Compare commits

...

37 Commits

Author SHA1 Message Date
Ettore Di Giacinto
a6c621ef7f feat: pre-configure LocalAI galleries (#886)
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2023-08-12 11:25:17 +02:00
renovate[bot]
328289099a fix(deps): update github.com/nomic-ai/gpt4all/gpt4all-bindings/golang digest to 4d855af (#875)
Co-authored-by: renovate[bot] <29139614+renovate[bot]@users.noreply.github.com>
2023-08-12 08:58:55 +02:00
renovate[bot]
22ffd5f490 fix(deps): update github.com/tmc/langchaingo digest to fd8b7f0 (#882)
Co-authored-by: renovate[bot] <29139614+renovate[bot]@users.noreply.github.com>
2023-08-12 08:56:15 +02:00
Ettore Di Giacinto
81708bb1e6 fix: workaround exllama import error (#885)
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2023-08-12 08:56:01 +02:00
Ettore Di Giacinto
c81e9d8d1f fix: add exllama to protogen 2023-08-11 01:02:31 +02:00
Ettore Di Giacinto
ff3ab5fcca feat: Add exllama (#881)
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2023-08-11 00:49:40 +02:00
Michael Nesbitt
1d1cae8e4d feat: add API_KEY list support (#877)
Co-authored-by: Harold Sun <sunhua@amazon.com>
2023-08-10 00:06:21 +02:00
Ettore Di Giacinto
8c781a6a44 feat: Add Diffusers (#874)
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2023-08-09 08:38:51 +02:00
Ettore Di Giacinto
93a4bec06b fix: upgrade pip (#872)
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2023-08-08 23:20:03 +02:00
renovate[bot]
c93f57efd6 fix(deps): update github.com/nomic-ai/gpt4all/gpt4all-bindings/golang digest to 0f2bb50 (#869)
Co-authored-by: renovate[bot] <29139614+renovate[bot]@users.noreply.github.com>
2023-08-08 21:57:16 +02:00
ci-robbot [bot]
0e4f93c5cf ⬆️ Update nomic-ai/gpt4all (#870)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2023-08-08 21:57:01 +02:00
Ettore Di Giacinto
5b3fedebfe feat: add bark and AutoGPTQ (#871) 2023-08-08 20:41:49 +02:00
Ettore Di Giacinto
219751bb21 fix: cut prompt from AutoGPTQ answers
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2023-08-08 01:27:38 +02:00
Ettore Di Giacinto
bb7772a364 fix: byte utf-8 encode results from autogptq
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2023-08-08 01:20:07 +02:00
Ettore Di Giacinto
3c8fc37c56 feat: Add UseFastTokenizer
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2023-08-08 01:10:05 +02:00
Ettore Di Giacinto
39805b09e5 fix: pass by env in managed services
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2023-08-08 00:58:38 +02:00
Ettore Di Giacinto
63b01199fe fix: match lowercase of the input, not of the model 2023-08-08 00:46:22 +02:00
Ettore Di Giacinto
b09bae3443 fix: autogptq requirements
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2023-08-08 00:22:15 +02:00
Ettore Di Giacinto
de6fb98bed feat: register autogptq and bark in the container image 2023-08-07 22:53:28 +02:00
Ettore Di Giacinto
433605e282 feat: add initial Bark backend implementation
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2023-08-07 22:53:28 +02:00
Ettore Di Giacinto
a843e64fc2 feat: add initial AutoGPTQ backend implementation 2023-08-07 22:53:28 +02:00
scott4290
71611d2dec docs: base-Update comments in .env for cublas, openblas, clblas (#867) 2023-08-07 08:22:42 +00:00
Ettore Di Giacinto
abf48e8a5d readme: link to hot topics in the website 2023-08-07 00:31:46 +02:00
Ettore Di Giacinto
ac5ea0cd4d readme: link usage to docs 2023-08-07 00:04:28 +02:00
Ettore Di Giacinto
a46fcacedd readme: simplify, remove dups with website 2023-08-07 00:01:01 +02:00
Ettore Di Giacinto
df947fc933 examples: Update README 2023-08-06 23:07:06 +02:00
Ettore Di Giacinto
91d49cfe9f Update README.md 2023-08-06 11:57:28 +02:00
Ettore Di Giacinto
19d15f83db Update README.md 2023-08-06 00:04:06 +02:00
Ettore Di Giacinto
cde61cc518 Update README.md 2023-08-05 23:14:09 +02:00
Ettore Di Giacinto
acd829a7a0 fix: do not break on newlines on function returns (#864)
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2023-08-04 21:46:36 +02:00
Ettore Di Giacinto
4aa5dac768 feat: update integer, number and string rules - allow primitives as root types (#862)
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2023-08-03 23:32:30 +02:00
renovate[bot]
08b59b5cc5 fix(deps): update github.com/go-skynet/go-llama.cpp digest to 50cee77 (#861)
Co-authored-by: renovate[bot] <29139614+renovate[bot]@users.noreply.github.com>
2023-08-03 19:08:04 +02:00
ci-robbot [bot]
6b900e28cd ⬆️ Update nomic-ai/gpt4all (#859)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2023-08-03 19:07:53 +02:00
Ettore Di Giacinto
5ca21ee398 feat: add ngqa and RMSNormEps parameters (#860)
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2023-08-03 00:51:08 +02:00
renovate[bot]
953e30814a fix(deps): update github.com/nomic-ai/gpt4all/gpt4all-bindings/golang digest to c449b71 (#858)
Co-authored-by: renovate[bot] <29139614+renovate[bot]@users.noreply.github.com>
2023-08-03 00:20:45 +02:00
renovate[bot]
a65344cf25 fix(deps): update github.com/tmc/langchaingo digest to 271e9bd (#857)
Co-authored-by: renovate[bot] <29139614+renovate[bot]@users.noreply.github.com>
2023-08-03 00:20:22 +02:00
Dave
7fb8b4191f feat: "simple" chat/edit/completion template system prompt from config (#856) 2023-08-03 00:19:55 +02:00
66 changed files with 2492 additions and 442 deletions

3
.env
View File

@@ -24,6 +24,9 @@ MODELS_PATH=/models
# DEBUG=true
## Specify a build type. Available: cublas, openblas, clblas.
## cuBLAS: This is a GPU-accelerated version of the complete standard BLAS (Basic Linear Algebra Subprograms) library. It's provided by Nvidia and is part of their CUDA toolkit.
## OpenBLAS: This is an open-source implementation of the BLAS library that aims to provide highly optimized code for various platforms. It includes support for multi-threading and can be compiled to use hardware-specific features for additional performance. OpenBLAS can run on many kinds of hardware, including CPUs from Intel, AMD, and ARM.
## clBLAS: This is an open-source implementation of the BLAS library that uses OpenCL, a framework for writing programs that execute across heterogeneous platforms consisting of CPUs, GPUs, and other processors. clBLAS is designed to take advantage of the parallel computing power of GPUs but can also run on any hardware that supports OpenCL. This includes hardware from different vendors like Nvidia, AMD, and Intel.
# BUILD_TYPE=openblas
## Uncomment and set to true to enable rebuilding from source

View File

@@ -11,15 +11,16 @@ ARG TARGETARCH
ARG TARGETVARIANT
ENV BUILD_TYPE=${BUILD_TYPE}
ENV EXTERNAL_GRPC_BACKENDS="huggingface-embeddings:/build/extra/grpc/huggingface/huggingface.py"
ENV EXTERNAL_GRPC_BACKENDS="huggingface-embeddings:/build/extra/grpc/huggingface/huggingface.py,autogptq:/build/extra/grpc/autogptq/autogptq.py,bark:/build/extra/grpc/bark/ttsbark.py,diffusers:/build/extra/grpc/diffusers/backend_diffusers.py,exllama:/build/extra/grpc/exllama/exllama.py"
ENV GALLERIES='[{"name":"model-gallery", "url":"github:go-skynet/model-gallery/index.yaml"}, {"url": "github:go-skynet/model-gallery/huggingface.yaml","name":"huggingface"}]'
ARG GO_TAGS="stablediffusion tts"
RUN apt-get update && \
apt-get install -y ca-certificates cmake curl patch pip
# Extras requirements
COPY extra/requirements.txt /build/extra/requirements.txt
RUN pip install -r /build/extra/requirements.txt && rm -rf /build/extra/requirements.txt
# Use the variables in subsequent instructions
RUN echo "Target Architecture: $TARGETARCH"
RUN echo "Target Variant: $TARGETVARIANT"
# CuBLAS requirements
RUN if [ "${BUILD_TYPE}" = "cublas" ]; then \
@@ -29,10 +30,23 @@ RUN if [ "${BUILD_TYPE}" = "cublas" ]; then \
dpkg -i cuda-keyring_1.0-1_all.deb && \
rm -f cuda-keyring_1.0-1_all.deb && \
apt-get update && \
apt-get install -y cuda-nvcc-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} libcublas-dev-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} \
apt-get install -y cuda-nvcc-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} libcublas-dev-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} libcusparse-dev-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} libcusolver-dev-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} \
; fi
ENV PATH /usr/local/cuda/bin:${PATH}
# Extras requirements
COPY extra/requirements.txt /build/extra/requirements.txt
ENV PATH="/root/.cargo/bin:${PATH}"
RUN pip install --upgrade pip
RUN curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh -s -- -y
RUN if [ "${TARGETARCH}" = "amd64" ]; then \
pip install git+https://github.com/suno-ai/bark.git diffusers invisible_watermark transformers accelerate safetensors;\
fi
RUN if [ "${BUILD_TYPE}" = "cublas" ] && [ "${TARGETARCH}" = "amd64" ]; then \
pip install torch && pip install auto-gptq https://github.com/jllllll/exllama/releases/download/0.0.10/exllama-0.0.10+cu${CUDA_MAJOR_VERSION}${CUDA_MINOR_VERSION}-cp39-cp39-linux_x86_64.whl;\
fi
RUN pip install -r /build/extra/requirements.txt && rm -rf /build/extra/requirements.txt
WORKDIR /build
# OpenBLAS requirements
@@ -42,9 +56,6 @@ RUN apt-get install -y libopenblas-dev
RUN apt-get install -y libopencv-dev && \
ln -s /usr/include/opencv4/opencv2 /usr/include/opencv2
# Use the variables in subsequent instructions
RUN echo "Target Architecture: $TARGETARCH"
RUN echo "Target Variant: $TARGETVARIANT"
# piper requirements
# Use pre-compiled Piper phonemization library (includes onnxruntime)
@@ -98,7 +109,10 @@ RUN ESPEAK_DATA=/build/lib/Linux-$(uname -m)/piper_phonemize/lib/espeak-ng-data
FROM requirements
ARG FFMPEG
ARG BUILD_TYPE
ARG TARGETARCH
ENV BUILD_TYPE=${BUILD_TYPE}
ENV REBUILD=false
ENV HEALTHCHECK_ENDPOINT=http://localhost:8080/readyz
@@ -116,7 +130,10 @@ WORKDIR /build
COPY . .
RUN make prepare-sources
COPY --from=builder /build/local-ai ./
# To resolve exllama import error
RUN if [ "${BUILD_TYPE}" = "cublas" ] && [ "${TARGETARCH:-$(go env GOARCH)}" = "amd64" ]; then \
cp -rfv /usr/local/lib/python3.9/dist-packages/exllama extra/grpc/exllama/;\
fi
# Define the health check command
HEALTHCHECK --interval=1m --timeout=10m --retries=10 \
CMD curl -f $HEALTHCHECK_ENDPOINT || exit 1

View File

@@ -4,11 +4,11 @@ GOVET=$(GOCMD) vet
BINARY_NAME=local-ai
# llama.cpp versions
GOLLAMA_VERSION?=6ba16de8e965e5aa0f32d25ef9d6149bb6586565
GOLLAMA_VERSION?=50cee7712066d9e38306eccadcfbb44ea87df4b7
# gpt4all version
GPT4ALL_REPO?=https://github.com/nomic-ai/gpt4all
GPT4ALL_VERSION?=cbdcde8b75868e145b973725c7c18970091a7f2f
GPT4ALL_VERSION?=0f2bb506a8ee752afc06cbb832773bf85b97eef3
# go-ggml-transformers version
GOGGMLTRANSFORMERS_VERSION?=ffb09d7dd71e2cbc6c5d7d05357d230eea6f369a
@@ -335,7 +335,11 @@ protogen-go:
pkg/grpc/proto/backend.proto
protogen-python:
python -m grpc_tools.protoc -Ipkg/grpc/proto/ --python_out=extra/grpc/huggingface/ --grpc_python_out=extra/grpc/huggingface/ pkg/grpc/proto/backend.proto
python3 -m grpc_tools.protoc -Ipkg/grpc/proto/ --python_out=extra/grpc/huggingface/ --grpc_python_out=extra/grpc/huggingface/ pkg/grpc/proto/backend.proto
python3 -m grpc_tools.protoc -Ipkg/grpc/proto/ --python_out=extra/grpc/autogptq/ --grpc_python_out=extra/grpc/autogptq/ pkg/grpc/proto/backend.proto
python3 -m grpc_tools.protoc -Ipkg/grpc/proto/ --python_out=extra/grpc/exllama/ --grpc_python_out=extra/grpc/exllama/ pkg/grpc/proto/backend.proto
python3 -m grpc_tools.protoc -Ipkg/grpc/proto/ --python_out=extra/grpc/bark/ --grpc_python_out=extra/grpc/bark/ pkg/grpc/proto/backend.proto
python3 -m grpc_tools.protoc -Ipkg/grpc/proto/ --python_out=extra/grpc/diffusers/ --grpc_python_out=extra/grpc/diffusers/ pkg/grpc/proto/backend.proto
## GRPC

270
README.md
View File

@@ -5,211 +5,116 @@
<br>
</h1>
[![tests](https://github.com/go-skynet/LocalAI/actions/workflows/test.yml/badge.svg)](https://github.com/go-skynet/LocalAI/actions/workflows/test.yml) [![build container images](https://github.com/go-skynet/LocalAI/actions/workflows/image.yml/badge.svg)](https://github.com/go-skynet/LocalAI/actions/workflows/image.yml)
<p align="center">
<a href="https://github.com/go-skynet/LocalAI/fork" target="blank">
<img src="https://img.shields.io/github/forks/go-skynet/LocalAI?style=for-the-badge" alt="LocalAI forks"/>
</a>
<a href="https://github.com/go-skynet/LocalAI/stargazers" target="blank">
<img src="https://img.shields.io/github/stars/go-skynet/LocalAI?style=for-the-badge" alt="LocalAI stars"/>
</a>
<a href="https://github.com/go-skynet/LocalAI/pulls" target="blank">
<img src="https://img.shields.io/github/issues-pr/go-skynet/LocalAI?style=for-the-badge" alt="LocalAI pull-requests"/>
</a>
<a href='https://github.com/go-skynet/LocalAI/releases'>
<img src='https://img.shields.io/github/release/go-skynet/LocalAI?&label=Latest&style=for-the-badge'>
</a>
</p>
[![Artifact Hub](https://img.shields.io/endpoint?url=https://artifacthub.io/badge/repository/localai)](https://artifacthub.io/packages/search?repo=localai)
> :bulb: Get help - [❓FAQ](https://localai.io/faq/) [💭Discussions](https://github.com/go-skynet/LocalAI/discussions) [:speech_balloon: Discord](https://discord.gg/uJAeKSAGDy) [:book: Documentation website](https://localai.io/)
>
> [💻 Quickstart](https://localai.io/basics/getting_started/) [📣 News](https://localai.io/basics/news/) [ 🛫 Examples ](https://github.com/go-skynet/LocalAI/tree/master/examples/) [ 🖼️ Models ](https://localai.io/models/)
[![](https://dcbadge.vercel.app/api/server/uJAeKSAGDy?style=flat-square&theme=default-inverted)](https://discord.gg/uJAeKSAGDy)
[Documentation website](https://localai.io/)
[![tests](https://github.com/go-skynet/LocalAI/actions/workflows/test.yml/badge.svg)](https://github.com/go-skynet/LocalAI/actions/workflows/test.yml)[![Build and Release](https://github.com/go-skynet/LocalAI/actions/workflows/release.yaml/badge.svg)](https://github.com/go-skynet/LocalAI/actions/workflows/release.yaml)[![build container images](https://github.com/go-skynet/LocalAI/actions/workflows/image.yml/badge.svg)](https://github.com/go-skynet/LocalAI/actions/workflows/image.yml)[![Bump dependencies](https://github.com/go-skynet/LocalAI/actions/workflows/bump_deps.yaml/badge.svg)](https://github.com/go-skynet/LocalAI/actions/workflows/bump_deps.yaml)[![Artifact Hub](https://img.shields.io/endpoint?url=https://artifacthub.io/badge/repository/localai)](https://artifacthub.io/packages/search?repo=localai)
**LocalAI** is a drop-in replacement REST API that's compatible with OpenAI API specifications for local inferencing. It allows you to run LLMs (and not only) locally or on-prem with consumer grade hardware, supporting multiple model families that are compatible with the ggml format. Does not require GPU.
<p align="center"><b>Follow LocalAI </b></p>
<p align="center">
<a href="https://twitter.com/LocalAI_API" target="blank">
<img src="https://img.shields.io/twitter/follow/LocalAI_API?label=Follow: LocalAI_API&style=social" alt="Follow LocalAI_API"/>
</a>
<a href="https://discord.gg/uJAeKSAGDy" target="blank">
<img src="https://dcbadge.vercel.app/api/server/uJAeKSAGDy?style=flat-square&theme=default-inverted" alt="Join LocalAI Discord Community"/>
</a>
<p align="center"><b>Connect with the Creator </b></p>
<p align="center">
<a href="https://twitter.com/mudler_it" target="blank">
<img src="https://img.shields.io/twitter/follow/mudler_it?label=Follow: mudler_it&style=social" alt="Follow mudler_it"/>
</a>
<a href='https://github.com/mudler'>
<img alt="Follow on Github" src="https://img.shields.io/badge/Follow-mudler-black?logo=github&link=https%3A%2F%2Fgithub.com%2Fmudler">
</a>
</p>
<p align="center"><b>Share LocalAI Repository</b></p>
<p align="center">
<a href="https://twitter.com/intent/tweet?text=Check%20this%20GitHub%20repository%20out.%20LocalAI%20-%20Let%27s%20you%20easily%20run%20LLM%20locally.&url=https://github.com/go-skynet/LocalAI&hashtags=LocalAI,AI" target="blank">
<img src="https://img.shields.io/twitter/follow/_LocalAI?label=Share Repo on Twitter&style=social" alt="Follow _LocalAI"/></a>
<a href="https://t.me/share/url?text=Check%20this%20GitHub%20repository%20out.%20LocalAI%20-%20Let%27s%20you%20easily%20run%20LLM%20locally.&url=https://github.com/go-skynet/LocalAI" target="_blank"><img src="https://img.shields.io/twitter/url?label=Telegram&logo=Telegram&style=social&url=https://github.com/go-skynet/LocalAI" alt="Share on Telegram"/></a>
<a href="https://api.whatsapp.com/send?text=Check%20this%20GitHub%20repository%20out.%20LocalAI%20-%20Let%27s%20you%20easily%20run%20LLM%20locally.%20https://github.com/go-skynet/LocalAI"><img src="https://img.shields.io/twitter/url?label=whatsapp&logo=whatsapp&style=social&url=https://github.com/go-skynet/LocalAI" /></a> <a href="https://www.reddit.com/submit?url=https://github.com/go-skynet/LocalAI&title=Check%20this%20GitHub%20repository%20out.%20LocalAI%20-%20Let%27s%20you%20easily%20run%20LLM%20locally.
" target="blank">
<img src="https://img.shields.io/twitter/url?label=Reddit&logo=Reddit&style=social&url=https://github.com/go-skynet/LocalAI" alt="Share on Reddit"/>
</a> <a href="mailto:?subject=Check%20this%20GitHub%20repository%20out.%20LocalAI%20-%20Let%27s%20you%20easily%20run%20LLM%20locally.%3A%0Ahttps://github.com/go-skynet/LocalAI" target="_blank"><img src="https://img.shields.io/twitter/url?label=Gmail&logo=Gmail&style=social&url=https://github.com/go-skynet/LocalAI"/></a> <a href="https://www.buymeacoffee.com/mudler" target="_blank"><img src="https://cdn.buymeacoffee.com/buttons/default-orange.png" alt="Buy Me A Coffee" height="23" width="100" style="border-radius:1px"></a>
</p>
<hr>
In a nutshell:
- Local, OpenAI drop-in alternative REST API. You own your data.
- NO GPU required. NO Internet access is required either
- Optional, GPU Acceleration is available in `llama.cpp`-compatible LLMs. See also the [build section](https://localai.io/basics/build/index.html).
- Supports multiple models:
- 📖 [Text generation with GPTs](https://localai.io/features/text-generation/) (`llama.cpp`, `gpt4all.cpp`, ... [:book: and more](https://localai.io/model-compatibility/index.html#model-compatibility-table))
- 🗣 [Text to Audio](https://localai.io/features/text-to-audio/)
- 🔈 [Audio to Text](https://localai.io/features/audio-to-text/) (Audio transcription with `whisper.cpp`)
- 🎨 [Image generation with stable diffusion](https://localai.io/features/image-generation)
- 🔥 [OpenAI functions](https://localai.io/features/openai-functions/) 🆕
- 🧠 [Embeddings generation for vector databases](https://localai.io/features/embeddings/)
- Supports multiple models
- 🏃 Once loaded the first time, it keep models loaded in memory for faster inference
- ⚡ Doesn't shell-out, but uses C++ bindings for a faster inference and better performance.
- ⚡ Doesn't shell-out, but uses C++ bindings for a faster inference and better performance.
LocalAI was created by [Ettore Di Giacinto](https://github.com/mudler/) and is a community-driven project, focused on making the AI accessible to anyone. Any contribution, feedback and PR is welcome!
Note that this started just as a [fun weekend project](https://localai.io/#backstory) in order to try to create the necessary pieces for a full AI assistant like `ChatGPT`: the community is growing fast and we are working hard to make it better and more stable. If you want to help, please consider contributing (see below)!
See the [Getting started](https://localai.io/basics/getting_started/index.html) and [examples](https://github.com/go-skynet/LocalAI/tree/master/examples/) sections to learn how to use LocalAI. For a list of curated models check out the [model gallery](https://localai.io/models/).
## 🔥🔥 [Hot topics / Roadmap](https://localai.io/#-hot-topics--roadmap)
## 🚀 [Features](https://localai.io/features/)
- 📖 [Text generation with GPTs](https://localai.io/features/text-generation/) (`llama.cpp`, `gpt4all.cpp`, ... [:book: and more](https://localai.io/model-compatibility/index.html#model-compatibility-table))
- 🗣 [Text to Audio](https://localai.io/features/text-to-audio/)
- 🔈 [Audio to Text](https://localai.io/features/audio-to-text/) (Audio transcription with `whisper.cpp`)
- 🎨 [Image generation with stable diffusion](https://localai.io/features/image-generation)
- 🔥 [OpenAI functions](https://localai.io/features/openai-functions/) 🆕
- 🧠 [Embeddings generation for vector databases](https://localai.io/features/embeddings/)
- ✍️ [Constrained grammars](https://localai.io/features/constrained_grammars/)
- 🖼️ [Download Models directly from Huggingface ](https://localai.io/models/)
| [ChatGPT OSS alternative](https://github.com/go-skynet/LocalAI/tree/master/examples/chatbot-ui) | [Image generation](https://localai.io/api-endpoints/index.html#image-generation) |
|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| ![Screenshot from 2023-04-26 23-59-55](https://user-images.githubusercontent.com/2420543/234715439-98d12e03-d3ce-4f94-ab54-2b256808e05e.png) | ![b6441997879](https://github.com/go-skynet/LocalAI/assets/2420543/d50af51c-51b7-4f39-b6c2-bf04c403894c) |
| [Telegram bot](https://github.com/go-skynet/LocalAI/tree/master/examples/telegram-bot) | [Flowise](https://github.com/go-skynet/LocalAI/tree/master/examples/flowise) |
|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
![Screenshot from 2023-06-09 00-36-26](https://github.com/go-skynet/LocalAI/assets/2420543/e98b4305-fa2d-41cf-9d2f-1bb2d75ca902) | ![Screenshot from 2023-05-30 18-01-03](https://github.com/go-skynet/LocalAI/assets/2420543/02458782-0549-4131-971c-95ee56ec1af8)| |
## Hot topics / Roadmap
- [x] Support for embeddings
- [x] Support for audio transcription with https://github.com/ggerganov/whisper.cpp
- [X] Support for text-to-audio
- [x] GPU/CUDA support ( https://github.com/go-skynet/LocalAI/issues/69 )
- [X] Enable automatic downloading of models from a curated gallery
- [X] Enable automatic downloading of models from HuggingFace
- [ ] Upstream our golang bindings to llama.cpp (https://github.com/ggerganov/llama.cpp/issues/351)
- [ ] Enable gallery management directly from the webui.
- [x] 🔥 OpenAI functions: https://github.com/go-skynet/LocalAI/issues/588
- [ ] 🔥 GPTQ support: https://github.com/go-skynet/LocalAI/issues/796
## News
Check the news and the release notes in the [dedicated section](https://localai.io/basics/news/index.html)
- 🔥🔥🔥 23-07-2023: **v1.22.0**: LLaMa2, huggingface embeddings, and more ! [Changelog](https://github.com/go-skynet/LocalAI/releases/tag/v1.22.0)
For latest news, follow also on Twitter [@LocalAI_API](https://twitter.com/LocalAI_API) and [@mudler_it](https://twitter.com/mudler_it)
## Media, Blogs, Social
## :book: 🎥 [Media, Blogs, Social](https://localai.io/basics/news/#media-blogs-social)
- [Create a slackbot for teams and OSS projects that answer to documentation](https://mudler.pm/posts/smart-slackbot-for-teams/)
- [LocalAI meets k8sgpt](https://www.youtube.com/watch?v=PKrDNuJ_dfE)
- [Question Answering on Documents locally with LangChain, LocalAI, Chroma, and GPT4All](https://mudler.pm/posts/localai-question-answering/)
- [Tutorial to use k8sgpt with LocalAI](https://medium.com/@tyler_97636/k8sgpt-localai-unlock-kubernetes-superpowers-for-free-584790de9b65)
## Contribute and help
## 💻 Usage
To help the project you can:
Check out the [Getting started](https://localai.io/basics/getting_started/index.html) section in our documentation.
- [Hacker news post](https://news.ycombinator.com/item?id=35726934) - help us out by voting if you like this project.
### 💡 Example: Use GPT4ALL-J model
- If you have technological skills and want to contribute to development, have a look at the open issues. If you are new you can have a look at the [good-first-issue](https://github.com/go-skynet/LocalAI/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22) and [help-wanted](https://github.com/go-skynet/LocalAI/issues?q=is%3Aissue+is%3Aopen+label%3A%22help+wanted%22) labels.
See the [documentation](https://localai.io/basics/getting_started/#example-use-gpt4all-j-model-with-docker-compose)
- If you don't have technological skills you can still help improving documentation or add examples or share your user-stories with our community, any help and contribution is welcome!
### 🔗 Resources
## Usage
- [How to build locally](https://localai.io/basics/build/index.html)
- [How to install in Kubernetes](https://localai.io/basics/getting_started/index.html#run-localai-in-kubernetes)
- [Projects integrating LocalAI](https://localai.io/integrations/)
Check out the [Getting started](https://localai.io/basics/getting_started/index.html) section. Here below you will find generic, quick instructions to get ready and use LocalAI.
The easiest way to run LocalAI is by using `docker-compose` (to build locally, see [building LocalAI](https://localai.io/basics/build/index.html)):
```bash
git clone https://github.com/go-skynet/LocalAI
cd LocalAI
# (optional) Checkout a specific LocalAI tag
# git checkout -b build <TAG>
# copy your models to models/
cp your-model.bin models/
# (optional) Edit the .env file to set things like context size and threads
# vim .env
# start with docker-compose
docker-compose up -d --pull always
# or you can build the images with:
# docker-compose up -d --build
# Now API is accessible at localhost:8080
curl http://localhost:8080/v1/models
# {"object":"list","data":[{"id":"your-model.bin","object":"model"}]}
curl http://localhost:8080/v1/completions -H "Content-Type: application/json" -d '{
"model": "your-model.bin",
"prompt": "A long time ago in a galaxy far, far away",
"temperature": 0.7
}'
```
### Example: Use GPT4ALL-J model
<details>
```bash
# Clone LocalAI
git clone https://github.com/go-skynet/LocalAI
cd LocalAI
# (optional) Checkout a specific LocalAI tag
# git checkout -b build <TAG>
# Download gpt4all-j to models/
wget https://gpt4all.io/models/ggml-gpt4all-j.bin -O models/ggml-gpt4all-j
# Use a template from the examples
cp -rf prompt-templates/ggml-gpt4all-j.tmpl models/
# (optional) Edit the .env file to set things like context size and threads
# vim .env
# start with docker-compose
docker-compose up -d --pull always
# or you can build the images with:
# docker-compose up -d --build
# Now API is accessible at localhost:8080
curl http://localhost:8080/v1/models
# {"object":"list","data":[{"id":"ggml-gpt4all-j","object":"model"}]}
curl http://localhost:8080/v1/chat/completions -H "Content-Type: application/json" -d '{
"model": "ggml-gpt4all-j",
"messages": [{"role": "user", "content": "How are you?"}],
"temperature": 0.9
}'
# {"model":"ggml-gpt4all-j","choices":[{"message":{"role":"assistant","content":"I'm doing well, thanks. How about you?"}}]}
```
</details>
### Build locally
<details>
In order to build the `LocalAI` container image locally you can use `docker`:
```
# build the image
docker build -t localai .
docker run localai
```
Or you can build the binary with `make`:
```
make build
```
</details>
See the [build section](https://localai.io/basics/build/index.html) in our documentation for detailed instructions.
### Run LocalAI in Kubernetes
LocalAI can be installed inside Kubernetes with helm. See [installation instructions](https://localai.io/basics/getting_started/index.html#run-localai-in-kubernetes).
## Supported API endpoints
See the [list of the LocalAI features](https://localai.io/features/index.html) for a full tour of the available API endpoints.
## Frequently asked questions
See [the FAQ](https://localai.io/faq/index.html) section for a list of common questions.
## Projects already using LocalAI to run local models
Feel free to open up a PR to get your project listed!
- [Kairos](https://github.com/kairos-io/kairos)
- [k8sgpt](https://github.com/k8sgpt-ai/k8sgpt#running-local-models)
- [Spark](https://github.com/cedriking/spark)
- [autogpt4all](https://github.com/aorumbayev/autogpt4all)
- [Mods](https://github.com/charmbracelet/mods)
- [Flowise](https://github.com/FlowiseAI/Flowise)
- [BMO Chatbot](https://github.com/longy2k/obsidian-bmo-chatbot)
- [Mattermost OpenOps](https://openops.mattermost.com)
## Sponsors
## ❤️ Sponsors
> Do you find LocalAI useful?
@@ -222,21 +127,17 @@ A huge thank you to our generous sponsors who support this project:
| [Spectro Cloud](https://www.spectrocloud.com/) |
| Spectro Cloud kindly supports LocalAI by providing GPU and computing resources to run tests on lamdalabs! |
## Star history
## 🌟 Star history
[![LocalAI Star history Chart](https://api.star-history.com/svg?repos=go-skynet/LocalAI&type=Date)](https://star-history.com/#go-skynet/LocalAI&Date)
## License
## 📖 License
LocalAI is a community-driven project created by [Ettore Di Giacinto](https://github.com/mudler/).
MIT
MIT - Author Ettore Di Giacinto
## Author
Ettore Di Giacinto and others
## Acknowledgements
## 🙇 Acknowledgements
LocalAI couldn't have been built without the help of great software already available from the community. Thank you!
@@ -247,9 +148,12 @@ LocalAI couldn't have been built without the help of great software already avai
- https://github.com/EdVince/Stable-Diffusion-NCNN
- https://github.com/ggerganov/whisper.cpp
- https://github.com/saharNooby/rwkv.cpp
- https://github.com/rhasspy/piper
- https://github.com/cmp-nct/ggllm.cpp
## Contributors
## 🤗 Contributors
This is a community project, a special thanks to our contributors! 🤗
<a href="https://github.com/go-skynet/LocalAI/graphs/contributors">
<img src="https://contrib.rocks/image?repo=go-skynet/LocalAI" />
</a>

