Compare commits

...

3 Commits

Author SHA1 Message Date
Ettore Di Giacinto
de36a48861 Update gpt4all to fix thread counts (#249) 2023-05-13 09:37:46 +02:00
mudler
961ca93219 docs: Update README 2023-05-13 00:46:48 +02:00
Ettore Di Giacinto
557ccc5ad8 examples: add langchain-chroma example (#248) 2023-05-12 22:20:07 +02:00
11 changed files with 158 additions and 5 deletions

View File

@@ -5,7 +5,7 @@ BINARY_NAME=local-ai
GOLLAMA_VERSION?=70593fccbe4b01dedaab805b0f25cb58192c7b38
GPT4ALL_REPO?=https://github.com/go-skynet/gpt4all
GPT4ALL_VERSION?=3657f9417e17edf378c27d0a9274a1bf41caa914
GPT4ALL_VERSION?=a330bfe26e9e35ca402e16df18973a3b162fb4db
GOGPT2_VERSION?=92421a8cf61ed6e03babd9067af292b094cb1307
RWKV_REPO?=https://github.com/donomii/go-rwkv.cpp
RWKV_VERSION?=07166da10cb2a9e8854395a4f210464dcea76e47

View File

@@ -25,8 +25,9 @@ See [examples on how to integrate LocalAI](https://github.com/go-skynet/LocalAI/
## News
- 11-05-2023: __1.9.0__ released! 🔥 Important whisper updates ( https://github.com/go-skynet/LocalAI/pull/233 https://github.com/go-skynet/LocalAI/pull/229 ) and extended gpt4all model families support ( https://github.com/go-skynet/LocalAI/pull/232 ). Redpajama/dolly experimental ( https://github.com/go-skynet/LocalAI/pull/214 )
- 10-05-2023: __1.8.0__ released! 🔥 Added support for fast and accurate embeddings with `bert.cpp` ( https://github.com/go-skynet/LocalAI/pull/222 )
- 12-05-2023: __v1.10.0__ released! 🔥🔥 Updated `gpt4all` bindings. Added support for GPTNeox (experimental), RedPajama (experimental), Starcoder (experimental), Replit (experimental), MosaicML MPT. Also now `embeddings` endpoint supports tokens arrays. See the [langchain-chroma](https://github.com/go-skynet/LocalAI/tree/master/examples/langchain-chroma) example! Note - this update does NOT include https://github.com/ggerganov/llama.cpp/pull/1405 which makes models incompatible.
- 11-05-2023: __v1.9.0__ released! 🔥 Important whisper updates ( https://github.com/go-skynet/LocalAI/pull/233 https://github.com/go-skynet/LocalAI/pull/229 ) and extended gpt4all model families support ( https://github.com/go-skynet/LocalAI/pull/232 ). Redpajama/dolly experimental ( https://github.com/go-skynet/LocalAI/pull/214 )
- 10-05-2023: __v1.8.0__ released! 🔥 Added support for fast and accurate embeddings with `bert.cpp` ( https://github.com/go-skynet/LocalAI/pull/222 )
- 09-05-2023: Added experimental support for transcriptions endpoint ( https://github.com/go-skynet/LocalAI/pull/211 )
- 08-05-2023: Support for embeddings with models using the `llama.cpp` backend ( https://github.com/go-skynet/LocalAI/pull/207 )
- 02-05-2023: Support for `rwkv.cpp` models ( https://github.com/go-skynet/LocalAI/pull/158 ) and for `/edits` endpoint
@@ -36,7 +37,8 @@ Twitter: [@LocalAI_API](https://twitter.com/LocalAI_API) and [@mudler_it](https:
### Blogs and articles
- [Tutorial to use k8sgpt with LocalAI](https://medium.com/@tyler_97636/k8sgpt-localai-unlock-kubernetes-superpowers-for-free-584790de9b65) - excellent usecase for localAI, using AI to analyse Kubernetes clusters.
- [Question Answering on Documents locally with LangChain, LocalAI, Chroma, and GPT4All](https://mudler.pm/posts/localai-question-answering/) by Ettore Di Giacinto
- [Tutorial to use k8sgpt with LocalAI](https://medium.com/@tyler_97636/k8sgpt-localai-unlock-kubernetes-superpowers-for-free-584790de9b65) - excellent usecase for localAI, using AI to analyse Kubernetes clusters. by Tyller Gillson
## Contribute and help

View File

@@ -65,7 +65,7 @@ Run a slack bot which lets you talk directly with a model
[Check it out here](https://github.com/go-skynet/LocalAI/tree/master/examples/slack-bot/)
### Question answering on documents
### Question answering on documents with llama-index
_by [@mudler](https://github.com/mudler)_
@@ -73,6 +73,14 @@ Shows how to integrate with [Llama-Index](https://gpt-index.readthedocs.io/en/st
[Check it out here](https://github.com/go-skynet/LocalAI/tree/master/examples/query_data/)
### Question answering on documents with langchain and chroma
_by [@mudler](https://github.com/mudler)_
Shows how to integrate with `Langchain` and `Chroma` to enable question answering on a set of documents.
[Check it out here](https://github.com/go-skynet/LocalAI/tree/master/examples/langchain-chroma/)
### Template for Runpod.io
_by [@fHachenberg](https://github.com/fHachenberg)_

View File

@@ -0,0 +1,54 @@
# Data query example
This example makes use of [langchain and chroma](https://blog.langchain.dev/langchain-chroma/) to enable question answering on a set of documents.
## Setup
Download the models and start the API:
```bash
# Clone LocalAI
git clone https://github.com/go-skynet/LocalAI
cd LocalAI/examples/query_data
wget https://huggingface.co/skeskinen/ggml/resolve/main/all-MiniLM-L6-v2/ggml-model-q4_0.bin -O models/bert
wget https://gpt4all.io/models/ggml-gpt4all-j.bin -O models/ggml-gpt4all-j
# start with docker-compose
docker-compose up -d --build
```
### Python requirements
```
pip install -r requirements.txt
```
### Create a storage
In this step we will create a local vector database from our document set, so later we can ask questions on it with the LLM.
```bash
export OPENAI_API_BASE=http://localhost:8080/v1
export OPENAI_API_KEY=sk-
wget https://raw.githubusercontent.com/hwchase17/chat-your-data/master/state_of_the_union.txt
python store.py
```
After it finishes, a directory "storage" will be created with the vector index database.
## Query
We can now query the dataset.
```bash
export OPENAI_API_BASE=http://localhost:8080/v1
export OPENAI_API_KEY=sk-
python query.py
# President Trump recently stated during a press conference regarding tax reform legislation that "we're getting rid of all these loopholes." He also mentioned that he wants to simplify the system further through changes such as increasing the standard deduction amount and making other adjustments aimed at reducing taxpayers' overall burden.
```
Keep in mind now things are hit or miss!

View File

@@ -0,0 +1 @@
{{.Input}}

View File

@@ -0,0 +1,5 @@
name: text-embedding-ada-002
parameters:
model: bert
backend: bert-embeddings
embeddings: true

View File

@@ -0,0 +1,16 @@
name: gpt-3.5-turbo
parameters:
model: ggml-gpt4all-j
top_k: 80
temperature: 0.2
top_p: 0.7
context_size: 1024
stopwords:
- "HUMAN:"
- "GPT:"
roles:
user: " "
system: " "
template:
completion: completion
chat: gpt4all

View File

@@ -0,0 +1,4 @@
The prompt below is a question to answer, a task to complete, or a conversation to respond to; decide which and write an appropriate response.
### Prompt:
{{.Input}}
### Response:

View File

@@ -0,0 +1,31 @@
import os
from langchain.vectorstores import Chroma
from langchain.embeddings import OpenAIEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter,CharacterTextSplitter
from langchain.llms import OpenAI
from langchain.chains import VectorDBQA
from langchain.document_loaders import TextLoader
base_path = os.environ.get('OPENAI_API_BASE', 'http://localhost:8080/v1')
# Load and process the text
loader = TextLoader('state_of_the_union.txt')
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=300, chunk_overlap=70)
texts = text_splitter.split_documents(documents)
# Embed and store the texts
# Supplying a persist_directory will store the embeddings on disk
persist_directory = 'db'
embedding = OpenAIEmbeddings()
# Now we can load the persisted database from disk, and use it as normal.
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding)
qa = VectorDBQA.from_chain_type(llm=OpenAI(temperature=0, model_name="gpt-3.5-turbo", openai_api_base=base_path), chain_type="stuff", vectorstore=vectordb)
query = "What the president said about taxes ?"
print(qa.run(query))

View File

@@ -0,0 +1,4 @@
langchain==0.0.160
openai==0.27.6
chromadb==0.3.21
llama-index==0.6.2

View File

@@ -0,0 +1,28 @@
import os
from langchain.vectorstores import Chroma
from langchain.embeddings import OpenAIEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter,TokenTextSplitter,CharacterTextSplitter
from langchain.llms import OpenAI
from langchain.chains import VectorDBQA
from langchain.document_loaders import TextLoader
base_path = os.environ.get('OPENAI_API_BASE', 'http://localhost:8080/v1')
# Load and process the text
loader = TextLoader('state_of_the_union.txt')
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=300, chunk_overlap=70)
#text_splitter = TokenTextSplitter()
texts = text_splitter.split_documents(documents)
# Embed and store the texts
# Supplying a persist_directory will store the embeddings on disk
persist_directory = 'db'
embedding = OpenAIEmbeddings(model="text-embedding-ada-002")
vectordb = Chroma.from_documents(documents=texts, embedding=embedding, persist_directory=persist_directory)
vectordb.persist()
vectordb = None