mirror of
https://github.com/mudler/LocalAI.git
synced 2026-02-03 03:02:38 -05:00
Compare commits
69 Commits
v2.12.3
...
revert-205
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
47743b74ab | ||
|
|
af9e5a2d05 | ||
|
|
af8c705ecd | ||
|
|
5763dc1613 | ||
|
|
6b06d4e0af | ||
|
|
bcaa320f36 | ||
|
|
33c78d2228 | ||
|
|
df4a13a08b | ||
|
|
fdec8a9d00 | ||
|
|
0cc1ad2188 | ||
|
|
cdece3879f | ||
|
|
320d8a48d9 | ||
|
|
46609e936e | ||
|
|
b72c6cc9fc | ||
|
|
538a086309 | ||
|
|
c751a4ac06 | ||
|
|
e843d7df0e | ||
|
|
de3a1a0a8e | ||
|
|
57bd365d87 | ||
|
|
b739cbb86b | ||
|
|
4486db912b | ||
|
|
6b07ded119 | ||
|
|
d5699dbf4f | ||
|
|
0fdff26924 | ||
|
|
619f2517a4 | ||
|
|
b91820b7f8 | ||
|
|
4e74560649 | ||
|
|
95244ed6e7 | ||
|
|
f1f39eea3f | ||
|
|
eed5706994 | ||
|
|
1981154f49 | ||
|
|
a8ebf6f575 | ||
|
|
912d2dccfa | ||
|
|
fcb63aed8a | ||
|
|
0e549424e7 | ||
|
|
69d638268b | ||
|
|
18eea9088a | ||
|
|
fb105837ba | ||
|
|
7e52c8e21a | ||
|
|
d068839896 | ||
|
|
e0dee52a2a | ||
|
|
677e20756b | ||
|
|
b2785ff06e | ||
|
|
da82ce81b5 | ||
|
|
70c4f110a4 | ||
|
|
099bd54ff2 | ||
|
|
12c0d9443e | ||
|
|
cbda06fb96 | ||
|
|
b1a242251c | ||
|
|
fce606fc0f | ||
|
|
b606c7b768 | ||
|
|
0a6956b029 | ||
|
|
821cf0e3fd | ||
|
|
11a0418510 | ||
|
|
40781ac013 | ||
|
|
fdfd868953 | ||
|
|
0795975486 | ||
|
|
a49248d29f | ||
|
|
182fef339d | ||
|
|
c74dec7e38 | ||
|
|
b4548ad72d | ||
|
|
e152b07b74 | ||
|
|
0e44a4e664 | ||
|
|
24d7dadfed | ||
|
|
92005b9c02 | ||
|
|
636d487dc8 | ||
|
|
93f51d80d4 | ||
|
|
36da11a0ee | ||
|
|
d23e73b118 |
@@ -1,4 +1,6 @@
|
||||
.idea
|
||||
.github
|
||||
.vscode
|
||||
models
|
||||
examples/chatbot-ui/models
|
||||
examples/rwkv/models
|
||||
|
||||
38
.env
38
.env
@@ -1,33 +1,33 @@
|
||||
## Set number of threads.
|
||||
## Note: prefer the number of physical cores. Overbooking the CPU degrades performance notably.
|
||||
# THREADS=14
|
||||
# LOCALAI_THREADS=14
|
||||
|
||||
## Specify a different bind address (defaults to ":8080")
|
||||
# ADDRESS=127.0.0.1:8080
|
||||
# LOCALAI_ADDRESS=127.0.0.1:8080
|
||||
|
||||
## Default models context size
|
||||
# CONTEXT_SIZE=512
|
||||
# LOCALAI_CONTEXT_SIZE=512
|
||||
#
|
||||
## Define galleries.
|
||||
## models will to install will be visible in `/models/available`
|
||||
# GALLERIES=[{"name":"model-gallery", "url":"github:go-skynet/model-gallery/index.yaml"}]
|
||||
# LOCALAI_GALLERIES=[{"name":"model-gallery", "url":"github:go-skynet/model-gallery/index.yaml"}]
|
||||
|
||||
## CORS settings
|
||||
# CORS=true
|
||||
# CORS_ALLOW_ORIGINS=*
|
||||
# LOCALAI_CORS=true
|
||||
# LOCALAI_CORS_ALLOW_ORIGINS=*
|
||||
|
||||
## Default path for models
|
||||
#
|
||||
# MODELS_PATH=/models
|
||||
# LOCALAI_MODELS_PATH=/models
|
||||
|
||||
## Enable debug mode
|
||||
# DEBUG=true
|
||||
# LOCALAI_LOG_LEVEL=debug
|
||||
|
||||
## Disables COMPEL (Diffusers)
|
||||
# COMPEL=0
|
||||
|
||||
## Enable/Disable single backend (useful if only one GPU is available)
|
||||
# SINGLE_ACTIVE_BACKEND=true
|
||||
# LOCALAI_SINGLE_ACTIVE_BACKEND=true
|
||||
|
||||
## Specify a build type. Available: cublas, openblas, clblas.
|
||||
## cuBLAS: This is a GPU-accelerated version of the complete standard BLAS (Basic Linear Algebra Subprograms) library. It's provided by Nvidia and is part of their CUDA toolkit.
|
||||
@@ -46,13 +46,13 @@
|
||||
# GO_TAGS=stablediffusion
|
||||
|
||||
## Path where to store generated images
|
||||
# IMAGE_PATH=/tmp
|
||||
# LOCALAI_IMAGE_PATH=/tmp/generated/images
|
||||
|
||||
## Specify a default upload limit in MB (whisper)
|
||||
# UPLOAD_LIMIT
|
||||
# LOCALAI_UPLOAD_LIMIT=15
|
||||
|
||||
## List of external GRPC backends (note on the container image this variable is already set to use extra backends available in extra/)
|
||||
# EXTERNAL_GRPC_BACKENDS=my-backend:127.0.0.1:9000,my-backend2:/usr/bin/backend.py
|
||||
# LOCALAI_EXTERNAL_GRPC_BACKENDS=my-backend:127.0.0.1:9000,my-backend2:/usr/bin/backend.py
|
||||
|
||||
### Advanced settings ###
|
||||
### Those are not really used by LocalAI, but from components in the stack ###
|
||||
@@ -72,18 +72,18 @@
|
||||
# LLAMACPP_PARALLEL=1
|
||||
|
||||
### Enable to run parallel requests
|
||||
# PARALLEL_REQUESTS=true
|
||||
# LOCALAI_PARALLEL_REQUESTS=true
|
||||
|
||||
### Watchdog settings
|
||||
###
|
||||
# Enables watchdog to kill backends that are inactive for too much time
|
||||
# WATCHDOG_IDLE=true
|
||||
#
|
||||
# Enables watchdog to kill backends that are busy for too much time
|
||||
# WATCHDOG_BUSY=true
|
||||
# LOCALAI_WATCHDOG_IDLE=true
|
||||
#
|
||||
# Time in duration format (e.g. 1h30m) after which a backend is considered idle
|
||||
# WATCHDOG_IDLE_TIMEOUT=5m
|
||||
# LOCALAI_WATCHDOG_IDLE_TIMEOUT=5m
|
||||
#
|
||||
# Enables watchdog to kill backends that are busy for too much time
|
||||
# LOCALAI_WATCHDOG_BUSY=true
|
||||
#
|
||||
# Time in duration format (e.g. 1h30m) after which a backend is considered busy
|
||||
# WATCHDOG_BUSY_TIMEOUT=5m
|
||||
# LOCALAI_WATCHDOG_BUSY_TIMEOUT=5m
|
||||
25
.github/dependabot.yml
vendored
Normal file
25
.github/dependabot.yml
vendored
Normal file
@@ -0,0 +1,25 @@
|
||||
# https://docs.github.com/en/code-security/dependabot/dependabot-version-updates/configuration-options-for-the-dependabot.yml-file
|
||||
version: 2
|
||||
updates:
|
||||
- package-ecosystem: "gomod"
|
||||
directory: "/"
|
||||
schedule:
|
||||
interval: "weekly"
|
||||
- package-ecosystem: "github-actions"
|
||||
# Workflow files stored in the default location of `.github/workflows`. (You don't need to specify `/.github/workflows` for `directory`. You can use `directory: "/"`.)
|
||||
directory: "/"
|
||||
schedule:
|
||||
# Check for updates to GitHub Actions every weekday
|
||||
interval: "weekly"
|
||||
- package-ecosystem: "pip"
|
||||
# Workflow files stored in the default location of `.github/workflows`. (You don't need to specify `/.github/workflows` for `directory`. You can use `directory: "/"`.)
|
||||
directory: "/"
|
||||
schedule:
|
||||
# Check for updates to GitHub Actions every weekday
|
||||
interval: "weekly"
|
||||
- package-ecosystem: "docker"
|
||||
# Workflow files stored in the default location of `.github/workflows`. (You don't need to specify `/.github/workflows` for `directory`. You can use `directory: "/"`.)
|
||||
directory: "/"
|
||||
schedule:
|
||||
# Check for updates to GitHub Actions every weekday
|
||||
interval: "weekly"
|
||||
2
.github/workflows/bump_deps.yaml
vendored
2
.github/workflows/bump_deps.yaml
vendored
@@ -49,7 +49,7 @@ jobs:
|
||||
run: |
|
||||
bash .github/bump_deps.sh ${{ matrix.repository }} ${{ matrix.branch }} ${{ matrix.variable }}
|
||||
- name: Create Pull Request
|
||||
uses: peter-evans/create-pull-request@v5
|
||||
uses: peter-evans/create-pull-request@v6
|
||||
with:
|
||||
token: ${{ secrets.UPDATE_BOT_TOKEN }}
|
||||
push-to-fork: ci-forks/LocalAI
|
||||
|
||||
2
.github/workflows/bump_docs.yaml
vendored
2
.github/workflows/bump_docs.yaml
vendored
@@ -17,7 +17,7 @@ jobs:
|
||||
run: |
|
||||
bash .github/bump_docs.sh ${{ matrix.repository }}
|
||||
- name: Create Pull Request
|
||||
uses: peter-evans/create-pull-request@v5
|
||||
uses: peter-evans/create-pull-request@v6
|
||||
with:
|
||||
token: ${{ secrets.UPDATE_BOT_TOKEN }}
|
||||
push-to-fork: ci-forks/LocalAI
|
||||
|
||||
43
.github/workflows/dependabot_auto.yml
vendored
Normal file
43
.github/workflows/dependabot_auto.yml
vendored
Normal file
@@ -0,0 +1,43 @@
|
||||
name: Dependabot auto-merge
|
||||
on:
|
||||
- pull_request_target
|
||||
|
||||
permissions:
|
||||
contents: write
|
||||
pull-requests: write
|
||||
packages: read
|
||||
|
||||
jobs:
|
||||
dependabot:
|
||||
runs-on: ubuntu-latest
|
||||
if: ${{ github.actor == 'dependabot[bot]' }}
|
||||
steps:
|
||||
- name: Dependabot metadata
|
||||
id: metadata
|
||||
uses: dependabot/fetch-metadata@v2.0.0
|
||||
with:
|
||||
github-token: "${{ secrets.GITHUB_TOKEN }}"
|
||||
skip-commit-verification: true
|
||||
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Approve a PR if not already approved
|
||||
run: |
|
||||
gh pr checkout "$PR_URL"
|
||||
if [ "$(gh pr status --json reviewDecision -q .currentBranch.reviewDecision)" != "APPROVED" ];
|
||||
then
|
||||
gh pr review --approve "$PR_URL"
|
||||
else
|
||||
echo "PR already approved.";
|
||||
fi
|
||||
env:
|
||||
PR_URL: ${{github.event.pull_request.html_url}}
|
||||
GITHUB_TOKEN: ${{secrets.GITHUB_TOKEN}}
|
||||
|
||||
- name: Enable auto-merge for Dependabot PRs
|
||||
if: ${{ contains(github.event.pull_request.title, 'bump')}}
|
||||
run: gh pr merge --auto --squash "$PR_URL"
|
||||
env:
|
||||
PR_URL: ${{github.event.pull_request.html_url}}
|
||||
GITHUB_TOKEN: ${{secrets.GITHUB_TOKEN}}
|
||||
35
.github/workflows/localaibot_automerge.yml
vendored
Normal file
35
.github/workflows/localaibot_automerge.yml
vendored
Normal file
@@ -0,0 +1,35 @@
|
||||
name: LocalAI-bot auto-merge
|
||||
on:
|
||||
- pull_request_target
|
||||
|
||||
permissions:
|
||||
contents: write
|
||||
pull-requests: write
|
||||
packages: read
|
||||
|
||||
jobs:
|
||||
dependabot:
|
||||
runs-on: ubuntu-latest
|
||||
if: ${{ github.actor == 'localai-bot' }}
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Approve a PR if not already approved
|
||||
run: |
|
||||
gh pr checkout "$PR_URL"
|
||||
if [ "$(gh pr status --json reviewDecision -q .currentBranch.reviewDecision)" != "APPROVED" ];
|
||||
then
|
||||
gh pr review --approve "$PR_URL"
|
||||
else
|
||||
echo "PR already approved.";
|
||||
fi
|
||||
env:
|
||||
PR_URL: ${{github.event.pull_request.html_url}}
|
||||
GITHUB_TOKEN: ${{secrets.GITHUB_TOKEN}}
|
||||
|
||||
- name: Enable auto-merge for LocalAIBot PRs
|
||||
run: gh pr merge --auto --squash "$PR_URL"
|
||||
env:
|
||||
PR_URL: ${{github.event.pull_request.html_url}}
|
||||
GITHUB_TOKEN: ${{secrets.GITHUB_TOKEN}}
|
||||
92
.github/workflows/release.yaml
vendored
92
.github/workflows/release.yaml
vendored
@@ -1,6 +1,8 @@
|
||||
name: Build and Release
|
||||
|
||||
on: push
|
||||
on:
|
||||
- push
|
||||
- pull_request
|
||||
|
||||
env:
|
||||
GRPC_VERSION: v1.58.0
|
||||
@@ -33,14 +35,14 @@ jobs:
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
submodules: true
|
||||
- uses: actions/setup-go@v4
|
||||
- uses: actions/setup-go@v5
|
||||
with:
|
||||
go-version: '1.21.x'
|
||||
cache: false
|
||||
- name: Dependencies
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential ffmpeg
|
||||
sudo apt-get install build-essential ffmpeg protobuf-compiler
|
||||
- name: Install CUDA Dependencies
|
||||
if: ${{ matrix.build == 'cuda12' || matrix.build == 'cuda11' }}
|
||||
run: |
|
||||
@@ -55,7 +57,7 @@ jobs:
|
||||
sudo apt-get install -y cuda-nvcc-${CUDA_VERSION} libcublas-dev-${CUDA_VERSION}
|
||||
- name: Cache grpc
|
||||
id: cache-grpc
|
||||
uses: actions/cache@v3
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
path: grpc
|
||||
key: ${{ runner.os }}-grpc-${{ env.GRPC_VERSION }}
|
||||
@@ -75,6 +77,9 @@ jobs:
|
||||
CMAKE_ARGS: "${{ matrix.defines }}"
|
||||
BUILD_ID: "${{ matrix.build }}"
|
||||
run: |
|
||||
go install google.golang.org/grpc/cmd/protoc-gen-go-grpc@latest
|
||||
go install google.golang.org/protobuf/cmd/protoc-gen-go@latest
|
||||
export PATH=$PATH:$GOPATH/bin
|
||||
if [ "${{ matrix.build }}" == "cuda12" ] || [ "${{ matrix.build }}" == "cuda11" ]; then
|
||||
export BUILD_TYPE=cublas
|
||||
export PATH=/usr/local/cuda/bin:$PATH
|
||||
@@ -82,12 +87,12 @@ jobs:
|
||||
else
|
||||
STATIC=true make dist
|
||||
fi
|
||||
- uses: actions/upload-artifact@v3
|
||||
- uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: ${{ matrix.build }}
|
||||
name: LocalAI-linux-${{ matrix.build }}
|
||||
path: release/
|
||||
- name: Release
|
||||
uses: softprops/action-gh-release@v1
|
||||
uses: softprops/action-gh-release@v2
|
||||
if: startsWith(github.ref, 'refs/tags/')
|
||||
with:
|
||||
files: |
|
||||
@@ -100,27 +105,24 @@ jobs:
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
submodules: true
|
||||
- uses: actions/setup-go@v4
|
||||
- uses: actions/setup-go@v5
|
||||
with:
|
||||
go-version: '1.21.x'
|
||||
cache: false
|
||||
- name: Dependencies
|
||||
run: |
|
||||
sudo apt-get install -y --no-install-recommends libopencv-dev
|
||||
sudo apt-get install -y --no-install-recommends libopencv-dev protobuf-compiler
|
||||
go install google.golang.org/grpc/cmd/protoc-gen-go-grpc@latest
|
||||
go install google.golang.org/protobuf/cmd/protoc-gen-go@latest
|
||||
- name: Build stablediffusion
|
||||
run: |
|
||||
export PATH=$PATH:$GOPATH/bin
|
||||
make backend-assets/grpc/stablediffusion
|
||||
mkdir -p release && cp backend-assets/grpc/stablediffusion release
|
||||
- uses: actions/upload-artifact@v3
|
||||
- uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: stablediffusion
|
||||
path: release/
|
||||
- name: Release
|
||||
uses: softprops/action-gh-release@v1
|
||||
if: startsWith(github.ref, 'refs/tags/')
|
||||
with:
|
||||
files: |
|
||||
release/*
|
||||
|
||||
build-macOS:
|
||||
strategy:
|
||||
@@ -138,13 +140,15 @@ jobs:
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
submodules: true
|
||||
- uses: actions/setup-go@v4
|
||||
- uses: actions/setup-go@v5
|
||||
with:
|
||||
go-version: '1.21.x'
|
||||
cache: false
|
||||
- name: Dependencies
|
||||
run: |
|
||||
brew install protobuf grpc
|
||||
go install google.golang.org/grpc/cmd/protoc-gen-go-grpc@latest
|
||||
go install google.golang.org/protobuf/cmd/protoc-gen-go@latest
|
||||
- name: Build
|
||||
id: build
|
||||
env:
|
||||
@@ -153,13 +157,61 @@ jobs:
|
||||
run: |
|
||||
export C_INCLUDE_PATH=/usr/local/include
|
||||
export CPLUS_INCLUDE_PATH=/usr/local/include
|
||||
export PATH=$PATH:$GOPATH/bin
|
||||
make dist
|
||||
- uses: actions/upload-artifact@v3
|
||||
- uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: ${{ matrix.build }}
|
||||
name: LocalAI-MacOS-${{ matrix.build }}
|
||||
path: release/
|
||||
- name: Release
|
||||
uses: softprops/action-gh-release@v1
|
||||
uses: softprops/action-gh-release@v2
|
||||
if: startsWith(github.ref, 'refs/tags/')
|
||||
with:
|
||||
files: |
|
||||
release/*
|
||||
|
||||
|
||||
build-macOS-arm64:
|
||||
strategy:
|
||||
matrix:
|
||||
include:
|
||||
- build: 'avx2'
|
||||
defines: ''
|
||||
- build: 'avx'
|
||||
defines: '-DLLAMA_AVX2=OFF'
|
||||
- build: 'avx512'
|
||||
defines: '-DLLAMA_AVX512=ON'
|
||||
runs-on: macos-14
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
submodules: true
|
||||
- uses: actions/setup-go@v5
|
||||
with:
|
||||
go-version: '1.21.x'
|
||||
cache: false
|
||||
- name: Dependencies
|
||||
run: |
|
||||
brew install protobuf grpc
|
||||
go install google.golang.org/grpc/cmd/protoc-gen-go-grpc@latest
|
||||
go install google.golang.org/protobuf/cmd/protoc-gen-go@latest
|
||||
- name: Build
|
||||
id: build
|
||||
env:
|
||||
CMAKE_ARGS: "${{ matrix.defines }}"
|
||||
BUILD_ID: "${{ matrix.build }}"
|
||||
run: |
|
||||
export C_INCLUDE_PATH=/usr/local/include
|
||||
export CPLUS_INCLUDE_PATH=/usr/local/include
|
||||
export PATH=$PATH:$GOPATH/bin
|
||||
make dist
|
||||
- uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: LocalAI-MacOS-arm64-${{ matrix.build }}
|
||||
path: release/
|
||||
- name: Release
|
||||
uses: softprops/action-gh-release@v2
|
||||
if: startsWith(github.ref, 'refs/tags/')
|
||||
with:
|
||||
files: |
|
||||
|
||||
9
.github/workflows/secscan.yaml
vendored
9
.github/workflows/secscan.yaml
vendored
@@ -14,14 +14,17 @@ jobs:
|
||||
GO111MODULE: on
|
||||
steps:
|
||||
- name: Checkout Source
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
if: ${{ github.actor != 'dependabot[bot]' }}
|
||||
- name: Run Gosec Security Scanner
|
||||
if: ${{ github.actor != 'dependabot[bot]' }}
|
||||
uses: securego/gosec@master
|
||||
with:
|
||||
# we let the report trigger content trigger a failure using the GitHub Security features.
|
||||
args: '-no-fail -fmt sarif -out results.sarif ./...'
|
||||
- name: Upload SARIF file
|
||||
uses: github/codeql-action/upload-sarif@v2
|
||||
if: ${{ github.actor != 'dependabot[bot]' }}
|
||||
uses: github/codeql-action/upload-sarif@v3
|
||||
with:
|
||||
# Path to SARIF file relative to the root of the repository
|
||||
sarif_file: results.sarif
|
||||
sarif_file: results.sarif
|
||||
|
||||
58
.github/workflows/test-extra.yml
vendored
58
.github/workflows/test-extra.yml
vendored
@@ -32,8 +32,9 @@ jobs:
|
||||
sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" | tee -a /etc/apt/sources.list.d/conda.list' && \
|
||||
sudo apt-get update && \
|
||||
sudo apt-get install -y conda
|
||||
sudo apt-get install -y ca-certificates cmake curl patch
|
||||
sudo apt-get install -y ca-certificates cmake curl patch python3-pip
|
||||
sudo apt-get install -y libopencv-dev
|
||||
pip install --user grpcio-tools
|
||||
|
||||
sudo rm -rfv /usr/bin/conda || true
|
||||
|
||||
@@ -61,8 +62,9 @@ jobs:
|
||||
sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" | tee -a /etc/apt/sources.list.d/conda.list' && \
|
||||
sudo apt-get update && \
|
||||
sudo apt-get install -y conda
|
||||
sudo apt-get install -y ca-certificates cmake curl patch
|
||||
sudo apt-get install -y ca-certificates cmake curl patch python3-pip
|
||||
sudo apt-get install -y libopencv-dev
|
||||
pip install --user grpcio-tools
|
||||
|
||||
sudo rm -rfv /usr/bin/conda || true
|
||||
|
||||
@@ -90,8 +92,9 @@ jobs:
|
||||
sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" | tee -a /etc/apt/sources.list.d/conda.list' && \
|
||||
sudo apt-get update && \
|
||||
sudo apt-get install -y conda
|
||||
sudo apt-get install -y ca-certificates cmake curl patch
|
||||
sudo apt-get install -y ca-certificates cmake curl patch python3-pip
|
||||
sudo apt-get install -y libopencv-dev
|
||||
pip install --user grpcio-tools
|
||||
|
||||
sudo rm -rfv /usr/bin/conda || true
|
||||
|
||||
@@ -101,6 +104,35 @@ jobs:
|
||||
make --jobs=5 --output-sync=target -C backend/python/diffusers
|
||||
make --jobs=5 --output-sync=target -C backend/python/diffusers test
|
||||
|
||||
tests-parler-tts:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
submodules: true
|
||||
- name: Dependencies
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential ffmpeg
|
||||
curl https://repo.anaconda.com/pkgs/misc/gpgkeys/anaconda.asc | gpg --dearmor > conda.gpg && \
|
||||
sudo install -o root -g root -m 644 conda.gpg /usr/share/keyrings/conda-archive-keyring.gpg && \
|
||||
gpg --keyring /usr/share/keyrings/conda-archive-keyring.gpg --no-default-keyring --fingerprint 34161F5BF5EB1D4BFBBB8F0A8AEB4F8B29D82806 && \
|
||||
sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" > /etc/apt/sources.list.d/conda.list' && \
|
||||
sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" | tee -a /etc/apt/sources.list.d/conda.list' && \
|
||||
sudo apt-get update && \
|
||||
sudo apt-get install -y conda
|
||||
sudo apt-get install -y ca-certificates cmake curl patch python3-pip
|
||||
sudo apt-get install -y libopencv-dev
|
||||
pip install --user grpcio-tools
|
||||
|
||||
sudo rm -rfv /usr/bin/conda || true
|
||||
|
||||
- name: Test parler-tts
|
||||
run: |
|
||||
export PATH=$PATH:/opt/conda/bin
|
||||
make --jobs=5 --output-sync=target -C backend/python/parler-tts
|
||||
make --jobs=5 --output-sync=target -C backend/python/parler-tts test
|
||||
|
||||
tests-transformers-musicgen:
|
||||
runs-on: ubuntu-latest
|
||||
@@ -120,8 +152,9 @@ jobs:
|
||||
sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" | tee -a /etc/apt/sources.list.d/conda.list' && \
|
||||
sudo apt-get update && \
|
||||
sudo apt-get install -y conda
|
||||
sudo apt-get install -y ca-certificates cmake curl patch
|
||||
sudo apt-get install -y ca-certificates cmake curl patch python3-pip
|
||||
sudo apt-get install -y libopencv-dev
|
||||
pip install --user grpcio-tools
|
||||
|
||||
sudo rm -rfv /usr/bin/conda || true
|
||||
|
||||
@@ -151,8 +184,9 @@ jobs:
|
||||
# sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" | tee -a /etc/apt/sources.list.d/conda.list' && \
|
||||
# sudo apt-get update && \
|
||||
# sudo apt-get install -y conda
|
||||
# sudo apt-get install -y ca-certificates cmake curl patch
|
||||
# sudo apt-get install -y ca-certificates cmake curl patch python3-pip
|
||||
# sudo apt-get install -y libopencv-dev
|
||||
# pip install --user grpcio-tools
|
||||
|
||||
# sudo rm -rfv /usr/bin/conda || true
|
||||
|
||||
@@ -222,8 +256,9 @@ jobs:
|
||||
# sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" | tee -a /etc/apt/sources.list.d/conda.list' && \
|
||||
# sudo apt-get update && \
|
||||
# sudo apt-get install -y conda
|
||||
# sudo apt-get install -y ca-certificates cmake curl patch
|
||||
# sudo apt-get install -y ca-certificates cmake curl patch python3-pip
|
||||
# sudo apt-get install -y libopencv-dev
|
||||
# pip install --user grpcio-tools
|
||||
|
||||
# sudo rm -rfv /usr/bin/conda || true
|
||||
|
||||
@@ -254,8 +289,9 @@ jobs:
|
||||
# sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" | tee -a /etc/apt/sources.list.d/conda.list' && \
|
||||
# sudo apt-get update && \
|
||||
# sudo apt-get install -y conda
|
||||
# sudo apt-get install -y ca-certificates cmake curl patch
|
||||
# sudo apt-get install -y ca-certificates cmake curl patch python3-pip
|
||||
# sudo apt-get install -y libopencv-dev
|
||||
# pip install --user grpcio-tools
|
||||
# sudo rm -rfv /usr/bin/conda || true
|
||||
# - name: Test vllm
|
||||
# run: |
|
||||
@@ -280,8 +316,9 @@ jobs:
|
||||
sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" | tee -a /etc/apt/sources.list.d/conda.list' && \
|
||||
sudo apt-get update && \
|
||||
sudo apt-get install -y conda
|
||||
sudo apt-get install -y ca-certificates cmake curl patch
|
||||
sudo apt-get install -y libopencv-dev
|
||||
sudo apt-get install -y ca-certificates cmake curl patch python3-pip
|
||||
sudo apt-get install -y libopencv-dev
|
||||
pip install --user grpcio-tools
|
||||
sudo rm -rfv /usr/bin/conda || true
|
||||
- name: Test vall-e-x
|
||||
run: |
|
||||
@@ -307,7 +344,8 @@ jobs:
|
||||
sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" | tee -a /etc/apt/sources.list.d/conda.list' && \
|
||||
sudo apt-get update && \
|
||||
sudo apt-get install -y conda
|
||||
sudo apt-get install -y ca-certificates cmake curl patch espeak espeak-ng
|
||||
sudo apt-get install -y ca-certificates cmake curl patch espeak espeak-ng python3-pip
|
||||
pip install --user grpcio-tools
|
||||
sudo rm -rfv /usr/bin/conda || true
|
||||
|
||||
- name: Test coqui
|
||||
|
||||
46
.github/workflows/test.yml
vendored
46
.github/workflows/test.yml
vendored
@@ -60,7 +60,7 @@ jobs:
|
||||
with:
|
||||
submodules: true
|
||||
- name: Setup Go ${{ matrix.go-version }}
|
||||
uses: actions/setup-go@v4
|
||||
uses: actions/setup-go@v5
|
||||
with:
|
||||
go-version: ${{ matrix.go-version }}
|
||||
cache: false
|
||||
@@ -70,17 +70,27 @@ jobs:
|
||||
- name: Dependencies
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential ffmpeg
|
||||
sudo apt-get install build-essential curl ffmpeg
|
||||
curl https://repo.anaconda.com/pkgs/misc/gpgkeys/anaconda.asc | gpg --dearmor > conda.gpg && \
|
||||
sudo install -o root -g root -m 644 conda.gpg /usr/share/keyrings/conda-archive-keyring.gpg && \
|
||||
gpg --keyring /usr/share/keyrings/conda-archive-keyring.gpg --no-default-keyring --fingerprint 34161F5BF5EB1D4BFBBB8F0A8AEB4F8B29D82806 && \
|
||||
gpg --keyring /usr/share/keyrings/conda-archive-keyring.gpg --no-default-keyring --fingerprint 34161F5BF5EB1D4BFBBB8F0A8AEB4F8B29D82806 && \
|
||||
sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" > /etc/apt/sources.list.d/conda.list' && \
|
||||
sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" | tee -a /etc/apt/sources.list.d/conda.list' && \
|
||||
sudo apt-get update && \
|
||||
sudo apt-get install -y conda
|
||||
sudo apt-get install -y ca-certificates cmake curl patch
|
||||
sudo apt-get install -y ca-certificates cmake patch python3-pip unzip
|
||||
sudo apt-get install -y libopencv-dev
|
||||
|
||||
|
||||
curl -L -s https://github.com/protocolbuffers/protobuf/releases/download/v26.1/protoc-26.1-linux-x86_64.zip -o protoc.zip && \
|
||||
unzip -j -d /usr/local/bin protoc.zip bin/protoc && \
|
||||
rm protoc.zip
|
||||
|
||||
go install google.golang.org/protobuf/cmd/protoc-gen-go@latest
|
||||
go install google.golang.org/grpc/cmd/protoc-gen-go-grpc@latest
|
||||
|
||||
# The python3-grpc-tools package in 22.04 is too old
|
||||
pip install --user grpcio-tools
|
||||
|
||||
sudo rm -rfv /usr/bin/conda || true
|
||||
PATH=$PATH:/opt/conda/bin make -C backend/python/sentencetransformers
|
||||
|
||||
@@ -89,10 +99,10 @@ jobs:
|
||||
GO_TAGS="tts" make -C sources/go-piper piper.o && \
|
||||
sudo cp -rfv sources/go-piper/piper-phonemize/pi/lib/. /usr/lib/ && \
|
||||
# Pre-build stable diffusion before we install a newer version of abseil (not compatible with stablediffusion-ncn)
|
||||
GO_TAGS="stablediffusion tts" GRPC_BACKENDS=backend-assets/grpc/stablediffusion make build
|
||||
PATH="$PATH:/root/go/bin" GO_TAGS="stablediffusion tts" GRPC_BACKENDS=backend-assets/grpc/stablediffusion make build
|
||||
- name: Cache grpc
|
||||
id: cache-grpc
|
||||
uses: actions/cache@v3
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
path: grpc
|
||||
key: ${{ runner.os }}-grpc-${{ env.GRPC_VERSION }}
|
||||
@@ -108,11 +118,12 @@ jobs:
|
||||
cd grpc && cd cmake/build && sudo make --jobs 5 install
|
||||
- name: Test
|
||||
run: |
|
||||
GO_TAGS="stablediffusion tts" make --jobs 5 --output-sync=target test
|
||||
PATH="$PATH:/root/go/bin" GO_TAGS="stablediffusion tts" make --jobs 5 --output-sync=target test
|
||||
- name: Setup tmate session if tests fail
|
||||
if: ${{ failure() }}
|
||||
uses: mxschmitt/action-tmate@v3
|
||||
timeout-minutes: 5
|
||||
uses: mxschmitt/action-tmate@v3.18
|
||||
with:
|
||||
connect-timeout-seconds: 180
|
||||
|
||||
tests-aio-container:
|
||||
runs-on: ubuntu-latest
|
||||
@@ -163,8 +174,9 @@ jobs:
|
||||
make run-e2e-aio
|
||||
- name: Setup tmate session if tests fail
|
||||
if: ${{ failure() }}
|
||||
uses: mxschmitt/action-tmate@v3
|
||||
timeout-minutes: 5
|
||||
uses: mxschmitt/action-tmate@v3.18
|
||||
with:
|
||||
connect-timeout-seconds: 180
|
||||
|
||||
tests-apple:
|
||||
runs-on: macOS-14
|
||||
@@ -177,7 +189,7 @@ jobs:
|
||||
with:
|
||||
submodules: true
|
||||
- name: Setup Go ${{ matrix.go-version }}
|
||||
uses: actions/setup-go@v4
|
||||
uses: actions/setup-go@v5
|
||||
with:
|
||||
go-version: ${{ matrix.go-version }}
|
||||
cache: false
|
||||
@@ -186,7 +198,8 @@ jobs:
|
||||
run: go version
|
||||
- name: Dependencies
|
||||
run: |
|
||||
brew install protobuf grpc make
|
||||
brew install protobuf grpc make protoc-gen-go protoc-gen-go-grpc
|
||||
pip install --user grpcio-tools
|
||||
- name: Test
|
||||
run: |
|
||||
export C_INCLUDE_PATH=/usr/local/include
|
||||
@@ -196,5 +209,6 @@ jobs:
|
||||
BUILD_TYPE="GITHUB_CI_HAS_BROKEN_METAL" CMAKE_ARGS="-DLLAMA_F16C=OFF -DLLAMA_AVX512=OFF -DLLAMA_AVX2=OFF -DLLAMA_FMA=OFF" make --jobs 4 --output-sync=target test
|
||||
- name: Setup tmate session if tests fail
|
||||
if: ${{ failure() }}
|
||||
uses: mxschmitt/action-tmate@v3
|
||||
timeout-minutes: 5
|
||||
uses: mxschmitt/action-tmate@v3.18
|
||||
with:
|
||||
connect-timeout-seconds: 180
|
||||
5
.gitignore
vendored
5
.gitignore
vendored
@@ -39,3 +39,8 @@ backend-assets/*
|
||||
!backend-assets/.keep
|
||||
prepare
|
||||
/ggml-metal.metal
|
||||
|
||||
# Protobuf generated files
|
||||
*.pb.go
|
||||
*pb2.py
|
||||
*pb2_grpc.py
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
# Contributing to localAI
|
||||
# Contributing to LocalAI
|
||||
|
||||
Thank you for your interest in contributing to LocalAI! We appreciate your time and effort in helping to improve our project. Before you get started, please take a moment to review these guidelines.
|
||||
|
||||
@@ -29,8 +29,9 @@ Thank you for your interest in contributing to LocalAI! We appreciate your time
|
||||
|
||||
1. Clone the repository: `git clone https://github.com/go-skynet/LocalAI.git`
|
||||
2. Navigate to the project directory: `cd LocalAI`
|
||||
3. Install the required dependencies: `make prepare`
|
||||
4. Run LocalAI: `make run`
|
||||
3. Install the required dependencies ( see https://localai.io/basics/build/#build-localai-locally )
|
||||
4. Build LocalAI: `make build`
|
||||
5. Run LocalAI: `./local-ai`
|
||||
|
||||
## Contributing
|
||||
|
||||
@@ -59,14 +60,29 @@ If you find a bug, have a feature request, or encounter any issues, please check
|
||||
|
||||
`make test` cannot handle all the model now. Please be sure to add a test case for the new features or the part was changed.
|
||||
|
||||
### Running AIO tests
|
||||
|
||||
All-In-One images has a set of tests that automatically verifies that most of the endpoints works correctly, a flow can be :
|
||||
|
||||
```bash
|
||||
# Build the LocalAI docker image
|
||||
make DOCKER_IMAGE=local-ai docker
|
||||
|
||||
# Build the corresponding AIO image
|
||||
BASE_IMAGE=local-ai DOCKER_AIO_IMAGE=local-ai-aio:test make docker-aio
|
||||
|
||||
# Run the AIO e2e tests
|
||||
LOCALAI_IMAGE_TAG=test LOCALAI_IMAGE=local-ai-aio make run-e2e-aio
|
||||
```
|
||||
|
||||
## Documentation
|
||||
|
||||
- We are welcome the contribution of the documents, please open new PR in the official document repo [localai-website](https://github.com/go-skynet/localai-website)
|
||||
|
||||
We are welcome the contribution of the documents, please open new PR or create a new issue. The documentation is available under `docs/` https://github.com/mudler/LocalAI/tree/master/docs
|
||||
|
||||
## Community and Communication
|
||||
|
||||
- You can reach out via the Github issue tracker.
|
||||
- Open a new discussion at [Discussion](https://github.com/go-skynet/LocalAI/discussions)
|
||||
- Join the Discord channel [Discord](https://discord.gg/uJAeKSAGDy)
|
||||
|
||||
---
|
||||
---
|
||||
|
||||
38
Dockerfile
38
Dockerfile
@@ -15,17 +15,30 @@ ARG TARGETVARIANT
|
||||
|
||||
ENV BUILD_TYPE=${BUILD_TYPE}
|
||||
ENV DEBIAN_FRONTEND=noninteractive
|
||||
ENV EXTERNAL_GRPC_BACKENDS="coqui:/build/backend/python/coqui/run.sh,huggingface-embeddings:/build/backend/python/sentencetransformers/run.sh,petals:/build/backend/python/petals/run.sh,transformers:/build/backend/python/transformers/run.sh,sentencetransformers:/build/backend/python/sentencetransformers/run.sh,autogptq:/build/backend/python/autogptq/run.sh,bark:/build/backend/python/bark/run.sh,diffusers:/build/backend/python/diffusers/run.sh,exllama:/build/backend/python/exllama/run.sh,vall-e-x:/build/backend/python/vall-e-x/run.sh,vllm:/build/backend/python/vllm/run.sh,mamba:/build/backend/python/mamba/run.sh,exllama2:/build/backend/python/exllama2/run.sh,transformers-musicgen:/build/backend/python/transformers-musicgen/run.sh"
|
||||
ENV EXTERNAL_GRPC_BACKENDS="coqui:/build/backend/python/coqui/run.sh,huggingface-embeddings:/build/backend/python/sentencetransformers/run.sh,petals:/build/backend/python/petals/run.sh,transformers:/build/backend/python/transformers/run.sh,sentencetransformers:/build/backend/python/sentencetransformers/run.sh,autogptq:/build/backend/python/autogptq/run.sh,bark:/build/backend/python/bark/run.sh,diffusers:/build/backend/python/diffusers/run.sh,exllama:/build/backend/python/exllama/run.sh,vall-e-x:/build/backend/python/vall-e-x/run.sh,vllm:/build/backend/python/vllm/run.sh,mamba:/build/backend/python/mamba/run.sh,exllama2:/build/backend/python/exllama2/run.sh,transformers-musicgen:/build/backend/python/transformers-musicgen/run.sh,parler-tts:/build/backend/python/parler-tts/run.sh"
|
||||
|
||||
ARG GO_TAGS="stablediffusion tinydream tts"
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y ca-certificates curl patch pip cmake git && apt-get clean
|
||||
apt-get install -y ca-certificates curl python3-pip unzip && apt-get clean
|
||||
|
||||
# Install Go
|
||||
RUN curl -L -s https://go.dev/dl/go$GO_VERSION.linux-$TARGETARCH.tar.gz | tar -C /usr/local -xz
|
||||
ENV PATH $PATH:/usr/local/go/bin
|
||||
|
||||
# Install grpc compilers
|
||||
ENV PATH $PATH:/root/go/bin
|
||||
RUN go install google.golang.org/protobuf/cmd/protoc-gen-go@latest && \
|
||||
go install google.golang.org/grpc/cmd/protoc-gen-go-grpc@latest
|
||||
|
||||
# Install protobuf (the version in 22.04 is too old)
|
||||
RUN curl -L -s https://github.com/protocolbuffers/protobuf/releases/download/v26.1/protoc-26.1-linux-x86_64.zip -o protoc.zip && \
|
||||
unzip -j -d /usr/local/bin protoc.zip bin/protoc && \
|
||||
rm protoc.zip
|
||||
|
||||
# Install grpcio-tools (the version in 22.04 is too old)
|
||||
RUN pip install --user grpcio-tools
|
||||
|
||||
COPY --chmod=644 custom-ca-certs/* /usr/local/share/ca-certificates/
|
||||
RUN update-ca-certificates
|
||||
|
||||
@@ -68,7 +81,8 @@ RUN test -n "$TARGETARCH" \
|
||||
|
||||
FROM requirements-core as requirements-extras
|
||||
|
||||
RUN curl https://repo.anaconda.com/pkgs/misc/gpgkeys/anaconda.asc | gpg --dearmor > conda.gpg && \
|
||||
RUN apt install -y gpg && \
|
||||
curl https://repo.anaconda.com/pkgs/misc/gpgkeys/anaconda.asc | gpg --dearmor > conda.gpg && \
|
||||
install -o root -g root -m 644 conda.gpg /usr/share/keyrings/conda-archive-keyring.gpg && \
|
||||
gpg --keyring /usr/share/keyrings/conda-archive-keyring.gpg --no-default-keyring --fingerprint 34161F5BF5EB1D4BFBBB8F0A8AEB4F8B29D82806 && \
|
||||
echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" > /etc/apt/sources.list.d/conda.list && \
|
||||
@@ -100,7 +114,7 @@ ENV MAKEFLAGS=${MAKEFLAGS}
|
||||
WORKDIR /build
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y g++ cmake git && \
|
||||
apt-get install -y build-essential cmake git && \
|
||||
apt-get clean && \
|
||||
rm -rf /var/lib/apt/lists/*
|
||||
|
||||
@@ -133,6 +147,12 @@ WORKDIR /build
|
||||
COPY . .
|
||||
COPY .git .
|
||||
RUN echo "GO_TAGS: $GO_TAGS"
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y build-essential cmake git && \
|
||||
apt-get clean && \
|
||||
rm -rf /var/lib/apt/lists/*
|
||||
|
||||
RUN make prepare
|
||||
|
||||
# If we are building with clblas support, we need the libraries for the builds
|
||||
@@ -191,6 +211,11 @@ RUN if [ "${BUILD_TYPE}" = "clblas" ]; then \
|
||||
apt-get clean \
|
||||
; fi
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y cmake git && \
|
||||
apt-get clean && \
|
||||
rm -rf /var/lib/apt/lists/*
|
||||
|
||||
WORKDIR /build
|
||||
|
||||
# we start fresh & re-copy all assets because `make build` does not clean up nicely after itself
|
||||
@@ -202,7 +227,7 @@ COPY . .
|
||||
COPY --from=builder /build/sources ./sources/
|
||||
COPY --from=grpc /build/grpc ./grpc/
|
||||
|
||||
RUN make prepare-sources && cd /build/grpc/cmake/build && make install && rm -rf grpc
|
||||
RUN make prepare-sources && cd /build/grpc/cmake/build && make install && rm -rf /build/grpc
|
||||
|
||||
# Copy the binary
|
||||
COPY --from=builder /build/local-ai ./
|
||||
@@ -250,6 +275,9 @@ RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
|
||||
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
|
||||
make -C backend/python/transformers-musicgen \
|
||||
; fi
|
||||
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
|
||||
make -C backend/python/parler-tts \
|
||||
; fi
|
||||
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
|
||||
make -C backend/python/coqui \
|
||||
; fi
|
||||
|
||||
175
Makefile
175
Makefile
@@ -5,7 +5,7 @@ BINARY_NAME=local-ai
|
||||
|
||||
# llama.cpp versions
|
||||
GOLLAMA_STABLE_VERSION?=2b57a8ae43e4699d3dc5d1496a1ccd42922993be
|
||||
CPPLLAMA_VERSION?=1b67731e184e27a465b8c5476061294a4af668ea
|
||||
CPPLLAMA_VERSION?=7593639ce335e8d7f89aa9a54d616951f273af60
|
||||
|
||||
# gpt4all version
|
||||
GPT4ALL_REPO?=https://github.com/nomic-ai/gpt4all
|
||||
@@ -16,7 +16,7 @@ RWKV_REPO?=https://github.com/donomii/go-rwkv.cpp
|
||||
RWKV_VERSION?=661e7ae26d442f5cfebd2a0881b44e8c55949ec6
|
||||
|
||||
# whisper.cpp version
|
||||
WHISPER_CPP_VERSION?=8f253ef3af1c62c04316ba4afa7145fc4d701a8c
|
||||
WHISPER_CPP_VERSION?=b0c3cbf2e851cf232e432b590dcc514a689ec028
|
||||
|
||||
# bert.cpp version
|
||||
BERT_VERSION?=6abe312cded14042f6b7c3cd8edf082713334a4d
|
||||
@@ -289,16 +289,21 @@ clean: ## Remove build related file
|
||||
rm -rf ./sources
|
||||
rm -rf $(BINARY_NAME)
|
||||
rm -rf release/
|
||||
rm -rf backend-assets
|
||||
rm -rf backend-assets/*
|
||||
$(MAKE) -C backend/cpp/grpc clean
|
||||
$(MAKE) -C backend/cpp/llama clean
|
||||
$(MAKE) dropreplace
|
||||
$(MAKE) protogen-clean
|
||||
rmdir pkg/grpc/proto || true
|
||||
|
||||
clean-tests:
|
||||
rm -rf test-models
|
||||
rm -rf test-dir
|
||||
rm -rf core/http/backend-assets
|
||||
|
||||
halt-backends: ## Used to clean up stray backends sometimes left running when debugging manually
|
||||
ps | grep 'backend-assets/grpc/' | awk '{print $$1}' | xargs -I {} kill -9 {}
|
||||
|
||||
## Build:
|
||||
build: prepare backend-assets grpcs ## Build the project
|
||||
$(info ${GREEN}I local-ai build info:${RESET})
|
||||
@@ -363,13 +368,13 @@ run-e2e-image:
|
||||
|
||||
run-e2e-aio:
|
||||
@echo 'Running e2e AIO tests'
|
||||
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --flake-attempts 5 -v -r ./tests/e2e-aio
|
||||
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --flake-attempts $(TEST_FLAKES) -v -r ./tests/e2e-aio
|
||||
|
||||
test-e2e:
|
||||
@echo 'Running e2e tests'
|
||||
BUILD_TYPE=$(BUILD_TYPE) \
|
||||
LOCALAI_API=http://$(E2E_BRIDGE_IP):5390/v1 \
|
||||
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --flake-attempts 5 -v -r ./tests/e2e
|
||||
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --flake-attempts $(TEST_FLAKES) -v -r ./tests/e2e
|
||||
|
||||
teardown-e2e:
|
||||
rm -rf $(TEST_DIR) || true
|
||||
@@ -377,15 +382,15 @@ teardown-e2e:
|
||||
|
||||
test-gpt4all: prepare-test
|
||||
TEST_DIR=$(abspath ./)/test-dir/ FIXTURES=$(abspath ./)/tests/fixtures CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models \
|
||||
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="gpt4all" --flake-attempts 5 -v -r $(TEST_PATHS)
|
||||
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="gpt4all" --flake-attempts $(TEST_FLAKES) -v -r $(TEST_PATHS)
|
||||
|
||||
test-llama: prepare-test
|
||||
TEST_DIR=$(abspath ./)/test-dir/ FIXTURES=$(abspath ./)/tests/fixtures CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models \
|
||||
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="llama" --flake-attempts 5 -v -r $(TEST_PATHS)
|
||||
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="llama" --flake-attempts $(TEST_FLAKES) -v -r $(TEST_PATHS)
|
||||
|
||||
test-llama-gguf: prepare-test
|
||||
TEST_DIR=$(abspath ./)/test-dir/ FIXTURES=$(abspath ./)/tests/fixtures CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models \
|
||||
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="llama-gguf" --flake-attempts 5 -v -r $(TEST_PATHS)
|
||||
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="llama-gguf" --flake-attempts $(TEST_FLAKES) -v -r $(TEST_PATHS)
|
||||
|
||||
test-tts: prepare-test
|
||||
TEST_DIR=$(abspath ./)/test-dir/ FIXTURES=$(abspath ./)/tests/fixtures CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models \
|
||||
@@ -416,30 +421,144 @@ help: ## Show this help.
|
||||
else if (/^## .*$$/) {printf " ${CYAN}%s${RESET}\n", substr($$1,4)} \
|
||||
}' $(MAKEFILE_LIST)
|
||||
|
||||
.PHONY: protogen
|
||||
protogen: protogen-go protogen-python
|
||||
|
||||
.PHONY: protogen-clean
|
||||
protogen-clean: protogen-go-clean protogen-python-clean
|
||||
|
||||
.PHONY: protogen-go
|
||||
protogen-go:
|
||||
mkdir -p pkg/grpc/proto
|
||||
protoc -Ibackend/ --go_out=pkg/grpc/proto/ --go_opt=paths=source_relative --go-grpc_out=pkg/grpc/proto/ --go-grpc_opt=paths=source_relative \
|
||||
backend/backend.proto
|
||||
|
||||
protogen-python:
|
||||
python3 -m grpc_tools.protoc -Ibackend/ --python_out=backend/python/sentencetransformers/ --grpc_python_out=backend/python/sentencetransformers/ backend/backend.proto
|
||||
python3 -m grpc_tools.protoc -Ibackend/ --python_out=backend/python/transformers/ --grpc_python_out=backend/python/transformers/ backend/backend.proto
|
||||
python3 -m grpc_tools.protoc -Ibackend/ --python_out=backend/python/transformers-musicgen/ --grpc_python_out=backend/python/transformers-musicgen/ backend/backend.proto
|
||||
python3 -m grpc_tools.protoc -Ibackend/ --python_out=backend/python/autogptq/ --grpc_python_out=backend/python/autogptq/ backend/backend.proto
|
||||
python3 -m grpc_tools.protoc -Ibackend/ --python_out=backend/python/exllama/ --grpc_python_out=backend/python/exllama/ backend/backend.proto
|
||||
python3 -m grpc_tools.protoc -Ibackend/ --python_out=backend/python/bark/ --grpc_python_out=backend/python/bark/ backend/backend.proto
|
||||
python3 -m grpc_tools.protoc -Ibackend/ --python_out=backend/python/diffusers/ --grpc_python_out=backend/python/diffusers/ backend/backend.proto
|
||||
python3 -m grpc_tools.protoc -Ibackend/ --python_out=backend/python/coqui/ --grpc_python_out=backend/python/coqui/ backend/backend.proto
|
||||
python3 -m grpc_tools.protoc -Ibackend/ --python_out=backend/python/vall-e-x/ --grpc_python_out=backend/python/vall-e-x/ backend/backend.proto
|
||||
python3 -m grpc_tools.protoc -Ibackend/ --python_out=backend/python/vllm/ --grpc_python_out=backend/python/vllm/ backend/backend.proto
|
||||
python3 -m grpc_tools.protoc -Ibackend/ --python_out=backend/python/petals/ --grpc_python_out=backend/python/petals/ backend/backend.proto
|
||||
python3 -m grpc_tools.protoc -Ibackend/ --python_out=backend/python/mamba/ --grpc_python_out=backend/python/mamba/ backend/backend.proto
|
||||
python3 -m grpc_tools.protoc -Ibackend/ --python_out=backend/python/exllama2/ --grpc_python_out=backend/python/exllama2/ backend/backend.proto
|
||||
.PHONY: protogen-go-clean
|
||||
protogen-go-clean:
|
||||
$(RM) pkg/grpc/proto/backend.pb.go pkg/grpc/proto/backend_grpc.pb.go
|
||||
$(RM) bin/*
|
||||
|
||||
.PHONY: protogen-python
|
||||
protogen-python: autogptq-protogen bark-protogen coqui-protogen diffusers-protogen exllama-protogen exllama2-protogen mamba-protogen petals-protogen sentencetransformers-protogen transformers-protogen parler-tts-protogen transformers-musicgen-protogen vall-e-x-protogen vllm-protogen
|
||||
|
||||
.PHONY: protogen-python-clean
|
||||
protogen-python-clean: autogptq-protogen-clean bark-protogen-clean coqui-protogen-clean diffusers-protogen-clean exllama-protogen-clean exllama2-protogen-clean mamba-protogen-clean petals-protogen-clean sentencetransformers-protogen-clean transformers-protogen-clean transformers-musicgen-protogen-clean parler-tts-protogen-clean vall-e-x-protogen-clean vllm-protogen-clean
|
||||
|
||||
.PHONY: autogptq-protogen
|
||||
autogptq-protogen:
|
||||
$(MAKE) -C backend/python/autogptq protogen
|
||||
|
||||
.PHONY: autogptq-protogen-clean
|
||||
autogptq-protogen-clean:
|
||||
$(MAKE) -C backend/python/autogptq protogen-clean
|
||||
|
||||
.PHONY: bark-protogen
|
||||
bark-protogen:
|
||||
$(MAKE) -C backend/python/bark protogen
|
||||
|
||||
.PHONY: bark-protogen-clean
|
||||
bark-protogen-clean:
|
||||
$(MAKE) -C backend/python/bark protogen-clean
|
||||
|
||||
.PHONY: coqui-protogen
|
||||
coqui-protogen:
|
||||
$(MAKE) -C backend/python/coqui protogen
|
||||
|
||||
.PHONY: coqui-protogen-clean
|
||||
coqui-protogen-clean:
|
||||
$(MAKE) -C backend/python/coqui protogen-clean
|
||||
|
||||
.PHONY: diffusers-protogen
|
||||
diffusers-protogen:
|
||||
$(MAKE) -C backend/python/diffusers protogen
|
||||
|
||||
.PHONY: diffusers-protogen-clean
|
||||
diffusers-protogen-clean:
|
||||
$(MAKE) -C backend/python/diffusers protogen-clean
|
||||
|
||||
.PHONY: exllama-protogen
|
||||
exllama-protogen:
|
||||
$(MAKE) -C backend/python/exllama protogen
|
||||
|
||||
.PHONY: exllama-protogen-clean
|
||||
exllama-protogen-clean:
|
||||
$(MAKE) -C backend/python/exllama protogen-clean
|
||||
|
||||
.PHONY: exllama2-protogen
|
||||
exllama2-protogen:
|
||||
$(MAKE) -C backend/python/exllama2 protogen
|
||||
|
||||
.PHONY: exllama2-protogen-clean
|
||||
exllama2-protogen-clean:
|
||||
$(MAKE) -C backend/python/exllama2 protogen-clean
|
||||
|
||||
.PHONY: mamba-protogen
|
||||
mamba-protogen:
|
||||
$(MAKE) -C backend/python/mamba protogen
|
||||
|
||||
.PHONY: mamba-protogen-clean
|
||||
mamba-protogen-clean:
|
||||
$(MAKE) -C backend/python/mamba protogen-clean
|
||||
|
||||
.PHONY: petals-protogen
|
||||
petals-protogen:
|
||||
$(MAKE) -C backend/python/petals protogen
|
||||
|
||||
.PHONY: petals-protogen-clean
|
||||
petals-protogen-clean:
|
||||
$(MAKE) -C backend/python/petals protogen-clean
|
||||
|
||||
.PHONY: sentencetransformers-protogen
|
||||
sentencetransformers-protogen:
|
||||
$(MAKE) -C backend/python/sentencetransformers protogen
|
||||
|
||||
.PHONY: sentencetransformers-protogen-clean
|
||||
sentencetransformers-protogen-clean:
|
||||
$(MAKE) -C backend/python/sentencetransformers protogen-clean
|
||||
|
||||
.PHONY: transformers-protogen
|
||||
transformers-protogen:
|
||||
$(MAKE) -C backend/python/transformers protogen
|
||||
|
||||
.PHONY: transformers-protogen-clean
|
||||
transformers-protogen-clean:
|
||||
$(MAKE) -C backend/python/transformers protogen-clean
|
||||
|
||||
.PHONY: parler-tts-protogen
|
||||
parler-tts-protogen:
|
||||
$(MAKE) -C backend/python/parler-tts protogen
|
||||
|
||||
.PHONY: parler-tts-protogen-clean
|
||||
parler-tts-protogen-clean:
|
||||
$(MAKE) -C backend/python/parler-tts protogen-clean
|
||||
|
||||
.PHONY: transformers-musicgen-protogen
|
||||
transformers-musicgen-protogen:
|
||||
$(MAKE) -C backend/python/transformers-musicgen protogen
|
||||
|
||||
.PHONY: transformers-musicgen-protogen-clean
|
||||
transformers-musicgen-protogen-clean:
|
||||
$(MAKE) -C backend/python/transformers-musicgen protogen-clean
|
||||
|
||||
.PHONY: vall-e-x-protogen
|
||||
vall-e-x-protogen:
|
||||
$(MAKE) -C backend/python/vall-e-x protogen
|
||||
|
||||
.PHONY: vall-e-x-protogen-clean
|
||||
vall-e-x-protogen-clean:
|
||||
$(MAKE) -C backend/python/vall-e-x protogen-clean
|
||||
|
||||
.PHONY: vllm-protogen
|
||||
vllm-protogen:
|
||||
$(MAKE) -C backend/python/vllm protogen
|
||||
|
||||
.PHONY: vllm-protogen-clean
|
||||
vllm-protogen-clean:
|
||||
$(MAKE) -C backend/python/vllm protogen-clean
|
||||
|
||||
## GRPC
|
||||
# Note: it is duplicated in the Dockerfile
|
||||
prepare-extra-conda-environments:
|
||||
prepare-extra-conda-environments: protogen-python
|
||||
$(MAKE) -C backend/python/autogptq
|
||||
$(MAKE) -C backend/python/bark
|
||||
$(MAKE) -C backend/python/coqui
|
||||
@@ -449,12 +568,13 @@ prepare-extra-conda-environments:
|
||||
$(MAKE) -C backend/python/sentencetransformers
|
||||
$(MAKE) -C backend/python/transformers
|
||||
$(MAKE) -C backend/python/transformers-musicgen
|
||||
$(MAKE) -C backend/python/parler-tts
|
||||
$(MAKE) -C backend/python/vall-e-x
|
||||
$(MAKE) -C backend/python/exllama
|
||||
$(MAKE) -C backend/python/petals
|
||||
$(MAKE) -C backend/python/exllama2
|
||||
|
||||
prepare-test-extra:
|
||||
prepare-test-extra: protogen-python
|
||||
$(MAKE) -C backend/python/transformers
|
||||
$(MAKE) -C backend/python/diffusers
|
||||
|
||||
@@ -478,7 +598,7 @@ backend-assets/gpt4all: sources/gpt4all sources/gpt4all/gpt4all-bindings/golang/
|
||||
@cp sources/gpt4all/gpt4all-bindings/golang/buildllm/*.dylib backend-assets/gpt4all/ || true
|
||||
@cp sources/gpt4all/gpt4all-bindings/golang/buildllm/*.dll backend-assets/gpt4all/ || true
|
||||
|
||||
backend-assets/grpc: replace
|
||||
backend-assets/grpc: protogen-go replace
|
||||
mkdir -p backend-assets/grpc
|
||||
|
||||
backend-assets/grpc/bert-embeddings: sources/go-bert sources/go-bert/libgobert.a backend-assets/grpc
|
||||
@@ -528,7 +648,10 @@ backend-assets/grpc/llama-ggml: sources/go-llama-ggml sources/go-llama-ggml/libb
|
||||
$(GOCMD) mod edit -replace github.com/go-skynet/go-llama.cpp=$(CURDIR)/sources/go-llama-ggml
|
||||
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(CURDIR)/sources/go-llama-ggml LIBRARY_PATH=$(CURDIR)/sources/go-llama-ggml \
|
||||
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/llama-ggml ./backend/go/llm/llama-ggml/
|
||||
|
||||
# EXPERIMENTAL:
|
||||
ifeq ($(BUILD_TYPE),metal)
|
||||
cp $(CURDIR)/sources/go-llama-ggml/llama.cpp/ggml-metal.metal backend-assets/grpc/
|
||||
endif
|
||||
backend-assets/grpc/piper: sources/go-piper sources/go-piper/libpiper_binding.a backend-assets/grpc backend-assets/espeak-ng-data
|
||||
CGO_CXXFLAGS="$(PIPER_CGO_CXXFLAGS)" CGO_LDFLAGS="$(PIPER_CGO_LDFLAGS)" LIBRARY_PATH=$(CURDIR)/sources/go-piper \
|
||||
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/piper ./backend/go/tts/
|
||||
|
||||
@@ -50,17 +50,12 @@
|
||||
|
||||
[Roadmap](https://github.com/mudler/LocalAI/issues?q=is%3Aissue+is%3Aopen+label%3Aroadmap)
|
||||
|
||||
- Parler-TTS: https://github.com/mudler/LocalAI/pull/2027
|
||||
- Landing page: https://github.com/mudler/LocalAI/pull/1922
|
||||
- Openvino support: https://github.com/mudler/LocalAI/pull/1892
|
||||
- Vector store: https://github.com/mudler/LocalAI/pull/1795
|
||||
- All-in-one container image: https://github.com/mudler/LocalAI/issues/1855
|
||||
- Parallel function calling: https://github.com/mudler/LocalAI/pull/1726 / Tools API support: https://github.com/mudler/LocalAI/pull/1715
|
||||
- Upload file API: https://github.com/mudler/LocalAI/pull/1703
|
||||
- ROCm container images: https://github.com/mudler/LocalAI/pull/1595 / Intel GPU support (sycl, transformers, diffusers): https://github.com/mudler/LocalAI/issues/1653
|
||||
- Mamba support: https://github.com/mudler/LocalAI/pull/1589
|
||||
- Start and share models with config file: https://github.com/mudler/LocalAI/pull/1522
|
||||
- 🐸 Coqui: https://github.com/mudler/LocalAI/pull/1489
|
||||
- Img2vid https://github.com/mudler/LocalAI/pull/1442
|
||||
|
||||
Hot topics (looking for contributors):
|
||||
- Backends v2: https://github.com/mudler/LocalAI/issues/1126
|
||||
|
||||
@@ -107,11 +107,15 @@ message PredictOptions {
|
||||
string NegativePrompt = 40;
|
||||
int32 NDraft = 41;
|
||||
repeated string Images = 42;
|
||||
bool UseTokenizerTemplate = 43;
|
||||
repeated Message Messages = 44;
|
||||
}
|
||||
|
||||
// The response message containing the result
|
||||
message Reply {
|
||||
bytes message = 1;
|
||||
int32 tokens = 2;
|
||||
int32 prompt_tokens = 3;
|
||||
}
|
||||
|
||||
message ModelOptions {
|
||||
@@ -256,3 +260,8 @@ message StatusResponse {
|
||||
State state = 1;
|
||||
MemoryUsageData memory = 2;
|
||||
}
|
||||
|
||||
message Message {
|
||||
string role = 1;
|
||||
string content = 2;
|
||||
}
|
||||
@@ -1,457 +0,0 @@
|
||||
// Code generated by protoc-gen-go-grpc. DO NOT EDIT.
|
||||
// versions:
|
||||
// - protoc-gen-go-grpc v1.2.0
|
||||
// - protoc v4.23.4
|
||||
// source: backend/backend.proto
|
||||
|
||||
package proto
|
||||
|
||||
import (
|
||||
context "context"
|
||||
grpc "google.golang.org/grpc"
|
||||
codes "google.golang.org/grpc/codes"
|
||||
status "google.golang.org/grpc/status"
|
||||
)
|
||||
|
||||
// This is a compile-time assertion to ensure that this generated file
|
||||
// is compatible with the grpc package it is being compiled against.
|
||||
// Requires gRPC-Go v1.32.0 or later.
|
||||
const _ = grpc.SupportPackageIsVersion7
|
||||
|
||||
// BackendClient is the client API for Backend service.
|
||||
//
|
||||
// For semantics around ctx use and closing/ending streaming RPCs, please refer to https://pkg.go.dev/google.golang.org/grpc/?tab=doc#ClientConn.NewStream.
|
||||
type BackendClient interface {
|
||||
Health(ctx context.Context, in *HealthMessage, opts ...grpc.CallOption) (*Reply, error)
|
||||
Predict(ctx context.Context, in *PredictOptions, opts ...grpc.CallOption) (*Reply, error)
|
||||
LoadModel(ctx context.Context, in *ModelOptions, opts ...grpc.CallOption) (*Result, error)
|
||||
PredictStream(ctx context.Context, in *PredictOptions, opts ...grpc.CallOption) (Backend_PredictStreamClient, error)
|
||||
Embedding(ctx context.Context, in *PredictOptions, opts ...grpc.CallOption) (*EmbeddingResult, error)
|
||||
GenerateImage(ctx context.Context, in *GenerateImageRequest, opts ...grpc.CallOption) (*Result, error)
|
||||
AudioTranscription(ctx context.Context, in *TranscriptRequest, opts ...grpc.CallOption) (*TranscriptResult, error)
|
||||
TTS(ctx context.Context, in *TTSRequest, opts ...grpc.CallOption) (*Result, error)
|
||||
TokenizeString(ctx context.Context, in *PredictOptions, opts ...grpc.CallOption) (*TokenizationResponse, error)
|
||||
Status(ctx context.Context, in *HealthMessage, opts ...grpc.CallOption) (*StatusResponse, error)
|
||||
}
|
||||
|
||||
type backendClient struct {
|
||||
cc grpc.ClientConnInterface
|
||||
}
|
||||
|
||||
func NewBackendClient(cc grpc.ClientConnInterface) BackendClient {
|
||||
return &backendClient{cc}
|
||||
}
|
||||
|
||||
func (c *backendClient) Health(ctx context.Context, in *HealthMessage, opts ...grpc.CallOption) (*Reply, error) {
|
||||
out := new(Reply)
|
||||
err := c.cc.Invoke(ctx, "/backend.Backend/Health", in, out, opts...)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
return out, nil
|
||||
}
|
||||
|
||||
func (c *backendClient) Predict(ctx context.Context, in *PredictOptions, opts ...grpc.CallOption) (*Reply, error) {
|
||||
out := new(Reply)
|
||||
err := c.cc.Invoke(ctx, "/backend.Backend/Predict", in, out, opts...)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
return out, nil
|
||||
}
|
||||
|
||||
func (c *backendClient) LoadModel(ctx context.Context, in *ModelOptions, opts ...grpc.CallOption) (*Result, error) {
|
||||
out := new(Result)
|
||||
err := c.cc.Invoke(ctx, "/backend.Backend/LoadModel", in, out, opts...)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
return out, nil
|
||||
}
|
||||
|
||||
func (c *backendClient) PredictStream(ctx context.Context, in *PredictOptions, opts ...grpc.CallOption) (Backend_PredictStreamClient, error) {
|
||||
stream, err := c.cc.NewStream(ctx, &Backend_ServiceDesc.Streams[0], "/backend.Backend/PredictStream", opts...)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
x := &backendPredictStreamClient{stream}
|
||||
if err := x.ClientStream.SendMsg(in); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
if err := x.ClientStream.CloseSend(); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
return x, nil
|
||||
}
|
||||
|
||||
type Backend_PredictStreamClient interface {
|
||||
Recv() (*Reply, error)
|
||||
grpc.ClientStream
|
||||
}
|
||||
|
||||
type backendPredictStreamClient struct {
|
||||
grpc.ClientStream
|
||||
}
|
||||
|
||||
func (x *backendPredictStreamClient) Recv() (*Reply, error) {
|
||||
m := new(Reply)
|
||||
if err := x.ClientStream.RecvMsg(m); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
return m, nil
|
||||
}
|
||||
|
||||
func (c *backendClient) Embedding(ctx context.Context, in *PredictOptions, opts ...grpc.CallOption) (*EmbeddingResult, error) {
|
||||
out := new(EmbeddingResult)
|
||||
err := c.cc.Invoke(ctx, "/backend.Backend/Embedding", in, out, opts...)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
return out, nil
|
||||
}
|
||||
|
||||
func (c *backendClient) GenerateImage(ctx context.Context, in *GenerateImageRequest, opts ...grpc.CallOption) (*Result, error) {
|
||||
out := new(Result)
|
||||
err := c.cc.Invoke(ctx, "/backend.Backend/GenerateImage", in, out, opts...)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
return out, nil
|
||||
}
|
||||
|
||||
func (c *backendClient) AudioTranscription(ctx context.Context, in *TranscriptRequest, opts ...grpc.CallOption) (*TranscriptResult, error) {
|
||||
out := new(TranscriptResult)
|
||||
err := c.cc.Invoke(ctx, "/backend.Backend/AudioTranscription", in, out, opts...)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
return out, nil
|
||||
}
|
||||
|
||||
func (c *backendClient) TTS(ctx context.Context, in *TTSRequest, opts ...grpc.CallOption) (*Result, error) {
|
||||
out := new(Result)
|
||||
err := c.cc.Invoke(ctx, "/backend.Backend/TTS", in, out, opts...)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
return out, nil
|
||||
}
|
||||
|
||||
func (c *backendClient) TokenizeString(ctx context.Context, in *PredictOptions, opts ...grpc.CallOption) (*TokenizationResponse, error) {
|
||||
out := new(TokenizationResponse)
|
||||
err := c.cc.Invoke(ctx, "/backend.Backend/TokenizeString", in, out, opts...)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
return out, nil
|
||||
}
|
||||
|
||||
func (c *backendClient) Status(ctx context.Context, in *HealthMessage, opts ...grpc.CallOption) (*StatusResponse, error) {
|
||||
out := new(StatusResponse)
|
||||
err := c.cc.Invoke(ctx, "/backend.Backend/Status", in, out, opts...)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
return out, nil
|
||||
}
|
||||
|
||||
// BackendServer is the server API for Backend service.
|
||||
// All implementations must embed UnimplementedBackendServer
|
||||
// for forward compatibility
|
||||
type BackendServer interface {
|
||||
Health(context.Context, *HealthMessage) (*Reply, error)
|
||||
Predict(context.Context, *PredictOptions) (*Reply, error)
|
||||
LoadModel(context.Context, *ModelOptions) (*Result, error)
|
||||
PredictStream(*PredictOptions, Backend_PredictStreamServer) error
|
||||
Embedding(context.Context, *PredictOptions) (*EmbeddingResult, error)
|
||||
GenerateImage(context.Context, *GenerateImageRequest) (*Result, error)
|
||||
AudioTranscription(context.Context, *TranscriptRequest) (*TranscriptResult, error)
|
||||
TTS(context.Context, *TTSRequest) (*Result, error)
|
||||
TokenizeString(context.Context, *PredictOptions) (*TokenizationResponse, error)
|
||||
Status(context.Context, *HealthMessage) (*StatusResponse, error)
|
||||
mustEmbedUnimplementedBackendServer()
|
||||
}
|
||||
|
||||
// UnimplementedBackendServer must be embedded to have forward compatible implementations.
|
||||
type UnimplementedBackendServer struct {
|
||||
}
|
||||
|
||||
func (UnimplementedBackendServer) Health(context.Context, *HealthMessage) (*Reply, error) {
|
||||
return nil, status.Errorf(codes.Unimplemented, "method Health not implemented")
|
||||
}
|
||||
func (UnimplementedBackendServer) Predict(context.Context, *PredictOptions) (*Reply, error) {
|
||||
return nil, status.Errorf(codes.Unimplemented, "method Predict not implemented")
|
||||
}
|
||||
func (UnimplementedBackendServer) LoadModel(context.Context, *ModelOptions) (*Result, error) {
|
||||
return nil, status.Errorf(codes.Unimplemented, "method LoadModel not implemented")
|
||||
}
|
||||
func (UnimplementedBackendServer) PredictStream(*PredictOptions, Backend_PredictStreamServer) error {
|
||||
return status.Errorf(codes.Unimplemented, "method PredictStream not implemented")
|
||||
}
|
||||
func (UnimplementedBackendServer) Embedding(context.Context, *PredictOptions) (*EmbeddingResult, error) {
|
||||
return nil, status.Errorf(codes.Unimplemented, "method Embedding not implemented")
|
||||
}
|
||||
func (UnimplementedBackendServer) GenerateImage(context.Context, *GenerateImageRequest) (*Result, error) {
|
||||
return nil, status.Errorf(codes.Unimplemented, "method GenerateImage not implemented")
|
||||
}
|
||||
func (UnimplementedBackendServer) AudioTranscription(context.Context, *TranscriptRequest) (*TranscriptResult, error) {
|
||||
return nil, status.Errorf(codes.Unimplemented, "method AudioTranscription not implemented")
|
||||
}
|
||||
func (UnimplementedBackendServer) TTS(context.Context, *TTSRequest) (*Result, error) {
|
||||
return nil, status.Errorf(codes.Unimplemented, "method TTS not implemented")
|
||||
}
|
||||
func (UnimplementedBackendServer) TokenizeString(context.Context, *PredictOptions) (*TokenizationResponse, error) {
|
||||
return nil, status.Errorf(codes.Unimplemented, "method TokenizeString not implemented")
|
||||
}
|
||||
func (UnimplementedBackendServer) Status(context.Context, *HealthMessage) (*StatusResponse, error) {
|
||||
return nil, status.Errorf(codes.Unimplemented, "method Status not implemented")
|
||||
}
|
||||
func (UnimplementedBackendServer) mustEmbedUnimplementedBackendServer() {}
|
||||
|
||||
// UnsafeBackendServer may be embedded to opt out of forward compatibility for this service.
|
||||
// Use of this interface is not recommended, as added methods to BackendServer will
|
||||
// result in compilation errors.
|
||||
type UnsafeBackendServer interface {
|
||||
mustEmbedUnimplementedBackendServer()
|
||||
}
|
||||
|
||||
func RegisterBackendServer(s grpc.ServiceRegistrar, srv BackendServer) {
|
||||
s.RegisterService(&Backend_ServiceDesc, srv)
|
||||
}
|
||||
|
||||
func _Backend_Health_Handler(srv interface{}, ctx context.Context, dec func(interface{}) error, interceptor grpc.UnaryServerInterceptor) (interface{}, error) {
|
||||
in := new(HealthMessage)
|
||||
if err := dec(in); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
if interceptor == nil {
|
||||
return srv.(BackendServer).Health(ctx, in)
|
||||
}
|
||||
info := &grpc.UnaryServerInfo{
|
||||
Server: srv,
|
||||
FullMethod: "/backend.Backend/Health",
|
||||
}
|
||||
handler := func(ctx context.Context, req interface{}) (interface{}, error) {
|
||||
return srv.(BackendServer).Health(ctx, req.(*HealthMessage))
|
||||
}
|
||||
return interceptor(ctx, in, info, handler)
|
||||
}
|
||||
|
||||
func _Backend_Predict_Handler(srv interface{}, ctx context.Context, dec func(interface{}) error, interceptor grpc.UnaryServerInterceptor) (interface{}, error) {
|
||||
in := new(PredictOptions)
|
||||
if err := dec(in); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
if interceptor == nil {
|
||||
return srv.(BackendServer).Predict(ctx, in)
|
||||
}
|
||||
info := &grpc.UnaryServerInfo{
|
||||
Server: srv,
|
||||
FullMethod: "/backend.Backend/Predict",
|
||||
}
|
||||
handler := func(ctx context.Context, req interface{}) (interface{}, error) {
|
||||
return srv.(BackendServer).Predict(ctx, req.(*PredictOptions))
|
||||
}
|
||||
return interceptor(ctx, in, info, handler)
|
||||
}
|
||||
|
||||
func _Backend_LoadModel_Handler(srv interface{}, ctx context.Context, dec func(interface{}) error, interceptor grpc.UnaryServerInterceptor) (interface{}, error) {
|
||||
in := new(ModelOptions)
|
||||
if err := dec(in); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
if interceptor == nil {
|
||||
return srv.(BackendServer).LoadModel(ctx, in)
|
||||
}
|
||||
info := &grpc.UnaryServerInfo{
|
||||
Server: srv,
|
||||
FullMethod: "/backend.Backend/LoadModel",
|
||||
}
|
||||
handler := func(ctx context.Context, req interface{}) (interface{}, error) {
|
||||
return srv.(BackendServer).LoadModel(ctx, req.(*ModelOptions))
|
||||
}
|
||||
return interceptor(ctx, in, info, handler)
|
||||
}
|
||||
|
||||
func _Backend_PredictStream_Handler(srv interface{}, stream grpc.ServerStream) error {
|
||||
m := new(PredictOptions)
|
||||
if err := stream.RecvMsg(m); err != nil {
|
||||
return err
|
||||
}
|
||||
return srv.(BackendServer).PredictStream(m, &backendPredictStreamServer{stream})
|
||||
}
|
||||
|
||||
type Backend_PredictStreamServer interface {
|
||||
Send(*Reply) error
|
||||
grpc.ServerStream
|
||||
}
|
||||
|
||||
type backendPredictStreamServer struct {
|
||||
grpc.ServerStream
|
||||
}
|
||||
|
||||
func (x *backendPredictStreamServer) Send(m *Reply) error {
|
||||
return x.ServerStream.SendMsg(m)
|
||||
}
|
||||
|
||||
func _Backend_Embedding_Handler(srv interface{}, ctx context.Context, dec func(interface{}) error, interceptor grpc.UnaryServerInterceptor) (interface{}, error) {
|
||||
in := new(PredictOptions)
|
||||
if err := dec(in); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
if interceptor == nil {
|
||||
return srv.(BackendServer).Embedding(ctx, in)
|
||||
}
|
||||
info := &grpc.UnaryServerInfo{
|
||||
Server: srv,
|
||||
FullMethod: "/backend.Backend/Embedding",
|
||||
}
|
||||
handler := func(ctx context.Context, req interface{}) (interface{}, error) {
|
||||
return srv.(BackendServer).Embedding(ctx, req.(*PredictOptions))
|
||||
}
|
||||
return interceptor(ctx, in, info, handler)
|
||||
}
|
||||
|
||||
func _Backend_GenerateImage_Handler(srv interface{}, ctx context.Context, dec func(interface{}) error, interceptor grpc.UnaryServerInterceptor) (interface{}, error) {
|
||||
in := new(GenerateImageRequest)
|
||||
if err := dec(in); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
if interceptor == nil {
|
||||
return srv.(BackendServer).GenerateImage(ctx, in)
|
||||
}
|
||||
info := &grpc.UnaryServerInfo{
|
||||
Server: srv,
|
||||
FullMethod: "/backend.Backend/GenerateImage",
|
||||
}
|
||||
handler := func(ctx context.Context, req interface{}) (interface{}, error) {
|
||||
return srv.(BackendServer).GenerateImage(ctx, req.(*GenerateImageRequest))
|
||||
}
|
||||
return interceptor(ctx, in, info, handler)
|
||||
}
|
||||
|
||||
func _Backend_AudioTranscription_Handler(srv interface{}, ctx context.Context, dec func(interface{}) error, interceptor grpc.UnaryServerInterceptor) (interface{}, error) {
|
||||
in := new(TranscriptRequest)
|
||||
if err := dec(in); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
if interceptor == nil {
|
||||
return srv.(BackendServer).AudioTranscription(ctx, in)
|
||||
}
|
||||
info := &grpc.UnaryServerInfo{
|
||||
Server: srv,
|
||||
FullMethod: "/backend.Backend/AudioTranscription",
|
||||
}
|
||||
handler := func(ctx context.Context, req interface{}) (interface{}, error) {
|
||||
return srv.(BackendServer).AudioTranscription(ctx, req.(*TranscriptRequest))
|
||||
}
|
||||
return interceptor(ctx, in, info, handler)
|
||||
}
|
||||
|
||||
func _Backend_TTS_Handler(srv interface{}, ctx context.Context, dec func(interface{}) error, interceptor grpc.UnaryServerInterceptor) (interface{}, error) {
|
||||
in := new(TTSRequest)
|
||||
if err := dec(in); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
if interceptor == nil {
|
||||
return srv.(BackendServer).TTS(ctx, in)
|
||||
}
|
||||
info := &grpc.UnaryServerInfo{
|
||||
Server: srv,
|
||||
FullMethod: "/backend.Backend/TTS",
|
||||
}
|
||||
handler := func(ctx context.Context, req interface{}) (interface{}, error) {
|
||||
return srv.(BackendServer).TTS(ctx, req.(*TTSRequest))
|
||||
}
|
||||
return interceptor(ctx, in, info, handler)
|
||||
}
|
||||
|
||||
func _Backend_TokenizeString_Handler(srv interface{}, ctx context.Context, dec func(interface{}) error, interceptor grpc.UnaryServerInterceptor) (interface{}, error) {
|
||||
in := new(PredictOptions)
|
||||
if err := dec(in); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
if interceptor == nil {
|
||||
return srv.(BackendServer).TokenizeString(ctx, in)
|
||||
}
|
||||
info := &grpc.UnaryServerInfo{
|
||||
Server: srv,
|
||||
FullMethod: "/backend.Backend/TokenizeString",
|
||||
}
|
||||
handler := func(ctx context.Context, req interface{}) (interface{}, error) {
|
||||
return srv.(BackendServer).TokenizeString(ctx, req.(*PredictOptions))
|
||||
}
|
||||
return interceptor(ctx, in, info, handler)
|
||||
}
|
||||
|
||||
func _Backend_Status_Handler(srv interface{}, ctx context.Context, dec func(interface{}) error, interceptor grpc.UnaryServerInterceptor) (interface{}, error) {
|
||||
in := new(HealthMessage)
|
||||
if err := dec(in); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
if interceptor == nil {
|
||||
return srv.(BackendServer).Status(ctx, in)
|
||||
}
|
||||
info := &grpc.UnaryServerInfo{
|
||||
Server: srv,
|
||||
FullMethod: "/backend.Backend/Status",
|
||||
}
|
||||
handler := func(ctx context.Context, req interface{}) (interface{}, error) {
|
||||
return srv.(BackendServer).Status(ctx, req.(*HealthMessage))
|
||||
}
|
||||
return interceptor(ctx, in, info, handler)
|
||||
}
|
||||
|
||||
// Backend_ServiceDesc is the grpc.ServiceDesc for Backend service.
|
||||
// It's only intended for direct use with grpc.RegisterService,
|
||||
// and not to be introspected or modified (even as a copy)
|
||||
var Backend_ServiceDesc = grpc.ServiceDesc{
|
||||
ServiceName: "backend.Backend",
|
||||
HandlerType: (*BackendServer)(nil),
|
||||
Methods: []grpc.MethodDesc{
|
||||
{
|
||||
MethodName: "Health",
|
||||
Handler: _Backend_Health_Handler,
|
||||
},
|
||||
{
|
||||
MethodName: "Predict",
|
||||
Handler: _Backend_Predict_Handler,
|
||||
},
|
||||
{
|
||||
MethodName: "LoadModel",
|
||||
Handler: _Backend_LoadModel_Handler,
|
||||
},
|
||||
{
|
||||
MethodName: "Embedding",
|
||||
Handler: _Backend_Embedding_Handler,
|
||||
},
|
||||
{
|
||||
MethodName: "GenerateImage",
|
||||
Handler: _Backend_GenerateImage_Handler,
|
||||
},
|
||||
{
|
||||
MethodName: "AudioTranscription",
|
||||
Handler: _Backend_AudioTranscription_Handler,
|
||||
},
|
||||
{
|
||||
MethodName: "TTS",
|
||||
Handler: _Backend_TTS_Handler,
|
||||
},
|
||||
{
|
||||
MethodName: "TokenizeString",
|
||||
Handler: _Backend_TokenizeString_Handler,
|
||||
},
|
||||
{
|
||||
MethodName: "Status",
|
||||
Handler: _Backend_Status_Handler,
|
||||
},
|
||||
},
|
||||
Streams: []grpc.StreamDesc{
|
||||
{
|
||||
StreamName: "PredictStream",
|
||||
Handler: _Backend_PredictStream_Handler,
|
||||
ServerStreams: true,
|
||||
},
|
||||
},
|
||||
Metadata: "backend/backend.proto",
|
||||
}
|
||||
@@ -5,7 +5,6 @@ SYSTEM ?= $(HOST_SYSTEM)
|
||||
TAG_LIB_GRPC?=v1.59.0
|
||||
GIT_REPO_LIB_GRPC?=https://github.com/grpc/grpc.git
|
||||
GIT_CLONE_DEPTH?=1
|
||||
NUM_BUILD_THREADS?=$(shell nproc --ignore=1)
|
||||
|
||||
INSTALLED_PACKAGES=installed_packages
|
||||
GRPC_REPO=grpc_repo
|
||||
@@ -52,7 +51,7 @@ $(GRPC_REPO):
|
||||
|
||||
$(GRPC_BUILD): $(GRPC_REPO)
|
||||
mkdir -p $(GRPC_BUILD)
|
||||
cd $(GRPC_BUILD) && cmake $(CMAKE_ARGS) ../$(GRPC_REPO)/grpc && cmake --build . -- -j ${NUM_BUILD_THREADS} && cmake --build . --target install -- -j ${NUM_BUILD_THREADS}
|
||||
cd $(GRPC_BUILD) && cmake $(CMAKE_ARGS) ../$(GRPC_REPO)/grpc && cmake --build . && cmake --build . --target install
|
||||
|
||||
build: $(INSTALLED_PACKAGES)
|
||||
|
||||
|
||||
@@ -2332,6 +2332,10 @@ public:
|
||||
std::string completion_text = result.result_json.value("content", "");
|
||||
|
||||
reply.set_message(completion_text);
|
||||
int32_t tokens_predicted = result.result_json.value("tokens_predicted", 0);
|
||||
reply.set_tokens(tokens_predicted);
|
||||
int32_t tokens_evaluated = result.result_json.value("tokens_evaluated", 0);
|
||||
reply.set_prompt_tokens(tokens_evaluated);
|
||||
|
||||
// Send the reply
|
||||
writer->Write(reply);
|
||||
@@ -2357,6 +2361,10 @@ public:
|
||||
task_result result = llama.queue_results.recv(task_id);
|
||||
if (!result.error && result.stop) {
|
||||
completion_text = result.result_json.value("content", "");
|
||||
int32_t tokens_predicted = result.result_json.value("tokens_predicted", 0);
|
||||
int32_t tokens_evaluated = result.result_json.value("tokens_evaluated", 0);
|
||||
reply->set_prompt_tokens(tokens_evaluated);
|
||||
reply->set_tokens(tokens_predicted);
|
||||
reply->set_message(completion_text);
|
||||
}
|
||||
else
|
||||
|
||||
@@ -21,7 +21,7 @@ func runCommand(command []string) (string, error) {
|
||||
// AudioToWav converts audio to wav for transcribe.
|
||||
// TODO: use https://github.com/mccoyst/ogg?
|
||||
func audioToWav(src, dst string) error {
|
||||
command := []string{"ffmpeg", "-i", src, "-format", "s16le", "-ar", "16000", "-ac", "1", "-acodec", "pcm_s16le", dst}
|
||||
command := []string{"ffmpeg", "-i", src, "-format", "s16le", "-ar", "16000", "-ac", "1", "-acodec", "pcm_s16le", dst}
|
||||
out, err := runCommand(command)
|
||||
if err != nil {
|
||||
return fmt.Errorf("error: %w out: %s", err, out)
|
||||
@@ -29,8 +29,8 @@ func audioToWav(src, dst string) error {
|
||||
return nil
|
||||
}
|
||||
|
||||
func Transcript(model whisper.Model, audiopath, language string, threads uint) (schema.Result, error) {
|
||||
res := schema.Result{}
|
||||
func Transcript(model whisper.Model, audiopath, language string, threads uint) (schema.TranscriptionResult, error) {
|
||||
res := schema.TranscriptionResult{}
|
||||
|
||||
dir, err := os.MkdirTemp("", "whisper")
|
||||
if err != nil {
|
||||
|
||||
@@ -21,6 +21,6 @@ func (sd *Whisper) Load(opts *pb.ModelOptions) error {
|
||||
return err
|
||||
}
|
||||
|
||||
func (sd *Whisper) AudioTranscription(opts *pb.TranscriptRequest) (schema.Result, error) {
|
||||
func (sd *Whisper) AudioTranscription(opts *pb.TranscriptRequest) (schema.TranscriptionResult, error) {
|
||||
return Transcript(sd.whisper, opts.Dst, opts.Language, uint(opts.Threads))
|
||||
}
|
||||
|
||||
@@ -1,4 +1,13 @@
|
||||
.PHONY: autogptq
|
||||
autogptq:
|
||||
autogptq: protogen
|
||||
$(MAKE) -C ../common-env/transformers
|
||||
|
||||
.PHONY: protogen
|
||||
protogen: backend_pb2_grpc.py backend_pb2.py
|
||||
|
||||
.PHONY: protogen-clean
|
||||
protogen-clean:
|
||||
$(RM) backend_pb2_grpc.py backend_pb2.py
|
||||
|
||||
backend_pb2_grpc.py backend_pb2.py:
|
||||
python3 -m grpc_tools.protoc -I../.. --python_out=. --grpc_python_out=. backend.proto
|
||||
@@ -39,7 +39,6 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
|
||||
self.model_name = "Qwen-VL-Chat"
|
||||
model = AutoModelForCausalLM.from_pretrained(model_path,
|
||||
trust_remote_code=request.TrustRemoteCode,
|
||||
use_triton=request.UseTriton,
|
||||
device_map="auto").eval()
|
||||
else:
|
||||
model = AutoGPTQForCausalLM.from_quantized(model_path,
|
||||
|
||||
File diff suppressed because one or more lines are too long
@@ -1,363 +0,0 @@
|
||||
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT!
|
||||
"""Client and server classes corresponding to protobuf-defined services."""
|
||||
import grpc
|
||||
|
||||
import backend_pb2 as backend__pb2
|
||||
|
||||
|
||||
class BackendStub(object):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
|
||||
def __init__(self, channel):
|
||||
"""Constructor.
|
||||
|
||||
Args:
|
||||
channel: A grpc.Channel.
|
||||
"""
|
||||
self.Health = channel.unary_unary(
|
||||
'/backend.Backend/Health',
|
||||
request_serializer=backend__pb2.HealthMessage.SerializeToString,
|
||||
response_deserializer=backend__pb2.Reply.FromString,
|
||||
)
|
||||
self.Predict = channel.unary_unary(
|
||||
'/backend.Backend/Predict',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.Reply.FromString,
|
||||
)
|
||||
self.LoadModel = channel.unary_unary(
|
||||
'/backend.Backend/LoadModel',
|
||||
request_serializer=backend__pb2.ModelOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.Result.FromString,
|
||||
)
|
||||
self.PredictStream = channel.unary_stream(
|
||||
'/backend.Backend/PredictStream',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.Reply.FromString,
|
||||
)
|
||||
self.Embedding = channel.unary_unary(
|
||||
'/backend.Backend/Embedding',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.EmbeddingResult.FromString,
|
||||
)
|
||||
self.GenerateImage = channel.unary_unary(
|
||||
'/backend.Backend/GenerateImage',
|
||||
request_serializer=backend__pb2.GenerateImageRequest.SerializeToString,
|
||||
response_deserializer=backend__pb2.Result.FromString,
|
||||
)
|
||||
self.AudioTranscription = channel.unary_unary(
|
||||
'/backend.Backend/AudioTranscription',
|
||||
request_serializer=backend__pb2.TranscriptRequest.SerializeToString,
|
||||
response_deserializer=backend__pb2.TranscriptResult.FromString,
|
||||
)
|
||||
self.TTS = channel.unary_unary(
|
||||
'/backend.Backend/TTS',
|
||||
request_serializer=backend__pb2.TTSRequest.SerializeToString,
|
||||
response_deserializer=backend__pb2.Result.FromString,
|
||||
)
|
||||
self.TokenizeString = channel.unary_unary(
|
||||
'/backend.Backend/TokenizeString',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.TokenizationResponse.FromString,
|
||||
)
|
||||
self.Status = channel.unary_unary(
|
||||
'/backend.Backend/Status',
|
||||
request_serializer=backend__pb2.HealthMessage.SerializeToString,
|
||||
response_deserializer=backend__pb2.StatusResponse.FromString,
|
||||
)
|
||||
|
||||
|
||||
class BackendServicer(object):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
|
||||
def Health(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def Predict(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def LoadModel(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def PredictStream(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def Embedding(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def GenerateImage(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def AudioTranscription(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def TTS(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def TokenizeString(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def Status(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
|
||||
def add_BackendServicer_to_server(servicer, server):
|
||||
rpc_method_handlers = {
|
||||
'Health': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Health,
|
||||
request_deserializer=backend__pb2.HealthMessage.FromString,
|
||||
response_serializer=backend__pb2.Reply.SerializeToString,
|
||||
),
|
||||
'Predict': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Predict,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.Reply.SerializeToString,
|
||||
),
|
||||
'LoadModel': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.LoadModel,
|
||||
request_deserializer=backend__pb2.ModelOptions.FromString,
|
||||
response_serializer=backend__pb2.Result.SerializeToString,
|
||||
),
|
||||
'PredictStream': grpc.unary_stream_rpc_method_handler(
|
||||
servicer.PredictStream,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.Reply.SerializeToString,
|
||||
),
|
||||
'Embedding': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Embedding,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.EmbeddingResult.SerializeToString,
|
||||
),
|
||||
'GenerateImage': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.GenerateImage,
|
||||
request_deserializer=backend__pb2.GenerateImageRequest.FromString,
|
||||
response_serializer=backend__pb2.Result.SerializeToString,
|
||||
),
|
||||
'AudioTranscription': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.AudioTranscription,
|
||||
request_deserializer=backend__pb2.TranscriptRequest.FromString,
|
||||
response_serializer=backend__pb2.TranscriptResult.SerializeToString,
|
||||
),
|
||||
'TTS': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.TTS,
|
||||
request_deserializer=backend__pb2.TTSRequest.FromString,
|
||||
response_serializer=backend__pb2.Result.SerializeToString,
|
||||
),
|
||||
'TokenizeString': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.TokenizeString,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.TokenizationResponse.SerializeToString,
|
||||
),
|
||||
'Status': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Status,
|
||||
request_deserializer=backend__pb2.HealthMessage.FromString,
|
||||
response_serializer=backend__pb2.StatusResponse.SerializeToString,
|
||||
),
|
||||
}
|
||||
generic_handler = grpc.method_handlers_generic_handler(
|
||||
'backend.Backend', rpc_method_handlers)
|
||||
server.add_generic_rpc_handlers((generic_handler,))
|
||||
|
||||
|
||||
# This class is part of an EXPERIMENTAL API.
|
||||
class Backend(object):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
|
||||
@staticmethod
|
||||
def Health(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Health',
|
||||
backend__pb2.HealthMessage.SerializeToString,
|
||||
backend__pb2.Reply.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def Predict(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Predict',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.Reply.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def LoadModel(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/LoadModel',
|
||||
backend__pb2.ModelOptions.SerializeToString,
|
||||
backend__pb2.Result.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def PredictStream(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_stream(request, target, '/backend.Backend/PredictStream',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.Reply.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def Embedding(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Embedding',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.EmbeddingResult.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def GenerateImage(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/GenerateImage',
|
||||
backend__pb2.GenerateImageRequest.SerializeToString,
|
||||
backend__pb2.Result.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def AudioTranscription(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/AudioTranscription',
|
||||
backend__pb2.TranscriptRequest.SerializeToString,
|
||||
backend__pb2.TranscriptResult.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def TTS(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/TTS',
|
||||
backend__pb2.TTSRequest.SerializeToString,
|
||||
backend__pb2.Result.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def TokenizeString(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/TokenizeString',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.TokenizationResponse.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def Status(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Status',
|
||||
backend__pb2.HealthMessage.SerializeToString,
|
||||
backend__pb2.StatusResponse.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
@@ -1,15 +1,25 @@
|
||||
.PHONY: ttsbark
|
||||
ttsbark:
|
||||
ttsbark: protogen
|
||||
$(MAKE) -C ../common-env/transformers
|
||||
|
||||
.PHONY: run
|
||||
run:
|
||||
run: protogen
|
||||
@echo "Running bark..."
|
||||
bash run.sh
|
||||
@echo "bark run."
|
||||
|
||||
.PHONY: test
|
||||
test:
|
||||
test: protogen
|
||||
@echo "Testing bark..."
|
||||
bash test.sh
|
||||
@echo "bark tested."
|
||||
|
||||
.PHONY: protogen
|
||||
protogen: backend_pb2_grpc.py backend_pb2.py
|
||||
|
||||
.PHONY: protogen-clean
|
||||
protogen-clean:
|
||||
$(RM) backend_pb2_grpc.py backend_pb2.py
|
||||
|
||||
backend_pb2_grpc.py backend_pb2.py:
|
||||
python3 -m grpc_tools.protoc -I../.. --python_out=. --grpc_python_out=. backend.proto
|
||||
File diff suppressed because one or more lines are too long
@@ -1,363 +0,0 @@
|
||||
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT!
|
||||
"""Client and server classes corresponding to protobuf-defined services."""
|
||||
import grpc
|
||||
|
||||
import backend_pb2 as backend__pb2
|
||||
|
||||
|
||||
class BackendStub(object):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
|
||||
def __init__(self, channel):
|
||||
"""Constructor.
|
||||
|
||||
Args:
|
||||
channel: A grpc.Channel.
|
||||
"""
|
||||
self.Health = channel.unary_unary(
|
||||
'/backend.Backend/Health',
|
||||
request_serializer=backend__pb2.HealthMessage.SerializeToString,
|
||||
response_deserializer=backend__pb2.Reply.FromString,
|
||||
)
|
||||
self.Predict = channel.unary_unary(
|
||||
'/backend.Backend/Predict',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.Reply.FromString,
|
||||
)
|
||||
self.LoadModel = channel.unary_unary(
|
||||
'/backend.Backend/LoadModel',
|
||||
request_serializer=backend__pb2.ModelOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.Result.FromString,
|
||||
)
|
||||
self.PredictStream = channel.unary_stream(
|
||||
'/backend.Backend/PredictStream',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.Reply.FromString,
|
||||
)
|
||||
self.Embedding = channel.unary_unary(
|
||||
'/backend.Backend/Embedding',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.EmbeddingResult.FromString,
|
||||
)
|
||||
self.GenerateImage = channel.unary_unary(
|
||||
'/backend.Backend/GenerateImage',
|
||||
request_serializer=backend__pb2.GenerateImageRequest.SerializeToString,
|
||||
response_deserializer=backend__pb2.Result.FromString,
|
||||
)
|
||||
self.AudioTranscription = channel.unary_unary(
|
||||
'/backend.Backend/AudioTranscription',
|
||||
request_serializer=backend__pb2.TranscriptRequest.SerializeToString,
|
||||
response_deserializer=backend__pb2.TranscriptResult.FromString,
|
||||
)
|
||||
self.TTS = channel.unary_unary(
|
||||
'/backend.Backend/TTS',
|
||||
request_serializer=backend__pb2.TTSRequest.SerializeToString,
|
||||
response_deserializer=backend__pb2.Result.FromString,
|
||||
)
|
||||
self.TokenizeString = channel.unary_unary(
|
||||
'/backend.Backend/TokenizeString',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.TokenizationResponse.FromString,
|
||||
)
|
||||
self.Status = channel.unary_unary(
|
||||
'/backend.Backend/Status',
|
||||
request_serializer=backend__pb2.HealthMessage.SerializeToString,
|
||||
response_deserializer=backend__pb2.StatusResponse.FromString,
|
||||
)
|
||||
|
||||
|
||||
class BackendServicer(object):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
|
||||
def Health(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def Predict(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def LoadModel(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def PredictStream(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def Embedding(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def GenerateImage(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def AudioTranscription(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def TTS(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def TokenizeString(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def Status(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
|
||||
def add_BackendServicer_to_server(servicer, server):
|
||||
rpc_method_handlers = {
|
||||
'Health': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Health,
|
||||
request_deserializer=backend__pb2.HealthMessage.FromString,
|
||||
response_serializer=backend__pb2.Reply.SerializeToString,
|
||||
),
|
||||
'Predict': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Predict,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.Reply.SerializeToString,
|
||||
),
|
||||
'LoadModel': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.LoadModel,
|
||||
request_deserializer=backend__pb2.ModelOptions.FromString,
|
||||
response_serializer=backend__pb2.Result.SerializeToString,
|
||||
),
|
||||
'PredictStream': grpc.unary_stream_rpc_method_handler(
|
||||
servicer.PredictStream,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.Reply.SerializeToString,
|
||||
),
|
||||
'Embedding': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Embedding,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.EmbeddingResult.SerializeToString,
|
||||
),
|
||||
'GenerateImage': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.GenerateImage,
|
||||
request_deserializer=backend__pb2.GenerateImageRequest.FromString,
|
||||
response_serializer=backend__pb2.Result.SerializeToString,
|
||||
),
|
||||
'AudioTranscription': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.AudioTranscription,
|
||||
request_deserializer=backend__pb2.TranscriptRequest.FromString,
|
||||
response_serializer=backend__pb2.TranscriptResult.SerializeToString,
|
||||
),
|
||||
'TTS': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.TTS,
|
||||
request_deserializer=backend__pb2.TTSRequest.FromString,
|
||||
response_serializer=backend__pb2.Result.SerializeToString,
|
||||
),
|
||||
'TokenizeString': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.TokenizeString,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.TokenizationResponse.SerializeToString,
|
||||
),
|
||||
'Status': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Status,
|
||||
request_deserializer=backend__pb2.HealthMessage.FromString,
|
||||
response_serializer=backend__pb2.StatusResponse.SerializeToString,
|
||||
),
|
||||
}
|
||||
generic_handler = grpc.method_handlers_generic_handler(
|
||||
'backend.Backend', rpc_method_handlers)
|
||||
server.add_generic_rpc_handlers((generic_handler,))
|
||||
|
||||
|
||||
# This class is part of an EXPERIMENTAL API.
|
||||
class Backend(object):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
|
||||
@staticmethod
|
||||
def Health(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Health',
|
||||
backend__pb2.HealthMessage.SerializeToString,
|
||||
backend__pb2.Reply.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def Predict(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Predict',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.Reply.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def LoadModel(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/LoadModel',
|
||||
backend__pb2.ModelOptions.SerializeToString,
|
||||
backend__pb2.Result.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def PredictStream(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_stream(request, target, '/backend.Backend/PredictStream',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.Reply.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def Embedding(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Embedding',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.EmbeddingResult.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def GenerateImage(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/GenerateImage',
|
||||
backend__pb2.GenerateImageRequest.SerializeToString,
|
||||
backend__pb2.Result.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def AudioTranscription(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/AudioTranscription',
|
||||
backend__pb2.TranscriptRequest.SerializeToString,
|
||||
backend__pb2.TranscriptResult.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def TTS(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/TTS',
|
||||
backend__pb2.TTSRequest.SerializeToString,
|
||||
backend__pb2.Result.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def TokenizeString(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/TokenizeString',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.TokenizationResponse.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def Status(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Status',
|
||||
backend__pb2.HealthMessage.SerializeToString,
|
||||
backend__pb2.StatusResponse.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
@@ -2,6 +2,7 @@
|
||||
set -ex
|
||||
|
||||
SKIP_CONDA=${SKIP_CONDA:-0}
|
||||
REQUIREMENTS_FILE=$1
|
||||
|
||||
# Check if environment exist
|
||||
conda_env_exists(){
|
||||
@@ -14,7 +15,7 @@ else
|
||||
export PATH=$PATH:/opt/conda/bin
|
||||
if conda_env_exists "transformers" ; then
|
||||
echo "Creating virtual environment..."
|
||||
conda env create --name transformers --file $1
|
||||
conda env create --name transformers --file $REQUIREMENTS_FILE
|
||||
echo "Virtual environment created."
|
||||
else
|
||||
echo "Virtual environment already exists."
|
||||
@@ -28,11 +29,16 @@ if [ -d "/opt/intel" ]; then
|
||||
pip install intel-extension-for-transformers datasets sentencepiece tiktoken neural_speed optimum[openvino]
|
||||
fi
|
||||
|
||||
if [ "$PIP_CACHE_PURGE" = true ] ; then
|
||||
if [ $SKIP_CONDA -eq 0 ]; then
|
||||
# Activate conda environment
|
||||
source activate transformers
|
||||
fi
|
||||
# If we didn't skip conda, activate the environment
|
||||
# to install FlashAttention
|
||||
if [ $SKIP_CONDA -eq 0 ]; then
|
||||
source activate transformers
|
||||
fi
|
||||
if [[ $REQUIREMENTS_FILE =~ -nvidia.yml$ ]]; then
|
||||
#TODO: FlashAttention is supported on nvidia and ROCm, but ROCm install can't be done this easily
|
||||
pip install flash-attn --no-build-isolation
|
||||
fi
|
||||
|
||||
if [ "$PIP_CACHE_PURGE" = true ] ; then
|
||||
pip cache purge
|
||||
fi
|
||||
@@ -116,7 +116,7 @@ dependencies:
|
||||
- sudachipy
|
||||
- sudachidict_core
|
||||
- vocos
|
||||
- vllm==0.3.2
|
||||
- vllm>=0.4.0
|
||||
- transformers>=4.38.2 # Updated Version
|
||||
- transformers_stream_generator==0.0.5
|
||||
- xformers==0.0.23.post1
|
||||
|
||||
@@ -104,7 +104,7 @@ dependencies:
|
||||
- sudachipy
|
||||
- sudachidict_core
|
||||
- vocos
|
||||
- vllm==0.3.2
|
||||
- vllm>=0.4.0
|
||||
- transformers>=4.38.2 # Updated Version
|
||||
- transformers_stream_generator==0.0.5
|
||||
- xformers==0.0.23.post1
|
||||
|
||||
@@ -108,7 +108,7 @@ dependencies:
|
||||
- sudachipy
|
||||
- sudachidict_core
|
||||
- vocos
|
||||
- vllm==0.3.2
|
||||
- vllm>=0.4.0
|
||||
- transformers>=4.38.2 # Updated Version
|
||||
- transformers_stream_generator==0.0.5
|
||||
- xformers==0.0.23.post1
|
||||
|
||||
@@ -1,15 +1,25 @@
|
||||
.PHONY: coqui
|
||||
coqui:
|
||||
coqui: protogen
|
||||
$(MAKE) -C ../common-env/transformers
|
||||
|
||||
.PHONY: run
|
||||
run:
|
||||
run: protogen
|
||||
@echo "Running coqui..."
|
||||
bash run.sh
|
||||
@echo "coqui run."
|
||||
|
||||
.PHONY: test
|
||||
test:
|
||||
test: protogen
|
||||
@echo "Testing coqui..."
|
||||
bash test.sh
|
||||
@echo "coqui tested."
|
||||
|
||||
.PHONY: protogen
|
||||
protogen: backend_pb2_grpc.py backend_pb2.py
|
||||
|
||||
.PHONY: protogen-clean
|
||||
protogen-clean:
|
||||
$(RM) backend_pb2_grpc.py backend_pb2.py
|
||||
|
||||
backend_pb2_grpc.py backend_pb2.py:
|
||||
python3 -m grpc_tools.protoc -I../.. --python_out=. --grpc_python_out=. backend.proto
|
||||
File diff suppressed because one or more lines are too long
@@ -1,363 +0,0 @@
|
||||
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT!
|
||||
"""Client and server classes corresponding to protobuf-defined services."""
|
||||
import grpc
|
||||
|
||||
import backend_pb2 as backend__pb2
|
||||
|
||||
|
||||
class BackendStub(object):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
|
||||
def __init__(self, channel):
|
||||
"""Constructor.
|
||||
|
||||
Args:
|
||||
channel: A grpc.Channel.
|
||||
"""
|
||||
self.Health = channel.unary_unary(
|
||||
'/backend.Backend/Health',
|
||||
request_serializer=backend__pb2.HealthMessage.SerializeToString,
|
||||
response_deserializer=backend__pb2.Reply.FromString,
|
||||
)
|
||||
self.Predict = channel.unary_unary(
|
||||
'/backend.Backend/Predict',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.Reply.FromString,
|
||||
)
|
||||
self.LoadModel = channel.unary_unary(
|
||||
'/backend.Backend/LoadModel',
|
||||
request_serializer=backend__pb2.ModelOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.Result.FromString,
|
||||
)
|
||||
self.PredictStream = channel.unary_stream(
|
||||
'/backend.Backend/PredictStream',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.Reply.FromString,
|
||||
)
|
||||
self.Embedding = channel.unary_unary(
|
||||
'/backend.Backend/Embedding',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.EmbeddingResult.FromString,
|
||||
)
|
||||
self.GenerateImage = channel.unary_unary(
|
||||
'/backend.Backend/GenerateImage',
|
||||
request_serializer=backend__pb2.GenerateImageRequest.SerializeToString,
|
||||
response_deserializer=backend__pb2.Result.FromString,
|
||||
)
|
||||
self.AudioTranscription = channel.unary_unary(
|
||||
'/backend.Backend/AudioTranscription',
|
||||
request_serializer=backend__pb2.TranscriptRequest.SerializeToString,
|
||||
response_deserializer=backend__pb2.TranscriptResult.FromString,
|
||||
)
|
||||
self.TTS = channel.unary_unary(
|
||||
'/backend.Backend/TTS',
|
||||
request_serializer=backend__pb2.TTSRequest.SerializeToString,
|
||||
response_deserializer=backend__pb2.Result.FromString,
|
||||
)
|
||||
self.TokenizeString = channel.unary_unary(
|
||||
'/backend.Backend/TokenizeString',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.TokenizationResponse.FromString,
|
||||
)
|
||||
self.Status = channel.unary_unary(
|
||||
'/backend.Backend/Status',
|
||||
request_serializer=backend__pb2.HealthMessage.SerializeToString,
|
||||
response_deserializer=backend__pb2.StatusResponse.FromString,
|
||||
)
|
||||
|
||||
|
||||
class BackendServicer(object):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
|
||||
def Health(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def Predict(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def LoadModel(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def PredictStream(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def Embedding(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def GenerateImage(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def AudioTranscription(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def TTS(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def TokenizeString(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def Status(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
|
||||
def add_BackendServicer_to_server(servicer, server):
|
||||
rpc_method_handlers = {
|
||||
'Health': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Health,
|
||||
request_deserializer=backend__pb2.HealthMessage.FromString,
|
||||
response_serializer=backend__pb2.Reply.SerializeToString,
|
||||
),
|
||||
'Predict': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Predict,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.Reply.SerializeToString,
|
||||
),
|
||||
'LoadModel': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.LoadModel,
|
||||
request_deserializer=backend__pb2.ModelOptions.FromString,
|
||||
response_serializer=backend__pb2.Result.SerializeToString,
|
||||
),
|
||||
'PredictStream': grpc.unary_stream_rpc_method_handler(
|
||||
servicer.PredictStream,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.Reply.SerializeToString,
|
||||
),
|
||||
'Embedding': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Embedding,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.EmbeddingResult.SerializeToString,
|
||||
),
|
||||
'GenerateImage': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.GenerateImage,
|
||||
request_deserializer=backend__pb2.GenerateImageRequest.FromString,
|
||||
response_serializer=backend__pb2.Result.SerializeToString,
|
||||
),
|
||||
'AudioTranscription': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.AudioTranscription,
|
||||
request_deserializer=backend__pb2.TranscriptRequest.FromString,
|
||||
response_serializer=backend__pb2.TranscriptResult.SerializeToString,
|
||||
),
|
||||
'TTS': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.TTS,
|
||||
request_deserializer=backend__pb2.TTSRequest.FromString,
|
||||
response_serializer=backend__pb2.Result.SerializeToString,
|
||||
),
|
||||
'TokenizeString': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.TokenizeString,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.TokenizationResponse.SerializeToString,
|
||||
),
|
||||
'Status': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Status,
|
||||
request_deserializer=backend__pb2.HealthMessage.FromString,
|
||||
response_serializer=backend__pb2.StatusResponse.SerializeToString,
|
||||
),
|
||||
}
|
||||
generic_handler = grpc.method_handlers_generic_handler(
|
||||
'backend.Backend', rpc_method_handlers)
|
||||
server.add_generic_rpc_handlers((generic_handler,))
|
||||
|
||||
|
||||
# This class is part of an EXPERIMENTAL API.
|
||||
class Backend(object):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
|
||||
@staticmethod
|
||||
def Health(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Health',
|
||||
backend__pb2.HealthMessage.SerializeToString,
|
||||
backend__pb2.Reply.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def Predict(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Predict',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.Reply.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def LoadModel(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/LoadModel',
|
||||
backend__pb2.ModelOptions.SerializeToString,
|
||||
backend__pb2.Result.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def PredictStream(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_stream(request, target, '/backend.Backend/PredictStream',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.Reply.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def Embedding(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Embedding',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.EmbeddingResult.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def GenerateImage(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/GenerateImage',
|
||||
backend__pb2.GenerateImageRequest.SerializeToString,
|
||||
backend__pb2.Result.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def AudioTranscription(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/AudioTranscription',
|
||||
backend__pb2.TranscriptRequest.SerializeToString,
|
||||
backend__pb2.TranscriptResult.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def TTS(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/TTS',
|
||||
backend__pb2.TTSRequest.SerializeToString,
|
||||
backend__pb2.Result.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def TokenizeString(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/TokenizeString',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.TokenizationResponse.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def Status(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Status',
|
||||
backend__pb2.HealthMessage.SerializeToString,
|
||||
backend__pb2.StatusResponse.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
@@ -12,15 +12,25 @@ export SKIP_CONDA=1
|
||||
endif
|
||||
|
||||
.PHONY: diffusers
|
||||
diffusers:
|
||||
diffusers: protogen
|
||||
@echo "Installing $(CONDA_ENV_PATH)..."
|
||||
bash install.sh $(CONDA_ENV_PATH)
|
||||
|
||||
.PHONY: run
|
||||
run:
|
||||
run: protogen
|
||||
@echo "Running diffusers..."
|
||||
bash run.sh
|
||||
@echo "Diffusers run."
|
||||
|
||||
test:
|
||||
test: protogen
|
||||
bash test.sh
|
||||
|
||||
.PHONY: protogen
|
||||
protogen: backend_pb2_grpc.py backend_pb2.py
|
||||
|
||||
.PHONY: protogen-clean
|
||||
protogen-clean:
|
||||
$(RM) backend_pb2_grpc.py backend_pb2.py
|
||||
|
||||
backend_pb2_grpc.py backend_pb2.py:
|
||||
python3 -m grpc_tools.protoc -I../.. --python_out=. --grpc_python_out=. backend.proto
|
||||
File diff suppressed because one or more lines are too long
@@ -1,363 +0,0 @@
|
||||
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT!
|
||||
"""Client and server classes corresponding to protobuf-defined services."""
|
||||
import grpc
|
||||
|
||||
import backend_pb2 as backend__pb2
|
||||
|
||||
|
||||
class BackendStub(object):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
|
||||
def __init__(self, channel):
|
||||
"""Constructor.
|
||||
|
||||
Args:
|
||||
channel: A grpc.Channel.
|
||||
"""
|
||||
self.Health = channel.unary_unary(
|
||||
'/backend.Backend/Health',
|
||||
request_serializer=backend__pb2.HealthMessage.SerializeToString,
|
||||
response_deserializer=backend__pb2.Reply.FromString,
|
||||
)
|
||||
self.Predict = channel.unary_unary(
|
||||
'/backend.Backend/Predict',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.Reply.FromString,
|
||||
)
|
||||
self.LoadModel = channel.unary_unary(
|
||||
'/backend.Backend/LoadModel',
|
||||
request_serializer=backend__pb2.ModelOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.Result.FromString,
|
||||
)
|
||||
self.PredictStream = channel.unary_stream(
|
||||
'/backend.Backend/PredictStream',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.Reply.FromString,
|
||||
)
|
||||
self.Embedding = channel.unary_unary(
|
||||
'/backend.Backend/Embedding',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.EmbeddingResult.FromString,
|
||||
)
|
||||
self.GenerateImage = channel.unary_unary(
|
||||
'/backend.Backend/GenerateImage',
|
||||
request_serializer=backend__pb2.GenerateImageRequest.SerializeToString,
|
||||
response_deserializer=backend__pb2.Result.FromString,
|
||||
)
|
||||
self.AudioTranscription = channel.unary_unary(
|
||||
'/backend.Backend/AudioTranscription',
|
||||
request_serializer=backend__pb2.TranscriptRequest.SerializeToString,
|
||||
response_deserializer=backend__pb2.TranscriptResult.FromString,
|
||||
)
|
||||
self.TTS = channel.unary_unary(
|
||||
'/backend.Backend/TTS',
|
||||
request_serializer=backend__pb2.TTSRequest.SerializeToString,
|
||||
response_deserializer=backend__pb2.Result.FromString,
|
||||
)
|
||||
self.TokenizeString = channel.unary_unary(
|
||||
'/backend.Backend/TokenizeString',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.TokenizationResponse.FromString,
|
||||
)
|
||||
self.Status = channel.unary_unary(
|
||||
'/backend.Backend/Status',
|
||||
request_serializer=backend__pb2.HealthMessage.SerializeToString,
|
||||
response_deserializer=backend__pb2.StatusResponse.FromString,
|
||||
)
|
||||
|
||||
|
||||
class BackendServicer(object):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
|
||||
def Health(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def Predict(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def LoadModel(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def PredictStream(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def Embedding(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def GenerateImage(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def AudioTranscription(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def TTS(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def TokenizeString(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def Status(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
|
||||
def add_BackendServicer_to_server(servicer, server):
|
||||
rpc_method_handlers = {
|
||||
'Health': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Health,
|
||||
request_deserializer=backend__pb2.HealthMessage.FromString,
|
||||
response_serializer=backend__pb2.Reply.SerializeToString,
|
||||
),
|
||||
'Predict': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Predict,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.Reply.SerializeToString,
|
||||
),
|
||||
'LoadModel': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.LoadModel,
|
||||
request_deserializer=backend__pb2.ModelOptions.FromString,
|
||||
response_serializer=backend__pb2.Result.SerializeToString,
|
||||
),
|
||||
'PredictStream': grpc.unary_stream_rpc_method_handler(
|
||||
servicer.PredictStream,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.Reply.SerializeToString,
|
||||
),
|
||||
'Embedding': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Embedding,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.EmbeddingResult.SerializeToString,
|
||||
),
|
||||
'GenerateImage': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.GenerateImage,
|
||||
request_deserializer=backend__pb2.GenerateImageRequest.FromString,
|
||||
response_serializer=backend__pb2.Result.SerializeToString,
|
||||
),
|
||||
'AudioTranscription': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.AudioTranscription,
|
||||
request_deserializer=backend__pb2.TranscriptRequest.FromString,
|
||||
response_serializer=backend__pb2.TranscriptResult.SerializeToString,
|
||||
),
|
||||
'TTS': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.TTS,
|
||||
request_deserializer=backend__pb2.TTSRequest.FromString,
|
||||
response_serializer=backend__pb2.Result.SerializeToString,
|
||||
),
|
||||
'TokenizeString': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.TokenizeString,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.TokenizationResponse.SerializeToString,
|
||||
),
|
||||
'Status': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Status,
|
||||
request_deserializer=backend__pb2.HealthMessage.FromString,
|
||||
response_serializer=backend__pb2.StatusResponse.SerializeToString,
|
||||
),
|
||||
}
|
||||
generic_handler = grpc.method_handlers_generic_handler(
|
||||
'backend.Backend', rpc_method_handlers)
|
||||
server.add_generic_rpc_handlers((generic_handler,))
|
||||
|
||||
|
||||
# This class is part of an EXPERIMENTAL API.
|
||||
class Backend(object):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
|
||||
@staticmethod
|
||||
def Health(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Health',
|
||||
backend__pb2.HealthMessage.SerializeToString,
|
||||
backend__pb2.Reply.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def Predict(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Predict',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.Reply.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def LoadModel(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/LoadModel',
|
||||
backend__pb2.ModelOptions.SerializeToString,
|
||||
backend__pb2.Result.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def PredictStream(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_stream(request, target, '/backend.Backend/PredictStream',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.Reply.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def Embedding(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Embedding',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.EmbeddingResult.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def GenerateImage(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/GenerateImage',
|
||||
backend__pb2.GenerateImageRequest.SerializeToString,
|
||||
backend__pb2.Result.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def AudioTranscription(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/AudioTranscription',
|
||||
backend__pb2.TranscriptRequest.SerializeToString,
|
||||
backend__pb2.TranscriptResult.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def TTS(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/TTS',
|
||||
backend__pb2.TTSRequest.SerializeToString,
|
||||
backend__pb2.Result.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def TokenizeString(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/TokenizeString',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.TokenizationResponse.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def Status(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Status',
|
||||
backend__pb2.HealthMessage.SerializeToString,
|
||||
backend__pb2.StatusResponse.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
@@ -1,11 +1,21 @@
|
||||
export CONDA_ENV_PATH = "exllama.yml"
|
||||
|
||||
.PHONY: exllama
|
||||
exllama:
|
||||
exllama: protogen
|
||||
bash install.sh ${CONDA_ENV_PATH}
|
||||
|
||||
.PHONY: run
|
||||
run:
|
||||
run: protogen
|
||||
@echo "Running exllama..."
|
||||
bash run.sh
|
||||
@echo "exllama run."
|
||||
|
||||
.PHONY: protogen
|
||||
protogen: backend_pb2_grpc.py backend_pb2.py
|
||||
|
||||
.PHONY: protogen-clean
|
||||
protogen-clean:
|
||||
$(RM) backend_pb2_grpc.py backend_pb2.py
|
||||
|
||||
backend_pb2_grpc.py backend_pb2.py:
|
||||
python3 -m grpc_tools.protoc -I../.. --python_out=. --grpc_python_out=. backend.proto
|
||||
File diff suppressed because one or more lines are too long
@@ -1,363 +0,0 @@
|
||||
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT!
|
||||
"""Client and server classes corresponding to protobuf-defined services."""
|
||||
import grpc
|
||||
|
||||
import backend_pb2 as backend__pb2
|
||||
|
||||
|
||||
class BackendStub(object):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
|
||||
def __init__(self, channel):
|
||||
"""Constructor.
|
||||
|
||||
Args:
|
||||
channel: A grpc.Channel.
|
||||
"""
|
||||
self.Health = channel.unary_unary(
|
||||
'/backend.Backend/Health',
|
||||
request_serializer=backend__pb2.HealthMessage.SerializeToString,
|
||||
response_deserializer=backend__pb2.Reply.FromString,
|
||||
)
|
||||
self.Predict = channel.unary_unary(
|
||||
'/backend.Backend/Predict',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.Reply.FromString,
|
||||
)
|
||||
self.LoadModel = channel.unary_unary(
|
||||
'/backend.Backend/LoadModel',
|
||||
request_serializer=backend__pb2.ModelOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.Result.FromString,
|
||||
)
|
||||
self.PredictStream = channel.unary_stream(
|
||||
'/backend.Backend/PredictStream',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.Reply.FromString,
|
||||
)
|
||||
self.Embedding = channel.unary_unary(
|
||||
'/backend.Backend/Embedding',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.EmbeddingResult.FromString,
|
||||
)
|
||||
self.GenerateImage = channel.unary_unary(
|
||||
'/backend.Backend/GenerateImage',
|
||||
request_serializer=backend__pb2.GenerateImageRequest.SerializeToString,
|
||||
response_deserializer=backend__pb2.Result.FromString,
|
||||
)
|
||||
self.AudioTranscription = channel.unary_unary(
|
||||
'/backend.Backend/AudioTranscription',
|
||||
request_serializer=backend__pb2.TranscriptRequest.SerializeToString,
|
||||
response_deserializer=backend__pb2.TranscriptResult.FromString,
|
||||
)
|
||||
self.TTS = channel.unary_unary(
|
||||
'/backend.Backend/TTS',
|
||||
request_serializer=backend__pb2.TTSRequest.SerializeToString,
|
||||
response_deserializer=backend__pb2.Result.FromString,
|
||||
)
|
||||
self.TokenizeString = channel.unary_unary(
|
||||
'/backend.Backend/TokenizeString',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.TokenizationResponse.FromString,
|
||||
)
|
||||
self.Status = channel.unary_unary(
|
||||
'/backend.Backend/Status',
|
||||
request_serializer=backend__pb2.HealthMessage.SerializeToString,
|
||||
response_deserializer=backend__pb2.StatusResponse.FromString,
|
||||
)
|
||||
|
||||
|
||||
class BackendServicer(object):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
|
||||
def Health(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def Predict(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def LoadModel(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def PredictStream(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def Embedding(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def GenerateImage(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def AudioTranscription(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def TTS(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def TokenizeString(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def Status(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
|
||||
def add_BackendServicer_to_server(servicer, server):
|
||||
rpc_method_handlers = {
|
||||
'Health': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Health,
|
||||
request_deserializer=backend__pb2.HealthMessage.FromString,
|
||||
response_serializer=backend__pb2.Reply.SerializeToString,
|
||||
),
|
||||
'Predict': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Predict,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.Reply.SerializeToString,
|
||||
),
|
||||
'LoadModel': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.LoadModel,
|
||||
request_deserializer=backend__pb2.ModelOptions.FromString,
|
||||
response_serializer=backend__pb2.Result.SerializeToString,
|
||||
),
|
||||
'PredictStream': grpc.unary_stream_rpc_method_handler(
|
||||
servicer.PredictStream,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.Reply.SerializeToString,
|
||||
),
|
||||
'Embedding': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Embedding,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.EmbeddingResult.SerializeToString,
|
||||
),
|
||||
'GenerateImage': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.GenerateImage,
|
||||
request_deserializer=backend__pb2.GenerateImageRequest.FromString,
|
||||
response_serializer=backend__pb2.Result.SerializeToString,
|
||||
),
|
||||
'AudioTranscription': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.AudioTranscription,
|
||||
request_deserializer=backend__pb2.TranscriptRequest.FromString,
|
||||
response_serializer=backend__pb2.TranscriptResult.SerializeToString,
|
||||
),
|
||||
'TTS': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.TTS,
|
||||
request_deserializer=backend__pb2.TTSRequest.FromString,
|
||||
response_serializer=backend__pb2.Result.SerializeToString,
|
||||
),
|
||||
'TokenizeString': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.TokenizeString,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.TokenizationResponse.SerializeToString,
|
||||
),
|
||||
'Status': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Status,
|
||||
request_deserializer=backend__pb2.HealthMessage.FromString,
|
||||
response_serializer=backend__pb2.StatusResponse.SerializeToString,
|
||||
),
|
||||
}
|
||||
generic_handler = grpc.method_handlers_generic_handler(
|
||||
'backend.Backend', rpc_method_handlers)
|
||||
server.add_generic_rpc_handlers((generic_handler,))
|
||||
|
||||
|
||||
# This class is part of an EXPERIMENTAL API.
|
||||
class Backend(object):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
|
||||
@staticmethod
|
||||
def Health(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Health',
|
||||
backend__pb2.HealthMessage.SerializeToString,
|
||||
backend__pb2.Reply.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def Predict(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Predict',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.Reply.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def LoadModel(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/LoadModel',
|
||||
backend__pb2.ModelOptions.SerializeToString,
|
||||
backend__pb2.Result.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def PredictStream(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_stream(request, target, '/backend.Backend/PredictStream',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.Reply.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def Embedding(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Embedding',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.EmbeddingResult.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def GenerateImage(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/GenerateImage',
|
||||
backend__pb2.GenerateImageRequest.SerializeToString,
|
||||
backend__pb2.Result.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def AudioTranscription(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/AudioTranscription',
|
||||
backend__pb2.TranscriptRequest.SerializeToString,
|
||||
backend__pb2.TranscriptResult.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def TTS(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/TTS',
|
||||
backend__pb2.TTSRequest.SerializeToString,
|
||||
backend__pb2.Result.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def TokenizeString(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/TokenizeString',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.TokenizationResponse.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def Status(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Status',
|
||||
backend__pb2.HealthMessage.SerializeToString,
|
||||
backend__pb2.StatusResponse.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
@@ -1,10 +1,20 @@
|
||||
.PHONY: exllama2
|
||||
exllama2:
|
||||
exllama2: protogen
|
||||
$(MAKE) -C ../common-env/transformers
|
||||
bash install.sh
|
||||
|
||||
.PHONY: run
|
||||
run:
|
||||
run: protogen
|
||||
@echo "Running exllama2..."
|
||||
bash run.sh
|
||||
@echo "exllama2 run."
|
||||
|
||||
.PHONY: protogen
|
||||
protogen: backend_pb2_grpc.py backend_pb2.py
|
||||
|
||||
.PHONY: protogen-clean
|
||||
protogen-clean:
|
||||
$(RM) backend_pb2_grpc.py backend_pb2.py
|
||||
|
||||
backend_pb2_grpc.py backend_pb2.py:
|
||||
python3 -m grpc_tools.protoc -I../.. --python_out=. --grpc_python_out=. backend.proto
|
||||
File diff suppressed because one or more lines are too long
@@ -1,363 +0,0 @@
|
||||
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT!
|
||||
"""Client and server classes corresponding to protobuf-defined services."""
|
||||
import grpc
|
||||
|
||||
import backend_pb2 as backend__pb2
|
||||
|
||||
|
||||
class BackendStub(object):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
|
||||
def __init__(self, channel):
|
||||
"""Constructor.
|
||||
|
||||
Args:
|
||||
channel: A grpc.Channel.
|
||||
"""
|
||||
self.Health = channel.unary_unary(
|
||||
'/backend.Backend/Health',
|
||||
request_serializer=backend__pb2.HealthMessage.SerializeToString,
|
||||
response_deserializer=backend__pb2.Reply.FromString,
|
||||
)
|
||||
self.Predict = channel.unary_unary(
|
||||
'/backend.Backend/Predict',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.Reply.FromString,
|
||||
)
|
||||
self.LoadModel = channel.unary_unary(
|
||||
'/backend.Backend/LoadModel',
|
||||
request_serializer=backend__pb2.ModelOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.Result.FromString,
|
||||
)
|
||||
self.PredictStream = channel.unary_stream(
|
||||
'/backend.Backend/PredictStream',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.Reply.FromString,
|
||||
)
|
||||
self.Embedding = channel.unary_unary(
|
||||
'/backend.Backend/Embedding',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.EmbeddingResult.FromString,
|
||||
)
|
||||
self.GenerateImage = channel.unary_unary(
|
||||
'/backend.Backend/GenerateImage',
|
||||
request_serializer=backend__pb2.GenerateImageRequest.SerializeToString,
|
||||
response_deserializer=backend__pb2.Result.FromString,
|
||||
)
|
||||
self.AudioTranscription = channel.unary_unary(
|
||||
'/backend.Backend/AudioTranscription',
|
||||
request_serializer=backend__pb2.TranscriptRequest.SerializeToString,
|
||||
response_deserializer=backend__pb2.TranscriptResult.FromString,
|
||||
)
|
||||
self.TTS = channel.unary_unary(
|
||||
'/backend.Backend/TTS',
|
||||
request_serializer=backend__pb2.TTSRequest.SerializeToString,
|
||||
response_deserializer=backend__pb2.Result.FromString,
|
||||
)
|
||||
self.TokenizeString = channel.unary_unary(
|
||||
'/backend.Backend/TokenizeString',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.TokenizationResponse.FromString,
|
||||
)
|
||||
self.Status = channel.unary_unary(
|
||||
'/backend.Backend/Status',
|
||||
request_serializer=backend__pb2.HealthMessage.SerializeToString,
|
||||
response_deserializer=backend__pb2.StatusResponse.FromString,
|
||||
)
|
||||
|
||||
|
||||
class BackendServicer(object):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
|
||||
def Health(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def Predict(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def LoadModel(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def PredictStream(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def Embedding(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def GenerateImage(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def AudioTranscription(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def TTS(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def TokenizeString(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def Status(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
|
||||
def add_BackendServicer_to_server(servicer, server):
|
||||
rpc_method_handlers = {
|
||||
'Health': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Health,
|
||||
request_deserializer=backend__pb2.HealthMessage.FromString,
|
||||
response_serializer=backend__pb2.Reply.SerializeToString,
|
||||
),
|
||||
'Predict': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Predict,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.Reply.SerializeToString,
|
||||
),
|
||||
'LoadModel': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.LoadModel,
|
||||
request_deserializer=backend__pb2.ModelOptions.FromString,
|
||||
response_serializer=backend__pb2.Result.SerializeToString,
|
||||
),
|
||||
'PredictStream': grpc.unary_stream_rpc_method_handler(
|
||||
servicer.PredictStream,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.Reply.SerializeToString,
|
||||
),
|
||||
'Embedding': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Embedding,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.EmbeddingResult.SerializeToString,
|
||||
),
|
||||
'GenerateImage': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.GenerateImage,
|
||||
request_deserializer=backend__pb2.GenerateImageRequest.FromString,
|
||||
response_serializer=backend__pb2.Result.SerializeToString,
|
||||
),
|
||||
'AudioTranscription': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.AudioTranscription,
|
||||
request_deserializer=backend__pb2.TranscriptRequest.FromString,
|
||||
response_serializer=backend__pb2.TranscriptResult.SerializeToString,
|
||||
),
|
||||
'TTS': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.TTS,
|
||||
request_deserializer=backend__pb2.TTSRequest.FromString,
|
||||
response_serializer=backend__pb2.Result.SerializeToString,
|
||||
),
|
||||
'TokenizeString': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.TokenizeString,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.TokenizationResponse.SerializeToString,
|
||||
),
|
||||
'Status': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Status,
|
||||
request_deserializer=backend__pb2.HealthMessage.FromString,
|
||||
response_serializer=backend__pb2.StatusResponse.SerializeToString,
|
||||
),
|
||||
}
|
||||
generic_handler = grpc.method_handlers_generic_handler(
|
||||
'backend.Backend', rpc_method_handlers)
|
||||
server.add_generic_rpc_handlers((generic_handler,))
|
||||
|
||||
|
||||
# This class is part of an EXPERIMENTAL API.
|
||||
class Backend(object):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
|
||||
@staticmethod
|
||||
def Health(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Health',
|
||||
backend__pb2.HealthMessage.SerializeToString,
|
||||
backend__pb2.Reply.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def Predict(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Predict',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.Reply.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def LoadModel(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/LoadModel',
|
||||
backend__pb2.ModelOptions.SerializeToString,
|
||||
backend__pb2.Result.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def PredictStream(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_stream(request, target, '/backend.Backend/PredictStream',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.Reply.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def Embedding(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Embedding',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.EmbeddingResult.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def GenerateImage(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/GenerateImage',
|
||||
backend__pb2.GenerateImageRequest.SerializeToString,
|
||||
backend__pb2.Result.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def AudioTranscription(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/AudioTranscription',
|
||||
backend__pb2.TranscriptRequest.SerializeToString,
|
||||
backend__pb2.TranscriptResult.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def TTS(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/TTS',
|
||||
backend__pb2.TTSRequest.SerializeToString,
|
||||
backend__pb2.Result.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def TokenizeString(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/TokenizeString',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.TokenizationResponse.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def Status(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Status',
|
||||
backend__pb2.HealthMessage.SerializeToString,
|
||||
backend__pb2.StatusResponse.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
@@ -1,16 +1,26 @@
|
||||
.PHONY: mamba
|
||||
mamba:
|
||||
mamba: protogen
|
||||
$(MAKE) -C ../common-env/transformers
|
||||
bash install.sh
|
||||
|
||||
.PHONY: run
|
||||
run:
|
||||
run: protogen
|
||||
@echo "Running mamba..."
|
||||
bash run.sh
|
||||
@echo "mamba run."
|
||||
|
||||
.PHONY: test
|
||||
test:
|
||||
test: protogen
|
||||
@echo "Testing mamba..."
|
||||
bash test.sh
|
||||
@echo "mamba tested."
|
||||
@echo "mamba tested."
|
||||
|
||||
.PHONY: protogen
|
||||
protogen: backend_pb2_grpc.py backend_pb2.py
|
||||
|
||||
.PHONY: protogen-clean
|
||||
protogen-clean:
|
||||
$(RM) backend_pb2_grpc.py backend_pb2.py
|
||||
|
||||
backend_pb2_grpc.py backend_pb2.py:
|
||||
python3 -m grpc_tools.protoc -I../.. --python_out=. --grpc_python_out=. backend.proto
|
||||
File diff suppressed because one or more lines are too long
@@ -1,363 +0,0 @@
|
||||
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT!
|
||||
"""Client and server classes corresponding to protobuf-defined services."""
|
||||
import grpc
|
||||
|
||||
import backend_pb2 as backend__pb2
|
||||
|
||||
|
||||
class BackendStub(object):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
|
||||
def __init__(self, channel):
|
||||
"""Constructor.
|
||||
|
||||
Args:
|
||||
channel: A grpc.Channel.
|
||||
"""
|
||||
self.Health = channel.unary_unary(
|
||||
'/backend.Backend/Health',
|
||||
request_serializer=backend__pb2.HealthMessage.SerializeToString,
|
||||
response_deserializer=backend__pb2.Reply.FromString,
|
||||
)
|
||||
self.Predict = channel.unary_unary(
|
||||
'/backend.Backend/Predict',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.Reply.FromString,
|
||||
)
|
||||
self.LoadModel = channel.unary_unary(
|
||||
'/backend.Backend/LoadModel',
|
||||
request_serializer=backend__pb2.ModelOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.Result.FromString,
|
||||
)
|
||||
self.PredictStream = channel.unary_stream(
|
||||
'/backend.Backend/PredictStream',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.Reply.FromString,
|
||||
)
|
||||
self.Embedding = channel.unary_unary(
|
||||
'/backend.Backend/Embedding',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.EmbeddingResult.FromString,
|
||||
)
|
||||
self.GenerateImage = channel.unary_unary(
|
||||
'/backend.Backend/GenerateImage',
|
||||
request_serializer=backend__pb2.GenerateImageRequest.SerializeToString,
|
||||
response_deserializer=backend__pb2.Result.FromString,
|
||||
)
|
||||
self.AudioTranscription = channel.unary_unary(
|
||||
'/backend.Backend/AudioTranscription',
|
||||
request_serializer=backend__pb2.TranscriptRequest.SerializeToString,
|
||||
response_deserializer=backend__pb2.TranscriptResult.FromString,
|
||||
)
|
||||
self.TTS = channel.unary_unary(
|
||||
'/backend.Backend/TTS',
|
||||
request_serializer=backend__pb2.TTSRequest.SerializeToString,
|
||||
response_deserializer=backend__pb2.Result.FromString,
|
||||
)
|
||||
self.TokenizeString = channel.unary_unary(
|
||||
'/backend.Backend/TokenizeString',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.TokenizationResponse.FromString,
|
||||
)
|
||||
self.Status = channel.unary_unary(
|
||||
'/backend.Backend/Status',
|
||||
request_serializer=backend__pb2.HealthMessage.SerializeToString,
|
||||
response_deserializer=backend__pb2.StatusResponse.FromString,
|
||||
)
|
||||
|
||||
|
||||
class BackendServicer(object):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
|
||||
def Health(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def Predict(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def LoadModel(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def PredictStream(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def Embedding(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def GenerateImage(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def AudioTranscription(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def TTS(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def TokenizeString(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def Status(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
|
||||
def add_BackendServicer_to_server(servicer, server):
|
||||
rpc_method_handlers = {
|
||||
'Health': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Health,
|
||||
request_deserializer=backend__pb2.HealthMessage.FromString,
|
||||
response_serializer=backend__pb2.Reply.SerializeToString,
|
||||
),
|
||||
'Predict': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Predict,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.Reply.SerializeToString,
|
||||
),
|
||||
'LoadModel': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.LoadModel,
|
||||
request_deserializer=backend__pb2.ModelOptions.FromString,
|
||||
response_serializer=backend__pb2.Result.SerializeToString,
|
||||
),
|
||||
'PredictStream': grpc.unary_stream_rpc_method_handler(
|
||||
servicer.PredictStream,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.Reply.SerializeToString,
|
||||
),
|
||||
'Embedding': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Embedding,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.EmbeddingResult.SerializeToString,
|
||||
),
|
||||
'GenerateImage': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.GenerateImage,
|
||||
request_deserializer=backend__pb2.GenerateImageRequest.FromString,
|
||||
response_serializer=backend__pb2.Result.SerializeToString,
|
||||
),
|
||||
'AudioTranscription': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.AudioTranscription,
|
||||
request_deserializer=backend__pb2.TranscriptRequest.FromString,
|
||||
response_serializer=backend__pb2.TranscriptResult.SerializeToString,
|
||||
),
|
||||
'TTS': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.TTS,
|
||||
request_deserializer=backend__pb2.TTSRequest.FromString,
|
||||
response_serializer=backend__pb2.Result.SerializeToString,
|
||||
),
|
||||
'TokenizeString': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.TokenizeString,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.TokenizationResponse.SerializeToString,
|
||||
),
|
||||
'Status': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Status,
|
||||
request_deserializer=backend__pb2.HealthMessage.FromString,
|
||||
response_serializer=backend__pb2.StatusResponse.SerializeToString,
|
||||
),
|
||||
}
|
||||
generic_handler = grpc.method_handlers_generic_handler(
|
||||
'backend.Backend', rpc_method_handlers)
|
||||
server.add_generic_rpc_handlers((generic_handler,))
|
||||
|
||||
|
||||
# This class is part of an EXPERIMENTAL API.
|
||||
class Backend(object):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
|
||||
@staticmethod
|
||||
def Health(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Health',
|
||||
backend__pb2.HealthMessage.SerializeToString,
|
||||
backend__pb2.Reply.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def Predict(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Predict',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.Reply.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def LoadModel(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/LoadModel',
|
||||
backend__pb2.ModelOptions.SerializeToString,
|
||||
backend__pb2.Result.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def PredictStream(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_stream(request, target, '/backend.Backend/PredictStream',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.Reply.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def Embedding(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Embedding',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.EmbeddingResult.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def GenerateImage(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/GenerateImage',
|
||||
backend__pb2.GenerateImageRequest.SerializeToString,
|
||||
backend__pb2.Result.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def AudioTranscription(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/AudioTranscription',
|
||||
backend__pb2.TranscriptRequest.SerializeToString,
|
||||
backend__pb2.TranscriptResult.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def TTS(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/TTS',
|
||||
backend__pb2.TTSRequest.SerializeToString,
|
||||
backend__pb2.Result.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def TokenizeString(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/TokenizeString',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.TokenizationResponse.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def Status(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Status',
|
||||
backend__pb2.HealthMessage.SerializeToString,
|
||||
backend__pb2.StatusResponse.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
39
backend/python/parler-tts/Makefile
Normal file
39
backend/python/parler-tts/Makefile
Normal file
@@ -0,0 +1,39 @@
|
||||
export CONDA_ENV_PATH = "parler.yml"
|
||||
SKIP_CONDA?=0
|
||||
ifeq ($(BUILD_TYPE), cublas)
|
||||
export CONDA_ENV_PATH = "parler-nvidia.yml"
|
||||
endif
|
||||
|
||||
# Intel GPU are supposed to have dependencies installed in the main python
|
||||
# environment, so we skip conda installation for SYCL builds.
|
||||
# https://github.com/intel/intel-extension-for-pytorch/issues/538
|
||||
ifneq (,$(findstring sycl,$(BUILD_TYPE)))
|
||||
export SKIP_CONDA=1
|
||||
endif
|
||||
|
||||
.PHONY: parler-tts
|
||||
parler-tts: protogen
|
||||
@echo "Installing $(CONDA_ENV_PATH)..."
|
||||
bash install.sh $(CONDA_ENV_PATH)
|
||||
|
||||
.PHONY: run
|
||||
run: protogen
|
||||
@echo "Running transformers..."
|
||||
bash run.sh
|
||||
@echo "transformers run."
|
||||
|
||||
.PHONY: test
|
||||
test: protogen
|
||||
@echo "Testing transformers..."
|
||||
bash test.sh
|
||||
@echo "transformers tested."
|
||||
|
||||
.PHONY: protogen
|
||||
protogen: backend_pb2_grpc.py backend_pb2.py
|
||||
|
||||
.PHONY: protogen-clean
|
||||
protogen-clean:
|
||||
$(RM) backend_pb2_grpc.py backend_pb2.py
|
||||
|
||||
backend_pb2_grpc.py backend_pb2.py:
|
||||
python3 -m grpc_tools.protoc -I../.. --python_out=. --grpc_python_out=. backend.proto
|
||||
39
backend/python/parler-tts/install.sh
Executable file
39
backend/python/parler-tts/install.sh
Executable file
@@ -0,0 +1,39 @@
|
||||
#!/bin/bash
|
||||
set -ex
|
||||
|
||||
SKIP_CONDA=${SKIP_CONDA:-0}
|
||||
|
||||
# Check if environment exist
|
||||
conda_env_exists(){
|
||||
! conda list --name "${@}" >/dev/null 2>/dev/null
|
||||
}
|
||||
|
||||
if [ $SKIP_CONDA -eq 1 ]; then
|
||||
echo "Skipping conda environment installation"
|
||||
else
|
||||
export PATH=$PATH:/opt/conda/bin
|
||||
if conda_env_exists "parler" ; then
|
||||
echo "Creating virtual environment..."
|
||||
conda env create --name parler --file $1
|
||||
echo "Virtual environment created."
|
||||
else
|
||||
echo "Virtual environment already exists."