View File

@@ -2,6 +2,7 @@ package api
import (
"errors"
"strings"
config "github.com/go-skynet/LocalAI/api/config"
"github.com/go-skynet/LocalAI/api/localai"
@@ -89,6 +90,32 @@ func App(opts ...options.AppOption) (*fiber.App, error) {
// Default middleware config
app.Use(recover.New())
// Auth middleware checking if API key is valid. If no API key is set, no auth is required.
auth := func(c *fiber.Ctx) error {
if len(options.ApiKeys) > 0 {
authHeader := c.Get("Authorization")
if authHeader == "" {
return c.Status(fiber.StatusUnauthorized).JSON(fiber.Map{"message": "Authorization header missing"})
}
authHeaderParts := strings.Split(authHeader, " ")
if len(authHeaderParts) != 2 || authHeaderParts[0] != "Bearer" {
return c.Status(fiber.StatusUnauthorized).JSON(fiber.Map{"message": "Invalid Authorization header format"})
}
apiKey := authHeaderParts[1]
validApiKey := false
for _, key := range options.ApiKeys {
if apiKey == key {
validApiKey = true
}
}
if !validApiKey {
return c.Status(fiber.StatusUnauthorized).JSON(fiber.Map{"message": "Invalid API key"})
}
}
return c.Next()
}
if options.PreloadJSONModels != "" {
if err := localai.ApplyGalleryFromString(options.Loader.ModelPath, options.PreloadJSONModels, cm, options.Galleries); err != nil {
return nil, err
@@ -116,42 +143,42 @@ func App(opts ...options.AppOption) (*fiber.App, error) {
galleryService := localai.NewGalleryService(options.Loader.ModelPath)
galleryService.Start(options.Context, cm)
app.Get("/version", func(c *fiber.Ctx) error {
app.Get("/version", auth, func(c *fiber.Ctx) error {
return c.JSON(struct {
Version string `json:"version"`
}{Version: internal.PrintableVersion()})
})
app.Post("/models/apply", localai.ApplyModelGalleryEndpoint(options.Loader.ModelPath, cm, galleryService.C, options.Galleries))
app.Get("/models/available", localai.ListModelFromGalleryEndpoint(options.Galleries, options.Loader.ModelPath))
app.Get("/models/jobs/:uuid", localai.GetOpStatusEndpoint(galleryService))
app.Post("/models/apply", auth, localai.ApplyModelGalleryEndpoint(options.Loader.ModelPath, cm, galleryService.C, options.Galleries))
app.Get("/models/available", auth, localai.ListModelFromGalleryEndpoint(options.Galleries, options.Loader.ModelPath))
app.Get("/models/jobs/:uuid", auth, localai.GetOpStatusEndpoint(galleryService))
// openAI compatible API endpoint
// chat
app.Post("/v1/chat/completions", openai.ChatEndpoint(cm, options))
app.Post("/chat/completions", openai.ChatEndpoint(cm, options))
app.Post("/v1/chat/completions", auth, openai.ChatEndpoint(cm, options))
app.Post("/chat/completions", auth, openai.ChatEndpoint(cm, options))
// edit
app.Post("/v1/edits", openai.EditEndpoint(cm, options))
app.Post("/edits", openai.EditEndpoint(cm, options))
app.Post("/v1/edits", auth, openai.EditEndpoint(cm, options))
app.Post("/edits", auth, openai.EditEndpoint(cm, options))
// completion
app.Post("/v1/completions", openai.CompletionEndpoint(cm, options))
app.Post("/completions", openai.CompletionEndpoint(cm, options))
app.Post("/v1/engines/:model/completions", openai.CompletionEndpoint(cm, options))
app.Post("/v1/completions", auth, openai.CompletionEndpoint(cm, options))
app.Post("/completions", auth, openai.CompletionEndpoint(cm, options))
app.Post("/v1/engines/:model/completions", auth, openai.CompletionEndpoint(cm, options))
// embeddings
app.Post("/v1/embeddings", openai.EmbeddingsEndpoint(cm, options))
app.Post("/embeddings", openai.EmbeddingsEndpoint(cm, options))
app.Post("/v1/engines/:model/embeddings", openai.EmbeddingsEndpoint(cm, options))
app.Post("/v1/embeddings", auth, openai.EmbeddingsEndpoint(cm, options))
app.Post("/embeddings", auth, openai.EmbeddingsEndpoint(cm, options))
app.Post("/v1/engines/:model/embeddings", auth, openai.EmbeddingsEndpoint(cm, options))
// audio
app.Post("/v1/audio/transcriptions", openai.TranscriptEndpoint(cm, options))
app.Post("/tts", localai.TTSEndpoint(cm, options))
app.Post("/v1/audio/transcriptions", auth, openai.TranscriptEndpoint(cm, options))
app.Post("/tts", auth, localai.TTSEndpoint(cm, options))
// images
app.Post("/v1/images/generations", openai.ImageEndpoint(cm, options))
app.Post("/v1/images/generations", auth, openai.ImageEndpoint(cm, options))
if options.ImageDir != "" {
app.Static("/generated-images", options.ImageDir)
@@ -170,8 +197,8 @@ func App(opts ...options.AppOption) (*fiber.App, error) {
app.Get("/readyz", ok)
// models
app.Get("/v1/models", openai.ListModelsEndpoint(options.Loader, cm))
app.Get("/models", openai.ListModelsEndpoint(options.Loader, cm))
app.Get("/v1/models", auth, openai.ListModelsEndpoint(options.Loader, cm))
app.Get("/models", auth, openai.ListModelsEndpoint(options.Loader, cm))
// turn off any process that was started by GRPC if the context is canceled
go func() {

View File

@@ -470,6 +470,9 @@ var _ = Describe("API test", func() {
response := postModelApplyRequest("http://127.0.0.1:9090/models/apply", modelApplyRequest{
ID: "model-gallery@stablediffusion",
Overrides: map[string]interface{}{
"parameters": map[string]interface{}{"model": "stablediffusion_assets"},
},
})
Expect(response["uuid"]).ToNot(BeEmpty(), fmt.Sprint(response))

View File

@@ -23,10 +23,10 @@ func ModelEmbedding(s string, tokens []int, loader *model.ModelLoader, c config.
var err error
opts := []model.Option{
model.WithLoadGRPCLLMModelOpts(grpcOpts),
model.WithLoadGRPCLoadModelOpts(grpcOpts),
model.WithThreads(uint32(c.Threads)),
model.WithAssetDir(o.AssetsDestination),
model.WithModelFile(modelFile),
model.WithModel(modelFile),
model.WithContext(o.Context),
}

View File

@@ -1,7 +1,6 @@
package backend
import (
"fmt"
"sync"
config "github.com/go-skynet/LocalAI/api/config"
@@ -11,16 +10,18 @@ import (
)
func ImageGeneration(height, width, mode, step, seed int, positive_prompt, negative_prompt, dst string, loader *model.ModelLoader, c config.Config, o *options.Option) (func() error, error) {
if c.Backend != model.StableDiffusionBackend {
return nil, fmt.Errorf("endpoint only working with stablediffusion models")
}
opts := []model.Option{
model.WithBackendString(c.Backend),
model.WithAssetDir(o.AssetsDestination),
model.WithThreads(uint32(c.Threads)),
model.WithContext(o.Context),
model.WithModelFile(c.ImageGenerationAssets),
model.WithModel(c.Model),
model.WithLoadGRPCLoadModelOpts(&proto.ModelOptions{
CUDA: c.Diffusers.CUDA,
SchedulerType: c.Diffusers.SchedulerType,
PipelineType: c.Diffusers.PipelineType,
}),
}
for k, v := range o.ExternalGRPCBackends {

View File

@@ -24,10 +24,10 @@ func ModelInference(ctx context.Context, s string, loader *model.ModelLoader, c
var err error
opts := []model.Option{
model.WithLoadGRPCLLMModelOpts(grpcOpts),
model.WithLoadGRPCLoadModelOpts(grpcOpts),
model.WithThreads(uint32(c.Threads)), // some models uses this to allocate threads during startup
model.WithAssetDir(o.AssetsDestination),
model.WithModelFile(modelFile),
model.WithModel(modelFile),
model.WithContext(o.Context),
}

View File

@@ -15,9 +15,12 @@ func gRPCModelOpts(c config.Config) *pb.ModelOptions {
b = c.Batch
}
return &pb.ModelOptions{
ContextSize: int32(c.ContextSize),
Seed: int32(c.Seed),
NBatch: int32(b),
ContextSize: int32(c.ContextSize),
Seed: int32(c.Seed),
NBatch: int32(b),
NGQA: c.NGQA,
RMSNormEps: c.RMSNormEps,
F16Memory: c.F16,
MLock: c.MMlock,
RopeFreqBase: c.RopeFreqBase,
@@ -30,6 +33,11 @@ func gRPCModelOpts(c config.Config) *pb.ModelOptions {
MainGPU: c.MainGPU,
Threads: int32(c.Threads),
TensorSplit: c.TensorSplit,
// AutoGPTQ
ModelBaseName: c.AutoGPTQ.ModelBaseName,
Device: c.AutoGPTQ.Device,
UseTriton: c.AutoGPTQ.Triton,
UseFastTokenizer: c.AutoGPTQ.UseFastTokenizer,
}
}
@@ -56,9 +64,9 @@ func gRPCPredictOpts(c config.Config, modelPath string) *pb.PredictOptions {
RopeFreqBase: c.RopeFreqBase,
RopeFreqScale: c.RopeFreqScale,
NegativePrompt: c.NegativePrompt,
Mirostat: int32(c.Mirostat),
MirostatETA: float32(c.MirostatETA),
MirostatTAU: float32(c.MirostatTAU),
Mirostat: int32(c.LLMConfig.Mirostat),
MirostatETA: float32(c.LLMConfig.MirostatETA),
MirostatTAU: float32(c.LLMConfig.MirostatTAU),
Debug: c.Debug,
StopPrompts: c.StopWords,
Repeat: int32(c.RepeatPenalty),

View File

@@ -15,7 +15,7 @@ import (
func ModelTranscription(audio, language string, loader *model.ModelLoader, c config.Config, o *options.Option) (*api.Result, error) {
opts := []model.Option{
model.WithBackendString(model.WhisperBackend),
model.WithModelFile(c.Model),
model.WithModel(c.Model),
model.WithContext(o.Context),
model.WithThreads(uint32(c.Threads)),
model.WithAssetDir(o.AssetsDestination),

View File

@@ -28,10 +28,14 @@ func generateUniqueFileName(dir, baseName, ext string) string {
}
}
func ModelTTS(text, modelFile string, loader *model.ModelLoader, o *options.Option) (string, *proto.Result, error) {
func ModelTTS(backend, text, modelFile string, loader *model.ModelLoader, o *options.Option) (string, *proto.Result, error) {
bb := backend
if bb == "" {
bb = model.PiperBackend
}
opts := []model.Option{
model.WithBackendString(model.PiperBackend),
model.WithModelFile(modelFile),
model.WithBackendString(bb),
model.WithModel(modelFile),
model.WithContext(o.Context),
model.WithAssetDir(o.AssetsDestination),
}
@@ -56,10 +60,13 @@ func ModelTTS(text, modelFile string, loader *model.ModelLoader, o *options.Opti
fileName := generateUniqueFileName(o.AudioDir, "piper", ".wav")
filePath := filepath.Join(o.AudioDir, fileName)
modelPath := filepath.Join(o.Loader.ModelPath, modelFile)
if err := utils.VerifyPath(modelPath, o.Loader.ModelPath); err != nil {
return "", nil, err
// If the model file is not empty, we pass it joined with the model path
modelPath := ""
if modelFile != "" {
modelPath = filepath.Join(o.Loader.ModelPath, modelFile)
if err := utils.VerifyPath(modelPath, o.Loader.ModelPath); err != nil {
return "", nil, err
}
}
res, err := piperModel.TTS(context.Background(), &proto.TTSRequest{

View File

@@ -13,44 +13,69 @@ import (
type Config struct {
PredictionOptions `yaml:"parameters"`
Name string `yaml:"name"`
StopWords []string `yaml:"stopwords"`
Cutstrings []string `yaml:"cutstrings"`
TrimSpace []string `yaml:"trimspace"`
ContextSize int `yaml:"context_size"`
F16 bool `yaml:"f16"`
NUMA bool `yaml:"numa"`
Threads int `yaml:"threads"`
Debug bool `yaml:"debug"`
Roles map[string]string `yaml:"roles"`
Embeddings bool `yaml:"embeddings"`
Backend string `yaml:"backend"`
TemplateConfig TemplateConfig `yaml:"template"`
MirostatETA float64 `yaml:"mirostat_eta"`
MirostatTAU float64 `yaml:"mirostat_tau"`
Mirostat int `yaml:"mirostat"`
NGPULayers int `yaml:"gpu_layers"`
MMap bool `yaml:"mmap"`
MMlock bool `yaml:"mmlock"`
LowVRAM bool `yaml:"low_vram"`
Name string `yaml:"name"`
TensorSplit string `yaml:"tensor_split"`
MainGPU string `yaml:"main_gpu"`
ImageGenerationAssets string `yaml:"asset_dir"`
F16 bool `yaml:"f16"`
Threads int `yaml:"threads"`
Debug bool `yaml:"debug"`
Roles map[string]string `yaml:"roles"`
Embeddings bool `yaml:"embeddings"`
Backend string `yaml:"backend"`
TemplateConfig TemplateConfig `yaml:"template"`
PromptCachePath string `yaml:"prompt_cache_path"`
PromptCacheAll bool `yaml:"prompt_cache_all"`
PromptCacheRO bool `yaml:"prompt_cache_ro"`
Grammar string `yaml:"grammar"`
PromptStrings, InputStrings []string
InputToken [][]int
functionCallString, functionCallNameString string
PromptStrings, InputStrings []string `yaml:"-"`
InputToken [][]int `yaml:"-"`
functionCallString, functionCallNameString string `yaml:"-"`
FunctionsConfig Functions `yaml:"function"`
SystemPrompt string `yaml:"system_prompt"`
// LLM configs (GPT4ALL, Llama.cpp, ...)
LLMConfig `yaml:",inline"`
// AutoGPTQ specifics
AutoGPTQ AutoGPTQ `yaml:"autogptq"`
// Diffusers
Diffusers Diffusers `yaml:"diffusers"`
Step int `yaml:"step"`
}
type Diffusers struct {
PipelineType string `yaml:"pipeline_type"`
SchedulerType string `yaml:"scheduler_type"`
CUDA bool `yaml:"cuda"`
}
type LLMConfig struct {
SystemPrompt string `yaml:"system_prompt"`
TensorSplit string `yaml:"tensor_split"`
MainGPU string `yaml:"main_gpu"`
RMSNormEps float32 `yaml:"rms_norm_eps"`
NGQA int32 `yaml:"ngqa"`
PromptCachePath string `yaml:"prompt_cache_path"`
PromptCacheAll bool `yaml:"prompt_cache_all"`
PromptCacheRO bool `yaml:"prompt_cache_ro"`
MirostatETA float64 `yaml:"mirostat_eta"`
MirostatTAU float64 `yaml:"mirostat_tau"`
Mirostat int `yaml:"mirostat"`
NGPULayers int `yaml:"gpu_layers"`
MMap bool `yaml:"mmap"`
MMlock bool `yaml:"mmlock"`
LowVRAM bool `yaml:"low_vram"`
Grammar string `yaml:"grammar"`
StopWords []string `yaml:"stopwords"`
Cutstrings []string `yaml:"cutstrings"`
TrimSpace []string `yaml:"trimspace"`
ContextSize int `yaml:"context_size"`
NUMA bool `yaml:"numa"`
}
type AutoGPTQ struct {
ModelBaseName string `yaml:"model_base_name"`
Device string `yaml:"device"`
Triton bool `yaml:"triton"`
UseFastTokenizer bool `yaml:"use_fast_tokenizer"`
}
type Functions struct {

View File

@@ -39,4 +39,6 @@ type PredictionOptions struct {
RopeFreqBase float32 `json:"rope_freq_base" yaml:"rope_freq_base"`
RopeFreqScale float32 `json:"rope_freq_scale" yaml:"rope_freq_scale"`
NegativePromptScale float32 `json:"negative_prompt_scale" yaml:"negative_prompt_scale"`
// AutoGPTQ
UseFastTokenizer bool `json:"use_fast_tokenizer" yaml:"use_fast_tokenizer"`
}

View File

@@ -9,8 +9,9 @@ import (
)
type TTSRequest struct {
Model string `json:"model" yaml:"model"`
Input string `json:"input" yaml:"input"`
Model string `json:"model" yaml:"model"`
Input string `json:"input" yaml:"input"`
Backend string `json:"backend" yaml:"backend"`
}
func TTSEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fiber.Ctx) error {
@@ -22,7 +23,7 @@ func TTSEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fiber.Ctx)
return err
}
filePath, _, err := backend.ModelTTS(input.Input, input.Model, o.Loader, o)
filePath, _, err := backend.ModelTTS(input.Backend, input.Input, input.Model, o.Loader, o)
if err != nil {
return err
}

View File

@@ -2,6 +2,7 @@ package openai
import (
"context"
config "github.com/go-skynet/LocalAI/api/config"
"github.com/go-skynet/LocalAI/pkg/grammar"
@@ -106,4 +107,9 @@ type OpenAIRequest struct {
Grammar string `json:"grammar" yaml:"grammar"`
JSONFunctionGrammarObject *grammar.JSONFunctionStructure `json:"grammar_json_functions" yaml:"grammar_json_functions"`
Backend string `json:"backend" yaml:"backend"`
// AutoGPTQ
ModelBaseName string `json:"model_base_name" yaml:"model_base_name"`
}

View File

@@ -12,6 +12,7 @@ import (
"github.com/go-skynet/LocalAI/api/options"
"github.com/go-skynet/LocalAI/pkg/grammar"
model "github.com/go-skynet/LocalAI/pkg/model"
"github.com/go-skynet/LocalAI/pkg/utils"
"github.com/gofiber/fiber/v2"
"github.com/rs/zerolog/log"
"github.com/valyala/fasthttp"
@@ -109,6 +110,7 @@ func ChatEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fiber.Ctx)
var predInput string
suppressConfigSystemPrompt := false
mess := []string{}
for messageIndex, i := range input.Messages {
var content string
@@ -146,7 +148,7 @@ func ChatEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fiber.Ctx)
content = templatedChatMessage
}
}
// If this model doesn't have such a template, or if
// If this model doesn't have such a template, or if that template fails to return a value, template at the message level.
if content == "" {
if r != "" {
if contentExists {
@@ -177,6 +179,10 @@ func ChatEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fiber.Ctx)
}
}
}
// Special Handling: System. We care if it was printed at all, not the r branch, so check seperately
if contentExists && role == "system" {
suppressConfigSystemPrompt = true
}
}
mess = append(mess, content)
@@ -207,8 +213,10 @@ func ChatEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fiber.Ctx)
// A model can have a "file.bin.tmpl" file associated with a prompt template prefix
templatedInput, err := o.Loader.EvaluateTemplateForPrompt(model.ChatPromptTemplate, templateFile, model.PromptTemplateData{
Input: predInput,
Functions: funcs,
SystemPrompt: config.SystemPrompt,
SuppressSystemPrompt: suppressConfigSystemPrompt,
Input: predInput,
Functions: funcs,
})
if err == nil {
predInput = templatedInput
@@ -267,6 +275,8 @@ func ChatEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fiber.Ctx)
if processFunctions {
// As we have to change the result before processing, we can't stream the answer (yet?)
ss := map[string]interface{}{}
// This prevent newlines to break JSON parsing for clients
s = utils.EscapeNewLines(s)
json.Unmarshal([]byte(s), &ss)
log.Debug().Msgf("Function return: %s %+v", s, ss)

View File

@@ -123,7 +123,8 @@ func CompletionEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fibe
for k, i := range config.PromptStrings {
// A model can have a "file.bin.tmpl" file associated with a prompt template prefix
templatedInput, err := o.Loader.EvaluateTemplateForPrompt(model.CompletionPromptTemplate, templateFile, model.PromptTemplateData{
Input: i,
SystemPrompt: config.SystemPrompt,
Input: i,
})
if err == nil {
i = templatedInput

View File

@@ -35,8 +35,9 @@ func EditEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fiber.Ctx)
for _, i := range config.InputStrings {
// A model can have a "file.bin.tmpl" file associated with a prompt template prefix
templatedInput, err := o.Loader.EvaluateTemplateForPrompt(model.EditPromptTemplate, templateFile, model.PromptTemplateData{
Input: i,
Instruction: input.Instruction,
Input: i,
Instruction: input.Instruction,
SystemPrompt: config.SystemPrompt,
})
if err == nil {
i = templatedInput

View File

@@ -89,7 +89,10 @@ func ImageEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fiber.Ctx
}
mode := 0
step := 15
step := config.Step
if step == 0 {
step = 15
}
if input.Mode != 0 {
mode = input.Mode

View File

@@ -71,10 +71,22 @@ func updateConfig(config *config.Config, input *OpenAIRequest) {
config.TopP = input.TopP
}
if input.Backend != "" {
config.Backend = input.Backend
}
if input.ModelBaseName != "" {
config.AutoGPTQ.ModelBaseName = input.ModelBaseName
}
if input.NegativePromptScale != 0 {
config.NegativePromptScale = input.NegativePromptScale
}
if input.UseFastTokenizer {
config.UseFastTokenizer = input.UseFastTokenizer
}
if input.NegativePrompt != "" {
config.NegativePrompt = input.NegativePrompt
}
@@ -137,15 +149,15 @@ func updateConfig(config *config.Config, input *OpenAIRequest) {
}
if input.Mirostat != 0 {
config.Mirostat = input.Mirostat
config.LLMConfig.Mirostat = input.Mirostat
}
if input.MirostatETA != 0 {
config.MirostatETA = input.MirostatETA
config.LLMConfig.MirostatETA = input.MirostatETA
}
if input.MirostatTAU != 0 {
config.MirostatTAU = input.MirostatTAU
config.LLMConfig.MirostatTAU = input.MirostatTAU
}
if input.TypicalP != 0 {

View File

@@ -23,6 +23,7 @@ type Option struct {
PreloadJSONModels string
PreloadModelsFromPath string
CORSAllowOrigins string
ApiKeys []string
Galleries []gallery.Gallery
@@ -184,3 +185,9 @@ func WithImageDir(imageDir string) AppOption {
o.ImageDir = imageDir
}
}
func WithApiKeys(apiKeys []string) AppOption {
return func(o *Option) {
o.ApiKeys = apiKeys
}
}

