Compare commits

..

3 Commits

Author SHA1 Message Date
ci-robbot [bot]
6c9ddff8e9 ⬆️ Update go-skynet/go-llama.cpp (#245)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2023-05-13 22:07:43 +02:00
ci-robbot [bot]
c5318587b8 ⬆️ Update go-skynet/go-bert.cpp (#247)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2023-05-13 14:36:01 +02:00
mudler
c3622299ce docs: cleanup langchain-chroma example 2023-05-13 11:16:56 +02:00
2 changed files with 3 additions and 14 deletions

View File

@@ -3,14 +3,14 @@ GOTEST=$(GOCMD) test
GOVET=$(GOCMD) vet
BINARY_NAME=local-ai
GOLLAMA_VERSION?=70593fccbe4b01dedaab805b0f25cb58192c7b38
GOLLAMA_VERSION?=eb99b5438787cbd687682da445e879e02bfeaa07
GPT4ALL_REPO?=https://github.com/go-skynet/gpt4all
GPT4ALL_VERSION?=a330bfe26e9e35ca402e16df18973a3b162fb4db
GOGPT2_VERSION?=92421a8cf61ed6e03babd9067af292b094cb1307
RWKV_REPO?=https://github.com/donomii/go-rwkv.cpp
RWKV_VERSION?=07166da10cb2a9e8854395a4f210464dcea76e47
WHISPER_CPP_VERSION?=bf2449dfae35a46b2cd92ab22661ce81a48d4993
BERT_VERSION?=ac22f8f74aec5e31bc46242c17e7d511f127856b
BERT_VERSION?=33118e0da50318101408986b86a331daeb4a6658
BLOOMZ_VERSION?=e9366e82abdfe70565644fbfae9651976714efd1

View File

@@ -2,25 +2,14 @@
import os
from langchain.vectorstores import Chroma
from langchain.embeddings import OpenAIEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter,CharacterTextSplitter
from langchain.llms import OpenAI
from langchain.chains import VectorDBQA
from langchain.document_loaders import TextLoader
base_path = os.environ.get('OPENAI_API_BASE', 'http://localhost:8080/v1')
# Load and process the text
loader = TextLoader('state_of_the_union.txt')
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=300, chunk_overlap=70)
texts = text_splitter.split_documents(documents)
# Embed and store the texts
# Supplying a persist_directory will store the embeddings on disk
persist_directory = 'db'
embedding = OpenAIEmbeddings()
persist_directory = 'db'
# Now we can load the persisted database from disk, and use it as normal.
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding)