Compare commits

...

9 Commits
v0.9 ... v1.0

Author SHA1 Message Date
Ettore Di Giacinto
80f50e6ccd Rename project to LocalAI (#35)
Signed-off-by: mudler <mudler@c3os.io>
2023-04-19 18:43:10 +02:00
Ettore Di Giacinto
7fec26f5d3 Enhancements (#34)
Signed-off-by: mudler <mudler@c3os.io>
2023-04-19 17:10:29 +02:00
Ettore Di Giacinto
a9a875ee2b ⬆️ Bump llama.cpp (#33)
Signed-off-by: mudler <mudler@c3os.io>
2023-04-17 21:34:02 +02:00
Ettore Di Giacinto
db5ac715f3 Use a reasonable default context size (#31) 2023-04-17 18:45:42 +02:00
Ettore Di Giacinto
0b330d90ad feat: drop embedded webui (#27)
Signed-off-by: mudler <mudler@c3os.io>
2023-04-16 10:46:20 +02:00
Ettore Di Giacinto
63601fabd1 feat: drop default model and llama-specific API (#26)
Signed-off-by: mudler <mudler@c3os.io>
2023-04-16 10:40:50 +02:00
Ettore Di Giacinto
1370b4482f 📖 Add prompt-templates examples (#25)
Signed-off-by: mudler <mudler@c3os.io>
2023-04-16 10:24:15 +02:00
Ettore Di Giacinto
b062f3142b feat: enhance API, expose more parameters (#24)
Signed-off-by: mudler <mudler@c3os.io>
2023-04-16 10:16:48 +02:00
Marc R Kellerman
c37175271f feature: makefile & updates (#23)
Co-authored-by: mudler <mudler@c3os.io>
Co-authored-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2023-04-15 16:39:07 -07:00
24 changed files with 447 additions and 754 deletions

View File

@@ -1 +1 @@
models/*.bin
models

4
.env
View File

@@ -1 +1,3 @@
THREADS=14
THREADS=14
CONTEXT_SIZE=512
MODELS_PATH=/models

View File

@@ -19,7 +19,7 @@ jobs:
- name: Prepare
id: prep
run: |
DOCKER_IMAGE=quay.io/go-skynet/llama-cli
DOCKER_IMAGE=quay.io/go-skynet/local-ai
VERSION=master
SHORTREF=${GITHUB_SHA::8}

13
.gitignore vendored
View File

@@ -1,2 +1,11 @@
llama-cli
models/*.bin
# go-llama build artifacts
go-llama
go-gpt4all-j
# LocalAI build binary
LocalAI
local-ai
# Ignore models
models/*.bin
models/ggml-*

View File

@@ -1,5 +1,5 @@
# Make sure to check the documentation at http://goreleaser.com
project_name: llama-cli
project_name: local-ai
builds:
- ldflags:
- -w -s

16
.vscode/launch.json vendored Normal file
View File

@@ -0,0 +1,16 @@
{
"version": "0.2.0",
"configurations": [
{
"name": "Launch Go",
"type": "go",
"request": "launch",
"mode": "debug",
"program": "${workspaceFolder}/main.go",
"args": [
"api"
]
}
]
}

View File

@@ -2,17 +2,11 @@ ARG GO_VERSION=1.20
ARG DEBIAN_VERSION=11
FROM golang:$GO_VERSION as builder
WORKDIR /build
ARG GO_LLAMA_CPP_TAG=llama.cpp-2f7c8e0
RUN git clone -b $GO_LLAMA_CPP_TAG --recurse-submodules https://github.com/go-skynet/go-llama.cpp
RUN cd go-llama.cpp && make libbinding.a
COPY go.mod ./
COPY go.sum ./
RUN go mod download
RUN apt-get update
RUN apt-get update && apt-get install -y cmake
COPY . .
RUN go mod edit -replace github.com/go-skynet/go-llama.cpp=/build/go-llama.cpp
RUN C_INCLUDE_PATH=/build/go-llama.cpp LIBRARY_PATH=/build/go-llama.cpp go build -o llama-cli ./
ARG BUILD_TYPE=
RUN make build${BUILD_TYPE}
FROM debian:$DEBIAN_VERSION
COPY --from=builder /build/llama-cli /usr/bin/llama-cli
ENTRYPOINT [ "/usr/bin/llama-cli" ]
COPY --from=builder /build/local-ai /usr/bin/local-ai
ENTRYPOINT [ "/usr/bin/local-ai" ]

View File

@@ -2,4 +2,4 @@ VERSION 0.7
build:
FROM DOCKERFILE -f Dockerfile .
SAVE ARTIFACT /usr/bin/llama-cli AS LOCAL llama-cli
SAVE ARTIFACT /usr/bin/local-ai AS LOCAL local-ai