View File

@@ -1,7 +1,16 @@
# Examples
| [ChatGPT OSS alternative](https://github.com/go-skynet/LocalAI/tree/master/examples/chatbot-ui) | [Image generation](https://localai.io/api-endpoints/index.html#image-generation) |
|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| ![Screenshot from 2023-04-26 23-59-55](https://user-images.githubusercontent.com/2420543/234715439-98d12e03-d3ce-4f94-ab54-2b256808e05e.png) | ![b6441997879](https://github.com/go-skynet/LocalAI/assets/2420543/d50af51c-51b7-4f39-b6c2-bf04c403894c) |
| [Telegram bot](https://github.com/go-skynet/LocalAI/tree/master/examples/telegram-bot) | [Flowise](https://github.com/go-skynet/LocalAI/tree/master/examples/flowise) |
|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
![Screenshot from 2023-06-09 00-36-26](https://github.com/go-skynet/LocalAI/assets/2420543/e98b4305-fa2d-41cf-9d2f-1bb2d75ca902) | ![Screenshot from 2023-05-30 18-01-03](https://github.com/go-skynet/LocalAI/assets/2420543/02458782-0549-4131-971c-95ee56ec1af8)| |
Here is a list of projects that can easily be integrated with the LocalAI backend.
### Projects
### AutoGPT

109
extra/grpc/autogptq/autogptq.py Executable file
View File

@@ -0,0 +1,109 @@
#!/usr/bin/env python3
import grpc
from concurrent import futures
import time
import backend_pb2
import backend_pb2_grpc
import argparse
import signal
import sys
import os
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
from pathlib import Path
from transformers import AutoTokenizer
from transformers import TextGenerationPipeline
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
# Implement the BackendServicer class with the service methods
class BackendServicer(backend_pb2_grpc.BackendServicer):
def Health(self, request, context):
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
def LoadModel(self, request, context):
try:
device = "cuda:0"
if request.Device != "":
device = request.Device
tokenizer = AutoTokenizer.from_pretrained(request.Model, use_fast=request.UseFastTokenizer)
model = AutoGPTQForCausalLM.from_quantized(request.Model,
model_basename=request.ModelBaseName,
use_safetensors=True,
trust_remote_code=True,
device=device,
use_triton=request.UseTriton,
quantize_config=None)
self.model = model
self.tokenizer = tokenizer
except Exception as err:
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
return backend_pb2.Result(message="Model loaded successfully", success=True)
def Predict(self, request, context):
penalty = 1.0
if request.Penalty != 0.0:
penalty = request.Penalty
tokens = 512
if request.Tokens != 0:
tokens = request.Tokens
top_p = 0.95
if request.TopP != 0.0:
top_p = request.TopP
# Implement Predict RPC
pipeline = TextGenerationPipeline(
model=self.model,
tokenizer=self.tokenizer,
max_new_tokens=tokens,
temperature=request.Temperature,
top_p=top_p,
repetition_penalty=penalty,
)
t = pipeline(request.Prompt)[0]["generated_text"]
# Remove prompt from response if present
if request.Prompt in t:
t = t.replace(request.Prompt, "")
return backend_pb2.Result(message=bytes(t, encoding='utf-8'))
def PredictStream(self, request, context):
# Implement PredictStream RPC
#for reply in some_data_generator():
# yield reply
# Not implemented yet
return self.Predict(request, context)
def serve(address):
server = grpc.server(futures.ThreadPoolExecutor(max_workers=10))
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
server.add_insecure_port(address)
server.start()
print("Server started. Listening on: " + address, file=sys.stderr)
# Define the signal handler function
def signal_handler(sig, frame):
print("Received termination signal. Shutting down...")
server.stop(0)
sys.exit(0)
# Set the signal handlers for SIGINT and SIGTERM
signal.signal(signal.SIGINT, signal_handler)
signal.signal(signal.SIGTERM, signal_handler)
try:
while True:
time.sleep(_ONE_DAY_IN_SECONDS)
except KeyboardInterrupt:
server.stop(0)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run the gRPC server.")
parser.add_argument(
"--addr", default="localhost:50051", help="The address to bind the server to."
)
args = parser.parse_args()
serve(args.addr)

View File

@@ -0,0 +1,49 @@
# -*- coding: utf-8 -*-
# Generated by the protocol buffer compiler. DO NOT EDIT!
# source: backend.proto
"""Generated protocol buffer code."""
from google.protobuf import descriptor as _descriptor
from google.protobuf import descriptor_pool as _descriptor_pool
from google.protobuf import symbol_database as _symbol_database
from google.protobuf.internal import builder as _builder
# @@protoc_insertion_point(imports)
_sym_db = _symbol_database.Default()
DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\rbackend.proto\x12\x07\x62\x61\x63kend\"\x0f\n\rHealthMessage\"\x86\x06\n\x0ePredictOptions\x12\x0e\n\x06Prompt\x18\x01 \x01(\t\x12\x0c\n\x04Seed\x18\x02 \x01(\x05\x12\x0f\n\x07Threads\x18\x03 \x01(\x05\x12\x0e\n\x06Tokens\x18\x04 \x01(\x05\x12\x0c\n\x04TopK\x18\x05 \x01(\x05\x12\x0e\n\x06Repeat\x18\x06 \x01(\x05\x12\r\n\x05\x42\x61tch\x18\x07 \x01(\x05\x12\r\n\x05NKeep\x18\x08 \x01(\x05\x12\x13\n\x0bTemperature\x18\t \x01(\x02\x12\x0f\n\x07Penalty\x18\n \x01(\x02\x12\r\n\x05\x46\x31\x36KV\x18\x0b \x01(\x08\x12\x11\n\tDebugMode\x18\x0c \x01(\x08\x12\x13\n\x0bStopPrompts\x18\r \x03(\t\x12\x11\n\tIgnoreEOS\x18\x0e \x01(\x08\x12\x19\n\x11TailFreeSamplingZ\x18\x0f \x01(\x02\x12\x10\n\x08TypicalP\x18\x10 \x01(\x02\x12\x18\n\x10\x46requencyPenalty\x18\x11 \x01(\x02\x12\x17\n\x0fPresencePenalty\x18\x12 \x01(\x02\x12\x10\n\x08Mirostat\x18\x13 \x01(\x05\x12\x13\n\x0bMirostatETA\x18\x14 \x01(\x02\x12\x13\n\x0bMirostatTAU\x18\x15 \x01(\x02\x12\x12\n\nPenalizeNL\x18\x16 \x01(\x08\x12\x11\n\tLogitBias\x18\x17 \x01(\t\x12\r\n\x05MLock\x18\x19 \x01(\x08\x12\x0c\n\x04MMap\x18\x1a \x01(\x08\x12\x16\n\x0ePromptCacheAll\x18\x1b \x01(\x08\x12\x15\n\rPromptCacheRO\x18\x1c \x01(\x08\x12\x0f\n\x07Grammar\x18\x1d \x01(\t\x12\x0f\n\x07MainGPU\x18\x1e \x01(\t\x12\x13\n\x0bTensorSplit\x18\x1f \x01(\t\x12\x0c\n\x04TopP\x18 \x01(\x02\x12\x17\n\x0fPromptCachePath\x18! \x01(\t\x12\r\n\x05\x44\x65\x62ug\x18\" \x01(\x08\x12\x17\n\x0f\x45mbeddingTokens\x18# \x03(\x05\x12\x12\n\nEmbeddings\x18$ \x01(\t\x12\x14\n\x0cRopeFreqBase\x18% \x01(\x02\x12\x15\n\rRopeFreqScale\x18& \x01(\x02\x12\x1b\n\x13NegativePromptScale\x18\' \x01(\x02\x12\x16\n\x0eNegativePrompt\x18( \x01(\t\"\x18\n\x05Reply\x12\x0f\n\x07message\x18\x01 \x01(\x0c\"\x9d\x04\n\x0cModelOptions\x12\r\n\x05Model\x18\x01 \x01(\t\x12\x13\n\x0b\x43ontextSize\x18\x02 \x01(\x05\x12\x0c\n\x04Seed\x18\x03 \x01(\x05\x12\x0e\n\x06NBatch\x18\x04 \x01(\x05\x12\x11\n\tF16Memory\x18\x05 \x01(\x08\x12\r\n\x05MLock\x18\x06 \x01(\x08\x12\x0c\n\x04MMap\x18\x07 \x01(\x08\x12\x11\n\tVocabOnly\x18\x08 \x01(\x08\x12\x0f\n\x07LowVRAM\x18\t \x01(\x08\x12\x12\n\nEmbeddings\x18\n \x01(\x08\x12\x0c\n\x04NUMA\x18\x0b \x01(\x08\x12\x12\n\nNGPULayers\x18\x0c \x01(\x05\x12\x0f\n\x07MainGPU\x18\r \x01(\t\x12\x13\n\x0bTensorSplit\x18\x0e \x01(\t\x12\x0f\n\x07Threads\x18\x0f \x01(\x05\x12\x19\n\x11LibrarySearchPath\x18\x10 \x01(\t\x12\x14\n\x0cRopeFreqBase\x18\x11 \x01(\x02\x12\x15\n\rRopeFreqScale\x18\x12 \x01(\x02\x12\x12\n\nRMSNormEps\x18\x13 \x01(\x02\x12\x0c\n\x04NGQA\x18\x14 \x01(\x05\x12\x11\n\tModelFile\x18\x15 \x01(\t\x12\x0e\n\x06\x44\x65vice\x18\x16 \x01(\t\x12\x11\n\tUseTriton\x18\x17 \x01(\x08\x12\x15\n\rModelBaseName\x18\x18 \x01(\t\x12\x18\n\x10UseFastTokenizer\x18\x19 \x01(\x08\x12\x14\n\x0cPipelineType\x18\x1a \x01(\t\x12\x15\n\rSchedulerType\x18\x1b \x01(\t\x12\x0c\n\x04\x43UDA\x18\x1c \x01(\x08\"*\n\x06Result\x12\x0f\n\x07message\x18\x01 \x01(\t\x12\x0f\n\x07success\x18\x02 \x01(\x08\"%\n\x0f\x45mbeddingResult\x12\x12\n\nembeddings\x18\x01 \x03(\x02\"C\n\x11TranscriptRequest\x12\x0b\n\x03\x64st\x18\x02 \x01(\t\x12\x10\n\x08language\x18\x03 \x01(\t\x12\x0f\n\x07threads\x18\x04 \x01(\r\"N\n\x10TranscriptResult\x12,\n\x08segments\x18\x01 \x03(\x0b\x32\x1a.backend.TranscriptSegment\x12\x0c\n\x04text\x18\x02 \x01(\t\"Y\n\x11TranscriptSegment\x12\n\n\x02id\x18\x01 \x01(\x05\x12\r\n\x05start\x18\x02 \x01(\x03\x12\x0b\n\x03\x65nd\x18\x03 \x01(\x03\x12\x0c\n\x04text\x18\x04 \x01(\t\x12\x0e\n\x06tokens\x18\x05 \x03(\x05\"\x9e\x01\n\x14GenerateImageRequest\x12\x0e\n\x06height\x18\x01 \x01(\x05\x12\r\n\x05width\x18\x02 \x01(\x05\x12\x0c\n\x04mode\x18\x03 \x01(\x05\x12\x0c\n\x04step\x18\x04 \x01(\x05\x12\x0c\n\x04seed\x18\x05 \x01(\x05\x12\x17\n\x0fpositive_prompt\x18\x06 \x01(\t\x12\x17\n\x0fnegative_prompt\x18\x07 \x01(\t\x12\x0b\n\x03\x64st\x18\x08 \x01(\t\"6\n\nTTSRequest\x12\x0c\n\x04text\x18\x01 \x01(\t\x12\r\n\x05model\x18\x02 \x01(\t\x12\x0b\n\x03\x64st\x18\x03 \x01(\t2\xeb\x03\n\x07\x42\x61\x63kend\x12\x32\n\x06Health\x12\x16.backend.HealthMessage\x1a\x0e.backend.Reply\"\x00\x12\x34\n\x07Predict\x12\x17.backend.PredictOptions\x1a\x0e.backend.Reply\"\x00\x12\x35\n\tLoadModel\x12\x15.backend.ModelOptions\x1a\x0f.backend.Result\"\x00\x12<\n\rPredictStream\x12\x17.backend.PredictOptions\x1a\x0e.backend.Reply\"\x00\x30\x01\x12@\n\tEmbedding\x12\x17.backend.PredictOptions\x1a\x18.backend.EmbeddingResult\"\x00\x12\x41\n\rGenerateImage\x12\x1d.backend.GenerateImageRequest\x1a\x0f.backend.Result\"\x00\x12M\n\x12\x41udioTranscription\x12\x1a.backend.TranscriptRequest\x1a\x19.backend.TranscriptResult\"\x00\x12-\n\x03TTS\x12\x13.backend.TTSRequest\x1a\x0f.backend.Result\"\x00\x42Z\n\x19io.skynet.localai.backendB\x0eLocalAIBackendP\x01Z+github.com/go-skynet/LocalAI/pkg/grpc/protob\x06proto3')
_globals = globals()
_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals)
_builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'backend_pb2', _globals)
if _descriptor._USE_C_DESCRIPTORS == False:
DESCRIPTOR._options = None
DESCRIPTOR._serialized_options = b'\n\031io.skynet.localai.backendB\016LocalAIBackendP\001Z+github.com/go-skynet/LocalAI/pkg/grpc/proto'
_globals['_HEALTHMESSAGE']._serialized_start=26
_globals['_HEALTHMESSAGE']._serialized_end=41
_globals['_PREDICTOPTIONS']._serialized_start=44
_globals['_PREDICTOPTIONS']._serialized_end=818
_globals['_REPLY']._serialized_start=820
_globals['_REPLY']._serialized_end=844
_globals['_MODELOPTIONS']._serialized_start=847
_globals['_MODELOPTIONS']._serialized_end=1388
_globals['_RESULT']._serialized_start=1390
_globals['_RESULT']._serialized_end=1432
_globals['_EMBEDDINGRESULT']._serialized_start=1434
_globals['_EMBEDDINGRESULT']._serialized_end=1471
_globals['_TRANSCRIPTREQUEST']._serialized_start=1473
_globals['_TRANSCRIPTREQUEST']._serialized_end=1540
_globals['_TRANSCRIPTRESULT']._serialized_start=1542
_globals['_TRANSCRIPTRESULT']._serialized_end=1620
_globals['_TRANSCRIPTSEGMENT']._serialized_start=1622
_globals['_TRANSCRIPTSEGMENT']._serialized_end=1711
_globals['_GENERATEIMAGEREQUEST']._serialized_start=1714
_globals['_GENERATEIMAGEREQUEST']._serialized_end=1872
_globals['_TTSREQUEST']._serialized_start=1874
_globals['_TTSREQUEST']._serialized_end=1928
_globals['_BACKEND']._serialized_start=1931
_globals['_BACKEND']._serialized_end=2422
# @@protoc_insertion_point(module_scope)

View File

@@ -0,0 +1,297 @@
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT!
"""Client and server classes corresponding to protobuf-defined services."""
import grpc
import backend_pb2 as backend__pb2
class BackendStub(object):
"""Missing associated documentation comment in .proto file."""
def __init__(self, channel):
"""Constructor.
Args:
channel: A grpc.Channel.
"""
self.Health = channel.unary_unary(
'/backend.Backend/Health',
request_serializer=backend__pb2.HealthMessage.SerializeToString,
response_deserializer=backend__pb2.Reply.FromString,
)
self.Predict = channel.unary_unary(
'/backend.Backend/Predict',
request_serializer=backend__pb2.PredictOptions.SerializeToString,
response_deserializer=backend__pb2.Reply.FromString,
)
self.LoadModel = channel.unary_unary(
'/backend.Backend/LoadModel',
request_serializer=backend__pb2.ModelOptions.SerializeToString,
response_deserializer=backend__pb2.Result.FromString,
)
self.PredictStream = channel.unary_stream(
'/backend.Backend/PredictStream',
request_serializer=backend__pb2.PredictOptions.SerializeToString,
response_deserializer=backend__pb2.Reply.FromString,
)
self.Embedding = channel.unary_unary(
'/backend.Backend/Embedding',
request_serializer=backend__pb2.PredictOptions.SerializeToString,
response_deserializer=backend__pb2.EmbeddingResult.FromString,
)
self.GenerateImage = channel.unary_unary(
'/backend.Backend/GenerateImage',
request_serializer=backend__pb2.GenerateImageRequest.SerializeToString,
response_deserializer=backend__pb2.Result.FromString,
)
self.AudioTranscription = channel.unary_unary(
'/backend.Backend/AudioTranscription',
request_serializer=backend__pb2.TranscriptRequest.SerializeToString,
response_deserializer=backend__pb2.TranscriptResult.FromString,
)
self.TTS = channel.unary_unary(
'/backend.Backend/TTS',
request_serializer=backend__pb2.TTSRequest.SerializeToString,
response_deserializer=backend__pb2.Result.FromString,
)
class BackendServicer(object):
"""Missing associated documentation comment in .proto file."""
def Health(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def Predict(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def LoadModel(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def PredictStream(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def Embedding(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def GenerateImage(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def AudioTranscription(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def TTS(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def add_BackendServicer_to_server(servicer, server):
rpc_method_handlers = {
'Health': grpc.unary_unary_rpc_method_handler(
servicer.Health,
request_deserializer=backend__pb2.HealthMessage.FromString,
response_serializer=backend__pb2.Reply.SerializeToString,
),
'Predict': grpc.unary_unary_rpc_method_handler(
servicer.Predict,
request_deserializer=backend__pb2.PredictOptions.FromString,
response_serializer=backend__pb2.Reply.SerializeToString,
),
'LoadModel': grpc.unary_unary_rpc_method_handler(
servicer.LoadModel,
request_deserializer=backend__pb2.ModelOptions.FromString,
response_serializer=backend__pb2.Result.SerializeToString,
),
'PredictStream': grpc.unary_stream_rpc_method_handler(
servicer.PredictStream,
request_deserializer=backend__pb2.PredictOptions.FromString,
response_serializer=backend__pb2.Reply.SerializeToString,
),
'Embedding': grpc.unary_unary_rpc_method_handler(
servicer.Embedding,
request_deserializer=backend__pb2.PredictOptions.FromString,
response_serializer=backend__pb2.EmbeddingResult.SerializeToString,
),
'GenerateImage': grpc.unary_unary_rpc_method_handler(
servicer.GenerateImage,
request_deserializer=backend__pb2.GenerateImageRequest.FromString,
response_serializer=backend__pb2.Result.SerializeToString,
),
'AudioTranscription': grpc.unary_unary_rpc_method_handler(
servicer.AudioTranscription,
request_deserializer=backend__pb2.TranscriptRequest.FromString,
response_serializer=backend__pb2.TranscriptResult.SerializeToString,
),
'TTS': grpc.unary_unary_rpc_method_handler(
servicer.TTS,
request_deserializer=backend__pb2.TTSRequest.FromString,
response_serializer=backend__pb2.Result.SerializeToString,
),
}
generic_handler = grpc.method_handlers_generic_handler(
'backend.Backend', rpc_method_handlers)
server.add_generic_rpc_handlers((generic_handler,))
# This class is part of an EXPERIMENTAL API.
class Backend(object):
"""Missing associated documentation comment in .proto file."""
@staticmethod
def Health(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Health',
backend__pb2.HealthMessage.SerializeToString,
backend__pb2.Reply.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def Predict(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Predict',
backend__pb2.PredictOptions.SerializeToString,
backend__pb2.Reply.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def LoadModel(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/LoadModel',
backend__pb2.ModelOptions.SerializeToString,
backend__pb2.Result.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def PredictStream(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_stream(request, target, '/backend.Backend/PredictStream',
backend__pb2.PredictOptions.SerializeToString,
backend__pb2.Reply.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def Embedding(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Embedding',
backend__pb2.PredictOptions.SerializeToString,
backend__pb2.EmbeddingResult.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def GenerateImage(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/GenerateImage',
backend__pb2.GenerateImageRequest.SerializeToString,
backend__pb2.Result.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def AudioTranscription(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/AudioTranscription',
backend__pb2.TranscriptRequest.SerializeToString,
backend__pb2.TranscriptResult.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def TTS(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/TTS',
backend__pb2.TTSRequest.SerializeToString,
backend__pb2.Result.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)

View File

@@ -0,0 +1,49 @@
# -*- coding: utf-8 -*-
# Generated by the protocol buffer compiler. DO NOT EDIT!
# source: backend.proto
"""Generated protocol buffer code."""
from google.protobuf import descriptor as _descriptor
from google.protobuf import descriptor_pool as _descriptor_pool
from google.protobuf import symbol_database as _symbol_database
from google.protobuf.internal import builder as _builder
# @@protoc_insertion_point(imports)
_sym_db = _symbol_database.Default()
DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\rbackend.proto\x12\x07\x62\x61\x63kend\"\x0f\n\rHealthMessage\"\x86\x06\n\x0ePredictOptions\x12\x0e\n\x06Prompt\x18\x01 \x01(\t\x12\x0c\n\x04Seed\x18\x02 \x01(\x05\x12\x0f\n\x07Threads\x18\x03 \x01(\x05\x12\x0e\n\x06Tokens\x18\x04 \x01(\x05\x12\x0c\n\x04TopK\x18\x05 \x01(\x05\x12\x0e\n\x06Repeat\x18\x06 \x01(\x05\x12\r\n\x05\x42\x61tch\x18\x07 \x01(\x05\x12\r\n\x05NKeep\x18\x08 \x01(\x05\x12\x13\n\x0bTemperature\x18\t \x01(\x02\x12\x0f\n\x07Penalty\x18\n \x01(\x02\x12\r\n\x05\x46\x31\x36KV\x18\x0b \x01(\x08\x12\x11\n\tDebugMode\x18\x0c \x01(\x08\x12\x13\n\x0bStopPrompts\x18\r \x03(\t\x12\x11\n\tIgnoreEOS\x18\x0e \x01(\x08\x12\x19\n\x11TailFreeSamplingZ\x18\x0f \x01(\x02\x12\x10\n\x08TypicalP\x18\x10 \x01(\x02\x12\x18\n\x10\x46requencyPenalty\x18\x11 \x01(\x02\x12\x17\n\x0fPresencePenalty\x18\x12 \x01(\x02\x12\x10\n\x08Mirostat\x18\x13 \x01(\x05\x12\x13\n\x0bMirostatETA\x18\x14 \x01(\x02\x12\x13\n\x0bMirostatTAU\x18\x15 \x01(\x02\x12\x12\n\nPenalizeNL\x18\x16 \x01(\x08\x12\x11\n\tLogitBias\x18\x17 \x01(\t\x12\r\n\x05MLock\x18\x19 \x01(\x08\x12\x0c\n\x04MMap\x18\x1a \x01(\x08\x12\x16\n\x0ePromptCacheAll\x18\x1b \x01(\x08\x12\x15\n\rPromptCacheRO\x18\x1c \x01(\x08\x12\x0f\n\x07Grammar\x18\x1d \x01(\t\x12\x0f\n\x07MainGPU\x18\x1e \x01(\t\x12\x13\n\x0bTensorSplit\x18\x1f \x01(\t\x12\x0c\n\x04TopP\x18 \x01(\x02\x12\x17\n\x0fPromptCachePath\x18! \x01(\t\x12\r\n\x05\x44\x65\x62ug\x18\" \x01(\x08\x12\x17\n\x0f\x45mbeddingTokens\x18# \x03(\x05\x12\x12\n\nEmbeddings\x18$ \x01(\t\x12\x14\n\x0cRopeFreqBase\x18% \x01(\x02\x12\x15\n\rRopeFreqScale\x18& \x01(\x02\x12\x1b\n\x13NegativePromptScale\x18\' \x01(\x02\x12\x16\n\x0eNegativePrompt\x18( \x01(\t\"\x18\n\x05Reply\x12\x0f\n\x07message\x18\x01 \x01(\x0c\"\x9d\x04\n\x0cModelOptions\x12\r\n\x05Model\x18\x01 \x01(\t\x12\x13\n\x0b\x43ontextSize\x18\x02 \x01(\x05\x12\x0c\n\x04Seed\x18\x03 \x01(\x05\x12\x0e\n\x06NBatch\x18\x04 \x01(\x05\x12\x11\n\tF16Memory\x18\x05 \x01(\x08\x12\r\n\x05MLock\x18\x06 \x01(\x08\x12\x0c\n\x04MMap\x18\x07 \x01(\x08\x12\x11\n\tVocabOnly\x18\x08 \x01(\x08\x12\x0f\n\x07LowVRAM\x18\t \x01(\x08\x12\x12\n\nEmbeddings\x18\n \x01(\x08\x12\x0c\n\x04NUMA\x18\x0b \x01(\x08\x12\x12\n\nNGPULayers\x18\x0c \x01(\x05\x12\x0f\n\x07MainGPU\x18\r \x01(\t\x12\x13\n\x0bTensorSplit\x18\x0e \x01(\t\x12\x0f\n\x07Threads\x18\x0f \x01(\x05\x12\x19\n\x11LibrarySearchPath\x18\x10 \x01(\t\x12\x14\n\x0cRopeFreqBase\x18\x11 \x01(\x02\x12\x15\n\rRopeFreqScale\x18\x12 \x01(\x02\x12\x12\n\nRMSNormEps\x18\x13 \x01(\x02\x12\x0c\n\x04NGQA\x18\x14 \x01(\x05\x12\x11\n\tModelFile\x18\x15 \x01(\t\x12\x0e\n\x06\x44\x65vice\x18\x16 \x01(\t\x12\x11\n\tUseTriton\x18\x17 \x01(\x08\x12\x15\n\rModelBaseName\x18\x18 \x01(\t\x12\x18\n\x10UseFastTokenizer\x18\x19 \x01(\x08\x12\x14\n\x0cPipelineType\x18\x1a \x01(\t\x12\x15\n\rSchedulerType\x18\x1b \x01(\t\x12\x0c\n\x04\x43UDA\x18\x1c \x01(\x08\"*\n\x06Result\x12\x0f\n\x07message\x18\x01 \x01(\t\x12\x0f\n\x07success\x18\x02 \x01(\x08\"%\n\x0f\x45mbeddingResult\x12\x12\n\nembeddings\x18\x01 \x03(\x02\"C\n\x11TranscriptRequest\x12\x0b\n\x03\x64st\x18\x02 \x01(\t\x12\x10\n\x08language\x18\x03 \x01(\t\x12\x0f\n\x07threads\x18\x04 \x01(\r\"N\n\x10TranscriptResult\x12,\n\x08segments\x18\x01 \x03(\x0b\x32\x1a.backend.TranscriptSegment\x12\x0c\n\x04text\x18\x02 \x01(\t\"Y\n\x11TranscriptSegment\x12\n\n\x02id\x18\x01 \x01(\x05\x12\r\n\x05start\x18\x02 \x01(\x03\x12\x0b\n\x03\x65nd\x18\x03 \x01(\x03\x12\x0c\n\x04text\x18\x04 \x01(\t\x12\x0e\n\x06tokens\x18\x05 \x03(\x05\"\x9e\x01\n\x14GenerateImageRequest\x12\x0e\n\x06height\x18\x01 \x01(\x05\x12\r\n\x05width\x18\x02 \x01(\x05\x12\x0c\n\x04mode\x18\x03 \x01(\x05\x12\x0c\n\x04step\x18\x04 \x01(\x05\x12\x0c\n\x04seed\x18\x05 \x01(\x05\x12\x17\n\x0fpositive_prompt\x18\x06 \x01(\t\x12\x17\n\x0fnegative_prompt\x18\x07 \x01(\t\x12\x0b\n\x03\x64st\x18\x08 \x01(\t\"6\n\nTTSRequest\x12\x0c\n\x04text\x18\x01 \x01(\t\x12\r\n\x05model\x18\x02 \x01(\t\x12\x0b\n\x03\x64st\x18\x03 \x01(\t2\xeb\x03\n\x07\x42\x61\x63kend\x12\x32\n\x06Health\x12\x16.backend.HealthMessage\x1a\x0e.backend.Reply\"\x00\x12\x34\n\x07Predict\x12\x17.backend.PredictOptions\x1a\x0e.backend.Reply\"\x00\x12\x35\n\tLoadModel\x12\x15.backend.ModelOptions\x1a\x0f.backend.Result\"\x00\x12<\n\rPredictStream\x12\x17.backend.PredictOptions\x1a\x0e.backend.Reply\"\x00\x30\x01\x12@\n\tEmbedding\x12\x17.backend.PredictOptions\x1a\x18.backend.EmbeddingResult\"\x00\x12\x41\n\rGenerateImage\x12\x1d.backend.GenerateImageRequest\x1a\x0f.backend.Result\"\x00\x12M\n\x12\x41udioTranscription\x12\x1a.backend.TranscriptRequest\x1a\x19.backend.TranscriptResult\"\x00\x12-\n\x03TTS\x12\x13.backend.TTSRequest\x1a\x0f.backend.Result\"\x00\x42Z\n\x19io.skynet.localai.backendB\x0eLocalAIBackendP\x01Z+github.com/go-skynet/LocalAI/pkg/grpc/protob\x06proto3')
_globals = globals()
_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals)
_builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'backend_pb2', _globals)
if _descriptor._USE_C_DESCRIPTORS == False:
DESCRIPTOR._options = None
DESCRIPTOR._serialized_options = b'\n\031io.skynet.localai.backendB\016LocalAIBackendP\001Z+github.com/go-skynet/LocalAI/pkg/grpc/proto'
_globals['_HEALTHMESSAGE']._serialized_start=26
_globals['_HEALTHMESSAGE']._serialized_end=41
_globals['_PREDICTOPTIONS']._serialized_start=44
_globals['_PREDICTOPTIONS']._serialized_end=818
_globals['_REPLY']._serialized_start=820
_globals['_REPLY']._serialized_end=844
_globals['_MODELOPTIONS']._serialized_start=847
_globals['_MODELOPTIONS']._serialized_end=1388
_globals['_RESULT']._serialized_start=1390
_globals['_RESULT']._serialized_end=1432
_globals['_EMBEDDINGRESULT']._serialized_start=1434
_globals['_EMBEDDINGRESULT']._serialized_end=1471
_globals['_TRANSCRIPTREQUEST']._serialized_start=1473
_globals['_TRANSCRIPTREQUEST']._serialized_end=1540
_globals['_TRANSCRIPTRESULT']._serialized_start=1542
_globals['_TRANSCRIPTRESULT']._serialized_end=1620
_globals['_TRANSCRIPTSEGMENT']._serialized_start=1622
_globals['_TRANSCRIPTSEGMENT']._serialized_end=1711
_globals['_GENERATEIMAGEREQUEST']._serialized_start=1714
_globals['_GENERATEIMAGEREQUEST']._serialized_end=1872
_globals['_TTSREQUEST']._serialized_start=1874
_globals['_TTSREQUEST']._serialized_end=1928
_globals['_BACKEND']._serialized_start=1931
_globals['_BACKEND']._serialized_end=2422
# @@protoc_insertion_point(module_scope)

View File

@@ -0,0 +1,297 @@
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT!
"""Client and server classes corresponding to protobuf-defined services."""
import grpc
import backend_pb2 as backend__pb2
class BackendStub(object):
"""Missing associated documentation comment in .proto file."""
def __init__(self, channel):
"""Constructor.
Args:
channel: A grpc.Channel.
"""
self.Health = channel.unary_unary(
'/backend.Backend/Health',
request_serializer=backend__pb2.HealthMessage.SerializeToString,
response_deserializer=backend__pb2.Reply.FromString,
)
self.Predict = channel.unary_unary(
'/backend.Backend/Predict',
request_serializer=backend__pb2.PredictOptions.SerializeToString,
response_deserializer=backend__pb2.Reply.FromString,
)
self.LoadModel = channel.unary_unary(
'/backend.Backend/LoadModel',
request_serializer=backend__pb2.ModelOptions.SerializeToString,
response_deserializer=backend__pb2.Result.FromString,
)
self.PredictStream = channel.unary_stream(
'/backend.Backend/PredictStream',
request_serializer=backend__pb2.PredictOptions.SerializeToString,
response_deserializer=backend__pb2.Reply.FromString,
)
self.Embedding = channel.unary_unary(
'/backend.Backend/Embedding',
request_serializer=backend__pb2.PredictOptions.SerializeToString,
response_deserializer=backend__pb2.EmbeddingResult.FromString,
)
self.GenerateImage = channel.unary_unary(
'/backend.Backend/GenerateImage',
request_serializer=backend__pb2.GenerateImageRequest.SerializeToString,
response_deserializer=backend__pb2.Result.FromString,
)
self.AudioTranscription = channel.unary_unary(
'/backend.Backend/AudioTranscription',
request_serializer=backend__pb2.TranscriptRequest.SerializeToString,
response_deserializer=backend__pb2.TranscriptResult.FromString,
)
self.TTS = channel.unary_unary(
'/backend.Backend/TTS',
request_serializer=backend__pb2.TTSRequest.SerializeToString,
response_deserializer=backend__pb2.Result.FromString,
)
class BackendServicer(object):
"""Missing associated documentation comment in .proto file."""
def Health(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def Predict(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def LoadModel(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def PredictStream(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def Embedding(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def GenerateImage(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def AudioTranscription(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def TTS(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def add_BackendServicer_to_server(servicer, server):
rpc_method_handlers = {
'Health': grpc.unary_unary_rpc_method_handler(
servicer.Health,
request_deserializer=backend__pb2.HealthMessage.FromString,
response_serializer=backend__pb2.Reply.SerializeToString,
),
'Predict': grpc.unary_unary_rpc_method_handler(
servicer.Predict,
request_deserializer=backend__pb2.PredictOptions.FromString,
response_serializer=backend__pb2.Reply.SerializeToString,
),
'LoadModel': grpc.unary_unary_rpc_method_handler(
servicer.LoadModel,
request_deserializer=backend__pb2.ModelOptions.FromString,
response_serializer=backend__pb2.Result.SerializeToString,
),
'PredictStream': grpc.unary_stream_rpc_method_handler(
servicer.PredictStream,
request_deserializer=backend__pb2.PredictOptions.FromString,
response_serializer=backend__pb2.Reply.SerializeToString,
),
'Embedding': grpc.unary_unary_rpc_method_handler(
servicer.Embedding,
request_deserializer=backend__pb2.PredictOptions.FromString,
response_serializer=backend__pb2.EmbeddingResult.SerializeToString,
),
'GenerateImage': grpc.unary_unary_rpc_method_handler(
servicer.GenerateImage,
request_deserializer=backend__pb2.GenerateImageRequest.FromString,
response_serializer=backend__pb2.Result.SerializeToString,
),
'AudioTranscription': grpc.unary_unary_rpc_method_handler(
servicer.AudioTranscription,
request_deserializer=backend__pb2.TranscriptRequest.FromString,
response_serializer=backend__pb2.TranscriptResult.SerializeToString,
),
'TTS': grpc.unary_unary_rpc_method_handler(
servicer.TTS,
request_deserializer=backend__pb2.TTSRequest.FromString,
response_serializer=backend__pb2.Result.SerializeToString,
),
}
generic_handler = grpc.method_handlers_generic_handler(
'backend.Backend', rpc_method_handlers)
server.add_generic_rpc_handlers((generic_handler,))
# This class is part of an EXPERIMENTAL API.
class Backend(object):
"""Missing associated documentation comment in .proto file."""
@staticmethod
def Health(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Health',
backend__pb2.HealthMessage.SerializeToString,
backend__pb2.Reply.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def Predict(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Predict',
backend__pb2.PredictOptions.SerializeToString,
backend__pb2.Reply.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def LoadModel(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/LoadModel',
backend__pb2.ModelOptions.SerializeToString,
backend__pb2.Result.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def PredictStream(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_stream(request, target, '/backend.Backend/PredictStream',
backend__pb2.PredictOptions.SerializeToString,
backend__pb2.Reply.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def Embedding(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Embedding',
backend__pb2.PredictOptions.SerializeToString,
backend__pb2.EmbeddingResult.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def GenerateImage(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/GenerateImage',
backend__pb2.GenerateImageRequest.SerializeToString,
backend__pb2.Result.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def AudioTranscription(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/AudioTranscription',
backend__pb2.TranscriptRequest.SerializeToString,
backend__pb2.TranscriptResult.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def TTS(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/TTS',
backend__pb2.TTSRequest.SerializeToString,
backend__pb2.Result.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)

View File

@@ -0,0 +1,83 @@
#!/usr/bin/env python3
import grpc
from concurrent import futures
import time
import backend_pb2
import backend_pb2_grpc
import argparse
import signal
import sys
import os
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
from pathlib import Path
from bark import SAMPLE_RATE, generate_audio, preload_models
from scipy.io.wavfile import write as write_wav
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
# Implement the BackendServicer class with the service methods
class BackendServicer(backend_pb2_grpc.BackendServicer):
def Health(self, request, context):
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
def LoadModel(self, request, context):
model_name = request.Model
try:
print("Preparing models, please wait", file=sys.stderr)
# download and load all models
preload_models()
except Exception as err:
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
# Implement your logic here for the LoadModel service
# Replace this with your desired response
return backend_pb2.Result(message="Model loaded successfully", success=True)
def TTS(self, request, context):
model = request.model
print(request, file=sys.stderr)
try:
audio_array = None
if model != "":
audio_array = generate_audio(request.text, history_prompt=model)
else:
audio_array = generate_audio(request.text)
print("saving to", request.dst, file=sys.stderr)
# save audio to disk
write_wav(request.dst, SAMPLE_RATE, audio_array)
print("saved to", request.dst, file=sys.stderr)
print("tts for", file=sys.stderr)
print(request, file=sys.stderr)
except Exception as err:
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
return backend_pb2.Result(success=True)
def serve(address):
server = grpc.server(futures.ThreadPoolExecutor(max_workers=10))
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
server.add_insecure_port(address)
server.start()
print("Server started. Listening on: " + address, file=sys.stderr)
# Define the signal handler function
def signal_handler(sig, frame):
print("Received termination signal. Shutting down...")
server.stop(0)
sys.exit(0)
# Set the signal handlers for SIGINT and SIGTERM
signal.signal(signal.SIGINT, signal_handler)
signal.signal(signal.SIGTERM, signal_handler)
try:
while True:
time.sleep(_ONE_DAY_IN_SECONDS)
except KeyboardInterrupt:
server.stop(0)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run the gRPC server.")
parser.add_argument(
"--addr", default="localhost:50051", help="The address to bind the server to."
)
args = parser.parse_args()
serve(args.addr)

View File

@@ -0,0 +1,114 @@
#!/usr/bin/env python3
import grpc
from concurrent import futures
import time
import backend_pb2
import backend_pb2_grpc
import argparse
import signal
import sys
import os
# import diffusers
import torch
from torch import autocast
from diffusers import StableDiffusionXLPipeline, DPMSolverMultistepScheduler, StableDiffusionPipeline, DiffusionPipeline, EulerAncestralDiscreteScheduler
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
# Implement the BackendServicer class with the service methods
class BackendServicer(backend_pb2_grpc.BackendServicer):
def Health(self, request, context):
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
def LoadModel(self, request, context):
try:
print(f"Loading model {request.Model}...", file=sys.stderr)
print(f"Request {request}", file=sys.stderr)
torchType = torch.float32
if request.F16Memory:
torchType = torch.float16
if request.PipelineType == "":
request.PipelineType == "StableDiffusionPipeline"
if request.PipelineType == "StableDiffusionPipeline":
self.pipe = StableDiffusionPipeline.from_pretrained(request.Model,
torch_dtype=torchType)
if request.PipelineType == "DiffusionPipeline":
self.pipe = DiffusionPipeline.from_pretrained(request.Model,
torch_dtype=torchType)
if request.PipelineType == "StableDiffusionXLPipeline":
self.pipe = StableDiffusionXLPipeline.from_pretrained(
request.Model,
torch_dtype=torchType,
use_safetensors=True,
# variant="fp16"
)
# torch_dtype needs to be customized. float16 for GPU, float32 for CPU
# TODO: this needs to be customized
if request.SchedulerType == "EulerAncestralDiscreteScheduler":
self.pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(self.pipe.scheduler.config)
if request.SchedulerType == "DPMSolverMultistepScheduler":
self.pipe.scheduler = DPMSolverMultistepScheduler.from_config(self.pipe.scheduler.config)
if request.CUDA:
self.pipe.to('cuda')
except Exception as err:
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
# Implement your logic here for the LoadModel service
# Replace this with your desired response
return backend_pb2.Result(message="Model loaded successfully", success=True)
def GenerateImage(self, request, context):
prompt = request.positive_prompt
negative_prompt = request.negative_prompt
image = self.pipe(
prompt,
negative_prompt=negative_prompt,
width=request.width,
height=request.height,
# guidance_scale=12,
target_size=(request.width,request.height),
original_size=(4096,4096),
num_inference_steps=request.step
).images[0]
image.save(request.dst)
return backend_pb2.Result(message="Model loaded successfully", success=True)
def serve(address):
server = grpc.server(futures.ThreadPoolExecutor(max_workers=10))
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
server.add_insecure_port(address)
server.start()
print("Server started. Listening on: " + address, file=sys.stderr)
# Define the signal handler function
def signal_handler(sig, frame):
print("Received termination signal. Shutting down...")
server.stop(0)
sys.exit(0)
# Set the signal handlers for SIGINT and SIGTERM
signal.signal(signal.SIGINT, signal_handler)
signal.signal(signal.SIGTERM, signal_handler)
try:
while True:
time.sleep(_ONE_DAY_IN_SECONDS)
except KeyboardInterrupt:
server.stop(0)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run the gRPC server.")
parser.add_argument(
"--addr", default="localhost:50051", help="The address to bind the server to."
)
args = parser.parse_args()
serve(args.addr)

View File

@@ -0,0 +1,49 @@
# -*- coding: utf-8 -*-
# Generated by the protocol buffer compiler. DO NOT EDIT!
# source: backend.proto
"""Generated protocol buffer code."""
from google.protobuf import descriptor as _descriptor
from google.protobuf import descriptor_pool as _descriptor_pool
from google.protobuf import symbol_database as _symbol_database
from google.protobuf.internal import builder as _builder
# @@protoc_insertion_point(imports)
_sym_db = _symbol_database.Default()
DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\rbackend.proto\x12\x07\x62\x61\x63kend\"\x0f\n\rHealthMessage\"\x86\x06\n\x0ePredictOptions\x12\x0e\n\x06Prompt\x18\x01 \x01(\t\x12\x0c\n\x04Seed\x18\x02 \x01(\x05\x12\x0f\n\x07Threads\x18\x03 \x01(\x05\x12\x0e\n\x06Tokens\x18\x04 \x01(\x05\x12\x0c\n\x04TopK\x18\x05 \x01(\x05\x12\x0e\n\x06Repeat\x18\x06 \x01(\x05\x12\r\n\x05\x42\x61tch\x18\x07 \x01(\x05\x12\r\n\x05NKeep\x18\x08 \x01(\x05\x12\x13\n\x0bTemperature\x18\t \x01(\x02\x12\x0f\n\x07Penalty\x18\n \x01(\x02\x12\r\n\x05\x46\x31\x36KV\x18\x0b \x01(\x08\x12\x11\n\tDebugMode\x18\x0c \x01(\x08\x12\x13\n\x0bStopPrompts\x18\r \x03(\t\x12\x11\n\tIgnoreEOS\x18\x0e \x01(\x08\x12\x19\n\x11TailFreeSamplingZ\x18\x0f \x01(\x02\x12\x10\n\x08TypicalP\x18\x10 \x01(\x02\x12\x18\n\x10\x46requencyPenalty\x18\x11 \x01(\x02\x12\x17\n\x0fPresencePenalty\x18\x12 \x01(\x02\x12\x10\n\x08Mirostat\x18\x13 \x01(\x05\x12\x13\n\x0bMirostatETA\x18\x14 \x01(\x02\x12\x13\n\x0bMirostatTAU\x18\x15 \x01(\x02\x12\x12\n\nPenalizeNL\x18\x16 \x01(\x08\x12\x11\n\tLogitBias\x18\x17 \x01(\t\x12\r\n\x05MLock\x18\x19 \x01(\x08\x12\x0c\n\x04MMap\x18\x1a \x01(\x08\x12\x16\n\x0ePromptCacheAll\x18\x1b \x01(\x08\x12\x15\n\rPromptCacheRO\x18\x1c \x01(\x08\x12\x0f\n\x07Grammar\x18\x1d \x01(\t\x12\x0f\n\x07MainGPU\x18\x1e \x01(\t\x12\x13\n\x0bTensorSplit\x18\x1f \x01(\t\x12\x0c\n\x04TopP\x18 \x01(\x02\x12\x17\n\x0fPromptCachePath\x18! \x01(\t\x12\r\n\x05\x44\x65\x62ug\x18\" \x01(\x08\x12\x17\n\x0f\x45mbeddingTokens\x18# \x03(\x05\x12\x12\n\nEmbeddings\x18$ \x01(\t\x12\x14\n\x0cRopeFreqBase\x18% \x01(\x02\x12\x15\n\rRopeFreqScale\x18& \x01(\x02\x12\x1b\n\x13NegativePromptScale\x18\' \x01(\x02\x12\x16\n\x0eNegativePrompt\x18( \x01(\t\"\x18\n\x05Reply\x12\x0f\n\x07message\x18\x01 \x01(\x0c\"\x9d\x04\n\x0cModelOptions\x12\r\n\x05Model\x18\x01 \x01(\t\x12\x13\n\x0b\x43ontextSize\x18\x02 \x01(\x05\x12\x0c\n\x04Seed\x18\x03 \x01(\x05\x12\x0e\n\x06NBatch\x18\x04 \x01(\x05\x12\x11\n\tF16Memory\x18\x05 \x01(\x08\x12\r\n\x05MLock\x18\x06 \x01(\x08\x12\x0c\n\x04MMap\x18\x07 \x01(\x08\x12\x11\n\tVocabOnly\x18\x08 \x01(\x08\x12\x0f\n\x07LowVRAM\x18\t \x01(\x08\x12\x12\n\nEmbeddings\x18\n \x01(\x08\x12\x0c\n\x04NUMA\x18\x0b \x01(\x08\x12\x12\n\nNGPULayers\x18\x0c \x01(\x05\x12\x0f\n\x07MainGPU\x18\r \x01(\t\x12\x13\n\x0bTensorSplit\x18\x0e \x01(\t\x12\x0f\n\x07Threads\x18\x0f \x01(\x05\x12\x19\n\x11LibrarySearchPath\x18\x10 \x01(\t\x12\x14\n\x0cRopeFreqBase\x18\x11 \x01(\x02\x12\x15\n\rRopeFreqScale\x18\x12 \x01(\x02\x12\x12\n\nRMSNormEps\x18\x13 \x01(\x02\x12\x0c\n\x04NGQA\x18\x14 \x01(\x05\x12\x11\n\tModelFile\x18\x15 \x01(\t\x12\x0e\n\x06\x44\x65vice\x18\x16 \x01(\t\x12\x11\n\tUseTriton\x18\x17 \x01(\x08\x12\x15\n\rModelBaseName\x18\x18 \x01(\t\x12\x18\n\x10UseFastTokenizer\x18\x19 \x01(\x08\x12\x14\n\x0cPipelineType\x18\x1a \x01(\t\x12\x15\n\rSchedulerType\x18\x1b \x01(\t\x12\x0c\n\x04\x43UDA\x18\x1c \x01(\x08\"*\n\x06Result\x12\x0f\n\x07message\x18\x01 \x01(\t\x12\x0f\n\x07success\x18\x02 \x01(\x08\"%\n\x0f\x45mbeddingResult\x12\x12\n\nembeddings\x18\x01 \x03(\x02\"C\n\x11TranscriptRequest\x12\x0b\n\x03\x64st\x18\x02 \x01(\t\x12\x10\n\x08language\x18\x03 \x01(\t\x12\x0f\n\x07threads\x18\x04 \x01(\r\"N\n\x10TranscriptResult\x12,\n\x08segments\x18\x01 \x03(\x0b\x32\x1a.backend.TranscriptSegment\x12\x0c\n\x04text\x18\x02 \x01(\t\"Y\n\x11TranscriptSegment\x12\n\n\x02id\x18\x01 \x01(\x05\x12\r\n\x05start\x18\x02 \x01(\x03\x12\x0b\n\x03\x65nd\x18\x03 \x01(\x03\x12\x0c\n\x04text\x18\x04 \x01(\t\x12\x0e\n\x06tokens\x18\x05 \x03(\x05\"\x9e\x01\n\x14GenerateImageRequest\x12\x0e\n\x06height\x18\x01 \x01(\x05\x12\r\n\x05width\x18\x02 \x01(\x05\x12\x0c\n\x04mode\x18\x03 \x01(\x05\x12\x0c\n\x04step\x18\x04 \x01(\x05\x12\x0c\n\x04seed\x18\x05 \x01(\x05\x12\x17\n\x0fpositive_prompt\x18\x06 \x01(\t\x12\x17\n\x0fnegative_prompt\x18\x07 \x01(\t\x12\x0b\n\x03\x64st\x18\x08 \x01(\t\"6\n\nTTSRequest\x12\x0c\n\x04text\x18\x01 \x01(\t\x12\r\n\x05model\x18\x02 \x01(\t\x12\x0b\n\x03\x64st\x18\x03 \x01(\t2\xeb\x03\n\x07\x42\x61\x63kend\x12\x32\n\x06Health\x12\x16.backend.HealthMessage\x1a\x0e.backend.Reply\"\x00\x12\x34\n\x07Predict\x12\x17.backend.PredictOptions\x1a\x0e.backend.Reply\"\x00\x12\x35\n\tLoadModel\x12\x15.backend.ModelOptions\x1a\x0f.backend.Result\"\x00\x12<\n\rPredictStream\x12\x17.backend.PredictOptions\x1a\x0e.backend.Reply\"\x00\x30\x01\x12@\n\tEmbedding\x12\x17.backend.PredictOptions\x1a\x18.backend.EmbeddingResult\"\x00\x12\x41\n\rGenerateImage\x12\x1d.backend.GenerateImageRequest\x1a\x0f.backend.Result\"\x00\x12M\n\x12\x41udioTranscription\x12\x1a.backend.TranscriptRequest\x1a\x19.backend.TranscriptResult\"\x00\x12-\n\x03TTS\x12\x13.backend.TTSRequest\x1a\x0f.backend.Result\"\x00\x42Z\n\x19io.skynet.localai.backendB\x0eLocalAIBackendP\x01Z+github.com/go-skynet/LocalAI/pkg/grpc/protob\x06proto3')
_globals = globals()
_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals)
_builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'backend_pb2', _globals)
if _descriptor._USE_C_DESCRIPTORS == False:
DESCRIPTOR._options = None
DESCRIPTOR._serialized_options = b'\n\031io.skynet.localai.backendB\016LocalAIBackendP\001Z+github.com/go-skynet/LocalAI/pkg/grpc/proto'
_globals['_HEALTHMESSAGE']._serialized_start=26
_globals['_HEALTHMESSAGE']._serialized_end=41
_globals['_PREDICTOPTIONS']._serialized_start=44
_globals['_PREDICTOPTIONS']._serialized_end=818
_globals['_REPLY']._serialized_start=820
_globals['_REPLY']._serialized_end=844
_globals['_MODELOPTIONS']._serialized_start=847
_globals['_MODELOPTIONS']._serialized_end=1388
_globals['_RESULT']._serialized_start=1390
_globals['_RESULT']._serialized_end=1432
_globals['_EMBEDDINGRESULT']._serialized_start=1434
_globals['_EMBEDDINGRESULT']._serialized_end=1471
_globals['_TRANSCRIPTREQUEST']._serialized_start=1473
_globals['_TRANSCRIPTREQUEST']._serialized_end=1540
_globals['_TRANSCRIPTRESULT']._serialized_start=1542
_globals['_TRANSCRIPTRESULT']._serialized_end=1620
_globals['_TRANSCRIPTSEGMENT']._serialized_start=1622
_globals['_TRANSCRIPTSEGMENT']._serialized_end=1711
_globals['_GENERATEIMAGEREQUEST']._serialized_start=1714
_globals['_GENERATEIMAGEREQUEST']._serialized_end=1872
_globals['_TTSREQUEST']._serialized_start=1874
_globals['_TTSREQUEST']._serialized_end=1928
_globals['_BACKEND']._serialized_start=1931
_globals['_BACKEND']._serialized_end=2422
# @@protoc_insertion_point(module_scope)

View File

@@ -0,0 +1,297 @@
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT!
"""Client and server classes corresponding to protobuf-defined services."""
import grpc
import backend_pb2 as backend__pb2
class BackendStub(object):
"""Missing associated documentation comment in .proto file."""
def __init__(self, channel):
"""Constructor.
Args:
channel: A grpc.Channel.
"""
self.Health = channel.unary_unary(
'/backend.Backend/Health',
request_serializer=backend__pb2.HealthMessage.SerializeToString,
response_deserializer=backend__pb2.Reply.FromString,
)
self.Predict = channel.unary_unary(
'/backend.Backend/Predict',
request_serializer=backend__pb2.PredictOptions.SerializeToString,
response_deserializer=backend__pb2.Reply.FromString,
)
self.LoadModel = channel.unary_unary(
'/backend.Backend/LoadModel',
request_serializer=backend__pb2.ModelOptions.SerializeToString,
response_deserializer=backend__pb2.Result.FromString,
)
self.PredictStream = channel.unary_stream(
'/backend.Backend/PredictStream',
request_serializer=backend__pb2.PredictOptions.SerializeToString,
response_deserializer=backend__pb2.Reply.FromString,
)
self.Embedding = channel.unary_unary(
'/backend.Backend/Embedding',
request_serializer=backend__pb2.PredictOptions.SerializeToString,
response_deserializer=backend__pb2.EmbeddingResult.FromString,
)
self.GenerateImage = channel.unary_unary(
'/backend.Backend/GenerateImage',
request_serializer=backend__pb2.GenerateImageRequest.SerializeToString,
response_deserializer=backend__pb2.Result.FromString,
)
self.AudioTranscription = channel.unary_unary(
'/backend.Backend/AudioTranscription',
request_serializer=backend__pb2.TranscriptRequest.SerializeToString,
response_deserializer=backend__pb2.TranscriptResult.FromString,
)
self.TTS = channel.unary_unary(
'/backend.Backend/TTS',
request_serializer=backend__pb2.TTSRequest.SerializeToString,
response_deserializer=backend__pb2.Result.FromString,
)
class BackendServicer(object):
"""Missing associated documentation comment in .proto file."""
def Health(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def Predict(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def LoadModel(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def PredictStream(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def Embedding(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def GenerateImage(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def AudioTranscription(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def TTS(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def add_BackendServicer_to_server(servicer, server):
rpc_method_handlers = {
'Health': grpc.unary_unary_rpc_method_handler(
servicer.Health,
request_deserializer=backend__pb2.HealthMessage.FromString,
response_serializer=backend__pb2.Reply.SerializeToString,
),
'Predict': grpc.unary_unary_rpc_method_handler(
servicer.Predict,
request_deserializer=backend__pb2.PredictOptions.FromString,
response_serializer=backend__pb2.Reply.SerializeToString,
),
'LoadModel': grpc.unary_unary_rpc_method_handler(
servicer.LoadModel,
request_deserializer=backend__pb2.ModelOptions.FromString,
response_serializer=backend__pb2.Result.SerializeToString,
),
'PredictStream': grpc.unary_stream_rpc_method_handler(
servicer.PredictStream,
request_deserializer=backend__pb2.PredictOptions.FromString,
response_serializer=backend__pb2.Reply.SerializeToString,
),
'Embedding': grpc.unary_unary_rpc_method_handler(
servicer.Embedding,
request_deserializer=backend__pb2.PredictOptions.FromString,
response_serializer=backend__pb2.EmbeddingResult.SerializeToString,
),
'GenerateImage': grpc.unary_unary_rpc_method_handler(
servicer.GenerateImage,
request_deserializer=backend__pb2.GenerateImageRequest.FromString,
response_serializer=backend__pb2.Result.SerializeToString,
),
'AudioTranscription': grpc.unary_unary_rpc_method_handler(
servicer.AudioTranscription,
request_deserializer=backend__pb2.TranscriptRequest.FromString,
response_serializer=backend__pb2.TranscriptResult.SerializeToString,
),
'TTS': grpc.unary_unary_rpc_method_handler(
servicer.TTS,
request_deserializer=backend__pb2.TTSRequest.FromString,
response_serializer=backend__pb2.Result.SerializeToString,
),
}
generic_handler = grpc.method_handlers_generic_handler(
'backend.Backend', rpc_method_handlers)
server.add_generic_rpc_handlers((generic_handler,))
# This class is part of an EXPERIMENTAL API.
class Backend(object):
"""Missing associated documentation comment in .proto file."""
@staticmethod
def Health(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Health',
backend__pb2.HealthMessage.SerializeToString,
backend__pb2.Reply.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def Predict(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Predict',
backend__pb2.PredictOptions.SerializeToString,
backend__pb2.Reply.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def LoadModel(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/LoadModel',
backend__pb2.ModelOptions.SerializeToString,
backend__pb2.Result.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def PredictStream(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_stream(request, target, '/backend.Backend/PredictStream',
backend__pb2.PredictOptions.SerializeToString,
backend__pb2.Reply.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def Embedding(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Embedding',
backend__pb2.PredictOptions.SerializeToString,
backend__pb2.EmbeddingResult.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def GenerateImage(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/GenerateImage',
backend__pb2.GenerateImageRequest.SerializeToString,
backend__pb2.Result.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def AudioTranscription(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/AudioTranscription',
backend__pb2.TranscriptRequest.SerializeToString,
backend__pb2.TranscriptResult.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def TTS(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/TTS',
backend__pb2.TTSRequest.SerializeToString,
backend__pb2.Result.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)

