
|
||||
FullMethod: "/backend.Backend/Predict",
|
||||
}
|
||||
handler := func(ctx context.Context, req interface{}) (interface{}, error) {
|
||||
return srv.(BackendServer).Predict(ctx, req.(*PredictOptions))
|
||||
}
|
||||
return interceptor(ctx, in, info, handler)
|
||||
}
|
||||
|
||||
func _Backend_LoadModel_Handler(srv interface{}, ctx context.Context, dec func(interface{}) error, interceptor grpc.UnaryServerInterceptor) (interface{}, error) {
|
||||
in := new(ModelOptions)
|
||||
if err := dec(in); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
if interceptor == nil {
|
||||
return srv.(BackendServer).LoadModel(ctx, in)
|
||||
}
|
||||
info := &grpc.UnaryServerInfo{
|
||||
Server: srv,
|
||||
FullMethod: "/backend.Backend/LoadModel",
|
||||
}
|
||||
handler := func(ctx context.Context, req interface{}) (interface{}, error) {
|
||||
return srv.(BackendServer).LoadModel(ctx, req.(*ModelOptions))
|
||||
}
|
||||
return interceptor(ctx, in, info, handler)
|
||||
}
|
||||
|
||||
func _Backend_PredictStream_Handler(srv interface{}, stream grpc.ServerStream) error {
|
||||
m := new(PredictOptions)
|
||||
if err := stream.RecvMsg(m); err != nil {
|
||||
return err
|
||||
}
|
||||
return srv.(BackendServer).PredictStream(m, &backendPredictStreamServer{stream})
|
||||
}
|
||||
|
||||
type Backend_PredictStreamServer interface {
|
||||
Send(*Reply) error
|
||||
grpc.ServerStream
|
||||
}
|
||||
|
||||
type backendPredictStreamServer struct {
|
||||
grpc.ServerStream
|
||||
}
|
||||
|
||||
func (x *backendPredictStreamServer) Send(m *Reply) error {
|
||||
return x.ServerStream.SendMsg(m)
|
||||
}
|
||||
|
||||
func _Backend_Embedding_Handler(srv interface{}, ctx context.Context, dec func(interface{}) error, interceptor grpc.UnaryServerInterceptor) (interface{}, error) {
|
||||
in := new(PredictOptions)
|
||||
if err := dec(in); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
if interceptor == nil {
|
||||
return srv.(BackendServer).Embedding(ctx, in)
|
||||
}
|
||||
info := &grpc.UnaryServerInfo{
|
||||
Server: srv,
|
||||
FullMethod: "/backend.Backend/Embedding",
|
||||
}
|
||||
handler := func(ctx context.Context, req interface{}) (interface{}, error) {
|
||||
return srv.(BackendServer).Embedding(ctx, req.(*PredictOptions))
|
||||
}
|
||||
return interceptor(ctx, in, info, handler)
|
||||
}
|
||||
|
||||
func _Backend_GenerateImage_Handler(srv interface{}, ctx context.Context, dec func(interface{}) error, interceptor grpc.UnaryServerInterceptor) (interface{}, error) {
|
||||
in := new(GenerateImageRequest)
|
||||
if err := dec(in); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
if interceptor == nil {
|
||||
return srv.(BackendServer).GenerateImage(ctx, in)
|
||||
}
|
||||
info := &grpc.UnaryServerInfo{
|
||||
Server: srv,
|
||||
FullMethod: "/backend.Backend/GenerateImage",
|
||||
}
|
||||
handler := func(ctx context.Context, req interface{}) (interface{}, error) {
|
||||
return srv.(BackendServer).GenerateImage(ctx, req.(*GenerateImageRequest))
|
||||
}
|
||||
return interceptor(ctx, in, info, handler)
|
||||
}
|
||||
|
||||
func _Backend_AudioTranscription_Handler(srv interface{}, ctx context.Context, dec func(interface{}) error, interceptor grpc.UnaryServerInterceptor) (interface{}, error) {
|
||||
in := new(TranscriptRequest)
|
||||
if err := dec(in); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
if interceptor == nil {
|
||||
return srv.(BackendServer).AudioTranscription(ctx, in)
|
||||
}
|
||||
info := &grpc.UnaryServerInfo{
|
||||
Server: srv,
|
||||
FullMethod: "/backend.Backend/AudioTranscription",
|
||||
}
|
||||
handler := func(ctx context.Context, req interface{}) (interface{}, error) {
|
||||
return srv.(BackendServer).AudioTranscription(ctx, req.(*TranscriptRequest))
|
||||
}
|
||||
return interceptor(ctx, in, info, handler)
|
||||
}
|
||||
|
||||
func _Backend_TTS_Handler(srv interface{}, ctx context.Context, dec func(interface{}) error, interceptor grpc.UnaryServerInterceptor) (interface{}, error) {
|
||||
in := new(TTSRequest)
|
||||
if err := dec(in); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
if interceptor == nil {
|
||||
return srv.(BackendServer).TTS(ctx, in)
|
||||
}
|
||||
info := &grpc.UnaryServerInfo{
|
||||
Server: srv,
|
||||
FullMethod: "/backend.Backend/TTS",
|
||||
}
|
||||
handler := func(ctx context.Context, req interface{}) (interface{}, error) {
|
||||
return srv.(BackendServer).TTS(ctx, req.(*TTSRequest))
|
||||
}
|
||||
return interceptor(ctx, in, info, handler)
|
||||
}
|
||||
|
||||
func _Backend_TokenizeString_Handler(srv interface{}, ctx context.Context, dec func(interface{}) error, interceptor grpc.UnaryServerInterceptor) (interface{}, error) {
|
||||
in := new(PredictOptions)
|
||||
if err := dec(in); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
if interceptor == nil {
|
||||
return srv.(BackendServer).TokenizeString(ctx, in)
|
||||
}
|
||||
info := &grpc.UnaryServerInfo{
|
||||
Server: srv,
|
||||
FullMethod: "/backend.Backend/TokenizeString",
|
||||
}
|
||||
handler := func(ctx context.Context, req interface{}) (interface{}, error) {
|
||||
return srv.(BackendServer).TokenizeString(ctx, req.(*PredictOptions))
|
||||
}
|
||||
return interceptor(ctx, in, info, handler)
|
||||
}
|
||||
|
||||
func _Backend_Status_Handler(srv interface{}, ctx context.Context, dec func(interface{}) error, interceptor grpc.UnaryServerInterceptor) (interface{}, error) {
|
||||
in := new(HealthMessage)
|
||||
if err := dec(in); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
if interceptor == nil {
|
||||
return srv.(BackendServer).Status(ctx, in)
|
||||
}
|
||||
info := &grpc.UnaryServerInfo{
|
||||
Server: srv,
|
||||
FullMethod: "/backend.Backend/Status",
|
||||
}
|
||||
handler := func(ctx context.Context, req interface{}) (interface{}, error) {
|
||||
return srv.(BackendServer).Status(ctx, req.(*HealthMessage))
|
||||
}
|
||||
return interceptor(ctx, in, info, handler)
|
||||
}
|
||||
|
||||
// Backend_ServiceDesc is the grpc.ServiceDesc for Backend service.
|
||||
// It's only intended for direct use with grpc.RegisterService,
|
||||
// and not to be introspected or modified (even as a copy)
|
||||
var Backend_ServiceDesc = grpc.ServiceDesc{
|
||||
ServiceName: "backend.Backend",
|
||||
HandlerType: (*BackendServer)(nil),
|
||||
Methods: []grpc.MethodDesc{
|
||||
{
|
||||
MethodName: "Health",
|
||||
Handler: _Backend_Health_Handler,
|
||||
},
|
||||
{
|
||||
MethodName: "Predict",
|
||||
Handler: _Backend_Predict_Handler,
|
||||
},
|
||||
{
|
||||
MethodName: "LoadModel",
|
||||
Handler: _Backend_LoadModel_Handler,
|
||||
},
|
||||
{
|
||||
MethodName: "Embedding",
|
||||
Handler: _Backend_Embedding_Handler,
|
||||
},
|
||||
{
|
||||
MethodName: "GenerateImage",
|
||||
Handler: _Backend_GenerateImage_Handler,
|
||||
},
|
||||
{
|
||||
MethodName: "AudioTranscription",
|
||||
Handler: _Backend_AudioTranscription_Handler,
|
||||
},
|
||||
{
|
||||
MethodName: "TTS",
|
||||
Handler: _Backend_TTS_Handler,
|
||||
},
|
||||
{
|
||||
MethodName: "TokenizeString",
|
||||
Handler: _Backend_TokenizeString_Handler,
|
||||
},
|
||||
{
|
||||
MethodName: "Status",
|
||||
Handler: _Backend_Status_Handler,
|
||||
},
|
||||
},
|
||||
Streams: []grpc.StreamDesc{
|
||||
{
|
||||
StreamName: "PredictStream",
|
||||
Handler: _Backend_PredictStream_Handler,
|
||||
ServerStreams: true,
|
||||
},
|
||||
},
|
||||
Metadata: "backend/backend.proto",
|
||||
}
|
||||
3
backend/cpp/grpc/.gitignore
vendored
Normal file
3
backend/cpp/grpc/.gitignore
vendored
Normal file
@@ -0,0 +1,3 @@
|
||||
installed_packages/
|
||||
grpc_build/
|
||||
grpc_repo/
|
||||
66
backend/cpp/grpc/Makefile
Normal file
66
backend/cpp/grpc/Makefile
Normal file
@@ -0,0 +1,66 @@
|
||||
# Basic platform detection
|
||||
HOST_SYSTEM = $(shell uname | cut -f 1 -d_)
|
||||
SYSTEM ?= $(HOST_SYSTEM)
|
||||
|
||||
TAG_LIB_GRPC?=v1.59.0
|
||||
GIT_REPO_LIB_GRPC?=https://github.com/grpc/grpc.git
|
||||
GIT_CLONE_DEPTH?=1
|
||||
NUM_BUILD_THREADS?=$(shell nproc --ignore=1)
|
||||
|
||||
INSTALLED_PACKAGES=installed_packages
|
||||
GRPC_REPO=grpc_repo
|
||||
GRPC_BUILD=grpc_build
|
||||
|
||||
export CMAKE_ARGS?=
|
||||
CMAKE_ARGS+=-DCMAKE_BUILD_TYPE=Release
|
||||
CMAKE_ARGS+=-DgRPC_INSTALL=ON
|
||||
CMAKE_ARGS+=-DEXECUTABLE_OUTPUT_PATH=../$(INSTALLED_PACKAGES)/grpc/bin
|
||||
CMAKE_ARGS+=-DLIBRARY_OUTPUT_PATH=../$(INSTALLED_PACKAGES)/grpc/lib
|
||||
CMAKE_ARGS+=-DgRPC_BUILD_TESTS=OFF
|
||||
CMAKE_ARGS+=-DgRPC_BUILD_CSHARP_EXT=OFF
|
||||
CMAKE_ARGS+=-DgRPC_BUILD_GRPC_CPP_PLUGIN=ON
|
||||
CMAKE_ARGS+=-DgRPC_BUILD_GRPC_CSHARP_PLUGIN=OFF
|
||||
CMAKE_ARGS+=-DgRPC_BUILD_GRPC_NODE_PLUGIN=OFF
|
||||
CMAKE_ARGS+=-DgRPC_BUILD_GRPC_OBJECTIVE_C_PLUGIN=OFF
|
||||
CMAKE_ARGS+=-DgRPC_BUILD_GRPC_PHP_PLUGIN=OFF
|
||||
CMAKE_ARGS+=-DgRPC_BUILD_GRPC_PYTHON_PLUGIN=ON
|
||||
CMAKE_ARGS+=-DgRPC_BUILD_GRPC_RUBY_PLUGIN=OFF
|
||||
CMAKE_ARGS+=-Dprotobuf_WITH_ZLIB=ON
|
||||
CMAKE_ARGS+=-DRE2_BUILD_TESTING=OFF
|
||||
CMAKE_ARGS+=-DCMAKE_INSTALL_PREFIX=../$(INSTALLED_PACKAGES)
|
||||
|
||||
# windows need to set OPENSSL_NO_ASM. Results in slower crypto performance but doesn't build otherwise.
|
||||
# May be resolvable, but for now its set. More info: https://stackoverflow.com/a/75240504/480673
|
||||
ifeq ($(SYSTEM),MSYS)
|
||||
CMAKE_ARGS+=-DOPENSSL_NO_ASM=ON
|
||||
endif
|
||||
ifeq ($(SYSTEM),MINGW64)
|
||||
CMAKE_ARGS+=-DOPENSSL_NO_ASM=ON
|
||||
endif
|
||||
ifeq ($(SYSTEM),MINGW32)
|
||||
CMAKE_ARGS+=-DOPENSSL_NO_ASM=ON
|
||||
endif
|
||||
ifeq ($(SYSTEM),CYGWIN)
|
||||
CMAKE_ARGS+=-DOPENSSL_NO_ASM=ON
|
||||
endif
|
||||
|
||||
$(INSTALLED_PACKAGES): grpc_build
|
||||
|
||||
$(GRPC_REPO):
|
||||
git clone --depth $(GIT_CLONE_DEPTH) -b $(TAG_LIB_GRPC) $(GIT_REPO_LIB_GRPC) $(GRPC_REPO)/grpc
|
||||
cd $(GRPC_REPO)/grpc && git submodule update --init --recursive --depth $(GIT_CLONE_DEPTH)
|
||||
|
||||
$(GRPC_BUILD): $(GRPC_REPO)
|
||||
mkdir -p $(GRPC_BUILD)
|
||||
cd $(GRPC_BUILD) && cmake $(CMAKE_ARGS) ../$(GRPC_REPO)/grpc && cmake --build . -- -j ${NUM_BUILD_THREADS} && cmake --build . --target install -- -j ${NUM_BUILD_THREADS}
|
||||
|
||||
build: $(INSTALLED_PACKAGES)
|
||||
|
||||
rebuild:
|
||||
rm -rf grpc_build
|
||||
$(MAKE) grpc_build
|
||||
|
||||
clean:
|
||||
rm -rf grpc_build
|
||||
rm -rf grpc_repo
|
||||
rm -rf installed_packages
|
||||
86
backend/cpp/llama/CMakeLists.txt
Normal file
86
backend/cpp/llama/CMakeLists.txt
Normal file
@@ -0,0 +1,86 @@
|
||||
|
||||
## XXX: In some versions of CMake clip wasn't being built before llama.
|
||||
## This is an hack for now, but it should be fixed in the future.
|
||||
set(TARGET myclip)
|
||||
add_library(${TARGET} clip.cpp clip.h llava.cpp llava.h)
|
||||
install(TARGETS ${TARGET} LIBRARY)
|
||||
target_include_directories(myclip PUBLIC .)
|
||||
target_include_directories(myclip PUBLIC ../..)
|
||||
target_include_directories(myclip PUBLIC ../../common)
|
||||
target_link_libraries(${TARGET} PRIVATE common ggml llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
if (NOT MSVC)
|
||||
target_compile_options(${TARGET} PRIVATE -Wno-cast-qual) # stb_image.h
|
||||
endif()
|
||||
# END CLIP hack
|
||||
|
||||
|
||||
set(TARGET grpc-server)
|
||||
set(CMAKE_CXX_STANDARD 17)
|
||||
cmake_minimum_required(VERSION 3.15)
|
||||
set(TARGET grpc-server)
|
||||
set(_PROTOBUF_LIBPROTOBUF libprotobuf)
|
||||
set(_REFLECTION grpc++_reflection)
|
||||
|
||||
if (${CMAKE_SYSTEM_NAME} MATCHES "Darwin")
|
||||
# Set correct Homebrew install folder for Apple Silicon and Intel Macs
|
||||
if (CMAKE_HOST_SYSTEM_PROCESSOR MATCHES "arm64")
|
||||
set(HOMEBREW_DEFAULT_PREFIX "/opt/homebrew")
|
||||
else()
|
||||
set(HOMEBREW_DEFAULT_PREFIX "/usr/local")
|
||||
endif()
|
||||
|
||||
link_directories("${HOMEBREW_DEFAULT_PREFIX}/lib")
|
||||
include_directories("${HOMEBREW_DEFAULT_PREFIX}/include")
|
||||
endif()
|
||||
|
||||
find_package(absl CONFIG REQUIRED)
|
||||
find_package(Protobuf CONFIG REQUIRED)
|
||||
find_package(gRPC CONFIG REQUIRED)
|
||||
|
||||
find_program(_PROTOBUF_PROTOC protoc)
|
||||
set(_GRPC_GRPCPP grpc++)
|
||||
find_program(_GRPC_CPP_PLUGIN_EXECUTABLE grpc_cpp_plugin)
|
||||
|
||||
include_directories(${CMAKE_CURRENT_BINARY_DIR})
|
||||
include_directories(${Protobuf_INCLUDE_DIRS})
|
||||
|
||||
message(STATUS "Using protobuf version ${Protobuf_VERSION} | Protobuf_INCLUDE_DIRS: ${Protobuf_INCLUDE_DIRS} | CMAKE_CURRENT_BINARY_DIR: ${CMAKE_CURRENT_BINARY_DIR}")
|
||||
|
||||
# Proto file
|
||||
get_filename_component(hw_proto "../../../../../../backend/backend.proto" ABSOLUTE)
|
||||
get_filename_component(hw_proto_path "${hw_proto}" PATH)
|
||||
|
||||
# Generated sources
|
||||
set(hw_proto_srcs "${CMAKE_CURRENT_BINARY_DIR}/backend.pb.cc")
|
||||
set(hw_proto_hdrs "${CMAKE_CURRENT_BINARY_DIR}/backend.pb.h")
|
||||
set(hw_grpc_srcs "${CMAKE_CURRENT_BINARY_DIR}/backend.grpc.pb.cc")
|
||||
set(hw_grpc_hdrs "${CMAKE_CURRENT_BINARY_DIR}/backend.grpc.pb.h")
|
||||
|
||||
add_custom_command(
|
||||
OUTPUT "${hw_proto_srcs}" "${hw_proto_hdrs}" "${hw_grpc_srcs}" "${hw_grpc_hdrs}"
|
||||
COMMAND ${_PROTOBUF_PROTOC}
|
||||
ARGS --grpc_out "${CMAKE_CURRENT_BINARY_DIR}"
|
||||
--cpp_out "${CMAKE_CURRENT_BINARY_DIR}"
|
||||
-I "${hw_proto_path}"
|
||||
--plugin=protoc-gen-grpc="${_GRPC_CPP_PLUGIN_EXECUTABLE}"
|
||||
"${hw_proto}"
|
||||
DEPENDS "${hw_proto}")
|
||||
|
||||
# hw_grpc_proto
|
||||
add_library(hw_grpc_proto
|
||||
${hw_grpc_srcs}
|
||||
${hw_grpc_hdrs}
|
||||
${hw_proto_srcs}
|
||||
${hw_proto_hdrs} )
|
||||
|
||||
add_executable(${TARGET} grpc-server.cpp utils.hpp json.hpp)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama myclip ${CMAKE_THREAD_LIBS_INIT} absl::flags hw_grpc_proto
|
||||
absl::flags_parse
|
||||
gRPC::${_REFLECTION}
|
||||
gRPC::${_GRPC_GRPCPP}
|
||||
protobuf::${_PROTOBUF_LIBPROTOBUF})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
if(TARGET BUILD_INFO)
|
||||
add_dependencies(${TARGET} BUILD_INFO)
|
||||
endif()
|
||||
72
backend/cpp/llama/Makefile
Normal file
72
backend/cpp/llama/Makefile
Normal file
@@ -0,0 +1,72 @@
|
||||
|
||||
LLAMA_VERSION?=
|
||||
|
||||
CMAKE_ARGS?=
|
||||
BUILD_TYPE?=
|
||||
ONEAPI_VARS?=/opt/intel/oneapi/setvars.sh
|
||||
|
||||
# If build type is cublas, then we set -DLLAMA_CUBLAS=ON to CMAKE_ARGS automatically
|
||||
ifeq ($(BUILD_TYPE),cublas)
|
||||
CMAKE_ARGS+=-DLLAMA_CUBLAS=ON
|
||||
# If build type is openblas then we set -DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS
|
||||
# to CMAKE_ARGS automatically
|
||||
else ifeq ($(BUILD_TYPE),openblas)
|
||||
CMAKE_ARGS+=-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS
|
||||
# If build type is clblas (openCL) we set -DLLAMA_CLBLAST=ON -DCLBlast_DIR=/some/path
|
||||
else ifeq ($(BUILD_TYPE),clblas)
|
||||
CMAKE_ARGS+=-DLLAMA_CLBLAST=ON -DCLBlast_DIR=/some/path
|
||||
# If it's hipblas we do have also to set CC=/opt/rocm/llvm/bin/clang CXX=/opt/rocm/llvm/bin/clang++
|
||||
else ifeq ($(BUILD_TYPE),hipblas)
|
||||
CMAKE_ARGS+=-DLLAMA_HIPBLAS=ON
|
||||
# If it's OSX, DO NOT embed the metal library - -DLLAMA_METAL_EMBED_LIBRARY=ON requires further investigation
|
||||
endif
|
||||
|
||||
ifeq ($(BUILD_TYPE),sycl_f16)
|
||||
CMAKE_ARGS+=-DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_SYCL_F16=ON
|
||||
endif
|
||||
|
||||
ifeq ($(BUILD_TYPE),sycl_f32)
|
||||
CMAKE_ARGS+=-DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
|
||||
endif
|
||||
|
||||
llama.cpp:
|
||||
git clone --recurse-submodules https://github.com/ggerganov/llama.cpp llama.cpp
|
||||
if [ -z "$(LLAMA_VERSION)" ]; then \
|
||||
exit 1; \
|
||||
fi
|
||||
cd llama.cpp && git checkout -b build $(LLAMA_VERSION) && git submodule update --init --recursive --depth 1
|
||||
|
||||
llama.cpp/examples/grpc-server:
|
||||
mkdir -p llama.cpp/examples/grpc-server
|
||||
cp -r $(abspath ./)/CMakeLists.txt llama.cpp/examples/grpc-server/
|
||||
cp -r $(abspath ./)/grpc-server.cpp llama.cpp/examples/grpc-server/
|
||||
cp -rfv $(abspath ./)/json.hpp llama.cpp/examples/grpc-server/
|
||||
cp -rfv $(abspath ./)/utils.hpp llama.cpp/examples/grpc-server/
|
||||
echo "add_subdirectory(grpc-server)" >> llama.cpp/examples/CMakeLists.txt
|
||||
## XXX: In some versions of CMake clip wasn't being built before llama.
|
||||
## This is an hack for now, but it should be fixed in the future.
|
||||
cp -rfv llama.cpp/examples/llava/clip.h llama.cpp/examples/grpc-server/clip.h
|
||||
cp -rfv llama.cpp/examples/llava/llava.cpp llama.cpp/examples/grpc-server/llava.cpp
|
||||
echo '#include "llama.h"' > llama.cpp/examples/grpc-server/llava.h
|
||||
cat llama.cpp/examples/llava/llava.h >> llama.cpp/examples/grpc-server/llava.h
|
||||
cp -rfv llama.cpp/examples/llava/clip.cpp llama.cpp/examples/grpc-server/clip.cpp
|
||||
|
||||
rebuild:
|
||||
cp -rfv $(abspath ./)/CMakeLists.txt llama.cpp/examples/grpc-server/
|
||||
cp -rfv $(abspath ./)/grpc-server.cpp llama.cpp/examples/grpc-server/
|
||||
cp -rfv $(abspath ./)/json.hpp llama.cpp/examples/grpc-server/
|
||||
rm -rf grpc-server
|
||||
$(MAKE) grpc-server
|
||||
|
||||
clean:
|
||||
rm -rf llama.cpp
|
||||
rm -rf grpc-server
|
||||
|
||||
grpc-server: llama.cpp llama.cpp/examples/grpc-server
|
||||
ifneq (,$(findstring sycl,$(BUILD_TYPE)))
|
||||
bash -c "source $(ONEAPI_VARS); \
|
||||
cd llama.cpp && mkdir -p build && cd build && cmake .. $(CMAKE_ARGS) && cmake --build . --config Release"
|
||||
else
|
||||
cd llama.cpp && mkdir -p build && cd build && cmake .. $(CMAKE_ARGS) && cmake --build . --config Release
|
||||
endif
|
||||
cp llama.cpp/build/bin/grpc-server .
|
||||
2422
backend/cpp/llama/grpc-server.cpp
Normal file
2422
backend/cpp/llama/grpc-server.cpp
Normal file
File diff suppressed because it is too large
Load Diff
24596
backend/cpp/llama/json.hpp
Normal file
24596
backend/cpp/llama/json.hpp
Normal file
File diff suppressed because it is too large
Load Diff
510
backend/cpp/llama/utils.hpp
Normal file
510
backend/cpp/llama/utils.hpp
Normal file
@@ -0,0 +1,510 @@
|
||||
// https://github.com/ggerganov/llama.cpp/blob/master/examples/server/utils.hpp
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <set>
|
||||
#include <mutex>
|
||||
#include <condition_variable>
|
||||
#include <unordered_map>
|
||||
|
||||
#include "json.hpp"
|
||||
|
||||
#include "../llava/clip.h"
|
||||
|
||||
using json = nlohmann::json;
|
||||
|
||||
extern bool server_verbose;
|
||||
|
||||
#ifndef SERVER_VERBOSE
|
||||
#define SERVER_VERBOSE 1
|
||||
#endif
|
||||
|
||||
#if SERVER_VERBOSE != 1
|
||||
#define LOG_VERBOSE(MSG, ...)
|
||||
#else
|
||||
#define LOG_VERBOSE(MSG, ...) \
|
||||
do \
|
||||
{ \
|
||||
if (server_verbose) \
|
||||
{ \
|
||||
server_log("VERBOSE", __func__, __LINE__, MSG, __VA_ARGS__); \
|
||||
} \
|
||||
} while (0)
|
||||
#endif
|
||||
|
||||
#define LOG_ERROR( MSG, ...) server_log("ERROR", __func__, __LINE__, MSG, __VA_ARGS__)
|
||||
#define LOG_WARNING(MSG, ...) server_log("WARNING", __func__, __LINE__, MSG, __VA_ARGS__)
|
||||
#define LOG_INFO( MSG, ...) server_log("INFO", __func__, __LINE__, MSG, __VA_ARGS__)
|
||||
|
||||
//
|
||||
// parallel
|
||||
//
|
||||
|
||||
enum server_state {
|
||||
SERVER_STATE_LOADING_MODEL, // Server is starting up, model not fully loaded yet
|
||||
SERVER_STATE_READY, // Server is ready and model is loaded
|
||||
SERVER_STATE_ERROR // An error occurred, load_model failed
|
||||
};
|
||||
|
||||
enum task_type {
|
||||
TASK_TYPE_COMPLETION,
|
||||
TASK_TYPE_CANCEL,
|
||||
TASK_TYPE_NEXT_RESPONSE
|
||||
};
|
||||
|
||||
struct task_server {
|
||||
int id = -1; // to be filled by llama_server_queue
|
||||
int target_id;
|
||||
task_type type;
|
||||
json data;
|
||||
bool infill_mode = false;
|
||||
bool embedding_mode = false;
|
||||
int multitask_id = -1;
|
||||
};
|
||||
|
||||
struct task_result {
|
||||
int id;
|
||||
int multitask_id = -1;
|
||||
bool stop;
|
||||
bool error;
|
||||
json result_json;
|
||||
};
|
||||
|
||||
struct task_multi {
|
||||
int id;
|
||||
std::set<int> subtasks_remaining{};
|
||||
std::vector<task_result> results{};
|
||||
};
|
||||
|
||||
// TODO: can become bool if we can't find use of more states
|
||||
enum slot_state
|
||||
{
|
||||
IDLE,
|
||||
PROCESSING,
|
||||
};
|
||||
|
||||
enum slot_command
|
||||
{
|
||||
NONE,
|
||||
LOAD_PROMPT,
|
||||
RELEASE,
|
||||
};
|
||||
|
||||
struct slot_params
|
||||
{
|
||||
bool stream = true;
|
||||
bool cache_prompt = false; // remember the prompt to avoid reprocessing all prompt
|
||||
|
||||
uint32_t seed = -1; // RNG seed
|
||||
int32_t n_keep = 0; // number of tokens to keep from initial prompt
|
||||
int32_t n_predict = -1; // new tokens to predict
|
||||
|
||||
std::vector<std::string> antiprompt;
|
||||
|
||||
json input_prefix;
|
||||
json input_suffix;
|
||||
};
|
||||
|
||||
struct slot_image
|
||||
{
|
||||
int32_t id;
|
||||
|
||||
bool request_encode_image = false;
|
||||
float * image_embedding = nullptr;
|
||||
int32_t image_tokens = 0;
|
||||
|
||||
clip_image_u8 * img_data;
|
||||
|
||||
std::string prefix_prompt; // before of this image
|
||||
};
|
||||
|
||||
// completion token output with probabilities
|
||||
struct completion_token_output
|
||||
{
|
||||
struct token_prob
|
||||
{
|
||||
llama_token tok;
|
||||
float prob;
|
||||
};
|
||||
|
||||
std::vector<token_prob> probs;
|
||||
llama_token tok;
|
||||
std::string text_to_send;
|
||||
};
|
||||
|
||||
static inline void server_log(const char *level, const char *function, int line,
|
||||
const char *message, const nlohmann::ordered_json &extra)
|
||||
{
|
||||
nlohmann::ordered_json log
|
||||
{
|
||||
{"timestamp", time(nullptr)},
|
||||
{"level", level},
|
||||
{"function", function},
|
||||
{"line", line},
|
||||
{"message", message},
|
||||
};
|
||||
|
||||
if (!extra.empty())
|
||||
{
|
||||
log.merge_patch(extra);
|
||||
}
|
||||
|
||||
const std::string str = log.dump(-1, ' ', false, json::error_handler_t::replace);
|
||||
printf("%.*s\n", (int)str.size(), str.data());
|
||||
fflush(stdout);
|
||||
}
|
||||
|
||||
//
|
||||
// server utils
|
||||
//
|
||||
|
||||
template <typename T>
|
||||
static T json_value(const json &body, const std::string &key, const T &default_value)
|
||||
{
|
||||
// Fallback null to default value
|
||||
return body.contains(key) && !body.at(key).is_null()
|
||||
? body.value(key, default_value)
|
||||
: default_value;
|
||||
}
|
||||
|
||||
inline std::string format_chatml(std::vector<json> messages)
|
||||
{
|
||||
std::ostringstream chatml_msgs;
|
||||
|
||||
for (auto it = messages.begin(); it != messages.end(); ++it) {
|
||||
chatml_msgs << "<|im_start|>"
|
||||
<< json_value(*it, "role", std::string("user")) << '\n';
|
||||
chatml_msgs << json_value(*it, "content", std::string(""))
|
||||
<< "<|im_end|>\n";
|
||||
}
|
||||
|
||||
chatml_msgs << "<|im_start|>assistant" << '\n';
|
||||
|
||||
return chatml_msgs.str();
|
||||
}
|
||||
|
||||
//
|
||||
// work queue utils
|
||||
//
|
||||
|
||||
struct llama_server_queue {
|
||||
int id = 0;
|
||||
std::mutex mutex_tasks;
|
||||
// queues
|
||||
std::vector<task_server> queue_tasks;
|
||||
std::vector<task_server> queue_tasks_deferred;
|
||||
std::vector<task_multi> queue_multitasks;
|
||||
std::condition_variable condition_tasks;
|
||||
// callback functions
|
||||
std::function<void(task_server&)> callback_new_task;
|
||||
std::function<void(task_multi&)> callback_finish_multitask;
|
||||
std::function<void(void)> callback_all_task_finished;
|
||||
|
||||
// Add a new task to the end of the queue
|
||||
int post(task_server task) {
|
||||
std::unique_lock<std::mutex> lock(mutex_tasks);
|
||||
if (task.id == -1) {
|
||||
task.id = id++;
|
||||
}
|
||||
queue_tasks.push_back(std::move(task));
|
||||
condition_tasks.notify_one();
|
||||
return task.id;
|
||||
}
|
||||
|
||||
// Add a new task, but defer until one slot is available
|
||||
void defer(task_server task) {
|
||||
std::unique_lock<std::mutex> lock(mutex_tasks);
|
||||
queue_tasks_deferred.push_back(std::move(task));
|
||||
}
|
||||
|
||||
// Get the next id for creating anew task
|
||||
int get_new_id() {
|
||||
std::unique_lock<std::mutex> lock(mutex_tasks);
|
||||
return id++;
|
||||
}
|
||||
|
||||
// Register function to process a new task
|
||||
void on_new_task(std::function<void(task_server&)> callback) {
|
||||
callback_new_task = callback;
|
||||
}
|
||||
|
||||
// Register function to process a multitask
|
||||
void on_finish_multitask(std::function<void(task_multi&)> callback) {
|
||||
callback_finish_multitask = callback;
|
||||
}
|
||||
|
||||
// Register the function to be called when the batch of tasks is finished
|
||||
void on_all_tasks_finished(std::function<void(void)> callback) {
|
||||
callback_all_task_finished = callback;
|
||||
}
|
||||
|
||||
// Call when the state of one slot is changed
|
||||
void notify_slot_changed() {
|
||||
// move deferred tasks back to main loop
|
||||
std::unique_lock<std::mutex> lock(mutex_tasks);
|
||||
for (auto & task : queue_tasks_deferred) {
|
||||
queue_tasks.push_back(std::move(task));
|
||||
}
|
||||
queue_tasks_deferred.clear();
|
||||
}
|
||||
|
||||
// Start the main loop. This call is blocking
|
||||
[[noreturn]]
|
||||
void start_loop() {
|
||||
while (true) {
|
||||
// new task arrived
|
||||
LOG_VERBOSE("have new task", {});
|
||||
{
|
||||
while (true)
|
||||
{
|
||||
std::unique_lock<std::mutex> lock(mutex_tasks);
|
||||
if (queue_tasks.empty()) {
|
||||
lock.unlock();
|
||||
break;
|
||||
}
|
||||
task_server task = queue_tasks.front();
|
||||
queue_tasks.erase(queue_tasks.begin());
|
||||
lock.unlock();
|
||||
LOG_VERBOSE("callback_new_task", {});
|
||||
callback_new_task(task);
|
||||
}
|
||||
LOG_VERBOSE("callback_all_task_finished", {});
|
||||
// process and update all the multitasks
|
||||
auto queue_iterator = queue_multitasks.begin();
|
||||
while (queue_iterator != queue_multitasks.end())
|
||||
{
|
||||
if (queue_iterator->subtasks_remaining.empty())
|
||||
{
|
||||
// all subtasks done == multitask is done
|
||||
task_multi current_multitask = *queue_iterator;
|
||||
callback_finish_multitask(current_multitask);
|
||||
// remove this multitask
|
||||
queue_iterator = queue_multitasks.erase(queue_iterator);
|
||||
}
|
||||
else
|
||||
{
|
||||
++queue_iterator;
|
||||
}
|
||||
}
|
||||
// all tasks in the current loop is finished
|
||||
callback_all_task_finished();
|
||||
}
|
||||
LOG_VERBOSE("wait for new task", {});
|
||||
// wait for new task
|
||||
{
|
||||
std::unique_lock<std::mutex> lock(mutex_tasks);
|
||||
if (queue_tasks.empty()) {
|
||||
condition_tasks.wait(lock, [&]{
|
||||
return !queue_tasks.empty();
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//
|
||||
// functions to manage multitasks
|
||||
//
|
||||
|
||||
// add a multitask by specifying the id of all subtask (subtask is a task_server)
|
||||
void add_multitask(int multitask_id, std::vector<int>& sub_ids)
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(mutex_tasks);
|
||||
task_multi multi;
|
||||
multi.id = multitask_id;
|
||||
std::copy(sub_ids.begin(), sub_ids.end(), std::inserter(multi.subtasks_remaining, multi.subtasks_remaining.end()));
|
||||
queue_multitasks.push_back(multi);
|
||||
}
|
||||
|
||||
// updatethe remaining subtasks, while appending results to multitask
|
||||
void update_multitask(int multitask_id, int subtask_id, task_result& result)
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(mutex_tasks);
|
||||
for (auto& multitask : queue_multitasks)
|
||||
{
|
||||
if (multitask.id == multitask_id)
|
||||
{
|
||||
multitask.subtasks_remaining.erase(subtask_id);
|
||||
multitask.results.push_back(result);
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
struct llama_server_response {
|
||||
typedef std::function<void(int, int, task_result&)> callback_multitask_t;
|
||||
callback_multitask_t callback_update_multitask;
|
||||
// for keeping track of all tasks waiting for the result
|
||||
std::set<int> waiting_task_ids;
|
||||
// the main result queue
|
||||
std::vector<task_result> queue_results;
|
||||
std::mutex mutex_results;
|
||||
std::condition_variable condition_results;
|
||||
|
||||
void add_waiting_task_id(int task_id) {
|
||||
std::unique_lock<std::mutex> lock(mutex_results);
|
||||
waiting_task_ids.insert(task_id);
|
||||
}
|
||||
|
||||
void remove_waiting_task_id(int task_id) {
|
||||
std::unique_lock<std::mutex> lock(mutex_results);
|
||||
waiting_task_ids.erase(task_id);
|
||||
}
|
||||
|
||||
// This function blocks the thread until there is a response for this task_id
|
||||
task_result recv(int task_id) {
|
||||
while (true)
|
||||
{
|
||||
std::unique_lock<std::mutex> lock(mutex_results);
|
||||
condition_results.wait(lock, [&]{
|
||||
return !queue_results.empty();
|
||||
});
|
||||
LOG_VERBOSE("condition_results unblock", {});
|
||||
|
||||
for (int i = 0; i < (int) queue_results.size(); i++)
|
||||
{
|
||||
if (queue_results[i].id == task_id)
|
||||
{
|
||||
assert(queue_results[i].multitask_id == -1);
|
||||
task_result res = queue_results[i];
|
||||
queue_results.erase(queue_results.begin() + i);
|
||||
return res;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// should never reach here
|
||||
}
|
||||
|
||||
// Register the function to update multitask
|
||||
void on_multitask_update(callback_multitask_t callback) {
|
||||
callback_update_multitask = callback;
|
||||
}
|
||||
|
||||
// Send a new result to a waiting task_id
|
||||
void send(task_result result) {
|
||||
std::unique_lock<std::mutex> lock(mutex_results);
|
||||
LOG_VERBOSE("send new result", {});
|
||||
for (auto& task_id : waiting_task_ids) {
|
||||
// LOG_TEE("waiting task id %i \n", task_id);
|
||||
// for now, tasks that have associated parent multitasks just get erased once multitask picks up the result
|
||||
if (result.multitask_id == task_id)
|
||||
{
|
||||
LOG_VERBOSE("callback_update_multitask", {});
|
||||
callback_update_multitask(task_id, result.id, result);
|
||||
continue;
|
||||
}
|
||||
|
||||
if (result.id == task_id)
|
||||
{
|
||||
LOG_VERBOSE("queue_results.push_back", {});
|
||||
queue_results.push_back(result);
|
||||
condition_results.notify_one();
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
//
|
||||
// base64 utils (TODO: move to common in the future)
|
||||
//
|
||||
|
||||
static const std::string base64_chars =
|
||||
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
|
||||
"abcdefghijklmnopqrstuvwxyz"
|
||||
"0123456789+/";
|
||||
|
||||
static inline bool is_base64(uint8_t c)
|
||||
{
|
||||
return (isalnum(c) || (c == '+') || (c == '/'));
|
||||
}
|
||||
|
||||
static inline std::vector<uint8_t> base64_decode(const std::string & encoded_string)
|
||||
{
|
||||
int i = 0;
|
||||
int j = 0;
|
||||
int in_ = 0;
|
||||
|
||||
int in_len = encoded_string.size();
|
||||
|
||||
uint8_t char_array_4[4];
|
||||
uint8_t char_array_3[3];
|
||||
|
||||
std::vector<uint8_t> ret;
|
||||
|
||||
while (in_len-- && (encoded_string[in_] != '=') && is_base64(encoded_string[in_]))
|
||||
{
|
||||
char_array_4[i++] = encoded_string[in_]; in_++;
|
||||
if (i == 4)
|
||||
{
|
||||
for (i = 0; i <4; i++)
|
||||
{
|
||||
char_array_4[i] = base64_chars.find(char_array_4[i]);
|
||||
}
|
||||
|
||||
char_array_3[0] = ((char_array_4[0] ) << 2) + ((char_array_4[1] & 0x30) >> 4);
|
||||
char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2);
|
||||
char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3];
|
||||
|
||||
for (i = 0; (i < 3); i++)
|
||||
{
|
||||
ret.push_back(char_array_3[i]);
|
||||
}
|
||||
i = 0;
|
||||
}
|
||||
}
|
||||
|
||||
if (i)
|
||||
{
|
||||
for (j = i; j <4; j++)
|
||||
{
|
||||
char_array_4[j] = 0;
|
||||
}
|
||||
|
||||
for (j = 0; j <4; j++)
|
||||
{
|
||||
char_array_4[j] = base64_chars.find(char_array_4[j]);
|
||||
}
|
||||
|
||||
char_array_3[0] = ((char_array_4[0] ) << 2) + ((char_array_4[1] & 0x30) >> 4);
|
||||
char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2);
|
||||
char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3];
|
||||
|
||||
for (j = 0; (j < i - 1); j++)
|
||||
{
|
||||
ret.push_back(char_array_3[j]);
|
||||
}
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
//
|
||||
// random string / id
|
||||
//
|
||||
|
||||
static std::string random_string()
|
||||
{
|
||||
static const std::string str("0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz");
|
||||
|
||||
std::random_device rd;
|
||||
std::mt19937 generator(rd());
|
||||
|
||||
std::string result(32, ' ');
|
||||
|
||||
for (int i = 0; i < 32; ++i) {
|
||||
result[i] = str[generator() % str.size()];
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
static std::string gen_chatcmplid()
|
||||
{
|
||||
std::stringstream chatcmplid;
|
||||
chatcmplid << "chatcmpl-" << random_string();
|
||||
return chatcmplid.str();
|
||||
}
|
||||
21
backend/go/image/stablediffusion/main.go
Normal file
21
backend/go/image/stablediffusion/main.go
Normal file
@@ -0,0 +1,21 @@
|
||||
package main
|
||||
|
||||
// Note: this is started internally by LocalAI and a server is allocated for each model
|
||||
|
||||
import (
|
||||
"flag"
|
||||
|
||||
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
|
||||
)
|
||||
|
||||
var (
|
||||
addr = flag.String("addr", "localhost:50051", "the address to connect to")
|
||||
)
|
||||
|
||||
func main() {
|
||||
flag.Parse()
|
||||
|
||||
if err := grpc.StartServer(*addr, &Image{}); err != nil {
|
||||
panic(err)
|
||||
}
|
||||
}
|
||||
33
backend/go/image/stablediffusion/stablediffusion.go
Normal file
33
backend/go/image/stablediffusion/stablediffusion.go
Normal file
@@ -0,0 +1,33 @@
|
||||
package main
|
||||
|
||||
// This is a wrapper to statisfy the GRPC service interface
|
||||
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
|
||||
import (
|
||||
"github.com/go-skynet/LocalAI/pkg/grpc/base"
|
||||
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
|
||||
"github.com/go-skynet/LocalAI/pkg/stablediffusion"
|
||||
)
|
||||
|
||||
type Image struct {
|
||||
base.SingleThread
|
||||
stablediffusion *stablediffusion.StableDiffusion
|
||||
}
|
||||
|
||||
func (image *Image) Load(opts *pb.ModelOptions) error {
|
||||
var err error
|
||||
// Note: the Model here is a path to a directory containing the model files
|
||||
image.stablediffusion, err = stablediffusion.New(opts.ModelFile)
|
||||
return err
|
||||
}
|
||||
|
||||
func (image *Image) GenerateImage(opts *pb.GenerateImageRequest) error {
|
||||
return image.stablediffusion.GenerateImage(
|
||||
int(opts.Height),
|
||||
int(opts.Width),
|
||||
int(opts.Mode),
|
||||
int(opts.Step),
|
||||
int(opts.Seed),
|
||||
opts.PositivePrompt,
|
||||
opts.NegativePrompt,
|
||||
opts.Dst)
|
||||
}
|
||||
21
backend/go/image/tinydream/main.go
Normal file
21
backend/go/image/tinydream/main.go
Normal file
@@ -0,0 +1,21 @@
|
||||
package main
|
||||
|
||||
// Note: this is started internally by LocalAI and a server is allocated for each model
|
||||
|
||||
import (
|
||||
"flag"
|
||||
|
||||
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
|
||||
)
|
||||
|
||||
var (
|
||||
addr = flag.String("addr", "localhost:50051", "the address to connect to")
|
||||
)
|
||||
|
||||
func main() {
|
||||
flag.Parse()
|
||||
|
||||
if err := grpc.StartServer(*addr, &Image{}); err != nil {
|
||||
panic(err)
|
||||
}
|
||||
}
|
||||
32
backend/go/image/tinydream/tinydream.go
Normal file
32
backend/go/image/tinydream/tinydream.go
Normal file
@@ -0,0 +1,32 @@
|
||||
package main
|
||||
|
||||
// This is a wrapper to statisfy the GRPC service interface
|
||||
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
|
||||
import (
|
||||
"github.com/go-skynet/LocalAI/pkg/grpc/base"
|
||||
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
|
||||
"github.com/go-skynet/LocalAI/pkg/tinydream"
|
||||
)
|
||||
|
||||
type Image struct {
|
||||
base.SingleThread
|
||||
tinydream *tinydream.TinyDream
|
||||
}
|
||||
|
||||
func (image *Image) Load(opts *pb.ModelOptions) error {
|
||||
var err error
|
||||
// Note: the Model here is a path to a directory containing the model files
|
||||
image.tinydream, err = tinydream.New(opts.ModelFile)
|
||||
return err
|
||||
}
|
||||
|
||||
func (image *Image) GenerateImage(opts *pb.GenerateImageRequest) error {
|
||||
return image.tinydream.GenerateImage(
|
||||
int(opts.Height),
|
||||
int(opts.Width),
|
||||
int(opts.Step),
|
||||
int(opts.Seed),
|
||||
opts.PositivePrompt,
|
||||
opts.NegativePrompt,
|
||||
opts.Dst)
|
||||
}
|
||||
34
backend/go/llm/bert/bert.go
Normal file
34
backend/go/llm/bert/bert.go
Normal file
@@ -0,0 +1,34 @@
|
||||
package main
|
||||
|
||||
// This is a wrapper to statisfy the GRPC service interface
|
||||
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
|
||||
import (
|
||||
bert "github.com/go-skynet/go-bert.cpp"
|
||||
|
||||
"github.com/go-skynet/LocalAI/pkg/grpc/base"
|
||||
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
|
||||
)
|
||||
|
||||
type Embeddings struct {
|
||||
base.SingleThread
|
||||
bert *bert.Bert
|
||||
}
|
||||
|
||||
func (llm *Embeddings) Load(opts *pb.ModelOptions) error {
|
||||
model, err := bert.New(opts.ModelFile)
|
||||
llm.bert = model
|
||||
return err
|
||||
}
|
||||
|
||||
func (llm *Embeddings) Embeddings(opts *pb.PredictOptions) ([]float32, error) {
|
||||
|
||||
if len(opts.EmbeddingTokens) > 0 {
|
||||
tokens := []int{}
|
||||
for _, t := range opts.EmbeddingTokens {
|
||||
tokens = append(tokens, int(t))
|
||||
}
|
||||
return llm.bert.TokenEmbeddings(tokens, bert.SetThreads(int(opts.Threads)))
|
||||
}
|
||||
|
||||
return llm.bert.Embeddings(opts.Embeddings, bert.SetThreads(int(opts.Threads)))
|
||||
}
|
||||
21
backend/go/llm/bert/main.go
Normal file
21
backend/go/llm/bert/main.go
Normal file
@@ -0,0 +1,21 @@
|
||||
package main
|
||||
|
||||
// Note: this is started internally by LocalAI and a server is allocated for each model
|
||||
|
||||
import (
|
||||
"flag"
|
||||
|
||||
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
|
||||
)
|
||||
|
||||
var (
|
||||
addr = flag.String("addr", "localhost:50051", "the address to connect to")
|
||||
)
|
||||
|
||||
func main() {
|
||||
flag.Parse()
|
||||
|
||||
if err := grpc.StartServer(*addr, &Embeddings{}); err != nil {
|
||||
panic(err)
|
||||
}
|
||||
}
|
||||
62
backend/go/llm/gpt4all/gpt4all.go
Normal file
62
backend/go/llm/gpt4all/gpt4all.go
Normal file
@@ -0,0 +1,62 @@
|
||||
package main
|
||||
|
||||
// This is a wrapper to statisfy the GRPC service interface
|
||||
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
|
||||
import (
|
||||
"fmt"
|
||||
|
||||
"github.com/go-skynet/LocalAI/pkg/grpc/base"
|
||||
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
|
||||
gpt4all "github.com/nomic-ai/gpt4all/gpt4all-bindings/golang"
|
||||
)
|
||||
|
||||
type LLM struct {
|
||||
base.SingleThread
|
||||
|
||||
gpt4all *gpt4all.Model
|
||||
}
|
||||
|
||||
func (llm *LLM) Load(opts *pb.ModelOptions) error {
|
||||
model, err := gpt4all.New(opts.ModelFile,
|
||||
gpt4all.SetThreads(int(opts.Threads)),
|
||||
gpt4all.SetLibrarySearchPath(opts.LibrarySearchPath))
|
||||
llm.gpt4all = model
|
||||
return err
|
||||
}
|
||||
|
||||
func buildPredictOptions(opts *pb.PredictOptions) []gpt4all.PredictOption {
|
||||
predictOptions := []gpt4all.PredictOption{
|
||||
gpt4all.SetTemperature(float64(opts.Temperature)),
|
||||
gpt4all.SetTopP(float64(opts.TopP)),
|
||||
gpt4all.SetTopK(int(opts.TopK)),
|
||||
gpt4all.SetTokens(int(opts.Tokens)),
|
||||
}
|
||||
|
||||
if opts.Batch != 0 {
|
||||
predictOptions = append(predictOptions, gpt4all.SetBatch(int(opts.Batch)))
|
||||
}
|
||||
return predictOptions
|
||||
}
|
||||
|
||||
func (llm *LLM) Predict(opts *pb.PredictOptions) (string, error) {
|
||||
return llm.gpt4all.Predict(opts.Prompt, buildPredictOptions(opts)...)
|
||||
}
|
||||
|
||||
func (llm *LLM) PredictStream(opts *pb.PredictOptions, results chan string) error {
|
||||
predictOptions := buildPredictOptions(opts)
|
||||
|
||||
go func() {
|
||||
llm.gpt4all.SetTokenCallback(func(token string) bool {
|
||||
results <- token
|
||||
return true
|
||||
})
|
||||
_, err := llm.gpt4all.Predict(opts.Prompt, predictOptions...)
|
||||
if err != nil {
|
||||
fmt.Println("err: ", err)
|
||||
}
|
||||
llm.gpt4all.SetTokenCallback(nil)
|
||||
close(results)
|
||||
}()
|
||||
|
||||
return nil
|
||||
}
|
||||
21
backend/go/llm/gpt4all/main.go
Normal file
21
backend/go/llm/gpt4all/main.go
Normal file
@@ -0,0 +1,21 @@
|
||||
package main
|
||||
|
||||
// Note: this is started internally by LocalAI and a server is allocated for each model
|
||||
|
||||
import (
|
||||
"flag"
|
||||
|
||||
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
|
||||
)
|
||||
|
||||
var (
|
||||
addr = flag.String("addr", "localhost:50051", "the address to connect to")
|
||||
)
|
||||
|
||||
func main() {
|
||||
flag.Parse()
|
||||
|
||||
if err := grpc.StartServer(*addr, &LLM{}); err != nil {
|
||||
panic(err)
|
||||
}
|
||||
}
|
||||
58
backend/go/llm/langchain/langchain.go
Normal file
58
backend/go/llm/langchain/langchain.go
Normal file
@@ -0,0 +1,58 @@
|
||||
package main
|
||||
|
||||
// This is a wrapper to statisfy the GRPC service interface
|
||||
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
|
||||
import (
|
||||
"fmt"
|
||||
|
||||
"github.com/go-skynet/LocalAI/pkg/grpc/base"
|
||||
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
|
||||
"github.com/go-skynet/LocalAI/pkg/langchain"
|
||||
)
|
||||
|
||||
type LLM struct {
|
||||
base.Base
|
||||
|
||||
langchain *langchain.HuggingFace
|
||||
model string
|
||||
}
|
||||
|
||||
func (llm *LLM) Load(opts *pb.ModelOptions) error {
|
||||
llm.langchain, _ = langchain.NewHuggingFace(opts.Model)
|
||||
llm.model = opts.Model
|
||||
return nil
|
||||
}
|
||||
|
||||
func (llm *LLM) Predict(opts *pb.PredictOptions) (string, error) {
|
||||
o := []langchain.PredictOption{
|
||||
langchain.SetModel(llm.model),
|
||||
langchain.SetMaxTokens(int(opts.Tokens)),
|
||||
langchain.SetTemperature(float64(opts.Temperature)),
|
||||
langchain.SetStopWords(opts.StopPrompts),
|
||||
}
|
||||
pred, err := llm.langchain.PredictHuggingFace(opts.Prompt, o...)
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
return pred.Completion, nil
|
||||
}
|
||||
|
||||
func (llm *LLM) PredictStream(opts *pb.PredictOptions, results chan string) error {
|
||||
o := []langchain.PredictOption{
|
||||
langchain.SetModel(llm.model),
|
||||
langchain.SetMaxTokens(int(opts.Tokens)),
|
||||
langchain.SetTemperature(float64(opts.Temperature)),
|
||||
langchain.SetStopWords(opts.StopPrompts),
|
||||
}
|
||||
go func() {
|
||||
res, err := llm.langchain.PredictHuggingFace(opts.Prompt, o...)
|
||||
|
||||
if err != nil {
|
||||
fmt.Println("err: ", err)
|
||||
}
|
||||
results <- res.Completion
|
||||
close(results)
|
||||
}()
|
||||
|
||||
return nil
|
||||
}
|
||||
21
backend/go/llm/langchain/main.go
Normal file
21
backend/go/llm/langchain/main.go
Normal file
@@ -0,0 +1,21 @@
|
||||
package main
|
||||
|
||||
// Note: this is started internally by LocalAI and a server is allocated for each model
|
||||
|
||||
import (
|
||||
"flag"
|
||||
|
||||
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
|
||||
)
|
||||
|
||||
var (
|
||||
addr = flag.String("addr", "localhost:50051", "the address to connect to")
|
||||
)
|
||||
|
||||
func main() {
|
||||
flag.Parse()
|
||||
|
||||
if err := grpc.StartServer(*addr, &LLM{}); err != nil {
|
||||
panic(err)
|
||||
}
|
||||
}
|
||||
204
backend/go/llm/llama-ggml/llama.go
Normal file
204
backend/go/llm/llama-ggml/llama.go
Normal file
@@ -0,0 +1,204 @@
|
||||
package main
|
||||
|
||||
// This is a wrapper to statisfy the GRPC service interface
|
||||
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
|
||||
import (
|
||||
"fmt"
|
||||
|
||||
"github.com/go-skynet/LocalAI/pkg/grpc/base"
|
||||
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
|
||||
"github.com/go-skynet/go-llama.cpp"
|
||||
)
|
||||
|
||||
type LLM struct {
|
||||
base.SingleThread
|
||||
|
||||
llama *llama.LLama
|
||||
}
|
||||
|
||||
func (llm *LLM) Load(opts *pb.ModelOptions) error {
|
||||
ropeFreqBase := float32(10000)
|
||||
ropeFreqScale := float32(1)
|
||||
|
||||
if opts.RopeFreqBase != 0 {
|
||||
ropeFreqBase = opts.RopeFreqBase
|
||||
}
|
||||
if opts.RopeFreqScale != 0 {
|
||||
ropeFreqScale = opts.RopeFreqScale
|
||||
}
|
||||
|
||||
llamaOpts := []llama.ModelOption{
|
||||
llama.WithRopeFreqBase(ropeFreqBase),
|
||||
llama.WithRopeFreqScale(ropeFreqScale),
|
||||
}
|
||||
|
||||
if opts.NGQA != 0 {
|
||||
llamaOpts = append(llamaOpts, llama.WithGQA(int(opts.NGQA)))
|
||||
}
|
||||
|
||||
if opts.RMSNormEps != 0 {
|
||||
llamaOpts = append(llamaOpts, llama.WithRMSNormEPS(opts.RMSNormEps))
|
||||
}
|
||||
|
||||
if opts.ContextSize != 0 {
|
||||
llamaOpts = append(llamaOpts, llama.SetContext(int(opts.ContextSize)))
|
||||
}
|
||||
if opts.F16Memory {
|
||||
llamaOpts = append(llamaOpts, llama.EnableF16Memory)
|
||||
}
|
||||
if opts.Embeddings {
|
||||
llamaOpts = append(llamaOpts, llama.EnableEmbeddings)
|
||||
}
|
||||
if opts.NGPULayers != 0 {
|
||||
llamaOpts = append(llamaOpts, llama.SetGPULayers(int(opts.NGPULayers)))
|
||||
}
|
||||
|
||||
llamaOpts = append(llamaOpts, llama.SetMMap(opts.MMap))
|
||||
llamaOpts = append(llamaOpts, llama.SetMainGPU(opts.MainGPU))
|
||||
llamaOpts = append(llamaOpts, llama.SetTensorSplit(opts.TensorSplit))
|
||||
if opts.NBatch != 0 {
|
||||
llamaOpts = append(llamaOpts, llama.SetNBatch(int(opts.NBatch)))
|
||||
} else {
|
||||
llamaOpts = append(llamaOpts, llama.SetNBatch(512))
|
||||
}
|
||||
|
||||
if opts.NUMA {
|
||||
llamaOpts = append(llamaOpts, llama.EnableNUMA)
|
||||
}
|
||||
|
||||
if opts.LowVRAM {
|
||||
llamaOpts = append(llamaOpts, llama.EnabelLowVRAM)
|
||||
}
|
||||
|
||||
model, err := llama.New(opts.ModelFile, llamaOpts...)
|
||||
llm.llama = model
|
||||
|
||||
return err
|
||||
}
|
||||
|
||||
func buildPredictOptions(opts *pb.PredictOptions) []llama.PredictOption {
|
||||
ropeFreqBase := float32(10000)
|
||||
ropeFreqScale := float32(1)
|
||||
|
||||
if opts.RopeFreqBase != 0 {
|
||||
ropeFreqBase = opts.RopeFreqBase
|
||||
}
|
||||
if opts.RopeFreqScale != 0 {
|
||||
ropeFreqScale = opts.RopeFreqScale
|
||||
}
|
||||
predictOptions := []llama.PredictOption{
|
||||
llama.SetTemperature(opts.Temperature),
|
||||
llama.SetTopP(opts.TopP),
|
||||
llama.SetTopK(int(opts.TopK)),
|
||||
llama.SetTokens(int(opts.Tokens)),
|
||||
llama.SetThreads(int(opts.Threads)),
|
||||
llama.WithGrammar(opts.Grammar),
|
||||
llama.SetRopeFreqBase(ropeFreqBase),
|
||||
llama.SetRopeFreqScale(ropeFreqScale),
|
||||
llama.SetNegativePromptScale(opts.NegativePromptScale),
|
||||
llama.SetNegativePrompt(opts.NegativePrompt),
|
||||
}
|
||||
|
||||
if opts.PromptCacheAll {
|
||||
predictOptions = append(predictOptions, llama.EnablePromptCacheAll)
|
||||
}
|
||||
|
||||
if opts.PromptCacheRO {
|
||||
predictOptions = append(predictOptions, llama.EnablePromptCacheRO)
|
||||
}
|
||||
|
||||
// Expected absolute path
|
||||
if opts.PromptCachePath != "" {
|
||||
predictOptions = append(predictOptions, llama.SetPathPromptCache(opts.PromptCachePath))
|
||||
}
|
||||
|
||||
if opts.Mirostat != 0 {
|
||||
predictOptions = append(predictOptions, llama.SetMirostat(int(opts.Mirostat)))
|
||||
}
|
||||
|
||||
if opts.MirostatETA != 0 {
|
||||
predictOptions = append(predictOptions, llama.SetMirostatETA(opts.MirostatETA))
|
||||
}
|
||||
|
||||
if opts.MirostatTAU != 0 {
|
||||
predictOptions = append(predictOptions, llama.SetMirostatTAU(opts.MirostatTAU))
|
||||
}
|
||||
|
||||
if opts.Debug {
|
||||
predictOptions = append(predictOptions, llama.Debug)
|
||||
}
|
||||
|
||||
predictOptions = append(predictOptions, llama.SetStopWords(opts.StopPrompts...))
|
||||
|
||||
if opts.PresencePenalty != 0 {
|
||||
predictOptions = append(predictOptions, llama.SetPenalty(opts.PresencePenalty))
|
||||
}
|
||||
|
||||
if opts.NKeep != 0 {
|
||||
predictOptions = append(predictOptions, llama.SetNKeep(int(opts.NKeep)))
|
||||
}
|
||||
|
||||
if opts.Batch != 0 {
|
||||
predictOptions = append(predictOptions, llama.SetBatch(int(opts.Batch)))
|
||||
}
|
||||
|
||||
if opts.F16KV {
|
||||
predictOptions = append(predictOptions, llama.EnableF16KV)
|
||||
}
|
||||
|
||||
if opts.IgnoreEOS {
|
||||
predictOptions = append(predictOptions, llama.IgnoreEOS)
|
||||
}
|
||||
|
||||
if opts.Seed != 0 {
|
||||
predictOptions = append(predictOptions, llama.SetSeed(int(opts.Seed)))
|
||||
}
|
||||
|
||||
//predictOptions = append(predictOptions, llama.SetLogitBias(c.Seed))
|
||||
|
||||
predictOptions = append(predictOptions, llama.SetFrequencyPenalty(opts.FrequencyPenalty))
|
||||
predictOptions = append(predictOptions, llama.SetMlock(opts.MLock))
|
||||
predictOptions = append(predictOptions, llama.SetMemoryMap(opts.MMap))
|
||||
predictOptions = append(predictOptions, llama.SetPredictionMainGPU(opts.MainGPU))
|
||||
predictOptions = append(predictOptions, llama.SetPredictionTensorSplit(opts.TensorSplit))
|
||||
predictOptions = append(predictOptions, llama.SetTailFreeSamplingZ(opts.TailFreeSamplingZ))
|
||||
predictOptions = append(predictOptions, llama.SetTypicalP(opts.TypicalP))
|
||||
return predictOptions
|
||||
}
|
||||
|
||||
func (llm *LLM) Predict(opts *pb.PredictOptions) (string, error) {
|
||||
return llm.llama.Predict(opts.Prompt, buildPredictOptions(opts)...)
|
||||
}
|
||||
|
||||
func (llm *LLM) PredictStream(opts *pb.PredictOptions, results chan string) error {
|
||||
predictOptions := buildPredictOptions(opts)
|
||||
|
||||
predictOptions = append(predictOptions, llama.SetTokenCallback(func(token string) bool {
|
||||
results <- token
|
||||
return true
|
||||
}))
|
||||
|
||||
go func() {
|
||||
_, err := llm.llama.Predict(opts.Prompt, predictOptions...)
|
||||
if err != nil {
|
||||
fmt.Println("err: ", err)
|
||||
}
|
||||
close(results)
|
||||
}()
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
func (llm *LLM) Embeddings(opts *pb.PredictOptions) ([]float32, error) {
|
||||
predictOptions := buildPredictOptions(opts)
|
||||
|
||||
if len(opts.EmbeddingTokens) > 0 {
|
||||
tokens := []int{}
|
||||
for _, t := range opts.EmbeddingTokens {
|
||||
tokens = append(tokens, int(t))
|
||||
}
|
||||
return llm.llama.TokenEmbeddings(tokens, predictOptions...)
|
||||
}
|
||||
|
||||
return llm.llama.Embeddings(opts.Embeddings, predictOptions...)
|
||||
}
|
||||
19
backend/go/llm/llama-ggml/main.go
Normal file
19
backend/go/llm/llama-ggml/main.go
Normal file
@@ -0,0 +1,19 @@
|
||||
package main
|
||||
|
||||
import (
|
||||
"flag"
|
||||
|
||||
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
|
||||
)
|
||||
|
||||
var (
|
||||
addr = flag.String("addr", "localhost:50051", "the address to connect to")
|
||||
)
|
||||
|
||||
func main() {
|
||||
flag.Parse()
|
||||
|
||||
if err := grpc.StartServer(*addr, &LLM{}); err != nil {
|
||||
panic(err)
|
||||
}
|
||||
}
|
||||
257
backend/go/llm/llama/llama.go
Normal file
257
backend/go/llm/llama/llama.go
Normal file
@@ -0,0 +1,257 @@
|
||||
package main
|
||||
|
||||
// This is a wrapper to statisfy the GRPC service interface
|
||||
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
|
||||
import (
|
||||
"fmt"
|
||||
"path/filepath"
|
||||
|
||||
"github.com/go-skynet/LocalAI/pkg/grpc/base"
|
||||
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
|
||||
"github.com/go-skynet/go-llama.cpp"
|
||||
)
|
||||
|
||||
type LLM struct {
|
||||
base.SingleThread
|
||||
|
||||
llama *llama.LLama
|
||||
draftModel *llama.LLama
|
||||
}
|
||||
|
||||
func (llm *LLM) Load(opts *pb.ModelOptions) error {
|
||||
ropeFreqBase := float32(10000)
|
||||
ropeFreqScale := float32(1)
|
||||
|
||||
if opts.RopeFreqBase != 0 {
|
||||
ropeFreqBase = opts.RopeFreqBase
|
||||
}
|
||||
if opts.RopeFreqScale != 0 {
|
||||
ropeFreqScale = opts.RopeFreqScale
|
||||
}
|
||||
|
||||
llamaOpts := []llama.ModelOption{
|
||||
llama.WithRopeFreqBase(ropeFreqBase),
|
||||
llama.WithRopeFreqScale(ropeFreqScale),
|
||||
}
|
||||
|
||||
if opts.NoMulMatQ {
|
||||
llamaOpts = append(llamaOpts, llama.SetMulMatQ(false))
|
||||
}
|
||||
|
||||
// Get base path of opts.ModelFile and use the same for lora (assume the same path)
|
||||
basePath := filepath.Dir(opts.ModelFile)
|
||||
|
||||
if opts.LoraAdapter != "" {
|
||||
llamaOpts = append(llamaOpts, llama.SetLoraAdapter(filepath.Join(basePath, opts.LoraAdapter)))
|
||||
}
|
||||
|
||||
if opts.LoraBase != "" {
|
||||
llamaOpts = append(llamaOpts, llama.SetLoraBase(filepath.Join(basePath, opts.LoraBase)))
|
||||
}
|
||||
|
||||
if opts.ContextSize != 0 {
|
||||
llamaOpts = append(llamaOpts, llama.SetContext(int(opts.ContextSize)))
|
||||
}
|
||||
if opts.F16Memory {
|
||||
llamaOpts = append(llamaOpts, llama.EnableF16Memory)
|
||||
}
|
||||
if opts.Embeddings {
|
||||
llamaOpts = append(llamaOpts, llama.EnableEmbeddings)
|
||||
}
|
||||
if opts.NGPULayers != 0 {
|
||||
llamaOpts = append(llamaOpts, llama.SetGPULayers(int(opts.NGPULayers)))
|
||||
}
|
||||
|
||||
llamaOpts = append(llamaOpts, llama.SetMMap(opts.MMap))
|
||||
llamaOpts = append(llamaOpts, llama.SetMainGPU(opts.MainGPU))
|
||||
llamaOpts = append(llamaOpts, llama.SetTensorSplit(opts.TensorSplit))
|
||||
if opts.NBatch != 0 {
|
||||
llamaOpts = append(llamaOpts, llama.SetNBatch(int(opts.NBatch)))
|
||||
} else {
|
||||
llamaOpts = append(llamaOpts, llama.SetNBatch(512))
|
||||
}
|
||||
|
||||
if opts.NUMA {
|
||||
llamaOpts = append(llamaOpts, llama.EnableNUMA)
|
||||
}
|
||||
|
||||
if opts.LowVRAM {
|
||||
llamaOpts = append(llamaOpts, llama.EnabelLowVRAM)
|
||||
}
|
||||
|
||||
if opts.DraftModel != "" {
|
||||
// https://github.com/ggerganov/llama.cpp/blob/71ca2fad7d6c0ef95ef9944fb3a1a843e481f314/examples/speculative/speculative.cpp#L40
|
||||
llamaOpts = append(llamaOpts, llama.SetPerplexity(true))
|
||||
}
|
||||
|
||||
model, err := llama.New(opts.ModelFile, llamaOpts...)
|
||||
|
||||
if opts.DraftModel != "" {
|
||||
// opts.DraftModel is relative to opts.ModelFile, so we need to get the basepath of opts.ModelFile
|
||||
if !filepath.IsAbs(opts.DraftModel) {
|
||||
dir := filepath.Dir(opts.ModelFile)
|
||||
opts.DraftModel = filepath.Join(dir, opts.DraftModel)
|
||||
}
|
||||
|
||||
draftModel, err := llama.New(opts.DraftModel, llamaOpts...)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
llm.draftModel = draftModel
|
||||
}
|
||||
|
||||
llm.llama = model
|
||||
|
||||
return err
|
||||
}
|
||||
|
||||
func buildPredictOptions(opts *pb.PredictOptions) []llama.PredictOption {
|
||||
ropeFreqBase := float32(10000)
|
||||
ropeFreqScale := float32(1)
|
||||
|
||||
if opts.RopeFreqBase != 0 {
|
||||
ropeFreqBase = opts.RopeFreqBase
|
||||
}
|
||||
if opts.RopeFreqScale != 0 {
|
||||
ropeFreqScale = opts.RopeFreqScale
|
||||
}
|
||||
predictOptions := []llama.PredictOption{
|
||||
llama.SetTemperature(opts.Temperature),
|
||||
llama.SetTopP(opts.TopP),
|
||||
llama.SetTopK(int(opts.TopK)),
|
||||
llama.SetTokens(int(opts.Tokens)),
|
||||
llama.SetThreads(int(opts.Threads)),
|
||||
llama.WithGrammar(opts.Grammar),
|
||||
llama.SetRopeFreqBase(ropeFreqBase),
|
||||
llama.SetRopeFreqScale(ropeFreqScale),
|
||||
llama.SetNegativePromptScale(opts.NegativePromptScale),
|
||||
llama.SetNegativePrompt(opts.NegativePrompt),
|
||||
}
|
||||
|
||||
if opts.PromptCacheAll {
|
||||
predictOptions = append(predictOptions, llama.EnablePromptCacheAll)
|
||||
}
|
||||
|
||||
if opts.PromptCacheRO {
|
||||
predictOptions = append(predictOptions, llama.EnablePromptCacheRO)
|
||||
}
|
||||
|
||||
// Expected absolute path
|
||||
if opts.PromptCachePath != "" {
|
||||
predictOptions = append(predictOptions, llama.SetPathPromptCache(opts.PromptCachePath))
|
||||
}
|
||||
|
||||
if opts.Mirostat != 0 {
|
||||
predictOptions = append(predictOptions, llama.SetMirostat(int(opts.Mirostat)))
|
||||
}
|
||||
|
||||
if opts.MirostatETA != 0 {
|
||||
predictOptions = append(predictOptions, llama.SetMirostatETA(opts.MirostatETA))
|
||||
}
|
||||
|
||||
if opts.MirostatTAU != 0 {
|
||||
predictOptions = append(predictOptions, llama.SetMirostatTAU(opts.MirostatTAU))
|
||||
}
|
||||
|
||||
if opts.Debug {
|
||||
predictOptions = append(predictOptions, llama.Debug)
|
||||
}
|
||||
|
||||
predictOptions = append(predictOptions, llama.SetStopWords(opts.StopPrompts...))
|
||||
|
||||
if opts.PresencePenalty != 0 {
|
||||
predictOptions = append(predictOptions, llama.SetPenalty(opts.PresencePenalty))
|
||||
}
|
||||
|
||||
if opts.NKeep != 0 {
|
||||
predictOptions = append(predictOptions, llama.SetNKeep(int(opts.NKeep)))
|
||||
}
|
||||
|
||||
if opts.Batch != 0 {
|
||||
predictOptions = append(predictOptions, llama.SetBatch(int(opts.Batch)))
|
||||
}
|
||||
|
||||
if opts.F16KV {
|
||||
predictOptions = append(predictOptions, llama.EnableF16KV)
|
||||
}
|
||||
|
||||
if opts.IgnoreEOS {
|
||||
predictOptions = append(predictOptions, llama.IgnoreEOS)
|
||||
}
|
||||
|
||||
if opts.Seed != 0 {
|
||||
predictOptions = append(predictOptions, llama.SetSeed(int(opts.Seed)))
|
||||
}
|
||||
|
||||
if opts.NDraft != 0 {
|
||||
predictOptions = append(predictOptions, llama.SetNDraft(int(opts.NDraft)))
|
||||
}
|
||||
//predictOptions = append(predictOptions, llama.SetLogitBias(c.Seed))
|
||||
|
||||
predictOptions = append(predictOptions, llama.SetFrequencyPenalty(opts.FrequencyPenalty))
|
||||
predictOptions = append(predictOptions, llama.SetMlock(opts.MLock))
|
||||
predictOptions = append(predictOptions, llama.SetMemoryMap(opts.MMap))
|
||||
predictOptions = append(predictOptions, llama.SetPredictionMainGPU(opts.MainGPU))
|
||||
predictOptions = append(predictOptions, llama.SetPredictionTensorSplit(opts.TensorSplit))
|
||||
predictOptions = append(predictOptions, llama.SetTailFreeSamplingZ(opts.TailFreeSamplingZ))
|
||||
predictOptions = append(predictOptions, llama.SetTypicalP(opts.TypicalP))
|
||||
return predictOptions
|
||||
}
|
||||
|
||||
func (llm *LLM) Predict(opts *pb.PredictOptions) (string, error) {
|
||||
if llm.draftModel != nil {
|
||||
return llm.llama.SpeculativeSampling(llm.draftModel, opts.Prompt, buildPredictOptions(opts)...)
|
||||
}
|
||||
return llm.llama.Predict(opts.Prompt, buildPredictOptions(opts)...)
|
||||
}
|
||||
|
||||
func (llm *LLM) PredictStream(opts *pb.PredictOptions, results chan string) error {
|
||||
predictOptions := buildPredictOptions(opts)
|
||||
|
||||
predictOptions = append(predictOptions, llama.SetTokenCallback(func(token string) bool {
|
||||
results <- token
|
||||
return true
|
||||
}))
|
||||
|
||||
go func() {
|
||||
var err error
|
||||
if llm.draftModel != nil {
|
||||
_, err = llm.llama.SpeculativeSampling(llm.draftModel, opts.Prompt, buildPredictOptions(opts)...)
|
||||
} else {
|
||||
_, err = llm.llama.Predict(opts.Prompt, predictOptions...)
|
||||
}
|
||||
|
||||
if err != nil {
|
||||
fmt.Println("err: ", err)
|
||||
}
|
||||
close(results)
|
||||
}()
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
func (llm *LLM) Embeddings(opts *pb.PredictOptions) ([]float32, error) {
|
||||
predictOptions := buildPredictOptions(opts)
|
||||
|
||||
if len(opts.EmbeddingTokens) > 0 {
|
||||
tokens := []int{}
|
||||
for _, t := range opts.EmbeddingTokens {
|
||||
tokens = append(tokens, int(t))
|
||||
}
|
||||
return llm.llama.TokenEmbeddings(tokens, predictOptions...)
|
||||
}
|
||||
|
||||
return llm.llama.Embeddings(opts.Embeddings, predictOptions...)
|
||||
}
|
||||
|
||||
func (llm *LLM) TokenizeString(opts *pb.PredictOptions) (pb.TokenizationResponse, error) {
|
||||
predictOptions := buildPredictOptions(opts)
|
||||
l, tokens, err := llm.llama.TokenizeString(opts.Prompt, predictOptions...)
|
||||
if err != nil {
|
||||
return pb.TokenizationResponse{}, err
|
||||
}
|
||||
return pb.TokenizationResponse{
|
||||
Length: l,
|
||||
Tokens: tokens,
|
||||
}, nil
|
||||
}
|
||||
23
backend/go/llm/llama/main.go
Normal file
23
backend/go/llm/llama/main.go
Normal file
@@ -0,0 +1,23 @@
|
||||
package main
|
||||
|
||||
// GRPC Falcon server
|
||||
|
||||
// Note: this is started internally by LocalAI and a server is allocated for each model
|
||||
|
||||
import (
|
||||
"flag"
|
||||
|
||||
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
|
||||
)
|
||||
|
||||
var (
|
||||
addr = flag.String("addr", "localhost:50051", "the address to connect to")
|
||||
)
|
||||
|
||||
func main() {
|
||||
flag.Parse()
|
||||
|
||||
if err := grpc.StartServer(*addr, &LLM{}); err != nil {
|
||||
panic(err)
|
||||
}
|
||||
}
|
||||
21
backend/go/llm/rwkv/main.go
Normal file
21
backend/go/llm/rwkv/main.go
Normal file
@@ -0,0 +1,21 @@
|
||||
package main
|
||||
|
||||
// Note: this is started internally by LocalAI and a server is allocated for each model
|
||||
|
||||
import (
|
||||
"flag"
|
||||
|
||||
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
|
||||
)
|
||||
|
||||
var (
|
||||
addr = flag.String("addr", "localhost:50051", "the address to connect to")
|
||||
)
|
||||
|
||||
func main() {
|
||||
flag.Parse()
|
||||
|
||||
if err := grpc.StartServer(*addr, &LLM{}); err != nil {
|
||||
panic(err)
|
||||
}
|
||||
}
|
||||
95
backend/go/llm/rwkv/rwkv.go
Normal file
95
backend/go/llm/rwkv/rwkv.go
Normal file
@@ -0,0 +1,95 @@
|
||||
package main
|
||||
|
||||
// This is a wrapper to statisfy the GRPC service interface
|
||||
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
|
||||
import (
|
||||
"fmt"
|
||||
"path/filepath"
|
||||
|
||||
"github.com/donomii/go-rwkv.cpp"
|
||||
"github.com/go-skynet/LocalAI/pkg/grpc/base"
|
||||
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
|
||||
)
|
||||
|
||||
const tokenizerSuffix = ".tokenizer.json"
|
||||
|
||||
type LLM struct {
|
||||
base.SingleThread
|
||||
|
||||
rwkv *rwkv.RwkvState
|
||||
}
|
||||
|
||||
func (llm *LLM) Load(opts *pb.ModelOptions) error {
|
||||
tokenizerFile := opts.Tokenizer
|
||||
if tokenizerFile == "" {
|
||||
modelFile := filepath.Base(opts.ModelFile)
|
||||
tokenizerFile = modelFile + tokenizerSuffix
|
||||
}
|
||||
modelPath := filepath.Dir(opts.ModelFile)
|
||||
tokenizerPath := filepath.Join(modelPath, tokenizerFile)
|
||||
|
||||
model := rwkv.LoadFiles(opts.ModelFile, tokenizerPath, uint32(opts.GetThreads()))
|
||||
|
||||
if model == nil {
|
||||
return fmt.Errorf("could not load model")
|
||||
}
|
||||
llm.rwkv = model
|
||||
return nil
|
||||
}
|
||||
|
||||
func (llm *LLM) Predict(opts *pb.PredictOptions) (string, error) {
|
||||
stopWord := "\n"
|
||||
if len(opts.StopPrompts) > 0 {
|
||||
stopWord = opts.StopPrompts[0]
|
||||
}
|
||||
|
||||
if err := llm.rwkv.ProcessInput(opts.Prompt); err != nil {
|
||||
return "", err
|
||||
}
|
||||
|
||||
response := llm.rwkv.GenerateResponse(int(opts.Tokens), stopWord, float32(opts.Temperature), float32(opts.TopP), nil)
|
||||
|
||||
return response, nil
|
||||
}
|
||||
|
||||
func (llm *LLM) PredictStream(opts *pb.PredictOptions, results chan string) error {
|
||||
go func() {
|
||||
|
||||
stopWord := "\n"
|
||||
if len(opts.StopPrompts) > 0 {
|
||||
stopWord = opts.StopPrompts[0]
|
||||
}
|
||||
|
||||
if err := llm.rwkv.ProcessInput(opts.Prompt); err != nil {
|
||||
fmt.Println("Error processing input: ", err)
|
||||
return
|
||||
}
|
||||
|
||||
llm.rwkv.GenerateResponse(int(opts.Tokens), stopWord, float32(opts.Temperature), float32(opts.TopP), func(s string) bool {
|
||||
results <- s
|
||||
return true
|
||||
})
|
||||
close(results)
|
||||
}()
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
func (llm *LLM) TokenizeString(opts *pb.PredictOptions) (pb.TokenizationResponse, error) {
|
||||
tokens, err := llm.rwkv.Tokenizer.Encode(opts.Prompt)
|
||||
if err != nil {
|
||||
return pb.TokenizationResponse{}, err
|
||||
}
|
||||
|
||||
l := len(tokens)
|
||||
i32Tokens := make([]int32, l)
|
||||
|
||||
for i, t := range tokens {
|
||||
i32Tokens[i] = int32(t.ID)
|
||||
}
|
||||
|
||||
return pb.TokenizationResponse{
|
||||
Length: int32(l),
|
||||
Tokens: i32Tokens,
|
||||
}, nil
|
||||
}
|
||||
21
backend/go/transcribe/main.go
Normal file
21
backend/go/transcribe/main.go
Normal file
@@ -0,0 +1,21 @@
|
||||
package main
|
||||
|
||||
// Note: this is started internally by LocalAI and a server is allocated for each model
|
||||
|
||||
import (
|
||||
"flag"
|
||||
|
||||
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
|
||||
)
|
||||
|
||||
var (
|
||||
addr = flag.String("addr", "localhost:50051", "the address to connect to")
|
||||
)
|
||||
|
||||
func main() {
|
||||
flag.Parse()
|
||||
|
||||
if err := grpc.StartServer(*addr, &Whisper{}); err != nil {
|
||||
panic(err)
|
||||
}
|
||||
}
|
||||
100
backend/go/transcribe/transcript.go
Normal file
100
backend/go/transcribe/transcript.go
Normal file
@@ -0,0 +1,100 @@
|
||||
package main
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"os"
|
||||
"os/exec"
|
||||
"path/filepath"
|
||||
|
||||
"github.com/ggerganov/whisper.cpp/bindings/go/pkg/whisper"
|
||||
"github.com/go-audio/wav"
|
||||
"github.com/go-skynet/LocalAI/core/schema"
|
||||
)
|
||||
|
||||
func runCommand(command []string) (string, error) {
|
||||
cmd := exec.Command(command[0], command[1:]...)
|
||||
cmd.Env = os.Environ()
|
||||
out, err := cmd.CombinedOutput()
|
||||
return string(out), err
|
||||
}
|
||||
|
||||
// AudioToWav converts audio to wav for transcribe.
|
||||
// TODO: use https://github.com/mccoyst/ogg?
|
||||
func audioToWav(src, dst string) error {
|
||||
command := []string{"ffmpeg", "-i", src, "-format", "s16le", "-ar", "16000", "-ac", "1", "-acodec", "pcm_s16le", dst}
|
||||
out, err := runCommand(command)
|
||||
if err != nil {
|
||||
return fmt.Errorf("error: %w out: %s", err, out)
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
func Transcript(model whisper.Model, audiopath, language string, threads uint) (schema.Result, error) {
|
||||
res := schema.Result{}
|
||||
|
||||
dir, err := os.MkdirTemp("", "whisper")
|
||||
if err != nil {
|
||||
return res, err
|
||||
}
|
||||
defer os.RemoveAll(dir)
|
||||
|
||||
convertedPath := filepath.Join(dir, "converted.wav")
|
||||
|
||||
if err := audioToWav(audiopath, convertedPath); err != nil {
|
||||
return res, err
|
||||
}
|
||||
|
||||
// Open samples
|
||||
fh, err := os.Open(convertedPath)
|
||||
if err != nil {
|
||||
return res, err
|
||||
}
|
||||
defer fh.Close()
|
||||
|
||||
// Read samples
|
||||
d := wav.NewDecoder(fh)
|
||||
buf, err := d.FullPCMBuffer()
|
||||
if err != nil {
|
||||
return res, err
|
||||
}
|
||||
|
||||
data := buf.AsFloat32Buffer().Data
|
||||
|
||||
// Process samples
|
||||
context, err := model.NewContext()
|
||||
if err != nil {
|
||||
return res, err
|
||||
|
||||
}
|
||||
|
||||
context.SetThreads(threads)
|
||||
|
||||
if language != "" {
|
||||
context.SetLanguage(language)
|
||||
} else {
|
||||
context.SetLanguage("auto")
|
||||
}
|
||||
|
||||
if err := context.Process(data, nil, nil); err != nil {
|
||||
return res, err
|
||||
}
|
||||
|
||||
for {
|
||||
s, err := context.NextSegment()
|
||||
if err != nil {
|
||||
break
|
||||
}
|
||||
|
||||
var tokens []int
|
||||
for _, t := range s.Tokens {
|
||||
tokens = append(tokens, t.Id)
|
||||
}
|
||||
|
||||
segment := schema.Segment{Id: s.Num, Text: s.Text, Start: s.Start, End: s.End, Tokens: tokens}
|
||||
res.Segments = append(res.Segments, segment)
|
||||
|
||||
res.Text += s.Text
|
||||
}
|
||||
|
||||
return res, nil
|
||||
}
|
||||
26
backend/go/transcribe/whisper.go
Normal file
26
backend/go/transcribe/whisper.go
Normal file
@@ -0,0 +1,26 @@
|
||||
package main
|
||||
|
||||
// This is a wrapper to statisfy the GRPC service interface
|
||||
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
|
||||
import (
|
||||
"github.com/ggerganov/whisper.cpp/bindings/go/pkg/whisper"
|
||||
"github.com/go-skynet/LocalAI/core/schema"
|
||||
"github.com/go-skynet/LocalAI/pkg/grpc/base"
|
||||
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
|
||||
)
|
||||
|
||||
type Whisper struct {
|
||||
base.SingleThread
|
||||
whisper whisper.Model
|
||||
}
|
||||
|
||||
func (sd *Whisper) Load(opts *pb.ModelOptions) error {
|
||||
// Note: the Model here is a path to a directory containing the model files
|
||||
w, err := whisper.New(opts.ModelFile)
|
||||
sd.whisper = w
|
||||
return err
|
||||
}
|
||||
|
||||
func (sd *Whisper) AudioTranscription(opts *pb.TranscriptRequest) (schema.Result, error) {
|
||||
return Transcript(sd.whisper, opts.Dst, opts.Language, uint(opts.Threads))
|
||||
}
|
||||
21
backend/go/tts/main.go
Normal file
21
backend/go/tts/main.go
Normal file
@@ -0,0 +1,21 @@
|
||||
package main
|
||||
|
||||
// Note: this is started internally by LocalAI and a server is allocated for each model
|
||||
|
||||
import (
|
||||
"flag"
|
||||
|
||||
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
|
||||
)
|
||||
|
||||
var (
|
||||
addr = flag.String("addr", "localhost:50051", "the address to connect to")
|
||||
)
|
||||
|
||||
func main() {
|
||||
flag.Parse()
|
||||
|
||||
if err := grpc.StartServer(*addr, &Piper{}); err != nil {
|
||||
panic(err)
|
||||
}
|
||||
}
|
||||
49
backend/go/tts/piper.go
Normal file
49
backend/go/tts/piper.go
Normal file
@@ -0,0 +1,49 @@
|
||||
package main
|
||||
|
||||
// This is a wrapper to statisfy the GRPC service interface
|
||||
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
|
||||
import (
|
||||
"fmt"
|
||||
"os"
|
||||
"path/filepath"
|
||||
|
||||
"github.com/go-skynet/LocalAI/pkg/grpc/base"
|
||||
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
|
||||
piper "github.com/mudler/go-piper"
|
||||
)
|
||||
|
||||
type Piper struct {
|
||||
base.SingleThread
|
||||
piper *PiperB
|
||||
}
|
||||
|
||||
func (sd *Piper) Load(opts *pb.ModelOptions) error {
|
||||
if filepath.Ext(opts.ModelFile) != ".onnx" {
|
||||
return fmt.Errorf("unsupported model type %s (should end with .onnx)", opts.ModelFile)
|
||||
}
|
||||
var err error
|
||||
// Note: the Model here is a path to a directory containing the model files
|
||||
sd.piper, err = New(opts.LibrarySearchPath)
|
||||
return err
|
||||
}
|
||||
|
||||
func (sd *Piper) TTS(opts *pb.TTSRequest) error {
|
||||
return sd.piper.TTS(opts.Text, opts.Model, opts.Dst)
|
||||
}
|
||||
|
||||
type PiperB struct {
|
||||
assetDir string
|
||||
}
|
||||
|
||||
func New(assetDir string) (*PiperB, error) {
|
||||
if _, err := os.Stat(assetDir); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
return &PiperB{
|
||||
assetDir: assetDir,
|
||||
}, nil
|
||||
}
|
||||
|
||||
func (s *PiperB) TTS(text, model, dst string) error {
|
||||
return piper.TextToWav(text, model, s.assetDir, "", dst)
|
||||
}
|
||||
38
backend/python/README.md
Normal file
38
backend/python/README.md
Normal file
@@ -0,0 +1,38 @@
|
||||
# Common commands about conda environment
|
||||
|
||||
## Create a new empty conda environment
|
||||
|
||||
```
|
||||
conda create --name <env-name> python=<your version> -y
|
||||
|
||||
conda create --name autogptq python=3.11 -y
|
||||
```
|
||||
|
||||
## To activate the environment
|
||||
|
||||
As of conda 4.4
|
||||
```
|
||||
conda activate autogptq
|
||||
```
|
||||
|
||||
The conda version older than 4.4
|
||||
|
||||
```
|
||||
source activate autogptq
|
||||
```
|
||||
|
||||
## Install the packages to your environment
|
||||
|
||||
Sometimes you need to install the packages from the conda-forge channel
|
||||
|
||||
By using `conda`
|
||||
```
|
||||
conda install <your-package-name>
|
||||
|
||||
conda install -c conda-forge <your package-name>
|
||||
```
|
||||
|
||||
Or by using `pip`
|
||||
```
|
||||
pip install <your-package-name>
|
||||
```
|
||||
4
backend/python/autogptq/Makefile
Normal file
4
backend/python/autogptq/Makefile
Normal file
@@ -0,0 +1,4 @@
|
||||
.PHONY: autogptq
|
||||
autogptq:
|
||||
$(MAKE) -C ../common-env/transformers
|
||||
|
||||
5
backend/python/autogptq/README.md
Normal file
5
backend/python/autogptq/README.md
Normal file
@@ -0,0 +1,5 @@
|
||||
# Creating a separate environment for the autogptq project
|
||||
|
||||
```
|
||||
make autogptq
|
||||
```
|
||||
112
backend/python/autogptq/autogptq.py
Executable file
112
backend/python/autogptq/autogptq.py
Executable file
@@ -0,0 +1,112 @@
|
||||
#!/usr/bin/env python3
|
||||
from concurrent import futures
|
||||
import argparse
|
||||
import signal
|
||||
import sys
|
||||
import os
|
||||
import time
|
||||
|
||||
import grpc
|
||||
import backend_pb2
|
||||
import backend_pb2_grpc
|
||||
from auto_gptq import AutoGPTQForCausalLM
|
||||
from transformers import AutoTokenizer
|
||||
from transformers import TextGenerationPipeline
|
||||
|
||||
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
|
||||
|
||||
# If MAX_WORKERS are specified in the environment use it, otherwise default to 1
|
||||
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1'))
|
||||
|
||||
# Implement the BackendServicer class with the service methods
|
||||
class BackendServicer(backend_pb2_grpc.BackendServicer):
|
||||
def Health(self, request, context):
|
||||
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
|
||||
def LoadModel(self, request, context):
|
||||
try:
|
||||
device = "cuda:0"
|
||||
if request.Device != "":
|
||||
device = request.Device
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(request.Model, use_fast=request.UseFastTokenizer)
|
||||
|
||||
model = AutoGPTQForCausalLM.from_quantized(request.Model,
|
||||
model_basename=request.ModelBaseName,
|
||||
use_safetensors=True,
|
||||
trust_remote_code=request.TrustRemoteCode,
|
||||
device=device,
|
||||
use_triton=request.UseTriton,
|
||||
quantize_config=None)
|
||||
|
||||
self.model = model
|
||||
self.tokenizer = tokenizer
|
||||
except Exception as err:
|
||||
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
|
||||
return backend_pb2.Result(message="Model loaded successfully", success=True)
|
||||
|
||||
def Predict(self, request, context):
|
||||
penalty = 1.0
|
||||
if request.Penalty != 0.0:
|
||||
penalty = request.Penalty
|
||||
tokens = 512
|
||||
if request.Tokens != 0:
|
||||
tokens = request.Tokens
|
||||
top_p = 0.95
|
||||
if request.TopP != 0.0:
|
||||
top_p = request.TopP
|
||||
|
||||
# Implement Predict RPC
|
||||
pipeline = TextGenerationPipeline(
|
||||
model=self.model,
|
||||
tokenizer=self.tokenizer,
|
||||
max_new_tokens=tokens,
|
||||
temperature=request.Temperature,
|
||||
top_p=top_p,
|
||||
repetition_penalty=penalty,
|
||||
)
|
||||
t = pipeline(request.Prompt)[0]["generated_text"]
|
||||
# Remove prompt from response if present
|
||||
if request.Prompt in t:
|
||||
t = t.replace(request.Prompt, "")
|
||||
|
||||
return backend_pb2.Result(message=bytes(t, encoding='utf-8'))
|
||||
|
||||
def PredictStream(self, request, context):
|
||||
# Implement PredictStream RPC
|
||||
#for reply in some_data_generator():
|
||||
# yield reply
|
||||
# Not implemented yet
|
||||
return self.Predict(request, context)
|
||||
|
||||
|
||||
def serve(address):
|
||||
server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS))
|
||||
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
|
||||
server.add_insecure_port(address)
|
||||
server.start()
|
||||
print("Server started. Listening on: " + address, file=sys.stderr)
|
||||
|
||||
# Define the signal handler function
|
||||
def signal_handler(sig, frame):
|
||||
print("Received termination signal. Shutting down...")
|
||||
server.stop(0)
|
||||
sys.exit(0)
|
||||
|
||||
# Set the signal handlers for SIGINT and SIGTERM
|
||||
signal.signal(signal.SIGINT, signal_handler)
|
||||
signal.signal(signal.SIGTERM, signal_handler)
|
||||
|
||||
try:
|
||||
while True:
|
||||
time.sleep(_ONE_DAY_IN_SECONDS)
|
||||
except KeyboardInterrupt:
|
||||
server.stop(0)
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Run the gRPC server.")
|
||||
parser.add_argument(
|
||||
"--addr", default="localhost:50051", help="The address to bind the server to."
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
serve(args.addr)
|
||||
86
backend/python/autogptq/autogptq.yml
Normal file
86
backend/python/autogptq/autogptq.yml
Normal file
@@ -0,0 +1,86 @@
|
||||
name: autogptq
|
||||
channels:
|
||||
- defaults
|
||||
dependencies:
|
||||
- _libgcc_mutex=0.1=main
|
||||
- _openmp_mutex=5.1=1_gnu
|
||||
- bzip2=1.0.8=h7b6447c_0
|
||||
- ca-certificates=2023.08.22=h06a4308_0
|
||||
- ld_impl_linux-64=2.38=h1181459_1
|
||||
- libffi=3.4.4=h6a678d5_0
|
||||
- libgcc-ng=11.2.0=h1234567_1
|
||||
- libgomp=11.2.0=h1234567_1
|
||||
- libstdcxx-ng=11.2.0=h1234567_1
|
||||
- libuuid=1.41.5=h5eee18b_0
|
||||
- ncurses=6.4=h6a678d5_0
|
||||
- openssl=3.0.11=h7f8727e_2
|
||||
- pip=23.2.1=py311h06a4308_0
|
||||
- python=3.11.5=h955ad1f_0
|
||||
- readline=8.2=h5eee18b_0
|
||||
- setuptools=68.0.0=py311h06a4308_0
|
||||
- sqlite=3.41.2=h5eee18b_0
|
||||
- tk=8.6.12=h1ccaba5_0
|
||||
- wheel=0.41.2=py311h06a4308_0
|
||||
- xz=5.4.2=h5eee18b_0
|
||||
- zlib=1.2.13=h5eee18b_0
|
||||
- pip:
|
||||
- accelerate==0.23.0
|
||||
- aiohttp==3.8.5
|
||||
- aiosignal==1.3.1
|
||||
- async-timeout==4.0.3
|
||||
- attrs==23.1.0
|
||||
- auto-gptq==0.4.2
|
||||
- certifi==2023.7.22
|
||||
- charset-normalizer==3.3.0
|
||||
- datasets==2.14.5
|
||||
- dill==0.3.7
|
||||
- filelock==3.12.4
|
||||
- frozenlist==1.4.0
|
||||
- fsspec==2023.6.0
|
||||
- grpcio==1.59.0
|
||||
- huggingface-hub==0.16.4
|
||||
- idna==3.4
|
||||
- jinja2==3.1.2
|
||||
- markupsafe==2.1.3
|
||||
- mpmath==1.3.0
|
||||
- multidict==6.0.4
|
||||
- multiprocess==0.70.15
|
||||
- networkx==3.1
|
||||
- numpy==1.26.0
|
||||
- nvidia-cublas-cu12==12.1.3.1
|
||||
- nvidia-cuda-cupti-cu12==12.1.105
|
||||
- nvidia-cuda-nvrtc-cu12==12.1.105
|
||||
- nvidia-cuda-runtime-cu12==12.1.105
|
||||
- nvidia-cudnn-cu12==8.9.2.26
|
||||
- nvidia-cufft-cu12==11.0.2.54
|
||||
- nvidia-curand-cu12==10.3.2.106
|
||||
- nvidia-cusolver-cu12==11.4.5.107
|
||||
- nvidia-cusparse-cu12==12.1.0.106
|
||||
- nvidia-nccl-cu12==2.18.1
|
||||
- nvidia-nvjitlink-cu12==12.2.140
|
||||
- nvidia-nvtx-cu12==12.1.105
|
||||
- packaging==23.2
|
||||
- pandas==2.1.1
|
||||
- peft==0.5.0
|
||||
- protobuf==4.24.4
|
||||
- psutil==5.9.5
|
||||
- pyarrow==13.0.0
|
||||
- python-dateutil==2.8.2
|
||||
- pytz==2023.3.post1
|
||||
- pyyaml==6.0.1
|
||||
- regex==2023.10.3
|
||||
- requests==2.31.0
|
||||
- rouge==1.0.1
|
||||
- safetensors>=0.3.3
|
||||
- six==1.16.0
|
||||
- sympy==1.12
|
||||
- tokenizers==0.14.0
|
||||
- torch==2.1.0
|
||||
- tqdm==4.66.1
|
||||
- transformers==4.34.0
|
||||
- triton==2.1.0
|
||||
- typing-extensions==4.8.0
|
||||
- tzdata==2023.3
|
||||
- urllib3==2.0.6
|
||||
- xxhash==3.4.1
|
||||
- yarl==1.9.2
|
||||
61
backend/python/autogptq/backend_pb2.py
Normal file
61
backend/python/autogptq/backend_pb2.py
Normal file
File diff suppressed because one or more lines are too long
363
backend/python/autogptq/backend_pb2_grpc.py
Normal file
363
backend/python/autogptq/backend_pb2_grpc.py
Normal file
@@ -0,0 +1,363 @@
|
||||
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT!
|
||||
"""Client and server classes corresponding to protobuf-defined services."""
|
||||
import grpc
|
||||
|
||||
import backend_pb2 as backend__pb2
|
||||
|
||||
|
||||
class BackendStub(object):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
|
||||
def __init__(self, channel):
|
||||
"""Constructor.
|
||||
|
||||
Args:
|
||||
channel: A grpc.Channel.
|
||||
"""
|
||||
self.Health = channel.unary_unary(
|
||||
'/backend.Backend/Health',
|
||||
request_serializer=backend__pb2.HealthMessage.SerializeToString,
|
||||
response_deserializer=backend__pb2.Reply.FromString,
|
||||
)
|
||||
self.Predict = channel.unary_unary(
|
||||
'/backend.Backend/Predict',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.Reply.FromString,
|
||||
)
|
||||
self.LoadModel = channel.unary_unary(
|
||||
'/backend.Backend/LoadModel',
|
||||
request_serializer=backend__pb2.ModelOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.Result.FromString,
|
||||
)
|
||||
self.PredictStream = channel.unary_stream(
|
||||
'/backend.Backend/PredictStream',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.Reply.FromString,
|
||||
)
|
||||
self.Embedding = channel.unary_unary(
|
||||
'/backend.Backend/Embedding',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.EmbeddingResult.FromString,
|
||||
)
|
||||
self.GenerateImage = channel.unary_unary(
|
||||
'/backend.Backend/GenerateImage',
|
||||
request_serializer=backend__pb2.GenerateImageRequest.SerializeToString,
|
||||
response_deserializer=backend__pb2.Result.FromString,
|
||||
)
|
||||
self.AudioTranscription = channel.unary_unary(
|
||||
'/backend.Backend/AudioTranscription',
|
||||
request_serializer=backend__pb2.TranscriptRequest.SerializeToString,
|
||||
response_deserializer=backend__pb2.TranscriptResult.FromString,
|
||||
)
|
||||
self.TTS = channel.unary_unary(
|
||||
'/backend.Backend/TTS',
|
||||
request_serializer=backend__pb2.TTSRequest.SerializeToString,
|
||||
response_deserializer=backend__pb2.Result.FromString,
|
||||
)
|
||||
self.TokenizeString = channel.unary_unary(
|
||||
'/backend.Backend/TokenizeString',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.TokenizationResponse.FromString,
|
||||
)
|
||||
self.Status = channel.unary_unary(
|
||||
'/backend.Backend/Status',
|
||||
request_serializer=backend__pb2.HealthMessage.SerializeToString,
|
||||
response_deserializer=backend__pb2.StatusResponse.FromString,
|
||||
)
|
||||
|
||||
|
||||
class BackendServicer(object):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
|
||||
def Health(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def Predict(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def LoadModel(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def PredictStream(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def Embedding(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def GenerateImage(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def AudioTranscription(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def TTS(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def TokenizeString(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def Status(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
|
||||
def add_BackendServicer_to_server(servicer, server):
|
||||
rpc_method_handlers = {
|
||||
'Health': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Health,
|
||||
request_deserializer=backend__pb2.HealthMessage.FromString,
|
||||
response_serializer=backend__pb2.Reply.SerializeToString,
|
||||
),
|
||||
'Predict': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Predict,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.Reply.SerializeToString,
|
||||
),
|
||||
'LoadModel': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.LoadModel,
|
||||
request_deserializer=backend__pb2.ModelOptions.FromString,
|
||||
response_serializer=backend__pb2.Result.SerializeToString,
|
||||
),
|
||||
'PredictStream': grpc.unary_stream_rpc_method_handler(
|
||||
servicer.PredictStream,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.Reply.SerializeToString,
|
||||
),
|
||||
'Embedding': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Embedding,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.EmbeddingResult.SerializeToString,
|
||||
),
|
||||
'GenerateImage': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.GenerateImage,
|
||||
request_deserializer=backend__pb2.GenerateImageRequest.FromString,
|
||||
response_serializer=backend__pb2.Result.SerializeToString,
|
||||
),
|
||||
'AudioTranscription': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.AudioTranscription,
|
||||
request_deserializer=backend__pb2.TranscriptRequest.FromString,
|
||||
response_serializer=backend__pb2.TranscriptResult.SerializeToString,
|
||||
),
|
||||
'TTS': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.TTS,
|
||||
request_deserializer=backend__pb2.TTSRequest.FromString,
|
||||
response_serializer=backend__pb2.Result.SerializeToString,
|
||||
),
|
||||
'TokenizeString': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.TokenizeString,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.TokenizationResponse.SerializeToString,
|
||||
),
|
||||
'Status': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Status,
|
||||
request_deserializer=backend__pb2.HealthMessage.FromString,
|
||||
response_serializer=backend__pb2.StatusResponse.SerializeToString,
|
||||
),
|
||||
}
|
||||
generic_handler = grpc.method_handlers_generic_handler(
|
||||
'backend.Backend', rpc_method_handlers)
|
||||
server.add_generic_rpc_handlers((generic_handler,))
|
||||
|
||||
|
||||
# This class is part of an EXPERIMENTAL API.
|
||||
class Backend(object):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
|
||||
@staticmethod
|
||||
def Health(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Health',
|
||||
backend__pb2.HealthMessage.SerializeToString,
|
||||
backend__pb2.Reply.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def Predict(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Predict',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.Reply.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def LoadModel(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/LoadModel',
|
||||
backend__pb2.ModelOptions.SerializeToString,
|
||||
backend__pb2.Result.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def PredictStream(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_stream(request, target, '/backend.Backend/PredictStream',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.Reply.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def Embedding(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Embedding',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.EmbeddingResult.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def GenerateImage(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/GenerateImage',
|
||||
backend__pb2.GenerateImageRequest.SerializeToString,
|
||||
backend__pb2.Result.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def AudioTranscription(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/AudioTranscription',
|
||||
backend__pb2.TranscriptRequest.SerializeToString,
|
||||
backend__pb2.TranscriptResult.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def TTS(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/TTS',
|
||||
backend__pb2.TTSRequest.SerializeToString,
|
||||
backend__pb2.Result.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def TokenizeString(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/TokenizeString',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.TokenizationResponse.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def Status(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Status',
|
||||
backend__pb2.HealthMessage.SerializeToString,
|
||||
backend__pb2.StatusResponse.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
14
backend/python/autogptq/run.sh
Executable file
14
backend/python/autogptq/run.sh
Executable file
@@ -0,0 +1,14 @@
|
||||
#!/bin/bash
|
||||
|
||||
##
|
||||
## A bash script wrapper that runs the autogptq server with conda
|
||||
|
||||
export PATH=$PATH:/opt/conda/bin
|
||||
|
||||
# Activate conda environment
|
||||
source activate transformers
|
||||
|
||||
# get the directory where the bash script is located
|
||||
DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
|
||||
|
||||
python $DIR/autogptq.py $@
|
||||
15
backend/python/bark/Makefile
Normal file
15
backend/python/bark/Makefile
Normal file
@@ -0,0 +1,15 @@
|
||||
.PHONY: ttsbark
|
||||
ttsbark:
|
||||
$(MAKE) -C ../common-env/transformers
|
||||
|
||||
.PHONY: run
|
||||
run:
|
||||
@echo "Running bark..."
|
||||
bash run.sh
|
||||
@echo "bark run."
|
||||
|
||||
.PHONY: test
|
||||
test:
|
||||
@echo "Testing bark..."
|
||||
bash test.sh
|
||||
@echo "bark tested."
|
||||
16
backend/python/bark/README.md
Normal file
16
backend/python/bark/README.md
Normal file
@@ -0,0 +1,16 @@
|
||||
# Creating a separate environment for ttsbark project
|
||||
|
||||
```
|
||||
make ttsbark
|
||||
```
|
||||
|
||||
# Testing the gRPC server
|
||||
|
||||
```
|
||||
<The path of your python interpreter> -m unittest test_ttsbark.py
|
||||
```
|
||||
|
||||
For example
|
||||
```
|
||||
/opt/conda/envs/bark/bin/python -m unittest extra/grpc/bark/test_ttsbark.py
|
||||
``````
|
||||
61
backend/python/bark/backend_pb2.py
Normal file
61
backend/python/bark/backend_pb2.py
Normal file
File diff suppressed because one or more lines are too long
363
backend/python/bark/backend_pb2_grpc.py
Normal file
363
backend/python/bark/backend_pb2_grpc.py
Normal file
@@ -0,0 +1,363 @@
|
||||
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT!
|
||||
"""Client and server classes corresponding to protobuf-defined services."""
|
||||
import grpc
|
||||
|
||||
import backend_pb2 as backend__pb2
|
||||
|
||||
|
||||
class BackendStub(object):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
|
||||
def __init__(self, channel):
|
||||
"""Constructor.
|
||||
|
||||
Args:
|
||||
channel: A grpc.Channel.
|
||||
"""
|
||||
self.Health = channel.unary_unary(
|
||||
'/backend.Backend/Health',
|
||||
request_serializer=backend__pb2.HealthMessage.SerializeToString,
|
||||
response_deserializer=backend__pb2.Reply.FromString,
|
||||
)
|
||||
self.Predict = channel.unary_unary(
|
||||
'/backend.Backend/Predict',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.Reply.FromString,
|
||||
)
|
||||
self.LoadModel = channel.unary_unary(
|
||||
'/backend.Backend/LoadModel',
|
||||
request_serializer=backend__pb2.ModelOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.Result.FromString,
|
||||
)
|
||||
self.PredictStream = channel.unary_stream(
|
||||
'/backend.Backend/PredictStream',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.Reply.FromString,
|
||||
)
|
||||
self.Embedding = channel.unary_unary(
|
||||
'/backend.Backend/Embedding',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.EmbeddingResult.FromString,
|
||||
)
|
||||
self.GenerateImage = channel.unary_unary(
|
||||
'/backend.Backend/GenerateImage',
|
||||
request_serializer=backend__pb2.GenerateImageRequest.SerializeToString,
|
||||
response_deserializer=backend__pb2.Result.FromString,
|
||||
)
|
||||
self.AudioTranscription = channel.unary_unary(
|
||||
'/backend.Backend/AudioTranscription',
|
||||
request_serializer=backend__pb2.TranscriptRequest.SerializeToString,
|
||||
response_deserializer=backend__pb2.TranscriptResult.FromString,
|
||||
)
|
||||
self.TTS = channel.unary_unary(
|
||||
'/backend.Backend/TTS',
|
||||
request_serializer=backend__pb2.TTSRequest.SerializeToString,
|
||||
response_deserializer=backend__pb2.Result.FromString,
|
||||
)
|
||||
self.TokenizeString = channel.unary_unary(
|
||||
'/backend.Backend/TokenizeString',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.TokenizationResponse.FromString,
|
||||
)
|
||||
self.Status = channel.unary_unary(
|
||||
'/backend.Backend/Status',
|
||||
request_serializer=backend__pb2.HealthMessage.SerializeToString,
|
||||
response_deserializer=backend__pb2.StatusResponse.FromString,
|
||||
)
|
||||
|
||||
|
||||
class BackendServicer(object):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
|
||||
def Health(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def Predict(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def LoadModel(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def PredictStream(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def Embedding(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def GenerateImage(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def AudioTranscription(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def TTS(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def TokenizeString(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def Status(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
|
||||
def add_BackendServicer_to_server(servicer, server):
|
||||
rpc_method_handlers = {
|
||||
'Health': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Health,
|
||||
request_deserializer=backend__pb2.HealthMessage.FromString,
|
||||
response_serializer=backend__pb2.Reply.SerializeToString,
|
||||
),
|
||||
'Predict': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Predict,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.Reply.SerializeToString,
|
||||
),
|
||||
'LoadModel': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.LoadModel,
|
||||
request_deserializer=backend__pb2.ModelOptions.FromString,
|
||||
response_serializer=backend__pb2.Result.SerializeToString,
|
||||
),
|
||||
'PredictStream': grpc.unary_stream_rpc_method_handler(
|
||||
servicer.PredictStream,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.Reply.SerializeToString,
|
||||
),
|
||||
'Embedding': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Embedding,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.EmbeddingResult.SerializeToString,
|
||||
),
|
||||
'GenerateImage': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.GenerateImage,
|
||||
request_deserializer=backend__pb2.GenerateImageRequest.FromString,
|
||||
response_serializer=backend__pb2.Result.SerializeToString,
|
||||
),
|
||||
'AudioTranscription': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.AudioTranscription,
|
||||
request_deserializer=backend__pb2.TranscriptRequest.FromString,
|
||||
response_serializer=backend__pb2.TranscriptResult.SerializeToString,
|
||||
),
|
||||
'TTS': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.TTS,
|
||||
request_deserializer=backend__pb2.TTSRequest.FromString,
|
||||
response_serializer=backend__pb2.Result.SerializeToString,
|
||||
),
|
||||
'TokenizeString': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.TokenizeString,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.TokenizationResponse.SerializeToString,
|
||||
),
|
||||
'Status': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Status,
|
||||
request_deserializer=backend__pb2.HealthMessage.FromString,
|
||||
response_serializer=backend__pb2.StatusResponse.SerializeToString,
|
||||
),
|
||||
}
|
||||
generic_handler = grpc.method_handlers_generic_handler(
|
||||
'backend.Backend', rpc_method_handlers)
|
||||
server.add_generic_rpc_handlers((generic_handler,))
|
||||
|
||||
|
||||
# This class is part of an EXPERIMENTAL API.
|
||||
class Backend(object):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
|
||||
@staticmethod
|
||||
def Health(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Health',
|
||||
backend__pb2.HealthMessage.SerializeToString,
|
||||
backend__pb2.Reply.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def Predict(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Predict',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.Reply.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def LoadModel(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/LoadModel',
|
||||
backend__pb2.ModelOptions.SerializeToString,
|
||||
backend__pb2.Result.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def PredictStream(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_stream(request, target, '/backend.Backend/PredictStream',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.Reply.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def Embedding(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Embedding',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.EmbeddingResult.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def GenerateImage(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/GenerateImage',
|
||||
backend__pb2.GenerateImageRequest.SerializeToString,
|
||||
backend__pb2.Result.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def AudioTranscription(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/AudioTranscription',
|
||||
backend__pb2.TranscriptRequest.SerializeToString,
|
||||
backend__pb2.TranscriptResult.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def TTS(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/TTS',
|
||||
backend__pb2.TTSRequest.SerializeToString,
|
||||
backend__pb2.Result.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def TokenizeString(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/TokenizeString',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.TokenizationResponse.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def Status(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Status',
|
||||
backend__pb2.HealthMessage.SerializeToString,
|
||||
backend__pb2.StatusResponse.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
14
backend/python/bark/run.sh
Executable file
14
backend/python/bark/run.sh
Executable file
@@ -0,0 +1,14 @@
|
||||
#!/bin/bash
|
||||
|
||||
##
|
||||
## A bash script wrapper that runs the ttsbark server with conda
|
||||
|
||||
export PATH=$PATH:/opt/conda/bin
|
||||
|
||||
# Activate conda environment
|
||||
source activate transformers
|
||||
|
||||
# get the directory where the bash script is located
|
||||
DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
|
||||
|
||||
python $DIR/ttsbark.py $@
|
||||
81
backend/python/bark/test.py
Normal file
81
backend/python/bark/test.py
Normal file
@@ -0,0 +1,81 @@
|
||||
"""
|
||||
A test script to test the gRPC service
|
||||
"""
|
||||
import unittest
|
||||
import subprocess
|
||||
import time
|
||||
import backend_pb2
|
||||
import backend_pb2_grpc
|
||||
|
||||
import grpc
|
||||
|
||||
|
||||
class TestBackendServicer(unittest.TestCase):
|
||||
"""
|
||||
TestBackendServicer is the class that tests the gRPC service
|
||||
"""
|
||||
def setUp(self):
|
||||
"""
|
||||
This method sets up the gRPC service by starting the server
|
||||
"""
|
||||
self.service = subprocess.Popen(["python3", "ttsbark.py", "--addr", "localhost:50051"])
|
||||
time.sleep(10)
|
||||
|
||||
def tearDown(self) -> None:
|
||||
"""
|
||||
This method tears down the gRPC service by terminating the server
|
||||
"""
|
||||
self.service.terminate()
|
||||
self.service.wait()
|
||||
|
||||
def test_server_startup(self):
|
||||
"""
|
||||
This method tests if the server starts up successfully
|
||||
"""
|
||||
try:
|
||||
self.setUp()
|
||||
with grpc.insecure_channel("localhost:50051") as channel:
|
||||
stub = backend_pb2_grpc.BackendStub(channel)
|
||||
response = stub.Health(backend_pb2.HealthMessage())
|
||||
self.assertEqual(response.message, b'OK')
|
||||
except Exception as err:
|
||||
print(err)
|
||||
self.fail("Server failed to start")
|
||||
finally:
|
||||
self.tearDown()
|
||||
|
||||
def test_load_model(self):
|
||||
"""
|
||||
This method tests if the model is loaded successfully
|
||||
"""
|
||||
try:
|
||||
self.setUp()
|
||||
with grpc.insecure_channel("localhost:50051") as channel:
|
||||
stub = backend_pb2_grpc.BackendStub(channel)
|
||||
response = stub.LoadModel(backend_pb2.ModelOptions(Model="v2/en_speaker_4"))
|
||||
self.assertTrue(response.success)
|
||||
self.assertEqual(response.message, "Model loaded successfully")
|
||||
except Exception as err:
|
||||
print(err)
|
||||
self.fail("LoadModel service failed")
|
||||
finally:
|
||||
self.tearDown()
|
||||
|
||||
def test_tts(self):
|
||||
"""
|
||||
This method tests if the embeddings are generated successfully
|
||||
"""
|
||||
try:
|
||||
self.setUp()
|
||||
with grpc.insecure_channel("localhost:50051") as channel:
|
||||
stub = backend_pb2_grpc.BackendStub(channel)
|
||||
response = stub.LoadModel(backend_pb2.ModelOptions(Model="v2/en_speaker_4"))
|
||||
self.assertTrue(response.success)
|
||||
tts_request = backend_pb2.TTSRequest(text="80s TV news production music hit for tonight's biggest story")
|
||||
tts_response = stub.TTS(tts_request)
|
||||
self.assertIsNotNone(tts_response)
|
||||
except Exception as err:
|
||||
print(err)
|
||||
self.fail("TTS service failed")
|
||||
finally:
|
||||
self.tearDown()
|
||||
11
backend/python/bark/test.sh
Normal file
11
backend/python/bark/test.sh
Normal file
@@ -0,0 +1,11 @@
|
||||
#!/bin/bash
|
||||
##
|
||||
## A bash script wrapper that runs the bark server with conda
|
||||
|
||||
# Activate conda environment
|
||||
source activate transformers
|
||||
|
||||
# get the directory where the bash script is located
|
||||
DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
|
||||
|
||||
python -m unittest $DIR/test.py
|
||||
93
backend/python/bark/ttsbark.py
Normal file
93
backend/python/bark/ttsbark.py
Normal file
@@ -0,0 +1,93 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
This is an extra gRPC server of LocalAI for Bark TTS
|
||||
"""
|
||||
from concurrent import futures
|
||||
import time
|
||||
import argparse
|
||||
import signal
|
||||
import sys
|
||||
import os
|
||||
from scipy.io.wavfile import write as write_wav
|
||||
|
||||
import backend_pb2
|
||||
import backend_pb2_grpc
|
||||
from bark import SAMPLE_RATE, generate_audio, preload_models
|
||||
|
||||
import grpc
|
||||
|
||||
|
||||
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
|
||||
|
||||
# If MAX_WORKERS are specified in the environment use it, otherwise default to 1
|
||||
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1'))
|
||||
|
||||
# Implement the BackendServicer class with the service methods
|
||||
class BackendServicer(backend_pb2_grpc.BackendServicer):
|
||||
"""
|
||||
BackendServicer is the class that implements the gRPC service
|
||||
"""
|
||||
def Health(self, request, context):
|
||||
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
|
||||
def LoadModel(self, request, context):
|
||||
model_name = request.Model
|
||||
try:
|
||||
print("Preparing models, please wait", file=sys.stderr)
|
||||
# download and load all models
|
||||
preload_models()
|
||||
except Exception as err:
|
||||
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
|
||||
# Implement your logic here for the LoadModel service
|
||||
# Replace this with your desired response
|
||||
return backend_pb2.Result(message="Model loaded successfully", success=True)
|
||||
|
||||
def TTS(self, request, context):
|
||||
model = request.model
|
||||
print(request, file=sys.stderr)
|
||||
try:
|
||||
audio_array = None
|
||||
if model != "":
|
||||
audio_array = generate_audio(request.text, history_prompt=model)
|
||||
else:
|
||||
audio_array = generate_audio(request.text)
|
||||
print("saving to", request.dst, file=sys.stderr)
|
||||
# save audio to disk
|
||||
write_wav(request.dst, SAMPLE_RATE, audio_array)
|
||||
print("saved to", request.dst, file=sys.stderr)
|
||||
print("tts for", file=sys.stderr)
|
||||
print(request, file=sys.stderr)
|
||||
except Exception as err:
|
||||
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
|
||||
return backend_pb2.Result(success=True)
|
||||
|
||||
def serve(address):
|
||||
server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS))
|
||||
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
|
||||
server.add_insecure_port(address)
|
||||
server.start()
|
||||
print("Server started. Listening on: " + address, file=sys.stderr)
|
||||
|
||||
# Define the signal handler function
|
||||
def signal_handler(sig, frame):
|
||||
print("Received termination signal. Shutting down...")
|
||||
server.stop(0)
|
||||
sys.exit(0)
|
||||
|
||||
# Set the signal handlers for SIGINT and SIGTERM
|
||||
signal.signal(signal.SIGINT, signal_handler)
|
||||
signal.signal(signal.SIGTERM, signal_handler)
|
||||
|
||||
try:
|
||||
while True:
|
||||
time.sleep(_ONE_DAY_IN_SECONDS)
|
||||
except KeyboardInterrupt:
|
||||
server.stop(0)
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Run the gRPC server.")
|
||||
parser.add_argument(
|
||||
"--addr", default="localhost:50051", help="The address to bind the server to."
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
serve(args.addr)
|
||||
21
backend/python/common-env/transformers/Makefile
Normal file
21
backend/python/common-env/transformers/Makefile
Normal file
@@ -0,0 +1,21 @@
|
||||
CONDA_ENV_PATH = "transformers.yml"
|
||||
|
||||
ifeq ($(BUILD_TYPE), cublas)
|
||||
CONDA_ENV_PATH = "transformers-nvidia.yml"
|
||||
endif
|
||||
|
||||
ifeq ($(BUILD_TYPE), hipblas)
|
||||
CONDA_ENV_PATH = "transformers-rocm.yml"
|
||||
endif
|
||||
|
||||
# Intel GPU are supposed to have dependencies installed in the main python
|
||||
# environment, so we skip conda installation for SYCL builds.
|
||||
# https://github.com/intel/intel-extension-for-pytorch/issues/538
|
||||
ifneq (,$(findstring sycl,$(BUILD_TYPE)))
|
||||
export SKIP_CONDA=1
|
||||
endif
|
||||
|
||||
.PHONY: transformers
|
||||
transformers:
|
||||
@echo "Installing $(CONDA_ENV_PATH)..."
|
||||
bash install.sh $(CONDA_ENV_PATH)
|
||||
38
backend/python/common-env/transformers/install.sh
Normal file
38
backend/python/common-env/transformers/install.sh
Normal file
@@ -0,0 +1,38 @@
|
||||
#!/bin/bash
|
||||
set -ex
|
||||
|
||||
SKIP_CONDA=${SKIP_CONDA:-0}
|
||||
|
||||
# Check if environment exist
|
||||
conda_env_exists(){
|
||||
! conda list --name "${@}" >/dev/null 2>/dev/null
|
||||
}
|
||||
|
||||
if [ $SKIP_CONDA -eq 1 ]; then
|
||||
echo "Skipping conda environment installation"
|
||||
else
|
||||
export PATH=$PATH:/opt/conda/bin
|
||||
if conda_env_exists "transformers" ; then
|
||||
echo "Creating virtual environment..."
|
||||
conda env create --name transformers --file $1
|
||||
echo "Virtual environment created."
|
||||
else
|
||||
echo "Virtual environment already exists."
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ -d "/opt/intel" ]; then
|
||||
# Intel GPU: If the directory exists, we assume we are using the intel image
|
||||
# (no conda env)
|
||||
# https://github.com/intel/intel-extension-for-pytorch/issues/538
|
||||
pip install intel-extension-for-transformers datasets sentencepiece tiktoken neural_speed
|
||||
fi
|
||||
|
||||
if [ "$PIP_CACHE_PURGE" = true ] ; then
|
||||
if [ $SKIP_CONDA -eq 0 ]; then
|
||||
# Activate conda environment
|
||||
source activate transformers
|
||||
fi
|
||||
|
||||
pip cache purge
|
||||
fi
|
||||
120
backend/python/common-env/transformers/transformers-nvidia.yml
Normal file
120
backend/python/common-env/transformers/transformers-nvidia.yml
Normal file
@@ -0,0 +1,120 @@
|
||||
name: transformers
|
||||
channels:
|
||||
- defaults
|
||||
dependencies:
|
||||
- _libgcc_mutex=0.1=main
|
||||
- _openmp_mutex=5.1=1_gnu
|
||||
- bzip2=1.0.8=h7b6447c_0
|
||||
- ca-certificates=2023.08.22=h06a4308_0
|
||||
- ld_impl_linux-64=2.38=h1181459_1
|
||||
- libffi=3.4.4=h6a678d5_0
|
||||
- libgcc-ng=11.2.0=h1234567_1
|
||||
- libgomp=11.2.0=h1234567_1
|
||||
- libstdcxx-ng=11.2.0=h1234567_1
|
||||
- libuuid=1.41.5=h5eee18b_0
|
||||
- ncurses=6.4=h6a678d5_0
|
||||
- openssl=3.0.11=h7f8727e_2
|
||||
- pip=23.2.1=py311h06a4308_0
|
||||
- python=3.11.5=h955ad1f_0
|
||||
- readline=8.2=h5eee18b_0
|
||||
- setuptools=68.0.0=py311h06a4308_0
|
||||
- sqlite=3.41.2=h5eee18b_0
|
||||
- tk=8.6.12=h1ccaba5_0
|
||||
- wheel=0.41.2=py311h06a4308_0
|
||||
- xz=5.4.2=h5eee18b_0
|
||||
- zlib=1.2.13=h5eee18b_0
|
||||
- pip:
|
||||
- accelerate==0.23.0
|
||||
- aiohttp==3.8.5
|
||||
- aiosignal==1.3.1
|
||||
- async-timeout==4.0.3
|
||||
- attrs==23.1.0
|
||||
- bark==0.1.5
|
||||
- bitsandbytes==0.43.0
|
||||
- boto3==1.28.61
|
||||
- botocore==1.31.61
|
||||
- certifi==2023.7.22
|
||||
- TTS==0.22.0
|
||||
- charset-normalizer==3.3.0
|
||||
- datasets==2.14.5
|
||||
- sentence-transformers==2.5.1 # Updated Version
|
||||
- sentencepiece==0.1.99
|
||||
- dill==0.3.7
|
||||
- einops==0.7.0
|
||||
- encodec==0.1.1
|
||||
- filelock==3.12.4
|
||||
- frozenlist==1.4.0
|
||||
- fsspec==2023.6.0
|
||||
- funcy==2.0
|
||||
- grpcio==1.59.0
|
||||
- huggingface-hub
|
||||
- idna==3.4
|
||||
- jinja2==3.1.2
|
||||
- jmespath==1.0.1
|
||||
- markupsafe==2.1.3
|
||||
- mpmath==1.3.0
|
||||
- multidict==6.0.4
|
||||
- multiprocess==0.70.15
|
||||
- networkx
|
||||
- numpy==1.26.0
|
||||
- nvidia-cublas-cu12==12.1.3.1
|
||||
- nvidia-cuda-cupti-cu12==12.1.105
|
||||
- nvidia-cuda-nvrtc-cu12==12.1.105
|
||||
- nvidia-cuda-runtime-cu12==12.1.105
|
||||
- nvidia-cudnn-cu12==8.9.2.26
|
||||
- nvidia-cufft-cu12==11.0.2.54
|
||||
- nvidia-curand-cu12==10.3.2.106
|
||||
- nvidia-cusolver-cu12==11.4.5.107
|
||||
- nvidia-cusparse-cu12==12.1.0.106
|
||||
- nvidia-nccl-cu12==2.18.1
|
||||
- nvidia-nvjitlink-cu12==12.2.140
|
||||
- nvidia-nvtx-cu12==12.1.105
|
||||
- packaging==23.2
|
||||
- pandas
|
||||
- peft==0.5.0
|
||||
- protobuf==4.24.4
|
||||
- psutil==5.9.5
|
||||
- pyarrow==13.0.0
|
||||
- python-dateutil==2.8.2
|
||||
- pytz==2023.3.post1
|
||||
- pyyaml==6.0.1
|
||||
- regex==2023.10.3
|
||||
- requests==2.31.0
|
||||
- rouge==1.0.1
|
||||
- s3transfer==0.7.0
|
||||
- safetensors>=0.4.1
|
||||
- scipy==1.12.0 # Updated Version
|
||||
- six==1.16.0
|
||||
- sympy==1.12
|
||||
- tokenizers
|
||||
- torch==2.1.2
|
||||
- torchaudio==2.1.2
|
||||
- tqdm==4.66.1
|
||||
- triton==2.1.0
|
||||
- typing-extensions==4.8.0
|
||||
- tzdata==2023.3
|
||||
- urllib3==1.26.17
|
||||
- xxhash==3.4.1
|
||||
- auto-gptq==0.6.0
|
||||
- yarl==1.9.2
|
||||
- soundfile
|
||||
- langid
|
||||
- wget
|
||||
- unidecode
|
||||
- pyopenjtalk-prebuilt
|
||||
- pypinyin
|
||||
- inflect
|
||||
- cn2an
|
||||
- jieba
|
||||
- eng_to_ipa
|
||||
- openai-whisper
|
||||
- matplotlib
|
||||
- gradio==3.41.2
|
||||
- nltk
|
||||
- sudachipy
|
||||
- sudachidict_core
|
||||
- vocos
|
||||
- vllm==0.3.2
|
||||
- transformers>=4.38.2 # Updated Version
|
||||
- xformers==0.0.23.post1
|
||||
prefix: /opt/conda/envs/transformers
|
||||
109
backend/python/common-env/transformers/transformers-rocm.yml
Normal file
109
backend/python/common-env/transformers/transformers-rocm.yml
Normal file
@@ -0,0 +1,109 @@
|
||||
name: transformers
|
||||
channels:
|
||||
- defaults
|
||||
dependencies:
|
||||
- _libgcc_mutex=0.1=main
|
||||
- _openmp_mutex=5.1=1_gnu
|
||||
- bzip2=1.0.8=h7b6447c_0
|
||||
- ca-certificates=2023.08.22=h06a4308_0
|
||||
- ld_impl_linux-64=2.38=h1181459_1
|
||||
- libffi=3.4.4=h6a678d5_0
|
||||
- libgcc-ng=11.2.0=h1234567_1
|
||||
- libgomp=11.2.0=h1234567_1
|
||||
- libstdcxx-ng=11.2.0=h1234567_1
|
||||
- libuuid=1.41.5=h5eee18b_0
|
||||
- ncurses=6.4=h6a678d5_0
|
||||
- openssl=3.0.11=h7f8727e_2
|
||||
- pip=23.2.1=py311h06a4308_0
|
||||
- python=3.11.5=h955ad1f_0
|
||||
- readline=8.2=h5eee18b_0
|
||||
- setuptools=68.0.0=py311h06a4308_0
|
||||
- sqlite=3.41.2=h5eee18b_0
|
||||
- tk=8.6.12=h1ccaba5_0
|
||||
- wheel=0.41.2=py311h06a4308_0
|
||||
- xz=5.4.2=h5eee18b_0
|
||||
- zlib=1.2.13=h5eee18b_0
|
||||
- pip:
|
||||
- --pre
|
||||
- --extra-index-url https://download.pytorch.org/whl/nightly/
|
||||
- accelerate==0.23.0
|
||||
- aiohttp==3.8.5
|
||||
- aiosignal==1.3.1
|
||||
- async-timeout==4.0.3
|
||||
- attrs==23.1.0
|
||||
- bark==0.1.5
|
||||
- boto3==1.28.61
|
||||
- botocore==1.31.61
|
||||
- certifi==2023.7.22
|
||||
- TTS==0.22.0
|
||||
- charset-normalizer==3.3.0
|
||||
- datasets==2.14.5
|
||||
- sentence-transformers==2.5.1 # Updated Version
|
||||
- sentencepiece==0.1.99
|
||||
- dill==0.3.7
|
||||
- einops==0.7.0
|
||||
- encodec==0.1.1
|
||||
- filelock==3.12.4
|
||||
- frozenlist==1.4.0
|
||||
- fsspec==2023.6.0
|
||||
- funcy==2.0
|
||||
- grpcio==1.59.0
|
||||
- huggingface-hub
|
||||
- idna==3.4
|
||||
- jinja2==3.1.2
|
||||
- jmespath==1.0.1
|
||||
- markupsafe==2.1.3
|
||||
- mpmath==1.3.0
|
||||
- multidict==6.0.4
|
||||
- multiprocess==0.70.15
|
||||
- networkx
|
||||
- numpy==1.26.0
|
||||
- packaging==23.2
|
||||
- pandas
|
||||
- peft==0.5.0
|
||||
- protobuf==4.24.4
|
||||
- psutil==5.9.5
|
||||
- pyarrow==13.0.0
|
||||
- python-dateutil==2.8.2
|
||||
- pytz==2023.3.post1
|
||||
- pyyaml==6.0.1
|
||||
- regex==2023.10.3
|
||||
- requests==2.31.0
|
||||
- rouge==1.0.1
|
||||
- s3transfer==0.7.0
|
||||
- safetensors>=0.4.1
|
||||
- scipy==1.12.0 # Updated Version
|
||||
- six==1.16.0
|
||||
- sympy==1.12
|
||||
- tokenizers
|
||||
- torch
|
||||
- torchaudio
|
||||
- tqdm==4.66.1
|
||||
- triton==2.1.0
|
||||
- typing-extensions==4.8.0
|
||||
- tzdata==2023.3
|
||||
- auto-gptq==0.6.0
|
||||
- urllib3==1.26.17
|
||||
- xxhash==3.4.1
|
||||
- yarl==1.9.2
|
||||
- soundfile
|
||||
- langid
|
||||
- wget
|
||||
- unidecode
|
||||
- pyopenjtalk-prebuilt
|
||||
- pypinyin
|
||||
- inflect
|
||||
- cn2an
|
||||
- jieba
|
||||
- eng_to_ipa
|
||||
- openai-whisper
|
||||
- matplotlib
|
||||
- gradio==3.41.2
|
||||
- nltk
|
||||
- sudachipy
|
||||
- sudachidict_core
|
||||
- vocos
|
||||
- vllm==0.3.2
|
||||
- transformers>=4.38.2 # Updated Version
|
||||
- xformers==0.0.23.post1
|
||||
prefix: /opt/conda/envs/transformers
|
||||
107
backend/python/common-env/transformers/transformers.yml
Normal file
107
backend/python/common-env/transformers/transformers.yml
Normal file
@@ -0,0 +1,107 @@
|
||||
name: transformers
|
||||
channels:
|
||||
- defaults
|
||||
dependencies:
|
||||
- _libgcc_mutex=0.1=main
|
||||
- _openmp_mutex=5.1=1_gnu
|
||||
- bzip2=1.0.8=h7b6447c_0
|
||||
- ca-certificates=2023.08.22=h06a4308_0
|
||||
- ld_impl_linux-64=2.38=h1181459_1
|
||||
- libffi=3.4.4=h6a678d5_0
|
||||
- libgcc-ng=11.2.0=h1234567_1
|
||||
- libgomp=11.2.0=h1234567_1
|
||||
- libstdcxx-ng=11.2.0=h1234567_1
|
||||
- libuuid=1.41.5=h5eee18b_0
|
||||
- ncurses=6.4=h6a678d5_0
|
||||
- openssl=3.0.11=h7f8727e_2
|
||||
- pip=23.2.1=py311h06a4308_0
|
||||
- python=3.11.5=h955ad1f_0
|
||||
- readline=8.2=h5eee18b_0
|
||||
- setuptools=68.0.0=py311h06a4308_0
|
||||
- sqlite=3.41.2=h5eee18b_0
|
||||
- tk=8.6.12=h1ccaba5_0
|
||||
- wheel=0.41.2=py311h06a4308_0
|
||||
- xz=5.4.2=h5eee18b_0
|
||||
- zlib=1.2.13=h5eee18b_0
|
||||
- pip:
|
||||
- accelerate==0.23.0
|
||||
- aiohttp==3.8.5
|
||||
- aiosignal==1.3.1
|
||||
- async-timeout==4.0.3
|
||||
- attrs==23.1.0
|
||||
- bark==0.1.5
|
||||
- boto3==1.28.61
|
||||
- botocore==1.31.61
|
||||
- certifi==2023.7.22
|
||||
- TTS==0.22.0
|
||||
- charset-normalizer==3.3.0
|
||||
- datasets==2.14.5
|
||||
- sentence-transformers==2.5.1 # Updated Version
|
||||
- sentencepiece==0.1.99
|
||||
- dill==0.3.7
|
||||
- einops==0.7.0
|
||||
- encodec==0.1.1
|
||||
- filelock==3.12.4
|
||||
- frozenlist==1.4.0
|
||||
- fsspec==2023.6.0
|
||||
- funcy==2.0
|
||||
- grpcio==1.59.0
|
||||
- huggingface-hub
|
||||
- idna==3.4
|
||||
- jinja2==3.1.2
|
||||
- jmespath==1.0.1
|
||||
- markupsafe==2.1.3
|
||||
- mpmath==1.3.0
|
||||
- multidict==6.0.4
|
||||
- multiprocess==0.70.15
|
||||
- networkx
|
||||
- numpy==1.26.0
|
||||
- packaging==23.2
|
||||
- pandas
|
||||
- peft==0.5.0
|
||||
- protobuf==4.24.4
|
||||
- psutil==5.9.5
|
||||
- pyarrow==13.0.0
|
||||
- python-dateutil==2.8.2
|
||||
- pytz==2023.3.post1
|
||||
- pyyaml==6.0.1
|
||||
- regex==2023.10.3
|
||||
- requests==2.31.0
|
||||
- rouge==1.0.1
|
||||
- s3transfer==0.7.0
|
||||
- safetensors>=0.4.1
|
||||
- scipy==1.12.0 # Updated Version
|
||||
- six==1.16.0
|
||||
- sympy==1.12
|
||||
- tokenizers
|
||||
- torch==2.1.2
|
||||
- torchaudio==2.1.2
|
||||
- tqdm==4.66.1
|
||||
- triton==2.1.0
|
||||
- typing-extensions==4.8.0
|
||||
- tzdata==2023.3
|
||||
- auto-gptq==0.6.0
|
||||
- urllib3==1.26.17
|
||||
- xxhash==3.4.1
|
||||
- yarl==1.9.2
|
||||
- soundfile
|
||||
- langid
|
||||
- wget
|
||||
- unidecode
|
||||
- pyopenjtalk-prebuilt
|
||||
- pypinyin
|
||||
- inflect
|
||||
- cn2an
|
||||
- jieba
|
||||
- eng_to_ipa
|
||||
- openai-whisper
|
||||
- matplotlib
|
||||
- gradio==3.41.2
|
||||
- nltk
|
||||
- sudachipy
|
||||
- sudachidict_core
|
||||
- vocos
|
||||
- vllm==0.3.2
|
||||
- transformers>=4.38.2 # Updated Version
|
||||
- xformers==0.0.23.post1
|
||||
prefix: /opt/conda/envs/transformers
|
||||
15
backend/python/coqui/Makefile
Normal file
15
backend/python/coqui/Makefile
Normal file
@@ -0,0 +1,15 @@
|
||||
.PHONY: coqui
|
||||
coqui:
|
||||
$(MAKE) -C ../common-env/transformers
|
||||
|
||||
.PHONY: run
|
||||
run:
|
||||
@echo "Running coqui..."
|
||||
bash run.sh
|
||||
@echo "coqui run."
|
||||
|
||||
.PHONY: test
|
||||
test:
|
||||
@echo "Testing coqui..."
|
||||
bash test.sh
|
||||
@echo "coqui tested."
|
||||
11
backend/python/coqui/README.md
Normal file
11
backend/python/coqui/README.md
Normal file
@@ -0,0 +1,11 @@
|
||||
# Creating a separate environment for ttsbark project
|
||||
|
||||
```
|
||||
make coqui
|
||||
```
|
||||
|
||||
# Testing the gRPC server
|
||||
|
||||
```
|
||||
make test
|
||||
```
|
||||
61
backend/python/coqui/backend_pb2.py
Normal file
61
backend/python/coqui/backend_pb2.py
Normal file
File diff suppressed because one or more lines are too long
363
backend/python/coqui/backend_pb2_grpc.py
Normal file
363
backend/python/coqui/backend_pb2_grpc.py
Normal file
@@ -0,0 +1,363 @@
|
||||
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT!
|
||||
"""Client and server classes corresponding to protobuf-defined services."""
|
||||
import grpc
|
||||
|
||||
import backend_pb2 as backend__pb2
|
||||
|
||||
|
||||
class BackendStub(object):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
|
||||
def __init__(self, channel):
|
||||
"""Constructor.
|
||||
|
||||
Args:
|
||||
channel: A grpc.Channel.
|
||||
"""
|
||||
self.Health = channel.unary_unary(
|
||||
'/backend.Backend/Health',
|
||||
request_serializer=backend__pb2.HealthMessage.SerializeToString,
|
||||
response_deserializer=backend__pb2.Reply.FromString,
|
||||
)
|
||||
self.Predict = channel.unary_unary(
|
||||
'/backend.Backend/Predict',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.Reply.FromString,
|
||||
)
|
||||
self.LoadModel = channel.unary_unary(
|
||||
'/backend.Backend/LoadModel',
|
||||
request_serializer=backend__pb2.ModelOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.Result.FromString,
|
||||
)
|
||||
self.PredictStream = channel.unary_stream(
|
||||
'/backend.Backend/PredictStream',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.Reply.FromString,
|
||||
)
|
||||
self.Embedding = channel.unary_unary(
|
||||
'/backend.Backend/Embedding',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.EmbeddingResult.FromString,
|
||||
)
|
||||
self.GenerateImage = channel.unary_unary(
|
||||
'/backend.Backend/GenerateImage',
|
||||
request_serializer=backend__pb2.GenerateImageRequest.SerializeToString,
|
||||
response_deserializer=backend__pb2.Result.FromString,
|
||||
)
|
||||
self.AudioTranscription = channel.unary_unary(
|
||||
'/backend.Backend/AudioTranscription',
|
||||
request_serializer=backend__pb2.TranscriptRequest.SerializeToString,
|
||||
response_deserializer=backend__pb2.TranscriptResult.FromString,
|
||||
)
|
||||
self.TTS = channel.unary_unary(
|
||||
'/backend.Backend/TTS',
|
||||
request_serializer=backend__pb2.TTSRequest.SerializeToString,
|
||||
response_deserializer=backend__pb2.Result.FromString,
|
||||
)
|
||||
self.TokenizeString = channel.unary_unary(
|
||||
'/backend.Backend/TokenizeString',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.TokenizationResponse.FromString,
|
||||
)
|
||||
self.Status = channel.unary_unary(
|
||||
'/backend.Backend/Status',
|
||||
request_serializer=backend__pb2.HealthMessage.SerializeToString,
|
||||
response_deserializer=backend__pb2.StatusResponse.FromString,
|
||||
)
|
||||
|
||||
|
||||
class BackendServicer(object):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
|
||||
def Health(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def Predict(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def LoadModel(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def PredictStream(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def Embedding(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def GenerateImage(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def AudioTranscription(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def TTS(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def TokenizeString(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def Status(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
|
||||
def add_BackendServicer_to_server(servicer, server):
|
||||
rpc_method_handlers = {
|
||||
'Health': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Health,
|
||||
request_deserializer=backend__pb2.HealthMessage.FromString,
|
||||
response_serializer=backend__pb2.Reply.SerializeToString,
|
||||
),
|
||||
'Predict': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Predict,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.Reply.SerializeToString,
|
||||
),
|
||||
'LoadModel': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.LoadModel,
|
||||
request_deserializer=backend__pb2.ModelOptions.FromString,
|
||||
response_serializer=backend__pb2.Result.SerializeToString,
|
||||
),
|
||||
'PredictStream': grpc.unary_stream_rpc_method_handler(
|
||||
servicer.PredictStream,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.Reply.SerializeToString,
|
||||
),
|
||||
'Embedding': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Embedding,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.EmbeddingResult.SerializeToString,
|
||||
),
|
||||
'GenerateImage': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.GenerateImage,
|
||||
request_deserializer=backend__pb2.GenerateImageRequest.FromString,
|
||||
response_serializer=backend__pb2.Result.SerializeToString,
|
||||
),
|
||||
'AudioTranscription': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.AudioTranscription,
|
||||
request_deserializer=backend__pb2.TranscriptRequest.FromString,
|
||||
response_serializer=backend__pb2.TranscriptResult.SerializeToString,
|
||||
),
|
||||
'TTS': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.TTS,
|
||||
request_deserializer=backend__pb2.TTSRequest.FromString,
|
||||
response_serializer=backend__pb2.Result.SerializeToString,
|
||||
),
|
||||
'TokenizeString': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.TokenizeString,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.TokenizationResponse.SerializeToString,
|
||||
),
|
||||
'Status': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Status,
|
||||
request_deserializer=backend__pb2.HealthMessage.FromString,
|
||||
response_serializer=backend__pb2.StatusResponse.SerializeToString,
|
||||
),
|
||||
}
|
||||
generic_handler = grpc.method_handlers_generic_handler(
|
||||
'backend.Backend', rpc_method_handlers)
|
||||
server.add_generic_rpc_handlers((generic_handler,))
|
||||
|
||||
|
||||
# This class is part of an EXPERIMENTAL API.
|
||||
class Backend(object):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
|
||||
@staticmethod
|
||||
def Health(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Health',
|
||||
backend__pb2.HealthMessage.SerializeToString,
|
||||
backend__pb2.Reply.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def Predict(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Predict',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.Reply.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def LoadModel(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/LoadModel',
|
||||
backend__pb2.ModelOptions.SerializeToString,
|
||||
backend__pb2.Result.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def PredictStream(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_stream(request, target, '/backend.Backend/PredictStream',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.Reply.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def Embedding(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Embedding',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.EmbeddingResult.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def GenerateImage(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/GenerateImage',
|
||||
backend__pb2.GenerateImageRequest.SerializeToString,
|
||||
backend__pb2.Result.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def AudioTranscription(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/AudioTranscription',
|
||||
backend__pb2.TranscriptRequest.SerializeToString,
|
||||
backend__pb2.TranscriptResult.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def TTS(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/TTS',
|
||||
backend__pb2.TTSRequest.SerializeToString,
|
||||
backend__pb2.Result.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def TokenizeString(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/TokenizeString',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.TokenizationResponse.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def Status(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Status',
|
||||
backend__pb2.HealthMessage.SerializeToString,
|
||||
backend__pb2.StatusResponse.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
104
backend/python/coqui/coqui_server.py
Normal file
104
backend/python/coqui/coqui_server.py
Normal file
@@ -0,0 +1,104 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
This is an extra gRPC server of LocalAI for Bark TTS
|
||||
"""
|
||||
from concurrent import futures
|
||||
import time
|
||||
import argparse
|
||||
import signal
|
||||
import sys
|
||||
import os
|
||||
import backend_pb2
|
||||
import backend_pb2_grpc
|
||||
|
||||
import torch
|
||||
from TTS.api import TTS
|
||||
|
||||
import grpc
|
||||
|
||||
|
||||
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
|
||||
|
||||
# If MAX_WORKERS are specified in the environment use it, otherwise default to 1
|
||||
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1'))
|
||||
COQUI_LANGUAGE = os.environ.get('COQUI_LANGUAGE', None)
|
||||
|
||||
# Implement the BackendServicer class with the service methods
|
||||
class BackendServicer(backend_pb2_grpc.BackendServicer):
|
||||
"""
|
||||
BackendServicer is the class that implements the gRPC service
|
||||
"""
|
||||
def Health(self, request, context):
|
||||
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
|
||||
def LoadModel(self, request, context):
|
||||
|
||||
# Get device
|
||||
# device = "cuda" if request.CUDA else "cpu"
|
||||
if torch.cuda.is_available():
|
||||
print("CUDA is available", file=sys.stderr)
|
||||
device = "cuda"
|
||||
else:
|
||||
print("CUDA is not available", file=sys.stderr)
|
||||
device = "cpu"
|
||||
|
||||
if not torch.cuda.is_available() and request.CUDA:
|
||||
return backend_pb2.Result(success=False, message="CUDA is not available")
|
||||
|
||||
self.AudioPath = None
|
||||
# List available 🐸TTS models
|
||||
print(TTS().list_models())
|
||||
if os.path.isabs(request.AudioPath):
|
||||
self.AudioPath = request.AudioPath
|
||||
elif request.AudioPath and request.ModelFile != "" and not os.path.isabs(request.AudioPath):
|
||||
# get base path of modelFile
|
||||
modelFileBase = os.path.dirname(request.ModelFile)
|
||||
# modify LoraAdapter to be relative to modelFileBase
|
||||
self.AudioPath = os.path.join(modelFileBase, request.AudioPath)
|
||||
|
||||
try:
|
||||
print("Preparing models, please wait", file=sys.stderr)
|
||||
self.tts = TTS(request.Model).to(device)
|
||||
except Exception as err:
|
||||
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
|
||||
# Implement your logic here for the LoadModel service
|
||||
# Replace this with your desired response
|
||||
return backend_pb2.Result(message="Model loaded successfully", success=True)
|
||||
|
||||
def TTS(self, request, context):
|
||||
try:
|
||||
self.tts.tts_to_file(text=request.text, speaker_wav=self.AudioPath, language=COQUI_LANGUAGE, file_path=request.dst)
|
||||
except Exception as err:
|
||||
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
|
||||
return backend_pb2.Result(success=True)
|
||||
|
||||
def serve(address):
|
||||
server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS))
|
||||
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
|
||||
server.add_insecure_port(address)
|
||||
server.start()
|
||||
print("Server started. Listening on: " + address, file=sys.stderr)
|
||||
|
||||
# Define the signal handler function
|
||||
def signal_handler(sig, frame):
|
||||
print("Received termination signal. Shutting down...")
|
||||
server.stop(0)
|
||||
sys.exit(0)
|
||||
|
||||
# Set the signal handlers for SIGINT and SIGTERM
|
||||
signal.signal(signal.SIGINT, signal_handler)
|
||||
signal.signal(signal.SIGTERM, signal_handler)
|
||||
|
||||
try:
|
||||
while True:
|
||||
time.sleep(_ONE_DAY_IN_SECONDS)
|
||||
except KeyboardInterrupt:
|
||||
server.stop(0)
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Run the gRPC server.")
|
||||
parser.add_argument(
|
||||
"--addr", default="localhost:50051", help="The address to bind the server to."
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
serve(args.addr)
|
||||
14
backend/python/coqui/run.sh
Executable file
14
backend/python/coqui/run.sh
Executable file
@@ -0,0 +1,14 @@
|
||||
#!/bin/bash
|
||||
|
||||
##
|
||||
## A bash script wrapper that runs the ttsbark server with conda
|
||||
|
||||
export PATH=$PATH:/opt/conda/bin
|
||||
|
||||
# Activate conda environment
|
||||
source activate transformers
|
||||
|
||||
# get the directory where the bash script is located
|
||||
DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
|
||||
|
||||
python $DIR/coqui_server.py $@
|
||||
82
backend/python/coqui/test.py
Normal file
82
backend/python/coqui/test.py
Normal file
@@ -0,0 +1,82 @@
|
||||
"""
|
||||
A test script to test the gRPC service
|
||||
"""
|
||||
import unittest
|
||||
import subprocess
|
||||
import time
|
||||
import backend_pb2
|
||||
import backend_pb2_grpc
|
||||
|
||||
import grpc
|
||||
|
||||
|
||||
class TestBackendServicer(unittest.TestCase):
|
||||
"""
|
||||
TestBackendServicer is the class that tests the gRPC service
|
||||
"""
|
||||
def setUp(self):
|
||||
"""
|
||||
This method sets up the gRPC service by starting the server
|
||||
"""
|
||||
self.service = subprocess.Popen(["python3", "coqui_server.py", "--addr", "localhost:50051"])
|
||||
time.sleep(10)
|
||||
|
||||
def tearDown(self) -> None:
|
||||
"""
|
||||
This method tears down the gRPC service by terminating the server
|
||||
"""
|
||||
self.service.terminate()
|
||||
self.service.wait()
|
||||
|
||||
def test_server_startup(self):
|
||||
"""
|
||||
This method tests if the server starts up successfully
|
||||
"""
|
||||
try:
|
||||
self.setUp()
|
||||
with grpc.insecure_channel("localhost:50051") as channel:
|
||||
stub = backend_pb2_grpc.BackendStub(channel)
|
||||
response = stub.Health(backend_pb2.HealthMessage())
|
||||
self.assertEqual(response.message, b'OK')
|
||||
except Exception as err:
|
||||
print(err)
|
||||
self.fail("Server failed to start")
|
||||
finally:
|
||||
self.tearDown()
|
||||
|
||||
def test_load_model(self):
|
||||
"""
|
||||
This method tests if the model is loaded successfully
|
||||
"""
|
||||
try:
|
||||
self.setUp()
|
||||
with grpc.insecure_channel("localhost:50051") as channel:
|
||||
stub = backend_pb2_grpc.BackendStub(channel)
|
||||
response = stub.LoadModel(backend_pb2.ModelOptions(Model="tts_models/en/vctk/vits"))
|
||||
print(response)
|
||||
self.assertTrue(response.success)
|
||||
self.assertEqual(response.message, "Model loaded successfully")
|
||||
except Exception as err:
|
||||
print(err)
|
||||
self.fail("LoadModel service failed")
|
||||
finally:
|
||||
self.tearDown()
|
||||
|
||||
def test_tts(self):
|
||||
"""
|
||||
This method tests if the embeddings are generated successfully
|
||||
"""
|
||||
try:
|
||||
self.setUp()
|
||||
with grpc.insecure_channel("localhost:50051") as channel:
|
||||
stub = backend_pb2_grpc.BackendStub(channel)
|
||||
response = stub.LoadModel(backend_pb2.ModelOptions(Model="tts_models/en/vctk/vits"))
|
||||
self.assertTrue(response.success)
|
||||
tts_request = backend_pb2.TTSRequest(text="80s TV news production music hit for tonight's biggest story")
|
||||
tts_response = stub.TTS(tts_request)
|
||||
self.assertIsNotNone(tts_response)
|
||||
except Exception as err:
|
||||
print(err)
|
||||
self.fail("TTS service failed")
|
||||
finally:
|
||||
self.tearDown()
|
||||
11
backend/python/coqui/test.sh
Normal file
11
backend/python/coqui/test.sh
Normal file
@@ -0,0 +1,11 @@
|
||||
#!/bin/bash
|
||||
##
|
||||
## A bash script wrapper that runs the bark server with conda
|
||||
|
||||
# Activate conda environment
|
||||
source activate transformers
|
||||
|
||||
# get the directory where the bash script is located
|
||||
DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
|
||||
|
||||
python -m unittest $DIR/test.py
|
||||
26
backend/python/diffusers/Makefile
Normal file
26
backend/python/diffusers/Makefile
Normal file
@@ -0,0 +1,26 @@
|
||||
export CONDA_ENV_PATH = "diffusers.yml"
|
||||
|
||||
ifeq ($(BUILD_TYPE), hipblas)
|
||||
export CONDA_ENV_PATH = "diffusers-rocm.yml"
|
||||
endif
|
||||
|
||||
# Intel GPU are supposed to have dependencies installed in the main python
|
||||
# environment, so we skip conda installation for SYCL builds.
|
||||
# https://github.com/intel/intel-extension-for-pytorch/issues/538
|
||||
ifneq (,$(findstring sycl,$(BUILD_TYPE)))
|
||||
export SKIP_CONDA=1
|
||||
endif
|
||||
|
||||
.PHONY: diffusers
|
||||
diffusers:
|
||||
@echo "Installing $(CONDA_ENV_PATH)..."
|
||||
bash install.sh $(CONDA_ENV_PATH)
|
||||
|
||||
.PHONY: run
|
||||
run:
|
||||
@echo "Running diffusers..."
|
||||
bash run.sh
|
||||
@echo "Diffusers run."
|
||||
|
||||
test:
|
||||
bash test.sh
|
||||
5
backend/python/diffusers/README.md
Normal file
5
backend/python/diffusers/README.md
Normal file
@@ -0,0 +1,5 @@
|
||||
# Creating a separate environment for the diffusers project
|
||||
|
||||
```
|
||||
make diffusers
|
||||
```
|
||||
452
backend/python/diffusers/backend_diffusers.py
Executable file
452
backend/python/diffusers/backend_diffusers.py
Executable file
@@ -0,0 +1,452 @@
|
||||
#!/usr/bin/env python3
|
||||
from concurrent import futures
|
||||
|
||||
import argparse
|
||||
from collections import defaultdict
|
||||
from enum import Enum
|
||||
import signal
|
||||
import sys
|
||||
import time
|
||||
import os
|
||||
|
||||
from PIL import Image
|
||||
import torch
|
||||
|
||||
import backend_pb2
|
||||
import backend_pb2_grpc
|
||||
|
||||
import grpc
|
||||
|
||||
from diffusers import StableDiffusionXLPipeline, StableDiffusionDepth2ImgPipeline, DPMSolverMultistepScheduler, StableDiffusionPipeline, DiffusionPipeline, EulerAncestralDiscreteScheduler
|
||||
from diffusers import StableDiffusionImg2ImgPipeline, AutoPipelineForText2Image, ControlNetModel, StableVideoDiffusionPipeline
|
||||
from diffusers.pipelines.stable_diffusion import safety_checker
|
||||
from diffusers.utils import load_image,export_to_video
|
||||
from compel import Compel, ReturnedEmbeddingsType
|
||||
|
||||
from transformers import CLIPTextModel
|
||||
from safetensors.torch import load_file
|
||||
|
||||
|
||||
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
|
||||
COMPEL=os.environ.get("COMPEL", "0") == "1"
|
||||
XPU=os.environ.get("XPU", "0") == "1"
|
||||
CLIPSKIP=os.environ.get("CLIPSKIP", "1") == "1"
|
||||
SAFETENSORS=os.environ.get("SAFETENSORS", "1") == "1"
|
||||
CHUNK_SIZE=os.environ.get("CHUNK_SIZE", "8")
|
||||
FPS=os.environ.get("FPS", "7")
|
||||
DISABLE_CPU_OFFLOAD=os.environ.get("DISABLE_CPU_OFFLOAD", "0") == "1"
|
||||
FRAMES=os.environ.get("FRAMES", "64")
|
||||
|
||||
if XPU:
|
||||
import intel_extension_for_pytorch as ipex
|
||||
print(ipex.xpu.get_device_name(0))
|
||||
|
||||
# If MAX_WORKERS are specified in the environment use it, otherwise default to 1
|
||||
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1'))
|
||||
|
||||
# https://github.com/CompVis/stable-diffusion/issues/239#issuecomment-1627615287
|
||||
def sc(self, clip_input, images) : return images, [False for i in images]
|
||||
# edit the StableDiffusionSafetyChecker class so that, when called, it just returns the images and an array of True values
|
||||
safety_checker.StableDiffusionSafetyChecker.forward = sc
|
||||
|
||||
from diffusers.schedulers import (
|
||||
DDIMScheduler,
|
||||
DPMSolverMultistepScheduler,
|
||||
DPMSolverSinglestepScheduler,
|
||||
EulerAncestralDiscreteScheduler,
|
||||
EulerDiscreteScheduler,
|
||||
HeunDiscreteScheduler,
|
||||
KDPM2AncestralDiscreteScheduler,
|
||||
KDPM2DiscreteScheduler,
|
||||
LMSDiscreteScheduler,
|
||||
PNDMScheduler,
|
||||
UniPCMultistepScheduler,
|
||||
)
|
||||
# The scheduler list mapping was taken from here: https://github.com/neggles/animatediff-cli/blob/6f336f5f4b5e38e85d7f06f1744ef42d0a45f2a7/src/animatediff/schedulers.py#L39
|
||||
# Credits to https://github.com/neggles
|
||||
# See https://github.com/huggingface/diffusers/issues/4167 for more details on sched mapping from A1111
|
||||
class DiffusionScheduler(str, Enum):
|
||||
ddim = "ddim" # DDIM
|
||||
pndm = "pndm" # PNDM
|
||||
heun = "heun" # Heun
|
||||
unipc = "unipc" # UniPC
|
||||
euler = "euler" # Euler
|
||||
euler_a = "euler_a" # Euler a
|
||||
|
||||
lms = "lms" # LMS
|
||||
k_lms = "k_lms" # LMS Karras
|
||||
|
||||
dpm_2 = "dpm_2" # DPM2
|
||||
k_dpm_2 = "k_dpm_2" # DPM2 Karras
|
||||
|
||||
dpm_2_a = "dpm_2_a" # DPM2 a
|
||||
k_dpm_2_a = "k_dpm_2_a" # DPM2 a Karras
|
||||
|
||||
dpmpp_2m = "dpmpp_2m" # DPM++ 2M
|
||||
k_dpmpp_2m = "k_dpmpp_2m" # DPM++ 2M Karras
|
||||
|
||||
dpmpp_sde = "dpmpp_sde" # DPM++ SDE
|
||||
k_dpmpp_sde = "k_dpmpp_sde" # DPM++ SDE Karras
|
||||
|
||||
dpmpp_2m_sde = "dpmpp_2m_sde" # DPM++ 2M SDE
|
||||
k_dpmpp_2m_sde = "k_dpmpp_2m_sde" # DPM++ 2M SDE Karras
|
||||
|
||||
|
||||
def get_scheduler(name: str, config: dict = {}):
|
||||
is_karras = name.startswith("k_")
|
||||
if is_karras:
|
||||
# strip the k_ prefix and add the karras sigma flag to config
|
||||
name = name.lstrip("k_")
|
||||
config["use_karras_sigmas"] = True
|
||||
|
||||
if name == DiffusionScheduler.ddim:
|
||||
sched_class = DDIMScheduler
|
||||
elif name == DiffusionScheduler.pndm:
|
||||
sched_class = PNDMScheduler
|
||||
elif name == DiffusionScheduler.heun:
|
||||
sched_class = HeunDiscreteScheduler
|
||||
elif name == DiffusionScheduler.unipc:
|
||||
sched_class = UniPCMultistepScheduler
|
||||
elif name == DiffusionScheduler.euler:
|
||||
sched_class = EulerDiscreteScheduler
|
||||
elif name == DiffusionScheduler.euler_a:
|
||||
sched_class = EulerAncestralDiscreteScheduler
|
||||
elif name == DiffusionScheduler.lms:
|
||||
sched_class = LMSDiscreteScheduler
|
||||
elif name == DiffusionScheduler.dpm_2:
|
||||
# Equivalent to DPM2 in K-Diffusion
|
||||
sched_class = KDPM2DiscreteScheduler
|
||||
elif name == DiffusionScheduler.dpm_2_a:
|
||||
# Equivalent to `DPM2 a`` in K-Diffusion
|
||||
sched_class = KDPM2AncestralDiscreteScheduler
|
||||
elif name == DiffusionScheduler.dpmpp_2m:
|
||||
# Equivalent to `DPM++ 2M` in K-Diffusion
|
||||
sched_class = DPMSolverMultistepScheduler
|
||||
config["algorithm_type"] = "dpmsolver++"
|
||||
config["solver_order"] = 2
|
||||
elif name == DiffusionScheduler.dpmpp_sde:
|
||||
# Equivalent to `DPM++ SDE` in K-Diffusion
|
||||
sched_class = DPMSolverSinglestepScheduler
|
||||
elif name == DiffusionScheduler.dpmpp_2m_sde:
|
||||
# Equivalent to `DPM++ 2M SDE` in K-Diffusion
|
||||
sched_class = DPMSolverMultistepScheduler
|
||||
config["algorithm_type"] = "sde-dpmsolver++"
|
||||
else:
|
||||
raise ValueError(f"Invalid scheduler '{'k_' if is_karras else ''}{name}'")
|
||||
|
||||
return sched_class.from_config(config)
|
||||
|
||||
# Implement the BackendServicer class with the service methods
|
||||
class BackendServicer(backend_pb2_grpc.BackendServicer):
|
||||
def Health(self, request, context):
|
||||
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
|
||||
def LoadModel(self, request, context):
|
||||
try:
|
||||
print(f"Loading model {request.Model}...", file=sys.stderr)
|
||||
print(f"Request {request}", file=sys.stderr)
|
||||
torchType = torch.float32
|
||||
variant = None
|
||||
|
||||
if request.F16Memory:
|
||||
torchType = torch.float16
|
||||
variant="fp16"
|
||||
|
||||
local = False
|
||||
modelFile = request.Model
|
||||
|
||||
self.cfg_scale = 7
|
||||
if request.CFGScale != 0:
|
||||
self.cfg_scale = request.CFGScale
|
||||
|
||||
clipmodel = "runwayml/stable-diffusion-v1-5"
|
||||
if request.CLIPModel != "":
|
||||
clipmodel = request.CLIPModel
|
||||
clipsubfolder = "text_encoder"
|
||||
if request.CLIPSubfolder != "":
|
||||
clipsubfolder = request.CLIPSubfolder
|
||||
|
||||
# Check if ModelFile exists
|
||||
if request.ModelFile != "":
|
||||
if os.path.exists(request.ModelFile):
|
||||
local = True
|
||||
modelFile = request.ModelFile
|
||||
|
||||
fromSingleFile = request.Model.startswith("http") or request.Model.startswith("/") or local
|
||||
self.img2vid=False
|
||||
self.txt2vid=False
|
||||
## img2img
|
||||
if (request.PipelineType == "StableDiffusionImg2ImgPipeline") or (request.IMG2IMG and request.PipelineType == ""):
|
||||
if fromSingleFile:
|
||||
self.pipe = StableDiffusionImg2ImgPipeline.from_single_file(modelFile,
|
||||
torch_dtype=torchType)
|
||||
else:
|
||||
self.pipe = StableDiffusionImg2ImgPipeline.from_pretrained(request.Model,
|
||||
torch_dtype=torchType)
|
||||
|
||||
elif request.PipelineType == "StableDiffusionDepth2ImgPipeline":
|
||||
self.pipe = StableDiffusionDepth2ImgPipeline.from_pretrained(request.Model,
|
||||
torch_dtype=torchType)
|
||||
## img2vid
|
||||
elif request.PipelineType == "StableVideoDiffusionPipeline":
|
||||
self.img2vid=True
|
||||
self.pipe = StableVideoDiffusionPipeline.from_pretrained(
|
||||
request.Model, torch_dtype=torchType, variant=variant
|
||||
)
|
||||
if not DISABLE_CPU_OFFLOAD:
|
||||
self.pipe.enable_model_cpu_offload()
|
||||
## text2img
|
||||
elif request.PipelineType == "AutoPipelineForText2Image" or request.PipelineType == "":
|
||||
self.pipe = AutoPipelineForText2Image.from_pretrained(request.Model,
|
||||
torch_dtype=torchType,
|
||||
use_safetensors=SAFETENSORS,
|
||||
variant=variant)
|
||||
elif request.PipelineType == "StableDiffusionPipeline":
|
||||
if fromSingleFile:
|
||||
self.pipe = StableDiffusionPipeline.from_single_file(modelFile,
|
||||
torch_dtype=torchType)
|
||||
else:
|
||||
self.pipe = StableDiffusionPipeline.from_pretrained(request.Model,
|
||||
torch_dtype=torchType)
|
||||
elif request.PipelineType == "DiffusionPipeline":
|
||||
self.pipe = DiffusionPipeline.from_pretrained(request.Model,
|
||||
torch_dtype=torchType)
|
||||
elif request.PipelineType == "VideoDiffusionPipeline":
|
||||
self.txt2vid=True
|
||||
self.pipe = DiffusionPipeline.from_pretrained(request.Model,
|
||||
torch_dtype=torchType)
|
||||
elif request.PipelineType == "StableDiffusionXLPipeline":
|
||||
if fromSingleFile:
|
||||
self.pipe = StableDiffusionXLPipeline.from_single_file(modelFile,
|
||||
torch_dtype=torchType,
|
||||
use_safetensors=True)
|
||||
else:
|
||||
self.pipe = StableDiffusionXLPipeline.from_pretrained(
|
||||
request.Model,
|
||||
torch_dtype=torchType,
|
||||
use_safetensors=True,
|
||||
variant=variant)
|
||||
|
||||
if CLIPSKIP and request.CLIPSkip != 0:
|
||||
self.clip_skip = request.CLIPSkip
|
||||
else:
|
||||
self.clip_skip = 0
|
||||
|
||||
# torch_dtype needs to be customized. float16 for GPU, float32 for CPU
|
||||
# TODO: this needs to be customized
|
||||
if request.SchedulerType != "":
|
||||
self.pipe.scheduler = get_scheduler(request.SchedulerType, self.pipe.scheduler.config)
|
||||
|
||||
if COMPEL:
|
||||
self.compel = Compel(
|
||||
tokenizer=[self.pipe.tokenizer, self.pipe.tokenizer_2 ],
|
||||
text_encoder=[self.pipe.text_encoder, self.pipe.text_encoder_2],
|
||||
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
|
||||
requires_pooled=[False, True]
|
||||
)
|
||||
|
||||
|
||||
if request.ControlNet:
|
||||
self.controlnet = ControlNetModel.from_pretrained(
|
||||
request.ControlNet, torch_dtype=torchType, variant=variant
|
||||
)
|
||||
self.pipe.controlnet = self.controlnet
|
||||
else:
|
||||
self.controlnet = None
|
||||
|
||||
if request.CUDA:
|
||||
self.pipe.to('cuda')
|
||||
if self.controlnet:
|
||||
self.controlnet.to('cuda')
|
||||
if XPU:
|
||||
self.pipe = self.pipe.to("xpu")
|
||||
# Assume directory from request.ModelFile.
|
||||
# Only if request.LoraAdapter it's not an absolute path
|
||||
if request.LoraAdapter and request.ModelFile != "" and not os.path.isabs(request.LoraAdapter) and request.LoraAdapter:
|
||||
# get base path of modelFile
|
||||
modelFileBase = os.path.dirname(request.ModelFile)
|
||||
# modify LoraAdapter to be relative to modelFileBase
|
||||
request.LoraAdapter = os.path.join(modelFileBase, request.LoraAdapter)
|
||||
device = "cpu" if not request.CUDA else "cuda"
|
||||
self.device = device
|
||||
if request.LoraAdapter:
|
||||
# Check if its a local file and not a directory ( we load lora differently for a safetensor file )
|
||||
if os.path.exists(request.LoraAdapter) and not os.path.isdir(request.LoraAdapter):
|
||||
self.load_lora_weights(request.LoraAdapter, 1, device, torchType)
|
||||
else:
|
||||
self.pipe.unet.load_attn_procs(request.LoraAdapter)
|
||||
|
||||
except Exception as err:
|
||||
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
|
||||
# Implement your logic here for the LoadModel service
|
||||
# Replace this with your desired response
|
||||
return backend_pb2.Result(message="Model loaded successfully", success=True)
|
||||
|
||||
# https://github.com/huggingface/diffusers/issues/3064
|
||||
def load_lora_weights(self, checkpoint_path, multiplier, device, dtype):
|
||||
LORA_PREFIX_UNET = "lora_unet"
|
||||
LORA_PREFIX_TEXT_ENCODER = "lora_te"
|
||||
# load LoRA weight from .safetensors
|
||||
state_dict = load_file(checkpoint_path, device=device)
|
||||
|
||||
updates = defaultdict(dict)
|
||||
for key, value in state_dict.items():
|
||||
# it is suggested to print out the key, it usually will be something like below
|
||||
# "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight"
|
||||
|
||||
layer, elem = key.split('.', 1)
|
||||
updates[layer][elem] = value
|
||||
|
||||
# directly update weight in diffusers model
|
||||
for layer, elems in updates.items():
|
||||
|
||||
if "text" in layer:
|
||||
layer_infos = layer.split(LORA_PREFIX_TEXT_ENCODER + "_")[-1].split("_")
|
||||
curr_layer = self.pipe.text_encoder
|
||||
else:
|
||||
layer_infos = layer.split(LORA_PREFIX_UNET + "_")[-1].split("_")
|
||||
curr_layer = self.pipe.unet
|
||||
|
||||
# find the target layer
|
||||
temp_name = layer_infos.pop(0)
|
||||
while len(layer_infos) > -1:
|
||||
try:
|
||||
curr_layer = curr_layer.__getattr__(temp_name)
|
||||
if len(layer_infos) > 0:
|
||||
temp_name = layer_infos.pop(0)
|
||||
elif len(layer_infos) == 0:
|
||||
break
|
||||
except Exception:
|
||||
if len(temp_name) > 0:
|
||||
temp_name += "_" + layer_infos.pop(0)
|
||||
else:
|
||||
temp_name = layer_infos.pop(0)
|
||||
|
||||
# get elements for this layer
|
||||
weight_up = elems['lora_up.weight'].to(dtype)
|
||||
weight_down = elems['lora_down.weight'].to(dtype)
|
||||
alpha = elems['alpha'] if 'alpha' in elems else None
|
||||
if alpha:
|
||||
alpha = alpha.item() / weight_up.shape[1]
|
||||
else:
|
||||
alpha = 1.0
|
||||
|
||||
# update weight
|
||||
if len(weight_up.shape) == 4:
|
||||
curr_layer.weight.data += multiplier * alpha * torch.mm(weight_up.squeeze(3).squeeze(2), weight_down.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3)
|
||||
else:
|
||||
curr_layer.weight.data += multiplier * alpha * torch.mm(weight_up, weight_down)
|
||||
|
||||
def GenerateImage(self, request, context):
|
||||
|
||||
prompt = request.positive_prompt
|
||||
|
||||
steps = 1
|
||||
|
||||
if request.step != 0:
|
||||
steps = request.step
|
||||
|
||||
# create a dictionary of values for the parameters
|
||||
options = {
|
||||
"negative_prompt": request.negative_prompt,
|
||||
"width": request.width,
|
||||
"height": request.height,
|
||||
"num_inference_steps": steps,
|
||||
}
|
||||
|
||||
if request.src != "" and not self.controlnet and not self.img2vid:
|
||||
image = Image.open(request.src)
|
||||
options["image"] = image
|
||||
elif self.controlnet and request.src:
|
||||
pose_image = load_image(request.src)
|
||||
options["image"] = pose_image
|
||||
|
||||
if CLIPSKIP and self.clip_skip != 0:
|
||||
options["clip_skip"]=self.clip_skip
|
||||
|
||||
# Get the keys that we will build the args for our pipe for
|
||||
keys = options.keys()
|
||||
|
||||
if request.EnableParameters != "":
|
||||
keys = request.EnableParameters.split(",")
|
||||
|
||||
if request.EnableParameters == "none":
|
||||
keys = []
|
||||
|
||||
# create a dictionary of parameters by using the keys from EnableParameters and the values from defaults
|
||||
kwargs = {key: options[key] for key in keys}
|
||||
|
||||
# Set seed
|
||||
if request.seed > 0:
|
||||
kwargs["generator"] = torch.Generator(device=self.device).manual_seed(
|
||||
request.seed
|
||||
)
|
||||
|
||||
if self.img2vid:
|
||||
# Load the conditioning image
|
||||
image = load_image(request.src)
|
||||
image = image.resize((1024, 576))
|
||||
|
||||
generator = torch.manual_seed(request.seed)
|
||||
frames = self.pipe(image, guidance_scale=self.cfg_scale, decode_chunk_size=CHUNK_SIZE, generator=generator).frames[0]
|
||||
export_to_video(frames, request.dst, fps=FPS)
|
||||
return backend_pb2.Result(message="Media generated successfully", success=True)
|
||||
|
||||
if self.txt2vid:
|
||||
video_frames = self.pipe(prompt, guidance_scale=self.cfg_scale, num_inference_steps=steps, num_frames=int(FRAMES)).frames
|
||||
export_to_video(video_frames, request.dst)
|
||||
return backend_pb2.Result(message="Media generated successfully", success=True)
|
||||
|
||||
image = {}
|
||||
if COMPEL:
|
||||
conditioning, pooled = self.compel.build_conditioning_tensor(prompt)
|
||||
kwargs["prompt_embeds"] = conditioning
|
||||
kwargs["pooled_prompt_embeds"] = pooled
|
||||
# pass the kwargs dictionary to the self.pipe method
|
||||
image = self.pipe(
|
||||
guidance_scale=self.cfg_scale,
|
||||
**kwargs
|
||||
).images[0]
|
||||
else:
|
||||
# pass the kwargs dictionary to the self.pipe method
|
||||
image = self.pipe(
|
||||
prompt,
|
||||
guidance_scale=self.cfg_scale,
|
||||
**kwargs
|
||||
).images[0]
|
||||
|
||||
# save the result
|
||||
image.save(request.dst)
|
||||
|
||||
return backend_pb2.Result(message="Media generated", success=True)
|
||||
|
||||
def serve(address):
|
||||
server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS))
|
||||
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
|
||||
server.add_insecure_port(address)
|
||||
server.start()
|
||||
print("Server started. Listening on: " + address, file=sys.stderr)
|
||||
|
||||
# Define the signal handler function
|
||||
def signal_handler(sig, frame):
|
||||
print("Received termination signal. Shutting down...")
|
||||
server.stop(0)
|
||||
sys.exit(0)
|
||||
|
||||
# Set the signal handlers for SIGINT and SIGTERM
|
||||
signal.signal(signal.SIGINT, signal_handler)
|
||||
signal.signal(signal.SIGTERM, signal_handler)
|
||||
|
||||
try:
|
||||
while True:
|
||||
time.sleep(_ONE_DAY_IN_SECONDS)
|
||||
except KeyboardInterrupt:
|
||||
server.stop(0)
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Run the gRPC server.")
|
||||
parser.add_argument(
|
||||
"--addr", default="localhost:50051", help="The address to bind the server to."
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
serve(args.addr)
|
||||
61
backend/python/diffusers/backend_pb2.py
Normal file
61
backend/python/diffusers/backend_pb2.py
Normal file
File diff suppressed because one or more lines are too long
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user