79
Makefile Normal file
View File

@@ -0,0 +1,79 @@
GOCMD=go
GOTEST=$(GOCMD) test
GOVET=$(GOCMD) vet
BINARY_NAME=local-ai
GOLLAMA_VERSION?=llama.cpp-5ecff35
GREEN := $(shell tput -Txterm setaf 2)
YELLOW := $(shell tput -Txterm setaf 3)
WHITE := $(shell tput -Txterm setaf 7)
CYAN := $(shell tput -Txterm setaf 6)
RESET := $(shell tput -Txterm sgr0)
.PHONY: all test build vendor
all: help
## Build:
build: prepare ## Build the project
C_INCLUDE_PATH=$(shell pwd)/go-llama.cpp:$(shell pwd)/go-gpt4all-j LIBRARY_PATH=$(shell pwd)/go-llama.cpp:$(shell pwd)/go-gpt4all-j $(GOCMD) build -o $(BINARY_NAME) ./
buildgeneric: prepare-generic ## Build the project
C_INCLUDE_PATH=$(shell pwd)/go-llama.cpp:$(shell pwd)/go-gpt4all-j LIBRARY_PATH=$(shell pwd)/go-llama.cpp:$(shell pwd)/go-gpt4all-j $(GOCMD) build -o $(BINARY_NAME) ./
go-gpt4all-j:
git clone --recurse-submodules https://github.com/go-skynet/go-gpt4all-j.cpp go-gpt4all-j
# This is hackish, but needed as both go-llama and go-gpt4allj have their own version of ggml..
@find ./go-gpt4all-j -type f -name "*.c" -exec sed -i'' -e 's/ggml_/ggml_gptj_/g' {} +
@find ./go-gpt4all-j -type f -name "*.cpp" -exec sed -i'' -e 's/ggml_/ggml_gptj_/g' {} +
@find ./go-gpt4all-j -type f -name "*.h" -exec sed -i'' -e 's/ggml_/ggml_gptj_/g' {} +
@find ./go-gpt4all-j -type f -name "*.cpp" -exec sed -i'' -e 's/gpt_/gptj_/g' {} +
@find ./go-gpt4all-j -type f -name "*.h" -exec sed -i'' -e 's/gpt_/gptj_/g' {} +
go-gpt4all-j/libgptj.a: go-gpt4all-j
$(MAKE) -C go-gpt4all-j libgptj.a
go-gpt4all-j/libgptj.a-generic: go-gpt4all-j
$(MAKE) -C go-gpt4all-j generic-libgptj.a
go-llama:
git clone -b $(GOLLAMA_VERSION) --recurse-submodules https://github.com/go-skynet/go-llama.cpp go-llama
$(MAKE) -C go-llama libbinding.a
go-llama-generic:
git clone -b $(GOLLAMA_VERSION) --recurse-submodules https://github.com/go-skynet/go-llama.cpp go-llama
$(MAKE) -C go-llama generic-libbinding.a
prepare: go-llama go-gpt4all-j/libgptj.a
$(GOCMD) mod edit -replace github.com/go-skynet/go-llama.cpp=$(shell pwd)/go-llama
$(GOCMD) mod edit -replace github.com/go-skynet/go-gpt4all-j.cpp=$(shell pwd)/go-gpt4all-j
prepare-generic: go-llama-generic go-gpt4all-j/libgptj.a-generic
$(GOCMD) mod edit -replace github.com/go-skynet/go-llama.cpp=$(shell pwd)/go-llama
$(GOCMD) mod edit -replace github.com/go-skynet/go-gpt4all-j.cpp=$(shell pwd)/go-gpt4all-j
clean: ## Remove build related file
rm -fr ./go-llama
rm -rf ./go-gpt4all-j
rm -rf $(BINARY_NAME)
## Run:
run: prepare
$(GOCMD) run ./ api
## Test:
test: ## Run the tests of the project
$(GOTEST) -v -race ./... $(OUTPUT_OPTIONS)
## Help:
help: ## Show this help.
@echo ''
@echo 'Usage:'
@echo ' ${YELLOW}make${RESET} ${GREEN}<target>${RESET}'
@echo ''
@echo 'Targets:'
@awk 'BEGIN {FS = ":.*?## "} { \
if (/^[a-zA-Z_-]+:.*?##.*$$/) {printf " ${YELLOW}%-20s${GREEN}%s${RESET}\n", $$1, $$2} \
else if (/^## .*$$/) {printf " ${CYAN}%s${RESET}\n", substr($$1,4)} \
}' $(MAKEFILE_LIST)

177
README.md
View File

@@ -1,26 +1,39 @@
## :camel: llama-cli
## :camel: LocalAI
> :warning: This project has been renamed from `llama-cli` to `LocalAI` to reflect the fact that we are focusing on a fast drop-in OpenAI API rather on the CLI interface. We think that there are already many projects that can be used as a CLI interface already, for instance [llama.cpp](https://github.com/ggerganov/llama.cpp) and [gpt4all](https://github.com/nomic-ai/gpt4all). If you are were using `llama-cli` for CLI interactions and want to keep using it, use older versions or please open up an issue - contributions are welcome!
llama-cli is a straightforward golang CLI interface and API compatible with OpenAI for [llama.cpp](https://github.com/ggerganov/llama.cpp), it supports multiple-models and also provides a simple command line interface that allows text generation using a GPT-based model like llama directly from the terminal.
LocalAI is a straightforward, drop-in replacement API compatible with OpenAI for local CPU inferencing, based on [llama.cpp](https://github.com/ggerganov/llama.cpp), [gpt4all](https://github.com/nomic-ai/gpt4all) and [ggml](https://github.com/ggerganov/ggml), including support GPT4ALL-J which is Apache 2.0 Licensed and can be used for commercial purposes.
It is compatible with the models supported by `llama.cpp`. You might need to convert older models to the new format, see [here](https://github.com/ggerganov/llama.cpp#using-gpt4all) for instance to run `gpt4all`.
- OpenAI compatible API
- Supports multiple-models
- Once loaded the first time, it keep models loaded in memory for faster inference
- Provides a simple command line interface that allows text generation directly from the terminal
- Support for prompt templates
- Doesn't shell-out, but uses C bindings for a faster inference and better performance. Uses [go-llama.cpp](https://github.com/go-skynet/go-llama.cpp) and [go-gpt4all-j.cpp](https://github.com/go-skynet/go-gpt4all-j.cpp).
`llama-cli` doesn't shell-out, it uses https://github.com/go-skynet/go-llama.cpp, which is a golang binding of [llama.cpp](https://github.com/ggerganov/llama.cpp).
## Model compatibility
It is compatible with the models supported by [llama.cpp](https://github.com/ggerganov/llama.cpp) and also [GPT4ALL-J](https://github.com/nomic-ai/gpt4all).
Note: You might need to convert older models to the new format, see [here](https://github.com/ggerganov/llama.cpp#using-gpt4all) for instance to run `gpt4all`.
## Usage
You can use `docker-compose`:
> `LocalAI` comes by default as a container image. You can check out all the available images with corresponding tags [here](https://quay.io/repository/go-skynet/local-ai?tab=tags&tag=latest).
The easiest way to run LocalAI is by using `docker-compose`:
```bash
git clone https://github.com/go-skynet/llama-cli
cd llama-cli
git clone https://github.com/go-skynet/LocalAI
cd LocalAI
# copy your models to models/
cp your-model.bin models/
# (optional) Edit the .env file to set the number of concurrent threads used for inference
# echo "THREADS=14" > .env
# (optional) Edit the .env file to set things like context size and threads
# vim .env
# start with docker-compose
docker compose up -d --build
@@ -28,16 +41,20 @@ docker compose up -d --build
# Now API is accessible at localhost:8080
curl http://localhost:8080/v1/models
# {"object":"list","data":[{"id":"your-model.bin","object":"model"}]}
curl http://localhost:8080/v1/completions -H "Content-Type: application/json" -d '{
"model": "your-model.bin",
"prompt": "A long time ago in a galaxy far, far away",
"temperature": 0.7
}'
```
Note: You can use a default template for every model in your model path, by creating a corresponding file with the `.tmpl` suffix next to your model. For instance, if the model is called `foo.bin`, you can create a sibiling file, `foo.bin.tmpl` which will be used as a default prompt, for instance this can be used with alpaca:
## Prompt templates
The API doesn't inject a default prompt for talking to the model. You have to use a prompt similar to what's described in the standford-alpaca docs: https://github.com/tatsu-lab/stanford_alpaca#data-release.
<details>
You can use a default template for every model present in your model path, by creating a corresponding file with the `.tmpl` suffix next to your model. For instance, if the model is called `foo.bin`, you can create a sibiling file, `foo.bin.tmpl` which will be used as a default prompt, for instance this can be used with alpaca:
```
Below is an instruction that describes a task. Write a response that appropriately completes the request.
@@ -48,68 +65,19 @@ Below is an instruction that describes a task. Write a response that appropriate
### Response:
```
## Container images
See the [prompt-templates](https://github.com/go-skynet/LocalAI/tree/master/prompt-templates) directory in this repository for templates for most popular models.
`llama-cli` comes by default as a container image. You can check out all the available images with corresponding tags [here](https://quay.io/repository/go-skynet/llama-cli?tab=tags&tag=latest)
To begin, run:
```
docker run -ti --rm quay.io/go-skynet/llama-cli:latest --instruction "What's an alpaca?" --topk 10000 --model ...
```
Where `--model` is the path of the model you want to use.
Note: you need to mount a volume to the docker container in order to load a model, for instance:
```
# assuming your model is in /path/to/your/models/foo.bin
docker run -v /path/to/your/models:/models -ti --rm quay.io/go-skynet/llama-cli:latest --instruction "What's an alpaca?" --topk 10000 --model /models/foo.bin
```
You will receive a response like the following:
```
An alpaca is a member of the South American Camelid family, which includes the llama, guanaco and vicuña. It is a domesticated species that originates from the Andes mountain range in South America. Alpacas are used in the textile industry for their fleece, which is much softer than wool. Alpacas are also used for meat, milk, and fiber.
```
## Basic usage
To use llama-cli, specify a pre-trained GPT-based model, an input text, and an instruction for text generation. llama-cli takes the following arguments when running from the CLI:
```
llama-cli --model <model_path> --instruction <instruction> [--input <input>] [--template <template_path>] [--tokens <num_tokens>] [--threads <num_threads>] [--temperature <temperature>] [--topp <top_p>] [--topk <top_k>]
```
| Parameter | Environment Variable | Default Value | Description |
| ------------ | -------------------- | ------------- | -------------------------------------- |
| template | TEMPLATE | | A file containing a template for output formatting (optional). |
| instruction | INSTRUCTION | | Input prompt text or instruction. "-" for STDIN. |
| input | INPUT | - | Path to text or "-" for STDIN. |
| model | MODEL_PATH | | The path to the pre-trained GPT-based model. |
| tokens | TOKENS | 128 | The maximum number of tokens to generate. |
| threads | THREADS | NumCPU() | The number of threads to use for text generation. |
| temperature | TEMPERATURE | 0.95 | Sampling temperature for model output. ( values between `0.1` and `1.0` ) |
| top_p | TOP_P | 0.85 | The cumulative probability for top-p sampling. |
| top_k | TOP_K | 20 | The number of top-k tokens to consider for text generation. |
| context-size | CONTEXT_SIZE | 512 | Default token context size. |
Here's an example of using `llama-cli`:
```
llama-cli --model ~/ggml-alpaca-7b-q4.bin --instruction "What's an alpaca?"
```
This will generate text based on the given model and instruction.
</details>
## API
`llama-cli` also provides an API for running text generation as a service. The models once loaded the first time will be kept in memory.
`LocalAI` provides an API for running text generation as a service, that follows the OpenAI reference and can be used as a drop-in. The models once loaded the first time will be kept in memory.
<details>
Example of starting the API with `docker`:
```bash
docker run -p 8080:8080 -ti --rm quay.io/go-skynet/llama-cli:latest api --models-path /path/to/models --context-size 700 --threads 4
docker run -p 8080:8080 -ti --rm quay.io/go-skynet/local-api:latest --models-path /path/to/models --context-size 700 --threads 4
```
And you'll see:
@@ -124,15 +92,15 @@ And you'll see:
└───────────────────────────────────────────────────┘
```
Note: Models have to end up with `.bin`.
Note: Models have to end up with `.bin` so can be listed by the `/models` endpoint.
You can control the API server options with command line arguments:
```
llama-cli api --models-path <model_path> [--address <address>] [--threads <num_threads>]
local-api --models-path <model_path> [--address <address>] [--threads <num_threads>]
```
The API takes takes the following:
The API takes takes the following parameters:
| Parameter | Environment Variable | Default Value | Description |
| ------------ | -------------------- | ------------- | -------------------------------------- |
@@ -143,6 +111,8 @@ The API takes takes the following:
Once the server is running, you can start making requests to it using HTTP, using the OpenAI API.
</details>
### Supported OpenAI API endpoints
You can check out the [OpenAI API reference](https://platform.openai.com/docs/api-reference/chat/create).
@@ -184,22 +154,6 @@ You can list all the models available with:
curl http://localhost:8080/v1/models
```
## Web interface
There is also available a simple web interface (for instance, http://localhost:8080/) which can be used as a playground.
Note: The API doesn't inject a template for talking to the instance, while the CLI does. You have to use a prompt similar to what's described in the standford-alpaca docs: https://github.com/tatsu-lab/stanford_alpaca#data-release, for instance:
```
Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Response:
```
## Using other models
gpt4all (https://github.com/nomic-ai/gpt4all) works as well, however the original model needs to be converted (same applies for old alpaca models, too):
@@ -214,69 +168,36 @@ python 828bddec6162a023114ce19146cb2b82/gistfile1.txt models tokenizer.model
# There will be a new model with the ".tmp" extension, you have to use that one!
```
### Golang client API
The `llama-cli` codebase has also a small client in go that can be used alongside with the api:
```golang
package main
import (
"fmt"
client "github.com/go-skynet/llama-cli/client"
)
func main() {
cli := client.NewClient("http://ip:port")
out, err := cli.Predict("What's an alpaca?")
if err != nil {
panic(err)
}
fmt.Println(out)
}
```
### Windows compatibility
It should work, however you need to make sure you give enough resources to the container. See https://github.com/go-skynet/llama-cli/issues/2
It should work, however you need to make sure you give enough resources to the container. See https://github.com/go-skynet/LocalAI/issues/2
### Kubernetes
You can run the API directly in Kubernetes:
```bash
kubectl apply -f https://raw.githubusercontent.com/go-skynet/llama-cli/master/kubernetes/deployment.yaml
```
You can run the API in Kubernetes, see an example deployment in [kubernetes](https://github.com/go-skynet/LocalAI/tree/master/kubernetes)
### Build locally
Pre-built images might fit well for most of the modern hardware, however you can and might need to build the images manually.
In order to build the `llama-cli` container image locally you can use `docker`:
In order to build the `LocalAI` container image locally you can use `docker`:
```
# build the image as "alpaca-image"
docker build -t llama-cli .
docker run llama-cli --instruction "What's an alpaca?"
# build the image
docker build -t LocalAI .
docker run LocalAI
```
Or build the binary with:
Or build the binary with `make`:
```
# build the image as "alpaca-image"
docker run --privileged -v /var/run/docker.sock:/var/run/docker.sock --rm -t -v "$(pwd)":/workspace -v earthly-tmp:/tmp/earthly:rw earthly/earthly:v0.7.2 +build
# run the binary
./llama-cli --instruction "What's an alpaca?"
make build
```
## Short-term roadmap
- [x] Mimic OpenAI API (https://github.com/go-skynet/llama-cli/issues/10)
- Binary releases (https://github.com/go-skynet/llama-cli/issues/6)
- [x] Mimic OpenAI API (https://github.com/go-skynet/LocalAI/issues/10)
- Binary releases (https://github.com/go-skynet/LocalAI/issues/6)
- Upstream our golang bindings to llama.cpp (https://github.com/ggerganov/llama.cpp/issues/351)
- [x] Multi-model support
- Have a webUI!

View File

@@ -1,19 +1,15 @@
package api
import (
"embed"
"fmt"
"net/http"
"strconv"
"strings"
"sync"
model "github.com/go-skynet/llama-cli/pkg/model"
model "github.com/go-skynet/LocalAI/pkg/model"
gptj "github.com/go-skynet/go-gpt4all-j.cpp"
llama "github.com/go-skynet/go-llama.cpp"
"github.com/gofiber/fiber/v2"
"github.com/gofiber/fiber/v2/middleware/cors"
"github.com/gofiber/fiber/v2/middleware/filesystem"
"github.com/gofiber/fiber/v2/middleware/recover"
)
@@ -26,10 +22,10 @@ type OpenAIResponse struct {
}
type Choice struct {
Index int `json:"index,omitempty"`
FinishReason string `json:"finish_reason,omitempty"`
Message Message `json:"message,omitempty"`
Text string `json:"text,omitempty"`
Index int `json:"index,omitempty"`
FinishReason string `json:"finish_reason,omitempty"`
Message *Message `json:"message,omitempty"`
Text string `json:"text,omitempty"`
