Compare commits

..

1 Commits

Author SHA1 Message Date
Ettore Di Giacinto
bd7c2ff110 docs: reorder links in README.md 2023-04-28 13:54:11 +02:00
104 changed files with 1055 additions and 5960 deletions

View File

@@ -1,4 +1,2 @@
models
examples/chatbot-ui/models
examples/rwkv/models
examples/**/models
examples/chatbot-ui/models

View File

@@ -1,9 +0,0 @@
#!/bin/bash
set -xe
REPO=$1
BRANCH=$2
VAR=$3
LAST_COMMIT=$(curl -s -H "Accept: application/vnd.github.VERSION.sha" "https://api.github.com/repos/$REPO/commits/$BRANCH")
sed -i Makefile -e "s/$VAR?=.*/$VAR?=$LAST_COMMIT/"

View File

@@ -1,51 +0,0 @@
name: Bump dependencies
on:
schedule:
- cron: 0 20 * * *
workflow_dispatch:
jobs:
bump:
strategy:
fail-fast: false
matrix:
include:
- repository: "go-skynet/go-llama.cpp"
variable: "GOLLAMA_VERSION"
branch: "master"
- repository: "go-skynet/go-gpt2.cpp"
variable: "GOGPT2_VERSION"
branch: "master"
- repository: "donomii/go-rwkv.cpp"
variable: "RWKV_VERSION"
branch: "main"
- repository: "ggerganov/whisper.cpp"
variable: "WHISPER_CPP_VERSION"
branch: "master"
- repository: "go-skynet/go-bert.cpp"
variable: "BERT_VERSION"
branch: "master"
- repository: "go-skynet/bloomz.cpp"
variable: "BLOOMZ_VERSION"
branch: "main"
- repository: "nomic-ai/gpt4all"
variable: "GPT4ALL_VERSION"
branch: "main"
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Bump dependencies 🔧
run: |
bash .github/bump_deps.sh ${{ matrix.repository }} ${{ matrix.branch }} ${{ matrix.variable }}
- name: Create Pull Request
uses: peter-evans/create-pull-request@v5
with:
token: ${{ secrets.UPDATE_BOT_TOKEN }}
push-to-fork: ci-forks/LocalAI
commit-message: ':arrow_up: Update ${{ matrix.repository }}'
title: ':arrow_up: Update ${{ matrix.repository }}'
branch: "update/${{ matrix.variable }}"
body: Bump of ${{ matrix.repository }} version
signoff: true

View File

@@ -54,8 +54,8 @@ jobs:
uses: docker/login-action@v2
with:
registry: quay.io
username: ${{ secrets.LOCALAI_REGISTRY_USERNAME }}
password: ${{ secrets.LOCALAI_REGISTRY_PASSWORD }}
username: ${{ secrets.QUAY_USERNAME }}
password: ${{ secrets.QUAY_PASSWORD }}
- name: Build
if: github.event_name != 'pull_request'
uses: docker/build-push-action@v4

View File

@@ -21,7 +21,7 @@ jobs:
- name: Dependencies
run: |
sudo apt-get update
sudo apt-get install build-essential ffmpeg
sudo apt-get install build-essential
- name: Test
run: |
make test
@@ -38,7 +38,7 @@ jobs:
- name: Dependencies
run: |
brew update
brew install sdl2 ffmpeg
brew install sdl2
- name: Test
run: |
make test

10
.gitignore vendored
View File

@@ -1,10 +1,7 @@
# go-llama build artifacts
go-llama
gpt4all
go-stable-diffusion
go-gpt4all-j
go-gpt2
go-rwkv
whisper.cpp
# LocalAI build binary
LocalAI
@@ -14,7 +11,4 @@ local-ai
# Ignore models
models/*
test-models/
# just in case
.DS_Store
test-models/

View File

@@ -1,10 +1,14 @@
ARG GO_VERSION=1.20
ARG DEBIAN_VERSION=11
ARG BUILD_TYPE=
FROM golang:$GO_VERSION
FROM golang:$GO_VERSION as builder
WORKDIR /build
RUN apt-get update && apt-get install -y cmake libgomp1 libopenblas-dev libopenblas-base libopencv-dev libopencv-core-dev libopencv-core4.5
RUN apt-get update && apt-get install -y cmake
COPY . .
RUN ln -s /usr/include/opencv4/opencv2/ /usr/include/opencv2
RUN make prepare-sources
RUN make build
FROM debian:$DEBIAN_VERSION
COPY --from=builder /build/local-ai /usr/bin/local-ai
EXPOSE 8080
ENTRYPOINT [ "/build/entrypoint.sh" ]
ENTRYPOINT [ "/usr/bin/local-ai" ]

View File

@@ -1,15 +0,0 @@
ARG GO_VERSION=1.20
ARG DEBIAN_VERSION=11
ARG BUILD_TYPE=
FROM golang:$GO_VERSION as builder
WORKDIR /build
RUN apt-get update && apt-get install -y cmake libgomp1 libopenblas-dev libopenblas-base libopencv-dev libopencv-core-dev libopencv-core4.5
RUN ln -s /usr/include/opencv4/opencv2/ /usr/include/opencv2
COPY . .
RUN make build
FROM debian:$DEBIAN_VERSION
COPY --from=builder /build/local-ai /usr/bin/local-ai
EXPOSE 8080
ENTRYPOINT [ "/usr/bin/local-ai" ]

253
Makefile
View File

@@ -2,24 +2,12 @@ GOCMD=go
GOTEST=$(GOCMD) test
GOVET=$(GOCMD) vet
BINARY_NAME=local-ai
GOLLAMA_VERSION?=7f9ae4246088f0c08ed322acbae21d69cd2eb547
GPT4ALL_REPO?=https://github.com/nomic-ai/gpt4all
GPT4ALL_VERSION?=a07237e54fcdfdb351913587052ac061a2a7bdff
GOGPT2_VERSION?=7bff56f0224502c1c9ed6258d2a17e8084628827
RWKV_REPO?=https://github.com/donomii/go-rwkv.cpp
RWKV_VERSION?=07166da10cb2a9e8854395a4f210464dcea76e47
WHISPER_CPP_VERSION?=95b02d76b04d18e4ce37ed8353a1f0797f1717ea
BERT_VERSION?=cea1ed76a7f48ef386a8e369f6c82c48cdf2d551
BLOOMZ_VERSION?=e9366e82abdfe70565644fbfae9651976714efd1
BUILD_TYPE?=
CGO_LDFLAGS?=
CUDA_LIBPATH?=/usr/local/cuda/lib64/
STABLEDIFFUSION_VERSION?=c0748eca3642d58bcf9521108bcee46959c647dc
GO_TAGS?=
OPTIONAL_TARGETS?=
# renovate: datasource=github-tags depName=go-skynet/go-llama.cpp
GOLLAMA_VERSION?=llama.cpp-25d7abb
# renovate: datasource=git-refs packageNameTemplate=https://github.com/go-skynet/go-gpt4all-j.cpp currentValueTemplate=master depNameTemplate=go-gpt4all-j.cpp
GOGPT4ALLJ_VERSION?=1f7bff57f66cb7062e40d0ac3abd2217815e5109
# renovate: datasource=git-refs packageNameTemplate=https://github.com/go-skynet/go-gpt2.cpp currentValueTemplate=master depNameTemplate=go-gpt2.cpp
GOGPT2_VERSION?=245a5bfe6708ab80dc5c733dcdbfbe3cfd2acdaa
GREEN := $(shell tput -Txterm setaf 2)
YELLOW := $(shell tput -Txterm setaf 3)
@@ -27,195 +15,98 @@ WHITE := $(shell tput -Txterm setaf 7)
CYAN := $(shell tput -Txterm setaf 6)
RESET := $(shell tput -Txterm sgr0)
C_INCLUDE_PATH=$(shell pwd)/go-llama:$(shell pwd)/go-stable-diffusion/:$(shell pwd)/gpt4all/gpt4all-bindings/golang/:$(shell pwd)/go-gpt2:$(shell pwd)/go-rwkv:$(shell pwd)/whisper.cpp:$(shell pwd)/go-bert:$(shell pwd)/bloomz
LIBRARY_PATH=$(shell pwd)/go-llama:$(shell pwd)/go-stable-diffusion/:$(shell pwd)/gpt4all/gpt4all-bindings/golang/:$(shell pwd)/go-gpt2:$(shell pwd)/go-rwkv:$(shell pwd)/whisper.cpp:$(shell pwd)/go-bert:$(shell pwd)/bloomz
C_INCLUDE_PATH=$(shell pwd)/go-llama:$(shell pwd)/go-gpt4all-j:$(shell pwd)/go-gpt2
LIBRARY_PATH=$(shell pwd)/go-llama:$(shell pwd)/go-gpt4all-j:$(shell pwd)/go-gpt2
ifeq ($(BUILD_TYPE),openblas)
CGO_LDFLAGS+=-lopenblas
# Use this if you want to set the default behavior
ifndef BUILD_TYPE
BUILD_TYPE:=default
endif
ifeq ($(BUILD_TYPE),cublas)
CGO_LDFLAGS+=-lcublas -lcudart -L$(CUDA_LIBPATH)
endif
ifeq ($(GO_TAGS),stablediffusion)
OPTIONAL_TARGETS+=go-stable-diffusion/libstablediffusion.a
ifeq ($(BUILD_TYPE), "generic")
GENERIC_PREFIX:=generic-
else
GENERIC_PREFIX:=
endif
.PHONY: all test build vendor
all: help
## GPT4ALL
gpt4all:
git clone --recurse-submodules $(GPT4ALL_REPO) gpt4all
cd gpt4all && git checkout -b build $(GPT4ALL_VERSION) && git submodule update --init --recursive --depth 1
# This is hackish, but needed as both go-llama and go-gpt4allj have their own version of ggml..
@find ./gpt4all -type f -name "*.c" -exec sed -i'' -e 's/ggml_/ggml_gptj_/g' {} +
@find ./gpt4all -type f -name "*.cpp" -exec sed -i'' -e 's/ggml_/ggml_gptj_/g' {} +
@find ./gpt4all -type f -name "*.h" -exec sed -i'' -e 's/ggml_/ggml_gptj_/g' {} +
@find ./gpt4all -type f -name "*.cpp" -exec sed -i'' -e 's/gpt_/gptj_/g' {} +
@find ./gpt4all -type f -name "*.h" -exec sed -i'' -e 's/gpt_/gptj_/g' {} +
@find ./gpt4all -type f -name "*.h" -exec sed -i'' -e 's/set_console_color/set_gptj_console_color/g' {} +
@find ./gpt4all -type f -name "*.cpp" -exec sed -i'' -e 's/set_console_color/set_gptj_console_color/g' {} +
@find ./gpt4all -type f -name "*.cpp" -exec sed -i'' -e 's/llama_/gptjllama_/g' {} +
@find ./gpt4all -type f -name "*.go" -exec sed -i'' -e 's/llama_/gptjllama_/g' {} +
@find ./gpt4all -type f -name "*.h" -exec sed -i'' -e 's/llama_/gptjllama_/g' {} +
@find ./gpt4all -type f -name "*.txt" -exec sed -i'' -e 's/llama_/gptjllama_/g' {} +
@find ./gpt4all -type f -name "*.cpp" -exec sed -i'' -e 's/json_/json_gptj_/g' {} +
@find ./gpt4all -type f -name "*.cpp" -exec sed -i'' -e 's/void replace/void json_gptj_replace/g' {} +
@find ./gpt4all -type f -name "*.cpp" -exec sed -i'' -e 's/::replace/::json_gptj_replace/g' {} +
mv ./gpt4all/gpt4all-backend/llama.cpp/llama_util.h ./gpt4all/gpt4all-backend/llama.cpp/gptjllama_util.h
## BERT embeddings
go-bert:
git clone --recurse-submodules https://github.com/go-skynet/go-bert.cpp go-bert
cd go-bert && git checkout -b build $(BERT_VERSION) && git submodule update --init --recursive --depth 1
@find ./go-bert -type f -name "*.c" -exec sed -i'' -e 's/ggml_/ggml_bert_/g' {} +
@find ./go-bert -type f -name "*.cpp" -exec sed -i'' -e 's/ggml_/ggml_bert_/g' {} +
@find ./go-bert -type f -name "*.h" -exec sed -i'' -e 's/ggml_/ggml_bert_/g' {} +
## stable diffusion
go-stable-diffusion:
git clone --recurse-submodules https://github.com/mudler/go-stable-diffusion go-stable-diffusion
cd go-stable-diffusion && git checkout -b build $(STABLEDIFFUSION_VERSION) && git submodule update --init --recursive --depth 1
go-stable-diffusion/libstablediffusion.a:
$(MAKE) -C go-stable-diffusion libstablediffusion.a
## RWKV
go-rwkv:
git clone --recurse-submodules $(RWKV_REPO) go-rwkv
cd go-rwkv && git checkout -b build $(RWKV_VERSION) && git submodule update --init --recursive --depth 1
@find ./go-rwkv -type f -name "*.c" -exec sed -i'' -e 's/ggml_/ggml_rwkv_/g' {} +
@find ./go-rwkv -type f -name "*.cpp" -exec sed -i'' -e 's/ggml_/ggml_rwkv_/g' {} +
@find ./go-rwkv -type f -name "*.h" -exec sed -i'' -e 's/ggml_/ggml_rwkv_/g' {} +
go-rwkv/librwkv.a: go-rwkv
cd go-rwkv && cd rwkv.cpp && cmake . -DRWKV_BUILD_SHARED_LIBRARY=OFF && cmake --build . && cp librwkv.a .. && cp ggml/src/libggml.a ..
## bloomz
bloomz:
git clone --recurse-submodules https://github.com/go-skynet/bloomz.cpp bloomz
@find ./bloomz -type f -name "*.c" -exec sed -i'' -e 's/ggml_/ggml_bloomz_/g' {} +
@find ./bloomz -type f -name "*.cpp" -exec sed -i'' -e 's/ggml_/ggml_bloomz_/g' {} +
@find ./bloomz -type f -name "*.h" -exec sed -i'' -e 's/ggml_/ggml_bloomz_/g' {} +
@find ./bloomz -type f -name "*.cpp" -exec sed -i'' -e 's/gpt_/gpt_bloomz_/g' {} +
@find ./bloomz -type f -name "*.h" -exec sed -i'' -e 's/gpt_/gpt_bloomz_/g' {} +
bloomz/libbloomz.a: bloomz
cd bloomz && make libbloomz.a
go-bert/libgobert.a: go-bert
$(MAKE) -C go-bert libgobert.a
gpt4all/gpt4all-bindings/golang/libgpt4all.a: gpt4all
$(MAKE) -C gpt4all/gpt4all-bindings/golang/ libgpt4all.a
## CEREBRAS GPT
go-gpt2:
git clone --recurse-submodules https://github.com/go-skynet/go-gpt2.cpp go-gpt2
cd go-gpt2 && git checkout -b build $(GOGPT2_VERSION) && git submodule update --init --recursive --depth 1
# This is hackish, but needed as both go-llama and go-gpt4allj have their own version of ggml..
@find ./go-gpt2 -type f -name "*.c" -exec sed -i'' -e 's/ggml_/ggml_gpt2_/g' {} +
@find ./go-gpt2 -type f -name "*.cpp" -exec sed -i'' -e 's/ggml_/ggml_gpt2_/g' {} +
@find ./go-gpt2 -type f -name "*.h" -exec sed -i'' -e 's/ggml_/ggml_gpt2_/g' {} +
@find ./go-gpt2 -type f -name "*.cpp" -exec sed -i'' -e 's/gpt_print_usage/gpt2_print_usage/g' {} +
@find ./go-gpt2 -type f -name "*.h" -exec sed -i'' -e 's/gpt_print_usage/gpt2_print_usage/g' {} +
@find ./go-gpt2 -type f -name "*.cpp" -exec sed -i'' -e 's/gpt_params_parse/gpt2_params_parse/g' {} +
@find ./go-gpt2 -type f -name "*.h" -exec sed -i'' -e 's/gpt_params_parse/gpt2_params_parse/g' {} +
@find ./go-gpt2 -type f -name "*.cpp" -exec sed -i'' -e 's/gpt_random_prompt/gpt2_random_prompt/g' {} +
@find ./go-gpt2 -type f -name "*.h" -exec sed -i'' -e 's/gpt_random_prompt/gpt2_random_prompt/g' {} +
@find ./go-gpt2 -type f -name "*.cpp" -exec sed -i'' -e 's/json_/json_gpt2_/g' {} +
go-gpt2/libgpt2.a: go-gpt2
$(MAKE) -C go-gpt2 libgpt2.a
whisper.cpp:
git clone https://github.com/ggerganov/whisper.cpp.git
cd whisper.cpp && git checkout -b build $(WHISPER_CPP_VERSION) && git submodule update --init --recursive --depth 1
@find ./whisper.cpp -type f -name "*.c" -exec sed -i'' -e 's/ggml_/ggml_whisper_/g' {} +
@find ./whisper.cpp -type f -name "*.cpp" -exec sed -i'' -e 's/ggml_/ggml_whisper_/g' {} +
@find ./whisper.cpp -type f -name "*.h" -exec sed -i'' -e 's/ggml_/ggml_whisper_/g' {} +
whisper.cpp/libwhisper.a: whisper.cpp
cd whisper.cpp && make libwhisper.a
go-llama:
git clone --recurse-submodules https://github.com/go-skynet/go-llama.cpp go-llama
cd go-llama && git checkout -b build $(GOLLAMA_VERSION) && git submodule update --init --recursive --depth 1
go-llama/libbinding.a: go-llama
$(MAKE) -C go-llama BUILD_TYPE=$(BUILD_TYPE) libbinding.a
replace:
$(GOCMD) mod edit -replace github.com/go-skynet/go-llama.cpp=$(shell pwd)/go-llama
$(GOCMD) mod edit -replace github.com/nomic-ai/gpt4all/gpt4all-bindings/golang=$(shell pwd)/gpt4all/gpt4all-bindings/golang
$(GOCMD) mod edit -replace github.com/go-skynet/go-gpt2.cpp=$(shell pwd)/go-gpt2
$(GOCMD) mod edit -replace github.com/donomii/go-rwkv.cpp=$(shell pwd)/go-rwkv
$(GOCMD) mod edit -replace github.com/ggerganov/whisper.cpp=$(shell pwd)/whisper.cpp
$(GOCMD) mod edit -replace github.com/go-skynet/go-bert.cpp=$(shell pwd)/go-bert
$(GOCMD) mod edit -replace github.com/go-skynet/bloomz.cpp=$(shell pwd)/bloomz
$(GOCMD) mod edit -replace github.com/mudler/go-stable-diffusion=$(shell pwd)/go-stable-diffusion
prepare-sources: go-llama go-gpt2 gpt4all go-rwkv whisper.cpp go-bert bloomz go-stable-diffusion replace
$(GOCMD) mod download
## GENERIC
rebuild: ## Rebuilds the project
$(MAKE) -C go-llama clean
$(MAKE) -C gpt4all/gpt4all-bindings/golang/ clean
$(MAKE) -C go-gpt2 clean
$(MAKE) -C go-rwkv clean
$(MAKE) -C whisper.cpp clean
$(MAKE) -C go-stable-diffusion clean
$(MAKE) -C go-bert clean
$(MAKE) -C bloomz clean
$(MAKE) build
prepare: prepare-sources gpt4all/gpt4all-bindings/golang/libgpt4all.a $(OPTIONAL_TARGETS) go-llama/libbinding.a go-bert/libgobert.a go-gpt2/libgpt2.a go-rwkv/librwkv.a whisper.cpp/libwhisper.a bloomz/libbloomz.a ## Prepares for building
clean: ## Remove build related file
rm -fr ./go-llama
rm -rf ./gpt4all
rm -rf ./go-stable-diffusion
rm -rf ./go-gpt2
rm -rf ./go-rwkv
rm -rf ./go-bert
rm -rf ./bloomz
rm -rf ./whisper.cpp
rm -rf $(BINARY_NAME)
## Build:
build: prepare ## Build the project
$(info ${GREEN}I local-ai build info:${RESET})
$(info ${GREEN}I BUILD_TYPE: ${YELLOW}$(BUILD_TYPE)${RESET})
$(info ${GREEN}I GO_TAGS: ${YELLOW}$(GO_TAGS)${RESET})
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=${C_INCLUDE_PATH} LIBRARY_PATH=${LIBRARY_PATH} $(GOCMD) build -tags "$(GO_TAGS)" -x -o $(BINARY_NAME) ./
C_INCLUDE_PATH=${C_INCLUDE_PATH} LIBRARY_PATH=${LIBRARY_PATH} $(GOCMD) build -o $(BINARY_NAME) ./
generic-build: ## Build the project using generic
BUILD_TYPE="generic" $(MAKE) build
## Run
run: prepare ## run local-ai
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=${C_INCLUDE_PATH} LIBRARY_PATH=${LIBRARY_PATH} $(GOCMD) run ./main.go
## GPT4ALL-J
go-gpt4all-j:
git clone --recurse-submodules https://github.com/go-skynet/go-gpt4all-j.cpp go-gpt4all-j
cd go-gpt4all-j && git checkout -b build $(GOGPT4ALLJ_VERSION)
# This is hackish, but needed as both go-llama and go-gpt4allj have their own version of ggml..
@find ./go-gpt4all-j -type f -name "*.c" -exec sed -i'' -e 's/ggml_/ggml_gptj_/g' {} +
@find ./go-gpt4all-j -type f -name "*.cpp" -exec sed -i'' -e 's/ggml_/ggml_gptj_/g' {} +
@find ./go-gpt4all-j -type f -name "*.h" -exec sed -i'' -e 's/ggml_/ggml_gptj_/g' {} +
@find ./go-gpt4all-j -type f -name "*.cpp" -exec sed -i'' -e 's/gpt_/gptj_/g' {} +
@find ./go-gpt4all-j -type f -name "*.h" -exec sed -i'' -e 's/gpt_/gptj_/g' {} +
@find ./go-gpt4all-j -type f -name "*.cpp" -exec sed -i'' -e 's/json_/json_gptj_/g' {} +
@find ./go-gpt4all-j -type f -name "*.cpp" -exec sed -i'' -e 's/void replace/void json_gptj_replace/g' {} +
@find ./go-gpt4all-j -type f -name "*.cpp" -exec sed -i'' -e 's/::replace/::json_gptj_replace/g' {} +
go-gpt4all-j/libgptj.a: go-gpt4all-j
$(MAKE) -C go-gpt4all-j $(GENERIC_PREFIX)libgptj.a
# CEREBRAS GPT
go-gpt2:
git clone --recurse-submodules https://github.com/go-skynet/go-gpt2.cpp go-gpt2
cd go-gpt2 && git checkout -b build $(GOGPT2_VERSION)
# This is hackish, but needed as both go-llama and go-gpt4allj have their own version of ggml..
@find ./go-gpt2 -type f -name "*.c" -exec sed -i'' -e 's/ggml_/ggml_gpt2_/g' {} +
@find ./go-gpt2 -type f -name "*.cpp" -exec sed -i'' -e 's/ggml_/ggml_gpt2_/g' {} +
@find ./go-gpt2 -type f -name "*.h" -exec sed -i'' -e 's/ggml_/ggml_gpt2_/g' {} +
@find ./go-gpt2 -type f -name "*.cpp" -exec sed -i'' -e 's/gpt_/gpt2_/g' {} +
@find ./go-gpt2 -type f -name "*.h" -exec sed -i'' -e 's/gpt_/gpt2_/g' {} +
@find ./go-gpt2 -type f -name "*.cpp" -exec sed -i'' -e 's/json_/json_gpt2_/g' {} +
go-gpt2/libgpt2.a: go-gpt2
$(MAKE) -C go-gpt2 $(GENERIC_PREFIX)libgpt2.a
go-llama:
git clone -b $(GOLLAMA_VERSION) --recurse-submodules https://github.com/go-skynet/go-llama.cpp go-llama
go-llama/libbinding.a: go-llama
$(MAKE) -C go-llama $(GENERIC_PREFIX)libbinding.a
replace:
$(GOCMD) mod edit -replace github.com/go-skynet/go-llama.cpp=$(shell pwd)/go-llama
$(GOCMD) mod edit -replace github.com/go-skynet/go-gpt4all-j.cpp=$(shell pwd)/go-gpt4all-j
$(GOCMD) mod edit -replace github.com/go-skynet/go-gpt2.cpp=$(shell pwd)/go-gpt2
prepare: go-llama/libbinding.a go-gpt4all-j/libgptj.a go-gpt2/libgpt2.a replace
clean: ## Remove build related file
rm -fr ./go-llama
rm -rf ./go-gpt4all-j
rm -rf ./go-gpt2
rm -rf $(BINARY_NAME)
## Run:
run: prepare
C_INCLUDE_PATH=${C_INCLUDE_PATH} LIBRARY_PATH=${LIBRARY_PATH} $(GOCMD) run ./main.go
test-models/testmodel:
mkdir test-models
mkdir test-dir
wget https://huggingface.co/concedo/cerebras-111M-ggml/resolve/main/cerberas-111m-q4_0.bin -O test-models/testmodel
wget https://huggingface.co/ggerganov/whisper.cpp/resolve/main/ggml-base.en.bin -O test-models/whisper-en
wget https://huggingface.co/skeskinen/ggml/resolve/main/all-MiniLM-L6-v2/ggml-model-q4_0.bin -O test-models/bert
wget https://cdn.openai.com/whisper/draft-20220913a/micro-machines.wav -O test-dir/audio.wav
wget https://huggingface.co/imxcstar/rwkv-4-raven-ggml/resolve/main/RWKV-4-Raven-1B5-v11-Eng99%25-Other1%25-20230425-ctx4096-16_Q4_2.bin -O test-models/rwkv
wget https://raw.githubusercontent.com/saharNooby/rwkv.cpp/5eb8f09c146ea8124633ab041d9ea0b1f1db4459/rwkv/20B_tokenizer.json -O test-models/rwkv.tokenizer.json
cp tests/fixtures/* test-models
test: prepare test-models/testmodel
cp tests/fixtures/* test-models
@C_INCLUDE_PATH=${C_INCLUDE_PATH} LIBRARY_PATH=${LIBRARY_PATH} TEST_DIR=$(abspath ./)/test-dir/ CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models $(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo -v -r ./api
@C_INCLUDE_PATH=${C_INCLUDE_PATH} LIBRARY_PATH=${LIBRARY_PATH} CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models $(GOCMD) test -v -timeout 20m ./...
## Help:
help: ## Show this help.

834
README.md
View File

@@ -9,67 +9,24 @@
[![](https://dcbadge.vercel.app/api/server/uJAeKSAGDy?style=flat-square&theme=default-inverted)](https://discord.gg/uJAeKSAGDy)
**LocalAI** is a drop-in replacement REST API compatible with OpenAI API specifications for local inferencing. It allows to run models locally or on-prem with consumer grade hardware, supporting multiple models families compatible with the `ggml` format. For a list of the supported model families, see [the model compatibility table below](https://github.com/go-skynet/LocalAI#model-compatibility-table).
**LocalAI** is a straightforward, drop-in replacement API compatible with OpenAI for local CPU inferencing, based on [llama.cpp](https://github.com/ggerganov/llama.cpp), [gpt4all](https://github.com/nomic-ai/gpt4all) and [ggml](https://github.com/ggerganov/ggml), including support GPT4ALL-J which is Apache 2.0 Licensed and can be used for commercial purposes.
- OpenAI drop-in alternative REST API
- Supports multiple models, Audio transcription, Text generation with GPTs, Image generation with stable diffusion (experimental)
- OpenAI compatible API
- Supports multiple-models
- Once loaded the first time, it keep models loaded in memory for faster inference
- Support for prompt templates
- Doesn't shell-out, but uses C++ bindings for a faster inference and better performance.
- Doesn't shell-out, but uses C bindings for a faster inference and better performance. Uses [go-llama.cpp](https://github.com/go-skynet/go-llama.cpp) and [go-gpt4all-j.cpp](https://github.com/go-skynet/go-gpt4all-j.cpp).
LocalAI is a community-driven project, focused on making the AI accessible to anyone. Any contribution, feedback and PR is welcome! It was initially created by [mudler](https://github.com/mudler/) at the [SpectroCloud OSS Office](https://github.com/spectrocloud).
LocalAI uses C++ bindings for optimizing speed. It is based on [llama.cpp](https://github.com/ggerganov/llama.cpp), [gpt4all](https://github.com/nomic-ai/gpt4all), [rwkv.cpp](https://github.com/saharNooby/rwkv.cpp), [ggml](https://github.com/ggerganov/ggml), [whisper.cpp](https://github.com/ggerganov/whisper.cpp) for audio transcriptions, and [bert.cpp](https://github.com/skeskinen/bert.cpp) for embedding.
### Socials and community chatter
- Follow [@LocalAI_API](https://twitter.com/LocalAI_API) on twitter.
See [examples on how to integrate LocalAI](https://github.com/go-skynet/LocalAI/tree/master/examples/).
### How does it work?
<details>
![LocalAI](https://github.com/go-skynet/LocalAI/assets/2420543/38de3a9b-3866-48cd-9234-662f9571064a)
</details>
## News
- 16-05-2023: 🔥🔥🔥 Experimental support for CUDA (https://github.com/go-skynet/LocalAI/pull/258) in the `llama.cpp` backend and Stable diffusion CPU image generation (https://github.com/go-skynet/LocalAI/pull/272) in `master`.
Now LocalAI can generate images too:
| mode=0 | mode=1 (winograd/sgemm) |
|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| ![b6441997879](https://github.com/go-skynet/LocalAI/assets/2420543/d50af51c-51b7-4f39-b6c2-bf04c403894c) | ![winograd2](https://github.com/go-skynet/LocalAI/assets/2420543/1935a69a-ecce-4afc-a099-1ac28cb649b3) |
- 14-05-2023: __v1.11.1__ released! `rwkv` backend patch release
- 13-05-2023: __v1.11.0__ released! 🔥 Updated `llama.cpp` bindings: This update includes a breaking change in the model files ( https://github.com/ggerganov/llama.cpp/pull/1405 ) - old models should still work with the `gpt4all-llama` backend.
- 12-05-2023: __v1.10.0__ released! 🔥🔥 Updated `gpt4all` bindings. Added support for GPTNeox (experimental), RedPajama (experimental), Starcoder (experimental), Replit (experimental), MosaicML MPT. Also now `embeddings` endpoint supports tokens arrays. See the [langchain-chroma](https://github.com/go-skynet/LocalAI/tree/master/examples/langchain-chroma) example! Note - this update does NOT include https://github.com/ggerganov/llama.cpp/pull/1405 which makes models incompatible.
- 11-05-2023: __v1.9.0__ released! 🔥 Important whisper updates ( https://github.com/go-skynet/LocalAI/pull/233 https://github.com/go-skynet/LocalAI/pull/229 ) and extended gpt4all model families support ( https://github.com/go-skynet/LocalAI/pull/232 ). Redpajama/dolly experimental ( https://github.com/go-skynet/LocalAI/pull/214 )
- 10-05-2023: __v1.8.0__ released! 🔥 Added support for fast and accurate embeddings with `bert.cpp` ( https://github.com/go-skynet/LocalAI/pull/222 )
- 09-05-2023: Added experimental support for transcriptions endpoint ( https://github.com/go-skynet/LocalAI/pull/211 )
- 08-05-2023: Support for embeddings with models using the `llama.cpp` backend ( https://github.com/go-skynet/LocalAI/pull/207 )
- 02-05-2023: Support for `rwkv.cpp` models ( https://github.com/go-skynet/LocalAI/pull/158 ) and for `/edits` endpoint
- 01-05-2023: Support for SSE stream of tokens in `llama.cpp` backends ( https://github.com/go-skynet/LocalAI/pull/152 )
Twitter: [@LocalAI_API](https://twitter.com/LocalAI_API) and [@mudler_it](https://twitter.com/mudler_it)
### Blogs and articles
- [Question Answering on Documents locally with LangChain, LocalAI, Chroma, and GPT4All](https://mudler.pm/posts/localai-question-answering/) by Ettore Di Giacinto
- [Tutorial to use k8sgpt with LocalAI](https://medium.com/@tyler_97636/k8sgpt-localai-unlock-kubernetes-superpowers-for-free-584790de9b65) - excellent usecase for localAI, using AI to analyse Kubernetes clusters. by Tyller Gillson
## Contribute and help
To help the project you can:
- Upvote the [Reddit post](https://www.reddit.com/r/selfhosted/comments/12w4p2f/localai_openai_compatible_api_to_run_llm_models/) about LocalAI.
- [Reddit post](https://www.reddit.com/r/selfhosted/comments/12w4p2f/localai_openai_compatible_api_to_run_llm_models/) about LocalAI.
- [Hacker news post](https://news.ycombinator.com/item?id=35726934) - help us out by voting if you like this project.
- If you have technological skills and want to contribute to development, have a look at the open issues. If you are new you can have a look at the [good-first-issue](https://github.com/go-skynet/LocalAI/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22) and [help-wanted](https://github.com/go-skynet/LocalAI/issues?q=is%3Aissue+is%3Aopen+label%3A%22help+wanted%22) labels.
- If you don't have technological skills you can still help improving documentation or add examples or share your user-stories with our community, any help and contribution is welcome!
- [Tutorial to use k8sgpt with LocalAI](https://medium.com/@tyler_97636/k8sgpt-localai-unlock-kubernetes-superpowers-for-free-584790de9b65) - excellent usecase for localAI, using AI to analyse Kubernetes clusters.
## Model compatibility
@@ -78,62 +35,14 @@ It is compatible with the models supported by [llama.cpp](https://github.com/gge
Tested with:
- Vicuna
- Alpaca
- [GPT4ALL](https://gpt4all.io)
- [GPT4ALL-J](https://gpt4all.io/models/ggml-gpt4all-j.bin) (no changes required)
- [GPT4ALL](https://github.com/nomic-ai/gpt4all)
- [GPT4ALL-J](https://gpt4all.io/models/ggml-gpt4all-j.bin)
- Koala
- [cerebras-GPT with ggml](https://huggingface.co/lxe/Cerebras-GPT-2.7B-Alpaca-SP-ggml)
- WizardLM
- [RWKV](https://github.com/BlinkDL/RWKV-LM) models with [rwkv.cpp](https://github.com/saharNooby/rwkv.cpp)
Note: You might need to convert some models from older models to the new format, for indications, see [the README in llama.cpp](https://github.com/ggerganov/llama.cpp#using-gpt4all) for instance to run `gpt4all`.
It should also be compatible with StableLM and GPTNeoX ggml models (untested)
### RWKV
<details>
A full example on how to run a rwkv model is in the [examples](https://github.com/go-skynet/LocalAI/tree/master/examples/rwkv).
Note: rwkv models needs to specify the backend `rwkv` in the YAML config files and have an associated tokenizer along that needs to be provided with it:
```
36464540 -rw-r--r-- 1 mudler mudler 1.2G May 3 10:51 rwkv_small
36464543 -rw-r--r-- 1 mudler mudler 2.4M May 3 10:51 rwkv_small.tokenizer.json
```
</details>
### Others
It should also be compatible with StableLM and GPTNeoX ggml models (untested).
### Hardware requirements
Depending on the model you are attempting to run might need more RAM or CPU resources. Check out also [here](https://github.com/ggerganov/llama.cpp#memorydisk-requirements) for `ggml` based backends. `rwkv` is less expensive on resources.
### Model compatibility table
<details>
| Backend | Compatible models | Completion/Chat endpoint | Audio transcription/Image | Embeddings support | Token stream support | Github | Bindings |
|-----------------|-----------------------|--------------------------|---------------------|-----------------------------------|----------------------|--------------------------------------------|-------------------------------------------|
| llama | Vicuna, Alpaca, LLaMa | yes | no | yes (doesn't seem to be accurate) | yes | https://github.com/ggerganov/llama.cpp | https://github.com/go-skynet/go-llama.cpp |
| gpt4all-llama | Vicuna, Alpaca, LLaMa | yes | no | no | yes | https://github.com/nomic-ai/gpt4all | https://github.com/go-skynet/gpt4all |
| gpt4all-mpt | MPT | yes | no | no | yes | https://github.com/nomic-ai/gpt4all | https://github.com/go-skynet/gpt4all |
| gpt4all-j | GPT4ALL-J | yes | no | no | yes | https://github.com/nomic-ai/gpt4all | https://github.com/go-skynet/gpt4all |
| gpt2 | GPT/NeoX, Cerebras | yes | no | no | no | https://github.com/ggerganov/ggml | https://github.com/go-skynet/go-gpt2.cpp |
| dolly | Dolly | yes | no | no | no | https://github.com/ggerganov/ggml | https://github.com/go-skynet/go-gpt2.cpp |
| redpajama | RedPajama | yes | no | no | no | https://github.com/ggerganov/ggml | https://github.com/go-skynet/go-gpt2.cpp |
| stableLM | StableLM GPT/NeoX | yes | no | no | no | https://github.com/ggerganov/ggml | https://github.com/go-skynet/go-gpt2.cpp |
| replit | Replit | yes | no | no | no | https://github.com/ggerganov/ggml | https://github.com/go-skynet/go-gpt2.cpp |
| gptneox | GPT NeoX | yes | no | no | no | https://github.com/ggerganov/ggml | https://github.com/go-skynet/go-gpt2.cpp |
| starcoder | Starcoder | yes | no | no | no | https://github.com/ggerganov/ggml | https://github.com/go-skynet/go-gpt2.cpp |
| bloomz | Bloom | yes | no | no | no | https://github.com/NouamaneTazi/bloomz.cpp | https://github.com/go-skynet/bloomz.cpp |
| rwkv | RWKV | yes | no | no | yes | https://github.com/saharNooby/rwkv.cpp | https://github.com/donomii/go-rwkv.cpp |
| bert-embeddings | bert | no | no | yes | no | https://github.com/skeskinen/bert.cpp | https://github.com/go-skynet/go-bert.cpp |
| whisper | whisper | no | Audio | no | no | https://github.com/ggerganov/whisper.cpp | https://github.com/ggerganov/whisper.cpp |
| stablediffusion | stablediffusion | no | Image | no | no | https://github.com/EdVince/Stable-Diffusion-NCNN | https://github.com/mudler/go-stable-diffusion |
</details>
Note: You might need to convert older models to the new format, see [here](https://github.com/ggerganov/llama.cpp#using-gpt4all) for instance to run `gpt4all`.
## Usage
@@ -157,9 +66,7 @@ cp your-model.bin models/
# vim .env
# start with docker-compose
docker-compose up -d --pull always
# or you can build the images with:
# docker-compose up -d --build
docker-compose up -d --build
# Now API is accessible at localhost:8080
curl http://localhost:8080/v1/models
@@ -195,9 +102,8 @@ cp -rf prompt-templates/ggml-gpt4all-j.tmpl models/
# vim .env
# start with docker-compose
docker-compose up -d --pull always
# or you can build the images with:
# docker-compose up -d --build
docker-compose up -d --build
# Now API is accessible at localhost:8080
curl http://localhost:8080/v1/models
# {"object":"list","data":[{"id":"ggml-gpt4all-j","object":"model"}]}
@@ -214,61 +120,184 @@ curl http://localhost:8080/v1/chat/completions -H "Content-Type: application/jso
To build locally, run `make build` (see below).
### Other examples
## Other examples
![Screenshot from 2023-04-26 23-59-55](https://user-images.githubusercontent.com/2420543/234715439-98d12e03-d3ce-4f94-ab54-2b256808e05e.png)
To see other examples on how to integrate with other projects for instance for question answering or for using it with chatbot-ui, see: [examples](https://github.com/go-skynet/LocalAI/tree/master/examples/).
To see other examples on how to integrate with other projects for instance chatbot-ui, see: [examples](https://github.com/go-skynet/LocalAI/tree/master/examples/).
## Prompt templates
### Advanced configuration
The API doesn't inject a default prompt for talking to the model. You have to use a prompt similar to what's described in the standford-alpaca docs: https://github.com/tatsu-lab/stanford_alpaca#data-release.
<details>
You can use a default template for every model present in your model path, by creating a corresponding file with the `.tmpl` suffix next to your model. For instance, if the model is called `foo.bin`, you can create a sibling file, `foo.bin.tmpl` which will be used as a default prompt and can be used with alpaca:
```
The below instruction describes a task. Write a response that appropriately completes the request.
### Instruction:
{{.Input}}
### Response:
```
See the [prompt-templates](https://github.com/go-skynet/LocalAI/tree/master/prompt-templates) directory in this repository for templates for some of the most popular models.
</details>
## Installation
Currently LocalAI comes as container images and can be used with docker or a containre engine of choice.
### Run LocalAI in Kubernetes
LocalAI can be installed inside Kubernetes with helm.
<details>
The local-ai Helm chart supports two options for the LocalAI server's models directory:
1. Basic deployment with no persistent volume. You must manually update the Deployment to configure your own models directory.
Install the chart with `.Values.deployment.volumes.enabled == false` and `.Values.dataVolume.enabled == false`.
2. Advanced, two-phase deployment to provision the models directory using a DataVolume. Requires [Containerized Data Importer CDI](https://github.com/kubevirt/containerized-data-importer) to be pre-installed in your cluster.
First, install the chart with `.Values.deployment.volumes.enabled == false` and `.Values.dataVolume.enabled == true`:
```bash
helm install local-ai charts/local-ai -n local-ai --create-namespace
```
Wait for CDI to create an importer Pod for the DataVolume and for the importer pod to finish provisioning the model archive inside the PV.
Once the PV is provisioned and the importer Pod removed, set `.Values.deployment.volumes.enabled == true` and `.Values.dataVolume.enabled == false` and upgrade the chart:
```bash
helm upgrade local-ai -n local-ai charts/local-ai
```
This will update the local-ai Deployment to mount the PV that was provisioned by the DataVolume.
</details>
## API
`LocalAI` provides an API for running text generation as a service, that follows the OpenAI reference and can be used as a drop-in. The models once loaded the first time will be kept in memory.
<details>
Example of starting the API with `docker`:
```bash
docker run -p 8080:8080 -ti --rm quay.io/go-skynet/local-ai:latest --models-path /path/to/models --context-size 700 --threads 4
```
You should see:
```
┌───────────────────────────────────────────────────┐
│ Fiber v2.42.0 │
│ http://127.0.0.1:8080 │
│ (bound on host 0.0.0.0 and port 8080) │
│ │
│ Handlers ............. 1 Processes ........... 1 │
│ Prefork ....... Disabled PID ................. 1 │
└───────────────────────────────────────────────────┘
```
You can control the API server options with command line arguments:
```
local-api --models-path <model_path> [--address <address>] [--threads <num_threads>]
```
The API takes takes the following parameters:
| Parameter | Environment Variable | Default Value | Description |
| ------------ | -------------------- | ------------- | -------------------------------------- |
| models-path | MODELS_PATH | | The path where you have models (ending with `.bin`). |
| threads | THREADS | Number of Physical cores | The number of threads to use for text generation. |
| address | ADDRESS | :8080 | The address and port to listen on. |
| context-size | CONTEXT_SIZE | 512 | Default token context size. |
| debug | DEBUG | false | Enable debug mode. |
| config-file | CONFIG_FILE | empty | Path to a LocalAI config file. |
Once the server is running, you can start making requests to it using HTTP, using the OpenAI API.
</details>
### Supported OpenAI API endpoints
You can check out the [OpenAI API reference](https://platform.openai.com/docs/api-reference/chat/create).
Following the list of endpoints/parameters supported.
Note:
- You can also specify the model as part of the OpenAI token.
- If only one model is available, the API will use it for all the requests.
#### Chat completions
<details>
For example, to generate a chat completion, you can send a POST request to the `/v1/chat/completions` endpoint with the instruction as the request body:
```
curl http://localhost:8080/v1/chat/completions -H "Content-Type: application/json" -d '{
"model": "ggml-koala-7b-model-q4_0-r2.bin",
"messages": [{"role": "user", "content": "Say this is a test!"}],
"temperature": 0.7
}'
```
Available additional parameters: `top_p`, `top_k`, `max_tokens`
</details>
#### Completions
<details>
To generate a completion, you can send a POST request to the `/v1/completions` endpoint with the instruction as per the request body:
```
curl http://localhost:8080/v1/completions -H "Content-Type: application/json" -d '{
"model": "ggml-koala-7b-model-q4_0-r2.bin",
"prompt": "A long time ago in a galaxy far, far away",
"temperature": 0.7
}'
```
Available additional parameters: `top_p`, `top_k`, `max_tokens`
</details>
#### List models
<details>
You can list all the models available with:
```
curl http://localhost:8080/v1/models
```
</details>
## Advanced configuration
LocalAI can be configured to serve user-defined models with a set of default parameters and templates.
<details>
You can create multiple `yaml` files in the models path or either specify a single YAML configuration file.
You can create multiple `yaml` files in the models path or either specify a single YAML configuration file.
Consider the following `models` folder in the `example/chatbot-ui`:
```
base ls -liah examples/chatbot-ui/models
36487587 drwxr-xr-x 2 mudler mudler 4.0K May 3 12:27 .
36487586 drwxr-xr-x 3 mudler mudler 4.0K May 3 10:42 ..
36465214 -rw-r--r-- 1 mudler mudler 10 Apr 27 07:46 completion.tmpl
36464855 -rw-r--r-- 1 mudler mudler 3.6G Apr 27 00:08 ggml-gpt4all-j
36464537 -rw-r--r-- 1 mudler mudler 245 May 3 10:42 gpt-3.5-turbo.yaml
36467388 -rw-r--r-- 1 mudler mudler 180 Apr 27 07:46 gpt4all.tmpl
```
In the `gpt-3.5-turbo.yaml` file it is defined the `gpt-3.5-turbo` model which is an alias to use `gpt4all-j` with pre-defined options.
For instance, consider the following that declares `gpt-3.5-turbo` backed by the `ggml-gpt4all-j` model:
For instance, a configuration file (`gpt-3.5-turbo.yaml`) can be declaring the "gpt-3.5-turbo" model but backed by the "testmodel" model file:
```yaml
name: gpt-3.5-turbo
# Default model parameters
parameters:
# Relative to the models path
model: ggml-gpt4all-j
# temperature
temperature: 0.3
# all the OpenAI request options here..
# Default context size
model: testmodel
context_size: 512
threads: 10
# Define a backend (optional). By default it will try to guess the backend the first time the model is interacted with.
backend: gptj # available: llama, stablelm, gpt2, gptj rwkv
# stopwords (if supported by the backend)
stopwords:
- "HUMAN:"
- "### Response:"
# define chat roles
roles:
user: "HUMAN:"
system: "GPT:"
template:
# template file ".tmpl" with the prompt template to use by default on the endpoint call. Note there is no extension in the files
completion: completion
chat: ggml-gpt4all-j
```
@@ -303,170 +332,27 @@ Specifying a `config-file` via CLI allows to declare models in a single file as
system: "GPT:"
template:
completion: completion
chat: ggml-gpt4all-j
chat: ggml-gpt4all-j
```
See also [chatbot-ui](https://github.com/go-skynet/LocalAI/tree/master/examples/chatbot-ui) as an example on how to use config files.
### Full config model file reference
```yaml
name: gpt-3.5-turbo
# Default model parameters
parameters:
# Relative to the models path
model: ggml-gpt4all-j
# temperature
temperature: 0.3
# all the OpenAI request options here..
top_k:
top_p:
max_tokens:
batch:
f16: true
ignore_eos: true
n_keep: 10
seed:
mode:
step:
# Default context size
context_size: 512
# Default number of threads
threads: 10
# Define a backend (optional). By default it will try to guess the backend the first time the model is interacted with.
backend: gptj # available: llama, stablelm, gpt2, gptj rwkv
# stopwords (if supported by the backend)
stopwords:
- "HUMAN:"
- "### Response:"
# string to trim space to
trimspace:
- string
# Strings to cut from the response
cutstrings:
- "string"
# define chat roles
roles:
user: "HUMAN:"
system: "GPT:"
assistant: "ASSISTANT:"
template:
# template file ".tmpl" with the prompt template to use by default on the endpoint call. Note there is no extension in the files
completion: completion
chat: ggml-gpt4all-j
edit: edit_template
# Enable F16 if backend supports it
f16: true
# Enable debugging
debug: true
# Enable embeddings
embeddings: true
# Mirostat configuration (llama.cpp only)
mirostat_eta: 0.8
mirostat_tau: 0.9
mirostat: 1
# GPU Layers (only used when built with cublas)
gpu_layers: 22
# Directory used to store additional assets (used for stablediffusion)
asset_dir: ""
```
</details>
### Prompt templates
The API doesn't inject a default prompt for talking to the model. You have to use a prompt similar to what's described in the standford-alpaca docs: https://github.com/tatsu-lab/stanford_alpaca#data-release.
<details>
You can use a default template for every model present in your model path, by creating a corresponding file with the `.tmpl` suffix next to your model. For instance, if the model is called `foo.bin`, you can create a sibling file, `foo.bin.tmpl` which will be used as a default prompt and can be used with alpaca:
```
The below instruction describes a task. Write a response that appropriately completes the request.
### Instruction:
{{.Input}}
### Response:
```
See the [prompt-templates](https://github.com/go-skynet/LocalAI/tree/master/prompt-templates) directory in this repository for templates for some of the most popular models.
For the edit endpoint, an example template for alpaca-based models can be:
## Blog posts and other articles
```yaml
Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
- https://medium.com/@tyler_97636/k8sgpt-localai-unlock-kubernetes-superpowers-for-free-584790de9b65
- https://kairos.io/docs/examples/localai/
### Instruction:
{{.Instruction}}
## Windows compatibility
### Input:
{{.Input}}
It should work, however you need to make sure you give enough resources to the container. See https://github.com/go-skynet/LocalAI/issues/2
### Response:
```
## Build locally
</details>
### CLI
You can control LocalAI with command line arguments, to specify a binding address, or the number of threads.
<details>
Usage:
```
local-ai --models-path <model_path> [--address <address>] [--threads <num_threads>]
```
| Parameter | Environment Variable | Default Value | Description |
| ------------ | -------------------- | ------------- | -------------------------------------- |
| models-path | MODELS_PATH | | The path where you have models (ending with `.bin`). |
| threads | THREADS | Number of Physical cores | The number of threads to use for text generation. |
| address | ADDRESS | :8080 | The address and port to listen on. |
| context-size | CONTEXT_SIZE | 512 | Default token context size. |
| debug | DEBUG | false | Enable debug mode. |
| config-file | CONFIG_FILE | empty | Path to a LocalAI config file. |
| upload_limit | UPLOAD_LIMIT | 5MB | Upload limit for whisper. |
| image-dir | CONFIG_FILE | empty | Image directory to store and serve processed images. |
</details>
## Setup
Currently LocalAI comes as a container image and can be used with docker or a container engine of choice. You can check out all the available images with corresponding tags [here](https://quay.io/repository/go-skynet/local-ai?tab=tags&tag=latest).
### Docker
<details>
Example of starting the API with `docker`:
```bash
docker run -p 8080:8080 -ti --rm quay.io/go-skynet/local-ai:latest --models-path /path/to/models --context-size 700 --threads 4
```
You should see:
```
┌───────────────────────────────────────────────────┐
│ Fiber v2.42.0 │
│ http://127.0.0.1:8080 │
│ (bound on host 0.0.0.0 and port 8080) │
│ │
│ Handlers ............. 1 Processes ........... 1 │
│ Prefork ....... Disabled PID ................. 1 │
└───────────────────────────────────────────────────┘
```
</details>
### Build locally
<details>
Pre-built images might fit well for most of the modern hardware, however you can and might need to build the images manually.
In order to build the `LocalAI` container image locally you can use `docker`:
@@ -476,347 +362,12 @@ docker build -t LocalAI .
docker run LocalAI
```
Or you can build the binary with `make`:
Or build the binary with `make`:
```
make build
```
</details>
### Build on mac
Building on Mac (M1 or M2) works, but you may need to install some prerequisites using `brew`.
<details>
The below has been tested by one mac user and found to work. Note that this doesn't use docker to run the server:
```
# install build dependencies
brew install cmake
brew install go
# clone the repo
git clone https://github.com/go-skynet/LocalAI.git
cd LocalAI
# build the binary
make build
# Download gpt4all-j to models/
wget https://gpt4all.io/models/ggml-gpt4all-j.bin -O models/ggml-gpt4all-j
# Use a template from the examples
cp -rf prompt-templates/ggml-gpt4all-j.tmpl models/
# Run LocalAI
./local-ai --models-path ./models/ --debug
# Now API is accessible at localhost:8080
curl http://localhost:8080/v1/models
curl http://localhost:8080/v1/chat/completions -H "Content-Type: application/json" -d '{
"model": "ggml-gpt4all-j",
"messages": [{"role": "user", "content": "How are you?"}],
"temperature": 0.9
}'
```
</details>
### Build with Image generation support
<details>
**Requirements**: OpenCV, Gomp
Image generation is experimental and requires `GO_TAGS=stablediffusion` to be set during build:
```
make GO_TAGS=stablediffusion rebuild
```
</details>
### Accelleration
#### OpenBLAS
<details>
Requirements: OpenBLAS
```
make BUILD_TYPE=openblas build
```
</details>
#### CuBLAS
<details>
Requirement: Nvidia CUDA toolkit
Note: CuBLAS support is experimental, and has not been tested on real HW. please report any issues you find!
```
make BUILD_TYPE=cublas build
```
</details>
### Windows compatibility
It should work, however you need to make sure you give enough resources to the container. See https://github.com/go-skynet/LocalAI/issues/2
### Run LocalAI in Kubernetes
LocalAI can be installed inside Kubernetes with helm.
<details>
1. Add the helm repo
```bash
helm repo add go-skynet https://go-skynet.github.io/helm-charts/
```
1. Create a values files with your settings:
```bash
cat <<EOF > values.yaml
deployment:
image: quay.io/go-skynet/local-ai:latest
env:
threads: 4
contextSize: 1024
modelsPath: "/models"
# Optionally create a PVC, mount the PV to the LocalAI Deployment,
# and download a model to prepopulate the models directory
modelsVolume:
enabled: true
url: "https://gpt4all.io/models/ggml-gpt4all-j.bin"
pvc:
size: 6Gi
accessModes:
- ReadWriteOnce
auth:
# Optional value for HTTP basic access authentication header
basic: "" # 'username:password' base64 encoded
service:
type: ClusterIP
annotations: {}
# If using an AWS load balancer, you'll need to override the default 60s load balancer idle timeout
# service.beta.kubernetes.io/aws-load-balancer-connection-idle-timeout: "1200"
EOF
```
3. Install the helm chart:
```bash
helm repo update
helm install local-ai go-skynet/local-ai -f values.yaml
```
Check out also the [helm chart repository on GitHub](https://github.com/go-skynet/helm-charts).
</details>
## Supported OpenAI API endpoints
You can check out the [OpenAI API reference](https://platform.openai.com/docs/api-reference/chat/create).
Following the list of endpoints/parameters supported.
Note:
- You can also specify the model as part of the OpenAI token.
- If only one model is available, the API will use it for all the requests.
### Chat completions
<details>
For example, to generate a chat completion, you can send a POST request to the `/v1/chat/completions` endpoint with the instruction as the request body:
```
curl http://localhost:8080/v1/chat/completions -H "Content-Type: application/json" -d '{
"model": "ggml-koala-7b-model-q4_0-r2.bin",
"messages": [{"role": "user", "content": "Say this is a test!"}],
"temperature": 0.7
}'
```
Available additional parameters: `top_p`, `top_k`, `max_tokens`
</details>
### Edit completions
<details>
To generate an edit completion you can send a POST request to the `/v1/edits` endpoint with the instruction as the request body:
```
curl http://localhost:8080/v1/edits -H "Content-Type: application/json" -d '{
"model": "ggml-koala-7b-model-q4_0-r2.bin",
"instruction": "rephrase",
"input": "Black cat jumped out of the window",
"temperature": 0.7
}'
```
Available additional parameters: `top_p`, `top_k`, `max_tokens`.
</details>
### Completions
<details>
To generate a completion, you can send a POST request to the `/v1/completions` endpoint with the instruction as per the request body:
```
curl http://localhost:8080/v1/completions -H "Content-Type: application/json" -d '{
"model": "ggml-koala-7b-model-q4_0-r2.bin",
"prompt": "A long time ago in a galaxy far, far away",
"temperature": 0.7
}'
```
Available additional parameters: `top_p`, `top_k`, `max_tokens`
</details>
### List models
<details>
You can list all the models available with:
```
curl http://localhost:8080/v1/models
```
</details>
### Embeddings
OpenAI docs: https://platform.openai.com/docs/api-reference/embeddings
<details>
The embedding endpoint is experimental and enabled only if the model is configured with `embeddings: true` in its `yaml` file, for example:
```yaml
name: text-embedding-ada-002
parameters:
model: bert
embeddings: true
backend: "bert-embeddings"
```
There is an example available [here](https://github.com/go-skynet/LocalAI/tree/master/examples/query_data/).
Note: embeddings is supported only with `llama.cpp` compatible models and `bert` models. bert is more performant and available independently of the LLM model.
</details>
### Transcriptions endpoint
<details>
Note: requires ffmpeg in the container image, which is currently not shipped due to licensing issues. We will prepare separated images with ffmpeg. (stay tuned!)
Download one of the models from https://huggingface.co/ggerganov/whisper.cpp/tree/main in the `models` folder, and create a YAML file for your model:
```yaml
name: whisper-1
backend: whisper
parameters:
model: whisper-en
```
The transcriptions endpoint then can be tested like so:
```
wget --quiet --show-progress -O gb1.ogg https://upload.wikimedia.org/wikipedia/commons/1/1f/George_W_Bush_Columbia_FINAL.ogg
curl http://localhost:8080/v1/audio/transcriptions -H "Content-Type: multipart/form-data" -F file="@$PWD/gb1.ogg" -F model="whisper-1"
{"text":"My fellow Americans, this day has brought terrible news and great sadness to our country.At nine o'clock this morning, Mission Control in Houston lost contact with our Space ShuttleColumbia.A short time later, debris was seen falling from the skies above Texas.The Columbia's lost.There are no survivors.One board was a crew of seven.Colonel Rick Husband, Lieutenant Colonel Michael Anderson, Commander Laurel Clark, Captain DavidBrown, Commander William McCool, Dr. Kultna Shavla, and Elon Ramon, a colonel in the IsraeliAir Force.These men and women assumed great risk in the service to all humanity.In an age when spaceflight has come to seem almost routine, it is easy to overlook thedangers of travel by rocket and the difficulties of navigating the fierce outer atmosphere ofthe Earth.These astronauts knew the dangers, and they faced them willingly, knowing they had a highand noble purpose in life.Because of their courage and daring and idealism, we will miss them all the more.All Americans today are thinking as well of the families of these men and women who havebeen given this sudden shock and grief.You're not alone.Our entire nation agrees with you, and those you loved will always have the respect andgratitude of this country.The cause in which they died will continue.Mankind has led into the darkness beyond our world by the inspiration of discovery andthe longing to understand.Our journey into space will go on.In the skies today, we saw destruction and tragedy.As farther than we can see, there is comfort and hope.In the words of the prophet Isaiah, \"Lift your eyes and look to the heavens who createdall these, he who brings out the starry hosts one by one and calls them each by name.\"Because of his great power and mighty strength, not one of them is missing.The same creator who names the stars also knows the names of the seven souls we mourntoday.The crew of the shuttle Columbia did not return safely to Earth yet we can pray that all aresafely home.May God bless the grieving families and may God continue to bless America.[BLANK_AUDIO]"}
```
</details>
### Image generation
OpenAI docs: https://platform.openai.com/docs/api-reference/images/create
LocalAI supports generating images with Stable diffusion, running on CPU.
| mode=0 | mode=1 (winograd/sgemm) |
|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| ![test](https://github.com/go-skynet/LocalAI/assets/2420543/7145bdee-4134-45bb-84d4-f11cb08a5638) | ![b643343452981](https://github.com/go-skynet/LocalAI/assets/2420543/abf14de1-4f50-4715-aaa4-411d703a942a) |
| ![b6441997879](https://github.com/go-skynet/LocalAI/assets/2420543/d50af51c-51b7-4f39-b6c2-bf04c403894c) | ![winograd2](https://github.com/go-skynet/LocalAI/assets/2420543/1935a69a-ecce-4afc-a099-1ac28cb649b3) |
| ![winograd](https://github.com/go-skynet/LocalAI/assets/2420543/1979a8c4-a70d-4602-95ed-642f382f6c6a) | ![winograd3](https://github.com/go-skynet/LocalAI/assets/2420543/e6d184d4-5002-408f-b564-163986e1bdfb) |
<details>
To generate an image you can send a POST request to the `/v1/images/generations` endpoint with the instruction as the request body:
```bash
# 512x512 is supported too
curl http://localhost:8080/v1/images/generations -H "Content-Type: application/json" -d '{
"prompt": "A cute baby sea otter",
"size": "256x256"
}'
```
Available additional parameters: `mode`, `step`.
Note: To set a negative prompt, you can split the prompt with `|`, for instance: `a cute baby sea otter|malformed`.
```bash
curl http://localhost:8080/v1/images/generations -H "Content-Type: application/json" -d '{
"prompt": "floating hair, portrait, ((loli)), ((one girl)), cute face, hidden hands, asymmetrical bangs, beautiful detailed eyes, eye shadow, hair ornament, ribbons, bowties, buttons, pleated skirt, (((masterpiece))), ((best quality)), colorful|((part of the head)), ((((mutated hands and fingers)))), deformed, blurry, bad anatomy, disfigured, poorly drawn face, mutation, mutated, extra limb, ugly, poorly drawn hands, missing limb, blurry, floating limbs, disconnected limbs, malformed hands, blur, out of focus, long neck, long body, Octane renderer, lowres, bad anatomy, bad hands, text",
"size": "256x256"
}'
```
Note: image generator supports images up to 512x512. You can use other tools however to upscale the image, for instance: https://github.com/upscayl/upscayl.
#### Setup
Note: In order to use the `images/generation` endpoint, you need to build LocalAI with `GO_TAGS=stablediffusion`.
1. Create a model file `stablediffusion.yaml` in the models folder:
```yaml
name: stablediffusion
backend: stablediffusion
asset_dir: stablediffusion_assets
```
2. Create a `stablediffusion_assets` directory inside your `models` directory
3. Download the ncnn assets from https://github.com/EdVince/Stable-Diffusion-NCNN#out-of-box and place them in `stablediffusion_assets`.
The models directory should look like the following:
```
models
├── stablediffusion_assets
│   ├── AutoencoderKL-256-256-fp16-opt.param
│   ├── AutoencoderKL-512-512-fp16-opt.param
│   ├── AutoencoderKL-base-fp16.param
│   ├── AutoencoderKL-encoder-512-512-fp16.bin
│   ├── AutoencoderKL-fp16.bin
│   ├── FrozenCLIPEmbedder-fp16.bin
│   ├── FrozenCLIPEmbedder-fp16.param
│   ├── log_sigmas.bin
│   ├── tmp-AutoencoderKL-encoder-256-256-fp16.param
│   ├── UNetModel-256-256-MHA-fp16-opt.param
│   ├── UNetModel-512-512-MHA-fp16-opt.param
│   ├── UNetModel-base-MHA-fp16.param
│   ├── UNetModel-MHA-fp16.bin
│   └── vocab.txt
└── stablediffusion.yaml
```
</details>
## Frequently asked questions
Here are answers to some of the most common questions.
@@ -853,14 +404,14 @@ Yes! If the client uses OpenAI and supports setting a different base URL to send
<details>
There is partial GPU support, see build instructions above.
Not currently, as ggml doesn't support GPUs yet: https://github.com/ggerganov/llama.cpp/discussions/915.
</details>
### Where is the webUI?
<details>
There is the availability of localai-webui and chatbot-ui in the examples section and can be setup as per the instructions. However as LocalAI is an API you can already plug it into existing projects that provides are UI interfaces to OpenAI's APIs. There are several already on github, and should be compatible with LocalAI already (as it mimics the OpenAI API)
We are working on to have a good out of the box experience - however as LocalAI is an API you can already plug it into existing projects that provides are UI interfaces to OpenAI's APIs. There are several already on github, and should be compatible with LocalAI already (as it mimics the OpenAI API)
</details>
@@ -878,9 +429,8 @@ Feel free to open up a PR to get your project listed!
- [Kairos](https://github.com/kairos-io/kairos)
- [k8sgpt](https://github.com/k8sgpt-ai/k8sgpt#running-local-models)
- [Spark](https://github.com/cedriking/spark)
## Blog posts and other articles
## Blog posts and other articles on LocalAI
- https://medium.com/@tyler_97636/k8sgpt-localai-unlock-kubernetes-superpowers-for-free-584790de9b65
- https://kairos.io/docs/examples/localai/
@@ -893,9 +443,6 @@ Feel free to open up a PR to get your project listed!
- [x] Multi-model support
- [x] Have a webUI!
- [x] Allow configuration of defaults for models.
- [x] Support for embeddings
- [x] Support for audio transcription with https://github.com/ggerganov/whisper.cpp
- [ ] GPU/CUDA support ( https://github.com/go-skynet/LocalAI/issues/69 )
- [ ] Enable automatic downloading of models from a curated gallery, with only free-licensed models, directly from the webui.
## Star history
@@ -904,29 +451,16 @@ Feel free to open up a PR to get your project listed!
## License
LocalAI is a community-driven project. It was initially created by [Ettore Di Giacinto](https://github.com/mudler/) at the [SpectroCloud OSS Office](https://github.com/spectrocloud).
LocalAI is a community-driven project. It was initially created by [mudler](https://github.com/mudler/) at the [SpectroCloud OSS Office](https://github.com/spectrocloud).
MIT
## Golang bindings used
- [go-skynet/go-llama.cpp](https://github.com/go-skynet/go-llama.cpp)
- [go-skynet/go-gpt4all-j.cpp](https://github.com/go-skynet/go-gpt4all-j.cpp)
- [go-skynet/go-gpt2.cpp](https://github.com/go-skynet/go-gpt2.cpp)
- [go-skynet/go-bert.cpp](https://github.com/go-skynet/go-bert.cpp)
- [donomii/go-rwkv.cpp](https://github.com/donomii/go-rwkv.cpp)
## Acknowledgements
LocalAI couldn't have been built without the help of great software already available from the community. Thank you!
- [llama.cpp](https://github.com/ggerganov/llama.cpp)
- https://github.com/tatsu-lab/stanford_alpaca
- https://github.com/cornelk/llama-go for the initial ideas
- https://github.com/antimatter15/alpaca.cpp
- https://github.com/EdVince/Stable-Diffusion-NCNN
- https://github.com/ggerganov/whisper.cpp
- https://github.com/saharNooby/rwkv.cpp
- https://github.com/antimatter15/alpaca.cpp for the light model version (this is compatible and tested only with that checkpoint model!)
## Contributors

View File

@@ -6,13 +6,12 @@ import (
model "github.com/go-skynet/LocalAI/pkg/model"
"github.com/gofiber/fiber/v2"
"github.com/gofiber/fiber/v2/middleware/cors"
"github.com/gofiber/fiber/v2/middleware/logger"
"github.com/gofiber/fiber/v2/middleware/recover"
"github.com/rs/zerolog"
"github.com/rs/zerolog/log"
)
func App(configFile string, loader *model.ModelLoader, uploadLimitMB, threads, ctxSize int, f16 bool, debug, disableMessage bool, imageDir string) *fiber.App {
func App(configFile string, loader *model.ModelLoader, threads, ctxSize int, f16 bool, debug, disableMessage bool) *fiber.App {
zerolog.SetGlobalLevel(zerolog.InfoLevel)
if debug {
zerolog.SetGlobalLevel(zerolog.DebugLevel)
@@ -20,7 +19,6 @@ func App(configFile string, loader *model.ModelLoader, uploadLimitMB, threads, c
// Return errors as JSON responses
app := fiber.New(fiber.Config{
BodyLimit: uploadLimitMB * 1024 * 1024, // this is the default limit of 4MB
DisableStartupMessage: disableMessage,
// Override default error handler
ErrorHandler: func(ctx *fiber.Ctx, err error) error {
@@ -42,12 +40,6 @@ func App(configFile string, loader *model.ModelLoader, uploadLimitMB, threads, c
},
})
if debug {
app.Use(logger.New(logger.Config{
Format: "[${ip}]:${port} ${status} - ${method} ${path}\n",
}))
}
cm := make(ConfigMerger)
if err := cm.LoadConfigs(loader.ModelPath); err != nil {
log.Error().Msgf("error loading config files: %s", err.Error())
@@ -69,29 +61,11 @@ func App(configFile string, loader *model.ModelLoader, uploadLimitMB, threads, c
app.Use(cors.New())
// openAI compatible API endpoint
app.Post("/v1/chat/completions", chatEndpoint(cm, debug, loader, threads, ctxSize, f16))
app.Post("/chat/completions", chatEndpoint(cm, debug, loader, threads, ctxSize, f16))
app.Post("/v1/chat/completions", openAIEndpoint(cm, true, debug, loader, threads, ctxSize, f16))
app.Post("/chat/completions", openAIEndpoint(cm, true, debug, loader, threads, ctxSize, f16))
app.Post("/v1/edits", editEndpoint(cm, debug, loader, threads, ctxSize, f16))
app.Post("/edits", editEndpoint(cm, debug, loader, threads, ctxSize, f16))
app.Post("/v1/completions", completionEndpoint(cm, debug, loader, threads, ctxSize, f16))
app.Post("/completions", completionEndpoint(cm, debug, loader, threads, ctxSize, f16))
app.Post("/v1/embeddings", embeddingsEndpoint(cm, debug, loader, threads, ctxSize, f16))
app.Post("/embeddings", embeddingsEndpoint(cm, debug, loader, threads, ctxSize, f16))
// /v1/engines/{engine_id}/embeddings
app.Post("/v1/engines/:model/embeddings", embeddingsEndpoint(cm, debug, loader, threads, ctxSize, f16))
app.Post("/v1/audio/transcriptions", transcriptEndpoint(cm, debug, loader, threads, ctxSize, f16))
app.Post("/v1/images/generations", imageEndpoint(cm, debug, loader, imageDir))
if imageDir != "" {
app.Static("/generated-images", imageDir)
}
app.Post("/v1/completions", openAIEndpoint(cm, false, debug, loader, threads, ctxSize, f16))
app.Post("/completions", openAIEndpoint(cm, false, debug, loader, threads, ctxSize, f16))
app.Get("/v1/models", listModels(loader, cm))
app.Get("/models", listModels(loader, cm))

View File

@@ -3,8 +3,6 @@ package api_test
import (
"context"
"os"
"path/filepath"
"runtime"
. "github.com/go-skynet/LocalAI/api"
"github.com/go-skynet/LocalAI/pkg/model"
@@ -12,7 +10,6 @@ import (
. "github.com/onsi/ginkgo/v2"
. "github.com/onsi/gomega"
openaigo "github.com/otiai10/openaigo"
"github.com/sashabaranov/go-openai"
)
@@ -21,19 +18,15 @@ var _ = Describe("API test", func() {
var app *fiber.App
var modelLoader *model.ModelLoader
var client *openai.Client
var client2 *openaigo.Client
Context("API query", func() {
BeforeEach(func() {
modelLoader = model.NewModelLoader(os.Getenv("MODELS_PATH"))
app = App("", modelLoader, 15, 1, 512, false, true, true, "")
app = App("", modelLoader, 1, 512, false, true, true)
go app.Listen("127.0.0.1:9090")
defaultConfig := openai.DefaultConfig("")
defaultConfig.BaseURL = "http://127.0.0.1:9090/v1"
client2 = openaigo.NewClient("")
client2.BaseURL = defaultConfig.BaseURL
// Wait for API to be ready
client = openai.NewClientWithConfig(defaultConfig)
Eventually(func() error {
@@ -47,7 +40,8 @@ var _ = Describe("API test", func() {
It("returns the models list", func() {
models, err := client.ListModels(context.TODO())
Expect(err).ToNot(HaveOccurred())
Expect(len(models.Models)).To(Equal(10))
Expect(len(models.Models)).To(Equal(3))
Expect(models.Models[0].ID).To(Equal("testmodel"))
})
It("can generate completions", func() {
resp, err := client.CreateCompletion(context.TODO(), openai.CompletionRequest{Model: "testmodel", Prompt: "abcdedfghikl"})
@@ -80,73 +74,20 @@ var _ = Describe("API test", func() {
It("returns errors", func() {
_, err := client.CreateCompletion(context.TODO(), openai.CompletionRequest{Model: "foomodel", Prompt: "abcdedfghikl"})
Expect(err).To(HaveOccurred())
Expect(err.Error()).To(ContainSubstring("error, status code: 500, message: could not load model - all backends returned error: 12 errors occurred:"))
})
It("transcribes audio", func() {
if runtime.GOOS != "linux" {
Skip("test supported only on linux")
}
resp, err := client.CreateTranscription(
context.Background(),
openai.AudioRequest{
Model: openai.Whisper1,
FilePath: filepath.Join(os.Getenv("TEST_DIR"), "audio.wav"),
},
)
Expect(err).ToNot(HaveOccurred())
Expect(resp.Text).To(ContainSubstring("This is the Micro Machine Man presenting"))
Expect(err.Error()).To(ContainSubstring("error, status code: 500, message: llama: model does not exist"))
})
It("calculate embeddings", func() {
if runtime.GOOS != "linux" {
Skip("test supported only on linux")
}
resp, err := client.CreateEmbeddings(
context.Background(),
openai.EmbeddingRequest{
Model: openai.AdaEmbeddingV2,
Input: []string{"sun", "cat"},
},
)
Expect(err).ToNot(HaveOccurred())
Expect(len(resp.Data[0].Embedding)).To(BeNumerically("==", 384))
Expect(len(resp.Data[1].Embedding)).To(BeNumerically("==", 384))
sunEmbedding := resp.Data[0].Embedding
resp2, err := client.CreateEmbeddings(
context.Background(),
openai.EmbeddingRequest{
Model: openai.AdaEmbeddingV2,
Input: []string{"sun"},
},
)
Expect(err).ToNot(HaveOccurred())
Expect(resp2.Data[0].Embedding).To(Equal(sunEmbedding))
})
Context("backends", func() {
It("runs rwkv", func() {
if runtime.GOOS != "linux" {
Skip("test supported only on linux")
}
resp, err := client.CreateCompletion(context.TODO(), openai.CompletionRequest{Model: "rwkv_test", Prompt: "Count up to five: one, two, three, four,"})
Expect(err).ToNot(HaveOccurred())
Expect(len(resp.Choices) > 0).To(BeTrue())
Expect(resp.Choices[0].Text).To(Equal(" five."))
})
})
})
Context("Config file", func() {
BeforeEach(func() {
modelLoader = model.NewModelLoader(os.Getenv("MODELS_PATH"))
app = App(os.Getenv("CONFIG_FILE"), modelLoader, 5, 1, 512, false, true, true, "")
app = App(os.Getenv("CONFIG_FILE"), modelLoader, 1, 512, false, true, true)
go app.Listen("127.0.0.1:9090")
defaultConfig := openai.DefaultConfig("")
defaultConfig.BaseURL = "http://127.0.0.1:9090/v1"
client2 = openaigo.NewClient("")
client2.BaseURL = defaultConfig.BaseURL
// Wait for API to be ready
client = openai.NewClientWithConfig(defaultConfig)
Eventually(func() error {
@@ -161,7 +102,8 @@ var _ = Describe("API test", func() {
models, err := client.ListModels(context.TODO())
Expect(err).ToNot(HaveOccurred())
Expect(len(models.Models)).To(Equal(12))
Expect(len(models.Models)).To(Equal(5))
Expect(models.Models[0].ID).To(Equal("testmodel"))
})
It("can generate chat completions from config file", func() {
resp, err := client.CreateChatCompletion(context.TODO(), openai.ChatCompletionRequest{Model: "list1", Messages: []openai.ChatCompletionMessage{openai.ChatCompletionMessage{Role: "user", Content: "abcdedfghikl"}}})
@@ -175,17 +117,5 @@ var _ = Describe("API test", func() {
Expect(len(resp.Choices)).To(Equal(1))
Expect(resp.Choices[0].Message.Content).ToNot(BeEmpty())
})
It("can generate edit completions from config file", func() {
request := openaigo.EditCreateRequestBody{
Model: "list2",
Instruction: "foo",
Input: "bar",
}
resp, err := client2.CreateEdit(context.Background(), request)
Expect(err).ToNot(HaveOccurred())
Expect(len(resp.Choices)).To(Equal(1))
Expect(resp.Choices[0].Text).ToNot(BeEmpty())
})
})
})

View File

@@ -1,46 +1,32 @@
package api
import (
"encoding/json"
"fmt"
"io/ioutil"
"os"
"path/filepath"
"strings"
model "github.com/go-skynet/LocalAI/pkg/model"
"github.com/gofiber/fiber/v2"
"github.com/rs/zerolog/log"
"gopkg.in/yaml.v3"
)
type Config struct {
OpenAIRequest `yaml:"parameters"`
Name string `yaml:"name"`
StopWords []string `yaml:"stopwords"`
Cutstrings []string `yaml:"cutstrings"`
TrimSpace []string `yaml:"trimspace"`
ContextSize int `yaml:"context_size"`
F16 bool `yaml:"f16"`
Threads int `yaml:"threads"`
Debug bool `yaml:"debug"`
Roles map[string]string `yaml:"roles"`
Embeddings bool `yaml:"embeddings"`
Backend string `yaml:"backend"`
TemplateConfig TemplateConfig `yaml:"template"`
MirostatETA float64 `yaml:"mirostat_eta"`
MirostatTAU float64 `yaml:"mirostat_tau"`
Mirostat int `yaml:"mirostat"`
NGPULayers int `yaml:"gpu_layers"`
ImageGenerationAssets string `yaml:"asset_dir"`
PromptStrings, InputStrings []string
InputToken [][]int
OpenAIRequest `yaml:"parameters"`
Name string `yaml:"name"`
StopWords []string `yaml:"stopwords"`
Cutstrings []string `yaml:"cutstrings"`
TrimSpace []string `yaml:"trimspace"`
ContextSize int `yaml:"context_size"`
F16 bool `yaml:"f16"`
Threads int `yaml:"threads"`
Debug bool `yaml:"debug"`
Roles map[string]string `yaml:"roles"`
TemplateConfig TemplateConfig `yaml:"template"`
}
type TemplateConfig struct {
Completion string `yaml:"completion"`
Chat string `yaml:"chat"`
Edit string `yaml:"edit"`
}
type ConfigMerger map[string]Config
@@ -112,186 +98,3 @@ func (cm ConfigMerger) LoadConfigs(path string) error {
return nil
}
func updateConfig(config *Config, input *OpenAIRequest) {
if input.Echo {
config.Echo = input.Echo
}
if input.TopK != 0 {
config.TopK = input.TopK
}
if input.TopP != 0 {
config.TopP = input.TopP
}
if input.Temperature != 0 {
config.Temperature = input.Temperature
}
if input.Maxtokens != 0 {
config.Maxtokens = input.Maxtokens
}
switch stop := input.Stop.(type) {
case string:
if stop != "" {
config.StopWords = append(config.StopWords, stop)
}
case []interface{}:
for _, pp := range stop {
if s, ok := pp.(string); ok {
config.StopWords = append(config.StopWords, s)
}
}
}
if input.RepeatPenalty != 0 {
config.RepeatPenalty = input.RepeatPenalty
}
if input.Keep != 0 {
config.Keep = input.Keep
}
if input.Batch != 0 {
config.Batch = input.Batch
}
if input.F16 {
config.F16 = input.F16
}
if input.IgnoreEOS {
config.IgnoreEOS = input.IgnoreEOS
}
if input.Seed != 0 {
config.Seed = input.Seed
}
if input.Mirostat != 0 {
config.Mirostat = input.Mirostat
}
if input.MirostatETA != 0 {
config.MirostatETA = input.MirostatETA
}
if input.MirostatTAU != 0 {
config.MirostatTAU = input.MirostatTAU
}
switch inputs := input.Input.(type) {
case string:
if inputs != "" {
config.InputStrings = append(config.InputStrings, inputs)
}
case []interface{}:
for _, pp := range inputs {
switch i := pp.(type) {
case string:
config.InputStrings = append(config.InputStrings, i)
case []interface{}:
tokens := []int{}
for _, ii := range i {
tokens = append(tokens, int(ii.(float64)))
}
config.InputToken = append(config.InputToken, tokens)
}
}
}
switch p := input.Prompt.(type) {
case string:
config.PromptStrings = append(config.PromptStrings, p)
case []interface{}:
for _, pp := range p {
if s, ok := pp.(string); ok {
config.PromptStrings = append(config.PromptStrings, s)
}
}
}
}
func readInput(c *fiber.Ctx, loader *model.ModelLoader, randomModel bool) (string, *OpenAIRequest, error) {
input := new(OpenAIRequest)
// Get input data from the request body
if err := c.BodyParser(input); err != nil {
return "", nil, err
}
modelFile := input.Model
if c.Params("model") != "" {
modelFile = c.Params("model")
}
received, _ := json.Marshal(input)
log.Debug().Msgf("Request received: %s", string(received))
// Set model from bearer token, if available
bearer := strings.TrimLeft(c.Get("authorization"), "Bearer ")
bearerExists := bearer != "" && loader.ExistsInModelPath(bearer)
// If no model was specified, take the first available
if modelFile == "" && !bearerExists && randomModel {
models, _ := loader.ListModels()
if len(models) > 0 {
modelFile = models[0]
log.Debug().Msgf("No model specified, using: %s", modelFile)
} else {
log.Debug().Msgf("No model specified, returning error")
return "", nil, fmt.Errorf("no model specified")
}
}
// If a model is found in bearer token takes precedence
if bearerExists {
log.Debug().Msgf("Using model from bearer token: %s", bearer)
modelFile = bearer
}
return modelFile, input, nil
}
func readConfig(modelFile string, input *OpenAIRequest, cm ConfigMerger, loader *model.ModelLoader, debug bool, threads, ctx int, f16 bool) (*Config, *OpenAIRequest, error) {
// Load a config file if present after the model name
modelConfig := filepath.Join(loader.ModelPath, modelFile+".yaml")
if _, err := os.Stat(modelConfig); err == nil {
if err := cm.LoadConfig(modelConfig); err != nil {
return nil, nil, fmt.Errorf("failed loading model config (%s) %s", modelConfig, err.Error())
}
}
var config *Config
cfg, exists := cm[modelFile]
if !exists {
config = &Config{
OpenAIRequest: defaultRequest(modelFile),
ContextSize: ctx,
Threads: threads,
F16: f16,
Debug: debug,
}
} else {
config = &cfg
}
// Set the parameters for the language model prediction
updateConfig(config, input)
// Don't allow 0 as setting
if config.Threads == 0 {
if threads != 0 {
config.Threads = threads
} else {
config.Threads = 4
}
}
// Enforce debug flag if passed from CLI
if debug {
config.Debug = true
}
return config, input, nil
}

View File

@@ -2,23 +2,15 @@ package api
import (
"bufio"
"bytes"
"encoding/base64"
"encoding/json"
"fmt"
"io"
"io/ioutil"
"net/http"
"os"
"path"
"path/filepath"
"strconv"
"regexp"
"strings"
"sync"
"github.com/ggerganov/whisper.cpp/bindings/go/pkg/whisper"
model "github.com/go-skynet/LocalAI/pkg/model"
whisperutil "github.com/go-skynet/LocalAI/pkg/whisper"
llama "github.com/go-skynet/go-llama.cpp"
"github.com/gofiber/fiber/v2"
"github.com/rs/zerolog/log"
"github.com/valyala/fasthttp"
@@ -36,31 +28,12 @@ type ErrorResponse struct {
Error *APIError `json:"error,omitempty"`
}
type OpenAIUsage struct {
PromptTokens int `json:"prompt_tokens"`
CompletionTokens int `json:"completion_tokens"`
TotalTokens int `json:"total_tokens"`
}
type Item struct {
Embedding []float32 `json:"embedding"`
Index int `json:"index"`
Object string `json:"object,omitempty"`
// Images
URL string `json:"url,omitempty"`
B64JSON string `json:"b64_json,omitempty"`
}
type OpenAIResponse struct {
Created int `json:"created,omitempty"`
Object string `json:"object,omitempty"`
ID string `json:"id,omitempty"`
Model string `json:"model,omitempty"`
Choices []Choice `json:"choices,omitempty"`
Data []Item `json:"data,omitempty"`
Usage OpenAIUsage `json:"usage"`
}
type Choice struct {
@@ -84,21 +57,10 @@ type OpenAIModel struct {
type OpenAIRequest struct {
Model string `json:"model" yaml:"model"`
// whisper
File string `json:"file" validate:"required"`
Language string `json:"language"`
//whisper/image
ResponseFormat string `json:"response_format"`
// image
Size string `json:"size"`
// Prompt is read only by completion/image API calls
Prompt interface{} `json:"prompt" yaml:"prompt"`
// Prompt is read only by completion API calls
Prompt string `json:"prompt" yaml:"prompt"`
// Edit endpoint
Instruction string `json:"instruction" yaml:"instruction"`
Input interface{} `json:"input" yaml:"input"`
Stop interface{} `json:"stop" yaml:"stop"`
Stop string `json:"stop" yaml:"stop"`
// Messages is read only by chat/completion API calls
Messages []Message `json:"messages" yaml:"messages"`
@@ -120,15 +82,7 @@ type OpenAIRequest struct {
RepeatPenalty float64 `json:"repeat_penalty" yaml:"repeat_penalty"`
Keep int `json:"n_keep" yaml:"n_keep"`
MirostatETA float64 `json:"mirostat_eta" yaml:"mirostat_eta"`
MirostatTAU float64 `json:"mirostat_tau" yaml:"mirostat_tau"`
Mirostat int `json:"mirostat" yaml:"mirostat"`
Seed int `json:"seed" yaml:"seed"`
// Image (not supported by OpenAI)
Mode int `json:"mode"`
Step int `json:"step"`
}
func defaultRequest(modelFile string) OpenAIRequest {
@@ -141,183 +95,165 @@ func defaultRequest(modelFile string) OpenAIRequest {
}
}
func updateConfig(config *Config, input *OpenAIRequest) {
if input.Echo {
config.Echo = input.Echo
}
if input.TopK != 0 {
config.TopK = input.TopK
}
if input.TopP != 0 {
config.TopP = input.TopP
}
if input.Temperature != 0 {
config.Temperature = input.Temperature
}
if input.Maxtokens != 0 {
config.Maxtokens = input.Maxtokens
}
if input.Stop != "" {
config.StopWords = append(config.StopWords, input.Stop)
}
if input.RepeatPenalty != 0 {
config.RepeatPenalty = input.RepeatPenalty
}
if input.Keep != 0 {
config.Keep = input.Keep
}
if input.Batch != 0 {
config.Batch = input.Batch
}
if input.F16 {
config.F16 = input.F16
}
if input.IgnoreEOS {
config.IgnoreEOS = input.IgnoreEOS
}
if input.Seed != 0 {
config.Seed = input.Seed
}
}
var cutstrings map[string]*regexp.Regexp = make(map[string]*regexp.Regexp)
var mu sync.Mutex = sync.Mutex{}
// https://platform.openai.com/docs/api-reference/completions
func completionEndpoint(cm ConfigMerger, debug bool, loader *model.ModelLoader, threads, ctx int, f16 bool) func(c *fiber.Ctx) error {
func openAIEndpoint(cm ConfigMerger, chat, debug bool, loader *model.ModelLoader, threads, ctx int, f16 bool) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
model, input, err := readInput(c, loader, true)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
input := new(OpenAIRequest)
// Get input data from the request body
if err := c.BodyParser(input); err != nil {
return err
}
config, input, err := readConfig(model, input, cm, loader, debug, threads, ctx, f16)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
}
log.Debug().Msgf("Parameter Config: %+v", config)
templateFile := config.Model
if config.TemplateConfig.Completion != "" {
templateFile = config.TemplateConfig.Completion
}
var result []Choice
for _, i := range config.PromptStrings {
// A model can have a "file.bin.tmpl" file associated with a prompt template prefix
templatedInput, err := loader.TemplatePrefix(templateFile, struct {
Input string
}{Input: i})
if err == nil {
i = templatedInput
log.Debug().Msgf("Template found, input modified to: %s", i)
}
r, err := ComputeChoices(i, input, config, loader, func(s string, c *[]Choice) {
*c = append(*c, Choice{Text: s})
}, nil)
if err != nil {
return err
}
result = append(result, r...)
}
resp := &OpenAIResponse{
Model: input.Model, // we have to return what the user sent here, due to OpenAI spec.
Choices: result,
Object: "text_completion",
}
jsonResult, _ := json.Marshal(resp)
log.Debug().Msgf("Response: %s", jsonResult)
// Return the prediction in the response body
return c.JSON(resp)
}
}
// https://platform.openai.com/docs/api-reference/embeddings
func embeddingsEndpoint(cm ConfigMerger, debug bool, loader *model.ModelLoader, threads, ctx int, f16 bool) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
model, input, err := readInput(c, loader, true)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
}
config, input, err := readConfig(model, input, cm, loader, debug, threads, ctx, f16)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
}
log.Debug().Msgf("Parameter Config: %+v", config)
items := []Item{}
for i, s := range config.InputToken {
// get the model function to call for the result
embedFn, err := ModelEmbedding("", s, loader, *config)
if err != nil {
return err
}
embeddings, err := embedFn()
if err != nil {
return err
}
items = append(items, Item{Embedding: embeddings, Index: i, Object: "embedding"})
}
for i, s := range config.InputStrings {
// get the model function to call for the result
embedFn, err := ModelEmbedding(s, []int{}, loader, *config)
if err != nil {
return err
}
embeddings, err := embedFn()
if err != nil {
return err
}
items = append(items, Item{Embedding: embeddings, Index: i, Object: "embedding"})
}
resp := &OpenAIResponse{
Model: input.Model, // we have to return what the user sent here, due to OpenAI spec.
Data: items,
Object: "list",
}
jsonResult, _ := json.Marshal(resp)
log.Debug().Msgf("Response: %s", jsonResult)
// Return the prediction in the response body
return c.JSON(resp)
}
}
func chatEndpoint(cm ConfigMerger, debug bool, loader *model.ModelLoader, threads, ctx int, f16 bool) func(c *fiber.Ctx) error {
process := func(s string, req *OpenAIRequest, config *Config, loader *model.ModelLoader, responses chan OpenAIResponse) {
ComputeChoices(s, req, config, loader, func(s string, c *[]Choice) {}, func(s string) bool {
resp := OpenAIResponse{
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
Choices: []Choice{{Delta: &Message{Role: "assistant", Content: s}}},
Object: "chat.completion.chunk",
}
log.Debug().Msgf("Sending goroutine: %s", s)
responses <- resp
return true
})
close(responses)
}
return func(c *fiber.Ctx) error {
model, input, err := readInput(c, loader, true)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
}
config, input, err := readConfig(model, input, cm, loader, debug, threads, ctx, f16)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
}
log.Debug().Msgf("Parameter Config: %+v", config)
var predInput string
mess := []string{}
for _, i := range input.Messages {
var content string
r := config.Roles[i.Role]
if r != "" {
content = fmt.Sprint(r, " ", i.Content)
} else {
content = i.Content
}
mess = append(mess, content)
}
predInput = strings.Join(mess, "\n")
if input.Stream {
log.Debug().Msgf("Stream request received")
c.Context().SetContentType("text/event-stream")
//c.Response().Header.SetContentType(fiber.MIMETextHTMLCharsetUTF8)
// c.Set("Content-Type", "text/event-stream")
c.Set("Content-Type", "text/event-stream; charset=utf-8")
c.Set("Cache-Control", "no-cache")
c.Set("Connection", "keep-alive")
c.Set("Transfer-Encoding", "chunked")
}
templateFile := config.Model
modelFile := input.Model
received, _ := json.Marshal(input)
if config.TemplateConfig.Chat != "" {
log.Debug().Msgf("Request received: %s", string(received))
// Set model from bearer token, if available
bearer := strings.TrimLeft(c.Get("authorization"), "Bearer ")
bearerExists := bearer != "" && loader.ExistsInModelPath(bearer)
// If no model was specified, take the first available
if modelFile == "" && !bearerExists {
models, _ := loader.ListModels()
if len(models) > 0 {
modelFile = models[0]
log.Debug().Msgf("No model specified, using: %s", modelFile)
} else {
log.Debug().Msgf("No model specified, returning error")
return fmt.Errorf("no model specified")
}
}
// If a model is found in bearer token takes precedence
if bearerExists {
log.Debug().Msgf("Using model from bearer token: %s", bearer)
modelFile = bearer
}
// Load a config file if present after the model name
modelConfig := filepath.Join(loader.ModelPath, modelFile+".yaml")
if _, err := os.Stat(modelConfig); err == nil {
if err := cm.LoadConfig(modelConfig); err != nil {
return fmt.Errorf("failed loading model config (%s) %s", modelConfig, err.Error())
}
}
var config *Config
cfg, exists := cm[modelFile]
if !exists {
config = &Config{
OpenAIRequest: defaultRequest(modelFile),
}
} else {
config = &cfg
}
// Set the parameters for the language model prediction
updateConfig(config, input)
if threads != 0 {
config.Threads = threads
}
if ctx != 0 {
config.ContextSize = ctx
}
if f16 {
config.F16 = true
}
if debug {
config.Debug = true
}
log.Debug().Msgf("Parameter Config: %+v", config)
predInput := input.Prompt
if chat {
mess := []string{}
for _, i := range input.Messages {
r := config.Roles[i.Role]
if r == "" {
r = i.Role
}
content := fmt.Sprint(r, " ", i.Content)
mess = append(mess, content)
}
predInput = strings.Join(mess, "\n")
}
templateFile := config.Model
if config.TemplateConfig.Chat != "" && chat {
templateFile = config.TemplateConfig.Chat
}
if config.TemplateConfig.Completion != "" && !chat {
templateFile = config.TemplateConfig.Completion
}
// A model can have a "file.bin.tmpl" file associated with a prompt template prefix
templatedInput, err := loader.TemplatePrefix(templateFile, struct {
Input string
@@ -327,317 +263,105 @@ func chatEndpoint(cm ConfigMerger, debug bool, loader *model.ModelLoader, thread
log.Debug().Msgf("Template found, input modified to: %s", predInput)
}
if input.Stream {
responses := make(chan OpenAIResponse)
result := []Choice{}
go process(predInput, input, config, loader, responses)
n := input.N
c.Context().SetBodyStreamWriter(fasthttp.StreamWriter(func(w *bufio.Writer) {
for ev := range responses {
var buf bytes.Buffer
enc := json.NewEncoder(&buf)
enc.Encode(ev)
fmt.Fprintf(w, "event: data\n\n")
fmt.Fprintf(w, "data: %v\n\n", buf.String())
log.Debug().Msgf("Sending chunk: %s", buf.String())
w.Flush()
}
w.WriteString("event: data\n\n")
resp := &OpenAIResponse{
Model: input.Model, // we have to return what the user sent here, due to OpenAI spec.
Choices: []Choice{{FinishReason: "stop"}},
}
respData, _ := json.Marshal(resp)
w.WriteString(fmt.Sprintf("data: %s\n\n", respData))
w.Flush()
}))
return nil
if input.N == 0 {
n = 1
}
result, err := ComputeChoices(predInput, input, config, loader, func(s string, c *[]Choice) {
*c = append(*c, Choice{Message: &Message{Role: "assistant", Content: s}})
}, nil)
// get the model function to call for the result
predFunc, err := ModelInference(predInput, loader, *config)
if err != nil {
return err
}
resp := &OpenAIResponse{
Model: input.Model, // we have to return what the user sent here, due to OpenAI spec.
Choices: result,
Object: "chat.completion",
}
respData, _ := json.Marshal(resp)
log.Debug().Msgf("Response: %s", respData)
// Return the prediction in the response body
return c.JSON(resp)
}
}
func editEndpoint(cm ConfigMerger, debug bool, loader *model.ModelLoader, threads, ctx int, f16 bool) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
model, input, err := readInput(c, loader, true)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
}
config, input, err := readConfig(model, input, cm, loader, debug, threads, ctx, f16)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
}
log.Debug().Msgf("Parameter Config: %+v", config)
templateFile := config.Model
if config.TemplateConfig.Edit != "" {
templateFile = config.TemplateConfig.Edit
}
var result []Choice
for _, i := range config.InputStrings {
// A model can have a "file.bin.tmpl" file associated with a prompt template prefix
templatedInput, err := loader.TemplatePrefix(templateFile, struct {
Input string
Instruction string
}{Input: i})
if err == nil {
i = templatedInput
log.Debug().Msgf("Template found, input modified to: %s", i)
finetunePrediction := func(prediction string) string {
if config.Echo {
prediction = predInput + prediction
}
r, err := ComputeChoices(i, input, config, loader, func(s string, c *[]Choice) {
*c = append(*c, Choice{Text: s})
}, nil)
for _, c := range config.Cutstrings {
mu.Lock()
reg, ok := cutstrings[c]
if !ok {
cutstrings[c] = regexp.MustCompile(c)
reg = cutstrings[c]
}
mu.Unlock()
prediction = reg.ReplaceAllString(prediction, "")
}
for _, c := range config.TrimSpace {
prediction = strings.TrimSpace(strings.TrimPrefix(prediction, c))
}
return prediction
}
for i := 0; i < n; i++ {
prediction, err := predFunc()
if err != nil {
return err
}
result = append(result, r...)
prediction = finetunePrediction(prediction)
if chat {
if input.Stream {
result = append(result, Choice{Delta: &Message{Role: "assistant", Content: prediction}})
} else {
result = append(result, Choice{Message: &Message{Role: "assistant", Content: prediction}})
}
} else {
result = append(result, Choice{Text: prediction})
}
}
resp := &OpenAIResponse{
Model: input.Model, // we have to return what the user sent here, due to OpenAI spec.
Choices: result,
Object: "edit",
}
if input.Stream && chat {
resp.Object = "chat.completion.chunk"
} else if chat {
resp.Object = "chat.completion"
} else {
resp.Object = "text_completion"
}
jsonResult, _ := json.Marshal(resp)
log.Debug().Msgf("Response: %s", jsonResult)
// Return the prediction in the response body
return c.JSON(resp)
}
}
if input.Stream {
log.Debug().Msgf("Handling stream request")
c.Context().SetBodyStreamWriter(fasthttp.StreamWriter(func(w *bufio.Writer) {
fmt.Fprintf(w, "event: data\n")
w.Flush()
// https://platform.openai.com/docs/api-reference/images/create
fmt.Fprintf(w, "data: %s\n\n", jsonResult)
w.Flush()
/*
*
fmt.Fprintf(w, "event: data\n")
w.Flush()
curl http://localhost:8080/v1/images/generations \
-H "Content-Type: application/json" \
-d '{
"prompt": "A cute baby sea otter",
"n": 1,
"size": "512x512"
}'
*
*/
func imageEndpoint(cm ConfigMerger, debug bool, loader *model.ModelLoader, imageDir string) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
m, input, err := readInput(c, loader, false)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
}
if m == "" {
m = model.StableDiffusionBackend
}
log.Debug().Msgf("Loading model: %+v", m)
config, input, err := readConfig(m, input, cm, loader, debug, 0, 0, false)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
}
log.Debug().Msgf("Parameter Config: %+v", config)
// XXX: Only stablediffusion is supported for now
if config.Backend == "" {
config.Backend = model.StableDiffusionBackend
}
sizeParts := strings.Split(input.Size, "x")
if len(sizeParts) != 2 {
return fmt.Errorf("Invalid value for 'size'")
}
width, err := strconv.Atoi(sizeParts[0])
if err != nil {
return fmt.Errorf("Invalid value for 'size'")
}
height, err := strconv.Atoi(sizeParts[1])
if err != nil {
return fmt.Errorf("Invalid value for 'size'")
}
b64JSON := false
if input.ResponseFormat == "b64_json" {
b64JSON = true
}
var result []Item
for _, i := range config.PromptStrings {
n := input.N
if input.N == 0 {
n = 1
}
for j := 0; j < n; j++ {
prompts := strings.Split(i, "|")
positive_prompt := prompts[0]
negative_prompt := ""
if len(prompts) > 1 {
negative_prompt = prompts[1]
resp := &OpenAIResponse{
Model: input.Model, // we have to return what the user sent here, due to OpenAI spec.
Choices: []Choice{Choice{FinishReason: "stop"}},
}
respData, _ := json.Marshal(resp)
mode := 0
step := 15
fmt.Fprintf(w, "data: %s\n\n", respData)
w.Flush()
if input.Mode != 0 {
mode = input.Mode
}
if input.Step != 0 {
step = input.Step
}
tempDir := ""
if !b64JSON {
tempDir = imageDir
}
// Create a temporary file
outputFile, err := ioutil.TempFile(tempDir, "b64")
if err != nil {
return err
}
outputFile.Close()
output := outputFile.Name() + ".png"
// Rename the temporary file
err = os.Rename(outputFile.Name(), output)
if err != nil {
return err
}
baseURL := c.BaseURL()
fn, err := ImageGeneration(height, width, mode, step, input.Seed, positive_prompt, negative_prompt, output, loader, *config)
if err != nil {
return err
}
if err := fn(); err != nil {
return err
}
item := &Item{}
if b64JSON {
defer os.RemoveAll(output)
data, err := os.ReadFile(output)
if err != nil {
return err
}
item.B64JSON = base64.StdEncoding.EncodeToString(data)
} else {
base := filepath.Base(output)
item.URL = baseURL + "/generated-images/" + base
}
result = append(result, *item)
}
// fmt.Fprintf(w, "data: [DONE]\n\n")
// w.Flush()
}))
return nil
} else {
// Return the prediction in the response body
return c.JSON(resp)
}
resp := &OpenAIResponse{
Data: result,
}
jsonResult, _ := json.Marshal(resp)
log.Debug().Msgf("Response: %s", jsonResult)
// Return the prediction in the response body
return c.JSON(resp)
}
}
// https://platform.openai.com/docs/api-reference/audio/create
func transcriptEndpoint(cm ConfigMerger, debug bool, loader *model.ModelLoader, threads, ctx int, f16 bool) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
m, input, err := readInput(c, loader, false)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
}
config, input, err := readConfig(m, input, cm, loader, debug, threads, ctx, f16)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
}
// retrieve the file data from the request
file, err := c.FormFile("file")
if err != nil {
return err
}
f, err := file.Open()
if err != nil {
return err
}
defer f.Close()
dir, err := os.MkdirTemp("", "whisper")
if err != nil {
return err
}
defer os.RemoveAll(dir)
dst := filepath.Join(dir, path.Base(file.Filename))
dstFile, err := os.Create(dst)
if err != nil {
return err
}
if _, err := io.Copy(dstFile, f); err != nil {
log.Debug().Msgf("Audio file copying error %+v - %+v - err %+v", file.Filename, dst, err)
return err
}
log.Debug().Msgf("Audio file copied to: %+v", dst)
whisperModel, err := loader.BackendLoader(model.WhisperBackend, config.Model, []llama.ModelOption{}, uint32(config.Threads))
if err != nil {
return err
}
if whisperModel == nil {
return fmt.Errorf("could not load whisper model")
}
w, ok := whisperModel.(whisper.Model)
if !ok {
return fmt.Errorf("loader returned non-whisper object")
}
tr, err := whisperutil.Transcript(w, dst, input.Language, uint(config.Threads))
if err != nil {
return err
}
log.Debug().Msgf("Trascribed: %+v", tr)
// TODO: handle different outputs here
return c.Status(http.StatusOK).JSON(fiber.Map{"text": tr})
}
}

View File

@@ -2,25 +2,28 @@ package api
import (
"fmt"
"regexp"
"strings"
"sync"
"github.com/donomii/go-rwkv.cpp"
model "github.com/go-skynet/LocalAI/pkg/model"
"github.com/go-skynet/LocalAI/pkg/stablediffusion"
"github.com/go-skynet/bloomz.cpp"
bert "github.com/go-skynet/go-bert.cpp"
gpt2 "github.com/go-skynet/go-gpt2.cpp"
gptj "github.com/go-skynet/go-gpt4all-j.cpp"
llama "github.com/go-skynet/go-llama.cpp"
gpt4all "github.com/nomic-ai/gpt4all/gpt4all-bindings/golang"
)
// mutex still needed, see: https://github.com/ggerganov/llama.cpp/discussions/784
var mutexMap sync.Mutex
var mutexes map[string]*sync.Mutex = make(map[string]*sync.Mutex)
func defaultLLamaOpts(c Config) []llama.ModelOption {
func ModelInference(s string, loader *model.ModelLoader, c Config) (func() (string, error), error) {
var model *llama.LLama
var gptModel *gptj.GPTJ
var gpt2Model *gpt2.GPT2
var stableLMModel *gpt2.StableLM
modelFile := c.Model
// Try to load the model
var llamaerr, gpt2err, gptjerr, stableerr error
llamaOpts := []llama.ModelOption{}
if c.ContextSize != 0 {
llamaOpts = append(llamaOpts, llama.SetContext(c.ContextSize))
@@ -28,222 +31,26 @@ func defaultLLamaOpts(c Config) []llama.ModelOption {
if c.F16 {
llamaOpts = append(llamaOpts, llama.EnableF16Memory)
}
if c.Embeddings {
llamaOpts = append(llamaOpts, llama.EnableEmbeddings)
}
if c.NGPULayers != 0 {
llamaOpts = append(llamaOpts, llama.SetGPULayers(c.NGPULayers))
}
return llamaOpts
}
func ImageGeneration(height, width, mode, step, seed int, positive_prompt, negative_prompt, dst string, loader *model.ModelLoader, c Config) (func() error, error) {
if c.Backend != model.StableDiffusionBackend {
return nil, fmt.Errorf("endpoint only working with stablediffusion models")
}
inferenceModel, err := loader.BackendLoader(c.Backend, c.ImageGenerationAssets, []llama.ModelOption{}, uint32(c.Threads))
if err != nil {
return nil, err
}
var fn func() error
switch model := inferenceModel.(type) {
case *stablediffusion.StableDiffusion:
fn = func() error {
return model.GenerateImage(height, width, mode, step, seed, positive_prompt, negative_prompt, dst)
}
default:
fn = func() error {
return fmt.Errorf("creation of images not supported by the backend")
}
}
return func() error {
// This is still needed, see: https://github.com/ggerganov/llama.cpp/discussions/784
mutexMap.Lock()
l, ok := mutexes[c.Backend]
if !ok {
m := &sync.Mutex{}
mutexes[c.Backend] = m
l = m
}
mutexMap.Unlock()
l.Lock()
defer l.Unlock()
return fn()
}, nil
}
func ModelEmbedding(s string, tokens []int, loader *model.ModelLoader, c Config) (func() ([]float32, error), error) {
if !c.Embeddings {
return nil, fmt.Errorf("endpoint disabled for this model by API configuration")
}
modelFile := c.Model
llamaOpts := defaultLLamaOpts(c)
var inferenceModel interface{}
var err error
if c.Backend == "" {
inferenceModel, err = loader.GreedyLoader(modelFile, llamaOpts, uint32(c.Threads))
} else {
inferenceModel, err = loader.BackendLoader(c.Backend, modelFile, llamaOpts, uint32(c.Threads))
}
if err != nil {
return nil, err
}
var fn func() ([]float32, error)
switch model := inferenceModel.(type) {
case *llama.LLama:
fn = func() ([]float32, error) {
predictOptions := buildLLamaPredictOptions(c)
if len(tokens) > 0 {
return model.TokenEmbeddings(tokens, predictOptions...)
}
return model.Embeddings(s, predictOptions...)
}
// bert embeddings
case *bert.Bert:
fn = func() ([]float32, error) {
if len(tokens) > 0 {
return model.TokenEmbeddings(tokens, bert.SetThreads(c.Threads))
}
return model.Embeddings(s, bert.SetThreads(c.Threads))
}
default:
fn = func() ([]float32, error) {
return nil, fmt.Errorf("embeddings not supported by the backend")
}
}
return func() ([]float32, error) {
// This is still needed, see: https://github.com/ggerganov/llama.cpp/discussions/784
mutexMap.Lock()
l, ok := mutexes[modelFile]
if !ok {
m := &sync.Mutex{}
mutexes[modelFile] = m
l = m
}
mutexMap.Unlock()
l.Lock()
defer l.Unlock()
embeds, err := fn()
if err != nil {
return embeds, err
}
// Remove trailing 0s
for i := len(embeds) - 1; i >= 0; i-- {
if embeds[i] == 0.0 {
embeds = embeds[:i]
} else {
break
// TODO: this is ugly, better identifying the model somehow! however, it is a good stab for a first implementation..
model, llamaerr = loader.LoadLLaMAModel(modelFile, llamaOpts...)
if llamaerr != nil {
gptModel, gptjerr = loader.LoadGPTJModel(modelFile)
if gptjerr != nil {
gpt2Model, gpt2err = loader.LoadGPT2Model(modelFile)
if gpt2err != nil {
stableLMModel, stableerr = loader.LoadStableLMModel(modelFile)
if stableerr != nil {
return nil, fmt.Errorf("llama: %s gpt: %s gpt2: %s stableLM: %s", llamaerr.Error(), gptjerr.Error(), gpt2err.Error(), stableerr.Error()) // llama failed first, so we want to catch both errors
}
}
}
return embeds, nil
}, nil
}
func buildLLamaPredictOptions(c Config) []llama.PredictOption {
// Generate the prediction using the language model
predictOptions := []llama.PredictOption{
llama.SetTemperature(c.Temperature),
llama.SetTopP(c.TopP),
llama.SetTopK(c.TopK),
llama.SetTokens(c.Maxtokens),
llama.SetThreads(c.Threads),
}
if c.Mirostat != 0 {
predictOptions = append(predictOptions, llama.SetMirostat(c.Mirostat))
}
if c.MirostatETA != 0 {
predictOptions = append(predictOptions, llama.SetMirostatETA(c.MirostatETA))
}
if c.MirostatTAU != 0 {
predictOptions = append(predictOptions, llama.SetMirostatTAU(c.MirostatTAU))
}
if c.Debug {
predictOptions = append(predictOptions, llama.Debug)
}
predictOptions = append(predictOptions, llama.SetStopWords(c.StopWords...))
if c.RepeatPenalty != 0 {
predictOptions = append(predictOptions, llama.SetPenalty(c.RepeatPenalty))
}
if c.Keep != 0 {
predictOptions = append(predictOptions, llama.SetNKeep(c.Keep))
}
if c.Batch != 0 {
predictOptions = append(predictOptions, llama.SetBatch(c.Batch))
}
if c.F16 {
predictOptions = append(predictOptions, llama.EnableF16KV)
}
if c.IgnoreEOS {
predictOptions = append(predictOptions, llama.IgnoreEOS)
}
if c.Seed != 0 {
predictOptions = append(predictOptions, llama.SetSeed(c.Seed))
}
return predictOptions
}
func ModelInference(s string, loader *model.ModelLoader, c Config, tokenCallback func(string) bool) (func() (string, error), error) {
supportStreams := false
modelFile := c.Model
llamaOpts := defaultLLamaOpts(c)
var inferenceModel interface{}
var err error
if c.Backend == "" {
inferenceModel, err = loader.GreedyLoader(modelFile, llamaOpts, uint32(c.Threads))
} else {
inferenceModel, err = loader.BackendLoader(c.Backend, modelFile, llamaOpts, uint32(c.Threads))
}
if err != nil {
return nil, err
}
var fn func() (string, error)
switch model := inferenceModel.(type) {
case *rwkv.RwkvState:
supportStreams = true
fn = func() (string, error) {
stopWord := "\n"
if len(c.StopWords) > 0 {
stopWord = c.StopWords[0]
}
if err := model.ProcessInput(s); err != nil {
return "", err
}
response := model.GenerateResponse(c.Maxtokens, stopWord, float32(c.Temperature), float32(c.TopP), tokenCallback)
return response, nil
}
case *gpt2.GPTNeoX:
switch {
case stableLMModel != nil:
fn = func() (string, error) {
// Generate the prediction using the language model
predictOptions := []gpt2.PredictOption{
@@ -262,12 +69,12 @@ func ModelInference(s string, loader *model.ModelLoader, c Config, tokenCallback
predictOptions = append(predictOptions, gpt2.SetSeed(c.Seed))
}
return model.Predict(
return stableLMModel.Predict(
s,
predictOptions...,
)
}
case *gpt2.Replit:
case gpt2Model != nil:
fn = func() (string, error) {
// Generate the prediction using the language model
predictOptions := []gpt2.PredictOption{
@@ -286,52 +93,74 @@ func ModelInference(s string, loader *model.ModelLoader, c Config, tokenCallback
predictOptions = append(predictOptions, gpt2.SetSeed(c.Seed))
}
return model.Predict(
return gpt2Model.Predict(
s,
predictOptions...,
)
}
case *gpt2.Starcoder:
case gptModel != nil:
fn = func() (string, error) {
// Generate the prediction using the language model
predictOptions := []gpt2.PredictOption{
gpt2.SetTemperature(c.Temperature),
gpt2.SetTopP(c.TopP),
gpt2.SetTopK(c.TopK),
gpt2.SetTokens(c.Maxtokens),
gpt2.SetThreads(c.Threads),
predictOptions := []gptj.PredictOption{
gptj.SetTemperature(c.Temperature),
gptj.SetTopP(c.TopP),
gptj.SetTopK(c.TopK),
gptj.SetTokens(c.Maxtokens),
gptj.SetThreads(c.Threads),
}
if c.Batch != 0 {
predictOptions = append(predictOptions, gpt2.SetBatch(c.Batch))
predictOptions = append(predictOptions, gptj.SetBatch(c.Batch))
}
if c.Seed != 0 {
predictOptions = append(predictOptions, gpt2.SetSeed(c.Seed))
predictOptions = append(predictOptions, gptj.SetSeed(c.Seed))
}
return model.Predict(
return gptModel.Predict(
s,
predictOptions...,
)
}
case *gpt2.RedPajama:
case model != nil:
fn = func() (string, error) {
// Generate the prediction using the language model
predictOptions := []gpt2.PredictOption{
gpt2.SetTemperature(c.Temperature),
gpt2.SetTopP(c.TopP),
gpt2.SetTopK(c.TopK),
gpt2.SetTokens(c.Maxtokens),
gpt2.SetThreads(c.Threads),
predictOptions := []llama.PredictOption{
llama.SetTemperature(c.Temperature),
llama.SetTopP(c.TopP),
llama.SetTopK(c.TopK),
llama.SetTokens(c.Maxtokens),
llama.SetThreads(c.Threads),
}
if c.Debug {
predictOptions = append(predictOptions, llama.Debug)
}
predictOptions = append(predictOptions, llama.SetStopWords(c.StopWords...))
if c.RepeatPenalty != 0 {
predictOptions = append(predictOptions, llama.SetPenalty(c.RepeatPenalty))
}
if c.Keep != 0 {
predictOptions = append(predictOptions, llama.SetNKeep(c.Keep))
}
if c.Batch != 0 {
predictOptions = append(predictOptions, gpt2.SetBatch(c.Batch))
predictOptions = append(predictOptions, llama.SetBatch(c.Batch))
}
if c.F16 {
predictOptions = append(predictOptions, llama.EnableF16KV)
}
if c.IgnoreEOS {
predictOptions = append(predictOptions, llama.IgnoreEOS)
}
if c.Seed != 0 {
predictOptions = append(predictOptions, gpt2.SetSeed(c.Seed))
predictOptions = append(predictOptions, llama.SetSeed(c.Seed))
}
return model.Predict(
@@ -339,148 +168,6 @@ func ModelInference(s string, loader *model.ModelLoader, c Config, tokenCallback
predictOptions...,
)
}
case *bloomz.Bloomz:
fn = func() (string, error) {
// Generate the prediction using the language model
predictOptions := []bloomz.PredictOption{
bloomz.SetTemperature(c.Temperature),
bloomz.SetTopP(c.TopP),
bloomz.SetTopK(c.TopK),
bloomz.SetTokens(c.Maxtokens),
bloomz.SetThreads(c.Threads),
}
if c.Seed != 0 {
predictOptions = append(predictOptions, bloomz.SetSeed(c.Seed))
}
return model.Predict(
s,
predictOptions...,
)
}
case *gpt2.StableLM:
fn = func() (string, error) {
// Generate the prediction using the language model
predictOptions := []gpt2.PredictOption{
gpt2.SetTemperature(c.Temperature),
gpt2.SetTopP(c.TopP),
gpt2.SetTopK(c.TopK),
gpt2.SetTokens(c.Maxtokens),
gpt2.SetThreads(c.Threads),
}
if c.Batch != 0 {
predictOptions = append(predictOptions, gpt2.SetBatch(c.Batch))
}
if c.Seed != 0 {
predictOptions = append(predictOptions, gpt2.SetSeed(c.Seed))
}
return model.Predict(
s,
predictOptions...,
)
}
case *gpt2.Dolly:
fn = func() (string, error) {
// Generate the prediction using the language model
predictOptions := []gpt2.PredictOption{
gpt2.SetTemperature(c.Temperature),
gpt2.SetTopP(c.TopP),
gpt2.SetTopK(c.TopK),
gpt2.SetTokens(c.Maxtokens),
gpt2.SetThreads(c.Threads),
}
if c.Batch != 0 {
predictOptions = append(predictOptions, gpt2.SetBatch(c.Batch))
}
if c.Seed != 0 {
predictOptions = append(predictOptions, gpt2.SetSeed(c.Seed))
}
return model.Predict(
s,
predictOptions...,
)
}
case *gpt2.GPT2:
fn = func() (string, error) {
// Generate the prediction using the language model
predictOptions := []gpt2.PredictOption{
gpt2.SetTemperature(c.Temperature),
gpt2.SetTopP(c.TopP),
gpt2.SetTopK(c.TopK),
gpt2.SetTokens(c.Maxtokens),
gpt2.SetThreads(c.Threads),
}
if c.Batch != 0 {
predictOptions = append(predictOptions, gpt2.SetBatch(c.Batch))
}
if c.Seed != 0 {
predictOptions = append(predictOptions, gpt2.SetSeed(c.Seed))
}
return model.Predict(
s,
predictOptions...,
)
}
case *gpt4all.Model:
supportStreams = true
fn = func() (string, error) {
if tokenCallback != nil {
model.SetTokenCallback(tokenCallback)
}
// Generate the prediction using the language model
predictOptions := []gpt4all.PredictOption{
gpt4all.SetTemperature(c.Temperature),
gpt4all.SetTopP(c.TopP),
gpt4all.SetTopK(c.TopK),
gpt4all.SetTokens(c.Maxtokens),
}
if c.Batch != 0 {
predictOptions = append(predictOptions, gpt4all.SetBatch(c.Batch))
}
str, er := model.Predict(
s,
predictOptions...,
)
// Seems that if we don't free the callback explicitly we leave functions registered (that might try to send on closed channels)
// For instance otherwise the API returns: {"error":{"code":500,"message":"send on closed channel","type":""}}
// after a stream event has occurred
model.SetTokenCallback(nil)
return str, er
}
case *llama.LLama:
supportStreams = true
fn = func() (string, error) {
if tokenCallback != nil {
model.SetTokenCallback(tokenCallback)
}
predictOptions := buildLLamaPredictOptions(c)
str, er := model.Predict(
s,
predictOptions...,
)
// Seems that if we don't free the callback explicitly we leave functions registered (that might try to send on closed channels)
// For instance otherwise the API returns: {"error":{"code":500,"message":"send on closed channel","type":""}}
// after a stream event has occurred
model.SetTokenCallback(nil)
return str, er
}
}
return func() (string, error) {
@@ -496,66 +183,6 @@ func ModelInference(s string, loader *model.ModelLoader, c Config, tokenCallback
l.Lock()
defer l.Unlock()
res, err := fn()
if tokenCallback != nil && !supportStreams {
tokenCallback(res)
}
return res, err
return fn()
}, nil
}
func ComputeChoices(predInput string, input *OpenAIRequest, config *Config, loader *model.ModelLoader, cb func(string, *[]Choice), tokenCallback func(string) bool) ([]Choice, error) {
result := []Choice{}
n := input.N
if input.N == 0 {
n = 1
}
// get the model function to call for the result
predFunc, err := ModelInference(predInput, loader, *config, tokenCallback)
if err != nil {
return result, err
}
for i := 0; i < n; i++ {
prediction, err := predFunc()
if err != nil {
return result, err
}
prediction = Finetune(*config, predInput, prediction)
cb(prediction, &result)
//result = append(result, Choice{Text: prediction})
}
return result, err
}
var cutstrings map[string]*regexp.Regexp = make(map[string]*regexp.Regexp)
var mu sync.Mutex = sync.Mutex{}
func Finetune(config Config, input, prediction string) string {
if config.Echo {
prediction = input + prediction
}
for _, c := range config.Cutstrings {
mu.Lock()
reg, ok := cutstrings[c]
if !ok {
cutstrings[c] = regexp.MustCompile(c)
reg = cutstrings[c]
}
mu.Unlock()
prediction = reg.ReplaceAllString(prediction, "")
}
for _, c := range config.TrimSpace {
prediction = strings.TrimSpace(strings.TrimPrefix(prediction, c))
}
return prediction
}

View File

@@ -0,0 +1,6 @@
apiVersion: v2
appVersion: 0.1.0
description: A Helm chart for LocalAI
name: local-ai
type: application
version: 1.0.0

View File

@@ -0,0 +1,44 @@
{{/*
Expand the name of the chart.
*/}}
{{- define "local-ai.name" -}}
{{- default .Chart.Name .Values.nameOverride | trunc 63 | trimSuffix "-" }}
{{- end }}
{{/*
Create a default fully qualified app name.
We truncate at 63 chars because some Kubernetes name fields are limited to this (by the DNS naming spec).
If release name contains chart name it will be used as a full name.
*/}}
{{- define "local-ai.fullname" -}}
{{- if .Values.fullnameOverride }}
{{- .Values.fullnameOverride | trunc 63 | trimSuffix "-" }}
{{- else }}
{{- $name := default .Chart.Name .Values.nameOverride }}
{{- if contains $name .Release.Name }}
{{- .Release.Name | trunc 63 | trimSuffix "-" }}
{{- else }}
{{- printf "%s-%s" .Release.Name $name | trunc 63 | trimSuffix "-" }}
{{- end }}
{{- end }}
{{- end }}
{{/*
Create chart name and version as used by the chart label.
*/}}
{{- define "local-ai.chart" -}}
{{- printf "%s-%s" .Chart.Name .Chart.Version | replace "+" "_" | trunc 63 | trimSuffix "-" }}
{{- end }}
{{/*
Common labels
*/}}
{{- define "local-ai.labels" -}}
helm.sh/chart: {{ include "local-ai.chart" . }}
app.kubernetes.io/name: {{ include "local-ai.name" . }}
app.kubernetes.io/instance: "{{ .Release.Name }}"
app.kubernetes.io/managed-by: {{ .Release.Service }}
{{- if .Chart.AppVersion }}
app.kubernetes.io/version: {{ .Chart.AppVersion | quote }}
{{- end }}
{{- end }}

View File

@@ -0,0 +1,39 @@
{{- if .Values.dataVolume.enabled }}
apiVersion: cdi.kubevirt.io/v1beta1
kind: DataVolume
metadata:
name: {{ template "local-ai.fullname" . }}
namespace: {{ .Release.Namespace | quote }}
labels:
{{- include "local-ai.labels" . | nindent 4 }}
spec:
contentType: archive
source:
{{ .Values.dataVolume.source.type }}:
url: {{ .Values.dataVolume.source.url }}
secretRef: {{ template "local-ai.fullname" . }}
{{- if and (eq .Values.dataVolume.source.type "http") .Values.dataVolume.source.secretExtraHeaders }}
secretExtraHeaders: {{ .Values.dataVolume.source.secretExtraHeaders }}
{{- end }}
{{- if .Values.dataVolume.source.caCertConfigMap }}
caCertConfigMap: {{ .Values.dataVolume.source.caCertConfigMap }}
{{- end }}
pvc:
accessModes: {{ .Values.dataVolume.pvc.accessModes }}
resources:
requests:
storage: {{ .Values.dataVolume.pvc.size }}
---
{{- if .Values.dataVolume.secret.enabled }}
apiVersion: v1
kind: Secret
metadata:
name: {{ template "local-ai.fullname" . }}
namespace: {{ .Release.Namespace | quote }}
labels:
{{- include "local-ai.labels" . | nindent 4 }}
data:
accessKeyId: {{ .Values.dataVolume.secret.username }}
secretKey: {{ .Values.dataVolume.secret.password }}
{{- end }}
{{- end }}

View File

@@ -0,0 +1,39 @@
apiVersion: apps/v1
kind: Deployment
metadata:
name: {{ template "local-ai.fullname" . }}
namespace: {{ .Release.Namespace | quote }}
labels:
{{- include "local-ai.labels" . | nindent 4 }}
spec:
selector:
matchLabels:
app.kubernetes.io/name: {{ include "local-ai.name" . }}
app.kubernetes.io/instance: {{ .Release.Name }}
replicas: 1
template:
metadata:
name: {{ template "local-ai.fullname" . }}
labels:
app.kubernetes.io/name: {{ include "local-ai.name" . }}
app.kubernetes.io/instance: {{ .Release.Name }}
spec:
containers:
- name: {{ template "local-ai.fullname" . }}
image: {{ .Values.deployment.image }}
env:
- name: THREADS
value: {{ .Values.deployment.env.threads | quote }}
- name: CONTEXT_SIZE
value: {{ .Values.deployment.env.contextSize | quote }}
- name: MODELS_PATH
value: {{ .Values.deployment.env.modelsPath }}
{{- if .Values.deployment.volume.enabled }}
volumeMounts:
- mountPath: {{ .Values.deployment.env.modelsPath }}
name: models
volumes:
- name: models
persistentVolumeClaim:
claimName: {{ template "local-ai.fullname" . }}
{{- end }}

View File

@@ -0,0 +1,19 @@
apiVersion: v1
kind: Service
metadata:
name: {{ template "local-ai.fullname" . }}
namespace: {{ .Release.Namespace | quote }}
labels:
{{- include "local-ai.labels" . | nindent 4 }}
{{- if .Values.service.annotations }}
annotations:
{{ toYaml .Values.service.annotations | indent 4 }}
{{- end }}
spec:
selector:
app.kubernetes.io/name: {{ include "local-ai.name" . }}
type: "{{ .Values.service.type }}"
ports:
- protocol: TCP
port: 8080
targetPort: 8080

View File

@@ -0,0 +1,38 @@
deployment:
image: quay.io/go-skynet/local-ai:latest
env:
threads: 14
contextSize: 512
modelsPath: "/models"
volume:
enabled: false
service:
type: ClusterIP
annotations: {}
# If using an AWS load balancer, you'll need to override the default 60s load balancer idle timeout
# service.beta.kubernetes.io/aws-load-balancer-connection-idle-timeout: "1200"
# Optionally create a PVC containing a model binary, sourced from an arbitrary HTTP server or S3 bucket
# (requires https://github.com/kubevirt/containerized-data-importer)
dataVolume:
enabled: false
source:
type: "http" # Source type. One of: [ http | s3 ]
url: "http://<model_server>/<model_archive>" # e.g. koala-7B-4bit-128g.GGML.tar
# CertConfigMap is an optional ConfigMap reference, containing a Certificate Authority (CA) public key
# and a base64 encoded pem certificate
caCertConfigMap: ""
# SecretExtraHeaders is an optional list of Secret references, each containing an extra HTTP header
# that may include sensitive information. Only applicable for the http source type.
secretExtraHeaders: []
pvc:
accessModes:
- ReadWriteOnce
size: 5Gi
secret:
enabled: false
username: "" # base64 encoded
password: "" # base64 encoded

View File

@@ -5,11 +5,11 @@ services:
image: quay.io/go-skynet/local-ai:latest
build:
context: .
dockerfile: Dockerfile.dev
dockerfile: Dockerfile
ports:
- 8080:8080
env_file:
- .env
volumes:
- ./models:/models:cached
command: ["/usr/bin/local-ai" ]
command: ["/usr/bin/local-ai" ]

View File

@@ -1,7 +0,0 @@
#!/bin/bash
cd /build
make build
./local-ai "$@"

View File

@@ -2,92 +2,9 @@
Here is a list of projects that can easily be integrated with the LocalAI backend.
### Projects
## Projects
### Chatbot-UI
_by [@mkellerman](https://github.com/mkellerman)_
![Screenshot from 2023-04-26 23-59-55](https://user-images.githubusercontent.com/2420543/234715439-98d12e03-d3ce-4f94-ab54-2b256808e05e.png)
This integration shows how to use LocalAI with [mckaywrigley/chatbot-ui](https://github.com/mckaywrigley/chatbot-ui).
[Check it out here](https://github.com/go-skynet/LocalAI/tree/master/examples/chatbot-ui/)
### Discord bot
_by [@mudler](https://github.com/mudler)_
Run a discord bot which lets you talk directly with a model
[Check it out here](https://github.com/go-skynet/LocalAI/tree/master/examples/discord-bot/), or for a live demo you can talk with our bot in #random-bot in our discord server.
### Langchain
_by [@dave-gray101](https://github.com/dave-gray101)_
A ready to use example to show e2e how to integrate LocalAI with langchain
[Check it out here](https://github.com/go-skynet/LocalAI/tree/master/examples/langchain/)
### Langchain Python
_by [@mudler](https://github.com/mudler)_
A ready to use example to show e2e how to integrate LocalAI with langchain
[Check it out here](https://github.com/go-skynet/LocalAI/tree/master/examples/langchain-python/)
### LocalAI WebUI
_by [@dhruvgera](https://github.com/dhruvgera)_
![image](https://user-images.githubusercontent.com/42107491/235344183-44b5967d-ba22-4331-804c-8da7004a5d35.png)
A light, community-maintained web interface for LocalAI
[Check it out here](https://github.com/go-skynet/LocalAI/tree/master/examples/localai-webui/)
### How to run rwkv models
_by [@mudler](https://github.com/mudler)_
A full example on how to run RWKV models with LocalAI
[Check it out here](https://github.com/go-skynet/LocalAI/tree/master/examples/rwkv/)
### Slack bot
_by [@mudler](https://github.com/mudler)_
Run a slack bot which lets you talk directly with a model
[Check it out here](https://github.com/go-skynet/LocalAI/tree/master/examples/slack-bot/)
### Question answering on documents with llama-index
_by [@mudler](https://github.com/mudler)_
Shows how to integrate with [Llama-Index](https://gpt-index.readthedocs.io/en/stable/getting_started/installation.html) to enable question answering on a set of documents.
[Check it out here](https://github.com/go-skynet/LocalAI/tree/master/examples/query_data/)
### Question answering on documents with langchain and chroma
_by [@mudler](https://github.com/mudler)_
Shows how to integrate with `Langchain` and `Chroma` to enable question answering on a set of documents.
[Check it out here](https://github.com/go-skynet/LocalAI/tree/master/examples/langchain-chroma/)
### Template for Runpod.io
_by [@fHachenberg](https://github.com/fHachenberg)_
Allows to run any LocalAI-compatible model as a backend on the servers of https://runpod.io
[Check it out here](https://runpod.io/gsc?template=uv9mtqnrd0&ref=984wlcra)
- [chatbot-ui](https://github.com/go-skynet/LocalAI/tree/master/examples/chatbot-ui/) (by [@mkellerman](https://github.com/mkellerman))
## Want to contribute?

View File

@@ -19,30 +19,8 @@ cd LocalAI/examples/chatbot-ui
wget https://gpt4all.io/models/ggml-gpt4all-j.bin -O models/ggml-gpt4all-j
# start with docker-compose
docker-compose up -d --pull always
# or you can build the images with:
# docker-compose up -d --build
docker-compose up -d --build
```
## Pointing chatbot-ui to a separately managed LocalAI service
If you want to use the [chatbot-ui example](https://github.com/go-skynet/LocalAI/tree/master/examples/chatbot-ui) with an externally managed LocalAI service, you can alter the `docker-compose` file so that it looks like the below. You will notice the file is smaller, because we have removed the section that would normally start the LocalAI service. Take care to update the IP address (or FQDN) that the chatbot-ui service tries to access (marked `<<LOCALAI_IP>>` below):
```
version: '3.6'
services:
chatgpt:
image: ghcr.io/mckaywrigley/chatbot-ui:main
ports:
- 3000:3000
environment:
- 'OPENAI_API_KEY=sk-XXXXXXXXXXXXXXXXXXXX'
- 'OPENAI_API_HOST=http://<<LOCALAI_IP>>:8080'
```
Once you've edited the Dockerfile, you can start it with `docker compose up`, then browse to `http://localhost:3000`.
## Accessing chatbot-ui
Open http://localhost:3000 for the Web UI.

View File

@@ -5,7 +5,7 @@ services:
image: quay.io/go-skynet/local-ai:latest
build:
context: ../../
dockerfile: Dockerfile.dev
dockerfile: Dockerfile
ports:
- 8080:8080
environment:

View File

@@ -1,6 +0,0 @@
OPENAI_API_KEY=x
DISCORD_BOT_TOKEN=x
DISCORD_CLIENT_ID=x
OPENAI_API_BASE=http://api:8080
ALLOWED_SERVER_IDS=x
SERVER_TO_MODERATION_CHANNEL=1:1

View File

@@ -1,76 +0,0 @@
# discord-bot
![Screenshot from 2023-05-01 07-58-19](https://user-images.githubusercontent.com/2420543/235413924-0cb2e75b-f2d6-4119-8610-44386e44afb8.png)
## Setup
```bash
# Clone LocalAI
git clone https://github.com/go-skynet/LocalAI
cd LocalAI/examples/discord-bot
# (optional) Checkout a specific LocalAI tag
# git checkout -b build <TAG>
# Download gpt4all-j to models/
wget https://gpt4all.io/models/ggml-gpt4all-j.bin -O models/ggml-gpt4all-j
# Set the discord bot options (see: https://github.com/go-skynet/gpt-discord-bot#setup)
cp -rfv .env.example .env
vim .env
# start with docker-compose
docker-compose up -d --build
```
Note: see setup options here: https://github.com/go-skynet/gpt-discord-bot#setup
Open up the URL in the console and give permission to the bot in your server. Start a thread with `/chat ..`
## Kubernetes
- install the local-ai chart first
- change OPENAI_API_BASE to point to the API address and apply the discord-bot manifest:
```yaml
apiVersion: v1
kind: Namespace
metadata:
name: discord-bot
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: localai
namespace: discord-bot
labels:
app: localai
spec:
selector:
matchLabels:
app: localai
replicas: 1
template:
metadata:
labels:
app: localai
name: localai
spec:
containers:
- name: localai-discord
env:
- name: OPENAI_API_KEY
value: "x"
- name: DISCORD_BOT_TOKEN
value: ""
- name: DISCORD_CLIENT_ID
value: ""
- name: OPENAI_API_BASE
value: "http://local-ai.default.svc.cluster.local:8080"
- name: ALLOWED_SERVER_IDS
value: "xx"
- name: SERVER_TO_MODERATION_CHANNEL
value: "1:1"
image: quay.io/go-skynet/gpt-discord-bot:main
```

View File

@@ -1,21 +0,0 @@
version: '3.6'
services:
api:
image: quay.io/go-skynet/local-ai:latest
build:
context: ../../
dockerfile: Dockerfile.dev
ports:
- 8080:8080
environment:
- DEBUG=true
- MODELS_PATH=/models
volumes:
- ./models:/models:cached
command: ["/usr/bin/local-ai" ]
bot:
image: quay.io/go-skynet/gpt-discord-bot:main
env_file:
- .env

View File

@@ -1 +0,0 @@
../chatbot-ui/models/

View File

@@ -1,54 +0,0 @@
# Data query example
This example makes use of [langchain and chroma](https://blog.langchain.dev/langchain-chroma/) to enable question answering on a set of documents.
## Setup
Download the models and start the API:
```bash
# Clone LocalAI
git clone https://github.com/go-skynet/LocalAI
cd LocalAI/examples/query_data
wget https://huggingface.co/skeskinen/ggml/resolve/main/all-MiniLM-L6-v2/ggml-model-q4_0.bin -O models/bert
wget https://gpt4all.io/models/ggml-gpt4all-j.bin -O models/ggml-gpt4all-j
# start with docker-compose
docker-compose up -d --build
```
### Python requirements
```
pip install -r requirements.txt
```
### Create a storage
In this step we will create a local vector database from our document set, so later we can ask questions on it with the LLM.
```bash
export OPENAI_API_BASE=http://localhost:8080/v1
export OPENAI_API_KEY=sk-
wget https://raw.githubusercontent.com/hwchase17/chat-your-data/master/state_of_the_union.txt
python store.py
```
After it finishes, a directory "storage" will be created with the vector index database.
## Query
We can now query the dataset.
```bash
export OPENAI_API_BASE=http://localhost:8080/v1
export OPENAI_API_KEY=sk-
python query.py
# President Trump recently stated during a press conference regarding tax reform legislation that "we're getting rid of all these loopholes." He also mentioned that he wants to simplify the system further through changes such as increasing the standard deduction amount and making other adjustments aimed at reducing taxpayers' overall burden.
```
Keep in mind now things are hit or miss!

View File

@@ -1 +0,0 @@
{{.Input}}

View File

@@ -1,5 +0,0 @@
name: text-embedding-ada-002
parameters:
model: bert
backend: bert-embeddings
embeddings: true

View File

@@ -1,16 +0,0 @@
name: gpt-3.5-turbo
parameters:
model: ggml-gpt4all-j
top_k: 80
temperature: 0.2
top_p: 0.7
context_size: 1024
stopwords:
- "HUMAN:"
- "GPT:"
roles:
user: " "
system: " "
template:
completion: completion
chat: gpt4all

View File

@@ -1,4 +0,0 @@
The prompt below is a question to answer, a task to complete, or a conversation to respond to; decide which and write an appropriate response.
### Prompt:
{{.Input}}
### Response:

View File

@@ -1,20 +0,0 @@
import os
from langchain.vectorstores import Chroma
from langchain.embeddings import OpenAIEmbeddings
from langchain.llms import OpenAI
from langchain.chains import VectorDBQA
base_path = os.environ.get('OPENAI_API_BASE', 'http://localhost:8080/v1')
# Load and process the text
embedding = OpenAIEmbeddings()
persist_directory = 'db'
# Now we can load the persisted database from disk, and use it as normal.
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding)
qa = VectorDBQA.from_chain_type(llm=OpenAI(temperature=0, model_name="gpt-3.5-turbo", openai_api_base=base_path), chain_type="stuff", vectorstore=vectordb)
query = "What the president said about taxes ?"
print(qa.run(query))

View File

@@ -1,4 +0,0 @@
langchain==0.0.160
openai==0.27.6
chromadb==0.3.21
llama-index==0.6.2

View File

@@ -1,28 +0,0 @@
import os
from langchain.vectorstores import Chroma
from langchain.embeddings import OpenAIEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter,TokenTextSplitter,CharacterTextSplitter
from langchain.llms import OpenAI
from langchain.chains import VectorDBQA
from langchain.document_loaders import TextLoader
base_path = os.environ.get('OPENAI_API_BASE', 'http://localhost:8080/v1')
# Load and process the text
loader = TextLoader('state_of_the_union.txt')
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=300, chunk_overlap=70)
#text_splitter = TokenTextSplitter()
texts = text_splitter.split_documents(documents)
# Embed and store the texts
# Supplying a persist_directory will store the embeddings on disk
persist_directory = 'db'
embedding = OpenAIEmbeddings(model="text-embedding-ada-002")
vectordb = Chroma.from_documents(documents=texts, embedding=embedding, persist_directory=persist_directory)
vectordb.persist()
vectordb = None

View File

@@ -1,35 +0,0 @@
## Langchain-python
Langchain example from [quickstart](https://python.langchain.com/en/latest/getting_started/getting_started.html).
To interact with langchain, you can just set the `OPENAI_API_BASE` URL and provide a token with a random string.
See the example below:
```
# Clone LocalAI
git clone https://github.com/go-skynet/LocalAI
cd LocalAI/examples/langchain-python
# (optional) Checkout a specific LocalAI tag
# git checkout -b build <TAG>
# Download gpt4all-j to models/
wget https://gpt4all.io/models/ggml-gpt4all-j.bin -O models/ggml-gpt4all-j
# start with docker-compose
docker-compose up -d --build
pip install langchain
pip install openai
export OPENAI_API_BASE=http://localhost:8080
export OPENAI_API_KEY=sk-
python test.py
# A good company name for a company that makes colorful socks would be "Colorsocks".
python agent.py
```

View File

@@ -1,44 +0,0 @@
## This is a fork/based from https://gist.github.com/wiseman/4a706428eaabf4af1002a07a114f61d6
from io import StringIO
import sys
import os
from typing import Dict, Optional
from langchain.agents import load_tools
from langchain.agents import initialize_agent
from langchain.agents.tools import Tool
from langchain.llms import OpenAI
base_path = os.environ.get('OPENAI_API_BASE', 'http://localhost:8080/v1')
model_name = os.environ.get('MODEL_NAME', 'gpt-3.5-turbo')
class PythonREPL:
"""Simulates a standalone Python REPL."""
def __init__(self):
pass
def run(self, command: str) -> str:
"""Run command and returns anything printed."""
old_stdout = sys.stdout
sys.stdout = mystdout = StringIO()
try:
exec(command, globals())
sys.stdout = old_stdout
output = mystdout.getvalue()
except Exception as e:
sys.stdout = old_stdout
output = str(e)
return output
llm = OpenAI(temperature=0.0, openai_api_base=base_path, model_name=model_name)
python_repl = Tool(
"Python REPL",
PythonREPL().run,
"""A Python shell. Use this to execute python commands. Input should be a valid python command.
If you expect output it should be printed out.""",
)
tools = [python_repl]
agent = initialize_agent(tools, llm, agent="zero-shot-react-description", verbose=True)
agent.run("What is the 10th fibonacci number?")

View File

@@ -1,16 +0,0 @@
version: '3.6'
services:
api:
image: quay.io/go-skynet/local-ai:latest
build:
context: ../../
dockerfile: Dockerfile.dev
ports:
- 8080:8080
environment:
- DEBUG=true
- MODELS_PATH=/models
volumes:
- ./models:/models:cached
command: ["/usr/bin/local-ai" ]

View File

@@ -1 +0,0 @@
../chatbot-ui/models

View File

@@ -1,6 +0,0 @@
from langchain.llms import OpenAI
llm = OpenAI(temperature=0.9,model_name="gpt-3.5-turbo")
text = "What would be a good company name for a company that makes colorful socks?"
print(llm(text))

View File

@@ -1,2 +0,0 @@
models/ggml-koala-13B-4bit-128g
models/ggml-gpt4all-j

View File

@@ -1,6 +0,0 @@
FROM node:latest
COPY ./langchainjs-localai-example /app
WORKDIR /app
RUN npm install
RUN npm run build
ENTRYPOINT [ "npm", "run", "start" ]

View File

@@ -1,5 +0,0 @@
FROM python:3.10-bullseye
COPY ./langchainpy-localai-example /app
WORKDIR /app
RUN pip install --no-cache-dir -r requirements.txt
ENTRYPOINT [ "python", "./full_demo.py" ];

View File

@@ -1,30 +0,0 @@
# langchain
Example of using langchain, with the standard OpenAI llm module, and LocalAI. Has docker compose profiles for both the Typescript and Python versions.
**Please Note** - This is a tech demo example at this time. ggml-gpt4all-j has pretty terrible results for most langchain applications with the settings used in this example.
## Setup
```bash
# Clone LocalAI
git clone https://github.com/go-skynet/LocalAI
cd LocalAI/examples/langchain
# (optional) - Edit the example code in typescript.
# vi ./langchainjs-localai-example/index.ts
# Download gpt4all-j to models/
wget https://gpt4all.io/models/ggml-gpt4all-j.bin -O models/ggml-gpt4all-j
# start with docker-compose for typescript!
docker-compose --profile ts up --build
# or start with docker-compose for python!
docker-compose --profile py up --build
```
## Copyright
Some of the example code in index.mts and full_demo.py is adapted from the langchainjs project and is Copyright (c) Harrison Chase. Used under the terms of the MIT license, as is the remainder of this code.

View File

@@ -1,43 +0,0 @@
version: '3.6'
services:
api:
image: quay.io/go-skynet/local-ai:latest
build:
context: ../../
dockerfile: Dockerfile.dev
ports:
- 8080:8080
environment:
- DEBUG=true
- MODELS_PATH=/models
volumes:
- ./models:/models:cached
command: ["/usr/bin/local-ai" ]
js:
build:
context: .
dockerfile: JS.Dockerfile
profiles:
- js
- ts
depends_on:
- "api"
environment:
- 'OPENAI_API_KEY=sk-XXXXXXXXXXXXXXXXXXXX'
- 'OPENAI_API_BASE=http://api:8080/v1'
- 'MODEL_NAME=gpt-3.5-turbo' #gpt-3.5-turbo' # ggml-gpt4all-j' # ggml-koala-13B-4bit-128g'
py:
build:
context: .
dockerfile: PY.Dockerfile
profiles:
- py
depends_on:
- "api"
environment:
- 'OPENAI_API_KEY=sk-XXXXXXXXXXXXXXXXXXXX'
- 'OPENAI_API_BASE=http://api:8080/v1'
- 'MODEL_NAME=gpt-3.5-turbo' #gpt-3.5-turbo' # ggml-gpt4all-j' # ggml-koala-13B-4bit-128g'

View File

@@ -1,2 +0,0 @@
node_modules/
dist/

View File

@@ -1,20 +0,0 @@
{
// Use IntelliSense to learn about possible attributes.
// Hover to view descriptions of existing attributes.
// For more information, visit: https://go.microsoft.com/fwlink/?linkid=830387
"version": "0.2.0",
"configurations": [
{
"type": "node",
"request": "launch",
"name": "Launch Program",
// "skipFiles": [
// "<node_internals>/**"
// ],
"program": "${workspaceFolder}\\dist\\index.mjs",
"outFiles": [
"${workspaceFolder}/**/*.js"
]
}
]
}

View File

File diff suppressed because it is too large Load Diff

View File

@@ -1,21 +0,0 @@
{
"name": "langchainjs-localai-example",
"version": "0.1.0",
"description": "Trivial Example of using langchain + the OpenAI API + LocalAI together",
"main": "index.mjs",
"scripts": {
"build": "tsc --build",
"clean": "tsc --build --clean",
"start": "node --trace-warnings dist/index.mjs"
},
"author": "dave@gray101.com",
"license": "MIT",
"devDependencies": {
"@types/node": "^18.16.4",
"typescript": "^5.0.4"
},
"dependencies": {
"langchain": "^0.0.67",
"typeorm": "^0.3.15"
}
}

View File

@@ -1,79 +0,0 @@
import { OpenAIChat } from "langchain/llms/openai";
import { loadQAStuffChain } from "langchain/chains";
import { Document } from "langchain/document";
import { initializeAgentExecutorWithOptions } from "langchain/agents";
import {Calculator} from "langchain/tools/calculator";
const pathToLocalAi = process.env['OPENAI_API_BASE'] || 'http://api:8080/v1';
const fakeApiKey = process.env['OPENAI_API_KEY'] || '-';
const modelName = process.env['MODEL_NAME'] || 'gpt-3.5-turbo';
function getModel(): OpenAIChat {
return new OpenAIChat({
prefixMessages: [
{
role: "system",
content: "You are a helpful assistant that answers in pirate language",
},
],
modelName: modelName,
maxTokens: 50,
openAIApiKey: fakeApiKey,
maxRetries: 2
}, {
basePath: pathToLocalAi,
apiKey: fakeApiKey,
});
}
// Minimal example.
export const run = async () => {
const model = getModel();
console.log(`about to model.call at ${new Date().toUTCString()}`);
const res = await model.call(
"What would be a good company name a company that makes colorful socks?"
);
console.log(`${new Date().toUTCString()}`);
console.log({ res });
};
await run();
// This example uses the `StuffDocumentsChain`
export const run2 = async () => {
const model = getModel();
const chainA = loadQAStuffChain(model);
const docs = [
new Document({ pageContent: "Harrison went to Harvard." }),
new Document({ pageContent: "Ankush went to Princeton." }),
];
const resA = await chainA.call({
input_documents: docs,
question: "Where did Harrison go to college?",
});
console.log({ resA });
};
await run2();
// Quickly thrown together example of using tools + agents.
// This seems like it should work, but it doesn't yet.
export const temporarilyBrokenToolTest = async () => {
const model = getModel();
const executor = await initializeAgentExecutorWithOptions([new Calculator(true)], model, {
agentType: "zero-shot-react-description",
});
console.log("Loaded agent.");
const input = `What is the value of (500 *2) + 350 - 13?`;
console.log(`Executing with input "${input}"...`);
const result = await executor.call({ input });
console.log(`Got output ${result.output}`);
}
await temporarilyBrokenToolTest();

View File

@@ -1,15 +0,0 @@
{
"compilerOptions": {
"target": "es2022",
"lib": ["ES2022", "DOM"],
"module": "ES2022",
"moduleResolution": "node",
"strict": true,
"esModuleInterop": true,
"allowSyntheticDefaultImports": true,
"isolatedModules": true,
"outDir": "./dist"
},
"include": ["src", "test"],
"exclude": ["node_modules", "dist"]
}

View File

@@ -1,24 +0,0 @@
{
"version": "0.2.0",
"configurations": [
{
"name": "Python: Current File",
"type": "python",
"request": "launch",
"program": "${file}",
"console": "integratedTerminal",
"redirectOutput": true,
"justMyCode": false
},
{
"name": "Python: Attach to Port 5678",
"type": "python",
"request": "attach",
"connect": {
"host": "localhost",
"port": 5678
},
"justMyCode": false
}
]
}

View File

@@ -1,3 +0,0 @@
{
"python.defaultInterpreterPath": "${workspaceFolder}/.venv/Scripts/python"
}

View File

@@ -1,46 +0,0 @@
import os
import logging
from langchain.chat_models import ChatOpenAI
from langchain import PromptTemplate, LLMChain
from langchain.prompts.chat import (
ChatPromptTemplate,
SystemMessagePromptTemplate,
AIMessagePromptTemplate,
HumanMessagePromptTemplate,
)
from langchain.schema import (
AIMessage,
HumanMessage,
SystemMessage
)
# This logging incantation makes it easy to see that you're actually reaching your LocalAI instance rather than OpenAI.
logging.basicConfig(level=logging.DEBUG)
print('Langchain + LocalAI PYTHON Tests')
base_path = os.environ.get('OPENAI_API_BASE', 'http://api:8080/v1')
key = os.environ.get('OPENAI_API_KEY', '-')
model_name = os.environ.get('MODEL_NAME', 'gpt-3.5-turbo')
chat = ChatOpenAI(temperature=0, openai_api_base=base_path, openai_api_key=key, model_name=model_name, max_tokens=100)
print("Created ChatOpenAI for ", chat.model_name)
template = "You are a helpful assistant that translates {input_language} to {output_language}. The next message will be a sentence in {input_language}. Respond ONLY with the translation in {output_language}. Do not respond in {input_language}!"
system_message_prompt = SystemMessagePromptTemplate.from_template(template)
human_template = "{text}"
human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)
chat_prompt = ChatPromptTemplate.from_messages([system_message_prompt, human_message_prompt])
print("ABOUT to execute")
# get a chat completion from the formatted messages
response = chat(chat_prompt.format_prompt(input_language="English", output_language="French", text="I love programming.").to_messages())
print(response)
print(".");

View File

@@ -1,32 +0,0 @@
aiohttp==3.8.4
aiosignal==1.3.1
async-timeout==4.0.2
attrs==23.1.0
certifi==2022.12.7
charset-normalizer==3.1.0
colorama==0.4.6
dataclasses-json==0.5.7
debugpy==1.6.7
frozenlist==1.3.3
greenlet==2.0.2
idna==3.4
langchain==0.0.159
marshmallow==3.19.0
marshmallow-enum==1.5.1
multidict==6.0.4
mypy-extensions==1.0.0
numexpr==2.8.4
numpy==1.24.3
openai==0.27.6
openapi-schema-pydantic==1.2.4
packaging==23.1
pydantic==1.10.7
PyYAML==6.0
requests==2.29.0
SQLAlchemy==2.0.12
tenacity==8.2.2
tqdm==4.65.0
typing-inspect==0.8.0
typing_extensions==4.5.0
urllib3==1.26.15
yarl==1.9.2

View File

@@ -1,6 +0,0 @@
from langchain.llms import OpenAI
llm = OpenAI(temperature=0.9,model_name="gpt-3.5-turbo")
text = "What would be a good company name for a company that makes colorful socks?"
print(llm(text))

View File

@@ -1 +0,0 @@
{{.Input}}

View File

@@ -1,18 +0,0 @@
name: gpt-3.5-turbo
parameters:
model: ggml-gpt4all-j # ggml-koala-13B-4bit-128g
top_k: 80
temperature: 0.2
top_p: 0.7
context_size: 1024
threads: 4
stopwords:
- "HUMAN:"
- "GPT:"
roles:
user: " "
system: " "
backend: "gptj"
template:
completion: completion
chat: gpt4all

View File

@@ -1,4 +0,0 @@
The prompt below is a question to answer, a task to complete, or a conversation to respond to; decide which and write an appropriate response.
### Prompt:
{{.Input}}
### Response:

View File

@@ -1,26 +0,0 @@
# localai-webui
Example of integration with [dhruvgera/localai-frontend](https://github.com/Dhruvgera/LocalAI-frontend).
![image](https://user-images.githubusercontent.com/42107491/235344183-44b5967d-ba22-4331-804c-8da7004a5d35.png)
## Setup
```bash
# Clone LocalAI
git clone https://github.com/go-skynet/LocalAI
cd LocalAI/examples/localai-webui
# (optional) Checkout a specific LocalAI tag
# git checkout -b build <TAG>
# Download any desired models to models/ in the parent LocalAI project dir
# For example: wget https://gpt4all.io/models/ggml-gpt4all-j.bin
# start with docker-compose
docker-compose up -d --build
```
Open http://localhost:3000 for the Web UI.

View File

@@ -1,20 +0,0 @@
version: '3.6'
services:
api:
image: quay.io/go-skynet/local-ai:latest
build:
context: .
dockerfile: Dockerfile
ports:
- 8080:8080
env_file:
- .env
volumes:
- ./models:/models:cached
command: ["/usr/bin/local-ai"]
frontend:
image: quay.io/go-skynet/localai-frontend:master
ports:
- 3000:3000

View File

@@ -1 +0,0 @@
storage/

View File

@@ -1,67 +0,0 @@
# Data query example
This example makes use of [Llama-Index](https://gpt-index.readthedocs.io/en/stable/getting_started/installation.html) to enable question answering on a set of documents.
It loosely follows [the quickstart](https://gpt-index.readthedocs.io/en/stable/guides/primer/usage_pattern.html).
Summary of the steps:
- prepare the dataset (and store it into `data`)
- prepare a vector index database to run queries on
- run queries
## Requirements
You will need a training data set. Copy that over `data`.
## Setup
Start the API:
```bash
# Clone LocalAI
git clone https://github.com/go-skynet/LocalAI
cd LocalAI/examples/query_data
wget https://huggingface.co/skeskinen/ggml/resolve/main/all-MiniLM-L6-v2/ggml-model-q4_0.bin -O models/bert
wget https://gpt4all.io/models/ggml-gpt4all-j.bin -O models/ggml-gpt4all-j
# start with docker-compose
docker-compose up -d --build
```
### Create a storage
In this step we will create a local vector database from our document set, so later we can ask questions on it with the LLM.
```bash
export OPENAI_API_BASE=http://localhost:8080/v1
export OPENAI_API_KEY=sk-
python store.py
```
After it finishes, a directory "storage" will be created with the vector index database.
## Query
We can now query the dataset.
```bash
export OPENAI_API_BASE=http://localhost:8080/v1
export OPENAI_API_KEY=sk-
python query.py
```
## Update
To update our vector database, run `update.py`
```bash
export OPENAI_API_BASE=http://localhost:8080/v1
export OPENAI_API_KEY=sk-
python update.py
```

View File

View File

@@ -1,15 +0,0 @@
version: '3.6'
services:
api:
image: quay.io/go-skynet/local-ai:latest
build:
context: .
dockerfile: Dockerfile
ports:
- 8080:8080
env_file:
- .env
volumes:
- ./models:/models:cached
command: ["/usr/bin/local-ai"]

View File

@@ -1 +0,0 @@
{{.Input}}

View File

@@ -1,6 +0,0 @@
name: text-embedding-ada-002
parameters:
model: bert
threads: 14
backend: bert-embeddings
embeddings: true

View File

@@ -1,17 +0,0 @@
name: gpt-3.5-turbo
parameters:
model: ggml-gpt4all-j
top_k: 80
temperature: 0.2
top_p: 0.7
context_size: 1024
threads: 14
stopwords:
- "HUMAN:"
- "GPT:"
roles:
user: " "
system: " "
template:
completion: completion
chat: gpt4all

View File

@@ -1,35 +0,0 @@
import os
# Uncomment to specify your OpenAI API key here (local testing only, not in production!), or add corresponding environment variable (recommended)
# os.environ['OPENAI_API_KEY']= ""
from llama_index import LLMPredictor, PromptHelper, ServiceContext
from langchain.llms.openai import OpenAI
from llama_index import StorageContext, load_index_from_storage
base_path = os.environ.get('OPENAI_API_BASE', 'http://localhost:8080/v1')
# This example uses text-davinci-003 by default; feel free to change if desired
llm_predictor = LLMPredictor(llm=OpenAI(temperature=0, model_name="gpt-3.5-turbo", openai_api_base=base_path))
# Configure prompt parameters and initialise helper
max_input_size = 500
num_output = 256
max_chunk_overlap = 20
prompt_helper = PromptHelper(max_input_size, num_output, max_chunk_overlap)
# Load documents from the 'data' directory
service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor, prompt_helper=prompt_helper)
# rebuild storage context
storage_context = StorageContext.from_defaults(persist_dir='./storage')
# load index
index = load_index_from_storage(storage_context, service_context=service_context, )
query_engine = index.as_query_engine()
data = input("Question: ")
response = query_engine.query(data)
print(response)

View File

@@ -1,27 +0,0 @@
import os
# Uncomment to specify your OpenAI API key here (local testing only, not in production!), or add corresponding environment variable (recommended)
# os.environ['OPENAI_API_KEY']= ""
from llama_index import GPTVectorStoreIndex, SimpleDirectoryReader, LLMPredictor, PromptHelper, ServiceContext
from langchain.llms.openai import OpenAI
from llama_index import StorageContext, load_index_from_storage
base_path = os.environ.get('OPENAI_API_BASE', 'http://localhost:8080/v1')
# This example uses text-davinci-003 by default; feel free to change if desired
llm_predictor = LLMPredictor(llm=OpenAI(temperature=0, model_name="gpt-3.5-turbo", openai_api_base=base_path))
# Configure prompt parameters and initialise helper
max_input_size = 400
num_output = 400
max_chunk_overlap = 30
prompt_helper = PromptHelper(max_input_size, num_output, max_chunk_overlap)
# Load documents from the 'data' directory
documents = SimpleDirectoryReader('data').load_data()
service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor, prompt_helper=prompt_helper, chunk_size_limit = 400)
index = GPTVectorStoreIndex.from_documents(documents, service_context=service_context)
index.storage_context.persist(persist_dir="./storage")

View File

@@ -1,32 +0,0 @@
import os
# Uncomment to specify your OpenAI API key here (local testing only, not in production!), or add corresponding environment variable (recommended)
# os.environ['OPENAI_API_KEY']= ""
from llama_index import LLMPredictor, PromptHelper, SimpleDirectoryReader, ServiceContext
from langchain.llms.openai import OpenAI
from llama_index import StorageContext, load_index_from_storage
base_path = os.environ.get('OPENAI_API_BASE', 'http://localhost:8080/v1')
# This example uses text-davinci-003 by default; feel free to change if desired
llm_predictor = LLMPredictor(llm=OpenAI(temperature=0, model_name="gpt-3.5-turbo", openai_api_base=base_path))
# Configure prompt parameters and initialise helper
max_input_size = 512
num_output = 256
max_chunk_overlap = 20
prompt_helper = PromptHelper(max_input_size, num_output, max_chunk_overlap)
# Load documents from the 'data' directory
service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor, prompt_helper=prompt_helper)
# rebuild storage context
storage_context = StorageContext.from_defaults(persist_dir='./storage')
# load index
index = load_index_from_storage(storage_context, service_context=service_context, )
documents = SimpleDirectoryReader('data').load_data()
index.refresh(documents)
index.storage_context.persist(persist_dir="./storage")

View File

@@ -1,10 +0,0 @@
FROM python
# convert the model (one-off)
RUN pip3 install torch numpy
WORKDIR /build
COPY ./scripts/ .
RUN git clone --recurse-submodules https://github.com/saharNooby/rwkv.cpp && cd rwkv.cpp && cmake . && cmake --build . --config Release
ENTRYPOINT [ "/build/build.sh" ]

View File

@@ -1,59 +0,0 @@
# rwkv
Example of how to run rwkv models.
## Run models
Setup:
```bash
# Clone LocalAI
git clone https://github.com/go-skynet/LocalAI
cd LocalAI/examples/rwkv
# (optional) Checkout a specific LocalAI tag
# git checkout -b build <TAG>
# build the tooling image to convert an rwkv model locally:
docker build -t rwkv-converter -f Dockerfile.build .
# download and convert a model (one-off) - it's going to be fast on CPU too!
docker run -ti --name converter -v $PWD:/data rwkv-converter https://huggingface.co/BlinkDL/rwkv-4-raven/resolve/main/RWKV-4-Raven-1B5-v11-Eng99%25-Other1%25-20230425-ctx4096.pth /data/models/rwkv
# Get the tokenizer
wget https://raw.githubusercontent.com/saharNooby/rwkv.cpp/5eb8f09c146ea8124633ab041d9ea0b1f1db4459/rwkv/20B_tokenizer.json -O models/rwkv.tokenizer.json
# start with docker-compose
docker-compose up -d --build
```
Test it out:
```bash
curl http://localhost:8080/v1/completions -H "Content-Type: application/json" -d '{
"model": "gpt-3.5-turbo",
"prompt": "A long time ago, in a galaxy far away",
"max_tokens": 100,
"temperature": 0.9, "top_p": 0.8, "top_k": 80
}'
# {"object":"text_completion","model":"gpt-3.5-turbo","choices":[{"text":", there was a small group of five friends: Annie, Bryan, Charlie, Emily, and Jesse."}],"usage":{"prompt_tokens":0,"completion_tokens":0,"total_tokens":0}}
curl http://localhost:8080/v1/chat/completions -H "Content-Type: application/json" -d '{
"model": "gpt-3.5-turbo",
"messages": [{"role": "user", "content": "How are you?"}],
"temperature": 0.9, "top_p": 0.8, "top_k": 80
}'
# {"object":"chat.completion","model":"gpt-3.5-turbo","choices":[{"message":{"role":"assistant","content":" Good, thanks. I am about to go to bed. I' ll talk to you later.Bye."}}],"usage":{"prompt_tokens":0,"completion_tokens":0,"total_tokens":0}}
```
### Fine tuning
See [RWKV-LM](https://github.com/BlinkDL/RWKV-LM#training--fine-tuning). There is also a Google [colab](https://colab.research.google.com/github/resloved/RWKV-notebooks/blob/master/RWKV_v4_RNN_Pile_Fine_Tuning.ipynb).
## See also
- [RWKV-LM](https://github.com/BlinkDL/RWKV-LM)
- [rwkv.cpp](https://github.com/saharNooby/rwkv.cpp)

View File

@@ -1,16 +0,0 @@
version: '3.6'
services:
api:
image: quay.io/go-skynet/local-ai:latest
build:
context: ../../
dockerfile: Dockerfile.dev
ports:
- 8080:8080
environment:
- DEBUG=true
- MODELS_PATH=/models
volumes:
- ./models:/models:cached
command: ["/usr/bin/local-ai" ]

View File

@@ -1,19 +0,0 @@
name: gpt-3.5-turbo
parameters:
model: rwkv
top_k: 80
temperature: 0.9
max_tokens: 100
top_p: 0.8
context_size: 1024
threads: 14
backend: "rwkv"
cutwords:
- "Bob:.*"
roles:
user: "Bob:"
system: "Alice:"
assistant: "Alice:"
template:
completion: rwkv_completion
chat: rwkv_chat

View File

@@ -1,13 +0,0 @@
The following is a verbose detailed conversation between Bob and a woman, Alice. Alice is intelligent, friendly and likeable. Alice is likely to agree with Bob.
Bob: Hello Alice, how are you doing?
Alice: Hi Bob! Thanks, I'm fine. What about you?
Bob: I am very good! It's nice to see you. Would you mind me chatting with you for a while?
Alice: Not at all! I'm listening.
{{.Input}}
Alice:

View File

@@ -1 +0,0 @@
Complete the following sentence: {{.Input}}

View File

@@ -1,11 +0,0 @@
#!/bin/bash
set -ex
URL=$1
OUT=$2
FILENAME=$(basename $URL)
wget -nc $URL -O /build/$FILENAME
python3 /build/rwkv.cpp/rwkv/convert_pytorch_to_ggml.py /build/$FILENAME /build/float-model float16
python3 /build/rwkv.cpp/rwkv/quantize.py /build/float-model $OUT Q4_2

View File

@@ -1,11 +0,0 @@
SLACK_APP_TOKEN=xapp-1-...
SLACK_BOT_TOKEN=xoxb-...
OPENAI_API_KEY=sk-...
OPENAI_API_BASE=http://api:8080
OPENAI_MODEL=gpt-3.5-turbo
OPENAI_TIMEOUT_SECONDS=60
#OPENAI_SYSTEM_TEXT="You proofread text. When you receive a message, you will check
#for mistakes and make suggestion to improve the language of the given text"
USE_SLACK_LANGUAGE=true
SLACK_APP_LOG_LEVEL=INFO
TRANSLATE_MARKDOWN=true

View File

@@ -1,27 +0,0 @@
# Slack bot
Slackbot using: https://github.com/seratch/ChatGPT-in-Slack
## Setup
```bash
# Clone LocalAI
git clone https://github.com/go-skynet/LocalAI
cd LocalAI/examples/slack-bot
git clone https://github.com/seratch/ChatGPT-in-Slack
# (optional) Checkout a specific LocalAI tag
# git checkout -b build <TAG>
# Download gpt4all-j to models/
wget https://gpt4all.io/models/ggml-gpt4all-j.bin -O models/ggml-gpt4all-j
# Set the discord bot options (see: https://github.com/seratch/ChatGPT-in-Slack)
cp -rfv .env.example .env
vim .env
# start with docker-compose
docker-compose up -d --build
```

View File

@@ -1,23 +0,0 @@
version: '3.6'
services:
api:
image: quay.io/go-skynet/local-ai:latest
build:
context: ../../
dockerfile: Dockerfile.dev
ports:
- 8080:8080
environment:
- DEBUG=true
- MODELS_PATH=/models
volumes:
- ./models:/models:cached
command: ["/usr/bin/local-ai" ]
bot:
build:
context: ./ChatGPT-in-Slack
dockerfile: Dockerfile
env_file:
- .env

View File

@@ -1 +0,0 @@
../chatbot-ui/models

58
go.mod
View File

@@ -3,66 +3,52 @@ module github.com/go-skynet/LocalAI
go 1.19
require (
github.com/donomii/go-rwkv.cpp v0.0.0-20230515123100-6fdd0c338e56
github.com/ggerganov/whisper.cpp/bindings/go v0.0.0-20230515153606-95b02d76b04d
github.com/go-audio/wav v1.1.0
github.com/go-skynet/bloomz.cpp v0.0.0-20230510223001-e9366e82abdf
github.com/go-skynet/go-bert.cpp v0.0.0-20230516063724-cea1ed76a7f4
github.com/go-skynet/go-gpt2.cpp v0.0.0-20230512145559-7bff56f02245
github.com/go-skynet/go-gpt2.cpp v0.0.0-20230422085954-245a5bfe6708
github.com/go-skynet/go-gpt4all-j.cpp v0.0.0-20230422090028-1f7bff57f66c
github.com/go-skynet/go-llama.cpp v0.0.0-20230516230554-b7bbefbe0b84
github.com/gofiber/fiber/v2 v2.45.0
github.com/hashicorp/go-multierror v1.1.1
github.com/mudler/go-stable-diffusion v0.0.0-20230516152536-c0748eca3642
github.com/nomic-ai/gpt4all/gpt4all-bindings/golang v0.0.0-20230516143155-79d6243fe1bc
github.com/onsi/ginkgo/v2 v2.9.5
github.com/go-skynet/go-llama.cpp v0.0.0-20230424120713-e45cebe33c04
github.com/gofiber/fiber/v2 v2.44.0
github.com/jaypipes/ghw v0.10.0
github.com/onsi/ginkgo/v2 v2.9.2
github.com/onsi/gomega v1.27.6
github.com/otiai10/copy v1.11.0
github.com/otiai10/openaigo v1.1.0
github.com/rs/zerolog v1.29.1
github.com/sashabaranov/go-openai v1.9.4
github.com/swaggo/swag v1.16.1
github.com/urfave/cli/v2 v2.25.3
github.com/valyala/fasthttp v1.47.0
gopkg.in/yaml.v3 v3.0.1
github.com/sashabaranov/go-openai v1.9.0
github.com/urfave/cli/v2 v2.25.1
)
require (
github.com/KyleBanks/depth v1.2.1 // indirect
github.com/PuerkitoBio/purell v1.1.1 // indirect
github.com/PuerkitoBio/urlesc v0.0.0-20170810143723-de5bf2ad4578 // indirect
github.com/StackExchange/wmi v1.2.1 // indirect
github.com/andybalholm/brotli v1.0.5 // indirect
github.com/cpuguy83/go-md2man/v2 v2.0.2 // indirect
github.com/go-audio/audio v1.0.0 // indirect
github.com/go-audio/riff v1.0.0 // indirect
github.com/go-logr/logr v1.2.4 // indirect
github.com/go-openapi/jsonpointer v0.19.5 // indirect
github.com/go-openapi/jsonreference v0.19.6 // indirect
github.com/go-openapi/spec v0.20.4 // indirect
github.com/go-openapi/swag v0.19.15 // indirect
github.com/ghodss/yaml v1.0.0 // indirect
github.com/go-logr/logr v1.2.3 // indirect
github.com/go-ole/go-ole v1.2.6 // indirect
github.com/go-task/slim-sprig v0.0.0-20230315185526-52ccab3ef572 // indirect
github.com/google/go-cmp v0.5.9 // indirect
github.com/google/pprof v0.0.0-20210407192527-94a9f03dee38 // indirect
github.com/google/uuid v1.3.0 // indirect
github.com/hashicorp/errwrap v1.0.0 // indirect
github.com/josharian/intern v1.0.0 // indirect
github.com/jaypipes/pcidb v1.0.0 // indirect
github.com/klauspost/compress v1.16.3 // indirect
github.com/mailru/easyjson v0.7.6 // indirect
github.com/kr/text v0.2.0 // indirect
github.com/mattn/go-colorable v0.1.13 // indirect
github.com/mattn/go-isatty v0.0.18 // indirect
github.com/mattn/go-runewidth v0.0.14 // indirect
github.com/mitchellh/go-homedir v1.1.0 // indirect
github.com/philhofer/fwd v1.1.2 // indirect
github.com/pkg/errors v0.9.1 // indirect
github.com/rivo/uniseg v0.2.0 // indirect
github.com/russross/blackfriday/v2 v2.1.0 // indirect
github.com/savsgio/dictpool v0.0.0-20221023140959-7bf2e61cea94 // indirect
github.com/savsgio/gotils v0.0.0-20230208104028-c358bd845dee // indirect
github.com/tinylib/msgp v1.1.8 // indirect
github.com/valyala/bytebufferpool v1.0.0 // indirect
github.com/valyala/fasthttp v1.45.0 // indirect
github.com/valyala/tcplisten v1.0.0 // indirect
github.com/xrash/smetrics v0.0.0-20201216005158-039620a65673 // indirect
golang.org/x/net v0.10.0 // indirect
golang.org/x/sys v0.8.0 // indirect
golang.org/x/text v0.9.0 // indirect
golang.org/x/tools v0.9.1 // indirect
golang.org/x/net v0.8.0 // indirect
golang.org/x/sys v0.7.0 // indirect
golang.org/x/text v0.8.0 // indirect
golang.org/x/tools v0.7.0 // indirect
gopkg.in/yaml.v2 v2.4.0 // indirect
gopkg.in/yaml.v3 v3.0.1 // indirect
howett.net/plist v1.0.0 // indirect
)

191
go.sum
View File

@@ -1,9 +1,7 @@
github.com/KyleBanks/depth v1.2.1 h1:5h8fQADFrWtarTdtDudMmGsC7GPbOAu6RVB3ffsVFHc=
github.com/KyleBanks/depth v1.2.1/go.mod h1:jzSb9d0L43HxTQfT+oSA1EEp2q+ne2uh6XgeJcm8brE=
github.com/PuerkitoBio/purell v1.1.1 h1:WEQqlqaGbrPkxLJWfBwQmfEAE1Z7ONdDLqrN38tNFfI=
github.com/PuerkitoBio/purell v1.1.1/go.mod h1:c11w/QuzBsJSee3cPx9rAFu61PvFxuPbtSwDGJws/X0=
github.com/PuerkitoBio/urlesc v0.0.0-20170810143723-de5bf2ad4578 h1:d+Bc7a5rLufV/sSk/8dngufqelfh6jnri85riMAaF/M=
github.com/PuerkitoBio/urlesc v0.0.0-20170810143723-de5bf2ad4578/go.mod h1:uGdkoq3SwY9Y+13GIhn11/XLaGBb4BfwItxLd5jeuXE=
github.com/StackExchange/wmi v1.2.1 h1:VIkavFPXSjcnS+O8yTq7NI32k0R5Aj+v39y29VYDOSA=
github.com/StackExchange/wmi v1.2.1/go.mod h1:rcmrprowKIVzvc+NUiLncP2uuArMWLCbu9SBzvHz7e8=
github.com/andybalholm/brotli v1.0.4 h1:V7DdXeJtZscaqfNuAdSRuRFzuiKlHSC/Zh3zl9qY3JY=
github.com/andybalholm/brotli v1.0.4/go.mod h1:fO7iG3H7G2nSZ7m0zPUDn85XEX2GTukHGRSepvi9Eig=
github.com/andybalholm/brotli v1.0.5 h1:8uQZIdzKmjc/iuPu7O2ioW48L81FgatrcpfFmiq/cCs=
github.com/andybalholm/brotli v1.0.5/go.mod h1:fO7iG3H7G2nSZ7m0zPUDn85XEX2GTukHGRSepvi9Eig=
github.com/chzyer/logex v1.1.10/go.mod h1:+Ywpsq7O8HXn0nuIou7OrIPyXbp3wmkHB+jjWRnGsAI=
@@ -16,61 +14,32 @@ github.com/creack/pty v1.1.9/go.mod h1:oKZEueFk5CKHvIhNR5MUki03XCEU+Q6VDXinZuGJ3
github.com/davecgh/go-spew v1.1.0/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSsI+c5H38=
github.com/davecgh/go-spew v1.1.1 h1:vj9j/u1bqnvCEfJOwUhtlOARqs3+rkHYY13jYWTU97c=
github.com/davecgh/go-spew v1.1.1/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSsI+c5H38=
github.com/donomii/go-rwkv.cpp v0.0.0-20230503112711-af62fcc432be h1:3Hic97PY6hcw/SY44RuR7kyONkxd744RFeRrqckzwNQ=
github.com/donomii/go-rwkv.cpp v0.0.0-20230503112711-af62fcc432be/go.mod h1:gWy7FIWioqYmYxkaoFyBnaKApeZVrUkHhv9EV9pz4dM=
github.com/donomii/go-rwkv.cpp v0.0.0-20230510174014-07166da10cb2 h1:YNbUAyIRtaLODitigJU1EM5ubmMu5FmHtYAayJD6Vbg=
github.com/donomii/go-rwkv.cpp v0.0.0-20230510174014-07166da10cb2/go.mod h1:gWy7FIWioqYmYxkaoFyBnaKApeZVrUkHhv9EV9pz4dM=
github.com/donomii/go-rwkv.cpp v0.0.0-20230515123100-6fdd0c338e56 h1:s8/MZdicstKi5fn9D9mKGIQ/q6IWCYCk/BM68i8v51w=
github.com/donomii/go-rwkv.cpp v0.0.0-20230515123100-6fdd0c338e56/go.mod h1:gWy7FIWioqYmYxkaoFyBnaKApeZVrUkHhv9EV9pz4dM=
github.com/ggerganov/whisper.cpp/bindings/go v0.0.0-20230508180809-bf2449dfae35 h1:sMg/SgnMPS/HNUO/2kGm72vl8R9TmNIwgLFr2TNwR3g=
github.com/ggerganov/whisper.cpp/bindings/go v0.0.0-20230508180809-bf2449dfae35/go.mod h1:QIjZ9OktHFG7p+/m3sMvrAJKKdWrr1fZIK0rM6HZlyo=
github.com/ggerganov/whisper.cpp/bindings/go v0.0.0-20230509153812-1d17cd5bb37a h1:MlyiDLNCM/wjbv8U5Elj18NvaAgl61SGiRUpqQz5dfs=
github.com/ggerganov/whisper.cpp/bindings/go v0.0.0-20230509153812-1d17cd5bb37a/go.mod h1:QIjZ9OktHFG7p+/m3sMvrAJKKdWrr1fZIK0rM6HZlyo=
github.com/ggerganov/whisper.cpp/bindings/go v0.0.0-20230515153606-95b02d76b04d h1:uxKTbiRnplE2SubchneSf4NChtxLJtOy9VdHnQMT0d0=
github.com/ggerganov/whisper.cpp/bindings/go v0.0.0-20230515153606-95b02d76b04d/go.mod h1:QIjZ9OktHFG7p+/m3sMvrAJKKdWrr1fZIK0rM6HZlyo=
github.com/go-audio/audio v1.0.0 h1:zS9vebldgbQqktK4H0lUqWrG8P0NxCJVqcj7ZpNnwd4=
github.com/go-audio/audio v1.0.0/go.mod h1:6uAu0+H2lHkwdGsAY+j2wHPNPpPoeg5AaEFh9FlA+Zs=
github.com/go-audio/riff v1.0.0 h1:d8iCGbDvox9BfLagY94fBynxSPHO80LmZCaOsmKxokA=
github.com/go-audio/riff v1.0.0/go.mod h1:l3cQwc85y79NQFCRB7TiPoNiaijp6q8Z0Uv38rVG498=
github.com/go-audio/wav v1.1.0 h1:jQgLtbqBzY7G+BM8fXF7AHUk1uHUviWS4X39d5rsL2g=
github.com/go-audio/wav v1.1.0/go.mod h1:mpe9qfwbScEbkd8uybLuIpTgHyrISw/OTuvjUW2iGtE=
github.com/go-logr/logr v1.2.4 h1:g01GSCwiDw2xSZfjJ2/T9M+S6pFdcNtFYsp+Y43HYDQ=
github.com/go-logr/logr v1.2.4/go.mod h1:jdQByPbusPIv2/zmleS9BjJVeZ6kBagPoEUsqbVz/1A=
github.com/go-openapi/jsonpointer v0.19.3/go.mod h1:Pl9vOtqEWErmShwVjC8pYs9cog34VGT37dQOVbmoatg=
github.com/go-openapi/jsonpointer v0.19.5 h1:gZr+CIYByUqjcgeLXnQu2gHYQC9o73G2XUeOFYEICuY=
github.com/go-openapi/jsonpointer v0.19.5/go.mod h1:Pl9vOtqEWErmShwVjC8pYs9cog34VGT37dQOVbmoatg=
github.com/go-openapi/jsonreference v0.19.6 h1:UBIxjkht+AWIgYzCDSv2GN+E/togfwXUJFRTWhl2Jjs=
github.com/go-openapi/jsonreference v0.19.6/go.mod h1:diGHMEHg2IqXZGKxqyvWdfWU/aim5Dprw5bqpKkTvns=
github.com/go-openapi/spec v0.20.4 h1:O8hJrt0UMnhHcluhIdUgCLRWyM2x7QkBXRvOs7m+O1M=
github.com/go-openapi/spec v0.20.4/go.mod h1:faYFR1CvsJZ0mNsmsphTMSoRrNV3TEDoAM7FOEWeq8I=
github.com/go-openapi/swag v0.19.5/go.mod h1:POnQmlKehdgb5mhVOsnJFsivZCEZ/vjK9gh66Z9tfKk=
github.com/go-openapi/swag v0.19.15 h1:D2NRCBzS9/pEY3gP9Nl8aDqGUcPFrwG2p+CNFrLyrCM=
github.com/go-openapi/swag v0.19.15/go.mod h1:QYRuS/SOXUCsnplDa677K7+DxSOj6IPNl/eQntq43wQ=
github.com/go-skynet/bloomz.cpp v0.0.0-20230510195113-ad7e89a0885f h1:GW8RQa1RVeDF1dOuAP/y6xWVC+BRtf9tJOuEza6Asbg=
github.com/go-skynet/bloomz.cpp v0.0.0-20230510195113-ad7e89a0885f/go.mod h1:wc0fJ9V04yiYTfgKvE5RUUSRQ5Kzi0Bo4I+U3nNOUuA=
github.com/go-skynet/bloomz.cpp v0.0.0-20230510223001-e9366e82abdf h1:VJfSn8hIDE+K5+h38M3iAyFXrxpRExMKRdTk33UDxsw=
github.com/go-skynet/bloomz.cpp v0.0.0-20230510223001-e9366e82abdf/go.mod h1:wc0fJ9V04yiYTfgKvE5RUUSRQ5Kzi0Bo4I+U3nNOUuA=
github.com/go-skynet/go-bert.cpp v0.0.0-20230510101404-7bb183b147ea h1:8Isk9D+Auth5OuXVAQPC3MO+5zF/2S7mvs2JZLw6a+8=
github.com/go-skynet/go-bert.cpp v0.0.0-20230510101404-7bb183b147ea/go.mod h1:NHwIVvsg7Jh6p0M4uBLVmSMEaPUia6O6yjXUpLWVJmQ=
github.com/go-skynet/go-bert.cpp v0.0.0-20230510124618-ec771ec71557 h1:LD66fKtvP2lmyuuKL8pBat/pVTKUbLs3L5fM/5lyi4w=
github.com/go-skynet/go-bert.cpp v0.0.0-20230510124618-ec771ec71557/go.mod h1:NHwIVvsg7Jh6p0M4uBLVmSMEaPUia6O6yjXUpLWVJmQ=
github.com/go-skynet/go-bert.cpp v0.0.0-20230516063724-cea1ed76a7f4 h1:+3KPDf4Wv1VHOkzAfZnlj9qakLSYggTpm80AswhD/FU=
github.com/go-skynet/go-bert.cpp v0.0.0-20230516063724-cea1ed76a7f4/go.mod h1:VY0s5KoAI2jRCvQXKuDeEEe8KG7VaWifSNJSk+E1KtY=
github.com/go-skynet/go-gpt2.cpp v0.0.0-20230509180201-d49823284cc6 h1:XshpypO6ekU09CI19vuzke2a1Es1lV5ZaxA7CUehu0E=
github.com/go-skynet/go-gpt2.cpp v0.0.0-20230509180201-d49823284cc6/go.mod h1:1Wj/xbkMfwQSOrhNYK178IzqQHstZbRfhx4s8p1M5VM=
github.com/go-skynet/go-gpt2.cpp v0.0.0-20230512145559-7bff56f02245 h1:IcfYY5uH0DdDXEJKJ8bq0WZCd9guPPd3xllaWNy8LOk=
github.com/go-skynet/go-gpt2.cpp v0.0.0-20230512145559-7bff56f02245/go.mod h1:1Wj/xbkMfwQSOrhNYK178IzqQHstZbRfhx4s8p1M5VM=
github.com/ghodss/yaml v1.0.0 h1:wQHKEahhL6wmXdzwWG11gIVCkOv05bNOh+Rxn0yngAk=
github.com/ghodss/yaml v1.0.0/go.mod h1:4dBDuWmgqj2HViK6kFavaiC9ZROes6MMH2rRYeMEF04=
github.com/go-logr/logr v1.2.3 h1:2DntVwHkVopvECVRSlL5PSo9eG+cAkDCuckLubN+rq0=
github.com/go-logr/logr v1.2.3/go.mod h1:jdQByPbusPIv2/zmleS9BjJVeZ6kBagPoEUsqbVz/1A=
github.com/go-ole/go-ole v1.2.5/go.mod h1:pprOEPIfldk/42T2oK7lQ4v4JSDwmV0As9GaiUsvbm0=
github.com/go-ole/go-ole v1.2.6 h1:/Fpf6oFPoeFik9ty7siob0G6Ke8QvQEuVcuChpwXzpY=
github.com/go-ole/go-ole v1.2.6/go.mod h1:pprOEPIfldk/42T2oK7lQ4v4JSDwmV0As9GaiUsvbm0=
github.com/go-skynet/go-gpt2.cpp v0.0.0-20230420213900-1c24f5b86ac4 h1:GkGuqnhDFKlCsT6Bo8sdY00A7rFXCzfU1nBOSS4ZnYM=
github.com/go-skynet/go-gpt2.cpp v0.0.0-20230420213900-1c24f5b86ac4/go.mod h1:1Wj/xbkMfwQSOrhNYK178IzqQHstZbRfhx4s8p1M5VM=
github.com/go-skynet/go-gpt2.cpp v0.0.0-20230422085954-245a5bfe6708 h1:cfOi4TWvQ6JsAm9Q1A8I8j9YfNy10bmIfwOiyGyU5wQ=
github.com/go-skynet/go-gpt2.cpp v0.0.0-20230422085954-245a5bfe6708/go.mod h1:1Wj/xbkMfwQSOrhNYK178IzqQHstZbRfhx4s8p1M5VM=
github.com/go-skynet/go-gpt4all-j.cpp v0.0.0-20230419091210-303cf2a59a94 h1:rtrrMvlIq+g0/ltXjDdLeNtz0uc4wJ4Qs15GFU4ba4c=
github.com/go-skynet/go-gpt4all-j.cpp v0.0.0-20230419091210-303cf2a59a94/go.mod h1:5VZ9XbcINI0XcHhkcX8GPK8TplFGAzu1Hrg4tNiMCtI=
github.com/go-skynet/go-gpt4all-j.cpp v0.0.0-20230422090028-1f7bff57f66c h1:48I7jpLNGiQeBmF0SFVVbREh8vlG0zN13v9LH5ctXis=
github.com/go-skynet/go-gpt4all-j.cpp v0.0.0-20230422090028-1f7bff57f66c/go.mod h1:5VZ9XbcINI0XcHhkcX8GPK8TplFGAzu1Hrg4tNiMCtI=
github.com/go-skynet/go-llama.cpp v0.0.0-20230510072905-70593fccbe4b h1:qqxrjY8fYDXQahmCMTCACahm1tbiqHLPUHALkFLyBfo=
github.com/go-skynet/go-llama.cpp v0.0.0-20230510072905-70593fccbe4b/go.mod h1:DLfsPD7tYYnpksERH83HSf7qVNW3FIwmz7/zfYO0/6I=
github.com/go-skynet/go-llama.cpp v0.0.0-20230516230554-b7bbefbe0b84 h1:f5iYF75bAr73Tl8AdtFD5Urs/2bsHKPh52K++jLbsfk=
github.com/go-skynet/go-llama.cpp v0.0.0-20230516230554-b7bbefbe0b84/go.mod h1:jxyQ26t1aKC5Gn782w9WWh5n1133PxCOfkuc01xM4RQ=
github.com/go-skynet/go-llama.cpp v0.0.0-20230421172644-351a5a40eead h1:C+lcH1srw+c0qPDx1WF8zjGiiOqoPxVICt7bI1sj5cM=
github.com/go-skynet/go-llama.cpp v0.0.0-20230421172644-351a5a40eead/go.mod h1:35AKIEMY+YTKCBJIa/8GZcNGJ2J+nQk1hQiWo/OnEWw=
github.com/go-skynet/go-llama.cpp v0.0.0-20230424120713-e45cebe33c04 h1:NPiv7mcIjU71MhEv3v4RRWKSBNXnnCyu6VX4CaaHz2I=
github.com/go-skynet/go-llama.cpp v0.0.0-20230424120713-e45cebe33c04/go.mod h1:35AKIEMY+YTKCBJIa/8GZcNGJ2J+nQk1hQiWo/OnEWw=
github.com/go-task/slim-sprig v0.0.0-20230315185526-52ccab3ef572 h1:tfuBGBXKqDEevZMzYi5KSi8KkcZtzBcTgAUUtapy0OI=
github.com/go-task/slim-sprig v0.0.0-20230315185526-52ccab3ef572/go.mod h1:9Pwr4B2jHnOSGXyyzV8ROjYa2ojvAY6HCGYYfMoC3Ls=
github.com/godbus/dbus/v5 v5.0.4/go.mod h1:xhWf0FNVPg57R7Z0UbKHbJfkEywrmjJnf7w5xrFpKfA=
github.com/gofiber/fiber/v2 v2.45.0 h1:p4RpkJT9GAW6parBSbcNFH2ApnAuW3OzaQzbOCoDu+s=
github.com/gofiber/fiber/v2 v2.45.0/go.mod h1:DNl0/c37WLe0g92U6lx1VMQuxGUQY5V7EIaVoEsUffc=
github.com/gofiber/fiber/v2 v2.42.0 h1:Fnp7ybWvS+sjNQsFvkhf4G8OhXswvB6Vee8hM/LyS+8=
github.com/gofiber/fiber/v2 v2.42.0/go.mod h1:3+SGNjqMh5VQH5Vz2Wdi43zTIV16ktlFd3x3R6O1Zlc=
github.com/gofiber/fiber/v2 v2.44.0 h1:Z90bEvPcJM5GFJnu1py0E1ojoerkyew3iiNJ78MQCM8=
github.com/gofiber/fiber/v2 v2.44.0/go.mod h1:VTMtb/au8g01iqvHyaCzftuM/xmZgKOZCtFzz6CdV9w=
github.com/golang/protobuf v1.5.3 h1:KhyjKVUg7Usr/dYsdSqoFveMYd5ko72D+zANwlG1mmg=
github.com/google/go-cmp v0.5.9 h1:O2Tfq5qg4qc4AmwVlvv0oLiVAGB7enBSJ2x2DqQFi38=
github.com/google/go-cmp v0.5.9/go.mod h1:17dUlkBOakJ0+DkrSSNjCkIjxS6bF9zb3elmeNGIjoY=
@@ -78,55 +47,41 @@ github.com/google/pprof v0.0.0-20210407192527-94a9f03dee38 h1:yAJXTCF9TqKcTiHJAE
github.com/google/pprof v0.0.0-20210407192527-94a9f03dee38/go.mod h1:kpwsk12EmLew5upagYY7GY0pfYCcupk39gWOCRROcvE=
github.com/google/uuid v1.3.0 h1:t6JiXgmwXMjEs8VusXIJk2BXHsn+wx8BZdTaoZ5fu7I=
github.com/google/uuid v1.3.0/go.mod h1:TIyPZe4MgqvfeYDBFedMoGGpEw/LqOeaOT+nhxU+yHo=
github.com/hashicorp/errwrap v1.0.0 h1:hLrqtEDnRye3+sgx6z4qVLNuviH3MR5aQ0ykNJa/UYA=
github.com/hashicorp/errwrap v1.0.0/go.mod h1:YH+1FKiLXxHSkmPseP+kNlulaMuP3n2brvKWEqk/Jc4=
github.com/hashicorp/go-multierror v1.1.1 h1:H5DkEtf6CXdFp0N0Em5UCwQpXMWke8IA0+lD48awMYo=
github.com/hashicorp/go-multierror v1.1.1/go.mod h1:iw975J/qwKPdAO1clOe2L8331t/9/fmwbPZ6JB6eMoM=
github.com/ianlancetaylor/demangle v0.0.0-20200824232613-28f6c0f3b639/go.mod h1:aSSvb/t6k1mPoxDqO4vJh6VOCGPwU4O0C2/Eqndh1Sc=
github.com/josharian/intern v1.0.0 h1:vlS4z54oSdjm0bgjRigI+G1HpF+tI+9rE5LLzOg8HmY=
github.com/josharian/intern v1.0.0/go.mod h1:5DoeVV0s6jJacbCEi61lwdGj/aVlrQvzHFFd8Hwg//Y=
github.com/jaypipes/ghw v0.10.0 h1:UHu9UX08Py315iPojADFPOkmjTsNzHj4g4adsNKKteY=
github.com/jaypipes/ghw v0.10.0/go.mod h1:jeJGbkRB2lL3/gxYzNYzEDETV1ZJ56OKr+CSeSEym+g=
github.com/jaypipes/pcidb v1.0.0 h1:vtZIfkiCUE42oYbJS0TAq9XSfSmcsgo9IdxSm9qzYU8=
github.com/jaypipes/pcidb v1.0.0/go.mod h1:TnYUvqhPBzCKnH34KrIX22kAeEbDCSRJ9cqLRCuNDfk=
github.com/jessevdk/go-flags v1.4.0/go.mod h1:4FA24M0QyGHXBuZZK/XkWh8h0e1EYbRYJSGM75WSRxI=
github.com/klauspost/compress v1.15.9 h1:wKRjX6JRtDdrE9qwa4b/Cip7ACOshUI4smpCQanqjSY=
github.com/klauspost/compress v1.15.9/go.mod h1:PhcZ0MbTNciWF3rruxRgKxI5NkcHHrHUDtV4Yw2GlzU=
github.com/klauspost/compress v1.16.3 h1:XuJt9zzcnaz6a16/OU53ZjWp/v7/42WcR5t2a0PcNQY=
github.com/klauspost/compress v1.16.3/go.mod h1:ntbaceVETuRiXiv4DpjP66DpAtAGkEQskQzEyD//IeE=
github.com/kr/pretty v0.1.0/go.mod h1:dAy3ld7l9f0ibDNOQOHHMYYIIbhfbHSm3C4ZsoJORNo=
github.com/kr/pty v1.1.1/go.mod h1:pFQYn66WHrOpPYNljwOMqo10TkYh1fy3cYio2l3bCsQ=
github.com/kr/text v0.1.0/go.mod h1:4Jbv+DJW3UT/LiOwJeYQe1efqtUx/iVham/4vfdArNI=
github.com/kr/pretty v0.1.0 h1:L/CwN0zerZDmRFUapSPitk6f+Q3+0za1rQkzVuMiMFI=
github.com/kr/text v0.2.0 h1:5Nx0Ya0ZqY2ygV366QzturHI13Jq95ApcVaJBhpS+AY=
github.com/kr/text v0.2.0/go.mod h1:eLer722TekiGuMkidMxC/pM04lWEeraHUUmBw8l2grE=
github.com/mailru/easyjson v0.0.0-20190614124828-94de47d64c63/go.mod h1:C1wdFJiN94OJF2b5HbByQZoLdCWB1Yqtg26g4irojpc=
github.com/mailru/easyjson v0.0.0-20190626092158-b2ccc519800e/go.mod h1:C1wdFJiN94OJF2b5HbByQZoLdCWB1Yqtg26g4irojpc=
github.com/mailru/easyjson v0.7.6 h1:8yTIVnZgCoiM1TgqoeTl+LfU5Jg6/xL3QhGQnimLYnA=
github.com/mailru/easyjson v0.7.6/go.mod h1:xzfreul335JAWq5oZzymOObrkdz5UnU4kGfJJLY9Nlc=
github.com/mattn/go-colorable v0.1.12/go.mod h1:u5H1YNBxpqRaxsYJYSkiCWKzEfiAb1Gb520KVy5xxl4=
github.com/mattn/go-colorable v0.1.13 h1:fFA4WZxdEF4tXPZVKMLwD8oUnCTTo08duU7wxecdEvA=
github.com/mattn/go-colorable v0.1.13/go.mod h1:7S9/ev0klgBDR4GtXTXX8a3vIGJpMovkB8vQcUbaXHg=
github.com/mattn/go-isatty v0.0.14/go.mod h1:7GGIvUiUoEMVVmxf/4nioHXj79iQHKdU27kJ6hsGG94=
github.com/mattn/go-isatty v0.0.16/go.mod h1:kYGgaQfpe5nmfYZH+SKPsOc2e4SrIfOl2e/yFXSvRLM=
github.com/mattn/go-isatty v0.0.17 h1:BTarxUcIeDqL27Mc+vyvdWYSL28zpIhv3RoTdsLMPng=
github.com/mattn/go-isatty v0.0.17/go.mod h1:kYGgaQfpe5nmfYZH+SKPsOc2e4SrIfOl2e/yFXSvRLM=
github.com/mattn/go-isatty v0.0.18 h1:DOKFKCQ7FNG2L1rbrmstDN4QVRdS89Nkh85u68Uwp98=
github.com/mattn/go-isatty v0.0.18/go.mod h1:W+V8PltTTMOvKvAeJH7IuucS94S2C6jfK/D7dTCTo3Y=
github.com/mattn/go-runewidth v0.0.14 h1:+xnbZSEeDbOIg5/mE6JF0w6n9duR1l3/WmbinWVwUuU=
github.com/mattn/go-runewidth v0.0.14/go.mod h1:Jdepj2loyihRzMpdS35Xk/zdY8IAYHsh153qUoGf23w=
github.com/mudler/go-stable-diffusion v0.0.0-20230516104333-2f32a16b5b24 h1:XfRD/bZom6u4zji7aB0urIVOsPe43KlkzSRrVhlzaOM=
github.com/mudler/go-stable-diffusion v0.0.0-20230516104333-2f32a16b5b24/go.mod h1:8ufRkpz/S/9ahkaxzZ5i4WMgO9w4InEhuRoT7vK5Rnw=
github.com/mudler/go-stable-diffusion v0.0.0-20230516152536-c0748eca3642 h1:KTkh3lOUsGqQyP4v+oa38sPFdrZtNnM4HaxTb3epdYs=
github.com/mudler/go-stable-diffusion v0.0.0-20230516152536-c0748eca3642/go.mod h1:8ufRkpz/S/9ahkaxzZ5i4WMgO9w4InEhuRoT7vK5Rnw=
github.com/niemeyer/pretty v0.0.0-20200227124842-a10e7caefd8e h1:fD57ERR4JtEqsWbfPhv4DMiApHyliiK5xCTNVSPiaAs=
github.com/niemeyer/pretty v0.0.0-20200227124842-a10e7caefd8e/go.mod h1:zD1mROLANZcx1PVRCS0qkT7pwLkGfwJo4zjcN/Tysno=
github.com/nomic-ai/gpt4all/gpt4all-bindings/golang v0.0.0-20230516143155-79d6243fe1bc h1:OPavP/SUsVWVYPhSUZKZeX8yDSQzf4G+BmUmwzrLTyI=
github.com/nomic-ai/gpt4all/gpt4all-bindings/golang v0.0.0-20230516143155-79d6243fe1bc/go.mod h1:4T3CHXyrt+7FQHXaxULZfPjHbD8/99WuDDJa0YVZARI=
github.com/onsi/ginkgo/v2 v2.9.4 h1:xR7vG4IXt5RWx6FfIjyAtsoMAtnc3C/rFXBBd2AjZwE=
github.com/onsi/ginkgo/v2 v2.9.4/go.mod h1:gCQYp2Q+kSoIj7ykSVb9nskRSsR6PUj4AiLywzIhbKM=
github.com/onsi/ginkgo/v2 v2.9.5 h1:+6Hr4uxzP4XIUyAkg61dWBw8lb/gc4/X5luuxN/EC+Q=
github.com/onsi/ginkgo/v2 v2.9.5/go.mod h1:tvAoo1QUJwNEU2ITftXTpR7R1RbCzoZUOs3RonqW57k=
github.com/mitchellh/go-homedir v1.1.0 h1:lukF9ziXFxDFPkA1vsr5zpc1XuPDn/wFntq5mG+4E0Y=
github.com/mitchellh/go-homedir v1.1.0/go.mod h1:SfyaCUpYCn1Vlf4IUYiD9fPX4A5wJrkLzIz1N1q0pr0=
github.com/onsi/ginkgo/v2 v2.9.2 h1:BA2GMJOtfGAfagzYtrAlufIP0lq6QERkFmHLMLPwFSU=
github.com/onsi/ginkgo/v2 v2.9.2/go.mod h1:WHcJJG2dIlcCqVfBAwUCrJxSPFb6v4azBwgxeMeDuts=
github.com/onsi/gomega v1.27.6 h1:ENqfyGeS5AX/rlXDd/ETokDz93u0YufY1Pgxuy/PvWE=
github.com/onsi/gomega v1.27.6/go.mod h1:PIQNjfQwkP3aQAH7lf7j87O/5FiNr+ZR8+ipb+qQlhg=
github.com/otiai10/copy v1.11.0 h1:OKBD80J/mLBrwnzXqGtFCzprFSGioo30JcmR4APsNwc=
github.com/otiai10/copy v1.11.0/go.mod h1:rSaLseMUsZFFbsFGc7wCJnnkTAvdc5L6VWxPE4308Ww=
github.com/otiai10/mint v1.5.1 h1:XaPLeE+9vGbuyEHem1JNk3bYc7KKqyI/na0/mLd/Kks=
github.com/otiai10/openaigo v1.1.0 h1:zRvGBqZUW5PCMgdkJNsPVTBd8tOLCMTipXE5wD2pdTg=
github.com/otiai10/openaigo v1.1.0/go.mod h1:792bx6AWTS61weDi2EzKpHHnTF4eDMAlJ5GvAk/mgPg=
github.com/philhofer/fwd v1.1.1 h1:GdGcTjf5RNAxwS4QLsiMzJYj5KEvPJD3Abr261yRQXQ=
github.com/philhofer/fwd v1.1.1/go.mod h1:gk3iGcWd9+svBvR0sR+KPcfE+RNWozjowpeBVG3ZVNU=
github.com/philhofer/fwd v1.1.2 h1:bnDivRJ1EWPjUIRXV5KfORO897HTbpFAQddBdE8t7Gw=
github.com/philhofer/fwd v1.1.2/go.mod h1:qkPdfjR2SIEbspLqpe1tO4n5yICnr2DY7mqEx2tUTP0=
github.com/pkg/errors v0.9.1 h1:FEBLx1zS214owpjy7qsBeixbURkuhQAwrK5UwLGTwt4=
github.com/pkg/errors v0.9.1/go.mod h1:bwawxfHBFNV+L2hUp1rHADufV3IMtnDRdf1r5NINEl0=
github.com/pmezard/go-difflib v1.0.0 h1:4DBwDE0NGyQoBHbLQYPwSUPoCMWR5BEzIk/f1lZbAQM=
github.com/pmezard/go-difflib v1.0.0/go.mod h1:iKH77koFhYxTK1pcRnkKkqfTogsbg7gZNVY4sRDYZ/4=
@@ -137,30 +92,31 @@ github.com/rs/zerolog v1.29.1 h1:cO+d60CHkknCbvzEWxP0S9K6KqyTjrCNUy1LdQLCGPc=
github.com/rs/zerolog v1.29.1/go.mod h1:Le6ESbR7hc+DP6Lt1THiV8CQSdkkNrd3R0XbEgp3ZBU=
github.com/russross/blackfriday/v2 v2.1.0 h1:JIOH55/0cWyOuilr9/qlrm0BSXldqnqwMsf35Ld67mk=
github.com/russross/blackfriday/v2 v2.1.0/go.mod h1:+Rmxgy9KzJVeS9/2gXHxylqXiyQDYRxCVz55jmeOWTM=
github.com/sashabaranov/go-openai v1.9.3 h1:uNak3Rn5pPsKRs9bdT7RqRZEyej/zdZOEI2/8wvrFtM=
github.com/sashabaranov/go-openai v1.9.3/go.mod h1:lj5b/K+zjTSFxVLijLSTDZuP7adOgerWeFyZLUhAKRg=
github.com/sashabaranov/go-openai v1.9.4 h1:KanoCEoowAI45jVXlenMCckutSRr39qOmSi9MyPBfZM=
github.com/sashabaranov/go-openai v1.9.4/go.mod h1:lj5b/K+zjTSFxVLijLSTDZuP7adOgerWeFyZLUhAKRg=
github.com/sashabaranov/go-openai v1.9.0 h1:NoiO++IISxxJ1pRc0n7uZvMGMake0G+FJ1XPwXtprsA=
github.com/sashabaranov/go-openai v1.9.0/go.mod h1:lj5b/K+zjTSFxVLijLSTDZuP7adOgerWeFyZLUhAKRg=
github.com/savsgio/dictpool v0.0.0-20221023140959-7bf2e61cea94 h1:rmMl4fXJhKMNWl+K+r/fq4FbbKI+Ia2m9hYBLm2h4G4=
github.com/savsgio/dictpool v0.0.0-20221023140959-7bf2e61cea94/go.mod h1:90zrgN3D/WJsDd1iXHT96alCoN2KJo6/4x1DZC3wZs8=
github.com/savsgio/gotils v0.0.0-20220530130905-52f3993e8d6d h1:Q+gqLBOPkFGHyCJxXMRqtUgUbTjI8/Ze8vu8GGyNFwo=
github.com/savsgio/gotils v0.0.0-20220530130905-52f3993e8d6d/go.mod h1:Gy+0tqhJvgGlqnTF8CVGP0AaGRjwBtXs/a5PA0Y3+A4=
github.com/savsgio/gotils v0.0.0-20230208104028-c358bd845dee h1:8Iv5m6xEo1NR1AvpV+7XmhI4r39LGNzwUL4YpMuL5vk=
github.com/savsgio/gotils v0.0.0-20230208104028-c358bd845dee/go.mod h1:qwtSXrKuJh/zsFQ12yEE89xfCrGKK63Rr7ctU/uCo4g=
github.com/stretchr/objx v0.1.0/go.mod h1:HFkY916IF+rwdDfMAkV7OtwuqBVzrE8GR6GFx+wExME=
github.com/stretchr/testify v1.3.0/go.mod h1:M5WIy9Dh21IEIfnGCwXGc5bZfKNJtfHm1UVUgZn+9EI=
github.com/stretchr/testify v1.6.1 h1:hDPOHmpOpP40lSULcqw7IrRb/u7w6RpDC9399XyoNd0=
github.com/stretchr/testify v1.6.1/go.mod h1:6Fq8oRcR53rry900zMqJjRRixrwX3KX962/h/Wwjteg=
github.com/stretchr/testify v1.8.1 h1:w7B6lhMri9wdJUVmEZPGGhZzrYTPvgJArz7wNPgYKsk=
github.com/swaggo/swag v1.16.1 h1:fTNRhKstPKxcnoKsytm4sahr8FaYzUcT7i1/3nd/fBg=
github.com/swaggo/swag v1.16.1/go.mod h1:9/LMvHycG3NFHfR6LwvikHv5iFvmPADQ359cKikGxto=
github.com/tinylib/msgp v1.1.6 h1:i+SbKraHhnrf9M5MYmvQhFnbLhAXSDWF8WWsuyRdocw=
github.com/tinylib/msgp v1.1.6/go.mod h1:75BAfg2hauQhs3qedfdDZmWAPcFMAvJE5b9rGOMufyw=
github.com/tinylib/msgp v1.1.8 h1:FCXC1xanKO4I8plpHGH2P7koL/RzZs12l/+r7vakfm0=
github.com/tinylib/msgp v1.1.8/go.mod h1:qkpG+2ldGg4xRFmx+jfTvZPxfGFhi64BcnL9vkCm/Tw=
github.com/urfave/cli/v2 v2.25.3 h1:VJkt6wvEBOoSjPFQvOkv6iWIrsJyCrKGtCtxXWwmGeY=
github.com/urfave/cli/v2 v2.25.3/go.mod h1:GHupkWPMM0M/sj1a2b4wUrWBPzazNrIjouW6fmdJLxc=
github.com/urfave/cli/v2 v2.25.0 h1:ykdZKuQey2zq0yin/l7JOm9Mh+pg72ngYMeB0ABn6q8=
github.com/urfave/cli/v2 v2.25.0/go.mod h1:GHupkWPMM0M/sj1a2b4wUrWBPzazNrIjouW6fmdJLxc=
github.com/urfave/cli/v2 v2.25.1 h1:zw8dSP7ghX0Gmm8vugrs6q9Ku0wzweqPyshy+syu9Gw=
github.com/urfave/cli/v2 v2.25.1/go.mod h1:GHupkWPMM0M/sj1a2b4wUrWBPzazNrIjouW6fmdJLxc=
github.com/valyala/bytebufferpool v1.0.0 h1:GqA5TC/0021Y/b9FG4Oi9Mr3q7XYx6KllzawFIhcdPw=
github.com/valyala/bytebufferpool v1.0.0/go.mod h1:6bBcMArwyJ5K/AmCkWv1jt77kVWyCJ6HpOuEn7z0Csc=
github.com/valyala/fasthttp v1.47.0 h1:y7moDoxYzMooFpT5aHgNgVOQDrS3qlkfiP9mDtGGK9c=
github.com/valyala/fasthttp v1.47.0/go.mod h1:k2zXd82h/7UZc3VOdJ2WaUqt1uZ/XpXAfE9i+HBC3lA=
github.com/valyala/fasthttp v1.44.0 h1:R+gLUhldIsfg1HokMuQjdQ5bh9nuXHPIfvkYUu9eR5Q=
github.com/valyala/fasthttp v1.44.0/go.mod h1:f6VbjjoI3z1NDOZOv17o6RvtRSWxC77seBFc2uWtgiY=
github.com/valyala/fasthttp v1.45.0 h1:zPkkzpIn8tdHZUrVa6PzYd0i5verqiPSkgTd3bSUcpA=
github.com/valyala/fasthttp v1.45.0/go.mod h1:k2zXd82h/7UZc3VOdJ2WaUqt1uZ/XpXAfE9i+HBC3lA=
github.com/valyala/tcplisten v1.0.0 h1:rBHj/Xf+E1tRGZyWIWwJDiRY0zc1Js+CV5DqwacVSA8=
github.com/valyala/tcplisten v1.0.0/go.mod h1:T0xQ8SeCZGxckz9qRXTfG43PvQ/mcWh7FwZEA7Ioqkc=
github.com/xrash/smetrics v0.0.0-20201216005158-039620a65673 h1:bAn7/zixMGCfxrRTfdpNzjtPYqr8smhKouy9mxVdGPU=
@@ -171,41 +127,43 @@ golang.org/x/crypto v0.0.0-20190308221718-c2843e01d9a2/go.mod h1:djNgcEr1/C05ACk
golang.org/x/crypto v0.0.0-20191011191535-87dc89f01550/go.mod h1:yigFU9vqHzYiE8UmvKecakEJjdnWj3jj499lnFckfCI=
golang.org/x/crypto v0.0.0-20200622213623-75b288015ac9/go.mod h1:LzIPMQfyMNhhGPhUkYOs5KpL4U8rLKemX1yGLhDgUto=
golang.org/x/crypto v0.0.0-20210921155107-089bfa567519/go.mod h1:GvvjBRRGRdwPK5ydBHafDWAxML/pGHZbMvKqRZ5+Abc=
golang.org/x/crypto v0.0.0-20220214200702-86341886e292/go.mod h1:IxCIyHEi3zRg3s0A5j5BB6A9Jmi73HwBIUl50j+osU4=
golang.org/x/mod v0.3.0/go.mod h1:s0Qsj1ACt9ePp/hMypM3fl4fZqREWJwdYDEqhRiZZUA=
golang.org/x/mod v0.6.0-dev.0.20220419223038-86c51ed26bb4/go.mod h1:jJ57K6gSWd91VN4djpZkiMVwK6gcyfeH4XE8wZrZaV4=
golang.org/x/mod v0.7.0/go.mod h1:iBbtSCu2XBx23ZKBPSOrRkjjQPZFPuis4dIYUhu/chs=
golang.org/x/mod v0.10.0 h1:lFO9qtOdlre5W1jxS3r/4szv2/6iXxScdzjoBMXNhYk=
golang.org/x/net v0.0.0-20190404232315-eb5bcb51f2a3/go.mod h1:t9HGtf8HONx5eT2rtn7q6eTqICYqUVnKs3thJo3Qplg=
golang.org/x/net v0.0.0-20190620200207-3b0461eec859/go.mod h1:z5CRVTTTmAJ677TzLLGU+0bjPO0LkuOLi4/5GtJWs/s=
golang.org/x/net v0.0.0-20201021035429-f5854403a974/go.mod h1:sp8m0HH+o8qH0wwXwYZr8TS3Oi6o0r6Gce1SSxlDquU=
golang.org/x/net v0.0.0-20210226172049-e18ecbb05110/go.mod h1:m0MpNAwzfU5UDzcl9v0D8zg8gWTRqZa9RBIspLL5mdg=
golang.org/x/net v0.0.0-20210421230115-4e50805a0758/go.mod h1:72T/g9IO56b78aLF+1Kcs5dz7/ng1VjMUvfKvpfy+jM=
golang.org/x/net v0.0.0-20211112202133-69e39bad7dc2/go.mod h1:9nx3DQGgdP8bBQD5qxJ1jj9UTztislL4KSBs9R2vV5Y=
golang.org/x/net v0.0.0-20220722155237-a158d28d115b/go.mod h1:XRhObCWvk6IyKnWLug+ECip1KBveYUHfp+8e9klMJ9c=
golang.org/x/net v0.0.0-20220906165146-f3363e06e74c/go.mod h1:YDH+HFinaLZZlnHAfSS6ZXJJ9M9t4Dl22yv3iI2vPwk=
golang.org/x/net v0.3.0/go.mod h1:MBQ8lrhLObU/6UmLb4fmbmk5OcyYmqtbGd/9yIeKjEE=
golang.org/x/net v0.9.0 h1:aWJ/m6xSmxWBx+V0XRHTlrYrPG56jKsLdTFmsSsCzOM=
golang.org/x/net v0.9.0/go.mod h1:d48xBJpPfHeWQsugry2m+kC02ZBRGRgulfHnEXEuWns=
golang.org/x/net v0.10.0 h1:X2//UzNDwYmtCLn7To6G58Wr6f5ahEAQgKNzv9Y951M=
golang.org/x/net v0.10.0/go.mod h1:0qNGK6F8kojg2nk9dLZ2mShWaEBan6FAoqfSigmmuDg=
golang.org/x/net v0.8.0 h1:Zrh2ngAOFYneWTAIAPethzeaQLuHwhuBkuV6ZiRnUaQ=
golang.org/x/net v0.8.0/go.mod h1:QVkue5JL9kW//ek3r6jTKnTFis1tRmNAW2P1shuFdJc=
golang.org/x/sync v0.0.0-20190423024810-112230192c58/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
golang.org/x/sync v0.0.0-20201020160332-67f06af15bc9/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
golang.org/x/sync v0.0.0-20220722155255-886fb9371eb4/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
golang.org/x/sync v0.1.0/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
golang.org/x/sys v0.0.0-20190215142949-d0b11bdaac8a/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
golang.org/x/sys v0.0.0-20190412213103-97732733099d/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/sys v0.0.0-20190916202348-b4ddaad3f8a3/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/sys v0.0.0-20191204072324-ce4227a45e2e/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/sys v0.0.0-20200930185726-fdedc70b468f/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/sys v0.0.0-20201119102817-f84b799fce68/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/sys v0.0.0-20210420072515-93ed5bcd2bfe/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/sys v0.0.0-20210423082822-04245dca01da/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/sys v0.0.0-20210615035016-665e8c7367d1/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.0.0-20210630005230-0f9fa26af87c/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.0.0-20210927094055-39ccf1dd6fa6/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.0.0-20220520151302-bc2c85ada10a/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.0.0-20220722155257-8c9f86f7a55f/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.0.0-20220728004956-3c1f35247d10/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.0.0-20220811171246-fbc7d0a398ab/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.3.0/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.6.0 h1:MVltZSvRTcU2ljQOhs94SXPftV6DCNnZViHeQps87pQ=
golang.org/x/sys v0.6.0/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.8.0 h1:EBmGv8NaZBZTWvrbjNoL6HVt+IVy3QDQpJs7VRIw3tU=
golang.org/x/sys v0.8.0/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.7.0 h1:3jlCCIQZPdOYu1h8BkNvLz8Kgwtae2cagcG/VamtZRU=
golang.org/x/sys v0.7.0/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/term v0.0.0-20201126162022-7de9c90e9dd1/go.mod h1:bj7SfCRtBDWHUb9snDiAeCFNEtKQo2Wmx5Cou7ajbmo=
golang.org/x/term v0.0.0-20210927222741-03fcf44c2211/go.mod h1:jbD1KX2456YbFQfuXm/mYQcufACuNUgVhRMnK/tPxf8=
golang.org/x/term v0.3.0/go.mod h1:q750SLmJuPmVoN1blW3UFBPREJfb1KmY3vwxfr+nFDA=
@@ -214,29 +172,26 @@ golang.org/x/text v0.3.3/go.mod h1:5Zoc/QRtKVWzQhOtBMvqHzDpF6irO9z98xDceosuGiQ=
golang.org/x/text v0.3.6/go.mod h1:5Zoc/QRtKVWzQhOtBMvqHzDpF6irO9z98xDceosuGiQ=
golang.org/x/text v0.3.7/go.mod h1:u+2+/6zg+i71rQMx5EYifcz6MCKuco9NR6JIITiCfzQ=
golang.org/x/text v0.5.0/go.mod h1:mrYo+phRRbMaCq/xk9113O4dZlRixOauAjOtrjsXDZ8=
golang.org/x/text v0.9.0 h1:2sjJmO8cDvYveuX97RDLsxlyUxLl+GHoLxBiRdHllBE=
golang.org/x/text v0.9.0/go.mod h1:e1OnstbJyHTd6l/uOt8jFFHp6TRDWZR/bV3emEE/zU8=
golang.org/x/text v0.8.0 h1:57P1ETyNKtuIjB4SRd15iJxuhj8Gc416Y78H3qgMh68=
golang.org/x/text v0.8.0/go.mod h1:e1OnstbJyHTd6l/uOt8jFFHp6TRDWZR/bV3emEE/zU8=
golang.org/x/tools v0.0.0-20180917221912-90fa682c2a6e/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ=
golang.org/x/tools v0.0.0-20191119224855-298f0cb1881e/go.mod h1:b+2E5dAYhXwXZwtnZ6UAqBI28+e2cm9otk0dWdXHAEo=
golang.org/x/tools v0.0.0-20201022035929-9cf592e881e9/go.mod h1:emZCQorbCU4vsT4fOWvOPXz4eW1wZW4PmDk9uLelYpA=
golang.org/x/tools v0.1.12/go.mod h1:hNGJHUnrk76NpqgfD5Aqm5Crs+Hm0VOH/i9J2+nxYbc=
golang.org/x/tools v0.4.0/go.mod h1:UE5sM2OK9E/d67R0ANs2xJizIymRP5gJU295PvKXxjQ=
golang.org/x/tools v0.8.0 h1:vSDcovVPld282ceKgDimkRSC8kpaH1dgyc9UMzlt84Y=
golang.org/x/tools v0.8.0/go.mod h1:JxBZ99ISMI5ViVkT1tr6tdNmXeTrcpVSD3vZ1RsRdN4=
golang.org/x/tools v0.9.1 h1:8WMNJAz3zrtPmnYC7ISf5dEn3MT0gY7jBJfw27yrrLo=
golang.org/x/tools v0.9.1/go.mod h1:owI94Op576fPu3cIGQeHs3joujW/2Oc6MtlxbF5dfNc=
golang.org/x/tools v0.7.0 h1:W4OVu8VVOaIO0yzWMNdepAulS7YfoS3Zabrm8DOXXU4=
golang.org/x/tools v0.7.0/go.mod h1:4pg6aUX35JBAogB10C9AtvVL+qowtN4pT3CGSQex14s=
golang.org/x/xerrors v0.0.0-20190717185122-a985d3407aa7/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
golang.org/x/xerrors v0.0.0-20191011141410-1b5146add898/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
golang.org/x/xerrors v0.0.0-20200804184101-5ec99f83aff1/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
google.golang.org/protobuf v1.28.0 h1:w43yiav+6bVFTBQFZX0r7ipe9JQ1QsbMgHwbBziscLw=
gopkg.in/check.v1 v0.0.0-20161208181325-20d25e280405/go.mod h1:Co6ibVJAznAaIkqp8huTwlJQCZ016jof/cbN4VW5Yz0=
gopkg.in/check.v1 v1.0.0-20180628173108-788fd7840127/go.mod h1:Co6ibVJAznAaIkqp8huTwlJQCZ016jof/cbN4VW5Yz0=
gopkg.in/check.v1 v1.0.0-20200227125254-8fa46927fb4f h1:BLraFXnmrev5lT+xlilqcH8XK9/i0At2xKjWk4p6zsU=
gopkg.in/check.v1 v1.0.0-20200227125254-8fa46927fb4f/go.mod h1:Co6ibVJAznAaIkqp8huTwlJQCZ016jof/cbN4VW5Yz0=
gopkg.in/yaml.v2 v2.2.2/go.mod h1:hI93XBmqTisBFMUTm0b8Fm+jr3Dg1NNxqwp+5A1VGuI=
gopkg.in/check.v1 v1.0.0-20180628173108-788fd7840127 h1:qIbj1fsPNlZgppZ+VLlY7N33q108Sa+fhmuc+sWQYwY=
gopkg.in/yaml.v1 v1.0.0-20140924161607-9f9df34309c0/go.mod h1:WDnlLJ4WF5VGsH/HVa3CI79GS0ol3YnhVnKP89i0kNg=
gopkg.in/yaml.v2 v2.4.0 h1:D8xgwECY7CYvx+Y2n4sBz93Jn9JRvxdiyyo8CTfuKaY=
gopkg.in/yaml.v2 v2.4.0/go.mod h1:RDklbk79AGWmwhnvt/jBztapEOGDOx6ZbXqjP6csGnQ=
gopkg.in/yaml.v3 v3.0.0-20200313102051-9f266ea9e77c/go.mod h1:K4uyk7z7BCEPqu6E+C64Yfv1cQ7kz7rIZviUmN+EgEM=
gopkg.in/yaml.v3 v3.0.0-20200615113413-eeeca48fe776/go.mod h1:K4uyk7z7BCEPqu6E+C64Yfv1cQ7kz7rIZviUmN+EgEM=
gopkg.in/yaml.v3 v3.0.1 h1:fxVm/GzAzEWqLHuvctI91KS9hhNmmWOoWu0XTYJS7CA=
gopkg.in/yaml.v3 v3.0.1/go.mod h1:K4uyk7z7BCEPqu6E+C64Yfv1cQ7kz7rIZviUmN+EgEM=
howett.net/plist v1.0.0 h1:7CrbWYbPPO/PyNy38b2EB/+gYbjCe2DXBxgtOOZbSQM=
howett.net/plist v1.0.0/go.mod h1:lqaXoTrLY4hg8tnEzNru53gicrbv7rrk+2xJA/7hw9g=

28
main.go
View File

@@ -1,12 +1,11 @@
package main
import (
"fmt"
"os"
"path/filepath"
api "github.com/go-skynet/LocalAI/api"
model "github.com/go-skynet/LocalAI/pkg/model"
"github.com/jaypipes/ghw"
"github.com/rs/zerolog"
"github.com/rs/zerolog/log"
"github.com/urfave/cli/v2"
@@ -21,6 +20,12 @@ func main() {
os.Exit(1)
}
threads := 4
cpu, err := ghw.CPU()
if err == nil {
threads = int(cpu.TotalCores)
}
app := &cli.App{
Name: "LocalAI",
Usage: "OpenAI compatible API for running LLaMA/GPT models locally on CPU with consumer grade hardware.",
@@ -37,13 +42,13 @@ func main() {
Name: "threads",
DefaultText: "Number of threads used for parallel computation. Usage of the number of physical cores in the system is suggested.",
EnvVars: []string{"THREADS"},
Value: 4,
Value: threads,
},
&cli.StringFlag{
Name: "models-path",
DefaultText: "Path containing models used for inferencing",
EnvVars: []string{"MODELS_PATH"},
Value: filepath.Join(path, "models"),
Value: path,
},
&cli.StringFlag{
Name: "config-file",
@@ -56,24 +61,12 @@ func main() {
EnvVars: []string{"ADDRESS"},
Value: ":8080",
},
&cli.StringFlag{
Name: "image-dir",
DefaultText: "Image directory",
EnvVars: []string{"IMAGE_DIR"},
Value: "",
},
&cli.IntFlag{
Name: "context-size",
DefaultText: "Default context size of the model",
EnvVars: []string{"CONTEXT_SIZE"},
Value: 512,
},
&cli.IntFlag{
Name: "upload-limit",
DefaultText: "Default upload-limit. MB",
EnvVars: []string{"UPLOAD_LIMIT"},
Value: 15,
},
},
Description: `
LocalAI is a drop-in replacement OpenAI API which runs inference locally.
@@ -92,8 +85,7 @@ It uses llama.cpp, ggml and gpt4all as backend with golang c bindings.
UsageText: `local-ai [options]`,
Copyright: "go-skynet authors",
Action: func(ctx *cli.Context) error {
fmt.Printf("Starting LocalAI using %d threads, with models path: %s\n", ctx.Int("threads"), ctx.String("models-path"))
return api.App(ctx.String("config-file"), model.NewModelLoader(ctx.String("models-path")), ctx.Int("upload-limit"), ctx.Int("threads"), ctx.Int("context-size"), ctx.Bool("f16"), ctx.Bool("debug"), false, ctx.String("image-dir")).Listen(ctx.String("address"))
return api.App(ctx.String("config-file"), model.NewModelLoader(ctx.String("models-path")), ctx.Int("threads"), ctx.Int("context-size"), ctx.Bool("f16"), ctx.Bool("debug"), false).Listen(ctx.String("address"))
},
}

View File

@@ -1,194 +0,0 @@
package model
import (
"fmt"
"path/filepath"
"strings"
rwkv "github.com/donomii/go-rwkv.cpp"
whisper "github.com/ggerganov/whisper.cpp/bindings/go/pkg/whisper"
"github.com/go-skynet/LocalAI/pkg/stablediffusion"
bloomz "github.com/go-skynet/bloomz.cpp"
bert "github.com/go-skynet/go-bert.cpp"
gpt2 "github.com/go-skynet/go-gpt2.cpp"
llama "github.com/go-skynet/go-llama.cpp"
"github.com/hashicorp/go-multierror"
gpt4all "github.com/nomic-ai/gpt4all/gpt4all-bindings/golang"
"github.com/rs/zerolog/log"
)
const tokenizerSuffix = ".tokenizer.json"
const (
LlamaBackend = "llama"
BloomzBackend = "bloomz"
StarcoderBackend = "starcoder"
StableLMBackend = "stablelm"
DollyBackend = "dolly"
RedPajamaBackend = "redpajama"
GPTNeoXBackend = "gptneox"
ReplitBackend = "replit"
Gpt2Backend = "gpt2"
Gpt4AllLlamaBackend = "gpt4all-llama"
Gpt4AllMptBackend = "gpt4all-mpt"
Gpt4AllJBackend = "gpt4all-j"
BertEmbeddingsBackend = "bert-embeddings"
RwkvBackend = "rwkv"
WhisperBackend = "whisper"
StableDiffusionBackend = "stablediffusion"
)
var backends []string = []string{
LlamaBackend,
Gpt4AllLlamaBackend,
Gpt4AllMptBackend,
Gpt4AllJBackend,
Gpt2Backend,
WhisperBackend,
RwkvBackend,
BloomzBackend,
StableLMBackend,
DollyBackend,
RedPajamaBackend,
ReplitBackend,
GPTNeoXBackend,
BertEmbeddingsBackend,
StarcoderBackend,
}
var starCoder = func(modelFile string) (interface{}, error) {
return gpt2.NewStarcoder(modelFile)
}
var redPajama = func(modelFile string) (interface{}, error) {
return gpt2.NewRedPajama(modelFile)
}
var dolly = func(modelFile string) (interface{}, error) {
return gpt2.NewDolly(modelFile)
}
var gptNeoX = func(modelFile string) (interface{}, error) {
return gpt2.NewGPTNeoX(modelFile)
}
var replit = func(modelFile string) (interface{}, error) {
return gpt2.NewReplit(modelFile)
}
var stableLM = func(modelFile string) (interface{}, error) {
return gpt2.NewStableLM(modelFile)
}
var bertEmbeddings = func(modelFile string) (interface{}, error) {
return bert.New(modelFile)
}
var bloomzLM = func(modelFile string) (interface{}, error) {
return bloomz.New(modelFile)
}
var gpt2LM = func(modelFile string) (interface{}, error) {
return gpt2.New(modelFile)
}
var stableDiffusion = func(assetDir string) (interface{}, error) {
return stablediffusion.New(assetDir)
}
var whisperModel = func(modelFile string) (interface{}, error) {
return whisper.New(modelFile)
}
func llamaLM(opts ...llama.ModelOption) func(string) (interface{}, error) {
return func(s string) (interface{}, error) {
return llama.New(s, opts...)
}
}
func gpt4allLM(opts ...gpt4all.ModelOption) func(string) (interface{}, error) {
return func(s string) (interface{}, error) {
return gpt4all.New(s, opts...)
}
}
func rwkvLM(tokenFile string, threads uint32) func(string) (interface{}, error) {
return func(s string) (interface{}, error) {
log.Debug().Msgf("Loading RWKV", s, tokenFile)
model := rwkv.LoadFiles(s, tokenFile, threads)
if model == nil {
return nil, fmt.Errorf("could not load model")
}
return model, nil
}
}
func (ml *ModelLoader) BackendLoader(backendString string, modelFile string, llamaOpts []llama.ModelOption, threads uint32) (model interface{}, err error) {
log.Debug().Msgf("Loading model %s from %s", backendString, modelFile)
switch strings.ToLower(backendString) {
case LlamaBackend:
return ml.LoadModel(modelFile, llamaLM(llamaOpts...))
case BloomzBackend:
return ml.LoadModel(modelFile, bloomzLM)
case StableLMBackend:
return ml.LoadModel(modelFile, stableLM)
case DollyBackend:
return ml.LoadModel(modelFile, dolly)
case RedPajamaBackend:
return ml.LoadModel(modelFile, redPajama)
case Gpt2Backend:
return ml.LoadModel(modelFile, gpt2LM)
case GPTNeoXBackend:
return ml.LoadModel(modelFile, gptNeoX)
case ReplitBackend:
return ml.LoadModel(modelFile, replit)
case StableDiffusionBackend:
return ml.LoadModel(modelFile, stableDiffusion)
case StarcoderBackend:
return ml.LoadModel(modelFile, starCoder)
case Gpt4AllLlamaBackend:
return ml.LoadModel(modelFile, gpt4allLM(gpt4all.SetThreads(int(threads)), gpt4all.SetModelType(gpt4all.LLaMAType)))
case Gpt4AllMptBackend:
return ml.LoadModel(modelFile, gpt4allLM(gpt4all.SetThreads(int(threads)), gpt4all.SetModelType(gpt4all.MPTType)))
case Gpt4AllJBackend:
return ml.LoadModel(modelFile, gpt4allLM(gpt4all.SetThreads(int(threads)), gpt4all.SetModelType(gpt4all.GPTJType)))
case BertEmbeddingsBackend:
return ml.LoadModel(modelFile, bertEmbeddings)
case RwkvBackend:
return ml.LoadModel(modelFile, rwkvLM(filepath.Join(ml.ModelPath, modelFile+tokenizerSuffix), threads))
case WhisperBackend:
return ml.LoadModel(modelFile, whisperModel)
default:
return nil, fmt.Errorf("backend unsupported: %s", backendString)
}
}
func (ml *ModelLoader) GreedyLoader(modelFile string, llamaOpts []llama.ModelOption, threads uint32) (interface{}, error) {
log.Debug().Msgf("Loading models greedly")
ml.mu.Lock()
m, exists := ml.models[modelFile]
if exists {
ml.mu.Unlock()
return m, nil
}
ml.mu.Unlock()
var err error
for _, b := range backends {
if b == BloomzBackend || b == WhisperBackend || b == RwkvBackend { // do not autoload bloomz/whisper/rwkv
continue
}
log.Debug().Msgf("[%s] Attempting to load", b)
model, modelerr := ml.BackendLoader(b, modelFile, llamaOpts, threads)
if modelerr == nil && model != nil {
log.Debug().Msgf("[%s] Loads OK", b)
return model, nil
} else if modelerr != nil {
err = multierror.Append(err, modelerr)
log.Debug().Msgf("[%s] Fails: %s", b, modelerr.Error())
}
}
return nil, fmt.Errorf("could not load model - all backends returned error: %s", err.Error())
}

View File

@@ -11,21 +11,32 @@ import (
"text/template"
"github.com/rs/zerolog/log"
gpt2 "github.com/go-skynet/go-gpt2.cpp"
gptj "github.com/go-skynet/go-gpt4all-j.cpp"
llama "github.com/go-skynet/go-llama.cpp"
)
type ModelLoader struct {
ModelPath string
mu sync.Mutex
// TODO: this needs generics
models map[string]interface{}
models map[string]*llama.LLama
gptmodels map[string]*gptj.GPTJ
gpt2models map[string]*gpt2.GPT2
gptstablelmmodels map[string]*gpt2.StableLM
promptsTemplates map[string]*template.Template
}
func NewModelLoader(modelPath string) *ModelLoader {
return &ModelLoader{
ModelPath: modelPath,
models: make(map[string]interface{}),
promptsTemplates: make(map[string]*template.Template),
ModelPath: modelPath,
gpt2models: make(map[string]*gpt2.GPT2),
gptmodels: make(map[string]*gptj.GPTJ),
gptstablelmmodels: make(map[string]*gpt2.StableLM),
models: make(map[string]*llama.LLama),
promptsTemplates: make(map[string]*template.Template),
}
}
@@ -68,9 +79,10 @@ func (ml *ModelLoader) TemplatePrefix(modelName string, in interface{}) (string,
if exists {
m = t
}
}
if m == nil {
return "", fmt.Errorf("failed loading any template")
return "", nil
}
var buf bytes.Buffer
@@ -110,12 +122,16 @@ func (ml *ModelLoader) loadTemplateIfExists(modelName, modelFile string) error {
return nil
}
func (ml *ModelLoader) LoadModel(modelName string, loader func(string) (interface{}, error)) (interface{}, error) {
func (ml *ModelLoader) LoadStableLMModel(modelName string) (*gpt2.StableLM, error) {
ml.mu.Lock()
defer ml.mu.Unlock()
// Check if we already have a loaded model
if m, ok := ml.models[modelName]; ok {
if !ml.ExistsInModelPath(modelName) {
return nil, fmt.Errorf("model does not exist")
}
if m, ok := ml.gptstablelmmodels[modelName]; ok {
log.Debug().Msgf("Model already loaded in memory: %s", modelName)
return m, nil
}
@@ -124,7 +140,138 @@ func (ml *ModelLoader) LoadModel(modelName string, loader func(string) (interfac
modelFile := filepath.Join(ml.ModelPath, modelName)
log.Debug().Msgf("Loading model in memory from file: %s", modelFile)
model, err := loader(modelFile)
model, err := gpt2.NewStableLM(modelFile)
if err != nil {
return nil, err
}
// If there is a prompt template, load it
if err := ml.loadTemplateIfExists(modelName, modelFile); err != nil {
return nil, err
}
ml.gptstablelmmodels[modelName] = model
return model, err
}
func (ml *ModelLoader) LoadGPT2Model(modelName string) (*gpt2.GPT2, error) {
ml.mu.Lock()
defer ml.mu.Unlock()
// Check if we already have a loaded model
if !ml.ExistsInModelPath(modelName) {
return nil, fmt.Errorf("model does not exist")
}
if m, ok := ml.gpt2models[modelName]; ok {
log.Debug().Msgf("Model already loaded in memory: %s", modelName)
return m, nil
}
// TODO: This needs refactoring, it's really bad to have it in here
// Check if we have a GPTStable model loaded instead - if we do we return an error so the API tries with StableLM
if _, ok := ml.gptstablelmmodels[modelName]; ok {
log.Debug().Msgf("Model is GPTStableLM: %s", modelName)
return nil, fmt.Errorf("this model is a GPTStableLM one")
}
// Load the model and keep it in memory for later use
modelFile := filepath.Join(ml.ModelPath, modelName)
log.Debug().Msgf("Loading model in memory from file: %s", modelFile)
model, err := gpt2.New(modelFile)
if err != nil {
return nil, err
}
// If there is a prompt template, load it
if err := ml.loadTemplateIfExists(modelName, modelFile); err != nil {
return nil, err
}
ml.gpt2models[modelName] = model
return model, err
}
func (ml *ModelLoader) LoadGPTJModel(modelName string) (*gptj.GPTJ, error) {
ml.mu.Lock()
defer ml.mu.Unlock()
// Check if we already have a loaded model
if !ml.ExistsInModelPath(modelName) {
return nil, fmt.Errorf("model does not exist")
}
if m, ok := ml.gptmodels[modelName]; ok {
log.Debug().Msgf("Model already loaded in memory: %s", modelName)
return m, nil
}
// TODO: This needs refactoring, it's really bad to have it in here
// Check if we have a GPT2 model loaded instead - if we do we return an error so the API tries with GPT2
if _, ok := ml.gpt2models[modelName]; ok {
log.Debug().Msgf("Model is GPT2: %s", modelName)
return nil, fmt.Errorf("this model is a GPT2 one")
}
if _, ok := ml.gptstablelmmodels[modelName]; ok {
log.Debug().Msgf("Model is GPTStableLM: %s", modelName)
return nil, fmt.Errorf("this model is a GPTStableLM one")
}
// Load the model and keep it in memory for later use
modelFile := filepath.Join(ml.ModelPath, modelName)
log.Debug().Msgf("Loading model in memory from file: %s", modelFile)
model, err := gptj.New(modelFile)
if err != nil {
return nil, err
}
// If there is a prompt template, load it
if err := ml.loadTemplateIfExists(modelName, modelFile); err != nil {
return nil, err
}
ml.gptmodels[modelName] = model
return model, err
}
func (ml *ModelLoader) LoadLLaMAModel(modelName string, opts ...llama.ModelOption) (*llama.LLama, error) {
ml.mu.Lock()
defer ml.mu.Unlock()
log.Debug().Msgf("Loading model name: %s", modelName)
// Check if we already have a loaded model
if !ml.ExistsInModelPath(modelName) {
return nil, fmt.Errorf("model does not exist")
}
if m, ok := ml.models[modelName]; ok {
log.Debug().Msgf("Model already loaded in memory: %s", modelName)
return m, nil
}
// TODO: This needs refactoring, it's really bad to have it in here
// Check if we have a GPTJ model loaded instead - if we do we return an error so the API tries with GPTJ
if _, ok := ml.gptmodels[modelName]; ok {
log.Debug().Msgf("Model is GPTJ: %s", modelName)
return nil, fmt.Errorf("this model is a GPTJ one")
}
if _, ok := ml.gpt2models[modelName]; ok {
log.Debug().Msgf("Model is GPT2: %s", modelName)
return nil, fmt.Errorf("this model is a GPT2 one")
}
if _, ok := ml.gptstablelmmodels[modelName]; ok {
log.Debug().Msgf("Model is GPTStableLM: %s", modelName)
return nil, fmt.Errorf("this model is a GPTStableLM one")
}
// Load the model and keep it in memory for later use
modelFile := filepath.Join(ml.ModelPath, modelName)
log.Debug().Msgf("Loading model in memory from file: %s", modelFile)
model, err := llama.New(modelFile, opts...)
if err != nil {
return nil, err
}
@@ -135,5 +282,5 @@ func (ml *ModelLoader) LoadModel(modelName string, loader func(string) (interfac
}
ml.models[modelName] = model
return model, nil
return model, err
}

View File

@@ -1,23 +0,0 @@
//go:build stablediffusion
// +build stablediffusion
package stablediffusion
import (
stableDiffusion "github.com/mudler/go-stable-diffusion"
)
func GenerateImage(height, width, mode, step, seed int, positive_prompt, negative_prompt, dst, asset_dir string) error {
return stableDiffusion.GenerateImage(
height,
width,
mode,
step,
seed,
positive_prompt,
negative_prompt,
dst,
"",
asset_dir,
)
}

View File

@@ -1,10 +0,0 @@
//go:build !stablediffusion
// +build !stablediffusion
package stablediffusion
import "fmt"
func GenerateImage(height, width, mode, step, seed int, positive_prompt, negative_prompt, dst, asset_dir string) error {
return fmt.Errorf("This version of LocalAI was built without the stablediffusion tag")
}

View File

@@ -1,20 +0,0 @@
package stablediffusion
import "os"
type StableDiffusion struct {
assetDir string
}
func New(assetDir string) (*StableDiffusion, error) {
if _, err := os.Stat(assetDir); err != nil {
return nil, err
}
return &StableDiffusion{
assetDir: assetDir,
}, nil
}
func (s *StableDiffusion) GenerateImage(height, width, mode, step, seed int, positive_prompt, negative_prompt, dst string) error {
return GenerateImage(height, width, mode, step, seed, positive_prompt, negative_prompt, dst, s.assetDir)
}

View File

@@ -1,90 +0,0 @@
package whisper
import (
"fmt"
"os"
"os/exec"
"path/filepath"
"github.com/ggerganov/whisper.cpp/bindings/go/pkg/whisper"
wav "github.com/go-audio/wav"
)
func sh(c string) (string, error) {
cmd := exec.Command("/bin/sh", "-c", c)
cmd.Env = os.Environ()
o, err := cmd.CombinedOutput()
return string(o), err
}
// AudioToWav converts audio to wav for transcribe. It bashes out to ffmpeg
// TODO: use https://github.com/mccoyst/ogg?
func audioToWav(src, dst string) error {
out, err := sh(fmt.Sprintf("ffmpeg -i %s -format s16le -ar 16000 -ac 1 -acodec pcm_s16le %s", src, dst))
if err != nil {
return fmt.Errorf("error: %w out: %s", err, out)
}
return nil
}
func Transcript(model whisper.Model, audiopath, language string, threads uint) (string, error) {
dir, err := os.MkdirTemp("", "whisper")
if err != nil {
return "", err
}
defer os.RemoveAll(dir)
convertedPath := filepath.Join(dir, "converted.wav")
if err := audioToWav(audiopath, convertedPath); err != nil {
return "", err
}
// Open samples
fh, err := os.Open(convertedPath)
if err != nil {
return "", err
}
defer fh.Close()
// Read samples
d := wav.NewDecoder(fh)
buf, err := d.FullPCMBuffer()
if err != nil {
return "", err
}
data := buf.AsFloat32Buffer().Data
// Process samples
context, err := model.NewContext()
if err != nil {
return "", err
}
context.SetThreads(threads)
if language != "" {
context.SetLanguage(language)
} else {
context.SetLanguage("auto")
}
if err := context.Process(data, nil); err != nil {
return "", err
}
text := ""
for {
segment, err := context.NextSegment()
if err != nil {
break
}
text += segment.Text
}
return text, nil
}

View File

@@ -1,3 +0,0 @@
{{.Input}}
### Response:

View File

@@ -1,4 +1,17 @@
{
"$schema": "https://docs.renovatebot.com/renovate-schema.json",
"extends": ["config:base"]
"extends": [
"config:base"
],
"regexManagers": [
{
"fileMatch": [
"^Makefile$"
],
"matchStrings": [
"#\\s*renovate:\\s*datasource=(?<datasource>.*?) depName=(?<depName>.*?)( datasourceTemplate=(?<datasourceTemplate>.*?))?( packageNameTemplate=(?<packageNameTemplate>.*?))?( depNameTemplate=(?<depNameTemplate>.*?))?( valueTemplate=(?<currentValueTemplate>.*?))?( versioning=(?<versioning>.*?))?\\s+.+_VERSION=(?<currentValue>.*?)\\s"
],
"versioningTemplate": "{{#if versioning}}{{versioning}}{{/if}}"
}
]
}

View File

@@ -1,10 +1,8 @@
- name: list1
parameters:
model: testmodel
top_p: 80
top_k: 0.9
temperature: 0.1
context_size: 10
context_size: 512
threads: 10
stopwords:
- "HUMAN:"
- "### Response:"
@@ -16,11 +14,9 @@
chat: ggml-gpt4all-j
- name: list2
parameters:
top_p: 80
top_k: 0.9
temperature: 0.1
model: testmodel
context_size: 10
context_size: 512
threads: 10
stopwords:
- "HUMAN:"
- "### Response:"

View File

@@ -1,6 +0,0 @@
name: text-embedding-ada-002
parameters:
model: bert
threads: 14
backend: bert-embeddings
embeddings: true

View File

@@ -1,10 +1,8 @@
name: gpt4all
parameters:
model: testmodel
top_p: 80
top_k: 0.9
temperature: 0.1
context_size: 10
context_size: 512
threads: 10
stopwords:
- "HUMAN:"
- "### Response:"

View File

@@ -1,10 +1,8 @@
name: gpt4all-2
parameters:
model: testmodel
top_p: 80
top_k: 0.9
temperature: 0.1
context_size: 10
context_size: 1024
threads: 5
stopwords:
- "HUMAN:"
- "### Response:"

Some files were not shown because too many files have changed in this diff Show More