mirror of
https://github.com/mudler/LocalAI.git
synced 2026-02-03 03:02:38 -05:00
Compare commits
1 Commits
v1.40.0
...
renovate/g
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
b63609f296 |
2
.github/workflows/bump_deps.yaml
vendored
2
.github/workflows/bump_deps.yaml
vendored
@@ -44,7 +44,7 @@ jobs:
|
||||
branch: "master"
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/checkout@v3
|
||||
- name: Bump dependencies 🔧
|
||||
run: |
|
||||
bash .github/bump_deps.sh ${{ matrix.repository }} ${{ matrix.branch }} ${{ matrix.variable }}
|
||||
|
||||
131
.github/workflows/image.yml
vendored
131
.github/workflows/image.yml
vendored
@@ -24,16 +24,42 @@ jobs:
|
||||
tag-latest: 'auto'
|
||||
tag-suffix: ''
|
||||
ffmpeg: ''
|
||||
- build-type: 'cublas'
|
||||
cuda-major-version: 11
|
||||
cuda-minor-version: 7
|
||||
platforms: 'linux/amd64'
|
||||
tag-latest: 'false'
|
||||
tag-suffix: '-cublas-cuda11'
|
||||
ffmpeg: ''
|
||||
- build-type: 'cublas'
|
||||
cuda-major-version: 12
|
||||
cuda-minor-version: 1
|
||||
platforms: 'linux/amd64'
|
||||
tag-latest: 'false'
|
||||
tag-suffix: '-cublas-cuda12'
|
||||
ffmpeg: ''
|
||||
- build-type: ''
|
||||
platforms: 'linux/amd64'
|
||||
tag-latest: 'false'
|
||||
tag-suffix: '-ffmpeg'
|
||||
ffmpeg: 'true'
|
||||
- build-type: 'cublas'
|
||||
cuda-major-version: 11
|
||||
cuda-minor-version: 7
|
||||
platforms: 'linux/amd64'
|
||||
tag-latest: 'false'
|
||||
tag-suffix: '-cublas-cuda11-ffmpeg'
|
||||
ffmpeg: 'true'
|
||||
- build-type: 'cublas'
|
||||
cuda-major-version: 12
|
||||
cuda-minor-version: 1
|
||||
platforms: 'linux/amd64'
|
||||
tag-latest: 'false'
|
||||
tag-suffix: '-cublas-cuda12-ffmpeg'
|
||||
ffmpeg: 'true'
|
||||
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v4
|
||||
- name: Release space from worker
|
||||
run: |
|
||||
echo "Listing top largest packages"
|
||||
@@ -57,10 +83,6 @@ jobs:
|
||||
sudo apt-get remove -y azure-cli || true
|
||||
sudo apt-get remove -y '^mongo.*-.*|^postgresql-.*|^mysql-.*|^mssql-.*' || true
|
||||
sudo apt-get remove -y '^gfortran-.*' || true
|
||||
sudo apt-get remove -y microsoft-edge-stable || true
|
||||
sudo apt-get remove -y firefox || true
|
||||
sudo apt-get remove -y powershell || true
|
||||
sudo apt-get remove -y r-base-core || true
|
||||
sudo apt-get autoremove -y
|
||||
sudo apt-get clean
|
||||
echo
|
||||
@@ -70,98 +92,8 @@ jobs:
|
||||
echo
|
||||
sudo rm -rfv build || true
|
||||
df -h
|
||||
- name: Docker meta
|
||||
id: meta
|
||||
uses: docker/metadata-action@v5
|
||||
with:
|
||||
images: quay.io/go-skynet/local-ai
|
||||
tags: |
|
||||
type=ref,event=branch
|
||||
type=semver,pattern={{raw}}
|
||||
type=sha
|
||||
flavor: |
|
||||
latest=${{ matrix.tag-latest }}
|
||||
suffix=${{ matrix.tag-suffix }}
|
||||
|
||||
- name: Set up QEMU
|
||||
uses: docker/setup-qemu-action@master
|
||||
with:
|
||||
platforms: all
|
||||
|
||||
- name: Set up Docker Buildx
|
||||
id: buildx
|
||||
uses: docker/setup-buildx-action@master
|
||||
|
||||
- name: Login to DockerHub
|
||||
if: github.event_name != 'pull_request'
|
||||
uses: docker/login-action@v3
|
||||
with:
|
||||
registry: quay.io
|
||||
username: ${{ secrets.LOCALAI_REGISTRY_USERNAME }}
|
||||
password: ${{ secrets.LOCALAI_REGISTRY_PASSWORD }}
|
||||
|
||||
- name: Build and push
|
||||
uses: docker/build-push-action@v5
|
||||
with:
|
||||
builder: ${{ steps.buildx.outputs.name }}
|
||||
build-args: |
|
||||
BUILD_TYPE=${{ matrix.build-type }}
|
||||
CUDA_MAJOR_VERSION=${{ matrix.cuda-major-version }}
|
||||
CUDA_MINOR_VERSION=${{ matrix.cuda-minor-version }}
|
||||
FFMPEG=${{ matrix.ffmpeg }}
|
||||
context: .
|
||||
file: ./Dockerfile
|
||||
platforms: ${{ matrix.platforms }}
|
||||
push: ${{ github.event_name != 'pull_request' }}
|
||||
tags: ${{ steps.meta.outputs.tags }}
|
||||
labels: ${{ steps.meta.outputs.labels }}
|
||||
|
||||
|
||||
docker-gpu:
|
||||
strategy:
|
||||
matrix:
|
||||
include:
|
||||
- build-type: 'cublas'
|
||||
cuda-major-version: 11
|
||||
cuda-minor-version: 7
|
||||
platforms: 'linux/amd64'
|
||||
tag-latest: 'false'
|
||||
tag-suffix: '-cublas-cuda11'
|
||||
ffmpeg: ''
|
||||
- build-type: 'cublas'
|
||||
cuda-major-version: 12
|
||||
cuda-minor-version: 1
|
||||
platforms: 'linux/amd64'
|
||||
tag-latest: 'false'
|
||||
tag-suffix: '-cublas-cuda12'
|
||||
ffmpeg: ''
|
||||
- build-type: 'cublas'
|
||||
cuda-major-version: 11
|
||||
cuda-minor-version: 7
|
||||
platforms: 'linux/amd64'
|
||||
tag-latest: 'false'
|
||||
tag-suffix: '-cublas-cuda11-ffmpeg'
|
||||
ffmpeg: 'true'
|
||||
- build-type: 'cublas'
|
||||
cuda-major-version: 12
|
||||
cuda-minor-version: 1
|
||||
platforms: 'linux/amd64'
|
||||
tag-latest: 'false'
|
||||
tag-suffix: '-cublas-cuda12-ffmpeg'
|
||||
ffmpeg: 'true'
|
||||
|
||||
runs-on: arc-runner-set
|
||||
steps:
|
||||
- name: Force Install GIT latest
|
||||
run: |
|
||||
sudo apt-get update \
|
||||
&& sudo apt-get install -y software-properties-common \
|
||||
&& sudo apt-get update \
|
||||
&& sudo add-apt-repository -y ppa:git-core/ppa \
|
||||
&& sudo apt-get update \
|
||||
&& sudo apt-get install -y git
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v4
|
||||
uses: actions/checkout@v3
|
||||
|
||||
- name: Docker meta
|
||||
id: meta
|
||||
@@ -192,6 +124,7 @@ jobs:
|
||||
registry: quay.io
|
||||
username: ${{ secrets.LOCALAI_REGISTRY_USERNAME }}
|
||||
password: ${{ secrets.LOCALAI_REGISTRY_PASSWORD }}
|
||||
|
||||
- name: Build and push
|
||||
uses: docker/build-push-action@v5
|
||||
with:
|
||||
@@ -207,7 +140,3 @@ jobs:
|
||||
push: ${{ github.event_name != 'pull_request' }}
|
||||
tags: ${{ steps.meta.outputs.tags }}
|
||||
labels: ${{ steps.meta.outputs.labels }}
|
||||
- name: Release space from worker ♻
|
||||
if: always()
|
||||
run: |
|
||||
docker system prune -f -a --volumes || true
|
||||
|
||||
4
.github/workflows/release.yaml
vendored
4
.github/workflows/release.yaml
vendored
@@ -19,7 +19,7 @@ jobs:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v4
|
||||
uses: actions/checkout@v3
|
||||
with:
|
||||
submodules: true
|
||||
- uses: actions/setup-go@v4
|
||||
@@ -66,7 +66,7 @@ jobs:
|
||||
runs-on: macOS-latest
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v4
|
||||
uses: actions/checkout@v3
|
||||
with:
|
||||
submodules: true
|
||||
- uses: actions/setup-go@v4
|
||||
|
||||
9
.github/workflows/test-gpu.yml
vendored
9
.github/workflows/test-gpu.yml
vendored
@@ -15,13 +15,13 @@ concurrency:
|
||||
|
||||
jobs:
|
||||
ubuntu-latest:
|
||||
runs-on: gpu
|
||||
runs-on: self-hosted
|
||||
strategy:
|
||||
matrix:
|
||||
go-version: ['1.21.x']
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v4
|
||||
uses: actions/checkout@v3
|
||||
with:
|
||||
submodules: true
|
||||
- name: Setup Go ${{ matrix.go-version }}
|
||||
@@ -40,8 +40,6 @@ jobs:
|
||||
if [ ! -e /run/systemd/system ]; then
|
||||
sudo mkdir /run/systemd/system
|
||||
fi
|
||||
sudo mkdir -p /host/tests/${{ github.head_ref || github.ref }}