}
type Message struct {
@@ -47,24 +43,33 @@ type OpenAIRequest struct {
// Prompt is read only by completion API calls
Prompt string `json:"prompt"`
// Messages is read only by chat/completion API calls
Messages []Message `json:"messages"`
Echo bool `json:"echo"`
// Common options between all the API calls
TopP float64 `json:"top_p"`
TopK int `json:"top_k"`
Temperature float64 `json:"temperature"`
Maxtokens int `json:"max_tokens"`
N int `json:"n"`
// Custom parameters - not present in the OpenAI API
Batch int `json:"batch"`
F16 bool `json:"f16kv"`
IgnoreEOS bool `json:"ignore_eos"`
Seed int `json:"seed"`
}
//go:embed index.html
var indexHTML embed.FS
func openAIEndpoint(chat bool, defaultModel *llama.LLama, loader *model.ModelLoader, threads int, defaultMutex *sync.Mutex, mutexMap *sync.Mutex, mutexes map[string]*sync.Mutex) func(c *fiber.Ctx) error {
// https://platform.openai.com/docs/api-reference/completions
func openAIEndpoint(chat bool, loader *model.ModelLoader, threads, ctx int, f16 bool, defaultMutex *sync.Mutex, mutexMap *sync.Mutex, mutexes map[string]*sync.Mutex) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
var err error
var model *llama.LLama
var gptModel *gptj.GPTJ
input := new(OpenAIRequest)
// Get input data from the request body
@@ -73,14 +78,24 @@ func openAIEndpoint(chat bool, defaultModel *llama.LLama, loader *model.ModelLoa
}
if input.Model == "" {
if defaultModel == nil {
return fmt.Errorf("no default model loaded, and no model specified")
}
model = defaultModel
return fmt.Errorf("no model specified")
} else {
model, err = loader.LoadModel(input.Model)
if err != nil {
return err
// Try to load the model with both
var llamaerr error
llamaOpts := []llama.ModelOption{}
if ctx != 0 {
llamaOpts = append(llamaOpts, llama.SetContext(ctx))
}
if f16 {
llamaOpts = append(llamaOpts, llama.EnableF16Memory)
}
model, llamaerr = loader.LoadLLaMAModel(input.Model, llamaOpts...)
if llamaerr != nil {
gptModel, err = loader.LoadGPTJModel(input.Model)
if err != nil {
return fmt.Errorf("llama: %s gpt: %s", llamaerr.Error(), err.Error()) // llama failed first, so we want to catch both errors
}
}
}
@@ -139,36 +154,102 @@ func openAIEndpoint(chat bool, defaultModel *llama.LLama, loader *model.ModelLoa
predInput = templatedInput
}
// Generate the prediction using the language model
prediction, err := model.Predict(
predInput,
llama.SetTemperature(temperature),
llama.SetTopP(topP),
llama.SetTopK(topK),
llama.SetTokens(tokens),
llama.SetThreads(threads),
)
if err != nil {
return err
result := []Choice{}
n := input.N
if input.N == 0 {
n = 1
}
if chat {
// Return the chat prediction in the response body
return c.JSON(OpenAIResponse{
Model: input.Model,
Choices: []Choice{{Message: Message{Role: "assistant", Content: prediction}}},
})
var predFunc func() (string, error)
switch {
case gptModel != nil:
predFunc = func() (string, error) {
// Generate the prediction using the language model
predictOptions := []gptj.PredictOption{
gptj.SetTemperature(temperature),
gptj.SetTopP(topP),
gptj.SetTopK(topK),
gptj.SetTokens(tokens),
gptj.SetThreads(threads),
}
if input.Batch != 0 {
predictOptions = append(predictOptions, gptj.SetBatch(input.Batch))
}
if input.Seed != 0 {
predictOptions = append(predictOptions, gptj.SetSeed(input.Seed))
}
return gptModel.Predict(
predInput,
predictOptions...,
)
}
case model != nil:
predFunc = func() (string, error) {
// Generate the prediction using the language model
predictOptions := []llama.PredictOption{
llama.SetTemperature(temperature),
llama.SetTopP(topP),
llama.SetTopK(topK),
llama.SetTokens(tokens),
llama.SetThreads(threads),
}
if input.Batch != 0 {
predictOptions = append(predictOptions, llama.SetBatch(input.Batch))
}
if input.F16 {
predictOptions = append(predictOptions, llama.EnableF16KV)
}
if input.IgnoreEOS {
predictOptions = append(predictOptions, llama.IgnoreEOS)
}
if input.Seed != 0 {
predictOptions = append(predictOptions, llama.SetSeed(input.Seed))
}
return model.Predict(
predInput,
predictOptions...,
)
}
}
for i := 0; i < n; i++ {
var prediction string
prediction, err := predFunc()
if err != nil {
return err
}
if input.Echo {
prediction = predInput + prediction
}
if chat {
result = append(result, Choice{Message: &Message{Role: "assistant", Content: prediction}})
} else {
result = append(result, Choice{Text: prediction})
}
}
// Return the prediction in the response body
return c.JSON(OpenAIResponse{
Model: input.Model,
Choices: []Choice{{Text: prediction}},
Choices: result,
})
}
}
func Start(defaultModel *llama.LLama, loader *model.ModelLoader, listenAddr string, threads int) error {
func Start(loader *model.ModelLoader, listenAddr string, threads, ctxSize int, f16 bool) error {
app := fiber.New()
// Default middleware config
@@ -181,8 +262,8 @@ func Start(defaultModel *llama.LLama, loader *model.ModelLoader, listenAddr stri
var mumutex = &sync.Mutex{}
// openAI compatible API endpoint
app.Post("/v1/chat/completions", openAIEndpoint(true, defaultModel, loader, threads, mutex, mumutex, mu))
app.Post("/v1/completions", openAIEndpoint(false, defaultModel, loader, threads, mutex, mumutex, mu))
app.Post("/v1/chat/completions", openAIEndpoint(true, loader, threads, ctxSize, f16, mutex, mumutex, mu))
app.Post("/v1/completions", openAIEndpoint(false, loader, threads, ctxSize, f16, mutex, mumutex, mu))
app.Get("/v1/models", func(c *fiber.Ctx) error {
models, err := loader.ListModels()
if err != nil {
@@ -202,74 +283,6 @@ func Start(defaultModel *llama.LLama, loader *model.ModelLoader, listenAddr stri
})
})
app.Use("/", filesystem.New(filesystem.Config{
Root: http.FS(indexHTML),
NotFoundFile: "index.html",
}))
/*
curl --location --request POST 'http://localhost:8080/predict' --header 'Content-Type: application/json' --data-raw '{
"text": "What is an alpaca?",
"topP": 0.8,
"topK": 50,
"temperature": 0.7,
"tokens": 100
}'
*/
// Endpoint to generate the prediction
app.Post("/predict", func(c *fiber.Ctx) error {
mutex.Lock()
defer mutex.Unlock()
// Get input data from the request body
input := new(struct {
Text string `json:"text"`
})
if err := c.BodyParser(input); err != nil {
return err
}
// Set the parameters for the language model prediction
topP, err := strconv.ParseFloat(c.Query("topP", "0.9"), 64) // Default value of topP is 0.9
if err != nil {
return err
}
topK, err := strconv.Atoi(c.Query("topK", "40")) // Default value of topK is 40
if err != nil {
return err
}
temperature, err := strconv.ParseFloat(c.Query("temperature", "0.5"), 64) // Default value of temperature is 0.5
if err != nil {
return err
}
tokens, err := strconv.Atoi(c.Query("tokens", "128")) // Default value of tokens is 128
if err != nil {
return err
}
// Generate the prediction using the language model
prediction, err := defaultModel.Predict(
input.Text,
llama.SetTemperature(temperature),
llama.SetTopP(topP),
llama.SetTopK(topK),
llama.SetTokens(tokens),
llama.SetThreads(threads),
)
if err != nil {
return err
}
// Return the prediction in the response body
return c.JSON(struct {
Prediction string `json:"prediction"`
}{
Prediction: prediction,
})
})
// Start the server
app.Listen(listenAddr)
return nil

View File

@@ -1,120 +0,0 @@
<!DOCTYPE html>
<html>
<head>
<title>llama-cli</title>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.15.3/css/all.min.css" crossorigin="anonymous" referrerpolicy="no-referrer" />
<link rel="stylesheet" href="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/css/bootstrap.min.css">
</head>
<style>
@keyframes rotating {
from {
transform: rotate(0deg);
}
to {
transform: rotate(360deg);
}
}
.waiting {
animation: rotating 1s linear infinite;
}
</style>
<body>
<div class="container mt-5" x-data="{ templates:[
{
name: 'Alpaca: Instruction without input',
text: `Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{{.Instruction}}
### Response:`,
},
{
name: 'Alpaca: Instruction with input',
text: `Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{{.Instruction}}
### Input:
{{.Input}}
### Response:`,
}
], selectedTemplate: '', selectedTemplateText: '' }">
<h1>llama-cli API</h1>
<div class="form-group">
<label for="inputText">Input Text:</label>
<textarea class="form-control" id="inputText" rows="6" placeholder="Your text input here..." x-text="selectedTemplateText"></textarea>
</div>
<div class="form-group">
<label for="templateSelect">Select Template:</label>
<select class="form-control" id="templateSelect" x-model="selectedTemplateText">
<option value="">None</option>
<template x-for="(template, index) in templates" :key="index">
<option :value="template.text" x-text="template.name"></option>
</template>
</select>
</div>
<div class="form-group">
<label for="topP">Top P:</label>
<input type="range" step="0.01" min="0" max="1" class="form-control" id="topP" value="0.20" name="topP" onchange="this.nextElementSibling.value = this.value" required>
<output>0.20</output>
</div>
<div class="form-group">
<label for="topK">Top K:</label>
<input type="number" class="form-control" id="topK" value="10000" name="topK" required>
</div>
<div class="form-group">
<label for="temperature">Temperature:</label>
<input type="range" step="0.01" min="0" max="1" value="0.9" class="form-control" id="temperature" name="temperature" onchange="this.nextElementSibling.value = this.value" required>
<output>0.9</output>
</div>
<div class="form-group">
<label for="tokens">Tokens:</label>
<input type="number" class="form-control" id="tokens" name="tokens" value="128" required>
</div>
<button class="btn btn-primary" x-on:click="submitRequest()">Submit <i class="fas fa-paper-plane"></i></button>
<hr>
<div class="form-group">
<label for="outputText">Output Text:</label>
<textarea class="form-control" id="outputText" rows="5" readonly></textarea>
</div>
</div>
<script defer src="https://cdn.jsdelivr.net/npm/alpinejs@3.x.x/dist/cdn.min.js"></script>
<script>
function submitRequest() {
var button = document.querySelector("i.fa-paper-plane");
button.classList.add("waiting");
var text = document.getElementById("inputText").value;
var url = "/predict";
var data = {
"text": text,
"topP": document.getElementById("topP").value,
"topK": document.getElementById("topK").value,
"temperature": document.getElementById("temperature").value,
"tokens": document.getElementById("tokens").value
};
fetch(url, {
method: "POST",
headers: {
"Content-Type": "application/json"
},
body: JSON.stringify(data)
})
.then(response => response.json())
.then(data => {
document.getElementById("outputText").value = data.prediction;
button.classList.remove("waiting");
})
.catch(error => { console.error(error); button.classList.remove("waiting"); });
}
</script>
</body>
</html>

View File

@@ -1,75 +0,0 @@
package client
import (
"bytes"
"encoding/json"
"fmt"
"net/http"
)
type Prediction struct {
Prediction string `json:"prediction"`
}
type Client struct {
baseURL string
client *http.Client
endpoint string
}
func NewClient(baseURL string) *Client {
return &Client{
baseURL: baseURL,
client: &http.Client{},
endpoint: "/predict",
}
}
type InputData struct {
Text string `json:"text"`
TopP float64 `json:"topP,omitempty"`
TopK int `json:"topK,omitempty"`
Temperature float64 `json:"temperature,omitempty"`
Tokens int `json:"tokens,omitempty"`
}
func (c *Client) Predict(text string, opts ...InputOption) (string, error) {
input := NewInputData(opts...)
input.Text = text
// encode input data to JSON format
inputBytes, err := json.Marshal(input)
if err != nil {
return "", err
}
// create HTTP request
url := c.baseURL + c.endpoint
req, err := http.NewRequest("POST", url, bytes.NewBuffer(inputBytes))
if err != nil {
return "", err
}
// set request headers
req.Header.Set("Content-Type", "application/json")
// send request and get response
resp, err := c.client.Do(req)
if err != nil {
return "", err
}
defer resp.Body.Close()
if resp.StatusCode != http.StatusOK {
return "", fmt.Errorf("request failed with status %d", resp.StatusCode)
}
// decode response body to Prediction struct
var prediction Prediction
err = json.NewDecoder(resp.Body).Decode(&prediction)
if err != nil {
return "", err
}
return prediction.Prediction, nil
}

View File

@@ -1,51 +0,0 @@
package client
import "net/http"
type ClientOption func(c *Client)
func WithHTTPClient(httpClient *http.Client) ClientOption {
return func(c *Client) {
c.client = httpClient
}
}
func WithEndpoint(endpoint string) ClientOption {
return func(c *Client) {
c.endpoint = endpoint
}
}
type InputOption func(d *InputData)
func NewInputData(opts ...InputOption) *InputData {
data := &InputData{}
for _, opt := range opts {
opt(data)
}
return data
}
func WithTopP(topP float64) InputOption {
return func(d *InputData) {
d.TopP = topP
}
}
func WithTopK(topK int) InputOption {
return func(d *InputData) {
d.TopK = topK
}
}
func WithTemperature(temperature float64) InputOption {
return func(d *InputData) {
d.Temperature = temperature
}
}
func WithTokens(tokens int) InputOption {
return func(d *InputData) {
d.Tokens = tokens
}
}

View File

@@ -2,14 +2,17 @@ version: '3.6'
services:
api:
image: quay.io/go-skynet/llama-cli:latest
build: .
volumes:
- ./models:/models
image: quay.io/go-skynet/local-ai:latest
build:
context: .
dockerfile: Dockerfile
# args:
# BUILD_TYPE: generic # Uncomment to build CPU generic code that works on most HW
ports:
- 8080:8080
environment:
- MODELS_PATH=/models
- CONTEXT_SIZE=700