View File

@@ -0,0 +1,49 @@
# -*- coding: utf-8 -*-
# Generated by the protocol buffer compiler. DO NOT EDIT!
# source: backend.proto
"""Generated protocol buffer code."""
from google.protobuf import descriptor as _descriptor
from google.protobuf import descriptor_pool as _descriptor_pool
from google.protobuf import symbol_database as _symbol_database
from google.protobuf.internal import builder as _builder
# @@protoc_insertion_point(imports)
_sym_db = _symbol_database.Default()
DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\rbackend.proto\x12\x07\x62\x61\x63kend\"\x0f\n\rHealthMessage\"\x86\x06\n\x0ePredictOptions\x12\x0e\n\x06Prompt\x18\x01 \x01(\t\x12\x0c\n\x04Seed\x18\x02 \x01(\x05\x12\x0f\n\x07Threads\x18\x03 \x01(\x05\x12\x0e\n\x06Tokens\x18\x04 \x01(\x05\x12\x0c\n\x04TopK\x18\x05 \x01(\x05\x12\x0e\n\x06Repeat\x18\x06 \x01(\x05\x12\r\n\x05\x42\x61tch\x18\x07 \x01(\x05\x12\r\n\x05NKeep\x18\x08 \x01(\x05\x12\x13\n\x0bTemperature\x18\t \x01(\x02\x12\x0f\n\x07Penalty\x18\n \x01(\x02\x12\r\n\x05\x46\x31\x36KV\x18\x0b \x01(\x08\x12\x11\n\tDebugMode\x18\x0c \x01(\x08\x12\x13\n\x0bStopPrompts\x18\r \x03(\t\x12\x11\n\tIgnoreEOS\x18\x0e \x01(\x08\x12\x19\n\x11TailFreeSamplingZ\x18\x0f \x01(\x02\x12\x10\n\x08TypicalP\x18\x10 \x01(\x02\x12\x18\n\x10\x46requencyPenalty\x18\x11 \x01(\x02\x12\x17\n\x0fPresencePenalty\x18\x12 \x01(\x02\x12\x10\n\x08Mirostat\x18\x13 \x01(\x05\x12\x13\n\x0bMirostatETA\x18\x14 \x01(\x02\x12\x13\n\x0bMirostatTAU\x18\x15 \x01(\x02\x12\x12\n\nPenalizeNL\x18\x16 \x01(\x08\x12\x11\n\tLogitBias\x18\x17 \x01(\t\x12\r\n\x05MLock\x18\x19 \x01(\x08\x12\x0c\n\x04MMap\x18\x1a \x01(\x08\x12\x16\n\x0ePromptCacheAll\x18\x1b \x01(\x08\x12\x15\n\rPromptCacheRO\x18\x1c \x01(\x08\x12\x0f\n\x07Grammar\x18\x1d \x01(\t\x12\x0f\n\x07MainGPU\x18\x1e \x01(\t\x12\x13\n\x0bTensorSplit\x18\x1f \x01(\t\x12\x0c\n\x04TopP\x18 \x01(\x02\x12\x17\n\x0fPromptCachePath\x18! \x01(\t\x12\r\n\x05\x44\x65\x62ug\x18\" \x01(\x08\x12\x17\n\x0f\x45mbeddingTokens\x18# \x03(\x05\x12\x12\n\nEmbeddings\x18$ \x01(\t\x12\x14\n\x0cRopeFreqBase\x18% \x01(\x02\x12\x15\n\rRopeFreqScale\x18& \x01(\x02\x12\x1b\n\x13NegativePromptScale\x18\' \x01(\x02\x12\x16\n\x0eNegativePrompt\x18( \x01(\t\"\x18\n\x05Reply\x12\x0f\n\x07message\x18\x01 \x01(\x0c\"\x9d\x04\n\x0cModelOptions\x12\r\n\x05Model\x18\x01 \x01(\t\x12\x13\n\x0b\x43ontextSize\x18\x02 \x01(\x05\x12\x0c\n\x04Seed\x18\x03 \x01(\x05\x12\x0e\n\x06NBatch\x18\x04 \x01(\x05\x12\x11\n\tF16Memory\x18\x05 \x01(\x08\x12\r\n\x05MLock\x18\x06 \x01(\x08\x12\x0c\n\x04MMap\x18\x07 \x01(\x08\x12\x11\n\tVocabOnly\x18\x08 \x01(\x08\x12\x0f\n\x07LowVRAM\x18\t \x01(\x08\x12\x12\n\nEmbeddings\x18\n \x01(\x08\x12\x0c\n\x04NUMA\x18\x0b \x01(\x08\x12\x12\n\nNGPULayers\x18\x0c \x01(\x05\x12\x0f\n\x07MainGPU\x18\r \x01(\t\x12\x13\n\x0bTensorSplit\x18\x0e \x01(\t\x12\x0f\n\x07Threads\x18\x0f \x01(\x05\x12\x19\n\x11LibrarySearchPath\x18\x10 \x01(\t\x12\x14\n\x0cRopeFreqBase\x18\x11 \x01(\x02\x12\x15\n\rRopeFreqScale\x18\x12 \x01(\x02\x12\x12\n\nRMSNormEps\x18\x13 \x01(\x02\x12\x0c\n\x04NGQA\x18\x14 \x01(\x05\x12\x11\n\tModelFile\x18\x15 \x01(\t\x12\x0e\n\x06\x44\x65vice\x18\x16 \x01(\t\x12\x11\n\tUseTriton\x18\x17 \x01(\x08\x12\x15\n\rModelBaseName\x18\x18 \x01(\t\x12\x18\n\x10UseFastTokenizer\x18\x19 \x01(\x08\x12\x14\n\x0cPipelineType\x18\x1a \x01(\t\x12\x15\n\rSchedulerType\x18\x1b \x01(\t\x12\x0c\n\x04\x43UDA\x18\x1c \x01(\x08\"*\n\x06Result\x12\x0f\n\x07message\x18\x01 \x01(\t\x12\x0f\n\x07success\x18\x02 \x01(\x08\"%\n\x0f\x45mbeddingResult\x12\x12\n\nembeddings\x18\x01 \x03(\x02\"C\n\x11TranscriptRequest\x12\x0b\n\x03\x64st\x18\x02 \x01(\t\x12\x10\n\x08language\x18\x03 \x01(\t\x12\x0f\n\x07threads\x18\x04 \x01(\r\"N\n\x10TranscriptResult\x12,\n\x08segments\x18\x01 \x03(\x0b\x32\x1a.backend.TranscriptSegment\x12\x0c\n\x04text\x18\x02 \x01(\t\"Y\n\x11TranscriptSegment\x12\n\n\x02id\x18\x01 \x01(\x05\x12\r\n\x05start\x18\x02 \x01(\x03\x12\x0b\n\x03\x65nd\x18\x03 \x01(\x03\x12\x0c\n\x04text\x18\x04 \x01(\t\x12\x0e\n\x06tokens\x18\x05 \x03(\x05\"\x9e\x01\n\x14GenerateImageRequest\x12\x0e\n\x06height\x18\x01 \x01(\x05\x12\r\n\x05width\x18\x02 \x01(\x05\x12\x0c\n\x04mode\x18\x03 \x01(\x05\x12\x0c\n\x04step\x18\x04 \x01(\x05\x12\x0c\n\x04seed\x18\x05 \x01(\x05\x12\x17\n\x0fpositive_prompt\x18\x06 \x01(\t\x12\x17\n\x0fnegative_prompt\x18\x07 \x01(\t\x12\x0b\n\x03\x64st\x18\x08 \x01(\t\"6\n\nTTSRequest\x12\x0c\n\x04text\x18\x01 \x01(\t\x12\r\n\x05model\x18\x02 \x01(\t\x12\x0b\n\x03\x64st\x18\x03 \x01(\t2\xeb\x03\n\x07\x42\x61\x63kend\x12\x32\n\x06Health\x12\x16.backend.HealthMessage\x1a\x0e.backend.Reply\"\x00\x12\x34\n\x07Predict\x12\x17.backend.PredictOptions\x1a\x0e.backend.Reply\"\x00\x12\x35\n\tLoadModel\x12\x15.backend.ModelOptions\x1a\x0f.backend.Result\"\x00\x12<\n\rPredictStream\x12\x17.backend.PredictOptions\x1a\x0e.backend.Reply\"\x00\x30\x01\x12@\n\tEmbedding\x12\x17.backend.PredictOptions\x1a\x18.backend.EmbeddingResult\"\x00\x12\x41\n\rGenerateImage\x12\x1d.backend.GenerateImageRequest\x1a\x0f.backend.Result\"\x00\x12M\n\x12\x41udioTranscription\x12\x1a.backend.TranscriptRequest\x1a\x19.backend.TranscriptResult\"\x00\x12-\n\x03TTS\x12\x13.backend.TTSRequest\x1a\x0f.backend.Result\"\x00\x42Z\n\x19io.skynet.localai.backendB\x0eLocalAIBackendP\x01Z+github.com/go-skynet/LocalAI/pkg/grpc/protob\x06proto3')
_globals = globals()
_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals)
_builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'backend_pb2', _globals)
if _descriptor._USE_C_DESCRIPTORS == False:
DESCRIPTOR._options = None
DESCRIPTOR._serialized_options = b'\n\031io.skynet.localai.backendB\016LocalAIBackendP\001Z+github.com/go-skynet/LocalAI/pkg/grpc/proto'
_globals['_HEALTHMESSAGE']._serialized_start=26
_globals['_HEALTHMESSAGE']._serialized_end=41
_globals['_PREDICTOPTIONS']._serialized_start=44
_globals['_PREDICTOPTIONS']._serialized_end=818
_globals['_REPLY']._serialized_start=820
_globals['_REPLY']._serialized_end=844
_globals['_MODELOPTIONS']._serialized_start=847
_globals['_MODELOPTIONS']._serialized_end=1388
_globals['_RESULT']._serialized_start=1390
_globals['_RESULT']._serialized_end=1432
_globals['_EMBEDDINGRESULT']._serialized_start=1434
_globals['_EMBEDDINGRESULT']._serialized_end=1471
_globals['_TRANSCRIPTREQUEST']._serialized_start=1473
_globals['_TRANSCRIPTREQUEST']._serialized_end=1540
_globals['_TRANSCRIPTRESULT']._serialized_start=1542
_globals['_TRANSCRIPTRESULT']._serialized_end=1620
_globals['_TRANSCRIPTSEGMENT']._serialized_start=1622
_globals['_TRANSCRIPTSEGMENT']._serialized_end=1711
_globals['_GENERATEIMAGEREQUEST']._serialized_start=1714
_globals['_GENERATEIMAGEREQUEST']._serialized_end=1872
_globals['_TTSREQUEST']._serialized_start=1874
_globals['_TTSREQUEST']._serialized_end=1928
_globals['_BACKEND']._serialized_start=1931
_globals['_BACKEND']._serialized_end=2422
# @@protoc_insertion_point(module_scope)

View File

@@ -0,0 +1,297 @@
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT!
"""Client and server classes corresponding to protobuf-defined services."""
import grpc
import backend_pb2 as backend__pb2
class BackendStub(object):
"""Missing associated documentation comment in .proto file."""
def __init__(self, channel):
"""Constructor.
Args:
channel: A grpc.Channel.
"""
self.Health = channel.unary_unary(
'/backend.Backend/Health',
request_serializer=backend__pb2.HealthMessage.SerializeToString,
response_deserializer=backend__pb2.Reply.FromString,
)
self.Predict = channel.unary_unary(
'/backend.Backend/Predict',
request_serializer=backend__pb2.PredictOptions.SerializeToString,
response_deserializer=backend__pb2.Reply.FromString,
)
self.LoadModel = channel.unary_unary(
'/backend.Backend/LoadModel',
request_serializer=backend__pb2.ModelOptions.SerializeToString,
response_deserializer=backend__pb2.Result.FromString,
)
self.PredictStream = channel.unary_stream(
'/backend.Backend/PredictStream',
request_serializer=backend__pb2.PredictOptions.SerializeToString,
response_deserializer=backend__pb2.Reply.FromString,
)
self.Embedding = channel.unary_unary(
'/backend.Backend/Embedding',
request_serializer=backend__pb2.PredictOptions.SerializeToString,
response_deserializer=backend__pb2.EmbeddingResult.FromString,
)
self.GenerateImage = channel.unary_unary(
'/backend.Backend/GenerateImage',
request_serializer=backend__pb2.GenerateImageRequest.SerializeToString,
response_deserializer=backend__pb2.Result.FromString,
)
self.AudioTranscription = channel.unary_unary(
'/backend.Backend/AudioTranscription',
request_serializer=backend__pb2.TranscriptRequest.SerializeToString,
response_deserializer=backend__pb2.TranscriptResult.FromString,
)
self.TTS = channel.unary_unary(
'/backend.Backend/TTS',
request_serializer=backend__pb2.TTSRequest.SerializeToString,
response_deserializer=backend__pb2.Result.FromString,
)
class BackendServicer(object):
"""Missing associated documentation comment in .proto file."""
def Health(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def Predict(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def LoadModel(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def PredictStream(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def Embedding(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def GenerateImage(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def AudioTranscription(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def TTS(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def add_BackendServicer_to_server(servicer, server):
rpc_method_handlers = {
'Health': grpc.unary_unary_rpc_method_handler(
servicer.Health,
request_deserializer=backend__pb2.HealthMessage.FromString,
response_serializer=backend__pb2.Reply.SerializeToString,
),
'Predict': grpc.unary_unary_rpc_method_handler(
servicer.Predict,
request_deserializer=backend__pb2.PredictOptions.FromString,
response_serializer=backend__pb2.Reply.SerializeToString,
),
'LoadModel': grpc.unary_unary_rpc_method_handler(
servicer.LoadModel,
request_deserializer=backend__pb2.ModelOptions.FromString,
response_serializer=backend__pb2.Result.SerializeToString,
),
'PredictStream': grpc.unary_stream_rpc_method_handler(
servicer.PredictStream,
request_deserializer=backend__pb2.PredictOptions.FromString,
response_serializer=backend__pb2.Reply.SerializeToString,
),
'Embedding': grpc.unary_unary_rpc_method_handler(
servicer.Embedding,
request_deserializer=backend__pb2.PredictOptions.FromString,
response_serializer=backend__pb2.EmbeddingResult.SerializeToString,
),
'GenerateImage': grpc.unary_unary_rpc_method_handler(
servicer.GenerateImage,
request_deserializer=backend__pb2.GenerateImageRequest.FromString,
response_serializer=backend__pb2.Result.SerializeToString,
),
'AudioTranscription': grpc.unary_unary_rpc_method_handler(
servicer.AudioTranscription,
request_deserializer=backend__pb2.TranscriptRequest.FromString,
response_serializer=backend__pb2.TranscriptResult.SerializeToString,
),
'TTS': grpc.unary_unary_rpc_method_handler(
servicer.TTS,
request_deserializer=backend__pb2.TTSRequest.FromString,
response_serializer=backend__pb2.Result.SerializeToString,
),
}
generic_handler = grpc.method_handlers_generic_handler(
'backend.Backend', rpc_method_handlers)
server.add_generic_rpc_handlers((generic_handler,))
# This class is part of an EXPERIMENTAL API.
class Backend(object):
"""Missing associated documentation comment in .proto file."""
@staticmethod
def Health(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Health',
backend__pb2.HealthMessage.SerializeToString,
backend__pb2.Reply.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def Predict(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Predict',
backend__pb2.PredictOptions.SerializeToString,
backend__pb2.Reply.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def LoadModel(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/LoadModel',
backend__pb2.ModelOptions.SerializeToString,
backend__pb2.Result.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def PredictStream(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_stream(request, target, '/backend.Backend/PredictStream',
backend__pb2.PredictOptions.SerializeToString,
backend__pb2.Reply.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def Embedding(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Embedding',
backend__pb2.PredictOptions.SerializeToString,
backend__pb2.EmbeddingResult.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def GenerateImage(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/GenerateImage',
backend__pb2.GenerateImageRequest.SerializeToString,
backend__pb2.Result.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def AudioTranscription(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/AudioTranscription',
backend__pb2.TranscriptRequest.SerializeToString,
backend__pb2.TranscriptResult.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def TTS(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/TTS',
backend__pb2.TTSRequest.SerializeToString,
backend__pb2.Result.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)

142
extra/grpc/exllama/exllama.py Executable file
View File

@@ -0,0 +1,142 @@
#!/usr/bin/env python3
import grpc
from concurrent import futures
import time
import backend_pb2
import backend_pb2_grpc
import argparse
import signal
import sys
import os, glob
from pathlib import Path
import torch
import torch.nn.functional as F
from torch import version as torch_version
from exllama.generator import ExLlamaGenerator
from exllama.model import ExLlama, ExLlamaCache, ExLlamaConfig
from exllama.tokenizer import ExLlamaTokenizer
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
# Implement the BackendServicer class with the service methods
class BackendServicer(backend_pb2_grpc.BackendServicer):
def generate(self,prompt, max_new_tokens):
self.generator.end_beam_search()
# Tokenizing the input
ids = self.generator.tokenizer.encode(prompt)
self.generator.gen_begin_reuse(ids)
initial_len = self.generator.sequence[0].shape[0]
has_leading_space = False
decoded_text = ''
for i in range(max_new_tokens):
token = self.generator.gen_single_token()
if i == 0 and self.generator.tokenizer.tokenizer.IdToPiece(int(token)).startswith(''):
has_leading_space = True
decoded_text = self.generator.tokenizer.decode(self.generator.sequence[0][initial_len:])
if has_leading_space:
decoded_text = ' ' + decoded_text
if token.item() == self.generator.tokenizer.eos_token_id:
break
return decoded_text
def Health(self, request, context):
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
def LoadModel(self, request, context):
try:
# https://github.com/turboderp/exllama/blob/master/example_cfg.py
model_directory = request.ModelFile
# Locate files we need within that directory
tokenizer_path = os.path.join(model_directory, "tokenizer.model")
model_config_path = os.path.join(model_directory, "config.json")
st_pattern = os.path.join(model_directory, "*.safetensors")
model_path = glob.glob(st_pattern)[0]
# Create config, model, tokenizer and generator
config = ExLlamaConfig(model_config_path) # create config from config.json
config.model_path = model_path # supply path to model weights file
model = ExLlama(config) # create ExLlama instance and load the weights
tokenizer = ExLlamaTokenizer(tokenizer_path) # create tokenizer from tokenizer model file
cache = ExLlamaCache(model, batch_size = 2) # create cache for inference
generator = ExLlamaGenerator(model, tokenizer, cache) # create generator
self.generator= generator
self.model = model
self.tokenizer = tokenizer
self.cache = cache
except Exception as err:
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
return backend_pb2.Result(message="Model loaded successfully", success=True)
def Predict(self, request, context):
penalty = 1.15
if request.Penalty != 0.0:
penalty = request.Penalty
self.generator.settings.token_repetition_penalty_max = penalty
self.generator.settings.temperature = request.Temperature
self.generator.settings.top_k = request.TopK
self.generator.settings.top_p = request.TopP
tokens = 512
if request.Tokens != 0:
tokens = request.Tokens
if self.cache.batch_size == 1:
del self.cache
self.cache = ExLlamaCache(self.model, batch_size=2)
self.generator = ExLlamaGenerator(self.model, self.tokenizer, self.cache)
t = self.generate(request.Prompt, tokens)
# Remove prompt from response if present
if request.Prompt in t:
t = t.replace(request.Prompt, "")
return backend_pb2.Result(message=bytes(t, encoding='utf-8'))
def PredictStream(self, request, context):
# Implement PredictStream RPC
#for reply in some_data_generator():
# yield reply
# Not implemented yet
return self.Predict(request, context)
def serve(address):
server = grpc.server(futures.ThreadPoolExecutor(max_workers=10))
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
server.add_insecure_port(address)
server.start()
print("Server started. Listening on: " + address, file=sys.stderr)
# Define the signal handler function
def signal_handler(sig, frame):
print("Received termination signal. Shutting down...")
server.stop(0)
sys.exit(0)
# Set the signal handlers for SIGINT and SIGTERM
signal.signal(signal.SIGINT, signal_handler)
signal.signal(signal.SIGTERM, signal_handler)
try:
while True:
time.sleep(_ONE_DAY_IN_SECONDS)
except KeyboardInterrupt:
server.stop(0)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run the gRPC server.")
parser.add_argument(
"--addr", default="localhost:50051", help="The address to bind the server to."
)
args = parser.parse_args()
serve(args.addr)

View File

@@ -13,7 +13,7 @@ _sym_db = _symbol_database.Default()
DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\rbackend.proto\x12\x07\x62\x61\x63kend\"\x0f\n\rHealthMessage\"\x86\x06\n\x0ePredictOptions\x12\x0e\n\x06Prompt\x18\x01 \x01(\t\x12\x0c\n\x04Seed\x18\x02 \x01(\x05\x12\x0f\n\x07Threads\x18\x03 \x01(\x05\x12\x0e\n\x06Tokens\x18\x04 \x01(\x05\x12\x0c\n\x04TopK\x18\x05 \x01(\x05\x12\x0e\n\x06Repeat\x18\x06 \x01(\x05\x12\r\n\x05\x42\x61tch\x18\x07 \x01(\x05\x12\r\n\x05NKeep\x18\x08 \x01(\x05\x12\x13\n\x0bTemperature\x18\t \x01(\x02\x12\x0f\n\x07Penalty\x18\n \x01(\x02\x12\r\n\x05\x46\x31\x36KV\x18\x0b \x01(\x08\x12\x11\n\tDebugMode\x18\x0c \x01(\x08\x12\x13\n\x0bStopPrompts\x18\r \x03(\t\x12\x11\n\tIgnoreEOS\x18\x0e \x01(\x08\x12\x19\n\x11TailFreeSamplingZ\x18\x0f \x01(\x02\x12\x10\n\x08TypicalP\x18\x10 \x01(\x02\x12\x18\n\x10\x46requencyPenalty\x18\x11 \x01(\x02\x12\x17\n\x0fPresencePenalty\x18\x12 \x01(\x02\x12\x10\n\x08Mirostat\x18\x13 \x01(\x05\x12\x13\n\x0bMirostatETA\x18\x14 \x01(\x02\x12\x13\n\x0bMirostatTAU\x18\x15 \x01(\x02\x12\x12\n\nPenalizeNL\x18\x16 \x01(\x08\x12\x11\n\tLogitBias\x18\x17 \x01(\t\x12\r\n\x05MLock\x18\x19 \x01(\x08\x12\x0c\n\x04MMap\x18\x1a \x01(\x08\x12\x16\n\x0ePromptCacheAll\x18\x1b \x01(\x08\x12\x15\n\rPromptCacheRO\x18\x1c \x01(\x08\x12\x0f\n\x07Grammar\x18\x1d \x01(\t\x12\x0f\n\x07MainGPU\x18\x1e \x01(\t\x12\x13\n\x0bTensorSplit\x18\x1f \x01(\t\x12\x0c\n\x04TopP\x18 \x01(\x02\x12\x17\n\x0fPromptCachePath\x18! \x01(\t\x12\r\n\x05\x44\x65\x62ug\x18\" \x01(\x08\x12\x17\n\x0f\x45mbeddingTokens\x18# \x03(\x05\x12\x12\n\nEmbeddings\x18$ \x01(\t\x12\x14\n\x0cRopeFreqBase\x18% \x01(\x02\x12\x15\n\rRopeFreqScale\x18& \x01(\x02\x12\x1b\n\x13NegativePromptScale\x18\' \x01(\x02\x12\x16\n\x0eNegativePrompt\x18( \x01(\t\"\x18\n\x05Reply\x12\x0f\n\x07message\x18\x01 \x01(\x0c\"\xd9\x02\n\x0cModelOptions\x12\r\n\x05Model\x18\x01 \x01(\t\x12\x13\n\x0b\x43ontextSize\x18\x02 \x01(\x05\x12\x0c\n\x04Seed\x18\x03 \x01(\x05\x12\x0e\n\x06NBatch\x18\x04 \x01(\x05\x12\x11\n\tF16Memory\x18\x05 \x01(\x08\x12\r\n\x05MLock\x18\x06 \x01(\x08\x12\x0c\n\x04MMap\x18\x07 \x01(\x08\x12\x11\n\tVocabOnly\x18\x08 \x01(\x08\x12\x0f\n\x07LowVRAM\x18\t \x01(\x08\x12\x12\n\nEmbeddings\x18\n \x01(\x08\x12\x0c\n\x04NUMA\x18\x0b \x01(\x08\x12\x12\n\nNGPULayers\x18\x0c \x01(\x05\x12\x0f\n\x07MainGPU\x18\r \x01(\t\x12\x13\n\x0bTensorSplit\x18\x0e \x01(\t\x12\x0f\n\x07Threads\x18\x0f \x01(\x05\x12\x19\n\x11LibrarySearchPath\x18\x10 \x01(\t\x12\x14\n\x0cRopeFreqBase\x18\x11 \x01(\x02\x12\x15\n\rRopeFreqScale\x18\x12 \x01(\x02\"*\n\x06Result\x12\x0f\n\x07message\x18\x01 \x01(\t\x12\x0f\n\x07success\x18\x02 \x01(\x08\"%\n\x0f\x45mbeddingResult\x12\x12\n\nembeddings\x18\x01 \x03(\x02\"C\n\x11TranscriptRequest\x12\x0b\n\x03\x64st\x18\x02 \x01(\t\x12\x10\n\x08language\x18\x03 \x01(\t\x12\x0f\n\x07threads\x18\x04 \x01(\r\"N\n\x10TranscriptResult\x12,\n\x08segments\x18\x01 \x03(\x0b\x32\x1a.backend.TranscriptSegment\x12\x0c\n\x04text\x18\x02 \x01(\t\"Y\n\x11TranscriptSegment\x12\n\n\x02id\x18\x01 \x01(\x05\x12\r\n\x05start\x18\x02 \x01(\x03\x12\x0b\n\x03\x65nd\x18\x03 \x01(\x03\x12\x0c\n\x04text\x18\x04 \x01(\t\x12\x0e\n\x06tokens\x18\x05 \x03(\x05\"\x9e\x01\n\x14GenerateImageRequest\x12\x0e\n\x06height\x18\x01 \x01(\x05\x12\r\n\x05width\x18\x02 \x01(\x05\x12\x0c\n\x04mode\x18\x03 \x01(\x05\x12\x0c\n\x04step\x18\x04 \x01(\x05\x12\x0c\n\x04seed\x18\x05 \x01(\x05\x12\x17\n\x0fpositive_prompt\x18\x06 \x01(\t\x12\x17\n\x0fnegative_prompt\x18\x07 \x01(\t\x12\x0b\n\x03\x64st\x18\x08 \x01(\t\"6\n\nTTSRequest\x12\x0c\n\x04text\x18\x01 \x01(\t\x12\r\n\x05model\x18\x02 \x01(\t\x12\x0b\n\x03\x64st\x18\x03 \x01(\t2\xeb\x03\n\x07\x42\x61\x63kend\x12\x32\n\x06Health\x12\x16.backend.HealthMessage\x1a\x0e.backend.Reply\"\x00\x12\x34\n\x07Predict\x12\x17.backend.PredictOptions\x1a\x0e.backend.Reply\"\x00\x12\x35\n\tLoadModel\x12\x15.backend.ModelOptions\x1a\x0f.backend.Result\"\x00\x12<\n\rPredictStream\x12\x17.backend.PredictOptions\x1a\x0e.backend.Reply\"\x00\x30\x01\x12@\n\tEmbedding\x12\x17.backend.PredictOptions\x1a\x18.backend.EmbeddingResult\"\x00\x12\x41\n\rGenerateImage\x12\x1d.backend.GenerateImageRequest\x1a\x0f.backend.Result\"\x00\x12M\n\x12\x41udioTranscription\x12\x1a.backend.TranscriptRequest\x1a\x19.backend.TranscriptResult\"\x00\x12-\n\x03TTS\x12\x13.backend.TTSRequest\x1a\x0f.backend.Result\"\x00\x42Z\n\x19io.skynet.localai.backendB\x0eLocalAIBackendP\x01Z+github.com/go-skynet/LocalAI/pkg/grpc/protob\x06proto3')
DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\rbackend.proto\x12\x07\x62\x61\x63kend\"\x0f\n\rHealthMessage\"\x86\x06\n\x0ePredictOptions\x12\x0e\n\x06Prompt\x18\x01 \x01(\t\x12\x0c\n\x04Seed\x18\x02 \x01(\x05\x12\x0f\n\x07Threads\x18\x03 \x01(\x05\x12\x0e\n\x06Tokens\x18\x04 \x01(\x05\x12\x0c\n\x04TopK\x18\x05 \x01(\x05\x12\x0e\n\x06Repeat\x18\x06 \x01(\x05\x12\r\n\x05\x42\x61tch\x18\x07 \x01(\x05\x12\r\n\x05NKeep\x18\x08 \x01(\x05\x12\x13\n\x0bTemperature\x18\t \x01(\x02\x12\x0f\n\x07Penalty\x18\n \x01(\x02\x12\r\n\x05\x46\x31\x36KV\x18\x0b \x01(\x08\x12\x11\n\tDebugMode\x18\x0c \x01(\x08\x12\x13\n\x0bStopPrompts\x18\r \x03(\t\x12\x11\n\tIgnoreEOS\x18\x0e \x01(\x08\x12\x19\n\x11TailFreeSamplingZ\x18\x0f \x01(\x02\x12\x10\n\x08TypicalP\x18\x10 \x01(\x02\x12\x18\n\x10\x46requencyPenalty\x18\x11 \x01(\x02\x12\x17\n\x0fPresencePenalty\x18\x12 \x01(\x02\x12\x10\n\x08Mirostat\x18\x13 \x01(\x05\x12\x13\n\x0bMirostatETA\x18\x14 \x01(\x02\x12\x13\n\x0bMirostatTAU\x18\x15 \x01(\x02\x12\x12\n\nPenalizeNL\x18\x16 \x01(\x08\x12\x11\n\tLogitBias\x18\x17 \x01(\t\x12\r\n\x05MLock\x18\x19 \x01(\x08\x12\x0c\n\x04MMap\x18\x1a \x01(\x08\x12\x16\n\x0ePromptCacheAll\x18\x1b \x01(\x08\x12\x15\n\rPromptCacheRO\x18\x1c \x01(\x08\x12\x0f\n\x07Grammar\x18\x1d \x01(\t\x12\x0f\n\x07MainGPU\x18\x1e \x01(\t\x12\x13\n\x0bTensorSplit\x18\x1f \x01(\t\x12\x0c\n\x04TopP\x18 \x01(\x02\x12\x17\n\x0fPromptCachePath\x18! \x01(\t\x12\r\n\x05\x44\x65\x62ug\x18\" \x01(\x08\x12\x17\n\x0f\x45mbeddingTokens\x18# \x03(\x05\x12\x12\n\nEmbeddings\x18$ \x01(\t\x12\x14\n\x0cRopeFreqBase\x18% \x01(\x02\x12\x15\n\rRopeFreqScale\x18& \x01(\x02\x12\x1b\n\x13NegativePromptScale\x18\' \x01(\x02\x12\x16\n\x0eNegativePrompt\x18( \x01(\t\"\x18\n\x05Reply\x12\x0f\n\x07message\x18\x01 \x01(\x0c\"\x9d\x04\n\x0cModelOptions\x12\r\n\x05Model\x18\x01 \x01(\t\x12\x13\n\x0b\x43ontextSize\x18\x02 \x01(\x05\x12\x0c\n\x04Seed\x18\x03 \x01(\x05\x12\x0e\n\x06NBatch\x18\x04 \x01(\x05\x12\x11\n\tF16Memory\x18\x05 \x01(\x08\x12\r\n\x05MLock\x18\x06 \x01(\x08\x12\x0c\n\x04MMap\x18\x07 \x01(\x08\x12\x11\n\tVocabOnly\x18\x08 \x01(\x08\x12\x0f\n\x07LowVRAM\x18\t \x01(\x08\x12\x12\n\nEmbeddings\x18\n \x01(\x08\x12\x0c\n\x04NUMA\x18\x0b \x01(\x08\x12\x12\n\nNGPULayers\x18\x0c \x01(\x05\x12\x0f\n\x07MainGPU\x18\r \x01(\t\x12\x13\n\x0bTensorSplit\x18\x0e \x01(\t\x12\x0f\n\x07Threads\x18\x0f \x01(\x05\x12\x19\n\x11LibrarySearchPath\x18\x10 \x01(\t\x12\x14\n\x0cRopeFreqBase\x18\x11 \x01(\x02\x12\x15\n\rRopeFreqScale\x18\x12 \x01(\x02\x12\x12\n\nRMSNormEps\x18\x13 \x01(\x02\x12\x0c\n\x04NGQA\x18\x14 \x01(\x05\x12\x11\n\tModelFile\x18\x15 \x01(\t\x12\x0e\n\x06\x44\x65vice\x18\x16 \x01(\t\x12\x11\n\tUseTriton\x18\x17 \x01(\x08\x12\x15\n\rModelBaseName\x18\x18 \x01(\t\x12\x18\n\x10UseFastTokenizer\x18\x19 \x01(\x08\x12\x14\n\x0cPipelineType\x18\x1a \x01(\t\x12\x15\n\rSchedulerType\x18\x1b \x01(\t\x12\x0c\n\x04\x43UDA\x18\x1c \x01(\x08\"*\n\x06Result\x12\x0f\n\x07message\x18\x01 \x01(\t\x12\x0f\n\x07success\x18\x02 \x01(\x08\"%\n\x0f\x45mbeddingResult\x12\x12\n\nembeddings\x18\x01 \x03(\x02\"C\n\x11TranscriptRequest\x12\x0b\n\x03\x64st\x18\x02 \x01(\t\x12\x10\n\x08language\x18\x03 \x01(\t\x12\x0f\n\x07threads\x18\x04 \x01(\r\"N\n\x10TranscriptResult\x12,\n\x08segments\x18\x01 \x03(\x0b\x32\x1a.backend.TranscriptSegment\x12\x0c\n\x04text\x18\x02 \x01(\t\"Y\n\x11TranscriptSegment\x12\n\n\x02id\x18\x01 \x01(\x05\x12\r\n\x05start\x18\x02 \x01(\x03\x12\x0b\n\x03\x65nd\x18\x03 \x01(\x03\x12\x0c\n\x04text\x18\x04 \x01(\t\x12\x0e\n\x06tokens\x18\x05 \x03(\x05\"\x9e\x01\n\x14GenerateImageRequest\x12\x0e\n\x06height\x18\x01 \x01(\x05\x12\r\n\x05width\x18\x02 \x01(\x05\x12\x0c\n\x04mode\x18\x03 \x01(\x05\x12\x0c\n\x04step\x18\x04 \x01(\x05\x12\x0c\n\x04seed\x18\x05 \x01(\x05\x12\x17\n\x0fpositive_prompt\x18\x06 \x01(\t\x12\x17\n\x0fnegative_prompt\x18\x07 \x01(\t\x12\x0b\n\x03\x64st\x18\x08 \x01(\t\"6\n\nTTSRequest\x12\x0c\n\x04text\x18\x01 \x01(\t\x12\r\n\x05model\x18\x02 \x01(\t\x12\x0b\n\x03\x64st\x18\x03 \x01(\t2\xeb\x03\n\x07\x42\x61\x63kend\x12\x32\n\x06Health\x12\x16.backend.HealthMessage\x1a\x0e.backend.Reply\"\x00\x12\x34\n\x07Predict\x12\x17.backend.PredictOptions\x1a\x0e.backend.Reply\"\x00\x12\x35\n\tLoadModel\x12\x15.backend.ModelOptions\x1a\x0f.backend.Result\"\x00\x12<\n\rPredictStream\x12\x17.backend.PredictOptions\x1a\x0e.backend.Reply\"\x00\x30\x01\x12@\n\tEmbedding\x12\x17.backend.PredictOptions\x1a\x18.backend.EmbeddingResult\"\x00\x12\x41\n\rGenerateImage\x12\x1d.backend.GenerateImageRequest\x1a\x0f.backend.Result\"\x00\x12M\n\x12\x41udioTranscription\x12\x1a.backend.TranscriptRequest\x1a\x19.backend.TranscriptResult\"\x00\x12-\n\x03TTS\x12\x13.backend.TTSRequest\x1a\x0f.backend.Result\"\x00\x42Z\n\x19io.skynet.localai.backendB\x0eLocalAIBackendP\x01Z+github.com/go-skynet/LocalAI/pkg/grpc/protob\x06proto3')
_globals = globals()
_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals)
@@ -29,21 +29,21 @@ if _descriptor._USE_C_DESCRIPTORS == False:
_globals['_REPLY']._serialized_start=820
_globals['_REPLY']._serialized_end=844
_globals['_MODELOPTIONS']._serialized_start=847
_globals['_MODELOPTIONS']._serialized_end=1192
_globals['_RESULT']._serialized_start=1194
_globals['_RESULT']._serialized_end=1236
_globals['_EMBEDDINGRESULT']._serialized_start=1238
_globals['_EMBEDDINGRESULT']._serialized_end=1275
_globals['_TRANSCRIPTREQUEST']._serialized_start=1277
_globals['_TRANSCRIPTREQUEST']._serialized_end=1344
_globals['_TRANSCRIPTRESULT']._serialized_start=1346
_globals['_TRANSCRIPTRESULT']._serialized_end=1424
_globals['_TRANSCRIPTSEGMENT']._serialized_start=1426
_globals['_TRANSCRIPTSEGMENT']._serialized_end=1515
_globals['_GENERATEIMAGEREQUEST']._serialized_start=1518
_globals['_GENERATEIMAGEREQUEST']._serialized_end=1676
_globals['_TTSREQUEST']._serialized_start=1678
_globals['_TTSREQUEST']._serialized_end=1732
_globals['_BACKEND']._serialized_start=1735
_globals['_BACKEND']._serialized_end=2226
_globals['_MODELOPTIONS']._serialized_end=1388
_globals['_RESULT']._serialized_start=1390
_globals['_RESULT']._serialized_end=1432
_globals['_EMBEDDINGRESULT']._serialized_start=1434
_globals['_EMBEDDINGRESULT']._serialized_end=1471
_globals['_TRANSCRIPTREQUEST']._serialized_start=1473
_globals['_TRANSCRIPTREQUEST']._serialized_end=1540
_globals['_TRANSCRIPTRESULT']._serialized_start=1542
_globals['_TRANSCRIPTRESULT']._serialized_end=1620
_globals['_TRANSCRIPTSEGMENT']._serialized_start=1622
_globals['_TRANSCRIPTSEGMENT']._serialized_end=1711
_globals['_GENERATEIMAGEREQUEST']._serialized_start=1714
_globals['_GENERATEIMAGEREQUEST']._serialized_end=1872
_globals['_TTSREQUEST']._serialized_start=1874
_globals['_TTSREQUEST']._serialized_end=1928
_globals['_BACKEND']._serialized_start=1931
_globals['_BACKEND']._serialized_end=2422
# @@protoc_insertion_point(module_scope)

View File

@@ -18,7 +18,6 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
def LoadModel(self, request, context):
model_name = request.Model
model_name = os.path.basename(model_name)
try:
self.model = SentenceTransformer(model_name)
except Exception as err:

6
go.mod
View File

@@ -9,7 +9,7 @@ require (
github.com/go-skynet/bloomz.cpp v0.0.0-20230529155654-1834e77b83fa
github.com/go-skynet/go-bert.cpp v0.0.0-20230716133540-6abe312cded1
github.com/go-skynet/go-ggml-transformers.cpp v0.0.0-20230714203132-ffb09d7dd71e
github.com/go-skynet/go-llama.cpp v0.0.0-20230729200103-8c51308e42d7
github.com/go-skynet/go-llama.cpp v0.0.0-20230802220037-50cee7712066
github.com/gofiber/fiber/v2 v2.48.0
github.com/google/uuid v1.3.0
github.com/hashicorp/go-multierror v1.1.1
@@ -20,14 +20,14 @@ require (
github.com/mudler/go-ggllm.cpp v0.0.0-20230709223052-862477d16eef
github.com/mudler/go-processmanager v0.0.0-20220724164624-c45b5c61312d
github.com/mudler/go-stable-diffusion v0.0.0-20230605122230-d89260f598af
github.com/nomic-ai/gpt4all/gpt4all-bindings/golang v0.0.0-20230731161838-cbdcde8b7586
github.com/nomic-ai/gpt4all/gpt4all-bindings/golang v0.0.0-20230811181453-4d855afe973a
github.com/onsi/ginkgo/v2 v2.11.0
github.com/onsi/gomega v1.27.10
github.com/otiai10/openaigo v1.5.2
github.com/phayes/freeport v0.0.0-20220201140144-74d24b5ae9f5
github.com/rs/zerolog v1.30.0
github.com/sashabaranov/go-openai v1.14.1
github.com/tmc/langchaingo v0.0.0-20230731024823-8f101609f600
github.com/tmc/langchaingo v0.0.0-20230811231558-fd8b7f099537
github.com/urfave/cli/v2 v2.25.7
github.com/valyala/fasthttp v1.48.0
google.golang.org/grpc v1.57.0

12
go.sum
View File

@@ -47,6 +47,8 @@ github.com/go-skynet/go-llama.cpp v0.0.0-20230727163958-6ba16de8e965 h1:2MO/rABK
github.com/go-skynet/go-llama.cpp v0.0.0-20230727163958-6ba16de8e965/go.mod h1:fiJBto+Le1XLtD/cID5SAKs8cKE7wFXJKfTT3wvPQRA=
github.com/go-skynet/go-llama.cpp v0.0.0-20230729200103-8c51308e42d7 h1:1uBwholTaJ8Lva8ySJjT4jNaCDAh+MJXtsbZBbQq9lA=
github.com/go-skynet/go-llama.cpp v0.0.0-20230729200103-8c51308e42d7/go.mod h1:fiJBto+Le1XLtD/cID5SAKs8cKE7wFXJKfTT3wvPQRA=
github.com/go-skynet/go-llama.cpp v0.0.0-20230802220037-50cee7712066 h1:v4Js+yEdgY9IV7n35M+5MELLxlOMp3qC5whZm5YTLjI=
github.com/go-skynet/go-llama.cpp v0.0.0-20230802220037-50cee7712066/go.mod h1:fiJBto+Le1XLtD/cID5SAKs8cKE7wFXJKfTT3wvPQRA=
github.com/go-task/slim-sprig v0.0.0-20210107165309-348f09dbbbc0/go.mod h1:fyg7847qk6SyHyPtNmDHnmrv/HOrqktSC+C9fM+CJOE=
github.com/go-task/slim-sprig v0.0.0-20230315185526-52ccab3ef572 h1:tfuBGBXKqDEevZMzYi5KSi8KkcZtzBcTgAUUtapy0OI=
github.com/go-task/slim-sprig v0.0.0-20230315185526-52ccab3ef572/go.mod h1:9Pwr4B2jHnOSGXyyzV8ROjYa2ojvAY6HCGYYfMoC3Ls=
@@ -132,6 +134,12 @@ github.com/nomic-ai/gpt4all/gpt4all-bindings/golang v0.0.0-20230727161923-39acbc
github.com/nomic-ai/gpt4all/gpt4all-bindings/golang v0.0.0-20230727161923-39acbc837816/go.mod h1:4T3CHXyrt+7FQHXaxULZfPjHbD8/99WuDDJa0YVZARI=
github.com/nomic-ai/gpt4all/gpt4all-bindings/golang v0.0.0-20230731161838-cbdcde8b7586 h1:WVEMSZMyHFe68PN204c3Fdk5g2lZouPvbU9/2zkPpWc=
github.com/nomic-ai/gpt4all/gpt4all-bindings/golang v0.0.0-20230731161838-cbdcde8b7586/go.mod h1:4T3CHXyrt+7FQHXaxULZfPjHbD8/99WuDDJa0YVZARI=
github.com/nomic-ai/gpt4all/gpt4all-bindings/golang v0.0.0-20230802145814-c449b71b56de h1:E5EGczxEAcbaO8yqj074MQxU609QbtB6in3qTOW1EFo=
github.com/nomic-ai/gpt4all/gpt4all-bindings/golang v0.0.0-20230802145814-c449b71b56de/go.mod h1:4T3CHXyrt+7FQHXaxULZfPjHbD8/99WuDDJa0YVZARI=
github.com/nomic-ai/gpt4all/gpt4all-bindings/golang v0.0.0-20230807175413-0f2bb506a8ee h1:Y/j+GNytyncmDnAEuDZwzkYC9nzUPvXJPF+nntQG0VU=
github.com/nomic-ai/gpt4all/gpt4all-bindings/golang v0.0.0-20230807175413-0f2bb506a8ee/go.mod h1:4T3CHXyrt+7FQHXaxULZfPjHbD8/99WuDDJa0YVZARI=
github.com/nomic-ai/gpt4all/gpt4all-bindings/golang v0.0.0-20230811181453-4d855afe973a h1:bX26Zfwh72ug2aZTEwFISTMEJ56Wa/4KqboidD+g92A=
github.com/nomic-ai/gpt4all/gpt4all-bindings/golang v0.0.0-20230811181453-4d855afe973a/go.mod h1:4T3CHXyrt+7FQHXaxULZfPjHbD8/99WuDDJa0YVZARI=
github.com/nwaples/rardecode v1.1.0 h1:vSxaY8vQhOcVr4mm5e8XllHWTiM4JF507A0Katqw7MQ=
github.com/nwaples/rardecode v1.1.0/go.mod h1:5DzqNKiOdpKKBH87u8VlvAnPZMXcGRhxWkRpHbbfGS0=
github.com/nxadm/tail v1.4.4/go.mod h1:kenIhsEOeOJmVchQTgglprH7qJGnHDVpk1VPCcaMI8A=
@@ -189,6 +197,10 @@ github.com/tmc/langchaingo v0.0.0-20230729232647-7df4fe5fb8fe h1:+XVrCjh3rPibfIS
github.com/tmc/langchaingo v0.0.0-20230729232647-7df4fe5fb8fe/go.mod h1:8T+nNIGBr3nYQEYFmF/YaT8t8YTKLvFYZBuVZOAYn5E=
github.com/tmc/langchaingo v0.0.0-20230731024823-8f101609f600 h1:SABuIthjhIXEsxnokuA16CZOxxdW9XohIHQqd/go8Nc=
github.com/tmc/langchaingo v0.0.0-20230731024823-8f101609f600/go.mod h1:8T+nNIGBr3nYQEYFmF/YaT8t8YTKLvFYZBuVZOAYn5E=
github.com/tmc/langchaingo v0.0.0-20230802030916-271e9bd7e7c5 h1:js7vYDJGzUGVSt0YlIusUc5BXYVECu3LUI/asby5Ggo=
github.com/tmc/langchaingo v0.0.0-20230802030916-271e9bd7e7c5/go.mod h1:8T+nNIGBr3nYQEYFmF/YaT8t8YTKLvFYZBuVZOAYn5E=
github.com/tmc/langchaingo v0.0.0-20230811231558-fd8b7f099537 h1:vkeNjlW+0Xiw2XizMHoQuLG8pg6AN1hU8zJuMV9GQBc=
github.com/tmc/langchaingo v0.0.0-20230811231558-fd8b7f099537/go.mod h1:8T+nNIGBr3nYQEYFmF/YaT8t8YTKLvFYZBuVZOAYn5E=
github.com/ulikunitz/xz v0.5.8/go.mod h1:nbz6k7qbPmH4IRqmfOplQw/tblSgqTqBwxkY0oWt/14=
github.com/ulikunitz/xz v0.5.9 h1:RsKRIA2MO8x56wkkcd3LbtcE/uMszhb6DpRf+3uwa3I=
github.com/ulikunitz/xz v0.5.9/go.mod h1:nbz6k7qbPmH4IRqmfOplQw/tblSgqTqBwxkY0oWt/14=

View File

@@ -130,6 +130,11 @@ func main() {
EnvVars: []string{"UPLOAD_LIMIT"},
Value: 15,
},
&cli.StringSliceFlag{
Name: "api-keys",
Usage: "List of API Keys to enable API authentication. When this is set, all the requests must be authenticated with one of these API keys.",
EnvVars: []string{"API_KEY"},
},
},
Description: `
LocalAI is a drop-in replacement OpenAI API which runs inference locally.
@@ -167,6 +172,7 @@ For a list of compatible model, check out: https://localai.io/model-compatibilit
options.WithBackendAssets(backendAssets),
options.WithBackendAssetsOutput(ctx.String("backend-assets-path")),
options.WithUploadLimitMB(ctx.Int("upload-limit")),
options.WithApiKeys(ctx.StringSlice("api-keys")),
}
externalgRPC := ctx.StringSlice("external-grpc-backends")

View File

@@ -85,7 +85,7 @@ func InstallModelFromGalleryByName(galleries []Gallery, name string, basePath st
name = strings.ReplaceAll(name, string(os.PathSeparator), "__")
var model *GalleryModel
for _, m := range models {
if name == m.Name || name == strings.ToLower(m.Name) {
if name == m.Name || m.Name == strings.ToLower(name) {
model = m
}
}

View File

@@ -15,10 +15,13 @@ var (
PRIMITIVE_RULES = map[string]string{
"boolean": `("true" | "false") space`,
"number": `[0-9]+ space`, // TODO complete
"integer": `[0-9]+ space`, // TODO complete
"string": `"\"" [ \t!#-\[\]-~]* "\"" space`, // TODO complete
"null": `"null" space`,
"number": `("-"? ([0-9] | [1-9] [0-9]*)) ("." [0-9]+)? ([eE] [-+]? [0-9]+)? space`,
"integer": `("-"? ([0-9] | [1-9] [0-9]*)) space`,
"string": `"\"" (
[^"\\] |
"\\" (["\\/bfnrt] | "u" [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F])
)* "\"" space`,
"null": `"null" space`,
}
INVALID_RULE_CHARS_RE = regexp.MustCompile(`[^a-zA-Z0-9-]+`)
@@ -176,6 +179,9 @@ func (sc *JSONSchemaConverter) visit(schema map[string]interface{}, name string,
if !exists {
panic(fmt.Sprintf("Unrecognized schema: %v", schema))
}
if ruleName == "root" {
schemaType = "root"
}
return sc.addRule(schemaType, primitiveRule)
}
}

View File

@@ -48,7 +48,10 @@ root ::= root-0 | root-1
space ::= " "?
root-0-arguments ::= "{" space "\"date\"" space ":" space string "," space "\"time\"" space ":" space string "," space "\"title\"" space ":" space string "}" space
root-1 ::= "{" space "\"arguments\"" space ":" space root-1-arguments "," space "\"function\"" space ":" space root-1-function "}" space
string ::= "\"" [ \t!#-\[\]-~]* "\"" space
string ::= "\"" (
[^"\\] |
"\\" (["\\/bfnrt] | "u" [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F])
)* "\"" space
root-1-function ::= "\"search\""`
)

View File

@@ -16,7 +16,7 @@ type StableDiffusion struct {
func (sd *StableDiffusion) Load(opts *pb.ModelOptions) error {
var err error
// Note: the Model here is a path to a directory containing the model files
sd.stablediffusion, err = stablediffusion.New(opts.Model)
sd.stablediffusion, err = stablediffusion.New(opts.ModelFile)
return err
}

View File

@@ -15,7 +15,7 @@ type Embeddings struct {
}
func (llm *Embeddings) Load(opts *pb.ModelOptions) error {
model, err := bert.New(opts.Model)
model, err := bert.New(opts.ModelFile)
llm.bert = model
return err
}

View File

@@ -18,7 +18,7 @@ type LLM struct {
}
func (llm *LLM) Load(opts *pb.ModelOptions) error {
model, err := bloomz.New(opts.Model)
model, err := bloomz.New(opts.ModelFile)
llm.bloomz = model
return err
}

View File

@@ -40,7 +40,7 @@ func (llm *LLM) Load(opts *pb.ModelOptions) error {
ggllmOpts = append(ggllmOpts, ggllm.SetNBatch(512))
}
model, err := ggllm.New(opts.Model, ggllmOpts...)
model, err := ggllm.New(opts.ModelFile, ggllmOpts...)
llm.falcon = model
return err
}

View File

@@ -17,7 +17,7 @@ type LLM struct {
}
func (llm *LLM) Load(opts *pb.ModelOptions) error {
model, err := gpt4all.New(opts.Model,
model, err := gpt4all.New(opts.ModelFile,
gpt4all.SetThreads(int(opts.Threads)),
gpt4all.SetLibrarySearchPath(opts.LibrarySearchPath))
llm.gpt4all = model

View File

@@ -33,6 +33,14 @@ func (llm *LLM) Load(opts *pb.ModelOptions) error {
llama.WithRopeFreqScale(ropeFreqScale),
}
if opts.NGQA != 0 {
llamaOpts = append(llamaOpts, llama.WithGQA(int(opts.NGQA)))
}
if opts.RMSNormEps != 0 {
llamaOpts = append(llamaOpts, llama.WithRMSNormEPS(opts.RMSNormEps))
}
if opts.ContextSize != 0 {
llamaOpts = append(llamaOpts, llama.SetContext(int(opts.ContextSize)))
}
@@ -63,7 +71,7 @@ func (llm *LLM) Load(opts *pb.ModelOptions) error {
llamaOpts = append(llamaOpts, llama.EnabelLowVRAM)
}
model, err := llama.New(opts.Model, llamaOpts...)
model, err := llama.New(opts.ModelFile, llamaOpts...)
llm.llama = model
return err
}

View File

@@ -20,9 +20,9 @@ type LLM struct {
}
func (llm *LLM) Load(opts *pb.ModelOptions) error {
modelPath := filepath.Dir(opts.Model)
modelFile := filepath.Base(opts.Model)
model := rwkv.LoadFiles(opts.Model, filepath.Join(modelPath, modelFile+tokenizerSuffix), uint32(opts.GetThreads()))
modelPath := filepath.Dir(opts.ModelFile)
modelFile := filepath.Base(opts.ModelFile)
model := rwkv.LoadFiles(opts.ModelFile, filepath.Join(modelPath, modelFile+tokenizerSuffix), uint32(opts.GetThreads()))
if model == nil {
return fmt.Errorf("could not load model")

View File

@@ -18,7 +18,7 @@ type Dolly struct {
}
func (llm *Dolly) Load(opts *pb.ModelOptions) error {
model, err := transformers.NewDolly(opts.Model)
model, err := transformers.NewDolly(opts.ModelFile)
llm.dolly = model
return err
}

View File

@@ -18,7 +18,7 @@ type Falcon struct {
}
func (llm *Falcon) Load(opts *pb.ModelOptions) error {
model, err := transformers.NewFalcon(opts.Model)
model, err := transformers.NewFalcon(opts.ModelFile)
llm.falcon = model
return err
}

View File

@@ -18,7 +18,7 @@ type GPT2 struct {
}
func (llm *GPT2) Load(opts *pb.ModelOptions) error {
model, err := transformers.New(opts.Model)
model, err := transformers.New(opts.ModelFile)
llm.gpt2 = model
return err
}

View File

@@ -18,7 +18,7 @@ type GPTJ struct {
}
func (llm *GPTJ) Load(opts *pb.ModelOptions) error {
model, err := transformers.NewGPTJ(opts.Model)
model, err := transformers.NewGPTJ(opts.ModelFile)
llm.gptj = model
return err
}

View File

@@ -18,7 +18,7 @@ type GPTNeoX struct {
}
func (llm *GPTNeoX) Load(opts *pb.ModelOptions) error {
model, err := transformers.NewGPTNeoX(opts.Model)
model, err := transformers.NewGPTNeoX(opts.ModelFile)
llm.gptneox = model
return err
}

View File

@@ -18,7 +18,7 @@ type MPT struct {
}
func (llm *MPT) Load(opts *pb.ModelOptions) error {
model, err := transformers.NewMPT(opts.Model)
model, err := transformers.NewMPT(opts.ModelFile)
llm.mpt = model
return err
}

View File

@@ -18,7 +18,7 @@ type Replit struct {
}
func (llm *Replit) Load(opts *pb.ModelOptions) error {
model, err := transformers.NewReplit(opts.Model)
model, err := transformers.NewReplit(opts.ModelFile)
llm.replit = model
return err
}

View File

@@ -18,7 +18,7 @@ type Starcoder struct {
}
func (llm *Starcoder) Load(opts *pb.ModelOptions) error {
model, err := transformers.NewStarcoder(opts.Model)
model, err := transformers.NewStarcoder(opts.ModelFile)
llm.starcoder = model
return err
}

View File

@@ -481,6 +481,18 @@ type ModelOptions struct {
LibrarySearchPath string `protobuf:"bytes,16,opt,name=LibrarySearchPath,proto3" json:"LibrarySearchPath,omitempty"`
RopeFreqBase float32 `protobuf:"fixed32,17,opt,name=RopeFreqBase,proto3" json:"RopeFreqBase,omitempty"`
RopeFreqScale float32 `protobuf:"fixed32,18,opt,name=RopeFreqScale,proto3" json:"RopeFreqScale,omitempty"`
RMSNormEps float32 `protobuf:"fixed32,19,opt,name=RMSNormEps,proto3" json:"RMSNormEps,omitempty"`
NGQA int32 `protobuf:"varint,20,opt,name=NGQA,proto3" json:"NGQA,omitempty"`
ModelFile string `protobuf:"bytes,21,opt,name=ModelFile,proto3" json:"ModelFile,omitempty"`
// AutoGPTQ
Device string `protobuf:"bytes,22,opt,name=Device,proto3" json:"Device,omitempty"`
UseTriton bool `protobuf:"varint,23,opt,name=UseTriton,proto3" json:"UseTriton,omitempty"`
ModelBaseName string `protobuf:"bytes,24,opt,name=ModelBaseName,proto3" json:"ModelBaseName,omitempty"`
UseFastTokenizer bool `protobuf:"varint,25,opt,name=UseFastTokenizer,proto3" json:"UseFastTokenizer,omitempty"`
// Diffusers
PipelineType string `protobuf:"bytes,26,opt,name=PipelineType,proto3" json:"PipelineType,omitempty"`
SchedulerType string `protobuf:"bytes,27,opt,name=SchedulerType,proto3" json:"SchedulerType,omitempty"`
CUDA bool `protobuf:"varint,28,opt,name=CUDA,proto3" json:"CUDA,omitempty"`
}
func (x *ModelOptions) Reset() {
@@ -641,6 +653,76 @@ func (x *ModelOptions) GetRopeFreqScale() float32 {
return 0
}
func (x *ModelOptions) GetRMSNormEps() float32 {
if x != nil {
return x.RMSNormEps
}
return 0
}
func (x *ModelOptions) GetNGQA() int32 {
if x != nil {
return x.NGQA
}
return 0
}
func (x *ModelOptions) GetModelFile() string {
if x != nil {
return x.ModelFile
}
return ""
}
func (x *ModelOptions) GetDevice() string {
if x != nil {
return x.Device
}
return ""
}
func (x *ModelOptions) GetUseTriton() bool {
if x != nil {
return x.UseTriton
}
return false
}
func (x *ModelOptions) GetModelBaseName() string {
if x != nil {
return x.ModelBaseName
}
return ""
}
func (x *ModelOptions) GetUseFastTokenizer() bool {
if x != nil {
return x.UseFastTokenizer
}
return false
}
func (x *ModelOptions) GetPipelineType() string {
if x != nil {
return x.PipelineType
}
return ""
}
func (x *ModelOptions) GetSchedulerType() string {
if x != nil {
return x.SchedulerType
}
return ""
}
func (x *ModelOptions) GetCUDA() bool {
if x != nil {
return x.CUDA
}
return false
}
type Result struct {
state protoimpl.MessageState
sizeCache protoimpl.SizeCache
@@ -1191,7 +1273,7 @@ var file_pkg_grpc_proto_backend_proto_rawDesc = []byte{
0x0e, 0x4e, 0x65, 0x67, 0x61, 0x74, 0x69, 0x76, 0x65, 0x50, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x22,
0x21, 0x0a, 0x05, 0x52, 0x65, 0x70, 0x6c, 0x79, 0x12, 0x18, 0x0a, 0x07, 0x6d, 0x65, 0x73, 0x73,
0x61, 0x67, 0x65, 0x18, 0x01, 0x20, 0x01, 0x28, 0x0c, 0x52, 0x07, 0x6d, 0x65, 0x73, 0x73, 0x61,
0x67, 0x65, 0x22, 0x94, 0x04, 0x0a, 0x0c, 0x4d, 0x6f, 0x64, 0x65, 0x6c, 0x4f, 0x70, 0x74, 0x69,
0x67, 0x65, 0x22, 0xcc, 0x06, 0x0a, 0x0c, 0x4d, 0x6f, 0x64, 0x65, 0x6c, 0x4f, 0x70, 0x74, 0x69,
0x6f, 0x6e, 0x73, 0x12, 0x14, 0x0a, 0x05, 0x4d, 0x6f, 0x64, 0x65, 0x6c, 0x18, 0x01, 0x20, 0x01,
0x28, 0x09, 0x52, 0x05, 0x4d, 0x6f, 0x64, 0x65, 0x6c, 0x12, 0x20, 0x0a, 0x0b, 0x43, 0x6f, 0x6e,
0x74, 0x65, 0x78, 0x74, 0x53, 0x69, 0x7a, 0x65, 0x18, 0x02, 0x20, 0x01, 0x28, 0x05, 0x52, 0x0b,
@@ -1224,90 +1306,109 @@ var file_pkg_grpc_proto_backend_proto_rawDesc = []byte{
0x11, 0x20, 0x01, 0x28, 0x02, 0x52, 0x0c, 0x52, 0x6f, 0x70, 0x65, 0x46, 0x72, 0x65, 0x71, 0x42,
0x61, 0x73, 0x65, 0x12, 0x24, 0x0a, 0x0d, 0x52, 0x6f, 0x70, 0x65, 0x46, 0x72, 0x65, 0x71, 0x53,
0x63, 0x61, 0x6c, 0x65, 0x18, 0x12, 0x20, 0x01, 0x28, 0x02, 0x52, 0x0d, 0x52, 0x6f, 0x70, 0x65,
0x46, 0x72, 0x65, 0x71, 0x53, 0x63, 0x61, 0x6c, 0x65, 0x22, 0x3c, 0x0a, 0x06, 0x52, 0x65, 0x73,
0x75, 0x6c, 0x74, 0x12, 0x18, 0x0a, 0x07, 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x18, 0x01,
0x20, 0x01, 0x28, 0x09, 0x52, 0x07, 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x12, 0x18, 0x0a,
0x07, 0x73, 0x75, 0x63, 0x63, 0x65, 0x73, 0x73, 0x18, 0x02, 0x20, 0x01, 0x28, 0x08, 0x52, 0x07,
0x73, 0x75, 0x63, 0x63, 0x65, 0x73, 0x73, 0x22, 0x31, 0x0a, 0x0f, 0x45, 0x6d, 0x62, 0x65, 0x64,
0x64, 0x69, 0x6e, 0x67, 0x52, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x12, 0x1e, 0x0a, 0x0a, 0x65, 0x6d,
0x62, 0x65, 0x64, 0x64, 0x69, 0x6e, 0x67, 0x73, 0x18, 0x01, 0x20, 0x03, 0x28, 0x02, 0x52, 0x0a,
0x65, 0x6d, 0x62, 0x65, 0x64, 0x64, 0x69, 0x6e, 0x67, 0x73, 0x22, 0x5b, 0x0a, 0x11, 0x54, 0x72,
0x61, 0x6e, 0x73, 0x63, 0x72, 0x69, 0x70, 0x74, 0x52, 0x65, 0x71, 0x75, 0x65, 0x73, 0x74, 0x12,
0x10, 0x0a, 0x03, 0x64, 0x73, 0x74, 0x18, 0x02, 0x20, 0x01, 0x28, 0x09, 0x52, 0x03, 0x64, 0x73,
0x74, 0x12, 0x1a, 0x0a, 0x08, 0x6c, 0x61, 0x6e, 0x67, 0x75, 0x61, 0x67, 0x65, 0x18, 0x03, 0x20,
0x01, 0x28, 0x09, 0x52, 0x08, 0x6c, 0x61, 0x6e, 0x67, 0x75, 0x61, 0x67, 0x65, 0x12, 0x18, 0x0a,
0x07, 0x74, 0x68, 0x72, 0x65, 0x61, 0x64, 0x73, 0x18, 0x04, 0x20, 0x01, 0x28, 0x0d, 0x52, 0x07,
0x74, 0x68, 0x72, 0x65, 0x61, 0x64, 0x73, 0x22, 0x5e, 0x0a, 0x10, 0x54, 0x72, 0x61, 0x6e, 0x73,
0x63, 0x72, 0x69, 0x70, 0x74, 0x52, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x12, 0x36, 0x0a, 0x08, 0x73,
0x65, 0x67, 0x6d, 0x65, 0x6e, 0x74, 0x73, 0x18, 0x01, 0x20, 0x03, 0x28, 0x0b, 0x32, 0x1a, 0x2e,
0x62, 0x61, 0x63, 0x6b, 0x65, 0x6e, 0x64, 0x2e, 0x54, 0x72, 0x61, 0x6e, 0x73, 0x63, 0x72, 0x69,
0x70, 0x74, 0x53, 0x65, 0x67, 0x6d, 0x65, 0x6e, 0x74, 0x52, 0x08, 0x73, 0x65, 0x67, 0x6d, 0x65,
0x6e, 0x74, 0x73, 0x12, 0x12, 0x0a, 0x04, 0x74, 0x65, 0x78, 0x74, 0x18, 0x02, 0x20, 0x01, 0x28,
0x09, 0x52, 0x04, 0x74, 0x65, 0x78, 0x74, 0x22, 0x77, 0x0a, 0x11, 0x54, 0x72, 0x61, 0x6e, 0x73,
0x63, 0x72, 0x69, 0x70, 0x74, 0x53, 0x65, 0x67, 0x6d, 0x65, 0x6e, 0x74, 0x12, 0x0e, 0x0a, 0x02,
0x69, 0x64, 0x18, 0x01, 0x20, 0x01, 0x28, 0x05, 0x52, 0x02, 0x69, 0x64, 0x12, 0x14, 0x0a, 0x05,
0x73, 0x74, 0x61, 0x72, 0x74, 0x18, 0x02, 0x20, 0x01, 0x28, 0x03, 0x52, 0x05, 0x73, 0x74, 0x61,
0x72, 0x74, 0x12, 0x10, 0x0a, 0x03, 0x65, 0x6e, 0x64, 0x18, 0x03, 0x20, 0x01, 0x28, 0x03, 0x52,
0x03, 0x65, 0x6e, 0x64, 0x12, 0x12, 0x0a, 0x04, 0x74, 0x65, 0x78, 0x74, 0x18, 0x04, 0x20, 0x01,
0x28, 0x09, 0x52, 0x04, 0x74, 0x65, 0x78, 0x74, 0x12, 0x16, 0x0a, 0x06, 0x74, 0x6f, 0x6b, 0x65,
0x6e, 0x73, 0x18, 0x05, 0x20, 0x03, 0x28, 0x05, 0x52, 0x06, 0x74, 0x6f, 0x6b, 0x65, 0x6e, 0x73,
0x22, 0xe4, 0x01, 0x0a, 0x14, 0x47, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x65, 0x49, 0x6d, 0x61,
0x67, 0x65, 0x52, 0x65, 0x71, 0x75, 0x65, 0x73, 0x74, 0x12, 0x16, 0x0a, 0x06, 0x68, 0x65, 0x69,
0x67, 0x68, 0x74, 0x18, 0x01, 0x20, 0x01, 0x28, 0x05, 0x52, 0x06, 0x68, 0x65, 0x69, 0x67, 0x68,
0x74, 0x12, 0x14, 0x0a, 0x05, 0x77, 0x69, 0x64, 0x74, 0x68, 0x18, 0x02, 0x20, 0x01, 0x28, 0x05,
0x52, 0x05, 0x77, 0x69, 0x64, 0x74, 0x68, 0x12, 0x12, 0x0a, 0x04, 0x6d, 0x6f, 0x64, 0x65, 0x18,
0x03, 0x20, 0x01, 0x28, 0x05, 0x52, 0x04, 0x6d, 0x6f, 0x64, 0x65, 0x12, 0x12, 0x0a, 0x04, 0x73,
0x74, 0x65, 0x70, 0x18, 0x04, 0x20, 0x01, 0x28, 0x05, 0x52, 0x04, 0x73, 0x74, 0x65, 0x70, 0x12,
0x12, 0x0a, 0x04, 0x73, 0x65, 0x65, 0x64, 0x18, 0x05, 0x20, 0x01, 0x28, 0x05, 0x52, 0x04, 0x73,
0x65, 0x65, 0x64, 0x12, 0x27, 0x0a, 0x0f, 0x70, 0x6f, 0x73, 0x69, 0x74, 0x69, 0x76, 0x65, 0x5f,
0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x18, 0x06, 0x20, 0x01, 0x28, 0x09, 0x52, 0x0e, 0x70, 0x6f,
0x73, 0x69, 0x74, 0x69, 0x76, 0x65, 0x50, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x12, 0x27, 0x0a, 0x0f,
0x6e, 0x65, 0x67, 0x61, 0x74, 0x69, 0x76, 0x65, 0x5f, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x18,
0x07, 0x20, 0x01, 0x28, 0x09, 0x52, 0x0e, 0x6e, 0x65, 0x67, 0x61, 0x74, 0x69, 0x76, 0x65, 0x50,
0x72, 0x6f, 0x6d, 0x70, 0x74, 0x12, 0x10, 0x0a, 0x03, 0x64, 0x73, 0x74, 0x18, 0x08, 0x20, 0x01,
0x28, 0x09, 0x52, 0x03, 0x64, 0x73, 0x74, 0x22, 0x48, 0x0a, 0x0a, 0x54, 0x54, 0x53, 0x52, 0x65,
0x71, 0x75, 0x65, 0x73, 0x74, 0x12, 0x12, 0x0a, 0x04, 0x74, 0x65, 0x78, 0x74, 0x18, 0x01, 0x20,
0x01, 0x28, 0x09, 0x52, 0x04, 0x74, 0x65, 0x78, 0x74, 0x12, 0x14, 0x0a, 0x05, 0x6d, 0x6f, 0x64,
0x65, 0x6c, 0x18, 0x02, 0x20, 0x01, 0x28, 0x09, 0x52, 0x05, 0x6d, 0x6f, 0x64, 0x65, 0x6c, 0x12,
0x10, 0x0a, 0x03, 0x64, 0x73, 0x74, 0x18, 0x03, 0x20, 0x01, 0x28, 0x09, 0x52, 0x03, 0x64, 0x73,
0x74, 0x32, 0xeb, 0x03, 0x0a, 0x07, 0x42, 0x61, 0x63, 0x6b, 0x65, 0x6e, 0x64, 0x12, 0x32, 0x0a,
0x06, 0x48, 0x65, 0x61, 0x6c, 0x74, 0x68, 0x12, 0x16, 0x2e, 0x62, 0x61, 0x63, 0x6b, 0x65, 0x6e,
0x64, 0x2e, 0x48, 0x65, 0x61, 0x6c, 0x74, 0x68, 0x4d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x1a,
0x0e, 0x2e, 0x62, 0x61, 0x63, 0x6b, 0x65, 0x6e, 0x64, 0x2e, 0x52, 0x65, 0x70, 0x6c, 0x79, 0x22,
0x00, 0x12, 0x34, 0x0a, 0x07, 0x50, 0x72, 0x65, 0x64, 0x69, 0x63, 0x74, 0x12, 0x17, 0x2e, 0x62,
0x61, 0x63, 0x6b, 0x65, 0x6e, 0x64, 0x2e, 0x50, 0x72, 0x65, 0x64, 0x69, 0x63, 0x74, 0x4f, 0x70,
0x74, 0x69, 0x6f, 0x6e, 0x73, 0x1a, 0x0e, 0x2e, 0x62, 0x61, 0x63, 0x6b, 0x65, 0x6e, 0x64, 0x2e,
0x52, 0x65, 0x70, 0x6c, 0x79, 0x22, 0x00, 0x12, 0x35, 0x0a, 0x09, 0x4c, 0x6f, 0x61, 0x64, 0x4d,
0x6f, 0x64, 0x65, 0x6c, 0x12, 0x15, 0x2e, 0x62, 0x61, 0x63, 0x6b, 0x65, 0x6e, 0x64, 0x2e, 0x4d,
0x6f, 0x64, 0x65, 0x6c, 0x4f, 0x70, 0x74, 0x69, 0x6f, 0x6e, 0x73, 0x1a, 0x0f, 0x2e, 0x62, 0x61,
0x63, 0x6b, 0x65, 0x6e, 0x64, 0x2e, 0x52, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x22, 0x00, 0x12, 0x3c,
0x0a, 0x0d, 0x50, 0x72, 0x65, 0x64, 0x69, 0x63, 0x74, 0x53, 0x74, 0x72, 0x65, 0x61, 0x6d, 0x12,
0x17, 0x2e, 0x62, 0x61, 0x63, 0x6b, 0x65, 0x6e, 0x64, 0x2e, 0x50, 0x72, 0x65, 0x64, 0x69, 0x63,
0x74, 0x4f, 0x70, 0x74, 0x69, 0x6f, 0x6e, 0x73, 0x1a, 0x0e, 0x2e, 0x62, 0x61, 0x63, 0x6b, 0x65,
0x6e, 0x64, 0x2e, 0x52, 0x65, 0x70, 0x6c, 0x79, 0x22, 0x00, 0x30, 0x01, 0x12, 0x40, 0x0a, 0x09,
0x45, 0x6d, 0x62, 0x65, 0x64, 0x64, 0x69, 0x6e, 0x67, 0x12, 0x17, 0x2e, 0x62, 0x61, 0x63, 0x6b,
0x65, 0x6e, 0x64, 0x2e, 0x50, 0x72, 0x65, 0x64, 0x69, 0x63, 0x74, 0x4f, 0x70, 0x74, 0x69, 0x6f,
0x6e, 0x73, 0x1a, 0x18, 0x2e, 0x62, 0x61, 0x63, 0x6b, 0x65, 0x6e, 0x64, 0x2e, 0x45, 0x6d, 0x62,
0x65, 0x64, 0x64, 0x69, 0x6e, 0x67, 0x52, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x22, 0x00, 0x12, 0x41,
0x0a, 0x0d, 0x47, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x65, 0x49, 0x6d, 0x61, 0x67, 0x65, 0x12,
0x1d, 0x2e, 0x62, 0x61, 0x63, 0x6b, 0x65, 0x6e, 0x64, 0x2e, 0x47, 0x65, 0x6e, 0x65, 0x72, 0x61,
0x74, 0x65, 0x49, 0x6d, 0x61, 0x67, 0x65, 0x52, 0x65, 0x71, 0x75, 0x65, 0x73, 0x74, 0x1a, 0x0f,
0x2e, 0x62, 0x61, 0x63, 0x6b, 0x65, 0x6e, 0x64, 0x2e, 0x52, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x22,
0x00, 0x12, 0x4d, 0x0a, 0x12, 0x41, 0x75, 0x64, 0x69, 0x6f, 0x54, 0x72, 0x61, 0x6e, 0x73, 0x63,
0x72, 0x69, 0x70, 0x74, 0x69, 0x6f, 0x6e, 0x12, 0x1a, 0x2e, 0x62, 0x61, 0x63, 0x6b, 0x65, 0x6e,
0x64, 0x2e, 0x54, 0x72, 0x61, 0x6e, 0x73, 0x63, 0x72, 0x69, 0x70, 0x74, 0x52, 0x65, 0x71, 0x75,
0x65, 0x73, 0x74, 0x1a, 0x19, 0x2e, 0x62, 0x61, 0x63, 0x6b, 0x65, 0x6e, 0x64, 0x2e, 0x54, 0x72,
0x61, 0x6e, 0x73, 0x63, 0x72, 0x69, 0x70, 0x74, 0x52, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x22, 0x00,
0x12, 0x2d, 0x0a, 0x03, 0x54, 0x54, 0x53, 0x12, 0x13, 0x2e, 0x62, 0x61, 0x63, 0x6b, 0x65, 0x6e,
0x64, 0x2e, 0x54, 0x54, 0x53, 0x52, 0x65, 0x71, 0x75, 0x65, 0x73, 0x74, 0x1a, 0x0f, 0x2e, 0x62,
0x61, 0x63, 0x6b, 0x65, 0x6e, 0x64, 0x2e, 0x52, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x22, 0x00, 0x42,
0x5a, 0x0a, 0x19, 0x69, 0x6f, 0x2e, 0x73, 0x6b, 0x79, 0x6e, 0x65, 0x74, 0x2e, 0x6c, 0x6f, 0x63,
0x61, 0x6c, 0x61, 0x69, 0x2e, 0x62, 0x61, 0x63, 0x6b, 0x65, 0x6e, 0x64, 0x42, 0x0e, 0x4c, 0x6f,
0x63, 0x61, 0x6c, 0x41, 0x49, 0x42, 0x61, 0x63, 0x6b, 0x65, 0x6e, 0x64, 0x50, 0x01, 0x5a, 0x2b,
0x67, 0x69, 0x74, 0x68, 0x75, 0x62, 0x2e, 0x63, 0x6f, 0x6d, 0x2f, 0x67, 0x6f, 0x2d, 0x73, 0x6b,
0x79, 0x6e, 0x65, 0x74, 0x2f, 0x4c, 0x6f, 0x63, 0x61, 0x6c, 0x41, 0x49, 0x2f, 0x70, 0x6b, 0x67,
0x2f, 0x67, 0x72, 0x70, 0x63, 0x2f, 0x70, 0x72, 0x6f, 0x74, 0x6f, 0x62, 0x06, 0x70, 0x72, 0x6f,
0x74, 0x6f, 0x33,
0x46, 0x72, 0x65, 0x71, 0x53, 0x63, 0x61, 0x6c, 0x65, 0x12, 0x1e, 0x0a, 0x0a, 0x52, 0x4d, 0x53,
0x4e, 0x6f, 0x72, 0x6d, 0x45, 0x70, 0x73, 0x18, 0x13, 0x20, 0x01, 0x28, 0x02, 0x52, 0x0a, 0x52,
0x4d, 0x53, 0x4e, 0x6f, 0x72, 0x6d, 0x45, 0x70, 0x73, 0x12, 0x12, 0x0a, 0x04, 0x4e, 0x47, 0x51,
0x41, 0x18, 0x14, 0x20, 0x01, 0x28, 0x05, 0x52, 0x04, 0x4e, 0x47, 0x51, 0x41, 0x12, 0x1c, 0x0a,
0x09, 0x4d, 0x6f, 0x64, 0x65, 0x6c, 0x46, 0x69, 0x6c, 0x65, 0x18, 0x15, 0x20, 0x01, 0x28, 0x09,
0x52, 0x09, 0x4d, 0x6f, 0x64, 0x65, 0x6c, 0x46, 0x69, 0x6c, 0x65, 0x12, 0x16, 0x0a, 0x06, 0x44,
0x65, 0x76, 0x69, 0x63, 0x65, 0x18, 0x16, 0x20, 0x01, 0x28, 0x09, 0x52, 0x06, 0x44, 0x65, 0x76,
0x69, 0x63, 0x65, 0x12, 0x1c, 0x0a, 0x09, 0x55, 0x73, 0x65, 0x54, 0x72, 0x69, 0x74, 0x6f, 0x6e,
0x18, 0x17, 0x20, 0x01, 0x28, 0x08, 0x52, 0x09, 0x55, 0x73, 0x65, 0x54, 0x72, 0x69, 0x74, 0x6f,
0x6e, 0x12, 0x24, 0x0a, 0x0d, 0x4d, 0x6f, 0x64, 0x65, 0x6c, 0x42, 0x61, 0x73, 0x65, 0x4e, 0x61,
0x6d, 0x65, 0x18, 0x18, 0x20, 0x01, 0x28, 0x09, 0x52, 0x0d, 0x4d, 0x6f, 0x64, 0x65, 0x6c, 0x42,
0x61, 0x73, 0x65, 0x4e, 0x61, 0x6d, 0x65, 0x12, 0x2a, 0x0a, 0x10, 0x55, 0x73, 0x65, 0x46, 0x61,
0x73, 0x74, 0x54, 0x6f, 0x6b, 0x65, 0x6e, 0x69, 0x7a, 0x65, 0x72, 0x18, 0x19, 0x20, 0x01, 0x28,
0x08, 0x52, 0x10, 0x55, 0x73, 0x65, 0x46, 0x61, 0x73, 0x74, 0x54, 0x6f, 0x6b, 0x65, 0x6e, 0x69,
0x7a, 0x65, 0x72, 0x12, 0x22, 0x0a, 0x0c, 0x50, 0x69, 0x70, 0x65, 0x6c, 0x69, 0x6e, 0x65, 0x54,
0x79, 0x70, 0x65, 0x18, 0x1a, 0x20, 0x01, 0x28, 0x09, 0x52, 0x0c, 0x50, 0x69, 0x70, 0x65, 0x6c,
0x69, 0x6e, 0x65, 0x54, 0x79, 0x70, 0x65, 0x12, 0x24, 0x0a, 0x0d, 0x53, 0x63, 0x68, 0x65, 0x64,
0x75, 0x6c, 0x65, 0x72, 0x54, 0x79, 0x70, 0x65, 0x18, 0x1b, 0x20, 0x01, 0x28, 0x09, 0x52, 0x0d,
0x53, 0x63, 0x68, 0x65, 0x64, 0x75, 0x6c, 0x65, 0x72, 0x54, 0x79, 0x70, 0x65, 0x12, 0x12, 0x0a,
0x04, 0x43, 0x55, 0x44, 0x41, 0x18, 0x1c, 0x20, 0x01, 0x28, 0x08, 0x52, 0x04, 0x43, 0x55, 0x44,
0x41, 0x22, 0x3c, 0x0a, 0x06, 0x52, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x12, 0x18, 0x0a, 0x07, 0x6d,
0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x18, 0x01, 0x20, 0x01, 0x28, 0x09, 0x52, 0x07, 0x6d, 0x65,
0x73, 0x73, 0x61, 0x67, 0x65, 0x12, 0x18, 0x0a, 0x07, 0x73, 0x75, 0x63, 0x63, 0x65, 0x73, 0x73,
0x18, 0x02, 0x20, 0x01, 0x28, 0x08, 0x52, 0x07, 0x73, 0x75, 0x63, 0x63, 0x65, 0x73, 0x73, 0x22,
0x31, 0x0a, 0x0f, 0x45, 0x6d, 0x62, 0x65, 0x64, 0x64, 0x69, 0x6e, 0x67, 0x52, 0x65, 0x73, 0x75,
0x6c, 0x74, 0x12, 0x1e, 0x0a, 0x0a, 0x65, 0x6d, 0x62, 0x65, 0x64, 0x64, 0x69, 0x6e, 0x67, 0x73,
0x18, 0x01, 0x20, 0x03, 0x28, 0x02, 0x52, 0x0a, 0x65, 0x6d, 0x62, 0x65, 0x64, 0x64, 0x69, 0x6e,
0x67, 0x73, 0x22, 0x5b, 0x0a, 0x11, 0x54, 0x72, 0x61, 0x6e, 0x73, 0x63, 0x72, 0x69, 0x70, 0x74,
0x52, 0x65, 0x71, 0x75, 0x65, 0x73, 0x74, 0x12, 0x10, 0x0a, 0x03, 0x64, 0x73, 0x74, 0x18, 0x02,
0x20, 0x01, 0x28, 0x09, 0x52, 0x03, 0x64, 0x73, 0x74, 0x12, 0x1a, 0x0a, 0x08, 0x6c, 0x61, 0x6e,
0x67, 0x75, 0x61, 0x67, 0x65, 0x18, 0x03, 0x20, 0x01, 0x28, 0x09, 0x52, 0x08, 0x6c, 0x61, 0x6e,
0x67, 0x75, 0x61, 0x67, 0x65, 0x12, 0x18, 0x0a, 0x07, 0x74, 0x68, 0x72, 0x65, 0x61, 0x64, 0x73,
0x18, 0x04, 0x20, 0x01, 0x28, 0x0d, 0x52, 0x07, 0x74, 0x68, 0x72, 0x65, 0x61, 0x64, 0x73, 0x22,
0x5e, 0x0a, 0x10, 0x54, 0x72, 0x61, 0x6e, 0x73, 0x63, 0x72, 0x69, 0x70, 0x74, 0x52, 0x65, 0x73,
0x75, 0x6c, 0x74, 0x12, 0x36, 0x0a, 0x08, 0x73, 0x65, 0x67, 0x6d, 0x65, 0x6e, 0x74, 0x73, 0x18,
0x01, 0x20, 0x03, 0x28, 0x0b, 0x32, 0x1a, 0x2e, 0x62, 0x61, 0x63, 0x6b, 0x65, 0x6e, 0x64, 0x2e,
0x54, 0x72, 0x61, 0x6e, 0x73, 0x63, 0x72, 0x69, 0x70, 0x74, 0x53, 0x65, 0x67, 0x6d, 0x65, 0x6e,
0x74, 0x52, 0x08, 0x73, 0x65, 0x67, 0x6d, 0x65, 0x6e, 0x74, 0x73, 0x12, 0x12, 0x0a, 0x04, 0x74,
0x65, 0x78, 0x74, 0x18, 0x02, 0x20, 0x01, 0x28, 0x09, 0x52, 0x04, 0x74, 0x65, 0x78, 0x74, 0x22,
0x77, 0x0a, 0x11, 0x54, 0x72, 0x61, 0x6e, 0x73, 0x63, 0x72, 0x69, 0x70, 0x74, 0x53, 0x65, 0x67,
0x6d, 0x65, 0x6e, 0x74, 0x12, 0x0e, 0x0a, 0x02, 0x69, 0x64, 0x18, 0x01, 0x20, 0x01, 0x28, 0x05,
0x52, 0x02, 0x69, 0x64, 0x12, 0x14, 0x0a, 0x05, 0x73, 0x74, 0x61, 0x72, 0x74, 0x18, 0x02, 0x20,
0x01, 0x28, 0x03, 0x52, 0x05, 0x73, 0x74, 0x61, 0x72, 0x74, 0x12, 0x10, 0x0a, 0x03, 0x65, 0x6e,
0x64, 0x18, 0x03, 0x20, 0x01, 0x28, 0x03, 0x52, 0x03, 0x65, 0x6e, 0x64, 0x12, 0x12, 0x0a, 0x04,
0x74, 0x65, 0x78, 0x74, 0x18, 0x04, 0x20, 0x01, 0x28, 0x09, 0x52, 0x04, 0x74, 0x65, 0x78, 0x74,
0x12, 0x16, 0x0a, 0x06, 0x74, 0x6f, 0x6b, 0x65, 0x6e, 0x73, 0x18, 0x05, 0x20, 0x03, 0x28, 0x05,
0x52, 0x06, 0x74, 0x6f, 0x6b, 0x65, 0x6e, 0x73, 0x22, 0xe4, 0x01, 0x0a, 0x14, 0x47, 0x65, 0x6e,
0x65, 0x72, 0x61, 0x74, 0x65, 0x49, 0x6d, 0x61, 0x67, 0x65, 0x52, 0x65, 0x71, 0x75, 0x65, 0x73,
0x74, 0x12, 0x16, 0x0a, 0x06, 0x68, 0x65, 0x69, 0x67, 0x68, 0x74, 0x18, 0x01, 0x20, 0x01, 0x28,
0x05, 0x52, 0x06, 0x68, 0x65, 0x69, 0x67, 0x68, 0x74, 0x12, 0x14, 0x0a, 0x05, 0x77, 0x69, 0x64,
0x74, 0x68, 0x18, 0x02, 0x20, 0x01, 0x28, 0x05, 0x52, 0x05, 0x77, 0x69, 0x64, 0x74, 0x68, 0x12,
0x12, 0x0a, 0x04, 0x6d, 0x6f, 0x64, 0x65, 0x18, 0x03, 0x20, 0x01, 0x28, 0x05, 0x52, 0x04, 0x6d,
0x6f, 0x64, 0x65, 0x12, 0x12, 0x0a, 0x04, 0x73, 0x74, 0x65, 0x70, 0x18, 0x04, 0x20, 0x01, 0x28,
0x05, 0x52, 0x04, 0x73, 0x74, 0x65, 0x70, 0x12, 0x12, 0x0a, 0x04, 0x73, 0x65, 0x65, 0x64, 0x18,
0x05, 0x20, 0x01, 0x28, 0x05, 0x52, 0x04, 0x73, 0x65, 0x65, 0x64, 0x12, 0x27, 0x0a, 0x0f, 0x70,
0x6f, 0x73, 0x69, 0x74, 0x69, 0x76, 0x65, 0x5f, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x18, 0x06,
0x20, 0x01, 0x28, 0x09, 0x52, 0x0e, 0x70, 0x6f, 0x73, 0x69, 0x74, 0x69, 0x76, 0x65, 0x50, 0x72,
0x6f, 0x6d, 0x70, 0x74, 0x12, 0x27, 0x0a, 0x0f, 0x6e, 0x65, 0x67, 0x61, 0x74, 0x69, 0x76, 0x65,
0x5f, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x18, 0x07, 0x20, 0x01, 0x28, 0x09, 0x52, 0x0e, 0x6e,
0x65, 0x67, 0x61, 0x74, 0x69, 0x76, 0x65, 0x50, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x12, 0x10, 0x0a,
0x03, 0x64, 0x73, 0x74, 0x18, 0x08, 0x20, 0x01, 0x28, 0x09, 0x52, 0x03, 0x64, 0x73, 0x74, 0x22,
0x48, 0x0a, 0x0a, 0x54, 0x54, 0x53, 0x52, 0x65, 0x71, 0x75, 0x65, 0x73, 0x74, 0x12, 0x12, 0x0a,
0x04, 0x74, 0x65, 0x78, 0x74, 0x18, 0x01, 0x20, 0x01, 0x28, 0x09, 0x52, 0x04, 0x74, 0x65, 0x78,
0x74, 0x12, 0x14, 0x0a, 0x05, 0x6d, 0x6f, 0x64, 0x65, 0x6c, 0x18, 0x02, 0x20, 0x01, 0x28, 0x09,
0x52, 0x05, 0x6d, 0x6f, 0x64, 0x65, 0x6c, 0x12, 0x10, 0x0a, 0x03, 0x64, 0x73, 0x74, 0x18, 0x03,
0x20, 0x01, 0x28, 0x09, 0x52, 0x03, 0x64, 0x73, 0x74, 0x32, 0xeb, 0x03, 0x0a, 0x07, 0x42, 0x61,
0x63, 0x6b, 0x65, 0x6e, 0x64, 0x12, 0x32, 0x0a, 0x06, 0x48, 0x65, 0x61, 0x6c, 0x74, 0x68, 0x12,
0x16, 0x2e, 0x62, 0x61, 0x63, 0x6b, 0x65, 0x6e, 0x64, 0x2e, 0x48, 0x65, 0x61, 0x6c, 0x74, 0x68,
0x4d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x1a, 0x0e, 0x2e, 0x62, 0x61, 0x63, 0x6b, 0x65, 0x6e,
0x64, 0x2e, 0x52, 0x65, 0x70, 0x6c, 0x79, 0x22, 0x00, 0x12, 0x34, 0x0a, 0x07, 0x50, 0x72, 0x65,
0x64, 0x69, 0x63, 0x74, 0x12, 0x17, 0x2e, 0x62, 0x61, 0x63, 0x6b, 0x65, 0x6e, 0x64, 0x2e, 0x50,
0x72, 0x65, 0x64, 0x69, 0x63, 0x74, 0x4f, 0x70, 0x74, 0x69, 0x6f, 0x6e, 0x73, 0x1a, 0x0e, 0x2e,
0x62, 0x61, 0x63, 0x6b, 0x65, 0x6e, 0x64, 0x2e, 0x52, 0x65, 0x70, 0x6c, 0x79, 0x22, 0x00, 0x12,
0x35, 0x0a, 0x09, 0x4c, 0x6f, 0x61, 0x64, 0x4d, 0x6f, 0x64, 0x65, 0x6c, 0x12, 0x15, 0x2e, 0x62,
0x61, 0x63, 0x6b, 0x65, 0x6e, 0x64, 0x2e, 0x4d, 0x6f, 0x64, 0x65, 0x6c, 0x4f, 0x70, 0x74, 0x69,
0x6f, 0x6e, 0x73, 0x1a, 0x0f, 0x2e, 0x62, 0x61, 0x63, 0x6b, 0x65, 0x6e, 0x64, 0x2e, 0x52, 0x65,
0x73, 0x75, 0x6c, 0x74, 0x22, 0x00, 0x12, 0x3c, 0x0a, 0x0d, 0x50, 0x72, 0x65, 0x64, 0x69, 0x63,
0x74, 0x53, 0x74, 0x72, 0x65, 0x61, 0x6d, 0x12, 0x17, 0x2e, 0x62, 0x61, 0x63, 0x6b, 0x65, 0x6e,
0x64, 0x2e, 0x50, 0x72, 0x65, 0x64, 0x69, 0x63, 0x74, 0x4f, 0x70, 0x74, 0x69, 0x6f, 0x6e, 0x73,
0x1a, 0x0e, 0x2e, 0x62, 0x61, 0x63, 0x6b, 0x65, 0x6e, 0x64, 0x2e, 0x52, 0x65, 0x70, 0x6c, 0x79,
0x22, 0x00, 0x30, 0x01, 0x12, 0x40, 0x0a, 0x09, 0x45, 0x6d, 0x62, 0x65, 0x64, 0x64, 0x69, 0x6e,
0x67, 0x12, 0x17, 0x2e, 0x62, 0x61, 0x63, 0x6b, 0x65, 0x6e, 0x64, 0x2e, 0x50, 0x72, 0x65, 0x64,
0x69, 0x63, 0x74, 0x4f, 0x70, 0x74, 0x69, 0x6f, 0x6e, 0x73, 0x1a, 0x18, 0x2e, 0x62, 0x61, 0x63,
0x6b, 0x65, 0x6e, 0x64, 0x2e, 0x45, 0x6d, 0x62, 0x65, 0x64, 0x64, 0x69, 0x6e, 0x67, 0x52, 0x65,
0x73, 0x75, 0x6c, 0x74, 0x22, 0x00, 0x12, 0x41, 0x0a, 0x0d, 0x47, 0x65, 0x6e, 0x65, 0x72, 0x61,
0x74, 0x65, 0x49, 0x6d, 0x61, 0x67, 0x65, 0x12, 0x1d, 0x2e, 0x62, 0x61, 0x63, 0x6b, 0x65, 0x6e,
0x64, 0x2e, 0x47, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x65, 0x49, 0x6d, 0x61, 0x67, 0x65, 0x52,
0x65, 0x71, 0x75, 0x65, 0x73, 0x74, 0x1a, 0x0f, 0x2e, 0x62, 0x61, 0x63, 0x6b, 0x65, 0x6e, 0x64,
0x2e, 0x52, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x22, 0x00, 0x12, 0x4d, 0x0a, 0x12, 0x41, 0x75, 0x64,
0x69, 0x6f, 0x54, 0x72, 0x61, 0x6e, 0x73, 0x63, 0x72, 0x69, 0x70, 0x74, 0x69, 0x6f, 0x6e, 0x12,
0x1a, 0x2e, 0x62, 0x61, 0x63, 0x6b, 0x65, 0x6e, 0x64, 0x2e, 0x54, 0x72, 0x61, 0x6e, 0x73, 0x63,
0x72, 0x69, 0x70, 0x74, 0x52, 0x65, 0x71, 0x75, 0x65, 0x73, 0x74, 0x1a, 0x19, 0x2e, 0x62, 0x61,
0x63, 0x6b, 0x65, 0x6e, 0x64, 0x2e, 0x54, 0x72, 0x61, 0x6e, 0x73, 0x63, 0x72, 0x69, 0x70, 0x74,
0x52, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x22, 0x00, 0x12, 0x2d, 0x0a, 0x03, 0x54, 0x54, 0x53, 0x12,
0x13, 0x2e, 0x62, 0x61, 0x63, 0x6b, 0x65, 0x6e, 0x64, 0x2e, 0x54, 0x54, 0x53, 0x52, 0x65, 0x71,
0x75, 0x65, 0x73, 0x74, 0x1a, 0x0f, 0x2e, 0x62, 0x61, 0x63, 0x6b, 0x65, 0x6e, 0x64, 0x2e, 0x52,
0x65, 0x73, 0x75, 0x6c, 0x74, 0x22, 0x00, 0x42, 0x5a, 0x0a, 0x19, 0x69, 0x6f, 0x2e, 0x73, 0x6b,
0x79, 0x6e, 0x65, 0x74, 0x2e, 0x6c, 0x6f, 0x63, 0x61, 0x6c, 0x61, 0x69, 0x2e, 0x62, 0x61, 0x63,
0x6b, 0x65, 0x6e, 0x64, 0x42, 0x0e, 0x4c, 0x6f, 0x63, 0x61, 0x6c, 0x41, 0x49, 0x42, 0x61, 0x63,
0x6b, 0x65, 0x6e, 0x64, 0x50, 0x01, 0x5a, 0x2b, 0x67, 0x69, 0x74, 0x68, 0x75, 0x62, 0x2e, 0x63,
0x6f, 0x6d, 0x2f, 0x67, 0x6f, 0x2d, 0x73, 0x6b, 0x79, 0x6e, 0x65, 0x74, 0x2f, 0x4c, 0x6f, 0x63,
0x61, 0x6c, 0x41, 0x49, 0x2f, 0x70, 0x6b, 0x67, 0x2f, 0x67, 0x72, 0x70, 0x63, 0x2f, 0x70, 0x72,
0x6f, 0x74, 0x6f, 0x62, 0x06, 0x70, 0x72, 0x6f, 0x74, 0x6f, 0x33,
}
var (

View File

@@ -87,6 +87,20 @@ message ModelOptions {
string LibrarySearchPath = 16;
float RopeFreqBase = 17;
float RopeFreqScale = 18;
float RMSNormEps = 19;
int32 NGQA = 20;
string ModelFile = 21;
// AutoGPTQ
string Device = 22;
bool UseTriton = 23;
string ModelBaseName = 24;
bool UseFastTokenizer = 25;
// Diffusers
string PipelineType = 26;
string SchedulerType = 27;
bool CUDA = 28;
}
message Result {

View File

@@ -17,7 +17,7 @@ type Whisper struct {
func (sd *Whisper) Load(opts *pb.ModelOptions) error {
// Note: the Model here is a path to a directory containing the model files
w, err := whisper.New(opts.Model)
w, err := whisper.New(opts.ModelFile)
sd.whisper = w
return err
}

View File

@@ -18,8 +18,8 @@ type Piper struct {
}
func (sd *Piper) Load(opts *pb.ModelOptions) error {
if filepath.Ext(opts.Model) != ".onnx" {
return fmt.Errorf("unsupported model type %s (should end with .onnx)", opts.Model)
if filepath.Ext(opts.ModelFile) != ".onnx" {
return fmt.Errorf("unsupported model type %s (should end with .onnx)", opts.ModelFile)
}
var err error
// Note: the Model here is a path to a directory containing the model files

View File

@@ -83,7 +83,9 @@ func (ml *ModelLoader) startProcess(grpcProcess, id string, serverAddress string
grpcControlProcess := process.New(
process.WithTemporaryStateDir(),
process.WithName(grpcProcess),
process.WithArgs("--addr", serverAddress))
process.WithArgs("--addr", serverAddress),
process.WithEnvironment(os.Environ()...),
)
ml.grpcProcesses[id] = grpcControlProcess
@@ -124,8 +126,8 @@ func (ml *ModelLoader) startProcess(grpcProcess, id string, serverAddress string
// starts the grpcModelProcess for the backend, and returns a grpc client
// It also loads the model
func (ml *ModelLoader) grpcModel(backend string, o *Options) func(string) (*grpc.Client, error) {
return func(s string) (*grpc.Client, error) {
func (ml *ModelLoader) grpcModel(backend string, o *Options) func(string, string) (*grpc.Client, error) {
return func(modelName, modelFile string) (*grpc.Client, error) {
log.Debug().Msgf("Loading GRPC Model %s: %+v", backend, *o)
var client *grpc.Client
@@ -148,7 +150,7 @@ func (ml *ModelLoader) grpcModel(backend string, o *Options) func(string) (*grpc
return nil, fmt.Errorf("failed allocating free ports: %s", err.Error())
}
// Make sure the process is executable
if err := ml.startProcess(uri, o.modelFile, serverAddress); err != nil {
if err := ml.startProcess(uri, o.model, serverAddress); err != nil {
return nil, err
}
@@ -172,7 +174,7 @@ func (ml *ModelLoader) grpcModel(backend string, o *Options) func(string) (*grpc
}
// Make sure the process is executable
if err := ml.startProcess(grpcProcess, o.modelFile, serverAddress); err != nil {
if err := ml.startProcess(grpcProcess, o.model, serverAddress); err != nil {
return nil, err
}
@@ -198,7 +200,8 @@ func (ml *ModelLoader) grpcModel(backend string, o *Options) func(string) (*grpc
}
options := *o.gRPCOptions
options.Model = s
options.Model = modelName
options.ModelFile = modelFile
log.Debug().Msgf("GRPC: Loading model with options: %+v", options)
@@ -217,14 +220,14 @@ func (ml *ModelLoader) grpcModel(backend string, o *Options) func(string) (*grpc
func (ml *ModelLoader) BackendLoader(opts ...Option) (model *grpc.Client, err error) {
o := NewOptions(opts...)
log.Debug().Msgf("Loading model %s from %s", o.backendString, o.modelFile)
log.Debug().Msgf("Loading model %s from %s", o.backendString, o.model)
backend := strings.ToLower(o.backendString)
// if an external backend is provided, use it
_, externalBackendExists := o.externalBackends[backend]
if externalBackendExists {
return ml.LoadModel(o.modelFile, ml.grpcModel(backend, o))
return ml.LoadModel(o.model, ml.grpcModel(backend, o))
}
switch backend {
@@ -232,13 +235,13 @@ func (ml *ModelLoader) BackendLoader(opts ...Option) (model *grpc.Client, err er
MPTBackend, Gpt2Backend, FalconBackend,
GPTNeoXBackend, ReplitBackend, StarcoderBackend, BloomzBackend,
RwkvBackend, LCHuggingFaceBackend, BertEmbeddingsBackend, FalconGGMLBackend, StableDiffusionBackend, WhisperBackend:
return ml.LoadModel(o.modelFile, ml.grpcModel(backend, o))
return ml.LoadModel(o.model, ml.grpcModel(backend, o))
case Gpt4AllLlamaBackend, Gpt4AllMptBackend, Gpt4AllJBackend, Gpt4All:
o.gRPCOptions.LibrarySearchPath = filepath.Join(o.assetDir, "backend-assets", "gpt4all")
return ml.LoadModel(o.modelFile, ml.grpcModel(Gpt4All, o))
return ml.LoadModel(o.model, ml.grpcModel(Gpt4All, o))
case PiperBackend:
o.gRPCOptions.LibrarySearchPath = filepath.Join(o.assetDir, "backend-assets", "espeak-ng-data")
return ml.LoadModel(o.modelFile, ml.grpcModel(PiperBackend, o))
return ml.LoadModel(o.model, ml.grpcModel(PiperBackend, o))
default:
return nil, fmt.Errorf("backend unsupported: %s", o.backendString)
}
@@ -249,8 +252,8 @@ func (ml *ModelLoader) GreedyLoader(opts ...Option) (*grpc.Client, error) {
// Is this really needed? BackendLoader already does this
ml.mu.Lock()
if m := ml.checkIsLoaded(o.modelFile); m != nil {
log.Debug().Msgf("Model '%s' already loaded", o.modelFile)
if m := ml.checkIsLoaded(o.model); m != nil {
log.Debug().Msgf("Model '%s' already loaded", o.model)
ml.mu.Unlock()
return m, nil
}
@@ -263,14 +266,14 @@ func (ml *ModelLoader) GreedyLoader(opts ...Option) (*grpc.Client, error) {
for _, b := range o.externalBackends {
allBackendsToAutoLoad = append(allBackendsToAutoLoad, b)
}
log.Debug().Msgf("Loading model '%s' greedly from all the available backends: %s", o.modelFile, strings.Join(allBackendsToAutoLoad, ", "))
log.Debug().Msgf("Loading model '%s' greedly from all the available backends: %s", o.model, strings.Join(allBackendsToAutoLoad, ", "))
for _, b := range allBackendsToAutoLoad {
log.Debug().Msgf("[%s] Attempting to load", b)
options := []Option{
WithBackendString(b),
WithModelFile(o.modelFile),
WithLoadGRPCLLMModelOpts(o.gRPCOptions),
WithModel(o.model),
WithLoadGRPCLoadModelOpts(o.gRPCOptions),
WithThreads(o.threads),
WithAssetDir(o.assetDir),
}

View File

@@ -20,10 +20,12 @@ import (
// These are the definitions of all possible variables LocalAI will currently populate for use in a prompt template file
// Please note: Not all of these are populated on every endpoint - your template should either be tested for each endpoint you map it to, or tolerant of zero values.
type PromptTemplateData struct {
Input string
Instruction string
Functions []grammar.Function
MessageIndex int
SystemPrompt string
SuppressSystemPrompt bool // used by chat specifically to indicate that SystemPrompt above should be _ignored_
Input string
Instruction string
Functions []grammar.Function
MessageIndex int
}
// TODO: Ask mudler about FunctionCall stuff being useful at the message level?
@@ -96,7 +98,7 @@ func (ml *ModelLoader) ListModels() ([]string, error) {
return models, nil
}
func (ml *ModelLoader) LoadModel(modelName string, loader func(string) (*grpc.Client, error)) (*grpc.Client, error) {
func (ml *ModelLoader) LoadModel(modelName string, loader func(string, string) (*grpc.Client, error)) (*grpc.Client, error) {
ml.mu.Lock()
defer ml.mu.Unlock()
@@ -109,7 +111,7 @@ func (ml *ModelLoader) LoadModel(modelName string, loader func(string) (*grpc.Cl
modelFile := filepath.Join(ml.ModelPath, modelName)
log.Debug().Msgf("Loading model in memory from file: %s", modelFile)
model, err := loader(modelFile)
model, err := loader(modelName, modelFile)
if err != nil {
return nil, err
}

View File

@@ -8,7 +8,7 @@ import (
type Options struct {
backendString string
modelFile string
model string
threads uint32
assetDir string
context context.Context
@@ -35,13 +35,13 @@ func WithBackendString(backend string) Option {
}
}
func WithModelFile(modelFile string) Option {
func WithModel(modelFile string) Option {
return func(o *Options) {
o.modelFile = modelFile
o.model = modelFile
}
}
func WithLoadGRPCLLMModelOpts(opts *pb.ModelOptions) Option {
func WithLoadGRPCLoadModelOpts(opts *pb.ModelOptions) Option {
return func(o *Options) {
o.gRPCOptions = opts
}

13
pkg/utils/json.go Normal file
View File

@@ -0,0 +1,13 @@
package utils
import "regexp"
var matchNewlines = regexp.MustCompile(`[\r\n]`)
const doubleQuote = `"[^"\\]*(?:\\[\s\S][^"\\]*)*"`
func EscapeNewLines(s string) string {
return regexp.MustCompile(doubleQuote).ReplaceAllStringFunc(s, func(s string) string {
return matchNewlines.ReplaceAllString(s, "\\n")
})
}