|
||||
sudo chmod -R 777 /host/tests/${{ github.head_ref || github.ref }}
|
||||
make \
|
||||
TEST_DIR="/host/tests/${{ github.head_ref || github.ref }}" \
|
||||
BUILD_TYPE=cublas \
|
||||
@@ -59,5 +57,4 @@ jobs:
|
||||
make \
|
||||
TEST_DIR="/host/tests/${{ github.head_ref || github.ref }}" \
|
||||
teardown-e2e || true
|
||||
sudo rm -rf /host/tests/${{ github.head_ref || github.ref }} || true
|
||||
docker system prune -f -a --volumes || true
|
||||
docker system prune -f -a --volumes || true
|
||||
4
.github/workflows/test.yml
vendored
4
.github/workflows/test.yml
vendored
@@ -53,7 +53,7 @@ jobs:
|
||||
sudo rm -rfv build || true
|
||||
df -h
|
||||
- name: Clone
|
||||
uses: actions/checkout@v4
|
||||
uses: actions/checkout@v3
|
||||
with:
|
||||
submodules: true
|
||||
- name: Setup Go ${{ matrix.go-version }}
|
||||
@@ -108,7 +108,7 @@ jobs:
|
||||
go-version: ['1.21.x']
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v4
|
||||
uses: actions/checkout@v3
|
||||
with:
|
||||
submodules: true
|
||||
- name: Setup Go ${{ matrix.go-version }}
|
||||
|
||||
20
Dockerfile
20
Dockerfile
@@ -19,7 +19,7 @@ ENV GALLERIES='[{"name":"model-gallery", "url":"github:go-skynet/model-gallery/i
|
||||
ARG GO_TAGS="stablediffusion tts"
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y ca-certificates curl patch pip cmake && apt-get clean
|
||||
apt-get install -y ca-certificates curl patch pip cmake
|
||||
|
||||
|
||||
# Use the variables in subsequent instructions
|
||||
@@ -34,18 +34,17 @@ RUN if [ "${BUILD_TYPE}" = "cublas" ]; then \
|
||||
dpkg -i cuda-keyring_1.0-1_all.deb && \
|
||||
rm -f cuda-keyring_1.0-1_all.deb && \
|
||||
apt-get update && \
|
||||
apt-get install -y cuda-nvcc-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} libcublas-dev-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} libcusparse-dev-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} libcusolver-dev-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} && apt-get clean \
|
||||
apt-get install -y cuda-nvcc-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} libcublas-dev-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} libcusparse-dev-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} libcusolver-dev-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} \
|
||||
; fi
|
||||
ENV PATH /usr/local/cuda/bin:${PATH}
|
||||
|
||||
# OpenBLAS requirements and stable diffusion
|
||||
RUN apt-get install -y \
|
||||
libopenblas-dev \
|
||||
libopencv-dev \
|
||||
&& apt-get clean
|
||||
# OpenBLAS requirements
|
||||
RUN apt-get install -y libopenblas-dev
|
||||
|
||||
# Stable Diffusion requirements
|
||||
RUN apt-get install -y libopencv-dev && \
|
||||
ln -s /usr/include/opencv4/opencv2 /usr/include/opencv2
|
||||
|
||||
# Set up OpenCV
|
||||
RUN ln -s /usr/include/opencv4/opencv2 /usr/include/opencv2
|
||||
|
||||
WORKDIR /build
|
||||
|
||||
@@ -69,7 +68,8 @@ RUN curl -L "https://github.com/gabime/spdlog/archive/refs/tags/v${SPDLOG_VERSIO
|
||||
cp -rfv /build/lib/Linux-$(uname -m)/piper_phonemize/lib/. /usr/lib/ && \
|
||||
ln -s /usr/lib/libpiper_phonemize.so /usr/lib/libpiper_phonemize.so.1 && \
|
||||
cp -rfv /build/lib/Linux-$(uname -m)/piper_phonemize/include/. /usr/include/ && \
|
||||
rm spdlog-${SPDLOG_VERSION} -rf
|
||||
rm spdlog-${SPDLOG_VERSION} -rf && \
|
||||
rm /build/lib/Linux-$(uname -m)/piper_phonemize -rf
|
||||
|
||||
# Extras requirements
|
||||
FROM requirements-core as requirements-extras
|
||||
|
||||
52
Makefile
52
Makefile
@@ -4,11 +4,11 @@ GOVET=$(GOCMD) vet
|
||||
BINARY_NAME=local-ai
|
||||
|
||||
# llama.cpp versions
|
||||
GOLLAMA_VERSION?=aeba71ee842819da681ea537e78846dc75949ac0
|
||||
GOLLAMA_VERSION?=1676dcd7a139b6cdfbaea5fd67f46dc25d9d8bcf
|
||||
|
||||
GOLLAMA_STABLE_VERSION?=50cee7712066d9e38306eccadcfbb44ea87df4b7
|
||||
|
||||
CPPLLAMA_VERSION?=6e08281e588bbba1a5d180290a94a43f167f3a1a
|
||||
CPPLLAMA_VERSION?=24ba3d829e31a6eda3fa1723f692608c2fa3adda
|
||||
|
||||
# gpt4all version
|
||||
GPT4ALL_REPO?=https://github.com/nomic-ai/gpt4all
|
||||
@@ -30,9 +30,15 @@ BERT_VERSION?=6abe312cded14042f6b7c3cd8edf082713334a4d
|
||||
# go-piper version
|
||||
PIPER_VERSION?=56b8a81b4760a6fbee1a82e62f007ae7e8f010a7
|
||||
|
||||
# go-bloomz version
|
||||
BLOOMZ_VERSION?=1834e77b83faafe912ad4092ccf7f77937349e2f
|
||||
|
||||
# stablediffusion version
|
||||
STABLEDIFFUSION_VERSION?=d89260f598afb809279bc72aa0107b4292587632
|
||||
|
||||
# Go-ggllm
|
||||
GOGGLLM_VERSION?=862477d16eefb0805261c19c9b0d053e3b2b684b
|
||||
|
||||
export BUILD_TYPE?=
|
||||
export STABLE_BUILD_TYPE?=$(BUILD_TYPE)
|
||||
export CMAKE_ARGS?=
|
||||
@@ -123,13 +129,7 @@ ifeq ($(findstring tts,$(GO_TAGS)),tts)
|
||||
OPTIONAL_GRPC+=backend-assets/grpc/piper
|
||||
endif
|
||||
|
||||
ALL_GRPC_BACKENDS=backend-assets/grpc/langchain-huggingface backend-assets/grpc/falcon-ggml backend-assets/grpc/bert-embeddings backend-assets/grpc/llama backend-assets/grpc/llama-cpp backend-assets/grpc/llama-stable backend-assets/grpc/gpt4all backend-assets/grpc/dolly backend-assets/grpc/gpt2 backend-assets/grpc/gptj backend-assets/grpc/gptneox backend-assets/grpc/mpt backend-assets/grpc/replit backend-assets/grpc/starcoder backend-assets/grpc/rwkv backend-assets/grpc/whisper $(OPTIONAL_GRPC)
|
||||
GRPC_BACKENDS?=$(ALL_GRPC_BACKENDS) $(OPTIONAL_GRPC)
|
||||
|
||||
# If empty, then we build all
|
||||
ifeq ($(GRPC_BACKENDS),)
|
||||
GRPC_BACKENDS=$(ALL_GRPC_BACKENDS)
|
||||
endif
|
||||
GRPC_BACKENDS?=backend-assets/grpc/langchain-huggingface backend-assets/grpc/falcon-ggml backend-assets/grpc/bert-embeddings backend-assets/grpc/falcon backend-assets/grpc/bloomz backend-assets/grpc/llama backend-assets/grpc/llama-cpp backend-assets/grpc/llama-stable backend-assets/grpc/gpt4all backend-assets/grpc/dolly backend-assets/grpc/gpt2 backend-assets/grpc/gptj backend-assets/grpc/gptneox backend-assets/grpc/mpt backend-assets/grpc/replit backend-assets/grpc/starcoder backend-assets/grpc/rwkv backend-assets/grpc/whisper $(OPTIONAL_GRPC)
|
||||
|
||||
.PHONY: all test build vendor
|
||||
|
||||
@@ -140,6 +140,14 @@ gpt4all:
|
||||
git clone --recurse-submodules $(GPT4ALL_REPO) gpt4all
|
||||
cd gpt4all && git checkout -b build $(GPT4ALL_VERSION) && git submodule update --init --recursive --depth 1
|
||||
|
||||
## go-ggllm
|
||||
go-ggllm:
|
||||
git clone --recurse-submodules https://github.com/mudler/go-ggllm.cpp go-ggllm
|
||||
cd go-ggllm && git checkout -b build $(GOGGLLM_VERSION) && git submodule update --init --recursive --depth 1
|
||||
|
||||
go-ggllm/libggllm.a: go-ggllm
|
||||
$(MAKE) -C go-ggllm BUILD_TYPE=$(BUILD_TYPE) libggllm.a
|
||||
|
||||
## go-piper
|
||||
go-piper:
|
||||
git clone --recurse-submodules https://github.com/mudler/go-piper go-piper
|
||||
@@ -166,6 +174,14 @@ go-rwkv:
|
||||
go-rwkv/librwkv.a: go-rwkv
|
||||
cd go-rwkv && cd rwkv.cpp && cmake . -DRWKV_BUILD_SHARED_LIBRARY=OFF && cmake --build . && cp librwkv.a ..
|
||||
|
||||
## bloomz
|
||||
bloomz:
|
||||
git clone --recurse-submodules https://github.com/go-skynet/bloomz.cpp bloomz
|
||||
cd bloomz && git checkout -b build $(BLOOMZ_VERSION) && git submodule update --init --recursive --depth 1
|
||||
|
||||
bloomz/libbloomz.a: bloomz
|
||||
cd bloomz && make libbloomz.a
|
||||
|
||||
go-bert/libgobert.a: go-bert
|
||||
$(MAKE) -C go-bert libgobert.a
|
||||
|
||||
@@ -219,7 +235,7 @@ go-llama-stable/libbinding.a: go-llama-stable
|
||||
go-piper/libpiper_binding.a: go-piper
|
||||
$(MAKE) -C go-piper libpiper_binding.a example/main
|
||||
|
||||
get-sources: go-llama go-llama-stable go-ggml-transformers gpt4all go-piper go-rwkv whisper.cpp go-bert go-stable-diffusion
|
||||
get-sources: go-llama go-llama-stable go-ggllm go-ggml-transformers gpt4all go-piper go-rwkv whisper.cpp go-bert bloomz go-stable-diffusion
|
||||
touch $@
|
||||
|
||||
replace:
|
||||
@@ -228,8 +244,10 @@ replace:
|
||||
$(GOCMD) mod edit -replace github.com/donomii/go-rwkv.cpp=$(shell pwd)/go-rwkv
|
||||
$(GOCMD) mod edit -replace github.com/ggerganov/whisper.cpp=$(shell pwd)/whisper.cpp
|
||||
$(GOCMD) mod edit -replace github.com/go-skynet/go-bert.cpp=$(shell pwd)/go-bert
|
||||
$(GOCMD) mod edit -replace github.com/go-skynet/bloomz.cpp=$(shell pwd)/bloomz
|
||||
$(GOCMD) mod edit -replace github.com/mudler/go-stable-diffusion=$(shell pwd)/go-stable-diffusion
|
||||
$(GOCMD) mod edit -replace github.com/mudler/go-piper=$(shell pwd)/go-piper
|
||||
$(GOCMD) mod edit -replace github.com/mudler/go-ggllm.cpp=$(shell pwd)/go-ggllm
|
||||
|
||||
prepare-sources: get-sources replace
|
||||
$(GOCMD) mod download
|
||||
@@ -245,7 +263,9 @@ rebuild: ## Rebuilds the project
|
||||
$(MAKE) -C whisper.cpp clean
|
||||
$(MAKE) -C go-stable-diffusion clean
|
||||
$(MAKE) -C go-bert clean
|
||||
$(MAKE) -C bloomz clean
|
||||
$(MAKE) -C go-piper clean
|
||||
$(MAKE) -C go-ggllm clean
|
||||
$(MAKE) build
|
||||
|
||||
prepare: prepare-sources $(OPTIONAL_TARGETS)
|
||||
@@ -263,8 +283,10 @@ clean: ## Remove build related file
|
||||
rm -rf ./backend-assets
|
||||
rm -rf ./go-rwkv
|
||||
rm -rf ./go-bert
|
||||
rm -rf ./bloomz
|
||||
rm -rf ./whisper.cpp
|
||||
rm -rf ./go-piper
|
||||
rm -rf ./go-ggllm
|
||||
rm -rf $(BINARY_NAME)
|
||||
rm -rf release/
|
||||
$(MAKE) -C backend/cpp/llama clean
|
||||
@@ -292,7 +314,7 @@ test-models/testmodel:
|
||||
mkdir test-dir
|
||||
wget https://huggingface.co/nnakasato/ggml-model-test/resolve/main/ggml-model-q4.bin -O test-models/testmodel
|
||||
wget https://huggingface.co/ggerganov/whisper.cpp/resolve/main/ggml-base.en.bin -O test-models/whisper-en
|
||||
wget https://huggingface.co/mudler/all-MiniLM-L6-v2/resolve/main/ggml-model-q4_0.bin -O test-models/bert
|
||||
wget https://huggingface.co/skeskinen/ggml/resolve/main/all-MiniLM-L6-v2/ggml-model-q4_0.bin -O test-models/bert
|
||||
wget https://cdn.openai.com/whisper/draft-20220913a/micro-machines.wav -O test-dir/audio.wav
|
||||
wget https://huggingface.co/mudler/rwkv-4-raven-1.5B-ggml/resolve/main/RWKV-4-Raven-1B5-v11-Eng99%2525-Other1%2525-20230425-ctx4096_Q4_0.bin -O test-models/rwkv
|
||||
wget https://raw.githubusercontent.com/saharNooby/rwkv.cpp/5eb8f09c146ea8124633ab041d9ea0b1f1db4459/rwkv/20B_tokenizer.json -O test-models/rwkv.tokenizer.json
|
||||
@@ -390,6 +412,10 @@ protogen-python:
|
||||
backend-assets/grpc:
|
||||
mkdir -p backend-assets/grpc
|
||||
|
||||
backend-assets/grpc/falcon: backend-assets/grpc go-ggllm/libggllm.a
|
||||
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(shell pwd)/go-ggllm LIBRARY_PATH=$(shell pwd)/go-ggllm \
|
||||
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/falcon ./cmd/grpc/falcon/
|
||||
|
||||
backend-assets/grpc/llama: backend-assets/grpc go-llama/libbinding.a
|
||||
$(GOCMD) mod edit -replace github.com/go-skynet/go-llama.cpp=$(shell pwd)/go-llama
|
||||
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(shell pwd)/go-llama LIBRARY_PATH=$(shell pwd)/go-llama \
|
||||
@@ -454,6 +480,10 @@ backend-assets/grpc/rwkv: backend-assets/grpc go-rwkv/librwkv.a
|
||||
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(shell pwd)/go-rwkv LIBRARY_PATH=$(shell pwd)/go-rwkv \
|
||||
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/rwkv ./cmd/grpc/rwkv/
|
||||
|
||||
backend-assets/grpc/bloomz: backend-assets/grpc bloomz/libbloomz.a
|
||||
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(shell pwd)/bloomz LIBRARY_PATH=$(shell pwd)/bloomz \
|
||||
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/bloomz ./cmd/grpc/bloomz/
|
||||
|
||||
backend-assets/grpc/bert-embeddings: backend-assets/grpc go-bert/libgobert.a
|
||||
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(shell pwd)/go-bert LIBRARY_PATH=$(shell pwd)/go-bert \
|
||||
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/bert-embeddings ./cmd/grpc/bert-embeddings/
|
||||
|
||||
@@ -457,7 +457,7 @@ var _ = Describe("API test", func() {
|
||||
Eventually(func() bool {
|
||||
response := getModelStatus("http://127.0.0.1:9090/models/jobs/" + uuid)
|
||||
return response["processed"].(bool)
|
||||
}, "960s", "10s").Should(Equal(true))
|
||||
}, "360s", "10s").Should(Equal(true))
|
||||
|
||||
resp, err := client.CreateChatCompletion(context.TODO(), openai.ChatCompletionRequest{Model: "gpt4all-j", Messages: []openai.ChatCompletionMessage{openai.ChatCompletionMessage{Role: "user", Content: "How are you?"}}})
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
@@ -687,7 +687,7 @@ var _ = Describe("API test", func() {
|
||||
Input: []string{"sun", "cat"},
|
||||
},
|
||||
)
|
||||
Expect(err).ToNot(HaveOccurred(), err)
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
Expect(len(resp.Data[0].Embedding)).To(BeNumerically("==", 384))
|
||||
Expect(len(resp.Data[1].Embedding)).To(BeNumerically("==", 384))
|
||||
|
||||
|
||||
@@ -4,11 +4,6 @@ set(TARGET grpc-server)
|
||||
set(_PROTOBUF_LIBPROTOBUF libprotobuf)
|
||||
set(_REFLECTION grpc++_reflection)
|
||||
|
||||
if (${CMAKE_SYSTEM_NAME} MATCHES "Darwin")
|
||||
link_directories("/opt/homebrew/lib")
|
||||
include_directories("/opt/homebrew/include")
|
||||
endif()
|
||||
|
||||
find_package(absl CONFIG REQUIRED)
|
||||
find_package(Protobuf CONFIG REQUIRED)
|
||||
find_package(gRPC CONFIG REQUIRED)
|
||||
@@ -20,7 +15,8 @@ find_program(_GRPC_CPP_PLUGIN_EXECUTABLE grpc_cpp_plugin)
|
||||
include_directories(${CMAKE_CURRENT_BINARY_DIR})
|
||||
include_directories(${Protobuf_INCLUDE_DIRS})
|
||||
|
||||
message(STATUS "Using protobuf version ${Protobuf_VERSION} | Protobuf_INCLUDE_DIRS: ${Protobuf_INCLUDE_DIRS} | CMAKE_CURRENT_BINARY_DIR: ${CMAKE_CURRENT_BINARY_DIR}")
|
||||
message(STATUS "Using protobuf ${Protobuf_VERSION} ${Protobuf_INCLUDE_DIRS} ${CMAKE_CURRENT_BINARY_DIR}")
|
||||
|
||||
|
||||
# Proto file
|
||||
get_filename_component(hw_proto "../../../../../../pkg/grpc/proto/backend.proto" ABSOLUTE)
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
|
||||
LLAMA_VERSION?=
|
||||
LLAMA_VERSION?=24ba3d829e31a6eda3fa1723f692608c2fa3adda
|
||||
|
||||
CMAKE_ARGS?=
|
||||
BUILD_TYPE?=
|
||||
|
||||
@@ -88,7 +88,6 @@ static size_t find_partial_stop_string(const std::string &stop,
|
||||
return std::string::npos;
|
||||
}
|
||||
|
||||
|
||||
template <class Iter>
|
||||
static std::string tokens_to_str(llama_context *ctx, Iter begin, Iter end)
|
||||
{
|
||||
@@ -129,16 +128,18 @@ struct llama_server_context
|
||||
size_t n_past = 0;
|
||||
size_t n_remain = 0;
|
||||
|
||||
// json prompt;
|
||||
std::vector<llama_token> embd;
|
||||
|
||||
gpt_params params;
|
||||
std::vector<llama_token> last_n_tokens;
|
||||
|
||||
llama_model *model = nullptr;
|
||||
llama_context *ctx = nullptr;
|
||||
llama_sampling_context *ctx_sampling = nullptr;
|
||||
|
||||
gpt_params params;
|
||||
int n_ctx;
|
||||
|
||||
grammar_parser::parse_state parsed_grammar;
|
||||
llama_grammar *grammar = nullptr;
|
||||
|
||||
bool truncated = false;
|
||||
bool stopped_eos = false;
|
||||
bool stopped_word = false;
|
||||
@@ -170,7 +171,7 @@ struct llama_server_context
|
||||
void rewind()
|
||||
{
|
||||
params.antiprompt.clear();
|
||||
params.sparams.grammar.clear();
|
||||
params.grammar.clear();
|
||||
num_prompt_tokens = 0;
|
||||
num_tokens_predicted = 0;
|
||||
generated_text = "";
|
||||
@@ -184,87 +185,100 @@ struct llama_server_context
|
||||
multibyte_pending = 0;
|
||||
n_remain = 0;
|
||||
n_past = 0;
|
||||
params.sparams.n_prev = n_ctx;
|
||||
}
|
||||
|
||||
void initSampling() {
|
||||
if (ctx_sampling != nullptr) {
|
||||
llama_sampling_free(ctx_sampling);
|
||||
if (grammar != nullptr) {
|
||||
llama_grammar_free(grammar);
|
||||
grammar = nullptr;
|
||||
}
|
||||
ctx_sampling = llama_sampling_init(params.sparams);
|
||||
}
|
||||
|
||||
bool loadModel(const gpt_params ¶ms_)
|
||||
{
|
||||
printf("load model %s\n", params_.model.c_str());
|
||||
|
||||
params = params_;
|
||||
std::tie(model, ctx) = llama_init_from_gpt_params(params);
|
||||
if (model == nullptr)
|
||||
{
|
||||
printf("unable to load model %s\n", params_.model.c_str());
|
||||
return false;
|
||||
}
|
||||
n_ctx = llama_n_ctx(ctx);
|
||||
last_n_tokens.resize(n_ctx);
|
||||
std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);
|
||||
return true;
|
||||
}
|
||||
std::vector<llama_token> tokenize_string(const char *prompt, bool add_bos) const {
|
||||
// If `add_bos` is true, we only add BOS, when json_prompt is a string,
|
||||
|
||||
std::vector<llama_token> tokenize_array(const char **prompts, bool add_bos) const
|
||||
{
|
||||
// If `add_bos` is true, we only add BOS, when json_prompt is a string,
|
||||
// or the first element of the json_prompt array is a string.
|
||||
std::vector<llama_token> prompt_tokens;
|
||||
auto s = std::string(prompt);
|
||||
prompt_tokens = ::llama_tokenize(ctx, s, add_bos);
|
||||
std::vector<llama_token> prompt_tokens;
|
||||
|
||||
|
||||
bool first = true;
|
||||
// Iterate over prompts
|
||||
for (const char **p = prompts; *p != nullptr; ++p)
|
||||
{
|
||||
auto s = std::string(*p);
|
||||
std::vector<llama_token> pp;
|
||||
if (first)
|
||||
{
|
||||
pp = ::llama_tokenize(ctx, s, add_bos);
|
||||
first = false;
|
||||
}
|
||||
else
|
||||
{
|
||||
pp = ::llama_tokenize(ctx, s, false);
|
||||
}
|
||||
prompt_tokens.insert(prompt_tokens.end(), pp.begin(), pp.end());
|
||||
}
|
||||
|
||||
|
||||
return prompt_tokens;
|
||||
}
|
||||
std::vector<llama_token> tokenize_array(const char **prompts, bool add_bos) const {
|
||||
std::vector<llama_token> prompt_tokens;
|
||||
|
||||
bool first = true;
|
||||
bool is_string = true;
|
||||
for (const char **p = prompts; *p != nullptr; ++p)
|
||||
{
|
||||
if (is_string)
|
||||
{
|
||||
auto s = std::string(*p);
|
||||
std::vector<llama_token> p;
|
||||
if (first)
|
||||
{
|
||||
p = ::llama_tokenize(ctx, s, add_bos);
|
||||
first = false;
|
||||
}
|
||||
else
|
||||
{
|
||||
p = ::llama_tokenize(ctx, s, false);
|
||||
}
|
||||
prompt_tokens.insert(prompt_tokens.end(), p.begin(), p.end());
|
||||
}
|
||||
else
|
||||
{
|
||||
if (first)
|
||||
{
|
||||
first = false;
|
||||
}
|
||||
//prompt_tokens.push_back(p.template get<llama_token>());
|
||||
std::vector<llama_token> tokenize_string(const char *prompt, bool add_bos) const
|
||||
{
|
||||
// If `add_bos` is true, we only add BOS, when json_prompt is a string,
|
||||
// or the first element of the json_prompt array is a string.
|
||||
std::vector<llama_token> prompt_tokens;
|
||||
|
||||
auto s = std::string(prompt);
|
||||
prompt_tokens = ::llama_tokenize(ctx, s, add_bos);
|
||||
|
||||
return prompt_tokens;
|
||||
}
|
||||
|
||||
bool loadGrammar()
|
||||
{
|
||||
if (!params.grammar.empty()) {
|
||||
parsed_grammar = grammar_parser::parse(params.grammar.c_str());
|
||||
// will be empty (default) if there are parse errors
|
||||
if (parsed_grammar.rules.empty()) {
|
||||
printf("grammar parse error");
|
||||
return false;
|
||||
}
|
||||
grammar_parser::print_grammar(stderr, parsed_grammar);
|
||||
|
||||
{
|
||||
auto it = params.logit_bias.find(llama_token_eos(ctx));
|
||||
if (it != params.logit_bias.end() && it->second == -INFINITY) {
|
||||
printf("EOS token is disabled, which will cause most grammars to fail");
|
||||
}
|
||||
}
|
||||
return prompt_tokens;
|
||||
}
|
||||
|
||||
void truncatePrompt(std::vector<llama_token> &prompt_tokens) {
|
||||
const int n_left = n_ctx - params.n_keep;
|
||||
const int n_block_size = n_left / 2;
|
||||
const int erased_blocks = (prompt_tokens.size() - params.n_keep - n_block_size) / n_block_size;
|
||||
|
||||
// Keep n_keep tokens at start of prompt (at most n_ctx - 4)
|
||||
std::vector<llama_token> new_tokens(prompt_tokens.begin(), prompt_tokens.begin() + params.n_keep);
|
||||
|
||||
new_tokens.insert(new_tokens.end(), prompt_tokens.begin() + params.n_keep + erased_blocks * n_block_size, prompt_tokens.end());
|
||||
|
||||
truncated = true;
|
||||
prompt_tokens = new_tokens;
|
||||
std::vector<const llama_grammar_element *> grammar_rules(parsed_grammar.c_rules());
|
||||
grammar = llama_grammar_init(
|
||||
grammar_rules.data(), grammar_rules.size(), parsed_grammar.symbol_ids.at("root"));
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
void loadInfill()
|
||||
{
|
||||
bool suff_rm_leading_spc = true;
|
||||
if (params.input_suffix.find_first_of(' ') == 0 && params.input_suffix.size() > 1) {
|
||||
if (params.input_suffix.find_first_of(" ") == 0 && params.input_suffix.size() > 1) {
|
||||
params.input_suffix.erase(0, 1);
|
||||
suff_rm_leading_spc = false;
|
||||
}
|
||||
@@ -275,12 +289,11 @@ struct llama_server_context
|
||||
if (suff_rm_leading_spc && suffix_tokens[0] == space_token) {
|
||||
suffix_tokens.erase(suffix_tokens.begin());
|
||||
}
|
||||
prefix_tokens.insert(prefix_tokens.begin(), llama_token_prefix(model));
|
||||
prefix_tokens.insert(prefix_tokens.begin(), llama_token_bos(model)); // always add BOS
|
||||
prefix_tokens.insert(prefix_tokens.end(), llama_token_suffix(model));
|
||||
prefix_tokens.insert(prefix_tokens.begin(), llama_token_prefix(ctx));
|
||||
prefix_tokens.insert(prefix_tokens.begin(), llama_token_bos(ctx)); // always add BOS
|
||||
prefix_tokens.insert(prefix_tokens.end(), llama_token_suffix(ctx));
|
||||
prefix_tokens.insert(prefix_tokens.end(), suffix_tokens.begin(), suffix_tokens.end());
|
||||
prefix_tokens.push_back(llama_token_middle(model));
|
||||
|
||||
prefix_tokens.push_back(llama_token_middle(ctx));
|
||||
auto prompt_tokens = prefix_tokens;
|
||||
|
||||
num_prompt_tokens = prompt_tokens.size();
|
||||
@@ -292,24 +305,29 @@ struct llama_server_context
|
||||
params.n_keep = std::min(params.n_ctx - 4, params.n_keep);
|
||||
|
||||
// if input prompt is too big, truncate like normal
|
||||
if (num_prompt_tokens >= (size_t) n_ctx)
|
||||
if (num_prompt_tokens >= (size_t)params.n_ctx)
|
||||
{
|
||||
truncatePrompt(prompt_tokens);
|
||||
num_prompt_tokens = prompt_tokens.size();
|
||||
printf("Input prompt is too big, truncating. Can only take %d tokens but got %zu\n", params.n_ctx, num_prompt_tokens);
|
||||
// todo we probably want to cut from both sides
|
||||
const int n_left = (params.n_ctx - params.n_keep) / 2;
|
||||
std::vector<llama_token> new_tokens(prompt_tokens.begin(), prompt_tokens.begin() + params.n_keep);
|
||||
const int erased_blocks = (num_prompt_tokens - params.n_keep - n_left - 1) / n_left;
|
||||
new_tokens.insert(new_tokens.end(), prompt_tokens.begin() + params.n_keep + erased_blocks * n_left, prompt_tokens.end());
|
||||
std::copy(prompt_tokens.end() - params.n_ctx, prompt_tokens.end(), last_n_tokens.begin());
|
||||
|
||||
GGML_ASSERT(num_prompt_tokens < (size_t)n_ctx);
|
||||
truncated = true;
|
||||
prompt_tokens = new_tokens;
|
||||
}
|
||||
|
||||
// push the prompt into the sampling context (do not apply grammar)
|
||||
for (auto & token : prompt_tokens)
|
||||
else
|
||||
{
|
||||
llama_sampling_accept(ctx_sampling, ctx, token, false);
|
||||
const size_t ps = num_prompt_tokens;
|
||||
std::fill(last_n_tokens.begin(), last_n_tokens.end() - ps, 0);
|
||||
std::copy(prompt_tokens.begin(), prompt_tokens.end(), last_n_tokens.end() - ps);
|
||||
}
|
||||
|
||||
// compare the evaluated prompt with the new prompt
|
||||
n_past = common_part(embd, prompt_tokens);
|
||||
embd = prompt_tokens;
|
||||
|
||||
if (n_past == num_prompt_tokens)
|
||||
{
|
||||
// we have to evaluate at least 1 token to generate logits.
|
||||
@@ -317,7 +335,6 @@ struct llama_server_context
|
||||
n_past--;
|
||||
}
|
||||
|
||||
// since #3228 we now have to manually manage the KV cache
|
||||
llama_kv_cache_seq_rm(ctx, 0, n_past, -1);
|
||||
|
||||
has_next_token = true;
|
||||
@@ -335,33 +352,38 @@ struct llama_server_context
|
||||
params.n_keep = std::min(n_ctx - 4, params.n_keep);
|
||||
|
||||
// if input prompt is too big, truncate like normal
|
||||
if (num_prompt_tokens >= (size_t) n_ctx)
|
||||
if (num_prompt_tokens >= (size_t)n_ctx)
|
||||
{
|
||||
truncatePrompt(prompt_tokens);
|
||||
num_prompt_tokens = prompt_tokens.size();
|
||||
const int n_left = (n_ctx - params.n_keep) / 2;
|
||||
std::vector<llama_token> new_tokens(prompt_tokens.begin(), prompt_tokens.begin() + params.n_keep);
|
||||
const int erased_blocks = (num_prompt_tokens - params.n_keep - n_left - 1) / n_left;
|
||||
new_tokens.insert(new_tokens.end(), prompt_tokens.begin() + params.n_keep + erased_blocks * n_left, prompt_tokens.end());
|
||||
std::copy(prompt_tokens.end() - n_ctx, prompt_tokens.end(), last_n_tokens.begin());
|
||||
|
||||
GGML_ASSERT(num_prompt_tokens < (size_t)n_ctx);
|
||||
|
||||
truncated = true;
|
||||
prompt_tokens = new_tokens;
|
||||
}
|
||||
|
||||
// push the prompt into the sampling context (do not apply grammar)
|
||||
for (auto & token : prompt_tokens)
|
||||
else
|
||||
{
|
||||
llama_sampling_accept(ctx_sampling, ctx, token, false);
|
||||
const size_t ps = num_prompt_tokens;
|
||||
std::fill(last_n_tokens.begin(), last_n_tokens.end() - ps, 0);
|
||||
std::copy(prompt_tokens.begin(), prompt_tokens.end(), last_n_tokens.end() - ps);
|
||||
}
|
||||
|
||||
// compare the evaluated prompt with the new prompt
|
||||
n_past = common_part(embd, prompt_tokens);
|
||||
|
||||
|
||||
embd = prompt_tokens;
|
||||
if (n_past == num_prompt_tokens)
|
||||
{
|
||||
// we have to evaluate at least 1 token to generate logits.
|
||||
n_past--;
|
||||
}
|
||||
|
||||
// since #3228 we now have to manually manage the KV cache
|
||||
llama_kv_cache_seq_rm(ctx, 0, n_past, -1);
|
||||
|
||||
llama_kv_cache_seq_rm(ctx, 0, n_past, -1);
|
||||
has_next_token = true;
|
||||
}
|
||||
|
||||
@@ -396,6 +418,7 @@ struct llama_server_context
|
||||
n_past -= n_discard;
|
||||
|
||||
truncated = true;
|
||||
|
||||
}
|
||||
|
||||
bool tg = true;
|
||||
@@ -410,6 +433,7 @@ struct llama_server_context
|
||||
|
||||
if (llama_decode(ctx, llama_batch_get_one(&embd[n_past], n_eval, n_past, 0)))
|
||||
{
|
||||
|
||||
has_next_token = false;
|
||||
return result;
|
||||
}
|
||||
@@ -419,30 +443,33 @@ struct llama_server_context
|
||||
if (params.n_predict == 0)
|
||||
{
|
||||
has_next_token = false;
|
||||
result.tok = llama_token_eos(model);
|
||||
result.tok = llama_token_eos(ctx);
|
||||
return result;
|
||||
}
|
||||
|
||||
{
|
||||
// out of user input, sample next token
|
||||
result.tok = llama_sampling_sample(ctx_sampling, ctx, NULL);
|
||||
std::vector<llama_token_data> candidates;
|
||||
candidates.reserve(llama_n_vocab(model));
|
||||
|
||||
llama_token_data_array cur_p = { ctx_sampling->cur.data(), ctx_sampling->cur.size(), false };
|
||||
result.tok = llama_sample_token(ctx, NULL, grammar, params, last_n_tokens, candidates);
|
||||
|
||||
const int32_t n_probs = params.sparams.n_probs;
|
||||
if (params.sparams.temp <= 0 && n_probs > 0)
|
||||
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
||||
|
||||
const int32_t n_probs = params.n_probs;
|
||||
if (params.temp <= 0 && n_probs > 0)
|
||||
{
|
||||
// For llama_sample_token_greedy we need to sort candidates
|
||||
llama_sample_softmax(ctx, &cur_p);
|
||||
llama_sample_softmax(ctx, &candidates_p);
|
||||
}
|
||||
|
||||
for (size_t i = 0; i < std::min(cur_p.size, (size_t)n_probs); ++i)
|
||||
for (size_t i = 0; i < std::min(candidates_p.size, (size_t)n_probs); ++i)
|
||||
{
|
||||
result.probs.push_back({cur_p.data[i].id, cur_p.data[i].p});
|
||||
result.probs.push_back({candidates_p.data[i].id, candidates_p.data[i].p});
|
||||
}
|
||||
|
||||
llama_sampling_accept(ctx_sampling, ctx, result.tok, true);
|
||||
|
||||
last_n_tokens.erase(last_n_tokens.begin());
|
||||
last_n_tokens.push_back(result.tok);
|
||||
if (tg) {
|
||||
num_tokens_predicted++;
|
||||
}
|
||||
@@ -453,7 +480,7 @@ struct llama_server_context
|
||||
// decrement remaining sampling budget
|
||||
--n_remain;
|
||||
|
||||
if (!embd.empty() && embd.back() == llama_token_eos(model))
|
||||
if (!embd.empty() && embd.back() == llama_token_eos(ctx))
|
||||
{
|
||||
// stopping_word = llama_token_to_piece(ctx, embd.back());
|
||||
has_next_token = false;
|
||||
@@ -504,7 +531,7 @@ struct llama_server_context
|
||||
const std::string token_text = token_with_probs.tok == -1 ? "" : llama_token_to_piece(ctx, token_with_probs.tok);
|
||||
generated_text += token_text;
|
||||
|
||||
if (params.sparams.n_probs > 0)
|
||||
if (params.n_probs > 0)
|
||||
{
|
||||
generated_token_probs.push_back(token_with_probs);
|
||||
}
|
||||
@@ -556,6 +583,7 @@ struct llama_server_context
|
||||
static const int n_embd = llama_n_embd(model);
|
||||
if (!params.embedding)
|
||||
{
|
||||
printf("embedding disabled");
|
||||
return std::vector<float>(n_embd, 0.0f);
|
||||
}
|
||||
const float *data = llama_get_embeddings(ctx);
|
||||
@@ -571,30 +599,30 @@ static void parse_options_completion(bool streaming,const backend::PredictOption
|
||||
|
||||
llama.stream = streaming;
|
||||
llama.params.n_predict = predict->tokens() == 0 ? -1 : predict->tokens();
|
||||
llama.params.sparams.top_k = predict->topk();
|
||||
llama.params.sparams.top_p = predict->topp();
|
||||
llama.params.sparams.tfs_z = predict->tailfreesamplingz();
|
||||
llama.params.sparams.typical_p = predict->typicalp();
|
||||
llama.params.sparams.penalty_last_n = predict->repeat();
|
||||
llama.params.sparams.temp = predict->temperature();
|
||||
llama.params.sparams.penalty_repeat = predict->penalty();
|
||||
llama.params.sparams.penalty_present = predict->presencepenalty();
|
||||
llama.params.sparams.penalty_freq = predict->frequencypenalty();
|
||||
llama.params.sparams.mirostat = predict->mirostat();
|
||||
llama.params.sparams.mirostat_tau = predict->mirostattau();
|
||||
llama.params.sparams.mirostat_eta = predict->mirostateta();
|
||||
llama.params.sparams.penalize_nl = predict->penalizenl();
|
||||
llama.params.top_k = predict->topk();
|
||||
llama.params.top_p = predict->topp();
|
||||
llama.params.tfs_z = predict->tailfreesamplingz();
|
||||
llama.params.typical_p = predict->typicalp();
|
||||
llama.params.repeat_last_n = predict->repeat();
|
||||
llama.params.temp = predict->temperature();
|
||||
llama.params.repeat_penalty = predict->penalty();
|
||||
llama.params.presence_penalty = predict->presencepenalty();
|
||||
llama.params.frequency_penalty = predict->frequencypenalty();
|
||||
llama.params.mirostat = predict->mirostat();
|
||||
llama.params.mirostat_tau = predict->mirostattau();
|
||||
llama.params.mirostat_eta = predict->mirostateta();
|
||||
llama.params.penalize_nl = predict->penalizenl();
|
||||
llama.params.n_keep = predict->nkeep();
|
||||
llama.params.seed = predict->seed();
|
||||
llama.params.sparams.grammar = predict->grammar();
|
||||
llama.params.grammar = predict->grammar();
|
||||
// llama.params.n_probs = predict->
|
||||
llama.params.prompt = predict->prompt();
|
||||
|
||||
llama.params.sparams.logit_bias.clear();
|
||||
llama.params.logit_bias.clear();
|
||||
|
||||
if (predict->ignoreeos())
|
||||
{
|
||||
llama.params.sparams.logit_bias[llama_token_eos(llama.model)] = -INFINITY;
|
||||
llama.params.logit_bias[llama_token_eos(llama.ctx)] = -INFINITY;
|
||||
}
|
||||
|
||||
// const auto &logit_bias = body.find("logit_bias");
|
||||
@@ -676,7 +704,7 @@ static void params_parse(const backend::ModelOptions* request,
|
||||
}
|
||||
|
||||
static bool is_at_eob(llama_server_context &server_context, const llama_token *tokens, const size_t n_tokens) {
|
||||
return n_tokens && tokens[n_tokens-1] == llama_token_eos(server_context.model);
|
||||
return n_tokens && tokens[n_tokens-1] == llama_token_eos(server_context.ctx);
|
||||
}
|
||||
|
||||
// Function matching type llama_beam_search_callback_fn_t.
|
||||
@@ -773,7 +801,12 @@ public:
|
||||
|
||||
parse_options_completion(false, request, llama);
|
||||
|
||||
llama.initSampling();
|
||||
if (!llama.loadGrammar())
|
||||
{
|
||||
//res.status = 400;
|
||||
return Status::CANCELLED;
|
||||
}
|
||||
|
||||
llama.loadPrompt(request->prompt());
|
||||
llama.beginCompletion();
|
||||
size_t sent_count = 0;
|
||||
@@ -815,7 +848,7 @@ public:
|
||||
|
||||
std::vector<completion_token_output> probs_output = {};
|
||||
|
||||
if (llama.params.sparams.n_probs > 0) {
|
||||
if (llama.params.n_probs > 0) {
|
||||
const std::vector<llama_token> to_send_toks = llama_tokenize(llama.ctx, to_send, false);
|
||||
size_t probs_pos = std::min(sent_token_probs_index, llama.generated_token_probs.size());
|
||||
size_t probs_stop_pos = std::min(sent_token_probs_index + to_send_toks.size(), llama.generated_token_probs.size());
|
||||
@@ -846,7 +879,12 @@ public:
|
||||
llama_reset_timings(llama.ctx);
|
||||
parse_options_completion(false, request, llama);
|
||||
|
||||
llama.initSampling();
|
||||
if (!llama.loadGrammar())
|
||||
{
|
||||
//res.status = 400;
|
||||
return Status::CANCELLED;
|
||||
}
|
||||
|
||||
llama.loadPrompt(request->prompt());
|
||||
llama.beginCompletion();
|
||||
|
||||
@@ -877,7 +915,7 @@ public:
|
||||
}
|
||||
|
||||
auto probs = llama.generated_token_probs;
|
||||
if (llama.params.sparams.n_probs > 0 && llama.stopped_word) {
|
||||
if (llama.params.n_probs > 0 && llama.stopped_word) {
|
||||
const std::vector<llama_token> stop_word_toks = llama_tokenize(llama.ctx, llama.stopping_word, false);
|
||||
probs = std::vector<completion_token_output>(llama.generated_token_probs.begin(), llama.generated_token_probs.end() - stop_word_toks.size());
|
||||
}
|
||||
|
||||
23
cmd/grpc/bloomz/main.go
Normal file
23
cmd/grpc/bloomz/main.go
Normal file
@@ -0,0 +1,23 @@
|
||||
package main
|
||||
|
||||
// Note: this is started internally by LocalAI and a server is allocated for each model
|
||||
|
||||
import (
|
||||
"flag"
|
||||
|
||||
bloomz "github.com/go-skynet/LocalAI/pkg/backend/llm/bloomz"
|
||||
|
||||
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
|
||||
)
|
||||
|
||||
var (
|
||||
addr = flag.String("addr", "localhost:50051", "the address to connect to")
|
||||
)
|
||||
|
||||
func main() {
|
||||
flag.Parse()
|
||||
|
||||
if err := grpc.StartServer(*addr, &bloomz.LLM{}); err != nil {
|
||||
panic(err)
|
||||
}
|
||||
}
|
||||
25
cmd/grpc/falcon/main.go
Normal file
25
cmd/grpc/falcon/main.go
Normal file
@@ -0,0 +1,25 @@
|
||||
package main
|
||||
|
||||
// GRPC Falcon server
|
||||
|
||||
// Note: this is started internally by LocalAI and a server is allocated for each model
|
||||
|
||||
import (
|
||||
"flag"
|
||||
|
||||
falcon "github.com/go-skynet/LocalAI/pkg/backend/llm/falcon"
|
||||
|
||||
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
|
||||
)
|
||||
|
||||
var (
|
||||
addr = flag.String("addr", "localhost:50051", "the address to connect to")
|
||||
)
|
||||
|
||||
func main() {
|
||||
flag.Parse()
|
||||
|
||||
if err := grpc.StartServer(*addr, &falcon.LLM{}); err != nil {
|
||||
panic(err)
|
||||
}
|
||||
}
|
||||
@@ -1,25 +0,0 @@
|
||||
meta {
|
||||
name: Generate image
|
||||
type: http
|
||||
seq: 1
|
||||
}
|
||||
|
||||
post {
|
||||
url: {{PROTOCOL}}{{HOST}}:{{PORT}}/v1/images/generations
|
||||
body: json
|
||||
auth: none
|
||||
}
|
||||
|
||||
headers {
|
||||
Content-Type: application/json
|
||||
}
|
||||
|
||||
body:json {
|
||||
{
|
||||
"prompt": "<positive prompt>|<negative prompt>",
|
||||
"model": "model-name",
|
||||
"step": 51,
|
||||
"size": "1024x1024",
|
||||
"image": ""
|
||||
}
|
||||
}
|
||||
@@ -15,16 +15,10 @@ headers {
|
||||
}
|
||||
|
||||
body:json {
|
||||
{
|
||||
"model": "{{DEFAULT_MODEL}}",
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "How could one use friction to cook an egg?"
|
||||
}
|
||||
],
|
||||
"max_tokens": 256,
|
||||
"temperature": 0.2,
|
||||
"grammar": ""
|
||||
{
|
||||
"model": "{{DEFAULT_MODEL}}",
|
||||
"messages": [{"role": "user", "content": "How could one use friction to cook an egg?"}],
|
||||
"max_tokens": 256,
|
||||
"temperature": 0.2
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,42 +0,0 @@
|
||||
## Advanced configuration
|
||||
|
||||
This section contains examples on how to install models manually with config files.
|
||||
|
||||
### Prerequisites
|
||||
|
||||
First clone LocalAI:
|
||||
|
||||
```bash
|
||||
git clone https://github.com/go-skynet/LocalAI
|
||||
|
||||
cd LocalAI
|
||||
```
|
||||
|
||||
Setup the model you prefer from the examples below and then start LocalAI:
|
||||
|
||||
```bash
|
||||
docker compose up -d --pull always
|
||||
```
|
||||
|
||||
If LocalAI is already started, you can restart it with
|
||||
|
||||
```bash
|
||||
docker compose restart
|
||||
```
|
||||
|
||||
See also the getting started: https://localai.io/basics/getting_started/
|
||||
|
||||
### Mistral
|
||||
|
||||
To setup mistral copy the files inside `mistral` in the `models` folder:
|
||||
|
||||
```bash
|
||||
cp -r examples/configurations/mistral/* models/
|
||||
```
|
||||
|
||||
Now download the model:
|
||||
|
||||
```bash
|
||||
wget https://huggingface.co/TheBloke/Mistral-7B-OpenOrca-GGUF/resolve/main/mistral-7b-openorca.Q6_K.gguf -O models/mistral-7b-openorca.Q6_K.gguf
|
||||
```
|
||||
|
||||
@@ -1,3 +0,0 @@
|
||||
{{.Input}}
|
||||
<|im_start|>assistant
|
||||
|
||||
@@ -1,3 +0,0 @@
|
||||
<|im_start|>{{if eq .RoleName "assistant"}}assistant{{else if eq .RoleName "system"}}system{{else if eq .RoleName "user"}}user{{end}}
|
||||
{{if .Content}}{{.Content}}{{end}}
|
||||
<|im_end|>
|
||||
@@ -1 +0,0 @@
|
||||
{{.Input}}
|
||||
@@ -1,16 +0,0 @@
|
||||
name: mistral
|
||||
mmap: true
|
||||
parameters:
|
||||
model: mistral-7b-openorca.Q6_K.gguf
|
||||
temperature: 0.2
|
||||
top_k: 40
|
||||
top_p: 0.95
|
||||
template:
|
||||
chat_message: chatml
|
||||
chat: chatml-block
|
||||
completion: completion
|
||||
context_size: 4096
|
||||
f16: true
|
||||
stopwords:
|
||||
- <|im_end|>
|
||||
threads: 4
|
||||
8
go.mod
8
go.mod
@@ -20,16 +20,16 @@ require (
|
||||
github.com/mudler/go-ggllm.cpp v0.0.0-20230709223052-862477d16eef
|
||||
github.com/mudler/go-processmanager v0.0.0-20230818213616-f204007f963c
|
||||
github.com/mudler/go-stable-diffusion v0.0.0-20230605122230-d89260f598af
|
||||
github.com/nomic-ai/gpt4all/gpt4all-bindings/golang v0.0.0-20231022042237-c25dc5193530
|
||||
github.com/nomic-ai/gpt4all/gpt4all-bindings/golang v0.0.0-20231016205817-9a19c740ee84
|
||||
github.com/onsi/ginkgo/v2 v2.13.0
|
||||
github.com/onsi/gomega v1.28.1
|
||||
github.com/onsi/gomega v1.28.0
|
||||
github.com/otiai10/openaigo v1.6.0
|
||||
github.com/phayes/freeport v0.0.0-20220201140144-74d24b5ae9f5
|
||||
github.com/prometheus/client_golang v1.17.0
|
||||
github.com/rs/zerolog v1.31.0
|
||||
github.com/sashabaranov/go-openai v1.16.0
|
||||
github.com/schollz/progressbar/v3 v3.13.1
|
||||
github.com/tmc/langchaingo v0.0.0-20231019140956-c636b3da7701
|
||||
github.com/tmc/langchaingo v0.0.0-20231020205806-b33244eb8de8
|
||||
github.com/urfave/cli/v2 v2.25.7
|
||||
github.com/valyala/fasthttp v1.50.0
|
||||
go.opentelemetry.io/otel v1.19.0
|
||||
@@ -89,7 +89,7 @@ require (
|
||||
github.com/go-audio/riff v1.0.0 // indirect
|
||||
github.com/go-logr/logr v1.2.4 // indirect
|
||||
github.com/go-task/slim-sprig v0.0.0-20230315185526-52ccab3ef572 // indirect
|
||||
github.com/google/go-cmp v0.6.0 // indirect
|
||||
github.com/google/go-cmp v0.5.9 // indirect
|
||||
github.com/google/pprof v0.0.0-20210407192527-94a9f03dee38 // indirect
|
||||
github.com/hashicorp/errwrap v1.0.0 // indirect
|
||||
github.com/klauspost/compress v1.16.7 // indirect
|
||||
|
||||
8
go.sum
8
go.sum
@@ -73,8 +73,6 @@ github.com/google/go-cmp v0.5.5/go.mod h1:v8dTdLbMG2kIc/vJvl+f65V22dbkXbowE6jgT/
|
||||
github.com/google/go-cmp v0.5.6/go.mod h1:v8dTdLbMG2kIc/vJvl+f65V22dbkXbowE6jgT/gNBxE=
|
||||
github.com/google/go-cmp v0.5.9 h1:O2Tfq5qg4qc4AmwVlvv0oLiVAGB7enBSJ2x2DqQFi38=
|
||||
github.com/google/go-cmp v0.5.9/go.mod h1:17dUlkBOakJ0+DkrSSNjCkIjxS6bF9zb3elmeNGIjoY=
|
||||
github.com/google/go-cmp v0.6.0 h1:ofyhxvXcZhMsU5ulbFiLKl/XBFqE1GSq7atu8tAmTRI=
|
||||
github.com/google/go-cmp v0.6.0/go.mod h1:17dUlkBOakJ0+DkrSSNjCkIjxS6bF9zb3elmeNGIjoY=
|
||||
github.com/google/gofuzz v1.0.0/go.mod h1:dBl0BpW6vV/+mYPU4Po3pmUjxk6FQPldtuIdl/M65Eg=
|
||||
github.com/google/pprof v0.0.0-20210407192527-94a9f03dee38 h1:yAJXTCF9TqKcTiHJAE8dj7HMvPfh66eeA2JYW7eFpSE=
|
||||
github.com/google/pprof v0.0.0-20210407192527-94a9f03dee38/go.mod h1:kpwsk12EmLew5upagYY7GY0pfYCcupk39gWOCRROcvE=
|
||||
@@ -137,8 +135,6 @@ github.com/nomic-ai/gpt4all/gpt4all-bindings/golang v0.0.0-20231013181651-22de3c
|
||||
github.com/nomic-ai/gpt4all/gpt4all-bindings/golang v0.0.0-20231013181651-22de3c56bdd4/go.mod h1:4T3CHXyrt+7FQHXaxULZfPjHbD8/99WuDDJa0YVZARI=
|
||||
github.com/nomic-ai/gpt4all/gpt4all-bindings/golang v0.0.0-20231016205817-9a19c740ee84 h1:AiFzd+M2Uxz67fdn4nCnKR70me5yf88rXhoqhvfRDak=
|
||||
github.com/nomic-ai/gpt4all/gpt4all-bindings/golang v0.0.0-20231016205817-9a19c740ee84/go.mod h1:4T3CHXyrt+7FQHXaxULZfPjHbD8/99WuDDJa0YVZARI=
|
||||
github.com/nomic-ai/gpt4all/gpt4all-bindings/golang v0.0.0-20231022042237-c25dc5193530 h1:YXMxHwHMB9jCBo2Yu5gz3mTB3T1TnZs/HmPLv15LUSA=
|
||||
github.com/nomic-ai/gpt4all/gpt4all-bindings/golang v0.0.0-20231022042237-c25dc5193530/go.mod h1:4T3CHXyrt+7FQHXaxULZfPjHbD8/99WuDDJa0YVZARI=
|
||||
github.com/nwaples/rardecode v1.1.0 h1:vSxaY8vQhOcVr4mm5e8XllHWTiM4JF507A0Katqw7MQ=
|
||||
github.com/nwaples/rardecode v1.1.0/go.mod h1:5DzqNKiOdpKKBH87u8VlvAnPZMXcGRhxWkRpHbbfGS0=
|
||||
github.com/nxadm/tail v1.4.4/go.mod h1:kenIhsEOeOJmVchQTgglprH7qJGnHDVpk1VPCcaMI8A=
|
||||
@@ -155,8 +151,6 @@ github.com/onsi/gomega v1.10.1/go.mod h1:iN09h71vgCQne3DLsj+A5owkum+a2tYe+TOCB1y
|
||||
github.com/onsi/gomega v1.16.0/go.mod h1:HnhC7FXeEQY45zxNK3PPoIUhzk/80Xly9PcubAlGdZY=
|
||||
github.com/onsi/gomega v1.28.0 h1:i2rg/p9n/UqIDAMFUJ6qIUUMcsqOuUHgbpbu235Vr1c=
|
||||
github.com/onsi/gomega v1.28.0/go.mod h1:A1H2JE76sI14WIP57LMKj7FVfCHx3g3BcZVjJG8bjX8=
|
||||
github.com/onsi/gomega v1.28.1 h1:MijcGUbfYuznzK/5R4CPNoUP/9Xvuo20sXfEm6XxoTA=
|
||||
github.com/onsi/gomega v1.28.1/go.mod h1:9sxs+SwGrKI0+PWe4Fxa9tFQQBG5xSsSbMXOI8PPpoQ=
|
||||
github.com/otiai10/mint v1.6.1 h1:kgbTJmOpp/0ce7hk3H8jiSuR0MXmpwWRfqUdKww17qg=
|
||||
github.com/otiai10/mint v1.6.1/go.mod h1:MJm72SBthJjz8qhefc4z1PYEieWmy8Bku7CjcAqyUSM=
|
||||
github.com/otiai10/openaigo v1.6.0 h1:YTQEbtDSvawETOB/Kmb/6JvuHdHH/eIpSQfHVufiwY8=
|
||||
@@ -220,6 +214,8 @@ github.com/tmc/langchaingo v0.0.0-20231016073620-a02d4fdc0f3a h1:BziGpoF5ZVWMDy6
|
||||
github.com/tmc/langchaingo v0.0.0-20231016073620-a02d4fdc0f3a/go.mod h1:SiwyRS7sBSSi6f3NB4dKENw69X6br/wZ2WRkM+8pZWk=
|
||||
github.com/tmc/langchaingo v0.0.0-20231019140956-c636b3da7701 h1:LquLgmFiKf6eDXdwoUKCIGn5NsR34cLXC6ySYhiE6bA=
|
||||
github.com/tmc/langchaingo v0.0.0-20231019140956-c636b3da7701/go.mod h1:SiwyRS7sBSSi6f3NB4dKENw69X6br/wZ2WRkM+8pZWk=
|
||||
github.com/tmc/langchaingo v0.0.0-20231020205806-b33244eb8de8 h1:LJ/dRV4AZfcrF/BYRmeXUd/MrVb36qFIFRJO+01TmMM=
|
||||
github.com/tmc/langchaingo v0.0.0-20231020205806-b33244eb8de8/go.mod h1:SiwyRS7sBSSi6f3NB4dKENw69X6br/wZ2WRkM+8pZWk=
|
||||
github.com/ulikunitz/xz v0.5.8/go.mod h1:nbz6k7qbPmH4IRqmfOplQw/tblSgqTqBwxkY0oWt/14=
|
||||
github.com/ulikunitz/xz v0.5.9 h1:RsKRIA2MO8x56wkkcd3LbtcE/uMszhb6DpRf+3uwa3I=
|
||||
github.com/ulikunitz/xz v0.5.9/go.mod h1:nbz6k7qbPmH4IRqmfOplQw/tblSgqTqBwxkY0oWt/14=
|
||||
|
||||
59
pkg/backend/llm/bloomz/bloomz.go
Normal file
59
pkg/backend/llm/bloomz/bloomz.go
Normal file
@@ -0,0 +1,59 @@
|
||||
package bloomz
|
||||
|
||||
// This is a wrapper to statisfy the GRPC service interface
|
||||
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
|
||||
import (
|
||||
"fmt"
|
||||
|
||||
"github.com/go-skynet/LocalAI/pkg/grpc/base"
|
||||
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
|
||||
|
||||
"github.com/go-skynet/bloomz.cpp"
|
||||
)
|
||||
|
||||
type LLM struct {
|
||||
base.SingleThread
|
||||
|
||||
bloomz *bloomz.Bloomz
|
||||
}
|
||||
|
||||
func (llm *LLM) Load(opts *pb.ModelOptions) error {
|
||||
model, err := bloomz.New(opts.ModelFile)
|
||||
llm.bloomz = model
|
||||
return err
|
||||
}
|
||||
|
||||
func buildPredictOptions(opts *pb.PredictOptions) []bloomz.PredictOption {
|
||||
predictOptions := []bloomz.PredictOption{
|
||||
bloomz.SetTemperature(float64(opts.Temperature)),
|
||||
bloomz.SetTopP(float64(opts.TopP)),
|
||||
bloomz.SetTopK(int(opts.TopK)),
|
||||
bloomz.SetTokens(int(opts.Tokens)),
|
||||
bloomz.SetThreads(int(opts.Threads)),
|
||||
}
|
||||
|
||||
if opts.Seed != 0 {
|
||||
predictOptions = append(predictOptions, bloomz.SetSeed(int(opts.Seed)))
|
||||
}
|
||||
|
||||
return predictOptions
|
||||
}
|
||||
|
||||
func (llm *LLM) Predict(opts *pb.PredictOptions) (string, error) {
|
||||
return llm.bloomz.Predict(opts.Prompt, buildPredictOptions(opts)...)
|
||||
}
|
||||
|
||||
// fallback to Predict
|
||||
func (llm *LLM) PredictStream(opts *pb.PredictOptions, results chan string) error {
|
||||
go func() {
|
||||
res, err := llm.bloomz.Predict(opts.Prompt, buildPredictOptions(opts)...)
|
||||
|
||||
if err != nil {
|
||||
fmt.Println("err: ", err)
|
||||
}
|
||||
results <- res
|
||||
close(results)
|
||||
}()
|
||||
|
||||
return nil
|
||||
}
|
||||
145
pkg/backend/llm/falcon/falcon.go
Normal file
145
pkg/backend/llm/falcon/falcon.go
Normal file
@@ -0,0 +1,145 @@
|
||||
package falcon
|
||||
|
||||
// This is a wrapper to statisfy the GRPC service interface
|
||||
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
|
||||
import (
|
||||
"fmt"
|
||||
|
||||
"github.com/go-skynet/LocalAI/pkg/grpc/base"
|
||||
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
|
||||
|
||||
ggllm "github.com/mudler/go-ggllm.cpp"
|
||||
)
|
||||
|
||||
type LLM struct {
|
||||
base.SingleThread
|
||||
|
||||
falcon *ggllm.Falcon
|
||||
}
|
||||
|
||||
func (llm *LLM) Load(opts *pb.ModelOptions) error {
|
||||
ggllmOpts := []ggllm.ModelOption{}
|
||||
if opts.ContextSize != 0 {
|
||||
ggllmOpts = append(ggllmOpts, ggllm.SetContext(int(opts.ContextSize)))
|
||||
}
|
||||
// F16 doesn't seem to produce good output at all!
|
||||
//if c.F16 {
|
||||
// llamaOpts = append(llamaOpts, llama.EnableF16Memory)
|
||||
//}
|
||||
|
||||
if opts.NGPULayers != 0 {
|
||||
ggllmOpts = append(ggllmOpts, ggllm.SetGPULayers(int(opts.NGPULayers)))
|
||||
}
|
||||
|
||||
ggllmOpts = append(ggllmOpts, ggllm.SetMMap(opts.MMap))
|
||||
ggllmOpts = append(ggllmOpts, ggllm.SetMainGPU(opts.MainGPU))
|
||||
ggllmOpts = append(ggllmOpts, ggllm.SetTensorSplit(opts.TensorSplit))
|
||||
if opts.NBatch != 0 {
|
||||
ggllmOpts = append(ggllmOpts, ggllm.SetNBatch(int(opts.NBatch)))
|
||||
} else {
|
||||
ggllmOpts = append(ggllmOpts, ggllm.SetNBatch(512))
|
||||
}
|
||||
|
||||
model, err := ggllm.New(opts.ModelFile, ggllmOpts...)
|
||||
llm.falcon = model
|
||||
return err
|
||||
}
|
||||
|
||||
func buildPredictOptions(opts *pb.PredictOptions) []ggllm.PredictOption {
|
||||
predictOptions := []ggllm.PredictOption{
|
||||
ggllm.SetTemperature(float64(opts.Temperature)),
|
||||
ggllm.SetTopP(float64(opts.TopP)),
|
||||
ggllm.SetTopK(int(opts.TopK)),
|
||||
ggllm.SetTokens(int(opts.Tokens)),
|
||||
ggllm.SetThreads(int(opts.Threads)),
|
||||
}
|
||||
|
||||
if opts.PromptCacheAll {
|
||||
predictOptions = append(predictOptions, ggllm.EnablePromptCacheAll)
|
||||
}
|
||||
|
||||
if opts.PromptCacheRO {
|
||||
predictOptions = append(predictOptions, ggllm.EnablePromptCacheRO)
|
||||
}
|
||||
|
||||
// Expected absolute path
|
||||
if opts.PromptCachePath != "" {
|
||||
predictOptions = append(predictOptions, ggllm.SetPathPromptCache(opts.PromptCachePath))
|
||||
}
|
||||
|
||||
if opts.Mirostat != 0 {
|
||||
predictOptions = append(predictOptions, ggllm.SetMirostat(int(opts.Mirostat)))
|
||||
}
|
||||
|
||||
if opts.MirostatETA != 0 {
|
||||
predictOptions = append(predictOptions, ggllm.SetMirostatETA(float64(opts.MirostatETA)))
|
||||
}
|
||||
|
||||
if opts.MirostatTAU != 0 {
|
||||
predictOptions = append(predictOptions, ggllm.SetMirostatTAU(float64(opts.MirostatTAU)))
|
||||
}
|
||||
|
||||
if opts.Debug {
|
||||
predictOptions = append(predictOptions, ggllm.Debug)
|
||||
}
|
||||
|
||||
predictOptions = append(predictOptions, ggllm.SetStopWords(opts.StopPrompts...))
|
||||
|
||||
if opts.PresencePenalty != 0 {
|
||||
predictOptions = append(predictOptions, ggllm.SetPenalty(float64(opts.PresencePenalty)))
|
||||
}
|
||||
|
||||
if opts.NKeep != 0 {
|
||||
predictOptions = append(predictOptions, ggllm.SetNKeep(int(opts.NKeep)))
|
||||
}
|
||||
|
||||
if opts.Batch != 0 {
|
||||
predictOptions = append(predictOptions, ggllm.SetBatch(int(opts.Batch)))
|
||||
}
|
||||
|
||||
if opts.IgnoreEOS {
|
||||
predictOptions = append(predictOptions, ggllm.IgnoreEOS)
|
||||
}
|
||||
|
||||
if opts.Seed != 0 {
|
||||
predictOptions = append(predictOptions, ggllm.SetSeed(int(opts.Seed)))
|
||||
}
|
||||
|
||||
//predictOptions = append(predictOptions, llama.SetLogitBias(c.Seed))
|
||||
|
||||
predictOptions = append(predictOptions, ggllm.SetFrequencyPenalty(float64(opts.FrequencyPenalty)))
|
||||
predictOptions = append(predictOptions, ggllm.SetMlock(opts.MLock))
|
||||
predictOptions = append(predictOptions, ggllm.SetMemoryMap(opts.MMap))
|
||||
predictOptions = append(predictOptions, ggllm.SetPredictionMainGPU(opts.MainGPU))
|
||||
predictOptions = append(predictOptions, ggllm.SetPredictionTensorSplit(opts.TensorSplit))
|
||||
predictOptions = append(predictOptions, ggllm.SetTailFreeSamplingZ(float64(opts.TailFreeSamplingZ)))
|
||||
predictOptions = append(predictOptions, ggllm.SetTypicalP(float64(opts.TypicalP)))
|
||||
return predictOptions
|
||||
}
|
||||
|
||||
func (llm *LLM) Predict(opts *pb.PredictOptions) (string, error) {
|
||||
return llm.falcon.Predict(opts.Prompt, buildPredictOptions(opts)...)
|
||||
}
|
||||
|
||||
func (llm *LLM) PredictStream(opts *pb.PredictOptions, results chan string) error {
|
||||
|
||||
predictOptions := buildPredictOptions(opts)
|
||||
|
||||
predictOptions = append(predictOptions, ggllm.SetTokenCallback(func(token string) bool {
|
||||
if token == "<|endoftext|>" {
|
||||
return true
|
||||
}
|
||||
results <- token
|
||||
return true
|
||||
}))
|
||||
|
||||
go func() {
|
||||
_, err := llm.falcon.Predict(opts.Prompt, predictOptions...)
|
||||
if err != nil {
|
||||
fmt.Println("err: ", err)
|
||||
}
|
||||
close(results)
|
||||
}()
|
||||
|
||||
return nil
|
||||
}
|
||||
@@ -8,7 +8,6 @@ import (
|
||||
|
||||
"github.com/go-skynet/LocalAI/pkg/utils"
|
||||
"github.com/imdario/mergo"
|
||||
"github.com/rs/zerolog/log"
|
||||
"gopkg.in/yaml.v2"
|
||||
)
|
||||
|
||||
@@ -167,9 +166,7 @@ func getGalleryModels(gallery Gallery, basePath string) ([]*GalleryModel, error)
|
||||
return yaml.Unmarshal(d, &models)
|
||||
})
|
||||
if err != nil {
|
||||
if yamlErr, ok := err.(*yaml.TypeError); ok {
|
||||
log.Debug().Msgf("YAML errors: %s\n\nwreckage of models: %+v", strings.Join(yamlErr.Errors, "\n"), models)
|
||||
}
|
||||
|
||||
return models, err
|
||||
}
|
||||
|
||||
|
||||
@@ -18,6 +18,7 @@ const (
|
||||
LlamaBackend = "llama"
|
||||
LlamaStableBackend = "llama-stable"
|
||||
LLamaCPP = "llama-cpp"
|
||||
BloomzBackend = "bloomz"
|
||||
StarcoderBackend = "starcoder"
|
||||
GPTJBackend = "gptj"
|
||||
DollyBackend = "dolly"
|
||||
@@ -29,6 +30,7 @@ const (
|
||||
Gpt4AllMptBackend = "gpt4all-mpt"
|
||||
Gpt4AllJBackend = "gpt4all-j"
|
||||
Gpt4All = "gpt4all"
|
||||
FalconBackend = "falcon"
|
||||
FalconGGMLBackend = "falcon-ggml"
|
||||
|
||||
BertEmbeddingsBackend = "bert-embeddings"
|
||||
@@ -44,6 +46,7 @@ var AutoLoadBackends []string = []string{
|
||||
LlamaStableBackend,
|
||||
LlamaBackend,
|
||||
Gpt4All,
|
||||
FalconBackend,
|
||||
GPTNeoXBackend,
|
||||
BertEmbeddingsBackend,
|
||||
FalconGGMLBackend,
|
||||
@@ -53,6 +56,7 @@ var AutoLoadBackends []string = []string{
|
||||
MPTBackend,
|
||||
ReplitBackend,
|
||||
StarcoderBackend,
|
||||
BloomzBackend,
|
||||
RwkvBackend,
|
||||
WhisperBackend,
|
||||
StableDiffusionBackend,
|
||||
|
||||
Reference in New Issue
Block a user