- MODELS_PATH=$MODELS_PATH
- CONTEXT_SIZE=$CONTEXT_SIZE
- THREADS=$THREADS
command: api
volumes:
- ./models:/models:cached

5
go.mod
View File

@@ -1,9 +1,9 @@
module github.com/go-skynet/llama-cli
module github.com/go-skynet/LocalAI
go 1.19
require (
github.com/go-skynet/go-llama.cpp v0.0.0-20230415155049-9260bfd28bc4
github.com/go-skynet/go-llama.cpp v0.0.0-20230415213228-bac222030640
github.com/gofiber/fiber/v2 v2.42.0
github.com/urfave/cli/v2 v2.25.0
)
@@ -11,6 +11,7 @@ require (
require (
github.com/andybalholm/brotli v1.0.4 // indirect
github.com/cpuguy83/go-md2man/v2 v2.0.2 // indirect
github.com/go-skynet/go-gpt4all-j.cpp v0.0.0-20230419091210-303cf2a59a94 // indirect
github.com/google/uuid v1.3.0 // indirect
github.com/klauspost/compress v1.15.9 // indirect
github.com/mattn/go-colorable v0.1.13 // indirect

6
go.sum
View File

@@ -3,8 +3,10 @@ github.com/andybalholm/brotli v1.0.4/go.mod h1:fO7iG3H7G2nSZ7m0zPUDn85XEX2GTukHG
github.com/cpuguy83/go-md2man/v2 v2.0.2 h1:p1EgwI/C7NhT0JmVkwCD2ZBK8j4aeHQX2pMHHBfMQ6w=
github.com/cpuguy83/go-md2man/v2 v2.0.2/go.mod h1:tgQtvFlXSQOSOSIRvRPT7W67SCa46tRHOmNcaadrF8o=
github.com/go-logr/logr v1.2.3 h1:2DntVwHkVopvECVRSlL5PSo9eG+cAkDCuckLubN+rq0=
github.com/go-skynet/go-llama.cpp v0.0.0-20230415155049-9260bfd28bc4 h1:u/y9MlPHOeIj636IQmrf9ptMjjdgCVIcsfb7lMFh39M=
github.com/go-skynet/go-llama.cpp v0.0.0-20230415155049-9260bfd28bc4/go.mod h1:35AKIEMY+YTKCBJIa/8GZcNGJ2J+nQk1hQiWo/OnEWw=
github.com/go-skynet/go-gpt4all-j.cpp v0.0.0-20230419091210-303cf2a59a94 h1:rtrrMvlIq+g0/ltXjDdLeNtz0uc4wJ4Qs15GFU4ba4c=
github.com/go-skynet/go-gpt4all-j.cpp v0.0.0-20230419091210-303cf2a59a94/go.mod h1:5VZ9XbcINI0XcHhkcX8GPK8TplFGAzu1Hrg4tNiMCtI=
github.com/go-skynet/go-llama.cpp v0.0.0-20230415213228-bac222030640 h1:8SSVbQ3yvq7JnfLCLF4USV0PkQnnduUkaNCv/hHDa3E=
github.com/go-skynet/go-llama.cpp v0.0.0-20230415213228-bac222030640/go.mod h1:35AKIEMY+YTKCBJIa/8GZcNGJ2J+nQk1hQiWo/OnEWw=
github.com/go-task/slim-sprig v0.0.0-20230315185526-52ccab3ef572 h1:tfuBGBXKqDEevZMzYi5KSi8KkcZtzBcTgAUUtapy0OI=
github.com/gofiber/fiber/v2 v2.42.0 h1:Fnp7ybWvS+sjNQsFvkhf4G8OhXswvB6Vee8hM/LyS+8=
github.com/gofiber/fiber/v2 v2.42.0/go.mod h1:3+SGNjqMh5VQH5Vz2Wdi43zTIV16ktlFd3x3R6O1Zlc=

View File

@@ -23,9 +23,7 @@ spec:
spec:
containers:
- name: llama
args:
- api
image: quay.io/go-skynet/llama-cli:latest
image: quay.io/go-skynet/local-ai:latest
---
apiVersion: v1
kind: Service

270
main.go
View File

@@ -1,246 +1,76 @@
package main
import (
"bytes"
"fmt"
"io/ioutil"
"os"
"runtime"
"text/template"
llama "github.com/go-skynet/go-llama.cpp"
api "github.com/go-skynet/llama-cli/api"
model "github.com/go-skynet/llama-cli/pkg/model"
api "github.com/go-skynet/LocalAI/api"
model "github.com/go-skynet/LocalAI/pkg/model"
"github.com/urfave/cli/v2"
)
// Define the template string
var emptyInput string = `Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{{.Instruction}}
### Response:`
var nonEmptyInput string = `Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{{.Instruction}}
### Input:
{{.Input}}
### Response:
`
func llamaFromOptions(ctx *cli.Context) (*llama.LLama, error) {
opts := []llama.ModelOption{llama.SetContext(ctx.Int("context-size"))}
return llama.New(ctx.String("model"), opts...)
}
func templateString(t string, in interface{}) (string, error) {
// Parse the template
tmpl, err := template.New("prompt").Parse(t)
if err != nil {
return "", err
}
var buf bytes.Buffer
err = tmpl.Execute(&buf, in)
if err != nil {
return "", err
}
return buf.String(), nil
}
var modelFlags = []cli.Flag{
&cli.StringFlag{
Name: "model",
EnvVars: []string{"MODEL_PATH"},
},
&cli.IntFlag{
Name: "tokens",
EnvVars: []string{"TOKENS"},
Value: 128,
},
&cli.IntFlag{
Name: "context-size",
EnvVars: []string{"CONTEXT_SIZE"},
Value: 512,
},
&cli.IntFlag{
Name: "threads",
EnvVars: []string{"THREADS"},
Value: runtime.NumCPU(),
},
&cli.Float64Flag{
Name: "temperature",
EnvVars: []string{"TEMPERATURE"},
Value: 0.95,
},
&cli.Float64Flag{
Name: "topp",
EnvVars: []string{"TOP_P"},
Value: 0.85,
},
&cli.IntFlag{
Name: "topk",
EnvVars: []string{"TOP_K"},
Value: 20,
},
}
func main() {
path, err := os.Getwd()
if err != nil {
fmt.Println(err)
os.Exit(1)
}
app := &cli.App{
Name: "llama-cli",
Version: "0.1",
Usage: "llama-cli --model ... --instruction 'What is an alpaca?'",
Flags: append(modelFlags,
&cli.StringFlag{
Name: "template",
EnvVars: []string{"TEMPLATE"},
Name: "LocalAI",
Usage: "OpenAI compatible API for running LLaMA/GPT models locally on CPU with consumer grade hardware.",
Flags: []cli.Flag{
&cli.BoolFlag{
Name: "f16",
EnvVars: []string{"F16"},
},
&cli.IntFlag{
Name: "threads",
DefaultText: "Number of threads used for parallel computation. Usage of the number of physical cores in the system is suggested.",
EnvVars: []string{"THREADS"},
Value: runtime.NumCPU(),
},
&cli.StringFlag{
Name: "instruction",
EnvVars: []string{"INSTRUCTION"},
Name: "models-path",
DefaultText: "Path containing models used for inferencing",
EnvVars: []string{"MODELS_PATH"},
Value: path,
},
&cli.StringFlag{
Name: "input",
EnvVars: []string{"INPUT"},
}),
Description: `Run llama.cpp inference`,
UsageText: `
llama-cli --model ~/ggml-alpaca-7b-q4.bin --instruction "What's an alpaca?"
An Alpaca (Vicugna pacos) is a domesticated species of South American camelid, related to llamas and originally from Peru but now found throughout much of Andean region. They are bred for their fleeces which can be spun into wool or knitted items such as hats, sweaters, blankets etc
echo "An Alpaca (Vicugna pacos) is a domesticated species of South American camelid, related to llamas and originally from Peru but now found throughout much of Andean region. They are bred for their fleeces which can be spun into wool or knitted items such as hats, sweaters, blankets etc" | llama-cli --model ~/ggml-alpaca-7b-q4.bin --instruction "Proofread, improving clarity and flow" --input "-"
An Alpaca (Vicugna pacos) is a domesticated species from South America that's related to llamas. Originating in Peru but now found throughout the Andean region, they are bred for their fleeces which can be spun into wool or knitted items such as hats and sweaters—blankets too!
`,
Copyright: "go-skynet authors",
Commands: []*cli.Command{
{
Name: "api",
Flags: []cli.Flag{
&cli.IntFlag{
Name: "threads",
EnvVars: []string{"THREADS"},
Value: runtime.NumCPU(),
},
&cli.StringFlag{
Name: "models-path",
EnvVars: []string{"MODELS_PATH"},
},
&cli.StringFlag{
Name: "default-model",
EnvVars: []string{"default-model"},
},
&cli.StringFlag{
Name: "address",
EnvVars: []string{"ADDRESS"},
Value: ":8080",
},
&cli.IntFlag{
Name: "context-size",
EnvVars: []string{"CONTEXT_SIZE"},
Value: 512,
},
},
Action: func(ctx *cli.Context) error {
var defaultModel *llama.LLama
defModel := ctx.String("default-model")
if defModel != "" {
opts := []llama.ModelOption{llama.SetContext(ctx.Int("context-size"))}
var err error
defaultModel, err = llama.New(ctx.String("default-model"), opts...)
if err != nil {
return err
}
}
return api.Start(defaultModel, model.NewModelLoader(ctx.String("models-path")), ctx.String("address"), ctx.Int("threads"))
},
Name: "address",
DefaultText: "Bind address for the API server.",
EnvVars: []string{"ADDRESS"},
Value: ":8080",
},
&cli.IntFlag{
Name: "context-size",
DefaultText: "Default context size of the model",
EnvVars: []string{"CONTEXT_SIZE"},
Value: 512,
},
},
Description: `
LocalAI is a drop-in replacement OpenAI API which runs inference locally.
Some of the models compatible are:
- Vicuna
- Koala
- GPT4ALL
- GPT4ALL-J
- Alpaca
It uses llama.cpp and gpt4all as backend, supporting all the models supported by both.
`,
UsageText: `local-ai [options]`,
Copyright: "go-skynet authors",
Action: func(ctx *cli.Context) error {
instruction := ctx.String("instruction")
input := ctx.String("input")
templ := ctx.String("template")
promptTemplate := ""
if input != "" {
promptTemplate = nonEmptyInput
} else {
promptTemplate = emptyInput
}
if templ != "" {
dat, err := os.ReadFile(templ)
if err != nil {
fmt.Printf("Failed reading file: %s", err.Error())
os.Exit(1)
}
promptTemplate = string(dat)
}
if instruction == "-" {
dat, err := ioutil.ReadAll(os.Stdin)
if err != nil {
fmt.Printf("reading stdin failed: %s", err)
os.Exit(1)
}
instruction = string(dat)
}
if input == "-" {
dat, err := ioutil.ReadAll(os.Stdin)
if err != nil {
fmt.Printf("reading stdin failed: %s", err)
os.Exit(1)
}
input = string(dat)
}
str, err := templateString(promptTemplate, struct {
Instruction string
Input string
}{Instruction: instruction, Input: input})
if err != nil {
fmt.Println("Templating the input failed:", err.Error())
os.Exit(1)
}
l, err := llamaFromOptions(ctx)
if err != nil {
fmt.Println("Loading the model failed:", err.Error())
os.Exit(1)
}
res, err := l.Predict(
str,
llama.SetTemperature(ctx.Float64("temperature")),
llama.SetTopP(ctx.Float64("topp")),
llama.SetTopK(ctx.Int("topk")),
llama.SetTokens(ctx.Int("tokens")),
llama.SetThreads(ctx.Int("threads")),
)
if err != nil {
fmt.Printf("predicting failed: %s", err)
os.Exit(1)
}
fmt.Println(res)
return nil
return api.Start(model.NewModelLoader(ctx.String("models-path")), ctx.String("address"), ctx.Int("threads"), ctx.Int("context-size"), ctx.Bool("f16"))
},
}
err := app.Run(os.Args)
err = app.Run(os.Args)
if err != nil {
fmt.Println(err)
os.Exit(1)

View File

@@ -10,6 +10,7 @@ import (
"sync"
"text/template"
gptj "github.com/go-skynet/go-gpt4all-j.cpp"
llama "github.com/go-skynet/go-llama.cpp"
)
@@ -17,11 +18,12 @@ type ModelLoader struct {
modelPath string
mu sync.Mutex
models map[string]*llama.LLama
gptmodels map[string]*gptj.GPTJ
promptsTemplates map[string]*template.Template
}
func NewModelLoader(modelPath string) *ModelLoader {
return &ModelLoader{modelPath: modelPath, models: make(map[string]*llama.LLama), promptsTemplates: make(map[string]*template.Template)}
return &ModelLoader{modelPath: modelPath, gptmodels: make(map[string]*gptj.GPTJ), models: make(map[string]*llama.LLama), promptsTemplates: make(map[string]*template.Template)}
}
func (ml *ModelLoader) ListModels() ([]string, error) {
@@ -62,16 +64,81 @@ func (ml *ModelLoader) TemplatePrefix(modelName string, in interface{}) (string,
return buf.String(), nil
}
func (ml *ModelLoader) LoadModel(modelName string, opts ...llama.ModelOption) (*llama.LLama, error) {
func (ml *ModelLoader) loadTemplate(modelName, modelFile string) error {
modelTemplateFile := fmt.Sprintf("%s.tmpl", modelFile)
// Check if the model path exists
if _, err := os.Stat(modelTemplateFile); err != nil {
return nil
}
dat, err := os.ReadFile(modelTemplateFile)
if err != nil {
return err
}
// Parse the template
tmpl, err := template.New("prompt").Parse(string(dat))
if err != nil {
return err
}
ml.promptsTemplates[modelName] = tmpl
return nil
}
func (ml *ModelLoader) LoadGPTJModel(modelName string) (*gptj.GPTJ, error) {
ml.mu.Lock()
defer ml.mu.Unlock()
// Check if we already have a loaded model
modelFile := filepath.Join(ml.modelPath, modelName)
if m, ok := ml.gptmodels[modelFile]; ok {
return m, nil
}
// Check if the model path exists
if _, err := os.Stat(modelFile); os.IsNotExist(err) {
// try to find a s.bin
modelBin := fmt.Sprintf("%s.bin", modelFile)
if _, err := os.Stat(modelBin); os.IsNotExist(err) {
return nil, err
} else {
modelName = fmt.Sprintf("%s.bin", modelName)
modelFile = modelBin
}
}
// Load the model and keep it in memory for later use
model, err := gptj.New(modelFile)
if err != nil {
return nil, err
}
// If there is a prompt template, load it
if err := ml.loadTemplate(modelName, modelFile); err != nil {
return nil, err
}
ml.gptmodels[modelFile] = model
return model, err
}
func (ml *ModelLoader) LoadLLaMAModel(modelName string, opts ...llama.ModelOption) (*llama.LLama, error) {
ml.mu.Lock()
defer ml.mu.Unlock()
// Check if we already have a loaded model
modelFile := filepath.Join(ml.modelPath, modelName)
if m, ok := ml.models[modelFile]; ok {
return m, nil
}
// TODO: This needs refactoring, it's really bad to have it in here
// Check if we have a GPTJ model loaded instead
if _, ok := ml.gptmodels[modelFile]; ok {
return nil, fmt.Errorf("this model is a GPTJ one")
}
// Check if the model path exists
if _, err := os.Stat(modelFile); os.IsNotExist(err) {
@@ -92,21 +159,8 @@ func (ml *ModelLoader) LoadModel(modelName string, opts ...llama.ModelOption) (*
}
// If there is a prompt template, load it
modelTemplateFile := fmt.Sprintf("%s.tmpl", modelFile)
// Check if the model path exists
if _, err := os.Stat(modelTemplateFile); err == nil {
dat, err := os.ReadFile(modelTemplateFile)
if err != nil {
return nil, err
}
// Parse the template
tmpl, err := template.New("prompt").Parse(string(dat))
if err != nil {
return nil, err
}
ml.promptsTemplates[modelName] = tmpl
if err := ml.loadTemplate(modelName, modelFile); err != nil {
return nil, err
}
ml.models[modelFile] = model

View File

@@ -0,0 +1,6 @@
Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{{.Input}}
### Response:

View File

@@ -0,0 +1,4 @@
The prompt below is a question to answer, a task to complete, or a conversation to respond to; decide which and write an appropriate response.
### Prompt:
{{.Input}}
### Response:

View File

@@ -0,0 +1 @@
BEGINNING OF CONVERSATION: USER: {{.Input}} GPT:

View File

@@ -0,0 +1,6 @@
Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{{.Input}}
### Response: