Compare commits

...

12 Commits

Author SHA1 Message Date
ci-robbot [bot]
6c9ddff8e9 ⬆️ Update go-skynet/go-llama.cpp (#245)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2023-05-13 22:07:43 +02:00
ci-robbot [bot]
c5318587b8 ⬆️ Update go-skynet/go-bert.cpp (#247)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2023-05-13 14:36:01 +02:00
mudler
c3622299ce docs: cleanup langchain-chroma example 2023-05-13 11:16:56 +02:00
Ettore Di Giacinto
de36a48861 Update gpt4all to fix thread counts (#249) 2023-05-13 09:37:46 +02:00
mudler
961ca93219 docs: Update README 2023-05-13 00:46:48 +02:00
Ettore Di Giacinto
557ccc5ad8 examples: add langchain-chroma example (#248) 2023-05-12 22:20:07 +02:00
Ettore Di Giacinto
2488c445b6 feat: bert.cpp token embeddings (#241) 2023-05-12 17:16:49 +02:00
Ettore Di Giacinto
b4241d0a0d tests: enable whisper (#239) 2023-05-12 14:10:18 +02:00
Ettore Di Giacinto
8250391e49 Add support for gptneox/replit (#238) 2023-05-12 11:36:35 +02:00
Ettore Di Giacinto
fd1df4e971 whisper: add tests and allow to set upload size (#237) 2023-05-12 10:04:20 +02:00
ci-robbot [bot]
5115b2faa3 ⬆️ Update go-skynet/go-llama.cpp (#219)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2023-05-11 23:43:55 +02:00
ci-robbot [bot]
93e82a8bf4 ⬆️ Update go-skynet/go-gpt2.cpp (#220)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2023-05-11 23:43:44 +02:00
21 changed files with 313 additions and 33 deletions

View File

@@ -21,7 +21,7 @@ jobs:
- name: Dependencies
run: |
sudo apt-get update
sudo apt-get install build-essential
sudo apt-get install build-essential ffmpeg
- name: Test
run: |
make test
@@ -38,7 +38,7 @@ jobs:
- name: Dependencies
run: |
brew update
brew install sdl2
brew install sdl2 ffmpeg
- name: Test
run: |
make test

View File

@@ -3,14 +3,14 @@ GOTEST=$(GOCMD) test
GOVET=$(GOCMD) vet
BINARY_NAME=local-ai
GOLLAMA_VERSION?=c03e8adbc45c866e0f6d876af1887d6b01d57eb4
GOLLAMA_VERSION?=eb99b5438787cbd687682da445e879e02bfeaa07
GPT4ALL_REPO?=https://github.com/go-skynet/gpt4all
GPT4ALL_VERSION?=3657f9417e17edf378c27d0a9274a1bf41caa914
GOGPT2_VERSION?=6a10572
GPT4ALL_VERSION?=a330bfe26e9e35ca402e16df18973a3b162fb4db
GOGPT2_VERSION?=92421a8cf61ed6e03babd9067af292b094cb1307
RWKV_REPO?=https://github.com/donomii/go-rwkv.cpp
RWKV_VERSION?=07166da10cb2a9e8854395a4f210464dcea76e47
WHISPER_CPP_VERSION?=bf2449dfae35a46b2cd92ab22661ce81a48d4993
BERT_VERSION?=ec771ec715576ac050263bb7bb74bfd616a5ba13
BERT_VERSION?=33118e0da50318101408986b86a331daeb4a6658
BLOOMZ_VERSION?=e9366e82abdfe70565644fbfae9651976714efd1
@@ -179,12 +179,16 @@ run: prepare ## run local-ai
test-models/testmodel:
mkdir test-models
mkdir test-dir
wget https://huggingface.co/concedo/cerebras-111M-ggml/resolve/main/cerberas-111m-q4_0.bin -O test-models/testmodel
wget https://huggingface.co/ggerganov/whisper.cpp/resolve/main/ggml-base.en.bin -O test-models/whisper-en
wget https://huggingface.co/skeskinen/ggml/resolve/main/all-MiniLM-L6-v2/ggml-model-q4_0.bin -O test-models/bert
wget https://cdn.openai.com/whisper/draft-20220913a/micro-machines.wav -O test-dir/audio.wav
cp tests/fixtures/* test-models
test: prepare test-models/testmodel
cp tests/fixtures/* test-models
@C_INCLUDE_PATH=${C_INCLUDE_PATH} LIBRARY_PATH=${LIBRARY_PATH} CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models $(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo -v -r ./api
@C_INCLUDE_PATH=${C_INCLUDE_PATH} LIBRARY_PATH=${LIBRARY_PATH} TEST_DIR=$(abspath ./)/test-dir/ CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models $(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo -v -r ./api
## Help:
help: ## Show this help.

View File

@@ -25,8 +25,9 @@ See [examples on how to integrate LocalAI](https://github.com/go-skynet/LocalAI/
## News
- 11-05-2023: __1.9.0__ released! 🔥 Important whisper updates ( https://github.com/go-skynet/LocalAI/pull/233 https://github.com/go-skynet/LocalAI/pull/229 ) and extended gpt4all model families support ( https://github.com/go-skynet/LocalAI/pull/232 ). Redpajama/dolly experimental ( https://github.com/go-skynet/LocalAI/pull/214 )
- 10-05-2023: __1.8.0__ released! 🔥 Added support for fast and accurate embeddings with `bert.cpp` ( https://github.com/go-skynet/LocalAI/pull/222 )
- 12-05-2023: __v1.10.0__ released! 🔥🔥 Updated `gpt4all` bindings. Added support for GPTNeox (experimental), RedPajama (experimental), Starcoder (experimental), Replit (experimental), MosaicML MPT. Also now `embeddings` endpoint supports tokens arrays. See the [langchain-chroma](https://github.com/go-skynet/LocalAI/tree/master/examples/langchain-chroma) example! Note - this update does NOT include https://github.com/ggerganov/llama.cpp/pull/1405 which makes models incompatible.
- 11-05-2023: __v1.9.0__ released! 🔥 Important whisper updates ( https://github.com/go-skynet/LocalAI/pull/233 https://github.com/go-skynet/LocalAI/pull/229 ) and extended gpt4all model families support ( https://github.com/go-skynet/LocalAI/pull/232 ). Redpajama/dolly experimental ( https://github.com/go-skynet/LocalAI/pull/214 )
- 10-05-2023: __v1.8.0__ released! 🔥 Added support for fast and accurate embeddings with `bert.cpp` ( https://github.com/go-skynet/LocalAI/pull/222 )
- 09-05-2023: Added experimental support for transcriptions endpoint ( https://github.com/go-skynet/LocalAI/pull/211 )
- 08-05-2023: Support for embeddings with models using the `llama.cpp` backend ( https://github.com/go-skynet/LocalAI/pull/207 )
- 02-05-2023: Support for `rwkv.cpp` models ( https://github.com/go-skynet/LocalAI/pull/158 ) and for `/edits` endpoint
@@ -36,7 +37,8 @@ Twitter: [@LocalAI_API](https://twitter.com/LocalAI_API) and [@mudler_it](https:
### Blogs and articles
- [Tutorial to use k8sgpt with LocalAI](https://medium.com/@tyler_97636/k8sgpt-localai-unlock-kubernetes-superpowers-for-free-584790de9b65) - excellent usecase for localAI, using AI to analyse Kubernetes clusters.
- [Question Answering on Documents locally with LangChain, LocalAI, Chroma, and GPT4All](https://mudler.pm/posts/localai-question-answering/) by Ettore Di Giacinto
- [Tutorial to use k8sgpt with LocalAI](https://medium.com/@tyler_97636/k8sgpt-localai-unlock-kubernetes-superpowers-for-free-584790de9b65) - excellent usecase for localAI, using AI to analyse Kubernetes clusters. by Tyller Gillson
## Contribute and help
@@ -92,7 +94,7 @@ It should also be compatible with StableLM and GPTNeoX ggml models (untested).
Depending on the model you are attempting to run might need more RAM or CPU resources. Check out also [here](https://github.com/ggerganov/llama.cpp#memorydisk-requirements) for `ggml` based backends. `rwkv` is less expensive on resources.
### Feature support matrix
### Model compatibility table
<details>
@@ -106,6 +108,8 @@ Depending on the model you are attempting to run might need more RAM or CPU reso
| dolly | Dolly | yes | no | no | no | https://github.com/ggerganov/ggml | https://github.com/go-skynet/go-gpt2.cpp |
| redpajama | RedPajama | yes | no | no | no | https://github.com/ggerganov/ggml | https://github.com/go-skynet/go-gpt2.cpp |
| stableLM | StableLM GPT/NeoX | yes | no | no | no | https://github.com/ggerganov/ggml | https://github.com/go-skynet/go-gpt2.cpp |
| replit | Replit | yes | no | no | no | https://github.com/ggerganov/ggml | https://github.com/go-skynet/go-gpt2.cpp |
| gptneox | GPT NeoX | yes | no | no | no | https://github.com/ggerganov/ggml | https://github.com/go-skynet/go-gpt2.cpp |
| starcoder | Starcoder | yes | no | no | no | https://github.com/ggerganov/ggml | https://github.com/go-skynet/go-gpt2.cpp |
| bloomz | Bloom | yes | no | no | no | https://github.com/NouamaneTazi/bloomz.cpp | https://github.com/go-skynet/bloomz.cpp |
| rwkv | RWKV | yes | no | no | yes | https://github.com/saharNooby/rwkv.cpp | https://github.com/donomii/go-rwkv.cpp |

View File

@@ -12,7 +12,7 @@ import (
"github.com/rs/zerolog/log"
)
func App(configFile string, loader *model.ModelLoader, threads, ctxSize int, f16 bool, debug, disableMessage bool) *fiber.App {
func App(configFile string, loader *model.ModelLoader, uploadLimitMB, threads, ctxSize int, f16 bool, debug, disableMessage bool) *fiber.App {
zerolog.SetGlobalLevel(zerolog.InfoLevel)
if debug {
zerolog.SetGlobalLevel(zerolog.DebugLevel)
@@ -20,6 +20,7 @@ func App(configFile string, loader *model.ModelLoader, threads, ctxSize int, f16
// Return errors as JSON responses
app := fiber.New(fiber.Config{
BodyLimit: uploadLimitMB * 1024 * 1024, // this is the default limit of 4MB
DisableStartupMessage: disableMessage,
// Override default error handler
ErrorHandler: func(ctx *fiber.Ctx, err error) error {

View File

@@ -3,6 +3,8 @@ package api_test
import (
"context"
"os"
"path/filepath"
"runtime"
. "github.com/go-skynet/LocalAI/api"
"github.com/go-skynet/LocalAI/pkg/model"
@@ -23,7 +25,7 @@ var _ = Describe("API test", func() {
Context("API query", func() {
BeforeEach(func() {
modelLoader = model.NewModelLoader(os.Getenv("MODELS_PATH"))
app = App("", modelLoader, 1, 512, false, true, true)
app = App("", modelLoader, 15, 1, 512, false, true, true)
go app.Listen("127.0.0.1:9090")
defaultConfig := openai.DefaultConfig("")
@@ -45,8 +47,7 @@ var _ = Describe("API test", func() {
It("returns the models list", func() {
models, err := client.ListModels(context.TODO())
Expect(err).ToNot(HaveOccurred())
Expect(len(models.Models)).To(Equal(3))
Expect(models.Models[0].ID).To(Equal("testmodel"))
Expect(len(models.Models)).To(Equal(7))
})
It("can generate completions", func() {
resp, err := client.CreateCompletion(context.TODO(), openai.CompletionRequest{Model: "testmodel", Prompt: "abcdedfghikl"})
@@ -79,15 +80,55 @@ var _ = Describe("API test", func() {
It("returns errors", func() {
_, err := client.CreateCompletion(context.TODO(), openai.CompletionRequest{Model: "foomodel", Prompt: "abcdedfghikl"})
Expect(err).To(HaveOccurred())
Expect(err.Error()).To(ContainSubstring("error, status code: 500, message: could not load model - all backends returned error: 10 errors occurred:"))
Expect(err.Error()).To(ContainSubstring("error, status code: 500, message: could not load model - all backends returned error: 12 errors occurred:"))
})
It("transcribes audio", func() {
if runtime.GOOS != "linux" {
Skip("test supported only on linux")
}
resp, err := client.CreateTranscription(
context.Background(),
openai.AudioRequest{
Model: openai.Whisper1,
FilePath: filepath.Join(os.Getenv("TEST_DIR"), "audio.wav"),
},
)
Expect(err).ToNot(HaveOccurred())
Expect(resp.Text).To(ContainSubstring("This is the Micro Machine Man presenting"))
})
It("calculate embeddings", func() {
if runtime.GOOS != "linux" {
Skip("test supported only on linux")
}
resp, err := client.CreateEmbeddings(
context.Background(),
openai.EmbeddingRequest{
Model: openai.AdaEmbeddingV2,
Input: []string{"sun", "cat"},
},
)
Expect(err).ToNot(HaveOccurred())
Expect(len(resp.Data[0].Embedding)).To(BeNumerically("==", 384))
Expect(len(resp.Data[1].Embedding)).To(BeNumerically("==", 384))
sunEmbedding := resp.Data[0].Embedding
