Compare commits

...

7 Commits

Author SHA1 Message Date
Ettore Di Giacinto
238fec244a fix(vall-e-x): correctly install reqs in environment (#1377) 2023-12-03 21:16:36 +01:00
LocalAI [bot]
3d71bc9b64 ⬆️ Update ggerganov/whisper.cpp (#1227)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2023-12-03 01:16:07 +01:00
Felix Erkinger
3923024d84 update whisper_cpp with CUBLAS, HIPBLAS, METAL, OPENBLAS, CLBLAST support (#1302)
update whisper_cpp to 1.5.1 with OPENBLAS, METAL, HIPBLAS, CUBLAS, CLBLAST support
2023-12-02 10:10:18 +00:00
Ettore Di Giacinto
710b195be1 Update README.md
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2023-12-02 08:55:26 +01:00
Ettore Di Giacinto
6e408137ee Update fine-tuning.md
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2023-12-02 08:54:21 +01:00
Ettore Di Giacinto
9b205cfcfc Update fine-tuning.md
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2023-12-02 08:52:00 +01:00
LocalAI [bot]
42a80d1b8b ⬆️ Update ggerganov/llama.cpp (#1375)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2023-12-02 00:09:48 +00:00
8 changed files with 37 additions and 10 deletions

View File

@@ -185,12 +185,6 @@ RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
PATH=$PATH:/opt/conda/bin make -C backend/python/petals \
; fi
# Copy VALLE-X as it's not a real "lib"
# TODO: this is wrong - we should copy the lib into the conda env path
RUN if [ -d /usr/lib/vall-e-x ]; then \
cp -rfv /usr/lib/vall-e-x/* ./ ; \
fi
# we also copy exllama libs over to resolve exllama import error
# TODO: check if this is still needed
RUN if [ -d /usr/local/lib/python3.9/dist-packages/exllama ]; then \

View File

@@ -8,7 +8,7 @@ GOLLAMA_VERSION?=aeba71ee842819da681ea537e78846dc75949ac0
GOLLAMA_STABLE_VERSION?=50cee7712066d9e38306eccadcfbb44ea87df4b7
CPPLLAMA_VERSION?=1f5cd83275fabb43f2ae92c30033b384a3eb37b4
CPPLLAMA_VERSION?=5a7d3125e7c24f223659b7f0b7aa7736986e92c0
# gpt4all version
GPT4ALL_REPO?=https://github.com/nomic-ai/gpt4all
@@ -22,7 +22,7 @@ RWKV_REPO?=https://github.com/donomii/go-rwkv.cpp
RWKV_VERSION?=c898cd0f62df8f2a7830e53d1d513bef4f6f792b
# whisper.cpp version
WHISPER_CPP_VERSION?=85ed71aaec8e0612a84c0b67804bde75aa75a273
WHISPER_CPP_VERSION?=e369243ebd24c8a14201f6b4280bccbb7b6a7df3
# bert.cpp version
BERT_VERSION?=6abe312cded14042f6b7c3cd8edf082713334a4d
@@ -85,11 +85,13 @@ endif
ifeq ($(BUILD_TYPE),openblas)
CGO_LDFLAGS+=-lopenblas
export WHISPER_OPENBLAS=1
endif
ifeq ($(BUILD_TYPE),cublas)
CGO_LDFLAGS+=-lcublas -lcudart -L$(CUDA_LIBPATH)
export LLAMA_CUBLAS=1
export WHISPER_CUBLAS=1
endif
ifeq ($(BUILD_TYPE),hipblas)
@@ -98,6 +100,7 @@ ifeq ($(BUILD_TYPE),hipblas)
export CC=$(ROCM_HOME)/llvm/bin/clang
# llama-ggml has no hipblas support, so override it here.
export STABLE_BUILD_TYPE=
export WHISPER_HIPBLAS=1
GPU_TARGETS ?= gfx900,gfx90a,gfx1030,gfx1031,gfx1100
AMDGPU_TARGETS ?= "$(GPU_TARGETS)"
CMAKE_ARGS+=-DLLAMA_HIPBLAS=ON -DAMDGPU_TARGETS="$(AMDGPU_TARGETS)" -DGPU_TARGETS="$(GPU_TARGETS)"
@@ -107,10 +110,12 @@ endif
ifeq ($(BUILD_TYPE),metal)
CGO_LDFLAGS+=-framework Foundation -framework Metal -framework MetalKit -framework MetalPerformanceShaders
export LLAMA_METAL=1
export WHISPER_METAL=1
endif
ifeq ($(BUILD_TYPE),clblas)
CGO_LDFLAGS+=-lOpenCL -lclblast
export WHISPER_CLBLAST=1
endif
# glibc-static or glibc-devel-static required
@@ -234,6 +239,7 @@ replace:
$(GOCMD) mod edit -replace github.com/go-skynet/go-ggml-transformers.cpp=$(shell pwd)/sources/go-ggml-transformers
$(GOCMD) mod edit -replace github.com/donomii/go-rwkv.cpp=$(shell pwd)/sources/go-rwkv
$(GOCMD) mod edit -replace github.com/ggerganov/whisper.cpp=$(shell pwd)/sources/whisper.cpp
$(GOCMD) mod edit -replace github.com/ggerganov/whisper.cpp/bindings/go=$(shell pwd)/sources/whisper.cpp/bindings/go
$(GOCMD) mod edit -replace github.com/go-skynet/go-bert.cpp=$(shell pwd)/sources/go-bert
$(GOCMD) mod edit -replace github.com/mudler/go-stable-diffusion=$(shell pwd)/sources/go-stable-diffusion
$(GOCMD) mod edit -replace github.com/mudler/go-piper=$(shell pwd)/sources/go-piper

View File

@@ -3,6 +3,7 @@ ttsvalle:
@echo "Creating virtual environment..."
@conda env create --name ttsvalle --file ttsvalle.yml
@echo "Virtual environment created."
bash install.sh
.PHONY: run
run:

View File

@@ -0,0 +1,14 @@
#!/bin/bash
##
## A bash script installs the required dependencies of VALL-E-X and prepares the environment
export PATH=$PATH:/opt/conda/bin
# Activate conda environment
source activate ttsvalle
echo $CONDA_PREFIX
git clone https://github.com/Plachtaa/VALL-E-X.git $CONDA_PREFIX/vall-e-x && pushd $CONDA_PREFIX/vall-e-x && pip install -r requirements.txt && popd
cp -rfv $CONDA_PREFIX/vall-e-x/* ./

View File

@@ -10,4 +10,4 @@ source activate ttsvalle
# get the directory where the bash script is located
DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
python $DIR/ttvalle.py $@
python $DIR/ttsvalle.py $@

View File

@@ -354,3 +354,13 @@ docker run --env REBUILD=true localai
# Option 2: set within an env file
docker run --env-file .env localai
```
### Build only a single backend
You can control the backends that are built by setting the `GRPC_BACKENDS` environment variable. For instance, to build only the `llama-cpp` backend only:
```bash
make GRPC_BACKENDS=backend-assets/grpc/llama-cpp build
```
By default, all the backends are built.

View File

@@ -11,6 +11,8 @@ Section under construction
This section covers how to fine-tune a language model for text generation and consume it in LocalAI.
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/mudler/LocalAI/blob/master/examples/e2e-fine-tuning/notebook.ipynb)
## Requirements
For this example you will need at least a 12GB VRAM of GPU and a Linux box.

View File

@@ -2,7 +2,7 @@ This is an example of fine-tuning a LLM model to use with [LocalAI](https://gith
Specifically, this example shows how to use [axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) to fine-tune a LLM model to consume with LocalAI as a `gguf` model.
A notebook is provided that currently works on _very small_ datasets on Google colab on the free instance. It is far from producing good models, but it gives a sense of how to use the code to use with a better dataset and configurations, and how to use the model produced with LocalAI.
A notebook is provided that currently works on _very small_ datasets on Google colab on the free instance. It is far from producing good models, but it gives a sense of how to use the code to use with a better dataset and configurations, and how to use the model produced with LocalAI. [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/mudler/LocalAI/blob/master/examples/e2e-fine-tuning/notebook.ipynb)
## Requirements