Compare commits

..

47 Commits

Author SHA1 Message Date
Ettore Di Giacinto
9ae47d37e9 pin go-rwkv
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2023-12-21 08:42:40 +01:00
Ettore Di Giacinto
2b3ad7f41c Revert "⬆️ Update donomii/go-rwkv.cpp" (#1474)
Revert "⬆️ Update donomii/go-rwkv.cpp (#1470)"

This reverts commit 51db10b18f.
2023-12-21 08:38:50 +01:00
LocalAI [bot]
51db10b18f ⬆️ Update donomii/go-rwkv.cpp (#1470)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2023-12-21 08:35:31 +01:00
Ettore Di Giacinto
b4b21a446b feat(conda): share envs with transformer-based backends (#1465)
* feat(conda): share env between diffusers and bark

* Detect if env already exists

* share diffusers and petals

* tests: add petals

* Use smaller model for tests with petals

* test only model load on petals

* tests(petals): run only load model tests

* Revert "test only model load on petals"

This reverts commit 111cfa97f1.

* move transformers and sentencetransformers to common env

* Share also transformers-musicgen
2023-12-21 08:35:15 +01:00
LocalAI [bot]
23eced1644 ⬆️ Update ggerganov/llama.cpp (#1461)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2023-12-20 18:02:52 +01:00
LocalAI [bot]
7741a6e75d ⬆️ Update ggerganov/whisper.cpp (#1462)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2023-12-20 00:21:49 +00:00
LocalAI [bot]
d4210db0c9 ⬆️ Update ggerganov/llama.cpp (#1457)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2023-12-19 00:42:19 +01:00
lunamidori5
17dde75107 How To (Updates and Fixes) (#1456)
* Update easy-setup-embeddings.md

Signed-off-by: lunamidori5 <118759930+lunamidori5@users.noreply.github.com>

* Update easy-setup-docker-cpu.md

Signed-off-by: lunamidori5 <118759930+lunamidori5@users.noreply.github.com>

* Update easy-setup-docker-gpu.md

Signed-off-by: lunamidori5 <118759930+lunamidori5@users.noreply.github.com>

* Update and rename easy-setup-docker-cpu.md to easy-setup-docker.md

Signed-off-by: lunamidori5 <118759930+lunamidori5@users.noreply.github.com>

* Update easy-setup-docker.md

Signed-off-by: lunamidori5 <118759930+lunamidori5@users.noreply.github.com>

* Update easy-setup-docker.md

Signed-off-by: lunamidori5 <118759930+lunamidori5@users.noreply.github.com>

* Update _index.md

Signed-off-by: lunamidori5 <118759930+lunamidori5@users.noreply.github.com>

* Update easy-setup-docker.md

Signed-off-by: lunamidori5 <118759930+lunamidori5@users.noreply.github.com>

* Update easy-setup-docker.md

Signed-off-by: lunamidori5 <118759930+lunamidori5@users.noreply.github.com>

* Delete docs/content/howtos/easy-setup-docker-gpu.md

Signed-off-by: lunamidori5 <118759930+lunamidori5@users.noreply.github.com>

* Update _index.md

Signed-off-by: lunamidori5 <118759930+lunamidori5@users.noreply.github.com>

* Update easy-setup-sd.md

Signed-off-by: lunamidori5 <118759930+lunamidori5@users.noreply.github.com>

* Update easy-setup-sd.md

Signed-off-by: lunamidori5 <118759930+lunamidori5@users.noreply.github.com>

---------

Signed-off-by: lunamidori5 <118759930+lunamidori5@users.noreply.github.com>
2023-12-18 18:59:08 +01:00
Ettore Di Giacinto
1fc3a375df feat: inline templates and accept URLs in models (#1452)
* feat: Allow inline templates

* feat: Allow to specify url in model config files

Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>

* feat: support 'huggingface://' format

* style: reuse-code from gallery

---------

Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2023-12-18 18:58:44 +01:00
LocalAI [bot]
64a8471dd5 ⬆️ Update ggerganov/llama.cpp (#1455)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2023-12-18 08:55:29 +01:00
LocalAI [bot]
86a8df1c8b ⬆️ Update ggerganov/llama.cpp (#1450)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2023-12-17 19:02:28 +01:00
Ettore Di Giacinto
2eeed2287b docs: automatically track latest versions (#1451) 2023-12-17 19:02:13 +01:00
Ettore Di Giacinto
3d83128f16 feat(alias): alias llama to llama-cpp, update docs (#1448)
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2023-12-16 18:22:45 +01:00
Ettore Di Giacinto
1c286c3c2f docs(mixtral): add mixtral example (#1449) 2023-12-16 17:44:43 +01:00
LocalAI [bot]
2f7beb6744 ⬆️ Update ggerganov/whisper.cpp (#1434)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2023-12-16 09:22:28 +01:00
LocalAI [bot]
ab0370a0b9 ⬆️ Update ggerganov/llama.cpp (#1429)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2023-12-16 09:22:13 +01:00
LocalAI [bot]
3f9a41684a ⬆️ Update mudler/go-piper (#1441)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2023-12-16 09:21:56 +01:00
Ettore Di Giacinto
dd982acf2c feat(img2vid,txt2vid): Initial support for img2vid,txt2vid (#1442)
* feat(img2vid): Initial support for img2vid

* doc(SD): fix SDXL Example

* Minor fixups for img2vid

* docs(img2img): fix example curl call

* feat(txt2vid): initial support

Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>

* diffusers: be retro-compatible with CUDA settings

* docs(img2vid, txt2vid): examples

* Add notice on docs

---------

Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2023-12-15 18:06:20 -05:00
Ettore Di Giacinto
fb6a5bc620 update(llama.cpp): update server, correctly propagate LLAMA_VERSION (#1440)
* fix(Makefile): correctly propagate LLAMA_VERSION

Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>

* update grpc-server.cpp

---------

Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2023-12-15 08:26:48 +01:00
Ettore Di Giacinto
7641f92cde feat(diffusers): update, add autopipeline, controlnet (#1432)
* feat(diffusers): update, add autopipeline, controlenet

* tests with AutoPipeline

* simplify logic
2023-12-13 19:20:22 +01:00
LocalAI [bot]
72325fd0a3 ⬆️ Update ggerganov/whisper.cpp (#1430)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2023-12-13 08:37:02 +01:00
Sertaç Özercan
1b7ed5e2e6 docs: add aikit to integrations (#1412)
* docs: add aikit to integrations

Signed-off-by: Sertac Ozercan <sozercan@gmail.com>

* docs: add to readme

Signed-off-by: Sertac Ozercan <sozercan@gmail.com>

---------

Signed-off-by: Sertac Ozercan <sozercan@gmail.com>
Co-authored-by: lunamidori5 <118759930+lunamidori5@users.noreply.github.com>
2023-12-12 18:58:57 +01:00
LocalAI [bot]
86fac272d8 ⬆️ Update ggerganov/llama.cpp (#1391)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2023-12-12 18:22:48 +01:00
Samuel Walker
865e523ff1 Documentation for Hipblas (#1425)
hiplas arch
2023-12-12 15:05:01 +01:00
Ettore Di Giacinto
9aa2a7ca13 extras: add vllm,bark,vall-e-x tests, bump diffusers (#1422)
* tests: add vllm

Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>

* tests: Add vall-e-x tests

* Add bark tests

* bump diffusers

---------

Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2023-12-12 00:39:26 +01:00
Ettore Di Giacinto
e80cbca6b0 Update _index.en.md
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2023-12-12 00:37:01 +01:00
Ettore Di Giacinto
718a5d4a9e fix(transformers*): add sentence-transformers and transformers-musicgen tests, fix musicgen wrapper (#1420)
* tests: add sentence-transformers and transformers-musicgen

Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>

* fix: tranformers-musicgen conda env

Initialize correctly the environment for the transformers-musicgen backend.

* fix(tests): transformer-musicgen tests fixups

---------

Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2023-12-11 19:26:02 +01:00
lunamidori5
9222bec8b1 How To Updates / Model Used Switched / Removed "docker-compose" (RIP) (#1417)
* Update _index.md

Signed-off-by: lunamidori5 <118759930+lunamidori5@users.noreply.github.com>

* Update easy-model.md

Signed-off-by: lunamidori5 <118759930+lunamidori5@users.noreply.github.com>

* Update easy-setup-docker-cpu.md

Signed-off-by: lunamidori5 <118759930+lunamidori5@users.noreply.github.com>

* Update easy-setup-docker-gpu.md

Signed-off-by: lunamidori5 <118759930+lunamidori5@users.noreply.github.com>

* Update _index.en.md

Signed-off-by: lunamidori5 <118759930+lunamidori5@users.noreply.github.com>

* Update easy-setup-docker-cpu.md

Signed-off-by: lunamidori5 <118759930+lunamidori5@users.noreply.github.com>

* Update easy-setup-docker-gpu.md

Signed-off-by: lunamidori5 <118759930+lunamidori5@users.noreply.github.com>

* Update easy-setup-docker-cpu.md

Signed-off-by: lunamidori5 <118759930+lunamidori5@users.noreply.github.com>

* Update easy-setup-docker-cpu.md

Signed-off-by: lunamidori5 <118759930+lunamidori5@users.noreply.github.com>

* Update easy-setup-docker-gpu.md

Signed-off-by: lunamidori5 <118759930+lunamidori5@users.noreply.github.com>

* Update easy-model.md

Signed-off-by: lunamidori5 <118759930+lunamidori5@users.noreply.github.com>

* Update easy-setup-docker-cpu.md

Signed-off-by: lunamidori5 <118759930+lunamidori5@users.noreply.github.com>

* Update easy-setup-docker-gpu.md

Signed-off-by: lunamidori5 <118759930+lunamidori5@users.noreply.github.com>

* Update easy-setup-docker-cpu.md

Signed-off-by: lunamidori5 <118759930+lunamidori5@users.noreply.github.com>

* Update _index.en.md

Signed-off-by: lunamidori5 <118759930+lunamidori5@users.noreply.github.com>

* Update easy-setup-docker-gpu.md

Signed-off-by: lunamidori5 <118759930+lunamidori5@users.noreply.github.com>

---------

Signed-off-by: lunamidori5 <118759930+lunamidori5@users.noreply.github.com>
2023-12-11 14:27:29 +00:00
LocalAI [bot]
4a965e1b0e ⬆️ Update ggerganov/whisper.cpp (#1418)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2023-12-11 08:24:48 +01:00
Ettore Di Giacinto
48e5380e45 tests: add diffusers tests (#1419) 2023-12-11 08:20:34 +01:00
LocalAI [bot]
831418612b ⬆️ Update mudler/go-piper (#1400)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2023-12-10 08:50:26 +01:00
LocalAI [bot]
89ff12309d ⬆️ Update ggerganov/whisper.cpp (#1390)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2023-12-09 09:23:40 +01:00
Ettore Di Giacinto
3a4fb6fa4b feat(entrypoint): optionally prepare extra endpoints (#1405)
entrypoint: optionally prepare extra endpoints

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2023-12-08 20:04:13 +01:00
Ettore Di Giacinto
b181503c30 docs: update v2.0.0 notes
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2023-12-08 16:06:24 +01:00
Ettore Di Giacinto
887b3dff04 feat: cuda transformers (#1401)
* Use cuda in transformers if available

tensorflow probably needs a different check.

Signed-off-by: Erich Schubert <kno10@users.noreply.github.com>

* feat: expose CUDA at top level

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* tests: add to tests and create workflow for py extra backends

* doc: update note on how to use core images

---------

Signed-off-by: Erich Schubert <kno10@users.noreply.github.com>
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
Co-authored-by: Erich Schubert <kno10@users.noreply.github.com>
2023-12-08 15:45:04 +01:00
Ettore Di Giacinto
3822bd2369 docs: updates
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2023-12-08 15:11:44 +01:00
Ettore Di Giacinto
4de2c6a421 docs: update news
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2023-12-08 14:59:25 +01:00
Ettore Di Giacinto
6c4231fd35 docs: 2.0 updates
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2023-12-08 14:58:53 +01:00
lunamidori5
adfa7aa1fa docs: site update fixing old image text / How To update updating GPU and CPU docker pages (#1399)
* Update _index.en.md

Signed-off-by: lunamidori5 <118759930+lunamidori5@users.noreply.github.com>

* Update easy-setup-docker-cpu.md

Signed-off-by: lunamidori5 <118759930+lunamidori5@users.noreply.github.com>

* Update easy-setup-docker-gpu.md

Signed-off-by: lunamidori5 <118759930+lunamidori5@users.noreply.github.com>

---------

Signed-off-by: lunamidori5 <118759930+lunamidori5@users.noreply.github.com>
2023-12-08 10:27:21 +01:00
Dave
8b6e601405 Feat: new backend: transformers-musicgen (#1387)
Transformers-MusicGen
---------

Signed-off-by: Dave <dave@gray101.com>
2023-12-08 10:01:02 +01:00
Ettore Di Giacinto
6011911746 fix(piper): pin petals, phonemize and espeak (#1393)
* fix: pin phonemize and espeak

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* fix: pin petals deps

---------

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2023-12-07 22:58:41 +01:00
LocalAI [bot]
997119c27a ⬆️ Update ggerganov/llama.cpp (#1385)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2023-12-05 15:44:24 +01:00
Dave
2eb6865a27 Fix: API Key / JSON Fast Follow #1 (#1388)
fast follow fix #1 - imports, final loop, one last chance to skip

Co-authored-by: lunamidori5 <118759930+lunamidori5@users.noreply.github.com>
2023-12-05 10:35:27 +00:00
Ettore Di Giacinto
2b2d6673ff exllama(v2): fix exllamav1, add exllamav2 (#1384)
* fix(exllama): fix exllama deps with anaconda

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* feat(exllamav2): add exllamav2 backend

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

---------

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2023-12-05 08:15:37 +01:00
lunamidori5
563c5b7ea0 Added Check API KEYs file to API.go (#1381)
Added API KEYs file

Signed-off-by: lunamidori5 <118759930+lunamidori5@users.noreply.github.com>
2023-12-04 22:06:45 -05:00
LocalAI [bot]
67966b623c ⬆️ Update ggerganov/llama.cpp (#1379)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2023-12-04 18:36:34 +01:00
LocalAI [bot]
9fc3fd04be ⬆️ Update ggerganov/whisper.cpp (#1378)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2023-12-04 18:36:22 +01:00
111 changed files with 4423 additions and 1385 deletions

7
.github/bump_docs.sh vendored Executable file
View File

@@ -0,0 +1,7 @@
#!/bin/bash
set -xe
REPO=$1
LATEST_TAG=$(curl -s "https://api.github.com/repos/$REPO/releases/latest" | jq -r '.name')
cat <<< $(jq ".version = \"$LATEST_TAG\"" docs/data/version.json) > docs/data/version.json

31
.github/workflows/bump_docs.yaml vendored Normal file
View File

@@ -0,0 +1,31 @@
name: Bump dependencies
on:
schedule:
- cron: 0 20 * * *
workflow_dispatch:
jobs:
bump:
strategy:
fail-fast: false
matrix:
include:
- repository: "mudler/LocalAI"
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: Bump dependencies 🔧
run: |
bash .github/bump_docs.sh ${{ matrix.repository }}
- name: Create Pull Request
uses: peter-evans/create-pull-request@v5
with:
token: ${{ secrets.UPDATE_BOT_TOKEN }}
push-to-fork: ci-forks/LocalAI
commit-message: ':arrow_up: Update docs version ${{ matrix.repository }}'
title: ':arrow_up: Update docs version ${{ matrix.repository }}'
branch: "update/docs"
body: Bump of ${{ matrix.repository }} version inside docs
signoff: true

250
.github/workflows/test-extra.yml vendored Normal file
View File

@@ -0,0 +1,250 @@
---
name: 'Tests extras backends'
on:
pull_request:
push:
branches:
- master
tags:
- '*'
concurrency:
group: ci-tests-extra-${{ github.head_ref || github.ref }}-${{ github.repository }}
cancel-in-progress: true
jobs:
tests-transformers:
runs-on: ubuntu-latest
steps:
- name: Clone
uses: actions/checkout@v4
with:
submodules: true
- name: Dependencies
run: |
sudo apt-get update
sudo apt-get install build-essential ffmpeg
curl https://repo.anaconda.com/pkgs/misc/gpgkeys/anaconda.asc | gpg --dearmor > conda.gpg && \
sudo install -o root -g root -m 644 conda.gpg /usr/share/keyrings/conda-archive-keyring.gpg && \
gpg --keyring /usr/share/keyrings/conda-archive-keyring.gpg --no-default-keyring --fingerprint 34161F5BF5EB1D4BFBBB8F0A8AEB4F8B29D82806 && \
sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" > /etc/apt/sources.list.d/conda.list' && \
sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" | tee -a /etc/apt/sources.list.d/conda.list' && \
sudo apt-get update && \
sudo apt-get install -y conda
sudo apt-get install -y ca-certificates cmake curl patch
sudo apt-get install -y libopencv-dev && sudo ln -s /usr/include/opencv4/opencv2 /usr/include/opencv2
sudo rm -rfv /usr/bin/conda || true
- name: Test transformers
run: |
export PATH=$PATH:/opt/conda/bin
make -C backend/python/transformers
make -C backend/python/transformers test
tests-sentencetransformers:
runs-on: ubuntu-latest
steps:
- name: Clone
uses: actions/checkout@v4
with:
submodules: true
- name: Dependencies
run: |
sudo apt-get update
sudo apt-get install build-essential ffmpeg
curl https://repo.anaconda.com/pkgs/misc/gpgkeys/anaconda.asc | gpg --dearmor > conda.gpg && \
sudo install -o root -g root -m 644 conda.gpg /usr/share/keyrings/conda-archive-keyring.gpg && \
gpg --keyring /usr/share/keyrings/conda-archive-keyring.gpg --no-default-keyring --fingerprint 34161F5BF5EB1D4BFBBB8F0A8AEB4F8B29D82806 && \
sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" > /etc/apt/sources.list.d/conda.list' && \
sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" | tee -a /etc/apt/sources.list.d/conda.list' && \
sudo apt-get update && \
sudo apt-get install -y conda
sudo apt-get install -y ca-certificates cmake curl patch
sudo apt-get install -y libopencv-dev && sudo ln -s /usr/include/opencv4/opencv2 /usr/include/opencv2
sudo rm -rfv /usr/bin/conda || true
- name: Test sentencetransformers
run: |
export PATH=$PATH:/opt/conda/bin
make -C backend/python/sentencetransformers
make -C backend/python/sentencetransformers test
tests-diffusers:
runs-on: ubuntu-latest
steps:
- name: Clone
uses: actions/checkout@v4
with:
submodules: true
- name: Dependencies
run: |
sudo apt-get update
sudo apt-get install build-essential ffmpeg
curl https://repo.anaconda.com/pkgs/misc/gpgkeys/anaconda.asc | gpg --dearmor > conda.gpg && \
sudo install -o root -g root -m 644 conda.gpg /usr/share/keyrings/conda-archive-keyring.gpg && \
gpg --keyring /usr/share/keyrings/conda-archive-keyring.gpg --no-default-keyring --fingerprint 34161F5BF5EB1D4BFBBB8F0A8AEB4F8B29D82806 && \
sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" > /etc/apt/sources.list.d/conda.list' && \
sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" | tee -a /etc/apt/sources.list.d/conda.list' && \
sudo apt-get update && \
sudo apt-get install -y conda
sudo apt-get install -y ca-certificates cmake curl patch
sudo apt-get install -y libopencv-dev && sudo ln -s /usr/include/opencv4/opencv2 /usr/include/opencv2
sudo rm -rfv /usr/bin/conda || true
- name: Test diffusers
run: |
export PATH=$PATH:/opt/conda/bin
make -C backend/python/diffusers
make -C backend/python/diffusers test
tests-transformers-musicgen:
runs-on: ubuntu-latest
steps:
- name: Clone
uses: actions/checkout@v4
with:
submodules: true
- name: Dependencies
run: |
sudo apt-get update
sudo apt-get install build-essential ffmpeg
curl https://repo.anaconda.com/pkgs/misc/gpgkeys/anaconda.asc | gpg --dearmor > conda.gpg && \
sudo install -o root -g root -m 644 conda.gpg /usr/share/keyrings/conda-archive-keyring.gpg && \
gpg --keyring /usr/share/keyrings/conda-archive-keyring.gpg --no-default-keyring --fingerprint 34161F5BF5EB1D4BFBBB8F0A8AEB4F8B29D82806 && \
sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" > /etc/apt/sources.list.d/conda.list' && \
sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" | tee -a /etc/apt/sources.list.d/conda.list' && \
sudo apt-get update && \
sudo apt-get install -y conda
sudo apt-get install -y ca-certificates cmake curl patch
sudo apt-get install -y libopencv-dev && sudo ln -s /usr/include/opencv4/opencv2 /usr/include/opencv2
sudo rm -rfv /usr/bin/conda || true
- name: Test transformers-musicgen
run: |
export PATH=$PATH:/opt/conda/bin
make -C backend/python/transformers-musicgen
make -C backend/python/transformers-musicgen test
tests-petals:
runs-on: ubuntu-latest
steps:
- name: Clone
uses: actions/checkout@v4
with:
submodules: true
- name: Dependencies
run: |
sudo apt-get update
sudo apt-get install build-essential ffmpeg
curl https://repo.anaconda.com/pkgs/misc/gpgkeys/anaconda.asc | gpg --dearmor > conda.gpg && \
sudo install -o root -g root -m 644 conda.gpg /usr/share/keyrings/conda-archive-keyring.gpg && \
gpg --keyring /usr/share/keyrings/conda-archive-keyring.gpg --no-default-keyring --fingerprint 34161F5BF5EB1D4BFBBB8F0A8AEB4F8B29D82806 && \
sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" > /etc/apt/sources.list.d/conda.list' && \
sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" | tee -a /etc/apt/sources.list.d/conda.list' && \
sudo apt-get update && \
sudo apt-get install -y conda
sudo apt-get install -y ca-certificates cmake curl patch
sudo apt-get install -y libopencv-dev && sudo ln -s /usr/include/opencv4/opencv2 /usr/include/opencv2
sudo rm -rfv /usr/bin/conda || true
- name: Test petals
run: |
export PATH=$PATH:/opt/conda/bin
make -C backend/python/petals
make -C backend/python/petals test
tests-bark:
runs-on: ubuntu-latest
steps:
- name: Clone
uses: actions/checkout@v4
with:
submodules: true
- name: Dependencies
run: |
sudo apt-get update
sudo apt-get install build-essential ffmpeg
curl https://repo.anaconda.com/pkgs/misc/gpgkeys/anaconda.asc | gpg --dearmor > conda.gpg && \
sudo install -o root -g root -m 644 conda.gpg /usr/share/keyrings/conda-archive-keyring.gpg && \
gpg --keyring /usr/share/keyrings/conda-archive-keyring.gpg --no-default-keyring --fingerprint 34161F5BF5EB1D4BFBBB8F0A8AEB4F8B29D82806 && \
sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" > /etc/apt/sources.list.d/conda.list' && \
sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" | tee -a /etc/apt/sources.list.d/conda.list' && \
sudo apt-get update && \
sudo apt-get install -y conda
sudo apt-get install -y ca-certificates cmake curl patch
sudo apt-get install -y libopencv-dev && sudo ln -s /usr/include/opencv4/opencv2 /usr/include/opencv2
sudo rm -rfv /usr/bin/conda || true
- name: Test bark
run: |
export PATH=$PATH:/opt/conda/bin
make -C backend/python/bark
make -C backend/python/bark test
# Below tests needs GPU. Commented out for now
# TODO: Re-enable as soon as we have GPU nodes
# tests-vllm:
# runs-on: ubuntu-latest
# steps:
# - name: Clone
# uses: actions/checkout@v4
# with:
# submodules: true
# - name: Dependencies
# run: |
# sudo apt-get update
# sudo apt-get install build-essential ffmpeg
# curl https://repo.anaconda.com/pkgs/misc/gpgkeys/anaconda.asc | gpg --dearmor > conda.gpg && \
# sudo install -o root -g root -m 644 conda.gpg /usr/share/keyrings/conda-archive-keyring.gpg && \
# gpg --keyring /usr/share/keyrings/conda-archive-keyring.gpg --no-default-keyring --fingerprint 34161F5BF5EB1D4BFBBB8F0A8AEB4F8B29D82806 && \
# sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" > /etc/apt/sources.list.d/conda.list' && \
# sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" | tee -a /etc/apt/sources.list.d/conda.list' && \
# sudo apt-get update && \
# sudo apt-get install -y conda
# sudo apt-get install -y ca-certificates cmake curl patch
# sudo apt-get install -y libopencv-dev && sudo ln -s /usr/include/opencv4/opencv2 /usr/include/opencv2
# sudo rm -rfv /usr/bin/conda || true
# - name: Test vllm
# run: |
# export PATH=$PATH:/opt/conda/bin
# make -C backend/python/vllm
# make -C backend/python/vllm test
# tests-vallex:
# runs-on: ubuntu-latest
# steps:
# - name: Clone
# uses: actions/checkout@v4
# with:
# submodules: true
# - name: Dependencies
# run: |
# sudo apt-get update
# sudo apt-get install build-essential ffmpeg
# curl https://repo.anaconda.com/pkgs/misc/gpgkeys/anaconda.asc | gpg --dearmor > conda.gpg && \
# sudo install -o root -g root -m 644 conda.gpg /usr/share/keyrings/conda-archive-keyring.gpg && \
# gpg --keyring /usr/share/keyrings/conda-archive-keyring.gpg --no-default-keyring --fingerprint 34161F5BF5EB1D4BFBBB8F0A8AEB4F8B29D82806 && \
# sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" > /etc/apt/sources.list.d/conda.list' && \
# sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" | tee -a /etc/apt/sources.list.d/conda.list' && \
# sudo apt-get update && \
# sudo apt-get install -y conda
# sudo apt-get install -y ca-certificates cmake curl patch
# sudo apt-get install -y libopencv-dev && sudo ln -s /usr/include/opencv4/opencv2 /usr/include/opencv2
# sudo rm -rfv /usr/bin/conda || true
# - name: Test vall-e-x
# run: |
# export PATH=$PATH:/opt/conda/bin
# make -C backend/python/vall-e-x
# make -C backend/python/vall-e-x test

View File

@@ -83,7 +83,7 @@ jobs:
# Pre-build piper before we start tests in order to have shared libraries in place
make sources/go-piper && \
GO_TAGS="tts" make -C sources/go-piper piper.o && \
sudo cp -rfv sources/go-piper/piper/build/pi/lib/. /usr/lib/ && \
sudo cp -rfv sources/go-piper/piper-phonemize/pi/lib/. /usr/lib/ && \
# Pre-build stable diffusion before we install a newer version of abseil (not compatible with stablediffusion-ncn)
GO_TAGS="stablediffusion tts" GRPC_BACKENDS=backend-assets/grpc/stablediffusion make build

1
.gitignore vendored
View File

@@ -3,6 +3,7 @@
__pycache__/
*.a
get-sources
prepare-sources
/backend/cpp/llama/grpc-server
/backend/cpp/llama/llama.cpp

View File

@@ -12,7 +12,9 @@ ARG TARGETARCH
ARG TARGETVARIANT
ENV BUILD_TYPE=${BUILD_TYPE}
ENV EXTERNAL_GRPC_BACKENDS="huggingface-embeddings:/build/backend/python/sentencetransformers/run.sh,petals:/build/backend/python/petals/run.sh,transformers:/build/backend/python/transformers/run.sh,sentencetransformers:/build/backend/python/sentencetransformers/run.sh,autogptq:/build/backend/python/autogptq/run.sh,bark:/build/backend/python/bark/run.sh,diffusers:/build/backend/python/diffusers/run.sh,exllama:/build/backend/python/exllama/run.sh,vall-e-x:/build/backend/python/vall-e-x/run.sh,vllm:/build/backend/python/vllm/run.sh"
ENV EXTERNAL_GRPC_BACKENDS="huggingface-embeddings:/build/backend/python/sentencetransformers/run.sh,petals:/build/backend/python/petals/run.sh,transformers:/build/backend/python/transformers/run.sh,sentencetransformers:/build/backend/python/sentencetransformers/run.sh,autogptq:/build/backend/python/autogptq/run.sh,bark:/build/backend/python/bark/run.sh,diffusers:/build/backend/python/diffusers/run.sh,exllama:/build/backend/python/exllama/run.sh,vall-e-x:/build/backend/python/vall-e-x/run.sh,vllm:/build/backend/python/vllm/run.sh,exllama2:/build/backend/python/exllama2/run.sh,transformers-musicgen:/build/backend/python/transformers-musicgen/run.sh"
ENV GALLERIES='[{"name":"model-gallery", "url":"github:go-skynet/model-gallery/index.yaml"}, {"url": "github:go-skynet/model-gallery/huggingface.yaml","name":"huggingface"}]'
ARG GO_TAGS="stablediffusion tts"
@@ -105,9 +107,9 @@ RUN if [ "${BUILD_GRPC}" = "true" ]; then \
# Rebuild with defaults backends
RUN make build
RUN if [ ! -d "/build/sources/go-piper/piper/build/pi/lib/" ]; then \
mkdir -p /build/sources/go-piper/piper/build/pi/lib/ \
touch /build/sources/go-piper/piper/build/pi/lib/keep \
RUN if [ ! -d "/build/sources/go-piper/piper-phonemize/pi/lib/" ]; then \
mkdir -p /build/sources/go-piper/piper-phonemize/pi/lib/ \
touch /build/sources/go-piper/piper-phonemize/pi/lib/keep \
; fi
###################################
@@ -151,7 +153,7 @@ RUN make prepare-sources && cd /build/grpc/cmake/build && make install && rm -rf
COPY --from=builder /build/local-ai ./
# Copy shared libraries for piper
COPY --from=builder /build/sources/go-piper/piper/build/pi/lib/* /usr/lib/
COPY --from=builder /build/sources/go-piper/piper-phonemize/pi/lib/* /usr/lib/
# do not let stablediffusion rebuild (requires an older version of absl)
COPY --from=builder /build/backend-assets/grpc/stablediffusion ./backend-assets/grpc/stablediffusion
@@ -181,15 +183,15 @@ RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
PATH=$PATH:/opt/conda/bin make -C backend/python/exllama \
; fi
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
PATH=$PATH:/opt/conda/bin make -C backend/python/exllama2 \
; fi
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
PATH=$PATH:/opt/conda/bin make -C backend/python/petals \
; fi
# we also copy exllama libs over to resolve exllama import error
# TODO: check if this is still needed
RUN if [ -d /usr/local/lib/python3.9/dist-packages/exllama ]; then \
cp -rfv /usr/local/lib/python3.9/dist-packages/exllama backend/python/exllama/;\
fi
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
PATH=$PATH:/opt/conda/bin make -C backend/python/transformers-musicgen \
; fi
# Define the health check command
HEALTHCHECK --interval=1m --timeout=10m --retries=10 \

View File

@@ -8,7 +8,7 @@ GOLLAMA_VERSION?=aeba71ee842819da681ea537e78846dc75949ac0
GOLLAMA_STABLE_VERSION?=50cee7712066d9e38306eccadcfbb44ea87df4b7
CPPLLAMA_VERSION?=5a7d3125e7c24f223659b7f0b7aa7736986e92c0
CPPLLAMA_VERSION?=328b83de23b33240e28f4e74900d1d06726f5eb1
# gpt4all version
GPT4ALL_REPO?=https://github.com/nomic-ai/gpt4all
@@ -19,16 +19,16 @@ GOGGMLTRANSFORMERS_VERSION?=ffb09d7dd71e2cbc6c5d7d05357d230eea6f369a
# go-rwkv version
RWKV_REPO?=https://github.com/donomii/go-rwkv.cpp
RWKV_VERSION?=c898cd0f62df8f2a7830e53d1d513bef4f6f792b
RWKV_VERSION?=8f6d062fa80ed4ac4a00d1ac53aa4de54183fffe
# whisper.cpp version
WHISPER_CPP_VERSION?=e369243ebd24c8a14201f6b4280bccbb7b6a7df3
WHISPER_CPP_VERSION?=9286d3f584240ba58bd44a1bd1e85141579c78d4
# bert.cpp version
BERT_VERSION?=6abe312cded14042f6b7c3cd8edf082713334a4d
# go-piper version
PIPER_VERSION?=5a4c9e28c84bac09ab6baa9f88457d852cb46bb2
PIPER_VERSION?=d6b6275ba037dabdba4a8b65dfdf6b2a73a67f07
# stablediffusion version
STABLEDIFFUSION_VERSION?=902db5f066fd137697e3b69d0fa10d4782bd2c2f
@@ -36,6 +36,7 @@ STABLEDIFFUSION_VERSION?=902db5f066fd137697e3b69d0fa10d4782bd2c2f
export BUILD_TYPE?=
export STABLE_BUILD_TYPE?=$(BUILD_TYPE)
export CMAKE_ARGS?=
CGO_LDFLAGS?=
CUDA_LIBPATH?=/usr/local/cuda/lib64/
GO_TAGS?=
@@ -191,7 +192,7 @@ backend-assets/gpt4all: sources/gpt4all/gpt4all-bindings/golang/libgpt4all.a
backend-assets/espeak-ng-data: sources/go-piper
mkdir -p backend-assets/espeak-ng-data
$(MAKE) -C sources/go-piper piper.o
@cp -rf sources/go-piper/piper/build/pi/share/espeak-ng-data/. backend-assets/espeak-ng-data
@cp -rf sources/go-piper/piper-phonemize/pi/share/espeak-ng-data/. backend-assets/espeak-ng-data
sources/gpt4all/gpt4all-bindings/golang/libgpt4all.a: sources/gpt4all
$(MAKE) -C sources/gpt4all/gpt4all-bindings/golang/ libgpt4all.a
@@ -229,7 +230,7 @@ sources/go-piper/libpiper_binding.a: sources/go-piper
$(MAKE) -C sources/go-piper libpiper_binding.a example/main
backend/cpp/llama/llama.cpp:
$(MAKE) -C backend/cpp/llama llama.cpp
LLAMA_VERSION=$(CPPLLAMA_VERSION) $(MAKE) -C backend/cpp/llama llama.cpp
get-sources: backend/cpp/llama/llama.cpp sources/go-llama sources/go-llama-ggml sources/go-ggml-transformers sources/gpt4all sources/go-piper sources/go-rwkv sources/whisper.cpp sources/go-bert sources/go-stable-diffusion
touch $@
@@ -383,12 +384,13 @@ help: ## Show this help.
protogen: protogen-go protogen-python
protogen-go:
protoc --go_out=. --go_opt=paths=source_relative --go-grpc_out=. --go-grpc_opt=paths=source_relative \
protoc -Ibackend/ --go_out=pkg/grpc/proto/ --go_opt=paths=source_relative --go-grpc_out=pkg/grpc/proto/ --go-grpc_opt=paths=source_relative \
backend/backend.proto
protogen-python:
python3 -m grpc_tools.protoc -Ibackend/ --python_out=backend/python/sentencetransformers/ --grpc_python_out=backend/python/sentencetransformers/ backend/backend.proto
python3 -m grpc_tools.protoc -Ibackend/ --python_out=backend/python/transformers/ --grpc_python_out=backend/python/transformers/ backend/backend.proto
python3 -m grpc_tools.protoc -Ibackend/ --python_out=backend/python/transformers-musicgen/ --grpc_python_out=backend/python/transformers-musicgen/ backend/backend.proto
python3 -m grpc_tools.protoc -Ibackend/ --python_out=backend/python/autogptq/ --grpc_python_out=backend/python/autogptq/ backend/backend.proto
python3 -m grpc_tools.protoc -Ibackend/ --python_out=backend/python/exllama/ --grpc_python_out=backend/python/exllama/ backend/backend.proto
python3 -m grpc_tools.protoc -Ibackend/ --python_out=backend/python/bark/ --grpc_python_out=backend/python/bark/ backend/backend.proto
@@ -396,6 +398,7 @@ protogen-python:
python3 -m grpc_tools.protoc -Ibackend/ --python_out=backend/python/vall-e-x/ --grpc_python_out=backend/python/vall-e-x/ backend/backend.proto
python3 -m grpc_tools.protoc -Ibackend/ --python_out=backend/python/vllm/ --grpc_python_out=backend/python/vllm/ backend/backend.proto
python3 -m grpc_tools.protoc -Ibackend/ --python_out=backend/python/petals/ --grpc_python_out=backend/python/petals/ backend/backend.proto
python3 -m grpc_tools.protoc -Ibackend/ --python_out=backend/python/exllama2/ --grpc_python_out=backend/python/exllama2/ backend/backend.proto
## GRPC
# Note: it is duplicated in the Dockerfile
@@ -406,10 +409,19 @@ prepare-extra-conda-environments:
$(MAKE) -C backend/python/vllm
$(MAKE) -C backend/python/sentencetransformers
$(MAKE) -C backend/python/transformers
$(MAKE) -C backend/python/transformers-musicgen
$(MAKE) -C backend/python/vall-e-x
$(MAKE) -C backend/python/exllama
$(MAKE) -C backend/python/petals
$(MAKE) -C backend/python/exllama2
prepare-test-extra:
$(MAKE) -C backend/python/transformers
$(MAKE) -C backend/python/diffusers
test-extra: prepare-test-extra
$(MAKE) -C backend/python/transformers test
$(MAKE) -C backend/python/diffusers test
backend-assets/grpc:
mkdir -p backend-assets/grpc

View File

@@ -21,7 +21,7 @@
</p>
> :bulb: Get help - [❓FAQ](https://localai.io/faq/) [💭Discussions](https://github.com/go-skynet/LocalAI/discussions) [:speech_balloon: Discord](https://discord.gg/uJAeKSAGDy) [:book: Documentation website](https://localai.io/)
>
>
> [💻 Quickstart](https://localai.io/basics/getting_started/) [📣 News](https://localai.io/basics/news/) [ 🛫 Examples ](https://github.com/go-skynet/LocalAI/tree/master/examples/) [ 🖼️ Models ](https://localai.io/models/) [ 🚀 Roadmap ](https://github.com/mudler/LocalAI/issues?q=is%3Aissue+is%3Aopen+label%3Aroadmap)
[![tests](https://github.com/go-skynet/LocalAI/actions/workflows/test.yml/badge.svg)](https://github.com/go-skynet/LocalAI/actions/workflows/test.yml)[![Build and Release](https://github.com/go-skynet/LocalAI/actions/workflows/release.yaml/badge.svg)](https://github.com/go-skynet/LocalAI/actions/workflows/release.yaml)[![build container images](https://github.com/go-skynet/LocalAI/actions/workflows/image.yml/badge.svg)](https://github.com/go-skynet/LocalAI/actions/workflows/image.yml)[![Bump dependencies](https://github.com/go-skynet/LocalAI/actions/workflows/bump_deps.yaml/badge.svg)](https://github.com/go-skynet/LocalAI/actions/workflows/bump_deps.yaml)[![Artifact Hub](https://img.shields.io/endpoint?url=https://artifacthub.io/badge/repository/localai)](https://artifacthub.io/packages/search?repo=localai)
@@ -54,7 +54,7 @@
<p align="center">
<a href="https://twitter.com/intent/tweet?text=Check%20this%20GitHub%20repository%20out.%20LocalAI%20-%20Let%27s%20you%20easily%20run%20LLM%20locally.&url=https://github.com/go-skynet/LocalAI&hashtags=LocalAI,AI" target="blank">
<img src="https://img.shields.io/twitter/follow/_LocalAI?label=Share Repo on Twitter&style=social" alt="Follow _LocalAI"/></a>
<img src="https://img.shields.io/twitter/follow/_LocalAI?label=Share Repo on Twitter&style=social" alt="Follow _LocalAI"/></a>
<a href="https://t.me/share/url?text=Check%20this%20GitHub%20repository%20out.%20LocalAI%20-%20Let%27s%20you%20easily%20run%20LLM%20locally.&url=https://github.com/go-skynet/LocalAI" target="_blank"><img src="https://img.shields.io/twitter/url?label=Telegram&logo=Telegram&style=social&url=https://github.com/go-skynet/LocalAI" alt="Share on Telegram"/></a>
<a href="https://api.whatsapp.com/send?text=Check%20this%20GitHub%20repository%20out.%20LocalAI%20-%20Let%27s%20you%20easily%20run%20LLM%20locally.%20https://github.com/go-skynet/LocalAI"><img src="https://img.shields.io/twitter/url?label=whatsapp&logo=whatsapp&style=social&url=https://github.com/go-skynet/LocalAI" /></a> <a href="https://www.reddit.com/submit?url=https://github.com/go-skynet/LocalAI&title=Check%20this%20GitHub%20repository%20out.%20LocalAI%20-%20Let%27s%20you%20easily%20run%20LLM%20locally.
" target="blank">
@@ -85,12 +85,12 @@ In a nutshell:
- Local, OpenAI drop-in alternative REST API. You own your data.
- NO GPU required. NO Internet access is required either
- Optional, GPU Acceleration is available in `llama.cpp`-compatible LLMs. See also the [build section](https://localai.io/basics/build/index.html).
- Optional, GPU Acceleration is available in `llama.cpp`-compatible LLMs. See also the [build section](https://localai.io/basics/build/index.html).
- Supports multiple models
- 🏃 Once loaded the first time, it keep models loaded in memory for faster inference
- ⚡ Doesn't shell-out, but uses C++ bindings for a faster inference and better performance.
LocalAI was created by [Ettore Di Giacinto](https://github.com/mudler/) and is a community-driven project, focused on making the AI accessible to anyone. Any contribution, feedback and PR is welcome!
LocalAI was created by [Ettore Di Giacinto](https://github.com/mudler/) and is a community-driven project, focused on making the AI accessible to anyone. Any contribution, feedback and PR is welcome!
Note that this started just as a [fun weekend project](https://localai.io/#backstory) in order to try to create the necessary pieces for a full AI assistant like `ChatGPT`: the community is growing fast and we are working hard to make it better and more stable. If you want to help, please consider contributing (see below)!
@@ -112,6 +112,9 @@ Check out the [Getting started](https://localai.io/basics/getting_started/index.
### 🔗 Community and integrations
Build and deploy custom containers:
- https://github.com/sozercan/aikit
WebUIs:
- https://github.com/Jirubizu/localai-admin
- https://github.com/go-skynet/LocalAI-frontend
@@ -129,7 +132,7 @@ Other:
- [How to install in Kubernetes](https://localai.io/basics/getting_started/index.html#run-localai-in-kubernetes)
- [Projects integrating LocalAI](https://localai.io/integrations/)
- [How tos section](https://localai.io/howtos/) (curated by our community)
## :book: 🎥 [Media, Blogs, Social](https://localai.io/basics/news/#media-blogs-social)
- [Create a slackbot for teams and OSS projects that answer to documentation](https://mudler.pm/posts/smart-slackbot-for-teams/)
@@ -159,12 +162,12 @@ Support the project by becoming [a backer or sponsor](https://github.com/sponsor
A huge thank you to our generous sponsors who support this project:
| ![Spectro Cloud logo_600x600px_transparent bg](https://github.com/go-skynet/LocalAI/assets/2420543/68a6f3cb-8a65-4a4d-99b5-6417a8905512) |
| ![Spectro Cloud logo_600x600px_transparent bg](https://github.com/go-skynet/LocalAI/assets/2420543/68a6f3cb-8a65-4a4d-99b5-6417a8905512) |
|:-----------------------------------------------:|
| [Spectro Cloud](https://www.spectrocloud.com/) |
| [Spectro Cloud](https://www.spectrocloud.com/) |
| Spectro Cloud kindly supports LocalAI by providing GPU and computing resources to run tests on lamdalabs! |
And a huge shout-out to individuals sponsoring the project by donating hardware or backing the project.
And a huge shout-out to individuals sponsoring the project by donating hardware or backing the project.
- [Sponsor list](https://github.com/sponsors/mudler)
- JDAM00 (donating HW for the CI)

View File

@@ -1,8 +1,10 @@
package api
import (
"encoding/json"
"errors"
"fmt"
"os"
"strings"
config "github.com/go-skynet/LocalAI/api/config"
@@ -45,6 +47,10 @@ func Startup(opts ...options.AppOption) (*options.Option, *config.ConfigLoader,
}
}
if err := cl.Preload(options.Loader.ModelPath); err != nil {
log.Error().Msgf("error downloading models: %s", err.Error())
}
if options.Debug {
for _, v := range cl.ListConfigs() {
cfg, _ := cl.GetConfig(v)
@@ -144,28 +150,46 @@ func App(opts ...options.AppOption) (*fiber.App, error) {
// Auth middleware checking if API key is valid. If no API key is set, no auth is required.
auth := func(c *fiber.Ctx) error {
if len(options.ApiKeys) > 0 {
authHeader := c.Get("Authorization")
if authHeader == "" {
return c.Status(fiber.StatusUnauthorized).JSON(fiber.Map{"message": "Authorization header missing"})
}
authHeaderParts := strings.Split(authHeader, " ")
if len(authHeaderParts) != 2 || authHeaderParts[0] != "Bearer" {
return c.Status(fiber.StatusUnauthorized).JSON(fiber.Map{"message": "Invalid Authorization header format"})
if len(options.ApiKeys) == 0 {
return c.Next()
}
// Check for api_keys.json file
fileContent, err := os.ReadFile("api_keys.json")
if err == nil {
// Parse JSON content from the file
var fileKeys []string
err := json.Unmarshal(fileContent, &fileKeys)
if err != nil {
return c.Status(fiber.StatusInternalServerError).JSON(fiber.Map{"message": "Error parsing api_keys.json"})
}
apiKey := authHeaderParts[1]
validApiKey := false
for _, key := range options.ApiKeys {
if apiKey == key {
validApiKey = true
}
}
if !validApiKey {
return c.Status(fiber.StatusUnauthorized).JSON(fiber.Map{"message": "Invalid API key"})
// Add file keys to options.ApiKeys
options.ApiKeys = append(options.ApiKeys, fileKeys...)
}
if len(options.ApiKeys) == 0 {
return c.Next()
}
authHeader := c.Get("Authorization")
if authHeader == "" {
return c.Status(fiber.StatusUnauthorized).JSON(fiber.Map{"message": "Authorization header missing"})
}
authHeaderParts := strings.Split(authHeader, " ")
if len(authHeaderParts) != 2 || authHeaderParts[0] != "Bearer" {
return c.Status(fiber.StatusUnauthorized).JSON(fiber.Map{"message": "Invalid Authorization header format"})
}
apiKey := authHeaderParts[1]
for _, key := range options.ApiKeys {
if apiKey == key {
return c.Next()
}
}
return c.Next()
return c.Status(fiber.StatusUnauthorized).JSON(fiber.Map{"message": "Invalid API key"})
}
if options.CORS {

View File

@@ -294,7 +294,7 @@ var _ = Describe("API test", func() {
Expect(content["backend"]).To(Equal("bert-embeddings"))
})
It("runs openllama", Label("llama"), func() {
It("runs openllama(llama-ggml backend)", Label("llama"), func() {
if runtime.GOOS != "linux" {
Skip("test supported only on linux")
}
@@ -362,9 +362,10 @@ var _ = Describe("API test", func() {
Expect(res["location"]).To(Equal("San Francisco, California, United States"), fmt.Sprint(res))
Expect(res["unit"]).To(Equal("celcius"), fmt.Sprint(res))
Expect(string(resp2.Choices[0].FinishReason)).To(Equal("function_call"), fmt.Sprint(resp2.Choices[0].FinishReason))
})
It("runs openllama gguf", Label("llama-gguf"), func() {
It("runs openllama gguf(llama-cpp)", Label("llama-gguf"), func() {
if runtime.GOOS != "linux" {
Skip("test supported only on linux")
}

View File

@@ -16,7 +16,7 @@ func ImageGeneration(height, width, mode, step, seed int, positive_prompt, negat
model.WithContext(o.Context),
model.WithModel(c.Model),
model.WithLoadGRPCLoadModelOpts(&proto.ModelOptions{
CUDA: c.Diffusers.CUDA,
CUDA: c.CUDA || c.Diffusers.CUDA,
SchedulerType: c.Diffusers.SchedulerType,
PipelineType: c.Diffusers.PipelineType,
CFGScale: c.Diffusers.CFGScale,
@@ -27,6 +27,7 @@ func ImageGeneration(height, width, mode, step, seed int, positive_prompt, negat
CLIPModel: c.Diffusers.ClipModel,
CLIPSubfolder: c.Diffusers.ClipSubFolder,
CLIPSkip: int32(c.Diffusers.ClipSkip),
ControlNet: c.Diffusers.ControlNet,
}),
})

View File

@@ -46,6 +46,7 @@ func gRPCModelOpts(c config.Config) *pb.ModelOptions {
Seed: int32(c.Seed),
NBatch: int32(b),
NoMulMatQ: c.NoMulMatQ,
CUDA: c.CUDA, // diffusers, transformers
DraftModel: c.DraftModel,
AudioPath: c.VallE.AudioPath,
Quantization: c.Quantization,

View File

@@ -59,9 +59,13 @@ func ModelTTS(backend, text, modelFile string, loader *model.ModelLoader, o *opt
// If the model file is not empty, we pass it joined with the model path
modelPath := ""
if modelFile != "" {
modelPath = filepath.Join(o.Loader.ModelPath, modelFile)
if err := utils.VerifyPath(modelPath, o.Loader.ModelPath); err != nil {
return "", nil, err
if bb != model.TransformersMusicGen {
modelPath = filepath.Join(o.Loader.ModelPath, modelFile)
if err := utils.VerifyPath(modelPath, o.Loader.ModelPath); err != nil {
return "", nil, err
}
} else {
modelPath = modelFile
}
}

View File

@@ -8,6 +8,8 @@ import (
"strings"
"sync"
"github.com/go-skynet/LocalAI/pkg/utils"
"github.com/rs/zerolog/log"
"gopkg.in/yaml.v3"
)
@@ -38,14 +40,17 @@ type Config struct {
// Diffusers
Diffusers Diffusers `yaml:"diffusers"`
Step int `yaml:"step"`
Step int `yaml:"step"`
// GRPC Options
GRPC GRPC `yaml:"grpc"`
// Vall-e-x
VallE VallE `yaml:"vall-e"`
// CUDA
// Explicitly enable CUDA or not (some backends might need it)
CUDA bool `yaml:"cuda"`
}
type VallE struct {
@@ -65,15 +70,16 @@ type GRPC struct {
}
type Diffusers struct {
CUDA bool `yaml:"cuda"`
PipelineType string `yaml:"pipeline_type"`
SchedulerType string `yaml:"scheduler_type"`
CUDA bool `yaml:"cuda"`
EnableParameters string `yaml:"enable_parameters"` // A list of comma separated parameters to specify
CFGScale float32 `yaml:"cfg_scale"` // Classifier-Free Guidance Scale
IMG2IMG bool `yaml:"img2img"` // Image to Image Diffuser
ClipSkip int `yaml:"clip_skip"` // Skip every N frames
ClipModel string `yaml:"clip_model"` // Clip model to use
ClipSubFolder string `yaml:"clip_subfolder"` // Subfolder to use for clip model
ControlNet string `yaml:"control_net"`
}
type LLMConfig struct {
@@ -260,6 +266,36 @@ func (cm *ConfigLoader) ListConfigs() []string {
return res
}
func (cm *ConfigLoader) Preload(modelPath string) error {
cm.Lock()
defer cm.Unlock()
for i, config := range cm.configs {
modelURL := config.PredictionOptions.Model
modelURL = utils.ConvertURL(modelURL)
if strings.HasPrefix(modelURL, "http://") || strings.HasPrefix(modelURL, "https://") {
// md5 of model name
md5Name := utils.MD5(modelURL)
// check if file exists
if _, err := os.Stat(filepath.Join(modelPath, md5Name)); err == os.ErrNotExist {
err := utils.DownloadFile(modelURL, filepath.Join(modelPath, md5Name), "", func(fileName, current, total string, percent float64) {
log.Info().Msgf("Downloading %s: %s/%s (%.2f%%)", fileName, current, total, percent)
})
if err != nil {
return err
}
}
cc := cm.configs[i]
c := &cc
c.PredictionOptions.Model = md5Name
cm.configs[i] = *c
}
}
return nil
}
func (cm *ConfigLoader) LoadConfigs(path string) error {
cm.Lock()
defer cm.Unlock()

View File

@@ -219,7 +219,12 @@ func ChatEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fiber.Ctx)
c.Set("Transfer-Encoding", "chunked")
}
templateFile := config.Model
templateFile := ""
// A model can have a "file.bin.tmpl" file associated with a prompt template prefix
if o.Loader.ExistsInModelPath(fmt.Sprintf("%s.tmpl", config.Model)) {
templateFile = config.Model
}
if config.TemplateConfig.Chat != "" && !processFunctions {
templateFile = config.TemplateConfig.Chat
@@ -229,18 +234,19 @@ func ChatEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fiber.Ctx)
templateFile = config.TemplateConfig.Functions
}
// A model can have a "file.bin.tmpl" file associated with a prompt template prefix
templatedInput, err := o.Loader.EvaluateTemplateForPrompt(model.ChatPromptTemplate, templateFile, model.PromptTemplateData{
SystemPrompt: config.SystemPrompt,
SuppressSystemPrompt: suppressConfigSystemPrompt,
Input: predInput,
Functions: funcs,
})
if err == nil {
predInput = templatedInput
log.Debug().Msgf("Template found, input modified to: %s", predInput)
} else {
log.Debug().Msgf("Template failed loading: %s", err.Error())
if templateFile != "" {
templatedInput, err := o.Loader.EvaluateTemplateForPrompt(model.ChatPromptTemplate, templateFile, model.PromptTemplateData{
SystemPrompt: config.SystemPrompt,
SuppressSystemPrompt: suppressConfigSystemPrompt,
Input: predInput,
Functions: funcs,
})
if err == nil {
predInput = templatedInput
log.Debug().Msgf("Template found, input modified to: %s", predInput)
} else {
log.Debug().Msgf("Template failed loading: %s", err.Error())
}
}
log.Debug().Msgf("Prompt (after templating): %s", predInput)

View File

@@ -81,7 +81,12 @@ func CompletionEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fibe
c.Set("Transfer-Encoding", "chunked")
}
templateFile := config.Model
templateFile := ""
// A model can have a "file.bin.tmpl" file associated with a prompt template prefix
if o.Loader.ExistsInModelPath(fmt.Sprintf("%s.tmpl", config.Model)) {
templateFile = config.Model
}
if config.TemplateConfig.Completion != "" {
templateFile = config.TemplateConfig.Completion
@@ -94,13 +99,14 @@ func CompletionEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fibe
predInput := config.PromptStrings[0]
// A model can have a "file.bin.tmpl" file associated with a prompt template prefix
templatedInput, err := o.Loader.EvaluateTemplateForPrompt(model.CompletionPromptTemplate, templateFile, model.PromptTemplateData{
Input: predInput,
})
if err == nil {
predInput = templatedInput
log.Debug().Msgf("Template found, input modified to: %s", predInput)
if templateFile != "" {
templatedInput, err := o.Loader.EvaluateTemplateForPrompt(model.CompletionPromptTemplate, templateFile, model.PromptTemplateData{
Input: predInput,
})
if err == nil {
predInput = templatedInput
log.Debug().Msgf("Template found, input modified to: %s", predInput)
}
}
responses := make(chan schema.OpenAIResponse)
@@ -145,14 +151,16 @@ func CompletionEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fibe
totalTokenUsage := backend.TokenUsage{}
for k, i := range config.PromptStrings {
// A model can have a "file.bin.tmpl" file associated with a prompt template prefix
templatedInput, err := o.Loader.EvaluateTemplateForPrompt(model.CompletionPromptTemplate, templateFile, model.PromptTemplateData{
SystemPrompt: config.SystemPrompt,
Input: i,
})
if err == nil {
i = templatedInput
log.Debug().Msgf("Template found, input modified to: %s", i)
if templateFile != "" {
// A model can have a "file.bin.tmpl" file associated with a prompt template prefix
templatedInput, err := o.Loader.EvaluateTemplateForPrompt(model.CompletionPromptTemplate, templateFile, model.PromptTemplateData{
SystemPrompt: config.SystemPrompt,
Input: i,
})
if err == nil {
i = templatedInput
log.Debug().Msgf("Template found, input modified to: %s", i)
}
}
r, tokenUsage, err := ComputeChoices(

View File

@@ -30,7 +30,12 @@ func EditEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fiber.Ctx)
log.Debug().Msgf("Parameter Config: %+v", config)
templateFile := config.Model
templateFile := ""
// A model can have a "file.bin.tmpl" file associated with a prompt template prefix
if o.Loader.ExistsInModelPath(fmt.Sprintf("%s.tmpl", config.Model)) {
templateFile = config.Model
}
if config.TemplateConfig.Edit != "" {
templateFile = config.TemplateConfig.Edit
@@ -40,15 +45,16 @@ func EditEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fiber.Ctx)
totalTokenUsage := backend.TokenUsage{}
for _, i := range config.InputStrings {
// A model can have a "file.bin.tmpl" file associated with a prompt template prefix
templatedInput, err := o.Loader.EvaluateTemplateForPrompt(model.EditPromptTemplate, templateFile, model.PromptTemplateData{
Input: i,
Instruction: input.Instruction,
SystemPrompt: config.SystemPrompt,
})
if err == nil {
i = templatedInput
log.Debug().Msgf("Template found, input modified to: %s", i)
if templateFile != "" {
templatedInput, err := o.Loader.EvaluateTemplateForPrompt(model.EditPromptTemplate, templateFile, model.PromptTemplateData{
Input: i,
Instruction: input.Instruction,
SystemPrompt: config.SystemPrompt,
})
if err == nil {
i = templatedInput
log.Debug().Msgf("Template found, input modified to: %s", i)
}
}
r, tokenUsage, err := ComputeChoices(input, i, config, o, o.Loader, func(s string, c *[]schema.Choice) {

View File

@@ -5,6 +5,8 @@ import (
"encoding/base64"
"encoding/json"
"fmt"
"io"
"net/http"
"os"
"path/filepath"
"strconv"
@@ -22,6 +24,26 @@ import (
"github.com/rs/zerolog/log"
)
func downloadFile(url string) (string, error) {
// Get the data
resp, err := http.Get(url)
if err != nil {
return "", err
}
defer resp.Body.Close()
// Create the file
out, err := os.CreateTemp("", "image")
if err != nil {
return "", err
}
defer out.Close()
// Write the body to file
_, err = io.Copy(out, resp.Body)
return out.Name(), err
}
// https://platform.openai.com/docs/api-reference/images/create
/*
@@ -56,12 +78,31 @@ func ImageEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fiber.Ctx
src := ""
if input.File != "" {
//base 64 decode the file and write it somewhere
// that we will cleanup
decoded, err := base64.StdEncoding.DecodeString(input.File)
if err != nil {
return err
fileData := []byte{}
// check if input.File is an URL, if so download it and save it
// to a temporary file
if strings.HasPrefix(input.File, "http://") || strings.HasPrefix(input.File, "https://") {
out, err := downloadFile(input.File)
if err != nil {
return fmt.Errorf("failed downloading file:%w", err)
}
defer os.RemoveAll(out)
fileData, err = os.ReadFile(out)
if err != nil {
return fmt.Errorf("failed reading file:%w", err)
}
} else {
// base 64 decode the file and write it somewhere
// that we will cleanup
fileData, err = base64.StdEncoding.DecodeString(input.File)
if err != nil {
return err
}
}
// Create a temporary file
outputFile, err := os.CreateTemp(o.ImageDir, "b64")
if err != nil {
@@ -69,7 +110,7 @@ func ImageEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fiber.Ctx
}
// write the base64 result
writer := bufio.NewWriter(outputFile)
_, err = writer.Write(decoded)
_, err = writer.Write(fileData)
if err != nil {
outputFile.Close()
return err

View File

@@ -110,6 +110,7 @@ message ModelOptions {
string CLIPModel = 31;
string CLIPSubfolder = 32;
int32 CLIPSkip = 33;
string ControlNet = 48;
// RWKV
string Tokenizer = 34;

View File

@@ -1,5 +1,5 @@
LLAMA_VERSION?=d9b33fe95bd257b36c84ee5769cc048230067d6f
LLAMA_VERSION?=
CMAKE_ARGS?=
BUILD_TYPE?=
@@ -21,6 +21,9 @@ endif
llama.cpp:
git clone --recurse-submodules https://github.com/ggerganov/llama.cpp llama.cpp
if [ -z "$(LLAMA_VERSION)" ]; then \
exit 1; \
fi
cd llama.cpp && git checkout -b build $(LLAMA_VERSION) && git submodule update --init --recursive --depth 1
llama.cpp/examples/grpc-server:

View File

@@ -40,9 +40,18 @@ using backend::HealthMessage;
///// LLAMA.CPP server code below
#define DEFAULT_OAICOMPAT_MODEL "gpt-3.5-turbo-0613"
using json = nlohmann::json;
struct server_params
{
std::string hostname = "127.0.0.1";
std::string public_path = "examples/server/public";
int32_t port = 8080;
int32_t read_timeout = 600;
int32_t write_timeout = 600;
};
static bool server_verbose = false;
#if SERVER_VERBOSE != 1
@@ -62,6 +71,10 @@ static bool server_verbose = false;
#define LOG_WARNING(MSG, ...) server_log("WARNING", __func__, __LINE__, MSG, __VA_ARGS__)
#define LOG_INFO( MSG, ...) server_log("INFO", __func__, __LINE__, MSG, __VA_ARGS__)
json oaicompat_completion_params_parse(const json &body);
std::string format_chatml(std::vector<json> messages);
//
// base64 utils (TODO: move to common in the future)
//
@@ -152,15 +165,23 @@ struct task_server {
json data;
bool infill_mode = false;
bool embedding_mode = false;
int multitask_id = -1;
};
struct task_result {
int id;
int multitask_id = -1;
bool stop;
bool error;
json result_json;
};
struct task_multi {
int id;
std::set<int> subtasks_remaining{};
std::vector<task_result> results{};
};
// TODO: can become bool if we can't find use of more states
enum slot_state
{
@@ -365,7 +386,6 @@ struct llama_client_slot
int32_t num_prompt_tokens = 0;
int32_t num_prompt_tokens_processed = 0;
int32_t multibyte_pending = 0;
json prompt;
std::string generated_text;
@@ -381,6 +401,9 @@ struct llama_client_slot
bool stopped_word = false;
bool stopped_limit = false;
bool oaicompat = false;
std::string oaicompat_model;
std::string stopping_word;
// sampling
@@ -400,6 +423,9 @@ struct llama_client_slot
double t_prompt_processing; // ms
double t_token_generation; // ms
// multitasks
int multitask_id = -1;
void reset() {
num_prompt_tokens = 0;
generated_text = "";
@@ -408,7 +434,6 @@ struct llama_client_slot
stopped_word = false;
stopped_limit = false;
stopping_word = "";
multibyte_pending = 0;
n_past = 0;
sent_count = 0;
sent_token_probs_index = 0;
@@ -480,7 +505,7 @@ struct llama_client_slot
};
}
void print_timings() {
void print_timings() const {
LOG_TEE("\n");
LOG_TEE("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
__func__, t_prompt_processing, num_prompt_tokens_processed, t_prompt_processing / num_prompt_tokens_processed, 1e3 / t_prompt_processing * num_prompt_tokens_processed);
@@ -504,6 +529,7 @@ struct llama_server_context
bool multimodal = false;
bool clean_kv_cache = true;
bool all_slots_are_idle = false;
bool add_bos_token = true;
int32_t id_gen;
int32_t n_ctx; // total context for all clients / slots
@@ -522,7 +548,8 @@ struct llama_server_context
std::vector<task_server> queue_tasks;
std::vector<task_result> queue_results;
std::mutex mutex_tasks;
std::vector<task_multi> queue_multitasks;
std::mutex mutex_tasks; // also guards id_gen, and queue_multitasks
std::mutex mutex_results;
~llama_server_context()
@@ -576,6 +603,8 @@ struct llama_server_context
n_ctx = llama_n_ctx(ctx);
add_bos_token = llama_should_add_bos_token(model);
return true;
}
@@ -609,6 +638,11 @@ struct llama_server_context
std::vector<llama_token> tokenize(const json & json_prompt, bool add_bos) const
{
// TODO: currently, we tokenize using special tokens by default
// this is not always correct (see https://github.com/ggerganov/llama.cpp/pull/4160#issuecomment-1824826216)
// but it's better compared to completely ignoring ChatML and other chat templates
const bool TMP_FORCE_SPECIAL = true;
// If `add_bos` is true, we only add BOS, when json_prompt is a string,
// or the first element of the json_prompt array is a string.
std::vector<llama_token> prompt_tokens;
@@ -624,12 +658,12 @@ struct llama_server_context
std::vector<llama_token> p;
if (first)
{
p = ::llama_tokenize(ctx, s, add_bos);
p = ::llama_tokenize(ctx, s, add_bos, TMP_FORCE_SPECIAL);
first = false;
}
else
{
p = ::llama_tokenize(ctx, s, false);
p = ::llama_tokenize(ctx, s, false, TMP_FORCE_SPECIAL);
}
prompt_tokens.insert(prompt_tokens.end(), p.begin(), p.end());
}
@@ -646,7 +680,7 @@ struct llama_server_context
else
{
auto s = json_prompt.template get<std::string>();
prompt_tokens = ::llama_tokenize(ctx, s, add_bos);
prompt_tokens = ::llama_tokenize(ctx, s, add_bos, TMP_FORCE_SPECIAL);
}
return prompt_tokens;
@@ -677,11 +711,20 @@ struct llama_server_context
slot_params default_params;
llama_sampling_params default_sparams;
if (data.count("__oaicompat") != 0) {
slot->oaicompat = true;
slot->oaicompat_model = json_value(data, "model", std::string(DEFAULT_OAICOMPAT_MODEL));
} else {
slot->oaicompat = false;
slot->oaicompat_model = "";
}
slot->params.stream = json_value(data, "stream", false);
slot->params.cache_prompt = json_value(data, "cache_prompt", false);
slot->params.n_predict = json_value(data, "n_predict", default_params.n_predict);
slot->sparams.top_k = json_value(data, "top_k", default_sparams.top_k);
slot->sparams.top_p = json_value(data, "top_p", default_sparams.top_p);
slot->sparams.min_p = json_value(data, "min_p", default_sparams.min_p);
slot->sparams.tfs_z = json_value(data, "tfs_z", default_sparams.tfs_z);
slot->sparams.typical_p = json_value(data, "typical_p", default_sparams.typical_p);
slot->sparams.temp = json_value(data, "temperature", default_sparams.temp);
@@ -866,7 +909,7 @@ struct llama_server_context
}
void update_system_prompt() {
system_tokens = ::llama_tokenize(ctx, system_prompt, true);
system_tokens = ::llama_tokenize(ctx, system_prompt, add_bos_token);
llama_batch_clear(batch);
@@ -957,35 +1000,36 @@ struct llama_server_context
slot.generated_text += token_str;
slot.has_next_token = true;
if (slot.multibyte_pending > 0)
// check if there is incomplete UTF-8 character at the end
bool incomplete = false;
for (unsigned i = 1; i < 5 && i <= slot.generated_text.size(); ++i)
{
slot.multibyte_pending -= token_str.size();
}
else if (token_str.size() == 1)
{
const char c = token_str[0];
// 2-byte characters: 110xxxxx 10xxxxxx
unsigned char c = slot.generated_text[slot.generated_text.size() - i];
if ((c & 0xC0) == 0x80)
{
// continuation byte: 10xxxxxx
continue;
}
if ((c & 0xE0) == 0xC0)
{
slot.multibyte_pending = 1;
// 3-byte characters: 1110xxxx 10xxxxxx 10xxxxxx
// 2-byte character: 110xxxxx ...
incomplete = i < 2;
}
else if ((c & 0xF0) == 0xE0)
{
slot.multibyte_pending = 2;
// 4-byte characters: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
// 3-byte character: 1110xxxx ...
incomplete = i < 3;
}
else if ((c & 0xF8) == 0xF0)
{
slot.multibyte_pending = 3;
}
else
{
slot.multibyte_pending = 0;
// 4-byte character: 11110xxx ...
incomplete = i < 4;
}
// else 1-byte character or invalid byte
break;
}
if (slot.multibyte_pending == 0)
if (!incomplete)
{
size_t pos = std::min(slot.sent_count, slot.generated_text.size());
const std::string str_test = slot.generated_text.substr(pos);
@@ -1020,7 +1064,7 @@ struct llama_server_context
}
}
if (slot.multibyte_pending > 0 && !slot.has_next_token)
if (incomplete)
{
slot.has_next_token = true;
}
@@ -1089,16 +1133,40 @@ struct llama_server_context
return slot.images.size() > 0;
}
void send_error(int id, std::string error)
void send_error(task_server& task, std::string error)
{
std::lock_guard<std::mutex> lock(mutex_results);
task_result res;
res.id = id;
res.id = task.id;
res.multitask_id = task.multitask_id;
res.stop = false;
res.error = true;
res.result_json = { { "content", error } };
queue_results.push_back(res);
}
void add_multi_task(int id, std::vector<int>& sub_ids)
{
std::lock_guard<std::mutex> lock(mutex_tasks);
task_multi multi;
multi.id = id;
std::copy(sub_ids.begin(), sub_ids.end(), std::inserter(multi.subtasks_remaining, multi.subtasks_remaining.end()));
queue_multitasks.push_back(multi);
}
void update_multi_task(int multitask_id, int subtask_id, task_result& result)
{
std::lock_guard<std::mutex> lock(mutex_tasks);
for (auto& multitask : queue_multitasks)
{
if (multitask.id == multitask_id)
{
multitask.subtasks_remaining.erase(subtask_id);
multitask.results.push_back(result);
}
}
}
json get_model_props()
{
return get_formated_generation(slots[0]);
@@ -1116,6 +1184,7 @@ struct llama_server_context
{"temp", slot.sparams.temp},
{"top_k", slot.sparams.top_k},
{"top_p", slot.sparams.top_p},
{"min_p", slot.sparams.min_p},
{"tfs_z", slot.sparams.tfs_z},
{"typical_p", slot.sparams.typical_p},
{"repeat_last_n", slot.sparams.penalty_last_n},
@@ -1142,6 +1211,7 @@ struct llama_server_context
std::lock_guard<std::mutex> lock(mutex_results);
task_result res;
res.id = slot.task_id;
res.multitask_id = slot.multitask_id;
res.error = false;
res.stop = false;
@@ -1167,6 +1237,12 @@ struct llama_server_context
res.result_json["completion_probabilities"] = probs_vector_to_json(ctx, probs_output);
}
if (slot.oaicompat)
{
res.result_json["oaicompat_token_ctr"] = slot.n_decoded;
res.result_json["model"] = slot.oaicompat_model;
}
queue_results.push_back(res);
}
@@ -1175,6 +1251,7 @@ struct llama_server_context
std::lock_guard<std::mutex> lock(mutex_results);
task_result res;
res.id = slot.task_id;
res.multitask_id = slot.multitask_id;
res.error = false;
res.stop = true;
@@ -1214,6 +1291,18 @@ struct llama_server_context
res.result_json["completion_probabilities"] = probs_vector_to_json(ctx, probs);
}
if (slot.oaicompat)
{
res.result_json["oaicompat_token_ctr"] = slot.n_decoded;
res.result_json["model"] = slot.oaicompat_model;
}
// parent multitask, if any, needs to be updated
if (slot.multitask_id != -1)
{
update_multi_task(slot.multitask_id, slot.task_id, res);
}
queue_results.push_back(res);
}
@@ -1222,6 +1311,7 @@ struct llama_server_context
std::lock_guard<std::mutex> lock(mutex_results);
task_result res;
res.id = slot.task_id;
res.multitask_id = slot.multitask_id;
res.error = false;
res.stop = true;
@@ -1248,15 +1338,26 @@ struct llama_server_context
queue_results.push_back(res);
}
int request_completion(json data, bool infill, bool embedding)
int request_completion(json data, bool infill, bool embedding, int multitask_id)
{
std::lock_guard<std::mutex> lock(mutex_tasks);
std::unique_lock<std::mutex> lock(mutex_tasks);
task_server task;
task.id = id_gen++;
task.data = data;
task.target_id = 0;
task.data = std::move(data);
task.infill_mode = infill;
task.embedding_mode = embedding;
task.type = COMPLETION_TASK;
task.multitask_id = multitask_id;
// when a completion task's prompt array is not a singleton, we split it into multiple requests
if (task.data.at("prompt").size() > 1)
{
lock.unlock(); // entering new func scope
return split_multiprompt_task(task);
}
// otherwise, it's a single-prompt task, we actually queue it
queue_tasks.push_back(task);
return task.id;
}
@@ -1275,8 +1376,17 @@ struct llama_server_context
for (int i = 0; i < (int) queue_results.size(); i++)
{
// for now, tasks that have associated parent multitasks just get erased once multitask picks up the result
if (queue_results[i].multitask_id == task_id)
{
update_multi_task(task_id, queue_results[i].id, queue_results[i]);
queue_results.erase(queue_results.begin() + i);
continue;
}
if (queue_results[i].id == task_id)
{
assert(queue_results[i].multitask_id == -1);
task_result res = queue_results[i];
queue_results.erase(queue_results.begin() + i);
return res;
@@ -1366,6 +1476,27 @@ struct llama_server_context
queue_tasks.push_back(task);
}
int split_multiprompt_task(task_server& multiprompt_task)
{
int prompt_count = multiprompt_task.data.at("prompt").size();
assert(prompt_count > 1);
int multitask_id = id_gen++;
std::vector<int> subtask_ids(prompt_count);
for (int i = 0; i < prompt_count; i++)
{
json subtask_data = multiprompt_task.data;
subtask_data["prompt"] = subtask_data["prompt"][i];
// subtasks inherit everything else (infill mode, embedding mode, etc.)
subtask_ids[i] = request_completion(subtask_data, multiprompt_task.infill_mode, multiprompt_task.embedding_mode, multitask_id);
}
// queue up the multitask so we can track its subtask progression
add_multi_task(multitask_id, subtask_ids);
return multitask_id;
}
void process_tasks()
{
std::lock_guard<std::mutex> lock(mutex_tasks);
@@ -1381,7 +1512,7 @@ struct llama_server_context
{
LOG_TEE("slot unavailable\n");
// send error result
send_error(task.id, "slot unavailable");
send_error(task, "slot unavailable");
return;
}
@@ -1395,11 +1526,12 @@ struct llama_server_context
slot->infill = task.infill_mode;
slot->embedding = task.embedding_mode;
slot->task_id = task.id;
slot->multitask_id = task.multitask_id;
if (!launch_slot_with_data(slot, task.data))
{
// send error result
send_error(task.id, "internal_error");
send_error(task, "internal_error");
break;
}
} break;
@@ -1415,6 +1547,38 @@ struct llama_server_context
} break;
}
}
// remove finished multitasks from the queue of multitasks, and add the corresponding result to the result queue
auto queue_iterator = queue_multitasks.begin();
while (queue_iterator != queue_multitasks.end())
{
if (queue_iterator->subtasks_remaining.empty())
{
// all subtasks done == multitask is done
task_result aggregate_result;
aggregate_result.id = queue_iterator->id;
aggregate_result.stop = true;
aggregate_result.error = false;
// collect json results into one json result
std::vector<json> result_jsons;
for (auto& subres : queue_iterator->results)
{
result_jsons.push_back(subres.result_json);
aggregate_result.error = aggregate_result.error && subres.error;
}
aggregate_result.result_json = json{ "results", result_jsons };
std::lock_guard<std::mutex> lock(mutex_results);
queue_results.push_back(aggregate_result);
queue_iterator = queue_multitasks.erase(queue_iterator);
}
else
{
++queue_iterator;
}
}
}
bool update_slots() {
@@ -1553,11 +1717,40 @@ struct llama_server_context
}
else
{
prompt_tokens = tokenize(slot.prompt, system_prompt.empty()); // add BOS if there isn't system prompt
prompt_tokens = tokenize(slot.prompt, system_prompt.empty() && add_bos_token); // add BOS if there isn't system prompt
}
slot.num_prompt_tokens = prompt_tokens.size();
if (slot.params.n_keep < 0)
{
slot.params.n_keep = slot.num_prompt_tokens;
}
slot.params.n_keep = std::min(slot.n_ctx - 4, slot.params.n_keep);
// if input prompt is too big, truncate it
if (slot.num_prompt_tokens >= slot.n_ctx)
{
const int n_left = slot.n_ctx - slot.params.n_keep;
const int n_block_size = n_left / 2;
const int erased_blocks = (slot.num_prompt_tokens - slot.params.n_keep - n_block_size) / n_block_size;
std::vector<llama_token> new_tokens(prompt_tokens.begin(), prompt_tokens.begin() + slot.params.n_keep);
new_tokens.insert(new_tokens.end(), prompt_tokens.begin() + slot.params.n_keep + erased_blocks * n_block_size, prompt_tokens.end());
LOG_VERBOSE("input truncated", {
{"n_ctx", slot.n_ctx},
{"n_keep", slot.params.n_keep},
{"n_left", n_left},
{"new_tokens", tokens_to_str(ctx, new_tokens.cbegin(), new_tokens.cend())},
});
slot.truncated = true;
prompt_tokens = new_tokens;
slot.num_prompt_tokens = prompt_tokens.size();
GGML_ASSERT(slot.num_prompt_tokens < slot.n_ctx);
}
if (!slot.params.cache_prompt)
{
llama_sampling_reset(slot.ctx_sampling);
@@ -1567,35 +1760,6 @@ struct llama_server_context
}
else
{
if (slot.params.n_keep < 0)
{
slot.params.n_keep = slot.num_prompt_tokens;
}
slot.params.n_keep = std::min(slot.n_ctx - 4, slot.params.n_keep);
// if input prompt is too big, truncate it
if (slot.num_prompt_tokens >= slot.n_ctx)
{
const int n_left = slot.n_ctx - slot.params.n_keep;
const int n_block_size = n_left / 2;
const int erased_blocks = (slot.num_prompt_tokens - slot.params.n_keep - n_block_size) / n_block_size;
std::vector<llama_token> new_tokens(prompt_tokens.begin(), prompt_tokens.begin() + slot.params.n_keep);
new_tokens.insert(new_tokens.end(), prompt_tokens.begin() + slot.params.n_keep + erased_blocks * n_block_size, prompt_tokens.end());
LOG_VERBOSE("input truncated", {
{"n_ctx", slot.n_ctx},
{"n_keep", slot.params.n_keep},
{"n_left", n_left},
{"new_tokens", tokens_to_str(ctx, new_tokens.cbegin(), new_tokens.cend())},
});
slot.truncated = true;
prompt_tokens = new_tokens;
slot.num_prompt_tokens = prompt_tokens.size();
GGML_ASSERT(slot.num_prompt_tokens < slot.n_ctx);
}
// push the prompt into the sampling context (do not apply grammar)
for (auto &token : prompt_tokens)
{
@@ -1630,7 +1794,7 @@ struct llama_server_context
const bool has_images = process_images(slot);
// process the prefix of first image
std::vector<llama_token> prefix_tokens = has_images ? tokenize(slot.images[0].prefix_prompt, true) : prompt_tokens;
std::vector<llama_token> prefix_tokens = has_images ? tokenize(slot.images[0].prefix_prompt, add_bos_token) : prompt_tokens;
for (; slot.n_past < (int) prefix_tokens.size(); ++slot.n_past)
{
llama_batch_add(batch, prefix_tokens[slot.n_past], system_tokens.size() + slot.n_past, { slot.id }, false);
@@ -1750,6 +1914,231 @@ struct llama_server_context
};
static std::string random_string()
{
static const std::string str("0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz");
std::random_device rd;
std::mt19937 generator(rd());
std::string result(32, ' ');
for (int i = 0; i < 32; ++i) {
result[i] = str[generator() % str.size()];
}
return result;
}
static std::string gen_chatcmplid()
{
std::stringstream chatcmplid;
chatcmplid << "chatcmpl-" << random_string();
return chatcmplid.str();
}
std::string format_chatml(std::vector<json> messages)
{
std::ostringstream chatml_msgs;
for (auto it = messages.begin(); it != messages.end(); ++it) {
chatml_msgs << "<|im_start|>"
<< json_value(*it, "role", std::string("user")) << '\n';
chatml_msgs << json_value(*it, "content", std::string(""))
<< "<|im_end|>\n";
}
chatml_msgs << "<|im_start|>assistant" << '\n';
return chatml_msgs.str();
}
/* llama.cpp completion api semantics */
json oaicompat_completion_params_parse(
const json &body /* openai api json semantics */)
{
json llama_params;
llama_params["__oaicompat"] = true;
// Map OpenAI parameters to llama.cpp parameters
llama_params["model"] = json_value(body, "model", std::string("uknown"));
llama_params["prompt"] = format_chatml(body["messages"]); // OpenAI 'messages' to llama.cpp 'prompt'
llama_params["cache_prompt"] = json_value(body, "cache_prompt", false);
llama_params["temperature"] = json_value(body, "temperature", 0.8);
llama_params["top_k"] = json_value(body, "top_k", 40);
llama_params["top_p"] = json_value(body, "top_p", 0.95);
llama_params["n_predict"] = json_value(body, "max_tokens", -1);
llama_params["logit_bias"] = json_value(body, "logit_bias",json::object());
llama_params["frequency_penalty"] = json_value(body, "frequency_penalty", 0.0);
llama_params["presence_penalty"] = json_value(body, "presence_penalty", 0.0);
llama_params["seed"] = json_value(body, "seed", 0);
llama_params["stream"] = json_value(body, "stream", false);
llama_params["mirostat"] = json_value(body, "mirostat", false);
llama_params["mirostat_tau"] = json_value(body, "mirostat_tau", 0.0);
llama_params["mirostat_eta"] = json_value(body, "mirostat_eta", 0.0);
llama_params["penalize_nl"] = json_value(body, "penalize_nl", false);
llama_params["typical_p"] = json_value(body, "typical_p", 0.0);
llama_params["repeat_last_n"] = json_value(body, "repeat_last_n", 0);
llama_params["ignore_eos"] = json_value(body, "ignore_eos", false);
llama_params["tfs_z"] = json_value(body, "tfs_z", 0.0);
if (llama_params.count("grammar") != 0) {
llama_params["grammar"] = json_value(body, "grammar", json::object());
}
// Handle 'stop' field
if (body.contains("stop") && body["stop"].is_string()) {
llama_params["stop"] = json::array({body["stop"].get<std::string>()});
} else {
llama_params["stop"] = json_value(body, "stop", json::array());
}
// Ensure there is ChatML-specific end sequence among stop words
llama_params["stop"].push_back("<|im_end|>");
return llama_params;
}
static json format_final_response_oaicompat(const json &request, const task_result &response, bool streaming = false)
{
json result = response.result_json;
bool stopped_word = result.count("stopped_word") != 0;
bool stopped_eos = json_value(result, "stopped_eos", false);
int num_tokens_predicted = json_value(result, "tokens_predicted", 0);
int num_prompt_tokens = json_value(result, "tokens_evaluated", 0);
std::string content = json_value(result, "content", std::string(""));
std::string finish_reason = "length";
if (stopped_word || stopped_eos) {
finish_reason = "stop";
}
json choices =
streaming ? json::array({json{{"finish_reason", finish_reason},
{"index", 0},
{"delta", json::object()}}})
: json::array({json{{"finish_reason", finish_reason},
{"index", 0},
{"message", json{{"content", content},
{"role", "assistant"}}}}});
std::time_t t = std::time(0);
json res =
json{{"choices", choices},
{"created", t},
{"model",
json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))},
{"object", streaming ? "chat.completion.chunk" : "chat.completion"},
{"usage",
json{{"completion_tokens", num_tokens_predicted},
{"prompt_tokens", num_prompt_tokens},
{"total_tokens", num_tokens_predicted + num_prompt_tokens}}},
{"id", gen_chatcmplid()}};
if (server_verbose) {
res["__verbose"] = result;
}
if (result.contains("completion_probabilities")) {
res["completion_probabilities"] = json_value(result, "completion_probabilities", json::array());
}
return res;
}
// return value is vector as there is one case where we might need to generate two responses
static std::vector<json> format_partial_response_oaicompat(const task_result &response) {
json result = response.result_json;
if (!result.contains("model") || !result.contains("oaicompat_token_ctr")) {
return std::vector<json>({response.result_json});
}
bool first = json_value(result, "oaicompat_token_ctr", 0) == 0;
std::string modelname = json_value(result, "model", std::string(DEFAULT_OAICOMPAT_MODEL));
bool stopped_word = json_value(result, "stopped_word", false);
bool stopped_eos = json_value(result, "stopped_eos", false);
bool stopped_limit = json_value(result, "stopped_limit", false);
std::string content = json_value(result, "content", std::string(""));
std::string finish_reason;
if (stopped_word || stopped_eos) {
finish_reason = "stop";
}
if (stopped_limit) {
finish_reason = "length";
}
std::time_t t = std::time(0);
json choices;
if (!finish_reason.empty()) {
choices = json::array({json{{"finish_reason", finish_reason},
{"index", 0},
{"delta", json::object()}}});
} else {
if (first) {
if (content.empty()) {
choices = json::array({json{{"finish_reason", nullptr},
{"index", 0},
{"delta", json{{"role", "assistant"}}}}});
} else {
// We have to send this as two updates to conform to openai behavior
json initial_ret = json{{"choices", json::array({json{
{"finish_reason", nullptr},
{"index", 0},
{"delta", json{
{"role", "assistant"}
}}}})},
{"created", t},
{"id", gen_chatcmplid()},
{"model", modelname},
{"object", "chat.completion.chunk"}};
json second_ret = json{
{"choices", json::array({json{{"finish_reason", nullptr},
{"index", 0},
{"delta", json{
{"content", content}}}
}})},
{"created", t},
{"id", gen_chatcmplid()},
{"model", modelname},
{"object", "chat.completion.chunk"}};
return std::vector<json>({initial_ret, second_ret});
}
} else {
// Some idiosyncrasy in task processing logic makes several trailing calls
// with empty content, we ignore these at the calee site.
if (content.empty()) {
return std::vector<json>({json::object()});
}
choices = json::array({json{
{"finish_reason", nullptr},
{"index", 0},
{"delta",
json{
{"content", content},
}},
}});
}
}
json ret = json{{"choices", choices},
{"created", t},
{"id", gen_chatcmplid()},
{"model", modelname},
{"object", "chat.completion.chunk"}};
return std::vector<json>({ret});
}
static json format_partial_response(
llama_server_context &llama, llama_client_slot *slot, const std::string &content, const std::vector<completion_token_output> &probs
@@ -1782,8 +2171,6 @@ static json format_detokenized_response(std::string content)
{"content", content}};
}
struct token_translator
{
llama_context * ctx;
@@ -1979,7 +2366,7 @@ static void params_parse(const backend::ModelOptions* request,
// params.model_alias ??
params.model_alias = request->modelfile();
params.n_ctx = request->contextsize();
params.memory_f16 = request->f16memory();
//params.memory_f16 = request->f16memory();
params.n_threads = request->threads();
params.n_gpu_layers = request->ngpulayers();
params.n_batch = request->nbatch();
@@ -2086,7 +2473,7 @@ public:
}
grpc::Status PredictStream(grpc::ServerContext* context, const backend::PredictOptions* request, grpc::ServerWriter<backend::Reply>* writer) override {
json data = parse_options(true, request, llama);
const int task_id = llama.request_completion(data, false, false);
const int task_id = llama.request_completion(data, false, false, -1);
while (true)
{
task_result result = llama.next_result(task_id);
@@ -2122,7 +2509,7 @@ public:
grpc::Status Predict(ServerContext* context, const backend::PredictOptions* request, backend::Reply* reply) {
json data = parse_options(false, request, llama);
const int task_id = llama.request_completion(data, false, false);
const int task_id = llama.request_completion(data, false, false, -1);
std::string completion_text;
task_result result = llama.next_result(task_id);
if (!result.error && result.stop) {

View File

File diff suppressed because one or more lines are too long

View File

@@ -1,5 +1,15 @@
.PHONY: ttsbark
ttsbark:
@echo "Creating virtual environment..."
@conda env create --name ttsbark --file ttsbark.yml
@echo "Virtual environment created."
$(MAKE) -C ../common-env/transformers
.PHONY: run
run:
@echo "Running bark..."
bash run.sh
@echo "bark run."
.PHONY: test
test:
@echo "Testing bark..."
bash test.sh
@echo "bark tested."

View File

File diff suppressed because one or more lines are too long

View File

@@ -6,7 +6,7 @@
export PATH=$PATH:/opt/conda/bin
# Activate conda environment
source activate ttsbark
source activate transformers
# get the directory where the bash script is located
DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"

View File

@@ -0,0 +1,81 @@
"""
A test script to test the gRPC service
"""
import unittest
import subprocess
import time
import backend_pb2
import backend_pb2_grpc
import grpc
class TestBackendServicer(unittest.TestCase):
"""
TestBackendServicer is the class that tests the gRPC service
"""
def setUp(self):
"""
This method sets up the gRPC service by starting the server
"""
self.service = subprocess.Popen(["python3", "ttsbark.py", "--addr", "localhost:50051"])
time.sleep(10)
def tearDown(self) -> None:
"""
This method tears down the gRPC service by terminating the server
"""
self.service.terminate()
self.service.wait()
def test_server_startup(self):
"""
This method tests if the server starts up successfully
"""
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.Health(backend_pb2.HealthMessage())
self.assertEqual(response.message, b'OK')
except Exception as err:
print(err)
self.fail("Server failed to start")
finally:
self.tearDown()
def test_load_model(self):
"""
This method tests if the model is loaded successfully
"""
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.LoadModel(backend_pb2.ModelOptions(Model="v2/en_speaker_4"))
self.assertTrue(response.success)
self.assertEqual(response.message, "Model loaded successfully")
except Exception as err:
print(err)
self.fail("LoadModel service failed")
finally:
self.tearDown()
def test_tts(self):
"""
This method tests if the embeddings are generated successfully
"""
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.LoadModel(backend_pb2.ModelOptions(Model="v2/en_speaker_4"))
self.assertTrue(response.success)
tts_request = backend_pb2.TTSRequest(text="80s TV news production music hit for tonight's biggest story")
tts_response = stub.TTS(tts_request)
self.assertIsNotNone(tts_response)
except Exception as err:
print(err)
self.fail("TTS service failed")
finally:
self.tearDown()

View File

@@ -0,0 +1,11 @@
#!/bin/bash
##
## A bash script wrapper that runs the bark server with conda
# Activate conda environment
source activate transformers
# get the directory where the bash script is located
DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
python -m unittest $DIR/test.py

View File

@@ -1,32 +0,0 @@
import unittest
import subprocess
import time
import backend_pb2
import backend_pb2_grpc
import grpc
class TestBackendServicer(unittest.TestCase):
"""
TestBackendServicer is the class that tests the gRPC service
"""
def setUp(self):
self.service = subprocess.Popen(["python3", "ttsbark.py", "--addr", "localhost:50051"])
def tearDown(self) -> None:
self.service.terminate()
self.service.wait()
def test_server_startup(self):
time.sleep(2)
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.Health(backend_pb2.HealthMessage())
self.assertEqual(response.message, b'OK')
except Exception as err:
print(err)
self.fail("Server failed to start")
finally:
self.tearDown()

View File

@@ -0,0 +1,10 @@
CONDA_ENV_PATH = "transformers.yml"
ifeq ($(BUILD_TYPE), cublas)
CONDA_ENV_PATH = "transformers-nvidia.yml"
endif
.PHONY: transformers
transformers:
@echo "Installing $(CONDA_ENV_PATH)..."
bash install.sh $(CONDA_ENV_PATH)

View File

@@ -0,0 +1,15 @@
#!/bin/bash
set -ex
# Check if environment exist
conda_env_exists(){
! conda list --name "${@}" >/dev/null 2>/dev/null
}
if conda_env_exists "transformers" ; then
echo "Creating virtual environment..."
conda env create --name transformers --file $1
echo "Virtual environment created."
else
echo "Virtual environment already exists."
fi

View File

@@ -1,4 +1,4 @@
name: bark
name: transformers
channels:
- defaults
dependencies:
@@ -35,6 +35,8 @@ dependencies:
- certifi==2023.7.22
- charset-normalizer==3.3.0
- datasets==2.14.5
- sentence-transformers==2.2.2
- sentencepiece==0.1.99
- dill==0.3.7
- einops==0.7.0
- encodec==0.1.1
@@ -68,6 +70,7 @@ dependencies:
- packaging==23.2
- pandas==2.1.1
- peft==0.5.0
- git+https://github.com/bigscience-workshop/petals
- protobuf==4.24.4
- psutil==5.9.5
- pyarrow==13.0.0
@@ -93,4 +96,4 @@ dependencies:
- urllib3==1.26.17
- xxhash==3.4.1
- yarl==1.9.2
prefix: /opt/conda/envs/bark
prefix: /opt/conda/envs/transformers

View File

@@ -1,4 +1,4 @@
name: sentencetransformers
name: transformers
channels:
- defaults
dependencies:
@@ -20,58 +20,68 @@ dependencies:
- setuptools=68.0.0=py311h06a4308_0
- sqlite=3.41.2=h5eee18b_0
- tk=8.6.12=h1ccaba5_0
- tzdata=2023c=h04d1e81_0
- wheel=0.41.2=py311h06a4308_0
- xz=5.4.2=h5eee18b_0
- zlib=1.2.13=h5eee18b_0
- pip:
- accelerate==0.23.0
- aiohttp==3.8.5
- aiosignal==1.3.1
- async-timeout==4.0.3
- attrs==23.1.0
- bark==0.1.5
- boto3==1.28.61
- botocore==1.31.61
- certifi==2023.7.22
- charset-normalizer==3.3.0
- click==8.1.7
- datasets==2.14.5
- sentence-transformers==2.2.2
- sentencepiece==0.1.99
- dill==0.3.7
- einops==0.7.0
- encodec==0.1.1
- filelock==3.12.4
- fsspec==2023.9.2
- frozenlist==1.4.0
- fsspec==2023.6.0
- funcy==2.0
- grpcio==1.59.0
- huggingface-hub==0.17.3
- huggingface-hub==0.16.4
- idna==3.4
- install==1.3.5
- jinja2==3.1.2
- joblib==1.3.2
- jmespath==1.0.1
- markupsafe==2.1.3
- mpmath==1.3.0
- multidict==6.0.4
- multiprocess==0.70.15
- networkx==3.1
- nltk==3.8.1
- numpy==1.26.0
- nvidia-cublas-cu12==12.1.3.1
- nvidia-cuda-cupti-cu12==12.1.105
- nvidia-cuda-nvrtc-cu12==12.1.105
- nvidia-cuda-runtime-cu12==12.1.105
- nvidia-cudnn-cu12==8.9.2.26
- nvidia-cufft-cu12==11.0.2.54
- nvidia-curand-cu12==10.3.2.106
- nvidia-cusolver-cu12==11.4.5.107
- nvidia-cusparse-cu12==12.1.0.106
- nvidia-nccl-cu12==2.18.1
- nvidia-nvjitlink-cu12==12.2.140
- nvidia-nvtx-cu12==12.1.105
- packaging==23.2
- pillow==10.0.1
- pandas==2.1.1
- peft==0.5.0
- git+https://github.com/bigscience-workshop/petals
- protobuf==4.24.4
- psutil==5.9.5
- pyarrow==13.0.0
- python-dateutil==2.8.2
- pytz==2023.3.post1
- pyyaml==6.0.1
- regex==2023.10.3
- requests==2.31.0
- safetensors==0.4.0
- scikit-learn==1.3.1
- rouge==1.0.1
- s3transfer==0.7.0
- safetensors==0.3.3
- scipy==1.11.3
- sentence-transformers==2.2.2
- sentencepiece==0.1.99
- six==1.16.0
- sympy==1.12
- threadpoolctl==3.2.0
- tokenizers==0.14.1
- tokenizers==0.14.0
- torch==2.1.0
- torchvision==0.16.0
- torchaudio==2.1.0
- tqdm==4.66.1
- transformers==4.34.0
- triton==2.1.0
- typing-extensions==4.8.0
- urllib3==2.0.6
prefix: /opt/conda/envs/sentencetransformers
- tzdata==2023.3
- urllib3==1.26.17
- xxhash==3.4.1
- yarl==1.9.2
prefix: /opt/conda/envs/transformers

View File

@@ -9,3 +9,6 @@ run:
@echo "Running diffusers..."
bash run.sh
@echo "Diffusers run."
test:
bash test.sh

View File

@@ -18,9 +18,9 @@ import backend_pb2_grpc
import grpc
from diffusers import StableDiffusionXLPipeline, StableDiffusionDepth2ImgPipeline, DPMSolverMultistepScheduler, StableDiffusionPipeline, DiffusionPipeline, EulerAncestralDiscreteScheduler
from diffusers import StableDiffusionImg2ImgPipeline
from diffusers import StableDiffusionImg2ImgPipeline, AutoPipelineForText2Image, ControlNetModel, StableVideoDiffusionPipeline
from diffusers.pipelines.stable_diffusion import safety_checker
from diffusers.utils import load_image,export_to_video
from compel import Compel
from transformers import CLIPTextModel
@@ -30,6 +30,11 @@ from safetensors.torch import load_file
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
COMPEL=os.environ.get("COMPEL", "1") == "1"
CLIPSKIP=os.environ.get("CLIPSKIP", "1") == "1"
SAFETENSORS=os.environ.get("SAFETENSORS", "1") == "1"
CHUNK_SIZE=os.environ.get("CHUNK_SIZE", "8")
FPS=os.environ.get("FPS", "7")
DISABLE_CPU_OFFLOAD=os.environ.get("DISABLE_CPU_OFFLOAD", "0") == "1"
FRAMES=os.environ.get("FRAMES", "64")
# If MAX_WORKERS are specified in the environment use it, otherwise default to 1
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1'))
@@ -135,8 +140,11 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
print(f"Loading model {request.Model}...", file=sys.stderr)
print(f"Request {request}", file=sys.stderr)
torchType = torch.float32
variant = None
if request.F16Memory:
torchType = torch.float16
variant="fp16"
local = False
modelFile = request.Model
@@ -159,15 +167,10 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
modelFile = request.ModelFile
fromSingleFile = request.Model.startswith("http") or request.Model.startswith("/") or local
if request.IMG2IMG and request.PipelineType == "":
request.PipelineType == "StableDiffusionImg2ImgPipeline"
if request.PipelineType == "":
request.PipelineType == "StableDiffusionPipeline"
self.img2vid=False
self.txt2vid=False
## img2img
if request.PipelineType == "StableDiffusionImg2ImgPipeline":
if (request.PipelineType == "StableDiffusionImg2ImgPipeline") or (request.IMG2IMG and request.PipelineType == ""):
if fromSingleFile:
self.pipe = StableDiffusionImg2ImgPipeline.from_single_file(modelFile,
torch_dtype=torchType,
@@ -177,12 +180,26 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
torch_dtype=torchType,
guidance_scale=cfg_scale)
if request.PipelineType == "StableDiffusionDepth2ImgPipeline":
elif request.PipelineType == "StableDiffusionDepth2ImgPipeline":
self.pipe = StableDiffusionDepth2ImgPipeline.from_pretrained(request.Model,
torch_dtype=torchType,
guidance_scale=cfg_scale)
## img2vid
elif request.PipelineType == "StableVideoDiffusionPipeline":
self.img2vid=True
self.pipe = StableVideoDiffusionPipeline.from_pretrained(
request.Model, torch_dtype=torchType, variant=variant
)
if not DISABLE_CPU_OFFLOAD:
self.pipe.enable_model_cpu_offload()
## text2img
if request.PipelineType == "StableDiffusionPipeline":
elif request.PipelineType == "AutoPipelineForText2Image" or request.PipelineType == "":
self.pipe = AutoPipelineForText2Image.from_pretrained(request.Model,
torch_dtype=torchType,
use_safetensors=SAFETENSORS,
variant=variant,
guidance_scale=cfg_scale)
elif request.PipelineType == "StableDiffusionPipeline":
if fromSingleFile:
self.pipe = StableDiffusionPipeline.from_single_file(modelFile,
torch_dtype=torchType,
@@ -191,13 +208,16 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
self.pipe = StableDiffusionPipeline.from_pretrained(request.Model,
torch_dtype=torchType,
guidance_scale=cfg_scale)
if request.PipelineType == "DiffusionPipeline":
elif request.PipelineType == "DiffusionPipeline":
self.pipe = DiffusionPipeline.from_pretrained(request.Model,
torch_dtype=torchType,
guidance_scale=cfg_scale)
if request.PipelineType == "StableDiffusionXLPipeline":
elif request.PipelineType == "VideoDiffusionPipeline":
self.txt2vid=True
self.pipe = DiffusionPipeline.from_pretrained(request.Model,
torch_dtype=torchType,
guidance_scale=cfg_scale)
elif request.PipelineType == "StableDiffusionXLPipeline":
if fromSingleFile:
self.pipe = StableDiffusionXLPipeline.from_single_file(modelFile,
torch_dtype=torchType, use_safetensors=True,
@@ -207,21 +227,35 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
request.Model,
torch_dtype=torchType,
use_safetensors=True,
# variant="fp16"
variant=variant,
guidance_scale=cfg_scale)
# https://github.com/huggingface/diffusers/issues/4446
# do not use text_encoder in the constructor since then
# https://github.com/huggingface/diffusers/issues/3212#issuecomment-1521841481
if CLIPSKIP and request.CLIPSkip != 0:
text_encoder = CLIPTextModel.from_pretrained(clipmodel, num_hidden_layers=request.CLIPSkip, subfolder=clipsubfolder, torch_dtype=torchType)
self.pipe.text_encoder=text_encoder
self.clip_skip = request.CLIPSkip
else:
self.clip_skip = 0
# torch_dtype needs to be customized. float16 for GPU, float32 for CPU
# TODO: this needs to be customized
if request.SchedulerType != "":
self.pipe.scheduler = get_scheduler(request.SchedulerType, self.pipe.scheduler.config)
self.compel = Compel(tokenizer=self.pipe.tokenizer, text_encoder=self.pipe.text_encoder)
if not self.img2vid:
self.compel = Compel(tokenizer=self.pipe.tokenizer, text_encoder=self.pipe.text_encoder)
if request.ControlNet:
self.controlnet = ControlNetModel.from_pretrained(
request.ControlNet, torch_dtype=torchType, variant=variant
)
self.pipe.controlnet = self.controlnet
else:
self.controlnet = None
if request.CUDA:
self.pipe.to('cuda')
if self.controlnet:
self.controlnet.to('cuda')
# Assume directory from request.ModelFile.
# Only if request.LoraAdapter it's not an absolute path
if request.LoraAdapter and request.ModelFile != "" and not os.path.isabs(request.LoraAdapter) and request.LoraAdapter:
@@ -303,17 +337,28 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
prompt = request.positive_prompt
steps = 1
if request.step != 0:
steps = request.step
# create a dictionary of values for the parameters
options = {
"negative_prompt": request.negative_prompt,
"width": request.width,
"height": request.height,
"num_inference_steps": request.step,
"num_inference_steps": steps,
}
if request.src != "":
if request.src != "" and not self.controlnet and not self.img2vid:
image = Image.open(request.src)
options["image"] = image
elif self.controlnet and request.src:
pose_image = load_image(request.src)
options["image"] = pose_image
if CLIPSKIP and self.clip_skip != 0:
options["clip_skip"]=self.clip_skip
# Get the keys that we will build the args for our pipe for
keys = options.keys()
@@ -333,6 +378,21 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
request.seed
)
if self.img2vid:
# Load the conditioning image
image = load_image(request.src)
image = image.resize((1024, 576))
generator = torch.manual_seed(request.seed)
frames = self.pipe(image, decode_chunk_size=CHUNK_SIZE, generator=generator).frames[0]
export_to_video(frames, request.dst, fps=FPS)
return backend_pb2.Result(message="Media generated successfully", success=True)
if self.txt2vid:
video_frames = self.pipe(prompt, num_inference_steps=steps, num_frames=int(FRAMES)).frames
export_to_video(video_frames, request.dst)
return backend_pb2.Result(message="Media generated successfully", success=True)
image = {}
if COMPEL:
conditioning = self.compel.build_conditioning_tensor(prompt)
@@ -351,7 +411,7 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
# save the result
image.save(request.dst)
return backend_pb2.Result(message="Model loaded successfully", success=True)
return backend_pb2.Result(message="Media generated", success=True)
def serve(address):
server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS))

View File

File diff suppressed because one or more lines are too long

View File

@@ -25,15 +25,15 @@ dependencies:
- xz=5.4.2=h5eee18b_0
- zlib=1.2.13=h5eee18b_0
- pip:
- accelerate==0.23.0
- accelerate>=0.11.0
- certifi==2023.7.22
- charset-normalizer==3.3.0
- compel==2.0.2
- diffusers==0.21.4
- diffusers==0.24.0
- filelock==3.12.4
- fsspec==2023.9.2
- grpcio==1.59.0
- huggingface-hub==0.17.3
- huggingface-hub>=0.19.4
- idna==3.4
- importlib-metadata==6.8.0
- jinja2==3.1.2
@@ -63,12 +63,11 @@ dependencies:
- requests==2.31.0
- safetensors==0.4.0
- sympy==1.12
- tokenizers==0.14.1
- torch==2.1.0
- tqdm==4.66.1
- transformers==4.34.0
- transformers>=4.25.1
- triton==2.1.0
- typing-extensions==4.8.0
- urllib3==2.0.6
- zipp==3.17.0
prefix: /opt/conda/envs/diffusers
prefix: /opt/conda/envs/diffusers

View File

@@ -0,0 +1,84 @@
"""
A test script to test the gRPC service
"""
import unittest
import subprocess
import time
import backend_pb2
import backend_pb2_grpc
import grpc
class TestBackendServicer(unittest.TestCase):
"""
TestBackendServicer is the class that tests the gRPC service
"""
def setUp(self):
"""
This method sets up the gRPC service by starting the server
"""
self.service = subprocess.Popen(["python3", "backend_diffusers.py", "--addr", "localhost:50051"])
def tearDown(self) -> None:
"""
This method tears down the gRPC service by terminating the server
"""
self.service.kill()
self.service.wait()
def test_server_startup(self):
"""
This method tests if the server starts up successfully
"""
time.sleep(10)
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.Health(backend_pb2.HealthMessage())
self.assertEqual(response.message, b'OK')
except Exception as err:
print(err)
self.fail("Server failed to start")
finally:
self.tearDown()
def test_load_model(self):
"""
This method tests if the model is loaded successfully
"""
time.sleep(10)
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.LoadModel(backend_pb2.ModelOptions(Model="runwayml/stable-diffusion-v1-5"))
self.assertTrue(response.success)
self.assertEqual(response.message, "Model loaded successfully")
except Exception as err:
print(err)
self.fail("LoadModel service failed")
finally:
self.tearDown()
def test(self):
"""
This method tests if the backend can generate images
"""
time.sleep(10)
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.LoadModel(backend_pb2.ModelOptions(Model="runwayml/stable-diffusion-v1-5"))
print(response.message)
self.assertTrue(response.success)
image_req = backend_pb2.GenerateImageRequest(positive_prompt="cat", width=16,height=16, dst="test.jpg")
re = stub.GenerateImage(image_req)
self.assertTrue(re.success)
except Exception as err:
print(err)
self.fail("Image gen service failed")
finally:
self.tearDown()

View File

@@ -0,0 +1,14 @@
#!/bin/bash
##
## A bash script wrapper that runs the diffusers server with conda
export PATH=$PATH:/opt/conda/bin
# Activate conda environment
source activate diffusers
# get the directory where the bash script is located
DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
python -m unittest $DIR/test.py

View File

@@ -3,6 +3,7 @@ exllama:
@echo "Creating virtual environment..."
@conda env create --name exllama --file exllama.yml
@echo "Virtual environment created."
bash install.sh
.PHONY: run
run:

View File

File diff suppressed because one or more lines are too long

View File

@@ -13,9 +13,10 @@ from pathlib import Path
import torch
import torch.nn.functional as F
from torch import version as torch_version
from exllama.generator import ExLlamaGenerator
from exllama.model import ExLlama, ExLlamaCache, ExLlamaConfig
from exllama.tokenizer import ExLlamaTokenizer
from tokenizer import ExLlamaTokenizer
from generator import ExLlamaGenerator
from model import ExLlama, ExLlamaCache, ExLlamaConfig
_ONE_DAY_IN_SECONDS = 60 * 60 * 24

View File

@@ -33,6 +33,7 @@ dependencies:
- mpmath==1.3.0
- networkx==3.1
- ninja==1.11.1
- protobuf==4.24.4
- nvidia-cublas-cu12==12.1.3.1
- nvidia-cuda-cupti-cu12==12.1.105
- nvidia-cuda-nvrtc-cu12==12.1.105
@@ -45,11 +46,11 @@ dependencies:
- nvidia-nccl-cu12==2.18.1
- nvidia-nvjitlink-cu12==12.2.140
- nvidia-nvtx-cu12==12.1.105
- protobuf==4.24.4
- safetensors==0.3.2
- sentencepiece==0.1.99
- sympy==1.12
- torch==2.1.0
- triton==2.1.0
- typing-extensions==4.8.0
- numpy
prefix: /opt/conda/envs/exllama

View File

@@ -0,0 +1,15 @@
#!/bin/bash
##
## A bash script installs the required dependencies of VALL-E-X and prepares the environment
export PATH=$PATH:/opt/conda/bin
# Activate conda environment
source activate exllama
echo $CONDA_PREFIX
git clone https://github.com/turboderp/exllama $CONDA_PREFIX/exllama && pushd $CONDA_PREFIX/exllama && pip install -r requirements.txt && popd
cp -rfv $CONDA_PREFIX/exllama/* ./

View File

@@ -0,0 +1,12 @@
.PHONY: exllama2
exllama2:
@echo "Creating virtual environment..."
@conda env create --name exllama2 --file exllama2.yml
@echo "Virtual environment created."
bash install.sh
.PHONY: run
run:
@echo "Running exllama2..."
bash run.sh
@echo "exllama2 run."

View File

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,363 @@
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT!
"""Client and server classes corresponding to protobuf-defined services."""
import grpc
import backend_pb2 as backend__pb2
class BackendStub(object):
"""Missing associated documentation comment in .proto file."""
def __init__(self, channel):
"""Constructor.
Args:
channel: A grpc.Channel.
"""
self.Health = channel.unary_unary(
'/backend.Backend/Health',
request_serializer=backend__pb2.HealthMessage.SerializeToString,
response_deserializer=backend__pb2.Reply.FromString,
)
self.Predict = channel.unary_unary(
'/backend.Backend/Predict',
request_serializer=backend__pb2.PredictOptions.SerializeToString,
response_deserializer=backend__pb2.Reply.FromString,
)
self.LoadModel = channel.unary_unary(
'/backend.Backend/LoadModel',
request_serializer=backend__pb2.ModelOptions.SerializeToString,
response_deserializer=backend__pb2.Result.FromString,
)
self.PredictStream = channel.unary_stream(
'/backend.Backend/PredictStream',
request_serializer=backend__pb2.PredictOptions.SerializeToString,
response_deserializer=backend__pb2.Reply.FromString,
)
self.Embedding = channel.unary_unary(
'/backend.Backend/Embedding',
request_serializer=backend__pb2.PredictOptions.SerializeToString,
response_deserializer=backend__pb2.EmbeddingResult.FromString,
)
self.GenerateImage = channel.unary_unary(
'/backend.Backend/GenerateImage',
request_serializer=backend__pb2.GenerateImageRequest.SerializeToString,
response_deserializer=backend__pb2.Result.FromString,
)
self.AudioTranscription = channel.unary_unary(
'/backend.Backend/AudioTranscription',
request_serializer=backend__pb2.TranscriptRequest.SerializeToString,
response_deserializer=backend__pb2.TranscriptResult.FromString,
)
self.TTS = channel.unary_unary(
'/backend.Backend/TTS',
request_serializer=backend__pb2.TTSRequest.SerializeToString,
response_deserializer=backend__pb2.Result.FromString,
)
self.TokenizeString = channel.unary_unary(
'/backend.Backend/TokenizeString',
request_serializer=backend__pb2.PredictOptions.SerializeToString,
response_deserializer=backend__pb2.TokenizationResponse.FromString,
)
self.Status = channel.unary_unary(
'/backend.Backend/Status',
request_serializer=backend__pb2.HealthMessage.SerializeToString,
response_deserializer=backend__pb2.StatusResponse.FromString,
)
class BackendServicer(object):
"""Missing associated documentation comment in .proto file."""
def Health(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def Predict(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def LoadModel(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def PredictStream(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def Embedding(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def GenerateImage(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def AudioTranscription(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def TTS(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def TokenizeString(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def Status(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def add_BackendServicer_to_server(servicer, server):
rpc_method_handlers = {
'Health': grpc.unary_unary_rpc_method_handler(
servicer.Health,
request_deserializer=backend__pb2.HealthMessage.FromString,
response_serializer=backend__pb2.Reply.SerializeToString,
),
'Predict': grpc.unary_unary_rpc_method_handler(
servicer.Predict,
request_deserializer=backend__pb2.PredictOptions.FromString,
response_serializer=backend__pb2.Reply.SerializeToString,
),
'LoadModel': grpc.unary_unary_rpc_method_handler(
servicer.LoadModel,
request_deserializer=backend__pb2.ModelOptions.FromString,
response_serializer=backend__pb2.Result.SerializeToString,
),
'PredictStream': grpc.unary_stream_rpc_method_handler(
servicer.PredictStream,
request_deserializer=backend__pb2.PredictOptions.FromString,
response_serializer=backend__pb2.Reply.SerializeToString,
),
'Embedding': grpc.unary_unary_rpc_method_handler(
servicer.Embedding,
request_deserializer=backend__pb2.PredictOptions.FromString,
response_serializer=backend__pb2.EmbeddingResult.SerializeToString,
),
'GenerateImage': grpc.unary_unary_rpc_method_handler(
servicer.GenerateImage,
request_deserializer=backend__pb2.GenerateImageRequest.FromString,
response_serializer=backend__pb2.Result.SerializeToString,
),
'AudioTranscription': grpc.unary_unary_rpc_method_handler(
servicer.AudioTranscription,
request_deserializer=backend__pb2.TranscriptRequest.FromString,
response_serializer=backend__pb2.TranscriptResult.SerializeToString,
),
'TTS': grpc.unary_unary_rpc_method_handler(
servicer.TTS,
request_deserializer=backend__pb2.TTSRequest.FromString,
response_serializer=backend__pb2.Result.SerializeToString,
),
'TokenizeString': grpc.unary_unary_rpc_method_handler(
servicer.TokenizeString,
request_deserializer=backend__pb2.PredictOptions.FromString,
response_serializer=backend__pb2.TokenizationResponse.SerializeToString,
),
'Status': grpc.unary_unary_rpc_method_handler(
servicer.Status,
request_deserializer=backend__pb2.HealthMessage.FromString,
response_serializer=backend__pb2.StatusResponse.SerializeToString,
),
}
generic_handler = grpc.method_handlers_generic_handler(
'backend.Backend', rpc_method_handlers)
server.add_generic_rpc_handlers((generic_handler,))
# This class is part of an EXPERIMENTAL API.
class Backend(object):
"""Missing associated documentation comment in .proto file."""
@staticmethod
def Health(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Health',
backend__pb2.HealthMessage.SerializeToString,
backend__pb2.Reply.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def Predict(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Predict',
backend__pb2.PredictOptions.SerializeToString,
backend__pb2.Reply.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def LoadModel(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/LoadModel',
backend__pb2.ModelOptions.SerializeToString,
backend__pb2.Result.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def PredictStream(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_stream(request, target, '/backend.Backend/PredictStream',
backend__pb2.PredictOptions.SerializeToString,
backend__pb2.Reply.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def Embedding(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Embedding',
backend__pb2.PredictOptions.SerializeToString,
backend__pb2.EmbeddingResult.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def GenerateImage(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/GenerateImage',
backend__pb2.GenerateImageRequest.SerializeToString,
backend__pb2.Result.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def AudioTranscription(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/AudioTranscription',
backend__pb2.TranscriptRequest.SerializeToString,
backend__pb2.TranscriptResult.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def TTS(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/TTS',
backend__pb2.TTSRequest.SerializeToString,
backend__pb2.Result.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def TokenizeString(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/TokenizeString',
backend__pb2.PredictOptions.SerializeToString,
backend__pb2.TokenizationResponse.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def Status(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Status',
backend__pb2.HealthMessage.SerializeToString,
backend__pb2.StatusResponse.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)

View File

@@ -1,4 +1,4 @@
name: transformers
name: exllama2
channels:
- defaults
dependencies:
@@ -25,22 +25,13 @@ dependencies:
- xz=5.4.2=h5eee18b_0
- zlib=1.2.13=h5eee18b_0
- pip:
- certifi==2023.7.22
- charset-normalizer==3.3.0
- click==8.1.7
- filelock==3.12.4
- fsspec==2023.9.2
- grpcio==1.59.0
- huggingface-hub==0.17.3
- idna==3.4
- install==1.3.5
- jinja2==3.1.2
- joblib==1.3.2
- markupsafe==2.1.3
- mpmath==1.3.0
- networkx==3.1
- nltk==3.8.1
- numpy==1.26.0
- protobuf==4.24.4
- nvidia-cublas-cu12==12.1.3.1
- nvidia-cuda-cupti-cu12==12.1.105
- nvidia-cuda-nvrtc-cu12==12.1.105
@@ -53,25 +44,14 @@ dependencies:
- nvidia-nccl-cu12==2.18.1
- nvidia-nvjitlink-cu12==12.2.140
- nvidia-nvtx-cu12==12.1.105
- packaging==23.2
- pillow==10.0.1
- protobuf==4.24.4
- pyyaml==6.0.1
- regex==2023.10.3
- requests==2.31.0
- safetensors==0.4.0
- scikit-learn==1.3.1
- scipy==1.11.3
- sentence-transformers==2.2.2
- sentencepiece==0.1.99
- sympy==1.12
- threadpoolctl==3.2.0
- tokenizers==0.14.1
- torch==2.1.0
- torchvision==0.16.0
- tqdm==4.66.1
- transformers==4.34.0
- triton==2.1.0
- typing-extensions==4.8.0
- urllib3==2.0.6
prefix: /opt/conda/envs/transformers
- pandas
- numpy
- ninja
- fastparquet
- torch>=2.1.0
- safetensors>=0.3.2
- sentencepiece>=0.1.97
- pygments
- websockets
- regex
prefix: /opt/conda/envs/exllama2

View File

@@ -0,0 +1,134 @@
#!/usr/bin/env python3
import grpc
from concurrent import futures
import time
import backend_pb2
import backend_pb2_grpc
import argparse
import signal
import sys
import os, glob
from pathlib import Path
import torch
import torch.nn.functional as F
from torch import version as torch_version
from exllamav2.generator import (
ExLlamaV2BaseGenerator,
ExLlamaV2Sampler
)
from exllamav2 import(
ExLlamaV2,
ExLlamaV2Config,
ExLlamaV2Cache,
ExLlamaV2Cache_8bit,
ExLlamaV2Tokenizer,
model_init,
)
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
# If MAX_WORKERS are specified in the environment use it, otherwise default to 1
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1'))
# Implement the BackendServicer class with the service methods
class BackendServicer(backend_pb2_grpc.BackendServicer):
def Health(self, request, context):
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
def LoadModel(self, request, context):
try:
model_directory = request.ModelFile
config = ExLlamaV2Config()
config.model_dir = model_directory
config.prepare()
model = ExLlamaV2(config)
cache = ExLlamaV2Cache(model, lazy = True)
model.load_autosplit(cache)
tokenizer = ExLlamaV2Tokenizer(config)
# Initialize generator
generator = ExLlamaV2BaseGenerator(model, cache, tokenizer)
self.generator= generator
generator.warmup()
self.model = model
self.tokenizer = tokenizer
self.cache = cache
except Exception as err:
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
return backend_pb2.Result(message="Model loaded successfully", success=True)
def Predict(self, request, context):
penalty = 1.15
if request.Penalty != 0.0:
penalty = request.Penalty
settings = ExLlamaV2Sampler.Settings()
settings.temperature = request.Temperature
settings.top_k = request.TopK
settings.top_p = request.TopP
settings.token_repetition_penalty = penalty
settings.disallow_tokens(self.tokenizer, [self.tokenizer.eos_token_id])
tokens = 512
if request.Tokens != 0:
tokens = request.Tokens
output = self.generator.generate_simple(request.Prompt, settings, tokens, seed = self.seed)
# Remove prompt from response if present
if request.Prompt in output:
output = output.replace(request.Prompt, "")
return backend_pb2.Result(message=bytes(t, encoding='utf-8'))
def PredictStream(self, request, context):
# Implement PredictStream RPC
#for reply in some_data_generator():
# yield reply
# Not implemented yet
return self.Predict(request, context)
def serve(address):
server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS))
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
server.add_insecure_port(address)
server.start()
print("Server started. Listening on: " + address, file=sys.stderr)
# Define the signal handler function
def signal_handler(sig, frame):
print("Received termination signal. Shutting down...")
server.stop(0)
sys.exit(0)
# Set the signal handlers for SIGINT and SIGTERM
signal.signal(signal.SIGINT, signal_handler)
signal.signal(signal.SIGTERM, signal_handler)
try:
while True:
time.sleep(_ONE_DAY_IN_SECONDS)
except KeyboardInterrupt:
server.stop(0)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run the gRPC server.")
parser.add_argument(
"--addr", default="localhost:50051", help="The address to bind the server to."
)
args = parser.parse_args()
serve(args.addr)

View File

@@ -0,0 +1,14 @@
#!/bin/bash
##
## A bash script installs the required dependencies of VALL-E-X and prepares the environment
export PATH=$PATH:/opt/conda/bin
# Activate conda environment
source activate exllama2
echo $CONDA_PREFIX
git clone https://github.com/turboderp/exllamav2 $CONDA_PREFIX/exllamav2 && pushd $CONDA_PREFIX/exllamav2 && pip install -r requirements.txt && popd
cp -rfv $CONDA_PREFIX/exllamav2/* ./

14
backend/python/exllama2/run.sh Executable file
View File

@@ -0,0 +1,14 @@
#!/bin/bash
##
## A bash script wrapper that runs the exllama server with conda
export PATH=$PATH:/opt/conda/bin
# Activate conda environment
source activate exllama2
# get the directory where the bash script is located
DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
python $DIR/exllama2_backend.py $@

View File

@@ -1,11 +1,15 @@
.PHONY: petals
petals:
@echo "Creating virtual environment..."
@conda env create --name petals --file petals.yml
@echo "Virtual environment created."
$(MAKE) -C ../common-env/transformers
.PHONY: run
run:
@echo "Running petals..."
bash run.sh
@echo "petals run."
.PHONY: test
test:
@echo "Testing petals..."
bash test.sh
@echo "petals tested."

View File

File diff suppressed because one or more lines are too long

View File

@@ -15,7 +15,7 @@ dependencies:
# - ncurses=6.4=h6a678d5_0
# - openssl=3.0.11=h7f8727e_2
# - pip=23.2.1=py311h06a4308_0
# - python=3.11.5=h955ad1f_0
- python=3.11.5=h955ad1f_0
# - readline=8.2=h5eee18b_0
# - setuptools=68.0.0=py311h06a4308_0
# - sqlite=3.41.2=h5eee18b_0
@@ -25,5 +25,6 @@ dependencies:
# - xz=5.4.2=h5eee18b_0
# - zlib=1.2.13=h5eee18b_0
- pip:
- torch==2.1.0
- git+https://github.com/bigscience-workshop/petals
prefix: /opt/conda/envs/petals

View File

@@ -9,10 +9,10 @@ export PATH=$PATH:/opt/conda/bin
# if source is available use it, or use conda
#
if [ -f /opt/conda/bin/activate ]; then
source activate petals
source activate transformers
else
eval "$(conda shell.bash hook)"
conda activate petals
conda activate transformers
fi
# get the directory where the bash script is located

View File

@@ -0,0 +1,11 @@
#!/bin/bash
##
## A bash script wrapper that runs the transformers server with conda
# Activate conda environment
source activate transformers
# get the directory where the bash script is located
DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
python -m unittest $DIR/test_petals.py

View File

@@ -0,0 +1,58 @@
import unittest
import subprocess
import time
import backend_pb2
import backend_pb2_grpc
import grpc
import unittest
import subprocess
import time
import grpc
import backend_pb2_grpc
import backend_pb2
class TestBackendServicer(unittest.TestCase):
"""
TestBackendServicer is the class that tests the gRPC service.
This class contains methods to test the startup and shutdown of the gRPC service.
"""
def setUp(self):
self.service = subprocess.Popen(["python", "backend_petals.py", "--addr", "localhost:50051"])
time.sleep(10)
def tearDown(self) -> None:
self.service.terminate()
self.service.wait()
def test_server_startup(self):
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.Health(backend_pb2.HealthMessage())
self.assertEqual(response.message, b'OK')
except Exception as err:
print(err)
self.fail("Server failed to start")
finally:
self.tearDown()
def test_load_model(self):
"""
This method tests if the model is loaded successfully
"""
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.LoadModel(backend_pb2.ModelOptions(Model="bigscience/bloom-560m"))
print(response)
self.assertTrue(response.success)
self.assertEqual(response.message, "Model loaded successfully")
except Exception as err:
print(err)
self.fail("LoadModel service failed")
finally:
self.tearDown()

View File

@@ -1,8 +1,7 @@
.PHONY: sentencetransformers
sentencetransformers:
@echo "Creating virtual environment..."
@conda env create --name sentencetransformers --file sentencetransformers.yml
@echo "Virtual environment created."
$(MAKE) -C ../common-env/transformers
.PHONY: run
run:

View File

File diff suppressed because one or more lines are too long

View File

@@ -6,7 +6,7 @@
export PATH=$PATH:/opt/conda/bin
# Activate conda environment
source activate sentencetransformers
source activate transformers
# get the directory where the bash script is located
DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"

View File

@@ -3,7 +3,7 @@
## A bash script wrapper that runs the sentencetransformers server with conda
# Activate conda environment
source activate sentencetransformers
source activate transformers
# get the directory where the bash script is located
DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"

View File

@@ -19,19 +19,19 @@ class TestBackendServicer(unittest.TestCase):
This method sets up the gRPC service by starting the server
"""
self.service = subprocess.Popen(["python3", "sentencetransformers.py", "--addr", "localhost:50051"])
time.sleep(10)
def tearDown(self) -> None:
"""
This method tears down the gRPC service by terminating the server
"""
self.service.terminate()
self.service.kill()
self.service.wait()
def test_server_startup(self):
"""
This method tests if the server starts up successfully
"""
time.sleep(2)
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:

View File

@@ -0,0 +1,16 @@
.PHONY: transformers-musicgen
transformers-musicgen:
$(MAKE) -C ../common-env/transformers
.PHONY: run
run:
@echo "Running transformers..."
bash run.sh
@echo "transformers run."
.PHONY: test
test:
@echo "Testing transformers..."
bash test.sh
@echo "transformers tested."

View File

@@ -0,0 +1,5 @@
# Creating a separate environment for the transformers project
```
make transformers-musicgen
```

View File

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,363 @@
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT!
"""Client and server classes corresponding to protobuf-defined services."""
import grpc
import backend_pb2 as backend__pb2
class BackendStub(object):
"""Missing associated documentation comment in .proto file."""
def __init__(self, channel):
"""Constructor.
Args:
channel: A grpc.Channel.
"""
self.Health = channel.unary_unary(
'/backend.Backend/Health',
request_serializer=backend__pb2.HealthMessage.SerializeToString,
response_deserializer=backend__pb2.Reply.FromString,
)
self.Predict = channel.unary_unary(
'/backend.Backend/Predict',
request_serializer=backend__pb2.PredictOptions.SerializeToString,
response_deserializer=backend__pb2.Reply.FromString,
)
self.LoadModel = channel.unary_unary(
'/backend.Backend/LoadModel',
request_serializer=backend__pb2.ModelOptions.SerializeToString,
response_deserializer=backend__pb2.Result.FromString,
)
self.PredictStream = channel.unary_stream(
'/backend.Backend/PredictStream',
request_serializer=backend__pb2.PredictOptions.SerializeToString,
response_deserializer=backend__pb2.Reply.FromString,
)
self.Embedding = channel.unary_unary(
'/backend.Backend/Embedding',
request_serializer=backend__pb2.PredictOptions.SerializeToString,
response_deserializer=backend__pb2.EmbeddingResult.FromString,
)
self.GenerateImage = channel.unary_unary(
'/backend.Backend/GenerateImage',
request_serializer=backend__pb2.GenerateImageRequest.SerializeToString,
response_deserializer=backend__pb2.Result.FromString,
)
self.AudioTranscription = channel.unary_unary(
'/backend.Backend/AudioTranscription',
request_serializer=backend__pb2.TranscriptRequest.SerializeToString,
response_deserializer=backend__pb2.TranscriptResult.FromString,
)
self.TTS = channel.unary_unary(
'/backend.Backend/TTS',
request_serializer=backend__pb2.TTSRequest.SerializeToString,
response_deserializer=backend__pb2.Result.FromString,
)
self.TokenizeString = channel.unary_unary(
'/backend.Backend/TokenizeString',
request_serializer=backend__pb2.PredictOptions.SerializeToString,
response_deserializer=backend__pb2.TokenizationResponse.FromString,
)
self.Status = channel.unary_unary(
'/backend.Backend/Status',
request_serializer=backend__pb2.HealthMessage.SerializeToString,
response_deserializer=backend__pb2.StatusResponse.FromString,
)
class BackendServicer(object):
"""Missing associated documentation comment in .proto file."""
def Health(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def Predict(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def LoadModel(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def PredictStream(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def Embedding(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def GenerateImage(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def AudioTranscription(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def TTS(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def TokenizeString(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def Status(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def add_BackendServicer_to_server(servicer, server):
rpc_method_handlers = {
'Health': grpc.unary_unary_rpc_method_handler(
servicer.Health,
request_deserializer=backend__pb2.HealthMessage.FromString,
response_serializer=backend__pb2.Reply.SerializeToString,
),
'Predict': grpc.unary_unary_rpc_method_handler(
servicer.Predict,
request_deserializer=backend__pb2.PredictOptions.FromString,
response_serializer=backend__pb2.Reply.SerializeToString,
),
'LoadModel': grpc.unary_unary_rpc_method_handler(
servicer.LoadModel,
request_deserializer=backend__pb2.ModelOptions.FromString,
response_serializer=backend__pb2.Result.SerializeToString,
),
'PredictStream': grpc.unary_stream_rpc_method_handler(
servicer.PredictStream,
request_deserializer=backend__pb2.PredictOptions.FromString,
response_serializer=backend__pb2.Reply.SerializeToString,
),
'Embedding': grpc.unary_unary_rpc_method_handler(
servicer.Embedding,
request_deserializer=backend__pb2.PredictOptions.FromString,
response_serializer=backend__pb2.EmbeddingResult.SerializeToString,
),
'GenerateImage': grpc.unary_unary_rpc_method_handler(
servicer.GenerateImage,
request_deserializer=backend__pb2.GenerateImageRequest.FromString,
response_serializer=backend__pb2.Result.SerializeToString,
),
'AudioTranscription': grpc.unary_unary_rpc_method_handler(
servicer.AudioTranscription,
request_deserializer=backend__pb2.TranscriptRequest.FromString,
response_serializer=backend__pb2.TranscriptResult.SerializeToString,
),
'TTS': grpc.unary_unary_rpc_method_handler(
servicer.TTS,
request_deserializer=backend__pb2.TTSRequest.FromString,
response_serializer=backend__pb2.Result.SerializeToString,
),
'TokenizeString': grpc.unary_unary_rpc_method_handler(
servicer.TokenizeString,
request_deserializer=backend__pb2.PredictOptions.FromString,
response_serializer=backend__pb2.TokenizationResponse.SerializeToString,
),
'Status': grpc.unary_unary_rpc_method_handler(
servicer.Status,
request_deserializer=backend__pb2.HealthMessage.FromString,
response_serializer=backend__pb2.StatusResponse.SerializeToString,
),
}
generic_handler = grpc.method_handlers_generic_handler(
'backend.Backend', rpc_method_handlers)
server.add_generic_rpc_handlers((generic_handler,))
# This class is part of an EXPERIMENTAL API.
class Backend(object):
"""Missing associated documentation comment in .proto file."""
@staticmethod
def Health(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Health',
backend__pb2.HealthMessage.SerializeToString,
backend__pb2.Reply.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def Predict(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Predict',
backend__pb2.PredictOptions.SerializeToString,
backend__pb2.Reply.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def LoadModel(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/LoadModel',
backend__pb2.ModelOptions.SerializeToString,
backend__pb2.Result.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def PredictStream(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_stream(request, target, '/backend.Backend/PredictStream',
backend__pb2.PredictOptions.SerializeToString,
backend__pb2.Reply.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def Embedding(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Embedding',
backend__pb2.PredictOptions.SerializeToString,
backend__pb2.EmbeddingResult.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def GenerateImage(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/GenerateImage',
backend__pb2.GenerateImageRequest.SerializeToString,
backend__pb2.Result.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def AudioTranscription(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/AudioTranscription',
backend__pb2.TranscriptRequest.SerializeToString,
backend__pb2.TranscriptResult.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def TTS(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/TTS',
backend__pb2.TTSRequest.SerializeToString,
backend__pb2.Result.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def TokenizeString(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/TokenizeString',
backend__pb2.PredictOptions.SerializeToString,
backend__pb2.TokenizationResponse.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def Status(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Status',
backend__pb2.HealthMessage.SerializeToString,
backend__pb2.StatusResponse.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)

View File

@@ -0,0 +1,16 @@
#!/bin/bash
##
## A bash script wrapper that runs the transformers-musicgen server with conda
echo "Launching gRPC server for transformers-musicgen"
export PATH=$PATH:/opt/conda/bin
# Activate conda environment
source activate transformers-musicgen
# get the directory where the bash script is located
DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
python $DIR/transformers_server.py $@

View File

@@ -0,0 +1,11 @@
#!/bin/bash
##
## A bash script wrapper that runs the transformers server with conda
# Activate conda environment
source activate transformers
# get the directory where the bash script is located
DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
python -m unittest $DIR/test_transformers.py

View File

@@ -19,6 +19,7 @@ class TestBackendServicer(unittest.TestCase):
This method sets up the gRPC service by starting the server
"""
self.service = subprocess.Popen(["python3", "transformers_server.py", "--addr", "localhost:50051"])
time.sleep(10)
def tearDown(self) -> None:
"""
@@ -31,7 +32,6 @@ class TestBackendServicer(unittest.TestCase):
"""
This method tests if the server starts up successfully
"""
time.sleep(2)
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
@@ -52,7 +52,7 @@ class TestBackendServicer(unittest.TestCase):
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.LoadModel(backend_pb2.ModelOptions(Model="bert-base-nli-mean-tokens"))
response = stub.LoadModel(backend_pb2.ModelOptions(Model="facebook/musicgen-small"))
self.assertTrue(response.success)
self.assertEqual(response.message, "Model loaded successfully")
except Exception as err:
@@ -61,7 +61,7 @@ class TestBackendServicer(unittest.TestCase):
finally:
self.tearDown()
def test_embedding(self):
def test_tts(self):
"""
This method tests if the embeddings are generated successfully
"""
@@ -69,13 +69,13 @@ class TestBackendServicer(unittest.TestCase):
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.LoadModel(backend_pb2.ModelOptions(Model="bert-base-nli-mean-tokens"))
response = stub.LoadModel(backend_pb2.ModelOptions(Model="facebook/musicgen-small"))
self.assertTrue(response.success)
embedding_request = backend_pb2.PredictOptions(Embeddings="This is a test sentence.")
embedding_response = stub.Embedding(embedding_request)
self.assertIsNotNone(embedding_response.embeddings)
tts_request = backend_pb2.TTSRequest(text="80s TV news production music hit for tonight's biggest story")
tts_response = stub.TTS(tts_request)
self.assertIsNotNone(tts_response)
except Exception as err:
print(err)
self.fail("Embedding service failed")
self.fail("TTS service failed")
finally:
self.tearDown()

View File

@@ -0,0 +1,122 @@
#!/usr/bin/env python3
"""
Extra gRPC server for MusicgenForConditionalGeneration models.
"""
from concurrent import futures
import argparse
import signal
import sys
import os
import time
import backend_pb2
import backend_pb2_grpc
import grpc
from scipy.io.wavfile import write as write_wav
from transformers import AutoProcessor, MusicgenForConditionalGeneration
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
# If MAX_WORKERS are specified in the environment use it, otherwise default to 1
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1'))
# Implement the BackendServicer class with the service methods
class BackendServicer(backend_pb2_grpc.BackendServicer):
"""
A gRPC servicer for the backend service.
This class implements the gRPC methods for the backend service, including Health, LoadModel, and Embedding.
"""
def Health(self, request, context):
"""
A gRPC method that returns the health status of the backend service.
Args:
request: A HealthRequest object that contains the request parameters.
context: A grpc.ServicerContext object that provides information about the RPC.
Returns:
A Reply object that contains the health status of the backend service.
"""
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
def LoadModel(self, request, context):
"""
A gRPC method that loads a model into memory.
Args:
request: A LoadModelRequest object that contains the request parameters.
context: A grpc.ServicerContext object that provides information about the RPC.
Returns:
A Result object that contains the result of the LoadModel operation.
"""
model_name = request.Model
try:
self.processor = AutoProcessor.from_pretrained(model_name)
self.model = MusicgenForConditionalGeneration.from_pretrained(model_name)
except Exception as err:
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
return backend_pb2.Result(message="Model loaded successfully", success=True)
def TTS(self, request, context):
model_name = request.model
if model_name == "":
return backend_pb2.Result(success=False, message="request.model is required")
try:
self.processor = AutoProcessor.from_pretrained(model_name)
self.model = MusicgenForConditionalGeneration.from_pretrained(model_name)
inputs = self.processor(
text=[request.text],
padding=True,
return_tensors="pt",
)
tokens = 256
# TODO get tokens from request?
audio_values = self.model.generate(**inputs, max_new_tokens=tokens)
print("[transformers-musicgen] TTS generated!", file=sys.stderr)
sampling_rate = self.model.config.audio_encoder.sampling_rate
write_wav(request.dst, rate=sampling_rate, data=audio_values[0, 0].numpy())
print("[transformers-musicgen] TTS saved to", request.dst, file=sys.stderr)
print("[transformers-musicgen] TTS for", file=sys.stderr)
print(request, file=sys.stderr)
except Exception as err:
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
return backend_pb2.Result(success=True)
def serve(address):
server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS))
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
server.add_insecure_port(address)
server.start()
print("[transformers-musicgen] Server started. Listening on: " + address, file=sys.stderr)
# Define the signal handler function
def signal_handler(sig, frame):
print("[transformers-musicgen] Received termination signal. Shutting down...")
server.stop(0)
sys.exit(0)
# Set the signal handlers for SIGINT and SIGTERM
signal.signal(signal.SIGINT, signal_handler)
signal.signal(signal.SIGTERM, signal_handler)
try:
while True:
time.sleep(_ONE_DAY_IN_SECONDS)
except KeyboardInterrupt:
server.stop(0)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run the gRPC server.")
parser.add_argument(
"--addr", default="localhost:50051", help="The address to bind the server to."
)
args = parser.parse_args()
print(f"[transformers-musicgen] startup: {args}", file=sys.stderr)
serve(args.addr)

View File

@@ -1,8 +1,6 @@
.PHONY: transformers
transformers:
@echo "Creating virtual environment..."
@conda env create --name transformers --file transformers.yml
@echo "Virtual environment created."
$(MAKE) -C ../common-env/transformers
.PHONY: run
run:

View File

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,84 @@
"""
A test script to test the gRPC service
"""
import unittest
import subprocess
import time
import backend_pb2
import backend_pb2_grpc
import grpc
class TestBackendServicer(unittest.TestCase):
"""
TestBackendServicer is the class that tests the gRPC service
"""
def setUp(self):
"""
This method sets up the gRPC service by starting the server
"""
self.service = subprocess.Popen(["python3", "transformers_server.py", "--addr", "localhost:50051"])
def tearDown(self) -> None:
"""
This method tears down the gRPC service by terminating the server
"""
self.service.kill()
self.service.wait()
def test_server_startup(self):
"""
This method tests if the server starts up successfully
"""
time.sleep(10)
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.Health(backend_pb2.HealthMessage())
self.assertEqual(response.message, b'OK')
except Exception as err:
print(err)
self.fail("Server failed to start")
finally:
self.tearDown()
def test_load_model(self):
"""
This method tests if the model is loaded successfully
"""
time.sleep(10)
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.LoadModel(backend_pb2.ModelOptions(Model="bert-base-cased"))
self.assertTrue(response.success)
self.assertEqual(response.message, "Model loaded successfully")
except Exception as err:
print(err)
self.fail("LoadModel service failed")
finally:
self.tearDown()
def test_embedding(self):
"""
This method tests if the embeddings are generated successfully
"""
time.sleep(10)
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.LoadModel(backend_pb2.ModelOptions(Model="bert-base-cased"))
print(response.message)
self.assertTrue(response.success)
embedding_request = backend_pb2.PredictOptions(Embeddings="This is a test sentence.")
embedding_response = stub.Embedding(embedding_request)
self.assertIsNotNone(embedding_response.embeddings)
except Exception as err:
print(err)
self.fail("Embedding service failed")
finally:
self.tearDown()

View File

@@ -14,14 +14,27 @@ import backend_pb2
import backend_pb2_grpc
import grpc
import torch
from transformers import AutoModel
from transformers import AutoTokenizer, AutoModel
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
# If MAX_WORKERS are specified in the environment use it, otherwise default to 1
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1'))
def mean_pooling(model_output, attention_mask):
"""
Mean pooling to get sentence embeddings. See:
https://huggingface.co/sentence-transformers/paraphrase-distilroberta-base-v1
"""
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1) # Sum columns
sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9)
return sum_embeddings / sum_mask
# Implement the BackendServicer class with the service methods
class BackendServicer(backend_pb2_grpc.BackendServicer):
"""
@@ -56,9 +69,19 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
model_name = request.Model
try:
self.model = AutoModel.from_pretrained(model_name, trust_remote_code=True) # trust_remote_code is needed to use the encode method with embeddings models like jinai-v2
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
if request.CUDA:
try:
# TODO: also tensorflow, make configurable
import torch.cuda
if torch.cuda.is_available():
print("Loading model", model_name, "to CUDA.", file=sys.stderr)
self.model = self.model.to("cuda")
except Exception as err:
print("Not using CUDA:", err, file=sys.stderr)
except Exception as err:
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
# Implement your logic here for the LoadModel service
# Replace this with your desired response
return backend_pb2.Result(message="Model loaded successfully", success=True)
@@ -74,10 +97,20 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
Returns:
An EmbeddingResult object that contains the calculated embeddings.
"""
# Implement your logic here for the Embedding service
# Replace this with your desired response
# Tokenize input
max_length = 512
if request.Tokens != 0:
max_length = request.Tokens
encoded_input = self.tokenizer(request.Embeddings, padding=True, truncation=True, max_length=max_length, return_tensors="pt")
# Create word embeddings
model_output = self.model(**encoded_input)
# Pool to get sentence embeddings; i.e. generate one 1024 vector for the entire sentence
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']).detach().numpy()
print("Calculated embeddings for: " + request.Embeddings, file=sys.stderr)
sentence_embeddings = self.model.encode(request.Embeddings)
print("Embeddings:", sentence_embeddings, file=sys.stderr)
return backend_pb2.EmbeddingResult(embeddings=sentence_embeddings)

View File

@@ -10,3 +10,9 @@ run:
@echo "Running ttsvalle..."
bash run.sh
@echo "ttsvalle run."
.PHONY: test
test:
@echo "Testing valle..."
bash test.sh
@echo "valle tested."

View File

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,81 @@
"""
A test script to test the gRPC service
"""
import unittest
import subprocess
import time
import backend_pb2
import backend_pb2_grpc
import grpc
class TestBackendServicer(unittest.TestCase):
"""
TestBackendServicer is the class that tests the gRPC service
"""
def setUp(self):
"""
This method sets up the gRPC service by starting the server
"""
self.service = subprocess.Popen(["python3", "ttsvalle.py", "--addr", "localhost:50051"])
time.sleep(10)
def tearDown(self) -> None:
"""
This method tears down the gRPC service by terminating the server
"""
self.service.terminate()
self.service.wait()
def test_server_startup(self):
"""
This method tests if the server starts up successfully
"""
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.Health(backend_pb2.HealthMessage())
self.assertEqual(response.message, b'OK')
except Exception as err:
print(err)
self.fail("Server failed to start")
finally:
self.tearDown()
def test_load_model(self):
"""
This method tests if the model is loaded successfully
"""
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.LoadModel(backend_pb2.ModelOptions(Model="dingzhen"))
self.assertTrue(response.success)
self.assertEqual(response.message, "Model loaded successfully")
except Exception as err:
print(err)
self.fail("LoadModel service failed")
finally:
self.tearDown()
def test_tts(self):
"""
This method tests if the embeddings are generated successfully
"""
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.LoadModel(backend_pb2.ModelOptions(Model="dingzhen"))
self.assertTrue(response.success)
tts_request = backend_pb2.TTSRequest(text="80s TV news production music hit for tonight's biggest story")
tts_response = stub.TTS(tts_request)
self.assertIsNotNone(tts_response)
except Exception as err:
print(err)
self.fail("TTS service failed")
finally:
self.tearDown()

View File

@@ -0,0 +1,11 @@
#!/bin/bash
##
## A bash script wrapper that runs the ttsvalle server with conda
# Activate conda environment
source activate ttsvalle
# get the directory where the bash script is located
DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
python -m unittest $DIR/test.py

View File

@@ -9,3 +9,9 @@ run:
@echo "Running vllm..."
bash run.sh
@echo "vllm run."
.PHONY: test
test:
@echo "Testing vllm..."
bash test.sh
@echo "vllm tested."

View File

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,11 @@
#!/bin/bash
##
## A bash script wrapper that runs the transformers server with conda
# Activate conda environment
source activate vllm
# get the directory where the bash script is located
DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
python -m unittest $DIR/test_backend_vllm.py

View File

@@ -21,13 +21,13 @@ class TestBackendServicer(unittest.TestCase):
"""
def setUp(self):
self.service = subprocess.Popen(["python", "backend_vllm.py", "--addr", "localhost:50051"])
time.sleep(10)
def tearDown(self) -> None:
self.service.terminate()
self.service.wait()
def test_server_startup(self):
time.sleep(2)
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
@@ -39,3 +39,38 @@ class TestBackendServicer(unittest.TestCase):
self.fail("Server failed to start")
finally:
self.tearDown()
def test_load_model(self):
"""
This method tests if the model is loaded successfully
"""
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.LoadModel(backend_pb2.ModelOptions(Model="facebook/opt-125m"))
self.assertTrue(response.success)
self.assertEqual(response.message, "Model loaded successfully")
except Exception as err:
print(err)
self.fail("LoadModel service failed")
finally:
self.tearDown()
def test_text(self):
"""
This method tests if the embeddings are generated successfully
"""
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.LoadModel(backend_pb2.ModelOptions(Model="facebook/opt-125m"))
self.assertTrue(response.success)
req = backend_pb2.PredictOptions(Prompt="The capital of France is")
resp = stub.Predict(req)
self.assertIsNotNone(resp.message)
except Exception as err:
print(err)
self.fail("text service failed")
finally:
self.tearDown()

View File

@@ -207,6 +207,9 @@ lora_adapter: "/path/to/lora/adapter"
lora_base: "/path/to/lora/base"
# Disable mulmatq (CUDA)
no_mulmatq: true
# Diffusers/transformers
cuda: true
```
### Prompt templates
@@ -345,6 +348,7 @@ there are additional environment variables available that modify the behavior of
| `BUILD_TYPE` | | Build type. Available: `cublas`, `openblas`, `clblas` |
| `GO_TAGS` | | Go tags. Available: `stablediffusion` |
| `HUGGINGFACEHUB_API_TOKEN` | | Special token for interacting with HuggingFace Inference API, required only when using the `langchain-huggingface` backend |
| `EXTRA_BACKENDS` | | A space separated list of backends to prepare. For example `EXTRA_BACKENDS="backend/python/diffusers backend/python/transformers"` prepares the conda environment on start |
Here is how to configure these variables:
@@ -363,4 +367,40 @@ You can control the backends that are built by setting the `GRPC_BACKENDS` envir
make GRPC_BACKENDS=backend-assets/grpc/llama-cpp build
```
By default, all the backends are built.
By default, all the backends are built.
### Extra backends
LocalAI can be extended with extra backends. The backends are implemented as `gRPC` services and can be written in any language. The container images that are built and published on [quay.io](https://quay.io/repository/go-skynet/local-ai?tab=tags) contain a set of images split in core and extra. By default Images bring all the dependencies and backends supported by LocalAI (we call those `extra` images). The `-core` images instead bring only the strictly necessary dependencies to run LocalAI without only a core set of backends.
If you wish to build a custom container image with extra backends, you can use the core images and build only the backends you are interested into or prepare the environment on startup by using the `EXTRA_BACKENDS` environment variable. For instance, to use the diffusers backend:
```Dockerfile
FROM quay.io/go-skynet/local-ai:master-ffmpeg-core
RUN PATH=$PATH:/opt/conda/bin make -C backend/python/diffusers
```
Remember also to set the `EXTERNAL_GRPC_BACKENDS` environment variable (or `--external-grpc-backends` as CLI flag) to point to the backends you are using (`EXTERNAL_GRPC_BACKENDS="backend_name:/path/to/backend"`), for example with diffusers:
```Dockerfile
FROM quay.io/go-skynet/local-ai:master-ffmpeg-core
RUN PATH=$PATH:/opt/conda/bin make -C backend/python/diffusers
ENV EXTERNAL_GRPC_BACKENDS="diffusers:/build/backend/python/diffusers/run.sh"
```
{{% notice note %}}
You can specify remote external backends or path to local files. The syntax is `backend-name:/path/to/backend` or `backend-name:host:port`.
{{% /notice %}}
#### In runtime
When using the `-core` container image it is possible to prepare the python backends you are interested into by using the `EXTRA_BACKENDS` variable, for instance:
```bash
docker run --env EXTRA_BACKENDS="backend/python/diffusers" quay.io/go-skynet/local-ai:master-ffmpeg-core
```

View File

@@ -147,20 +147,24 @@ make BUILD_TYPE=cublas build
More informations available in the upstream PR: https://github.com/ggerganov/llama.cpp/pull/1412
#### Hipblas (AMD GPU)
AMD GPU Acceleration
Requirement: ROCm
#### Hipblas (AMD GPU with ROCm on Arch Linux)
Packages:
```
make BUILD_TYPE=hipblas build
pacman -S base-devel git rocm-hip-sdk rocm-opencl-sdk opencv clblast grpc
```
Specific GPU targets can be specified with `GPU_TARGETS`:
Library links:
```
make BUILD_TYPE=hipblas GPU_TARGETS=gfx90a build
export CGO_CFLAGS="-I/usr/include/opencv4"
export CGO_CXXFLAGS="-I/usr/include/opencv4"
export CGO_LDFLAGS="-L/opt/rocm/hip/lib -lamdhip64 -L/opt/rocm/lib -lOpenCL -L/usr/lib -lclblast -lrocblas -lhipblas -lrocrand -lomp -O3 --rtlib=compiler-rt -unwindlib=libgcc -lhipblas -lrocblas --hip-link"
```
Build:
```
make BUILD_TYPE=hipblas GPU_TARGETS=gfx1030
```
#### ClBLAS

View File

@@ -147,7 +147,6 @@ backend: diffusers
# Force CPU usage - set to true for GPU
f16: false
diffusers:
pipeline_type: StableDiffusionXLPipeline
cuda: false # Enable for GPU usage (CUDA)
scheduler_type: euler_a
```

View File

@@ -52,6 +52,20 @@ Note:
- The model name is case sensitive.
- LocalAI must be compiled with the `GO_TAGS=tts` flag.
LocalAI also has experimental support for `transformers-musicgen` for the generation of short musical compositions. Currently, this is implemented via the same requests used for text to speech:
```
curl --request POST \
--url http://localhost:8080/tts \
--header 'Content-Type: application/json' \
--data '{
"backend": "transformers-musicgen",
"model": "facebook/musicgen-medium",
"input": "Cello Rave"
}' | aplay```
Future versions of LocalAI will expose additional control over audio generation beyond the text prompt.
#### Configuration
Audio models can be configured via `YAML` files. This allows to configure specific setting for each backend. For instance, backends might be specifying a voice or supports voice cloning which must be specified in the configuration file.

View File

@@ -88,7 +88,7 @@ curl http://localhost:8080/v1/completions -H "Content-Type: application/json" -d
}'
```
Note: If you are on Windows, please run ``docker-compose`` not ``docker compose`` and make sure the project is in the Linux Filesystem, otherwise loading models might be slow. For more Info: [Microsoft Docs](https://learn.microsoft.com/en-us/windows/wsl/filesystems)
Note: If you are on Windows, please make sure the project is on the Linux Filesystem, otherwise loading models might be slow. For more Info: [Microsoft Docs](https://learn.microsoft.com/en-us/windows/wsl/filesystems)
{{% /tab %}}
@@ -115,10 +115,66 @@ helm install local-ai go-skynet/local-ai -f values.yaml
{{< /tabs >}}
### Container images
LocalAI has a set of images to support CUDA, ffmpeg and 'vanilla' (CPU-only). The image list is on [quay](https://quay.io/repository/go-skynet/local-ai?tab=tags):
{{< tabs >}}
{{% tab name="Vanilla / CPU Images" %}}
- `master`
- `latest`
- `{{< version >}}`
- `{{< version >}}-ffmpeg`
- `{{< version >}}-ffmpeg-core`
Core Images - Smaller images without predownload python dependencies
{{% /tab %}}
{{% tab name="GPU Images CUDA 11" %}}
- `master-cublas-cuda11`
- `master-cublas-cuda11-core`
- `{{< version >}}-cublas-cuda11`
- `{{< version >}}-cublas-cuda11-core`
- `{{< version >}}-cublas-cuda11-ffmpeg`
- `{{< version >}}-cublas-cuda11-ffmpeg-core`
Core Images - Smaller images without predownload python dependencies
{{% /tab %}}
{{% tab name="GPU Images CUDA 12" %}}
- `master-cublas-cuda12`
- `master-cublas-cuda12-core`
- `{{< version >}}-cublas-cuda12`
- `{{< version >}}-cublas-cuda12-core`
- `{{< version >}}-cublas-cuda12-ffmpeg`
- `{{< version >}}-cublas-cuda12-ffmpeg-core`
Core Images - Smaller images without predownload python dependencies
{{% /tab %}}
{{< /tabs >}}
Example:
- Standard (GPT + `stablediffusion`): `quay.io/go-skynet/local-ai:latest`
- FFmpeg: `quay.io/go-skynet/local-ai:{{< version >}}-ffmpeg`
- CUDA 11+FFmpeg: `quay.io/go-skynet/local-ai:{{< version >}}-cublas-cuda11-ffmpeg`
- CUDA 12+FFmpeg: `quay.io/go-skynet/local-ai:{{< version >}}-cublas-cuda12-ffmpeg`
{{% notice note %}}
Note: the binary inside the image is pre-compiled, and might not suite all CPUs.
To enable CPU optimizations for the execution environment,
the default behavior is to rebuild when starting the container.
To disable this auto-rebuild behavior,
set the environment variable `REBUILD` to `false`.
See [docs on all environment variables]({{%relref "advanced#environment-variables" %}})
for more info.
{{% /notice %}}
### Example: Use luna-ai-llama2 model with `docker`
```bash
mkdir models
@@ -178,36 +234,7 @@ You can control LocalAI with command line arguments, to specify a binding addres
| --watchdog-busy-timeout value | $WATCHDOG_BUSY_TIMEOUT | 5m | Watchdog timeout. This will restart the backend if it crashes. |
| --watchdog-idle-timeout value | $WATCHDOG_IDLE_TIMEOUT | 15m | Watchdog idle timeout. This will restart the backend if it crashes. |
| --preload-backend-only | $PRELOAD_BACKEND_ONLY | false | If set, the api is NOT launched, and only the preloaded models / backends are started. This is intended for multi-node setups. |
### Container images
LocalAI has a set of images to support CUDA, ffmpeg and 'vanilla' (CPU-only). The image list is on [quay](https://quay.io/repository/go-skynet/local-ai?tab=tags):
- Vanilla images tags: `master`, `v1.40.0`, `latest`, ...
- FFmpeg images tags: `master-ffmpeg`, `v1.40.0-ffmpeg`, ...
- CUDA `11` tags: `master-cublas-cuda11`, `v1.40.0-cublas-cuda11`, ...
- CUDA `12` tags: `master-cublas-cuda12`, `v1.40.0-cublas-cuda12`, ...
- CUDA `11` + FFmpeg tags: `master-cublas-cuda11-ffmpeg`, `v1.40.0-cublas-cuda11-ffmpeg`, ...
- CUDA `12` + FFmpeg tags: `master-cublas-cuda12-ffmpeg`, `v1.40.0-cublas-cuda12-ffmpeg`, ...
- Core images (smaller images without python dependencies): `master-core`, `v1.40.0-core`, ...
Example:
- Standard (GPT + `stablediffusion`): `quay.io/go-skynet/local-ai:latest`
- FFmpeg: `quay.io/go-skynet/local-ai:v1.40.0-ffmpeg`
- CUDA 11+FFmpeg: `quay.io/go-skynet/local-ai:v1.40.0-cublas-cuda11-ffmpeg`
- CUDA 12+FFmpeg: `quay.io/go-skynet/local-ai:v1.40.0-cublas-cuda12-ffmpeg`
{{% notice note %}}
Note: the binary inside the image is pre-compiled, and might not suite all CPUs.
To enable CPU optimizations for the execution environment,
the default behavior is to rebuild when starting the container.
To disable this auto-rebuild behavior,
set the environment variable `REBUILD` to `false`.
See [docs on all environment variables]({{%relref "advanced#environment-variables" %}})
for more info.
{{% /notice %}}
| --external-grpc-backends | EXTERNAL_GRPC_BACKENDS | none | Comma separated list of external gRPC backends to use. Format: `name:host:port` or `name:/path/to/file` |
### Run LocalAI in Kubernetes
@@ -237,7 +264,7 @@ Deploy a single LocalAI pod with 6GB of persistent storage serving up a `ggml-gp
replicaCount: 1
deployment:
image: quay.io/go-skynet/local-ai:latest ##(This is for CPU only, to use GPU change it to a image that supports GPU IE "v1.40.0-cublas-cuda12")
image: quay.io/go-skynet/local-ai:latest ##(This is for CPU only, to use GPU change it to a image that supports GPU IE "v2.0.0-cublas-cuda12-core")
env:
threads: 4
context_size: 512

View File

@@ -8,10 +8,10 @@ weight = 9
This section includes LocalAI end-to-end examples, tutorial and how-tos curated by the community and maintained by [lunamidori5](https://github.com/lunamidori5).
- [Setup LocalAI with Docker on CPU]({{%relref "howtos/easy-setup-docker-cpu" %}})
- [Setup LocalAI with Docker With CUDA]({{%relref "howtos/easy-setup-docker-gpu" %}})
- [Setup LocalAI with Docker]({{%relref "howtos/easy-setup-docker" %}})
- [Seting up a Model]({{%relref "howtos/easy-model" %}})
- [Making requests to LocalAI]({{%relref "howtos/easy-request" %}})
- [Making Text / LLM requests to LocalAI]({{%relref "howtos/easy-request" %}})
- [Making Photo / SD requests to LocalAI]({{%relref "howtos/easy-setup-sd" %}})
## Programs and Demos

View File

@@ -5,43 +5,52 @@ title = "Easy Model Setup"
weight = 2
+++
Lets Learn how to setup a model, for this ``How To`` we are going to use the ``Luna-Ai`` model (Yes I know haha - ``Luna Midori`` making a how to using the ``luna-ai-llama2`` model - lol)
Lets learn how to setup a model, for this ``How To`` we are going to use the ``Dolphin 2.2.1 Mistral 7B`` model.
To download the model to your models folder, run this command in a commandline of your picking.
```bash
curl --location 'http://localhost:8080/models/apply' \
--header 'Content-Type: application/json' \
--data-raw '{
"id": "TheBloke/Luna-AI-Llama2-Uncensored-GGUF/luna-ai-llama2-uncensored.Q4_K_M.gguf"
"id": "TheBloke/dolphin-2.2.1-mistral-7B-GGUF/dolphin-2.2.1-mistral-7b.Q4_0.gguf"
}'
```
Each model needs at least ``4`` files, with out these files, the model will run raw, what that means is you can not change settings of the model.
Each model needs at least ``5`` files, with out these files, the model will run raw, what that means is you can not change settings of the model.
```
File 1 - The model's GGUF file
File 2 - The model's .yaml file
File 3 - The Chat API .tmpl file
File 4 - The Completion API .tmpl file
File 4 - The Chat API helper .tmpl file
File 5 - The Completion API .tmpl file
```
So lets fix that! We are using ``lunademo`` name for this ``How To`` but you can name the files what ever you want! Lets make blank files to start with
```bash
touch lunademo-chat.tmpl
touch lunademo-chat-block.tmpl
touch lunademo-completion.tmpl
touch lunademo.yaml
```
Now lets edit the `"lunademo-chat.tmpl"`, Looking at the huggingface repo, this model uses the ``ASSISTANT:`` tag for when the AI replys, so lets make sure to add that to this file. Do not add the user as we will be doing that in our yaml file!
Now lets edit the `"lunademo-chat.tmpl"`, This is the template that model "Chat" trained models use, but changed for LocalAI
```txt
<|im_start|>{{if eq .RoleName "assistant"}}assistant{{else if eq .RoleName "system"}}system{{else if eq .RoleName "user"}}user{{end}}
{{if .Content}}{{.Content}}{{end}}
<|im_end|>
```
For the `"lunademo-chat-block.tmpl"`, Looking at the huggingface repo, this model uses the ``<|im_start|>assistant`` tag for when the AI replys, so lets make sure to add that to this file. Do not add the user as we will be doing that in our yaml file!
```txt
{{.Input}}
ASSISTANT:
<|im_start|>assistant
```
Now in the `"lunademo-completion.tmpl"` file lets add this.
Now in the `"lunademo-completion.tmpl"` file lets add this. (This is a hold over from OpenAI V0)
```txt
Complete the following sentence: {{.Input}}
{{.Input}}
```
@@ -58,25 +67,18 @@ What this does is tell ``LocalAI`` how to load the model. Then we are going to *
```yaml
name: lunademo
parameters:
model: luna-ai-llama2-uncensored.Q4_K_M.gguf
model: dolphin-2.2.1-mistral-7b.Q4_0.gguf
```
Now that we have the model set up, there a few things we should add to the yaml file to make it run better, for this model it uses the following roles.
```yaml
roles:
assistant: 'ASSISTANT:'
system: 'SYSTEM:'
user: 'USER:'
```
What that did is made sure that ``LocalAI`` added the test to the users in the request, so if a message is from ``system`` it shows up in the template as ``SYSTEM:``, speaking of template files, lets add those to our models yaml file now.
Now that LocalAI knows what file to load with our request, lets add the template files to our models yaml file now.
```yaml
template:
chat: lunademo-chat
chat: lunademo-chat-block
chat_message: lunademo-chat
completion: lunademo-completion
```
If you are running on ``GPU`` or want to tune the model, you can add settings like
If you are running on ``GPU`` or want to tune the model, you can add settings like (higher the GPU Layers the more GPU used)
```yaml
f16: true
gpu_layers: 4
@@ -85,8 +87,7 @@ gpu_layers: 4
To fully tune the model to your like. But be warned, you **must** restart ``LocalAI`` after changing a yaml file
```bash
docker-compose restart ##windows
docker compose restart ##linux / mac
docker compose restart
```
If you want to check your models yaml, here is a full copy!
@@ -96,19 +97,18 @@ context_size: 2000
##Put settings right here for tunning!! Before name but after Backend!
name: lunademo
parameters:
model: luna-ai-llama2-uncensored.Q4_K_M.gguf
roles:
assistant: 'ASSISTANT:'
system: 'SYSTEM:'
user: 'USER:'
model: dolphin-2.2.1-mistral-7b.Q4_0.gguf
template:
chat: lunademo-chat
chat: lunademo-chat-block
chat_message: lunademo-chat
completion: lunademo-completion
```
Now that we got that setup, lets test it out but sending a [request]({{%relref "easy-request" %}}) to Localai!
## Adv Stuff
## ----- Adv Stuff -----
**(Please do not run these steps if you have already done the setup)**
Alright now that we have learned how to set up our own models, here is how to use the gallery to do alot of this for us. This command will download and set up (mostly, we will **always** need to edit our yaml file to fit our computer / hardware)
```bash
curl http://localhost:8080/models/apply -H "Content-Type: application/json" -d '{

View File

@@ -1,132 +0,0 @@
+++
disableToc = false
title = "Easy Setup - CPU Docker"
weight = 2
+++
{{% notice Note %}}
- You will need about 10gb of RAM Free
- You will need about 15gb of space free on C drive for ``Docker-compose``
{{% /notice %}}
We are going to run `LocalAI` with `docker-compose` for this set up.
Lets clone `LocalAI` with git.
```bash
git clone https://github.com/go-skynet/LocalAI
```
Then we will cd into the ``LocalAI`` folder.
```bash
cd LocalAI
```
At this point we want to set up our `.env` file, here is a copy for you to use if you wish, please make sure to set it to the same as in the `docker-compose` file for later.
```bash
## Set number of threads.
## Note: prefer the number of physical cores. Overbooking the CPU degrades performance notably.
THREADS=2
## Specify a different bind address (defaults to ":8080")
# ADDRESS=127.0.0.1:8080
## Define galleries.
## models will to install will be visible in `/models/available`
GALLERIES=[{"name":"model-gallery", "url":"github:go-skynet/model-gallery/index.yaml"}, {"url": "github:go-skynet/model-gallery/huggingface.yaml","name":"huggingface"}]
## Default path for models
MODELS_PATH=/models
## Enable debug mode
# DEBUG=true
## Disables COMPEL (Lets Stable Diffuser work, uncomment if you plan on using it)
# COMPEL=0
## Enable/Disable single backend (useful if only one GPU is available)
# SINGLE_ACTIVE_BACKEND=true
## Specify a build type. Available: cublas, openblas, clblas.
BUILD_TYPE=cublas
## Uncomment and set to true to enable rebuilding from source
# REBUILD=true
## Enable go tags, available: stablediffusion, tts
## stablediffusion: image generation with stablediffusion
## tts: enables text-to-speech with go-piper
## (requires REBUILD=true)
#
#GO_TAGS=tts
## Path where to store generated images
# IMAGE_PATH=/tmp
## Specify a default upload limit in MB (whisper)
# UPLOAD_LIMIT
# HUGGINGFACEHUB_API_TOKEN=Token here
```
Now that we have the `.env` set lets set up our `docker-compose` file.
It will use a container from [quay.io](https://quay.io/repository/go-skynet/local-ai?tab=tags).
Also note this `docker-compose` file is for `CPU` only.
```docker
version: '3.6'
services:
api:
image: quay.io/go-skynet/local-ai:v1.40.0
tty: true # enable colorized logs
restart: always # should this be on-failure ?
ports:
- 8080:8080
env_file:
- .env
volumes:
- ./models:/models
- ./images/:/tmp/generated/images/
command: ["/usr/bin/local-ai" ]
```
Make sure to save that in the root of the `LocalAI` folder. Then lets spin up the Docker run this in a `CMD` or `BASH`
```bash
docker-compose up -d --pull always ##Windows
docker compose up -d --pull always ##Linux
```
Now we are going to let that set up, once it is done, lets check to make sure our huggingface / localai galleries are working (wait until you see this screen to do this)
You should see:
```
┌───────────────────────────────────────────────────┐
│ Fiber v2.42.0 │
│ http://127.0.0.1:8080 │
│ (bound on host 0.0.0.0 and port 8080) │
│ │
│ Handlers ............. 1 Processes ........... 1 │
│ Prefork ....... Disabled PID ................. 1 │
└───────────────────────────────────────────────────┘
```
```bash
curl http://localhost:8080/models/available
```
Output will look like this:
![](https://cdn.discordapp.com/attachments/1116933141895053322/1134037542845566976/image.png)
Now that we got that setup, lets go setup a [model]({{%relref "easy-model" %}})

View File

@@ -1,33 +1,26 @@
+++
disableToc = false
title = "Easy Setup - GPU Docker"
title = "Easy Setup - Docker"
weight = 2
+++
{{% notice Note %}}
- You will need about 10gb of RAM Free
- You will need about 15gb of space free on C drive for ``Docker-compose``
- You will need about 15gb of space free on C drive for ``Docker compose``
{{% /notice %}}
We are going to run `LocalAI` with `docker-compose` for this set up.
We are going to run `LocalAI` with `docker compose` for this set up.
Lets clone `LocalAI` with git.
```bash
git clone https://github.com/go-skynet/LocalAI
```
Then we will cd into the `LocalAI` folder.
```bash
Lets setup our folders for ``LocalAI`` (run these to make the folders for you if you wish)
```batch
mkdir "LocalAI"
cd LocalAI
mkdir "models"
mkdir "images"
```
At this point we want to set up our `.env` file, here is a copy for you to use if you wish, please make sure to set it to the same as in the `docker-compose` file for later.
At this point we want to set up our `.env` file, here is a copy for you to use if you wish, Make sure this is in the ``LocalAI`` folder.
```bash
## Set number of threads.
@@ -45,7 +38,7 @@ GALLERIES=[{"name":"model-gallery", "url":"github:go-skynet/model-gallery/index.
MODELS_PATH=/models
## Enable debug mode
# DEBUG=true
DEBUG=true
## Disables COMPEL (Lets Stable Diffuser work, uncomment if you plan on using it)
# COMPEL=0
@@ -78,15 +71,58 @@ BUILD_TYPE=cublas
Now that we have the `.env` set lets set up our `docker-compose` file.
It will use a container from [quay.io](https://quay.io/repository/go-skynet/local-ai?tab=tags).
{{< tabs >}}
{{% tab name="CPU Only" %}}
Also note this `docker-compose` file is for `CPU` only.
```docker
version: '3.6'
services:
api:
image: quay.io/go-skynet/local-ai:{{< version >}}
tty: true # enable colorized logs
restart: always # should this be on-failure ?
ports:
- 8080:8080
env_file:
- .env
volumes:
- ./models:/models
- ./images/:/tmp/generated/images/
command: ["/usr/bin/local-ai" ]
```
{{% /tab %}}
{{% tab name="GPU and CPU" %}}
Also note this `docker-compose` file is for `CUDA` only.
Please change the image to what you need.
```
Cuda 11 - v1.40.0-cublas-cuda11
Cuda 12 - v1.40.0-cublas-cuda12
Cuda 11 with TTS - v1.40.0-cublas-cuda11-ffmpeg
Cuda 12 with TTS - v1.40.0-cublas-cuda12-ffmpeg
```
{{< tabs >}}
{{% tab name="GPU Images CUDA 11" %}}
- `master-cublas-cuda11`
- `master-cublas-cuda11-core`
- `{{< version >}}-cublas-cuda11`
- `{{< version >}}-cublas-cuda11-core`
- `{{< version >}}-cublas-cuda11-ffmpeg`
- `{{< version >}}-cublas-cuda11-ffmpeg-core`
Core Images - Smaller images without predownload python dependencies
{{% /tab %}}
{{% tab name="GPU Images CUDA 12" %}}
- `master-cublas-cuda12`
- `master-cublas-cuda12-core`
- `{{< version >}}-cublas-cuda12`
- `{{< version >}}-cublas-cuda12-core`
- `{{< version >}}-cublas-cuda12-ffmpeg`
- `{{< version >}}-cublas-cuda12-ffmpeg-core`
Core Images - Smaller images without predownload python dependencies
{{% /tab %}}
{{< /tabs >}}
```docker
version: '3.6'
@@ -112,13 +148,14 @@ services:
- ./images/:/tmp/generated/images/
command: ["/usr/bin/local-ai" ]
```
{{% /tab %}}
{{< /tabs >}}
Make sure to save that in the root of the `LocalAI` folder. Then lets spin up the Docker run this in a `CMD` or `BASH`
```bash
docker-compose up -d --pull always ##Windows
docker compose up -d --pull always ##Linux
docker compose up -d --pull always
```

View File

@@ -12,17 +12,6 @@ curl http://localhost:8080/models/apply -H "Content-Type: application/json" -d '
}'
```
Now we need to make a ``bert.yaml`` in the models folder
```yaml
backend: bert-embeddings
embeddings: true
name: text-embedding-ada-002
parameters:
model: bert
```
**Restart LocalAI after you change a yaml file**
When you would like to request the model from CLI you can do
```bash
@@ -30,7 +19,7 @@ curl http://localhost:8080/v1/embeddings \
-H "Content-Type: application/json" \
-d '{
"input": "The food was delicious and the waiter...",
"model": "text-embedding-ada-002"
"model": "bert-embeddings"
}'
```

View File

@@ -5,7 +5,7 @@ weight = 2
+++
To set up a Stable Diffusion model is super easy.
In your models folder make a file called ``stablediffusion.yaml``, then edit that file with the following. (You can change ``Linaqruf/animagine-xl`` with what ever ``sd-lx`` model you would like.
In your ``models`` folder make a file called ``stablediffusion.yaml``, then edit that file with the following. (You can change ``Linaqruf/animagine-xl`` with what ever ``sd-lx`` model you would like.
```yaml
name: animagine-xl
parameters:
@@ -15,15 +15,13 @@ backend: diffusers
# Force CPU usage - set to true for GPU
f16: false
diffusers:
pipeline_type: StableDiffusionXLPipeline
cuda: false # Enable for GPU usage (CUDA)
scheduler_type: dpm_2_a
```
If you are using docker, you will need to run in the localai folder with the ``docker-compose.yaml`` file in it
```bash
docker-compose down #windows
docker compose down #linux/mac
docker compose down
```
Then in your ``.env`` file uncomment this line.
@@ -33,14 +31,13 @@ COMPEL=0
After that we can reinstall the LocalAI docker VM by running in the localai folder with the ``docker-compose.yaml`` file in it
```bash
docker-compose up #windows
docker compose up #linux/mac
docker compose up -d
```
Then to download and setup the model, Just send in a normal ``OpenAI`` request! LocalAI will do the rest!
```bash
curl http://localhost:8080/v1/images/generations -H "Content-Type: application/json" -d '{
"prompt": "Two Boxes, 1blue, 1red",
"size": "256x256"
"size": "1024x1024"
}'
```

View File

@@ -0,0 +1,178 @@
+++
disableToc = false
title = "AIKit"
description="AI + BuildKit = AIKit: Build and deploy large language models easily"
weight = 2
+++
GitHub Link - https://github.com/sozercan/aikit
[AIKit](https://github.com/sozercan/aikit) is a quick, easy, and local or cloud-agnostic way to get started to host and deploy large language models (LLMs) for inference. No GPU, internet access or additional tools are needed to get started except for [Docker](https://docs.docker.com/desktop/install/linux-install/)!
AIKit uses [LocalAI](https://localai.io/) under-the-hood to run inference. LocalAI provides a drop-in replacement REST API that is OpenAI API compatible, so you can use any OpenAI API compatible client, such as [Kubectl AI](https://github.com/sozercan/kubectl-ai), [Chatbot-UI](https://github.com/sozercan/chatbot-ui) and many more, to send requests to open-source LLMs powered by AIKit!
> At this time, AIKit is tested with LocalAI `llama` backend. Other backends may work but are not tested. Please open an issue if you'd like to see support for other backends.
## Features
- 🐳 No GPU, Internet access or additional tools needed except for [Docker](https://docs.docker.com/desktop/install/linux-install/)!
- 🤏 Minimal image size, resulting in less vulnerabilities and smaller attack surface with a custom [distroless](https://github.com/GoogleContainerTools/distroless)-based image
- 🚀 Easy to use declarative configuration
- ✨ OpenAI API compatible to use with any OpenAI API compatible client
- 🚢 Kubernetes deployment ready
- 📦 Supports multiple models with a single image
- 🖥️ Supports GPU-accelerated inferencing with NVIDIA GPUs
- 🔐 Signed images for `aikit` and pre-made models
## Pre-made Models
AIKit comes with pre-made models that you can use out-of-the-box!
### CPU
- 🦙 Llama 2 7B Chat: `ghcr.io/sozercan/llama2:7b`
- 🦙 Llama 2 13B Chat: `ghcr.io/sozercan/llama2:13b`
- 🐬 Orca 2 13B: `ghcr.io/sozercan/orca2:13b`
### NVIDIA CUDA
- 🦙 Llama 2 7B Chat (CUDA): `ghcr.io/sozercan/llama2:7b-cuda`
- 🦙 Llama 2 13B Chat (CUDA): `ghcr.io/sozercan/llama2:13b-cuda`
- 🐬 Orca 2 13B (CUDA): `ghcr.io/sozercan/orca2:13b-cuda`
> CUDA models includes CUDA v12. They are used with [NVIDIA GPU acceleration](#gpu-acceleration-support).
## Quick Start
### Creating an image
> This section shows how to create a custom image with models of your choosing. If you want to use one of the pre-made models, skip to [running models](#running-models).
>
> Please see [models folder](./models/) for pre-made model definitions. You can find more model examples at [go-skynet/model-gallery](https://github.com/go-skynet/model-gallery).
Create an `aikitfile.yaml` with the following structure:
```yaml
#syntax=ghcr.io/sozercan/aikit:latest
apiVersion: v1alpha1
models:
- name: llama-2-7b-chat
source: https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGUF/resolve/main/llama-2-7b-chat.Q4_K_M.gguf
```
> This is the simplest way to get started to build an image. For full `aikitfile` specification, see [specs](docs/specs.md).
First, create a buildx buildkit instance. Alternatively, if you are using Docker v24 with [containerd image store](https://docs.docker.com/storage/containerd/) enabled, you can skip this step.
```bash
docker buildx create --use --name aikit-builder
```
Then build your image with:
```bash
docker buildx build . -t my-model -f aikitfile.yaml --load
```
This will build a local container image with your model(s). You can see the image with:
```bash
docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
my-model latest e7b7c5a4a2cb About an hour ago 5.51GB
```
### Running models
You can start the inferencing server for your models with:
```bash
# for pre-made models, replace "my-model" with the image name
docker run -d --rm -p 8080:8080 my-model
```
You can then send requests to `localhost:8080` to run inference from your models. For example:
```bash
curl http://localhost:8080/v1/chat/completions -H "Content-Type: application/json" -d '{
"model": "llama-2-7b-chat",
"messages": [{"role": "user", "content": "explain kubernetes in a sentence"}]
}'
{"created":1701236489,"object":"chat.completion","id":"dd1ff40b-31a7-4418-9e32-42151ab6875a","model":"llama-2-7b-chat","choices":[{"index":0,"finish_reason":"stop","message":{"role":"assistant","content":"\nKubernetes is a container orchestration system that automates the deployment, scaling, and management of containerized applications in a microservices architecture."}}],"usage":{"prompt_tokens":0,"completion_tokens":0,"total_tokens":0}}
```
## Kubernetes Deployment
It is easy to get started to deploy your models to Kubernetes!
Make sure you have a Kubernetes cluster running and `kubectl` is configured to talk to it, and your model images are accessible from the cluster.
> You can use [kind](https://kind.sigs.k8s.io/) to create a local Kubernetes cluster for testing purposes.
```bash
# create a deployment
# for pre-made models, replace "my-model" with the image name
kubectl create deployment my-llm-deployment --image=my-model
# expose it as a service
kubectl expose deployment my-llm-deployment --port=8080 --target-port=8080 --name=my-llm-service
# easy to scale up and down as needed
kubectl scale deployment my-llm-deployment --replicas=3
# port-forward for testing locally
kubectl port-forward service/my-llm-service 8080:8080
# send requests to your model
curl http://localhost:8080/v1/chat/completions -H "Content-Type: application/json" -d '{
"model": "llama-2-7b-chat",
"messages": [{"role": "user", "content": "explain kubernetes in a sentence"}]
}'
{"created":1701236489,"object":"chat.completion","id":"dd1ff40b-31a7-4418-9e32-42151ab6875a","model":"llama-2-7b-chat","choices":[{"index":0,"finish_reason":"stop","message":{"role":"assistant","content":"\nKubernetes is a container orchestration system that automates the deployment, scaling, and management of containerized applications in a microservices architecture."}}],"usage":{"prompt_tokens":0,"completion_tokens":0,"total_tokens":0}}
```
> For an example Kubernetes deployment and service YAML, see [kubernetes folder](./kubernetes/). Please note that these are examples, you may need to customize them (such as properly configured resource requests and limits) based on your needs.
## GPU Acceleration Support
> At this time, only NVIDIA GPU acceleration is supported. Please open an issue if you'd like to see support for other GPU vendors.
### NVIDIA
AIKit supports GPU accelerated inferencing with [NVIDIA Container Toolkit](https://github.com/NVIDIA/nvidia-container-toolkit). You must also have [NVIDIA Drivers](https://www.nvidia.com/en-us/drivers/unix/) installed on your host machine.
For Kubernetes, [NVIDIA GPU Operator](https://github.com/NVIDIA/gpu-operator) provides a streamlined way to install the NVIDIA drivers and container toolkit to configure your cluster to use GPUs.
To get started with GPU-accelerated inferencing, make sure to set the following in your `aikitfile` and build your model.
```yaml
runtime: cuda # use NVIDIA CUDA runtime
f16: true # use float16 precision
gpu_layers: 35 # number of layers to offload to GPU
low_vram: true # for devices with low VRAM
```
> Make sure to customize these values based on your model and GPU specs.
After building the model, you can run it with [`--gpus all`](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/docker-specialized.html#gpu-enumeration) flag to enable GPU support:
```bash
# for pre-made models, replace "my-model" with the image name
docker run --rm --gpus all -p 8080:8080 my-model
```
If GPU acceleration is working, you'll see output that is similar to following in the debug logs:
```bash
5:32AM DBG GRPC(llama-2-7b-chat.Q4_K_M.gguf-127.0.0.1:43735): stderr ggml_init_cublas: found 1 CUDA devices:
5:32AM DBG GRPC(llama-2-7b-chat.Q4_K_M.gguf-127.0.0.1:43735): stderr Device 0: Tesla T4, compute capability 7.5
...
5:32AM DBG GRPC(llama-2-7b-chat.Q4_K_M.gguf-127.0.0.1:43735): stderr llm_load_tensors: using CUDA for GPU acceleration
5:32AM DBG GRPC(llama-2-7b-chat.Q4_K_M.gguf-127.0.0.1:43735): stderr llm_load_tensors: mem required = 70.41 MB (+ 2048.00 MB per state)
5:32AM DBG GRPC(llama-2-7b-chat.Q4_K_M.gguf-127.0.0.1:43735): stderr llm_load_tensors: offloading 32 repeating layers to GPU
5:32AM DBG GRPC(llama-2-7b-chat.Q4_K_M.gguf-127.0.0.1:43735): stderr llm_load_tensors: offloading non-repeating layers to GPU
5:32AM DBG GRPC(llama-2-7b-chat.Q4_K_M.gguf-127.0.0.1:43735): stderr llm_load_tensors: offloading v cache to GPU
5:32AM DBG GRPC(llama-2-7b-chat.Q4_K_M.gguf-127.0.0.1:43735): stderr llm_load_tensors: offloading k cache to GPU
5:32AM DBG GRPC(llama-2-7b-chat.Q4_K_M.gguf-127.0.0.1:43735): stderr llm_load_tensors: offloaded 35/35 layers to GPU
5:32AM DBG GRPC(llama-2-7b-chat.Q4_K_M.gguf-127.0.0.1:43735): stderr llm_load_tensors: VRAM used: 5869 MB
```

View File

@@ -50,6 +50,8 @@ Besides llama based models, LocalAI is compatible also with other architectures.
| `diffusers` | SD,... | no | Image generation | no | no | N/A |
| `vall-e-x` | Vall-E | no | Audio generation and Voice cloning | no | no | CPU/CUDA |
| `vllm` | Various GPTs and quantization formats | yes | GPT | no | no | CPU/CUDA |
| `exllama2` | GPTQ | yes | GPT only | no | no | N/A |
| `transformers-musicgen` | | no | Audio generation | no | no | N/A |
Note: any backend name listed above can be used in the `backend` field of the model configuration file (See [the advanced section]({{%relref "advanced" %}})).

View File

@@ -27,12 +27,9 @@ name: animagine-xl
parameters:
model: Linaqruf/animagine-xl
backend: diffusers
# Force CPU usage - set to true for GPU
f16: false
cuda: true
f16: true
diffusers:
pipeline_type: StableDiffusionXLPipeline
cuda: false # Enable for GPU usage (CUDA)
scheduler_type: euler_a
```
@@ -47,9 +44,9 @@ parameters:
backend: diffusers
step: 30
f16: true
cuda: true
diffusers:
pipeline_type: StableDiffusionPipeline
cuda: true
enable_parameters: "negative_prompt,num_inference_steps,clip_skip"
scheduler_type: "k_dpmpp_sde"
cfg_scale: 8
@@ -69,7 +66,7 @@ The following parameters are available in the configuration file:
| `scheduler_type` | Scheduler type | `k_dpp_sde` |
| `cfg_scale` | Configuration scale | `8` |
| `clip_skip` | Clip skip | None |
| `pipeline_type` | Pipeline type | `StableDiffusionPipeline` |
| `pipeline_type` | Pipeline type | `AutoPipelineForText2Image` |
There are available several types of schedulers:
@@ -131,17 +128,16 @@ parameters:
model: nitrosocke/Ghibli-Diffusion
backend: diffusers
step: 25
cuda: true
f16: true
diffusers:
pipeline_type: StableDiffusionImg2ImgPipeline
cuda: true
enable_parameters: "negative_prompt,num_inference_steps,image"
```
```bash
IMAGE_PATH=/path/to/your/image
(echo -n '{"image": "'; base64 $IMAGE_PATH; echo '", "prompt": "a sky background","size": "512x512","model":"stablediffusion-edit"}') |
(echo -n '{"file": "'; base64 $IMAGE_PATH; echo '", "prompt": "a sky background","size": "512x512","model":"stablediffusion-edit"}') |
curl -H "Content-Type: application/json" -d @- http://localhost:8080/v1/images/generations
```
@@ -157,14 +153,67 @@ backend: diffusers
step: 50
# Force CPU usage
f16: true
cuda: true
diffusers:
pipeline_type: StableDiffusionDepth2ImgPipeline
cuda: true
enable_parameters: "negative_prompt,num_inference_steps,image"
cfg_scale: 6
```
```bash
(echo -n '{"image": "'; base64 ~/path/to/image.jpeg; echo '", "prompt": "a sky background","size": "512x512","model":"stablediffusion-depth"}') |
(echo -n '{"file": "'; base64 ~/path/to/image.jpeg; echo '", "prompt": "a sky background","size": "512x512","model":"stablediffusion-depth"}') |
curl -H "Content-Type: application/json" -d @- http://localhost:8080/v1/images/generations
```
## img2vid
{{% notice note %}}
Experimental and available only on master builds. See: https://github.com/mudler/LocalAI/pull/1442
{{% /notice %}}
```yaml
name: img2vid
parameters:
model: stabilityai/stable-video-diffusion-img2vid
backend: diffusers
step: 25
# Force CPU usage
f16: true
cuda: true
diffusers:
pipeline_type: StableVideoDiffusionPipeline
```
```bash
(echo -n '{"file": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/svd/rocket.png?download=true","size": "512x512","model":"img2vid"}') |
curl -H "Content-Type: application/json" -X POST -d @- http://localhost:8080/v1/images/generations
```
## txt2vid
{{% notice note %}}
Experimental and available only on master builds. See: https://github.com/mudler/LocalAI/pull/1442
{{% /notice %}}
```yaml
name: txt2vid
parameters:
model: damo-vilab/text-to-video-ms-1.7b
backend: diffusers
step: 25
# Force CPU usage
f16: true
cuda: true
diffusers:
pipeline_type: VideoDiffusionPipeline
cuda: true
```
```bash
(echo -n '{"prompt": "spiderman surfing","size": "512x512","model":"txt2vid"}') |
curl -H "Content-Type: application/json" -X POST -d @- http://localhost:8080/v1/images/generations
```

View File

@@ -9,7 +9,7 @@ weight = 1
{{% notice note %}}
The `ggml` file format has been deprecated. If you are using `ggml` models and you are configuring your model with a YAML file, specify, use the `llama-stable` backend instead. If you are relying in automatic detection of the model, you should be fine. For `gguf` models, use the `llama` backend.
The `ggml` file format has been deprecated. If you are using `ggml` models and you are configuring your model with a YAML file, specify, use the `llama-ggml` backend instead. If you are relying in automatic detection of the model, you should be fine. For `gguf` models, use the `llama` backend. The go backend is deprecated as well but still available as `go-llama`. The go backend supports still features not available in the mainline: speculative sampling and embeddings.
{{% /notice %}}
@@ -65,11 +65,11 @@ parameters:
In the example above we specify `llama` as the backend to restrict loading `gguf` models only.
For instance, to use the `llama-stable` backend for `ggml` models:
For instance, to use the `llama-ggml` backend for `ggml` models:
```yaml
name: llama
backend: llama-stable
backend: llama-ggml
parameters:
# Relative to the models path
model: file.ggml.bin

View File

@@ -6,6 +6,30 @@ url = '/basics/news/'
+++
## 04-12-2023: __v2.0.0__
This release brings a major overhaul in some backends.
Breaking/important changes:
- Backend rename: `llama-stable` renamed to `llama-ggml` {{< pr "1287" >}}
- Prompt template changes: {{< pr "1254" >}} (extra space in roles)
- Apple metal bugfixes: {{< pr "1365" >}}
New:
- Added support for LLaVa and OpenAI Vision API support ({{< pr "1254" >}})
- Python based backends are now using conda to track env dependencies ( {{< pr "1144" >}} )
- Support for parallel requests ( {{< pr "1290" >}} )
- Support for transformers-embeddings ( {{< pr "1308" >}})
- Watchdog for backends ( {{< pr "1341" >}}). As https://github.com/ggerganov/llama.cpp/issues/3969 is hitting LocalAI's llama-cpp implementation, we have now a watchdog that can be used to make sure backends are not stalling. This is a generic mechanism that can be enabled for all the backends now.
- Whisper.cpp updates ( {{< pr "1302" >}} )
- Petals backend ( {{< pr "1350" >}} )
- Full LLM fine-tuning example to use with LocalAI: https://localai.io/advanced/fine-tuning/
Due to the python dependencies size of images grew in size.
If you still want to use smaller images without python dependencies, you can use the corresponding images tags ending with `-core`.
Full changelog: https://github.com/mudler/LocalAI/releases/tag/v2.0.0
## 30-10-2023: __v1.40.0__
This release is a preparation before v2 - the efforts now will be to refactor, polish and add new backends. Follow up on: https://github.com/mudler/LocalAI/issues/1126
@@ -16,7 +40,7 @@ This release now brings the `llama-cpp` backend which is a c++ backend tied to l
### Support for ROCm/HIPBLAS
This release bring support for AMD thanks to @65a . See more details in https://github.com/mudler/LocalAI/pull/1100
This release bring support for AMD thanks to @65a . See more details in {{< pr "1100" >}}
### More CLI commands

3
docs/data/version.json Normal file
View File

@@ -0,0 +1,3 @@
{
"version": "v2.1.0"
}

View File

@@ -0,0 +1 @@
{{ $.Site.Data.version.version }}

View File

@@ -3,6 +3,16 @@ set -e
cd /build
# If we have set EXTRA_BACKENDS, then we need to prepare the backends
if [ -n "$EXTRA_BACKENDS" ]; then
echo "EXTRA_BACKENDS: $EXTRA_BACKENDS"
# Space separated list of backends
for backend in $EXTRA_BACKENDS; do
echo "Preparing backend: $backend"
make -C $backend
done
fi
if [ "$REBUILD" != "false" ]; then
rm -rf ./local-ai
make build -j${BUILD_PARALLELISM:-1}

Some files were not shown because too many files have changed in this diff Show More