resp2, err := client.CreateEmbeddings(
context.Background(),
openai.EmbeddingRequest{
Model: openai.AdaEmbeddingV2,
Input: []string{"sun"},
},
)
Expect(err).ToNot(HaveOccurred())
Expect(resp2.Data[0].Embedding).To(Equal(sunEmbedding))
})
})
Context("Config file", func() {
BeforeEach(func() {
modelLoader = model.NewModelLoader(os.Getenv("MODELS_PATH"))
app = App(os.Getenv("CONFIG_FILE"), modelLoader, 1, 512, false, true, true)
app = App(os.Getenv("CONFIG_FILE"), modelLoader, 5, 1, 512, false, true, true)
go app.Listen("127.0.0.1:9090")
defaultConfig := openai.DefaultConfig("")
@@ -108,8 +149,7 @@ var _ = Describe("API test", func() {
models, err := client.ListModels(context.TODO())
Expect(err).ToNot(HaveOccurred())
Expect(len(models.Models)).To(Equal(5))
Expect(models.Models[0].ID).To(Equal("testmodel"))
Expect(len(models.Models)).To(Equal(9))
})
It("can generate chat completions from config file", func() {
resp, err := client.CreateChatCompletion(context.TODO(), openai.ChatCompletionRequest{Model: "list1", Messages: []openai.ChatCompletionMessage{openai.ChatCompletionMessage{Role: "user", Content: "abcdedfghikl"}}})
@@ -134,5 +174,6 @@ var _ = Describe("API test", func() {
Expect(len(resp.Choices)).To(Equal(1))
Expect(resp.Choices[0].Text).ToNot(BeEmpty())
})
})
})

View File

@@ -409,14 +409,13 @@ func transcriptEndpoint(cm ConfigMerger, debug bool, loader *model.ModelLoader,
// retrieve the file data from the request
file, err := c.FormFile("file")
if err != nil {
return c.Status(http.StatusBadRequest).JSON(fiber.Map{"error": err.Error()})
return err
}
f, err := file.Open()
if err != nil {
return c.Status(http.StatusBadRequest).JSON(fiber.Map{"error": err.Error()})
return err
}
defer f.Close()
log.Debug().Msgf("Audio file: %+v", file)
dir, err := os.MkdirTemp("", "whisper")
@@ -428,26 +427,33 @@ func transcriptEndpoint(cm ConfigMerger, debug bool, loader *model.ModelLoader,
dst := filepath.Join(dir, path.Base(file.Filename))
dstFile, err := os.Create(dst)
if err != nil {
return c.Status(http.StatusBadRequest).JSON(fiber.Map{"error": err.Error()})
return err
}
if _, err := io.Copy(dstFile, f); err != nil {
log.Debug().Msgf("Audio file %+v - %+v - err %+v", file.Filename, dst, err)
log.Debug().Msgf("Audio file copying error %+v - %+v - err %+v", file.Filename, dst, err)
return err
}
log.Debug().Msgf("Audio file copied to: %+v", dst)
whisperModel, err := loader.BackendLoader("whisper", config.Model, []llama.ModelOption{}, uint32(config.Threads))
whisperModel, err := loader.BackendLoader(model.WhisperBackend, config.Model, []llama.ModelOption{}, uint32(config.Threads))
if err != nil {
return c.Status(http.StatusBadRequest).JSON(fiber.Map{"error": err.Error()})
return err
}
w := whisperModel.(whisper.Model)
if whisperModel == nil {
return fmt.Errorf("could not load whisper model")
}
tr, err := whisperutil.Transcript(w, dst, input.Language)
w, ok := whisperModel.(whisper.Model)
if !ok {
return fmt.Errorf("loader returned non-whisper object")
}
tr, err := whisperutil.Transcript(w, dst, input.Language, uint(config.Threads))
if err != nil {
return c.Status(http.StatusBadRequest).JSON(fiber.Map{"error": err.Error()})
return err
}
log.Debug().Msgf("Trascribed: %+v", tr)

View File

@@ -68,7 +68,7 @@ func ModelEmbedding(s string, tokens []int, loader *model.ModelLoader, c Config)
case *bert.Bert:
fn = func() ([]float32, error) {
if len(tokens) > 0 {
return nil, fmt.Errorf("embeddings endpoint for this model supports only string")
return model.TokenEmbeddings(tokens, bert.SetThreads(c.Threads))
}
return model.Embeddings(s, bert.SetThreads(c.Threads))
}
@@ -199,6 +199,54 @@ func ModelInference(s string, loader *model.ModelLoader, c Config, tokenCallback
return response, nil
}
case *gpt2.GPTNeoX:
fn = func() (string, error) {
// Generate the prediction using the language model
predictOptions := []gpt2.PredictOption{
gpt2.SetTemperature(c.Temperature),
gpt2.SetTopP(c.TopP),
gpt2.SetTopK(c.TopK),
gpt2.SetTokens(c.Maxtokens),
gpt2.SetThreads(c.Threads),
}
if c.Batch != 0 {
predictOptions = append(predictOptions, gpt2.SetBatch(c.Batch))
}
if c.Seed != 0 {
predictOptions = append(predictOptions, gpt2.SetSeed(c.Seed))
}
return model.Predict(
s,
predictOptions...,
)
}
case *gpt2.Replit:
fn = func() (string, error) {
// Generate the prediction using the language model
predictOptions := []gpt2.PredictOption{
gpt2.SetTemperature(c.Temperature),
gpt2.SetTopP(c.TopP),
gpt2.SetTopK(c.TopK),
gpt2.SetTokens(c.Maxtokens),
gpt2.SetThreads(c.Threads),
}
if c.Batch != 0 {
predictOptions = append(predictOptions, gpt2.SetBatch(c.Batch))
}
if c.Seed != 0 {
predictOptions = append(predictOptions, gpt2.SetSeed(c.Seed))
}
return model.Predict(
s,
predictOptions...,
)
}
case *gpt2.Starcoder:
fn = func() (string, error) {
// Generate the prediction using the language model

View File

@@ -65,7 +65,7 @@ Run a slack bot which lets you talk directly with a model
[Check it out here](https://github.com/go-skynet/LocalAI/tree/master/examples/slack-bot/)
### Question answering on documents
### Question answering on documents with llama-index
_by [@mudler](https://github.com/mudler)_
@@ -73,6 +73,14 @@ Shows how to integrate with [Llama-Index](https://gpt-index.readthedocs.io/en/st
[Check it out here](https://github.com/go-skynet/LocalAI/tree/master/examples/query_data/)
### Question answering on documents with langchain and chroma
_by [@mudler](https://github.com/mudler)_
Shows how to integrate with `Langchain` and `Chroma` to enable question answering on a set of documents.
[Check it out here](https://github.com/go-skynet/LocalAI/tree/master/examples/langchain-chroma/)
### Template for Runpod.io
_by [@fHachenberg](https://github.com/fHachenberg)_

View File

@@ -0,0 +1,54 @@
# Data query example
This example makes use of [langchain and chroma](https://blog.langchain.dev/langchain-chroma/) to enable question answering on a set of documents.
## Setup
Download the models and start the API:
```bash
# Clone LocalAI
git clone https://github.com/go-skynet/LocalAI
cd LocalAI/examples/query_data
wget https://huggingface.co/skeskinen/ggml/resolve/main/all-MiniLM-L6-v2/ggml-model-q4_0.bin -O models/bert
wget https://gpt4all.io/models/ggml-gpt4all-j.bin -O models/ggml-gpt4all-j
# start with docker-compose
docker-compose up -d --build
```
### Python requirements
```
pip install -r requirements.txt
```
### Create a storage
In this step we will create a local vector database from our document set, so later we can ask questions on it with the LLM.
```bash
export OPENAI_API_BASE=http://localhost:8080/v1
export OPENAI_API_KEY=sk-
wget https://raw.githubusercontent.com/hwchase17/chat-your-data/master/state_of_the_union.txt
python store.py
```
After it finishes, a directory "storage" will be created with the vector index database.
## Query
We can now query the dataset.
```bash
export OPENAI_API_BASE=http://localhost:8080/v1
export OPENAI_API_KEY=sk-
python query.py
# President Trump recently stated during a press conference regarding tax reform legislation that "we're getting rid of all these loopholes." He also mentioned that he wants to simplify the system further through changes such as increasing the standard deduction amount and making other adjustments aimed at reducing taxpayers' overall burden.
```
Keep in mind now things are hit or miss!

View File

@@ -0,0 +1 @@
{{.Input}}

View File

@@ -0,0 +1,5 @@
name: text-embedding-ada-002
parameters:
model: bert
backend: bert-embeddings
embeddings: true

View File

@@ -0,0 +1,16 @@
name: gpt-3.5-turbo
parameters:
model: ggml-gpt4all-j
top_k: 80
temperature: 0.2
top_p: 0.7
context_size: 1024
stopwords:
- "HUMAN:"
- "GPT:"
roles:
user: " "
system: " "
template:
completion: completion
chat: gpt4all

View File

@@ -0,0 +1,4 @@
The prompt below is a question to answer, a task to complete, or a conversation to respond to; decide which and write an appropriate response.
### Prompt:
{{.Input}}
### Response:

View File

@@ -0,0 +1,20 @@
import os
from langchain.vectorstores import Chroma
from langchain.embeddings import OpenAIEmbeddings
from langchain.llms import OpenAI
from langchain.chains import VectorDBQA
base_path = os.environ.get('OPENAI_API_BASE', 'http://localhost:8080/v1')
# Load and process the text
embedding = OpenAIEmbeddings()
persist_directory = 'db'
# Now we can load the persisted database from disk, and use it as normal.
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding)
qa = VectorDBQA.from_chain_type(llm=OpenAI(temperature=0, model_name="gpt-3.5-turbo", openai_api_base=base_path), chain_type="stuff", vectorstore=vectordb)
query = "What the president said about taxes ?"
print(qa.run(query))

View File

@@ -0,0 +1,4 @@
langchain==0.0.160
openai==0.27.6
chromadb==0.3.21
llama-index==0.6.2

View File

@@ -0,0 +1,28 @@
import os
from langchain.vectorstores import Chroma
from langchain.embeddings import OpenAIEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter,TokenTextSplitter,CharacterTextSplitter
from langchain.llms import OpenAI
from langchain.chains import VectorDBQA
from langchain.document_loaders import TextLoader
base_path = os.environ.get('OPENAI_API_BASE', 'http://localhost:8080/v1')
# Load and process the text
loader = TextLoader('state_of_the_union.txt')
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=300, chunk_overlap=70)
#text_splitter = TokenTextSplitter()
texts = text_splitter.split_documents(documents)
# Embed and store the texts
# Supplying a persist_directory will store the embeddings on disk
persist_directory = 'db'
embedding = OpenAIEmbeddings(model="text-embedding-ada-002")
vectordb = Chroma.from_documents(documents=texts, embedding=embedding, persist_directory=persist_directory)
vectordb.persist()
vectordb = None

View File

@@ -62,6 +62,12 @@ func main() {
EnvVars: []string{"CONTEXT_SIZE"},
Value: 512,
},
&cli.IntFlag{
Name: "upload-limit",
DefaultText: "Default upload-limit. MB",
EnvVars: []string{"UPLOAD_LIMIT"},
Value: 15,
},
},
Description: `
LocalAI is a drop-in replacement OpenAI API which runs inference locally.
@@ -81,7 +87,7 @@ It uses llama.cpp, ggml and gpt4all as backend with golang c bindings.
Copyright: "go-skynet authors",
Action: func(ctx *cli.Context) error {
fmt.Printf("Starting LocalAI using %d threads, with models path: %s\n", ctx.Int("threads"), ctx.String("models-path"))
return api.App(ctx.String("config-file"), model.NewModelLoader(ctx.String("models-path")), ctx.Int("threads"), ctx.Int("context-size"), ctx.Bool("f16"), ctx.Bool("debug"), false).Listen(ctx.String("address"))
return api.App(ctx.String("config-file"), model.NewModelLoader(ctx.String("models-path")), ctx.Int("upload-limit"), ctx.Int("threads"), ctx.Int("context-size"), ctx.Bool("f16"), ctx.Bool("debug"), false).Listen(ctx.String("address"))
},
}

View File

@@ -24,6 +24,8 @@ const (
StableLMBackend = "stablelm"
DollyBackend = "dolly"
RedPajamaBackend = "redpajama"
GPTNeoXBackend = "gptneox"
ReplitBackend = "replit"
Gpt2Backend = "gpt2"
Gpt4AllLlamaBackend = "gpt4all-llama"
Gpt4AllMptBackend = "gpt4all-mpt"
@@ -45,6 +47,8 @@ var backends []string = []string{
StableLMBackend,
DollyBackend,
RedPajamaBackend,
GPTNeoXBackend,
ReplitBackend,
BertEmbeddingsBackend,
StarcoderBackend,
}
@@ -61,6 +65,14 @@ var dolly = func(modelFile string) (interface{}, error) {
return gpt2.NewDolly(modelFile)
}
var gptNeoX = func(modelFile string) (interface{}, error) {
return gpt2.NewGPTNeoX(modelFile)
}
var replit = func(modelFile string) (interface{}, error) {
return gpt2.NewReplit(modelFile)
}
var stableLM = func(modelFile string) (interface{}, error) {
return gpt2.NewStableLM(modelFile)
}
@@ -116,6 +128,10 @@ func (ml *ModelLoader) BackendLoader(backendString string, modelFile string, lla
return ml.LoadModel(modelFile, redPajama)
case Gpt2Backend:
return ml.LoadModel(modelFile, gpt2LM)
case GPTNeoXBackend:
return ml.LoadModel(modelFile, gptNeoX)
case ReplitBackend:
return ml.LoadModel(modelFile, replit)
case StarcoderBackend:
return ml.LoadModel(modelFile, starCoder)
case Gpt4AllLlamaBackend:

View File

@@ -28,7 +28,7 @@ func audioToWav(src, dst string) error {
return nil
}
func Transcript(model whisper.Model, audiopath, language string) (string, error) {
func Transcript(model whisper.Model, audiopath, language string, threads uint) (string, error) {
dir, err := os.MkdirTemp("", "whisper")
if err != nil {
@@ -65,8 +65,12 @@ func Transcript(model whisper.Model, audiopath, language string) (string, error)
}
context.SetThreads(threads)
if language != "" {
context.SetLanguage(language)
} else {
context.SetLanguage("auto")
}
if err := context.Process(data, nil); err != nil {

6
tests/fixtures/embeddings.yaml vendored Normal file
View File

@@ -0,0 +1,6 @@
name: text-embedding-ada-002
parameters:
model: bert
threads: 14
backend: bert-embeddings
embeddings: true

4
tests/fixtures/whisper.yaml vendored Normal file
View File

@@ -0,0 +1,4 @@
name: whisper-1
backend: whisper
parameters:
model: whisper-en