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ $SKIP_CONDA -ne 1 ]; then
|
||||
# Activate conda environment
|
||||
source activate parler
|
||||
# https://github.com/descriptinc/audiotools/issues/101
|
||||
# incompatible protobuf versions.
|
||||
curl -L https://raw.githubusercontent.com/protocolbuffers/protobuf/main/python/google/protobuf/internal/builder.py -o $CONDA_PREFIX/lib/python3.11/site-packages/google/protobuf/internal/builder.py
|
||||
fi
|
||||
|
||||
if [ "$PIP_CACHE_PURGE" = true ] ; then
|
||||
if [ $SKIP_CONDA -ne 1 ]; then
|
||||
# Activate conda environment
|
||||
source activate parler
|
||||
fi
|
||||
|
||||
pip cache purge
|
||||
fi
|
||||
48
backend/python/parler-tts/parler-nvidia.yml
Normal file
48
backend/python/parler-tts/parler-nvidia.yml
Normal file
@@ -0,0 +1,48 @@
|
||||
name: parler
|
||||
channels:
|
||||
- defaults
|
||||
dependencies:
|
||||
- _libgcc_mutex=0.1=main
|
||||
- _openmp_mutex=5.1=1_gnu
|
||||
- bzip2=1.0.8=h7b6447c_0
|
||||
- ca-certificates=2023.08.22=h06a4308_0
|
||||
- ld_impl_linux-64=2.38=h1181459_1
|
||||
- libffi=3.4.4=h6a678d5_0
|
||||
- libgcc-ng=11.2.0=h1234567_1
|
||||
- libgomp=11.2.0=h1234567_1
|
||||
- libstdcxx-ng=11.2.0=h1234567_1
|
||||
- libuuid=1.41.5=h5eee18b_0
|
||||
- ncurses=6.4=h6a678d5_0
|
||||
- openssl=3.0.11=h7f8727e_2
|
||||
- pip=23.2.1=py311h06a4308_0
|
||||
- python=3.11.5=h955ad1f_0
|
||||
- readline=8.2=h5eee18b_0
|
||||
- setuptools=68.0.0=py311h06a4308_0
|
||||
- sqlite=3.41.2=h5eee18b_0
|
||||
- tk=8.6.12=h1ccaba5_0
|
||||
- tzdata=2023c=h04d1e81_0
|
||||
- wheel=0.41.2=py311h06a4308_0
|
||||
- xz=5.4.2=h5eee18b_0
|
||||
- zlib=1.2.13=h5eee18b_0
|
||||
- pip:
|
||||
- accelerate>=0.11.0
|
||||
- grpcio==1.59.0
|
||||
- numpy==1.26.0
|
||||
- nvidia-cublas-cu12==12.1.3.1
|
||||
- nvidia-cuda-cupti-cu12==12.1.105
|
||||
- nvidia-cuda-nvrtc-cu12==12.1.105
|
||||
- nvidia-cuda-runtime-cu12==12.1.105
|
||||
- nvidia-cudnn-cu12==8.9.2.26
|
||||
- nvidia-cufft-cu12==11.0.2.54
|
||||
- nvidia-curand-cu12==10.3.2.106
|
||||
- nvidia-cusolver-cu12==11.4.5.107
|
||||
- nvidia-cusparse-cu12==12.1.0.106
|
||||
- nvidia-nccl-cu12==2.18.1
|
||||
- nvidia-nvjitlink-cu12==12.2.140
|
||||
- nvidia-nvtx-cu12==12.1.105
|
||||
- torch==2.1.0
|
||||
- transformers>=4.34.0
|
||||
- descript-audio-codec
|
||||
- sentencepiece
|
||||
- git+https://github.com/huggingface/parler-tts.git@10016fb0300c0dc31a0fb70e26f3affee7b62f16
|
||||
prefix: /opt/conda/envs/diffusers
|
||||
36
backend/python/parler-tts/parler.yml
Normal file
36
backend/python/parler-tts/parler.yml
Normal file
@@ -0,0 +1,36 @@
|
||||
name: parler
|
||||
channels:
|
||||
- defaults
|
||||
dependencies:
|
||||
- _libgcc_mutex=0.1=main
|
||||
- _openmp_mutex=5.1=1_gnu
|
||||
- bzip2=1.0.8=h7b6447c_0
|
||||
- ca-certificates=2023.08.22=h06a4308_0
|
||||
- ld_impl_linux-64=2.38=h1181459_1
|
||||
- libffi=3.4.4=h6a678d5_0
|
||||
- libgcc-ng=11.2.0=h1234567_1
|
||||
- libgomp=11.2.0=h1234567_1
|
||||
- libstdcxx-ng=11.2.0=h1234567_1
|
||||
- libuuid=1.41.5=h5eee18b_0
|
||||
- ncurses=6.4=h6a678d5_0
|
||||
- openssl=3.0.11=h7f8727e_2
|
||||
- pip=23.2.1=py311h06a4308_0
|
||||
- python=3.11.5=h955ad1f_0
|
||||
- readline=8.2=h5eee18b_0
|
||||
- setuptools=68.0.0=py311h06a4308_0
|
||||
- sqlite=3.41.2=h5eee18b_0
|
||||
- tk=8.6.12=h1ccaba5_0
|
||||
- tzdata=2023c=h04d1e81_0
|
||||
- wheel=0.41.2=py311h06a4308_0
|
||||
- xz=5.4.2=h5eee18b_0
|
||||
- zlib=1.2.13=h5eee18b_0
|
||||
- pip:
|
||||
- accelerate>=0.11.0
|
||||
- numpy==1.26.0
|
||||
- grpcio==1.59.0
|
||||
- torch==2.1.0
|
||||
- transformers>=4.34.0
|
||||
- descript-audio-codec
|
||||
- sentencepiece
|
||||
- git+https://github.com/huggingface/parler-tts.git@10016fb0300c0dc31a0fb70e26f3affee7b62f16
|
||||
prefix: /opt/conda/envs/parler
|
||||
125
backend/python/parler-tts/parler_tts_server.py
Normal file
125
backend/python/parler-tts/parler_tts_server.py
Normal file
@@ -0,0 +1,125 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Extra gRPC server for MusicgenForConditionalGeneration models.
|
||||
"""
|
||||
from concurrent import futures
|
||||
|
||||
import argparse
|
||||
import signal
|
||||
import sys
|
||||
import os
|
||||
|
||||
import time
|
||||
import backend_pb2
|
||||
import backend_pb2_grpc
|
||||
|
||||
import grpc
|
||||
|
||||
from scipy.io.wavfile import write as write_wav
|
||||
|
||||
from parler_tts import ParlerTTSForConditionalGeneration
|
||||
from transformers import AutoTokenizer
|
||||
import soundfile as sf
|
||||
import torch
|
||||
|
||||
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
|
||||
|
||||
# If MAX_WORKERS are specified in the environment use it, otherwise default to 1
|
||||
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1'))
|
||||
|
||||
# Implement the BackendServicer class with the service methods
|
||||
class BackendServicer(backend_pb2_grpc.BackendServicer):
|
||||
"""
|
||||
A gRPC servicer for the backend service.
|
||||
|
||||
This class implements the gRPC methods for the backend service, including Health, LoadModel, and Embedding.
|
||||
"""
|
||||
def Health(self, request, context):
|
||||
"""
|
||||
A gRPC method that returns the health status of the backend service.
|
||||
|
||||
Args:
|
||||
request: A HealthRequest object that contains the request parameters.
|
||||
context: A grpc.ServicerContext object that provides information about the RPC.
|
||||
|
||||
Returns:
|
||||
A Reply object that contains the health status of the backend service.
|
||||
"""
|
||||
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
|
||||
|
||||
def LoadModel(self, request, context):
|
||||
"""
|
||||
A gRPC method that loads a model into memory.
|
||||
|
||||
Args:
|
||||
request: A LoadModelRequest object that contains the request parameters.
|
||||
context: A grpc.ServicerContext object that provides information about the RPC.
|
||||
|
||||
Returns:
|
||||
A Result object that contains the result of the LoadModel operation.
|
||||
"""
|
||||
model_name = request.Model
|
||||
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
||||
try:
|
||||
self.model = ParlerTTSForConditionalGeneration.from_pretrained(model_name).to(device)
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
except Exception as err:
|
||||
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
|
||||
|
||||
return backend_pb2.Result(message="Model loaded successfully", success=True)
|
||||
|
||||
def TTS(self, request, context):
|
||||
model_name = request.model
|
||||
voice = request.voice
|
||||
if voice == "":
|
||||
voice = "A female speaker with a slightly low-pitched voice delivers her words quite expressively, in a very confined sounding environment with clear audio quality. She speaks very fast."
|
||||
if model_name == "":
|
||||
return backend_pb2.Result(success=False, message="request.model is required")
|
||||
try:
|
||||
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
||||
input_ids = self.tokenizer(voice, return_tensors="pt").input_ids.to(device)
|
||||
prompt_input_ids = self.tokenizer(request.text, return_tensors="pt").input_ids.to(device)
|
||||
|
||||
generation = self.model.generate(input_ids=input_ids, prompt_input_ids=prompt_input_ids)
|
||||
audio_arr = generation.cpu().numpy().squeeze()
|
||||
print("[parler-tts] TTS generated!", file=sys.stderr)
|
||||
sf.write(request.dst, audio_arr, self.model.config.sampling_rate)
|
||||
print("[parler-tts] TTS saved to", request.dst, file=sys.stderr)
|
||||
print("[parler-tts] TTS for", file=sys.stderr)
|
||||
print(request, file=sys.stderr)
|
||||
except Exception as err:
|
||||
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
|
||||
return backend_pb2.Result(success=True)
|
||||
|
||||
|
||||
def serve(address):
|
||||
server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS))
|
||||
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
|
||||
server.add_insecure_port(address)
|
||||
server.start()
|
||||
print("[parler-tts] Server started. Listening on: " + address, file=sys.stderr)
|
||||
|
||||
# Define the signal handler function
|
||||
def signal_handler(sig, frame):
|
||||
print("[parler-tts] Received termination signal. Shutting down...")
|
||||
server.stop(0)
|
||||
sys.exit(0)
|
||||
|
||||
# Set the signal handlers for SIGINT and SIGTERM
|
||||
signal.signal(signal.SIGINT, signal_handler)
|
||||
signal.signal(signal.SIGTERM, signal_handler)
|
||||
|
||||
try:
|
||||
while True:
|
||||
time.sleep(_ONE_DAY_IN_SECONDS)
|
||||
except KeyboardInterrupt:
|
||||
server.stop(0)
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Run the gRPC server.")
|
||||
parser.add_argument(
|
||||
"--addr", default="localhost:50051", help="The address to bind the server to."
|
||||
)
|
||||
args = parser.parse_args()
|
||||
print(f"[parler-tts] startup: {args}", file=sys.stderr)
|
||||
serve(args.addr)
|
||||
16
backend/python/parler-tts/run.sh
Normal file
16
backend/python/parler-tts/run.sh
Normal file
@@ -0,0 +1,16 @@
|
||||
#!/bin/bash
|
||||
|
||||
##
|
||||
## A bash script wrapper that runs the parler-tts server with conda
|
||||
|
||||
echo "Launching gRPC server for parler-tts"
|
||||
|
||||
export PATH=$PATH:/opt/conda/bin
|
||||
|
||||
# Activate conda environment
|
||||
source activate parler
|
||||
|
||||
# get the directory where the bash script is located
|
||||
DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
|
||||
|
||||
python $DIR/parler_tts_server.py $@
|
||||
11
backend/python/parler-tts/test.sh
Normal file
11
backend/python/parler-tts/test.sh
Normal file
@@ -0,0 +1,11 @@
|
||||
#!/bin/bash
|
||||
##
|
||||
## A bash script wrapper that runs the transformers server with conda
|
||||
|
||||
# Activate conda environment
|
||||
source activate parler
|
||||
|
||||
# get the directory where the bash script is located
|
||||
DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
|
||||
|
||||
python -m unittest $DIR/test_parler.py
|
||||
81
backend/python/parler-tts/test_parler.py
Normal file
81
backend/python/parler-tts/test_parler.py
Normal file
@@ -0,0 +1,81 @@
|
||||
"""
|
||||
A test script to test the gRPC service
|
||||
"""
|
||||
import unittest
|
||||
import subprocess
|
||||
import time
|
||||
import backend_pb2
|
||||
import backend_pb2_grpc
|
||||
|
||||
import grpc
|
||||
|
||||
|
||||
class TestBackendServicer(unittest.TestCase):
|
||||
"""
|
||||
TestBackendServicer is the class that tests the gRPC service
|
||||
"""
|
||||
def setUp(self):
|
||||
"""
|
||||
This method sets up the gRPC service by starting the server
|
||||
"""
|
||||
self.service = subprocess.Popen(["python3", "parler_tts_server.py", "--addr", "localhost:50051"])
|
||||
time.sleep(10)
|
||||
|
||||
def tearDown(self) -> None:
|
||||
"""
|
||||
This method tears down the gRPC service by terminating the server
|
||||
"""
|
||||
self.service.terminate()
|
||||
self.service.wait()
|
||||
|
||||
def test_server_startup(self):
|
||||
"""
|
||||
This method tests if the server starts up successfully
|
||||
"""
|
||||
try:
|
||||
self.setUp()
|
||||
with grpc.insecure_channel("localhost:50051") as channel:
|
||||
stub = backend_pb2_grpc.BackendStub(channel)
|
||||
response = stub.Health(backend_pb2.HealthMessage())
|
||||
self.assertEqual(response.message, b'OK')
|
||||
except Exception as err:
|
||||
print(err)
|
||||
self.fail("Server failed to start")
|
||||
finally:
|
||||
self.tearDown()
|
||||
|
||||
def test_load_model(self):
|
||||
"""
|
||||
This method tests if the model is loaded successfully
|
||||
"""
|
||||
try:
|
||||
self.setUp()
|
||||
with grpc.insecure_channel("localhost:50051") as channel:
|
||||
stub = backend_pb2_grpc.BackendStub(channel)
|
||||
response = stub.LoadModel(backend_pb2.ModelOptions(Model="parler-tts/parler_tts_mini_v0.1"))
|
||||
self.assertTrue(response.success)
|
||||
self.assertEqual(response.message, "Model loaded successfully")
|
||||
except Exception as err:
|
||||
print(err)
|
||||
self.fail("LoadModel service failed")
|
||||
finally:
|
||||
self.tearDown()
|
||||
|
||||
def test_tts(self):
|
||||
"""
|
||||
This method tests if the embeddings are generated successfully
|
||||
"""
|
||||
try:
|
||||
self.setUp()
|
||||
with grpc.insecure_channel("localhost:50051") as channel:
|
||||
stub = backend_pb2_grpc.BackendStub(channel)
|
||||
response = stub.LoadModel(backend_pb2.ModelOptions(Model="parler-tts/parler_tts_mini_v0.1"))
|
||||
self.assertTrue(response.success)
|
||||
tts_request = backend_pb2.TTSRequest(text="Hey, how are you doing today?")
|
||||
tts_response = stub.TTS(tts_request)
|
||||
self.assertIsNotNone(tts_response)
|
||||
except Exception as err:
|
||||
print(err)
|
||||
self.fail("TTS service failed")
|
||||
finally:
|
||||
self.tearDown()
|
||||
@@ -1,17 +1,27 @@
|
||||
.PHONY: petals
|
||||
petals:
|
||||
petals: protogen
|
||||
@echo "Creating virtual environment..."
|
||||
bash install.sh "petals.yml"
|
||||
@echo "Virtual environment created."
|
||||
|
||||
.PHONY: run
|
||||
run:
|
||||
run: protogen
|
||||
@echo "Running petals..."
|
||||
bash run.sh
|
||||
@echo "petals run."
|
||||
|
||||
.PHONY: test
|
||||
test:
|
||||
test: protogen
|
||||
@echo "Testing petals..."
|
||||
bash test.sh
|
||||
@echo "petals tested."
|
||||
|
||||
.PHONY: protogen
|
||||
protogen: backend_pb2_grpc.py backend_pb2.py
|
||||
|
||||
.PHONY: protogen-clean
|
||||
protogen-clean:
|
||||
$(RM) backend_pb2_grpc.py backend_pb2.py
|
||||
|
||||
backend_pb2_grpc.py backend_pb2.py:
|
||||
python3 -m grpc_tools.protoc -I../.. --python_out=. --grpc_python_out=. backend.proto
|
||||
File diff suppressed because one or more lines are too long
@@ -1,363 +0,0 @@
|
||||
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT!
|
||||
"""Client and server classes corresponding to protobuf-defined services."""
|
||||
import grpc
|
||||
|
||||
import backend_pb2 as backend__pb2
|
||||
|
||||
|
||||
class BackendStub(object):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
|
||||
def __init__(self, channel):
|
||||
"""Constructor.
|
||||
|
||||
Args:
|
||||
channel: A grpc.Channel.
|
||||
"""
|
||||
self.Health = channel.unary_unary(
|
||||
'/backend.Backend/Health',
|
||||
request_serializer=backend__pb2.HealthMessage.SerializeToString,
|
||||
response_deserializer=backend__pb2.Reply.FromString,
|
||||
)
|
||||
self.Predict = channel.unary_unary(
|
||||
'/backend.Backend/Predict',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.Reply.FromString,
|
||||
)
|
||||
self.LoadModel = channel.unary_unary(
|
||||
'/backend.Backend/LoadModel',
|
||||
request_serializer=backend__pb2.ModelOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.Result.FromString,
|
||||
)
|
||||
self.PredictStream = channel.unary_stream(
|
||||
'/backend.Backend/PredictStream',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.Reply.FromString,
|
||||
)
|
||||
self.Embedding = channel.unary_unary(
|
||||
'/backend.Backend/Embedding',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.EmbeddingResult.FromString,
|
||||
)
|
||||
self.GenerateImage = channel.unary_unary(
|
||||
'/backend.Backend/GenerateImage',
|
||||
request_serializer=backend__pb2.GenerateImageRequest.SerializeToString,
|
||||
response_deserializer=backend__pb2.Result.FromString,
|
||||
)
|
||||
self.AudioTranscription = channel.unary_unary(
|
||||
'/backend.Backend/AudioTranscription',
|
||||
request_serializer=backend__pb2.TranscriptRequest.SerializeToString,
|
||||
response_deserializer=backend__pb2.TranscriptResult.FromString,
|
||||
)
|
||||
self.TTS = channel.unary_unary(
|
||||
'/backend.Backend/TTS',
|
||||
request_serializer=backend__pb2.TTSRequest.SerializeToString,
|
||||
response_deserializer=backend__pb2.Result.FromString,
|
||||
)
|
||||
self.TokenizeString = channel.unary_unary(
|
||||
'/backend.Backend/TokenizeString',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.TokenizationResponse.FromString,
|
||||
)
|
||||
self.Status = channel.unary_unary(
|
||||
'/backend.Backend/Status',
|
||||
request_serializer=backend__pb2.HealthMessage.SerializeToString,
|
||||
response_deserializer=backend__pb2.StatusResponse.FromString,
|
||||
)
|
||||
|
||||
|
||||
class BackendServicer(object):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
|
||||
def Health(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def Predict(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def LoadModel(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def PredictStream(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def Embedding(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def GenerateImage(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def AudioTranscription(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def TTS(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def TokenizeString(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def Status(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
|
||||
def add_BackendServicer_to_server(servicer, server):
|
||||
rpc_method_handlers = {
|
||||
'Health': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Health,
|
||||
request_deserializer=backend__pb2.HealthMessage.FromString,
|
||||
response_serializer=backend__pb2.Reply.SerializeToString,
|
||||
),
|
||||
'Predict': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Predict,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.Reply.SerializeToString,
|
||||
),
|
||||
'LoadModel': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.LoadModel,
|
||||
request_deserializer=backend__pb2.ModelOptions.FromString,
|
||||
response_serializer=backend__pb2.Result.SerializeToString,
|
||||
),
|
||||
'PredictStream': grpc.unary_stream_rpc_method_handler(
|
||||
servicer.PredictStream,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.Reply.SerializeToString,
|
||||
),
|
||||
'Embedding': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Embedding,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.EmbeddingResult.SerializeToString,
|
||||
),
|
||||
'GenerateImage': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.GenerateImage,
|
||||
request_deserializer=backend__pb2.GenerateImageRequest.FromString,
|
||||
response_serializer=backend__pb2.Result.SerializeToString,
|
||||
),
|
||||
'AudioTranscription': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.AudioTranscription,
|
||||
request_deserializer=backend__pb2.TranscriptRequest.FromString,
|
||||
response_serializer=backend__pb2.TranscriptResult.SerializeToString,
|
||||
),
|
||||
'TTS': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.TTS,
|
||||
request_deserializer=backend__pb2.TTSRequest.FromString,
|
||||
response_serializer=backend__pb2.Result.SerializeToString,
|
||||
),
|
||||
'TokenizeString': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.TokenizeString,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.TokenizationResponse.SerializeToString,
|
||||
),
|
||||
'Status': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Status,
|
||||
request_deserializer=backend__pb2.HealthMessage.FromString,
|
||||
response_serializer=backend__pb2.StatusResponse.SerializeToString,
|
||||
),
|
||||
}
|
||||
generic_handler = grpc.method_handlers_generic_handler(
|
||||
'backend.Backend', rpc_method_handlers)
|
||||
server.add_generic_rpc_handlers((generic_handler,))
|
||||
|
||||
|
||||
# This class is part of an EXPERIMENTAL API.
|
||||
class Backend(object):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
|
||||
@staticmethod
|
||||
def Health(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Health',
|
||||
backend__pb2.HealthMessage.SerializeToString,
|
||||
backend__pb2.Reply.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def Predict(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Predict',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.Reply.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def LoadModel(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/LoadModel',
|
||||
backend__pb2.ModelOptions.SerializeToString,
|
||||
backend__pb2.Result.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def PredictStream(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_stream(request, target, '/backend.Backend/PredictStream',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.Reply.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def Embedding(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Embedding',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.EmbeddingResult.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def GenerateImage(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/GenerateImage',
|
||||
backend__pb2.GenerateImageRequest.SerializeToString,
|
||||
backend__pb2.Result.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def AudioTranscription(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/AudioTranscription',
|
||||
backend__pb2.TranscriptRequest.SerializeToString,
|
||||
backend__pb2.TranscriptResult.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def TTS(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/TTS',
|
||||
backend__pb2.TTSRequest.SerializeToString,
|
||||
backend__pb2.Result.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def TokenizeString(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/TokenizeString',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.TokenizationResponse.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def Status(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Status',
|
||||
backend__pb2.HealthMessage.SerializeToString,
|
||||
backend__pb2.StatusResponse.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
@@ -1,17 +1,27 @@
|
||||
.PHONY: sentencetransformers
|
||||
sentencetransformers:
|
||||
sentencetransformers: protogen
|
||||
$(MAKE) -C ../common-env/transformers
|
||||
|
||||
|
||||
.PHONY: run
|
||||
run:
|
||||
run: protogen
|
||||
@echo "Running sentencetransformers..."
|
||||
bash run.sh
|
||||
@echo "sentencetransformers run."
|
||||
|
||||
# It is not working well by using command line. It only6 works with IDE like VSCode.
|
||||
.PHONY: test
|
||||
test:
|
||||
test: protogen
|
||||
@echo "Testing sentencetransformers..."
|
||||
bash test.sh
|
||||
@echo "sentencetransformers tested."
|
||||
|
||||
.PHONY: protogen
|
||||
protogen: backend_pb2_grpc.py backend_pb2.py
|
||||
|
||||
.PHONY: protogen-clean
|
||||
protogen-clean:
|
||||
$(RM) backend_pb2_grpc.py backend_pb2.py
|
||||
|
||||
backend_pb2_grpc.py backend_pb2.py:
|
||||
python3 -m grpc_tools.protoc -I../.. --python_out=. --grpc_python_out=. backend.proto
|
||||
File diff suppressed because one or more lines are too long
@@ -1,363 +0,0 @@
|
||||
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT!
|
||||
"""Client and server classes corresponding to protobuf-defined services."""
|
||||
import grpc
|
||||
|
||||
import backend_pb2 as backend__pb2
|
||||
|
||||
|
||||
class BackendStub(object):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
|
||||
def __init__(self, channel):
|
||||
"""Constructor.
|
||||
|
||||
Args:
|
||||
channel: A grpc.Channel.
|
||||
"""
|
||||
self.Health = channel.unary_unary(
|
||||
'/backend.Backend/Health',
|
||||
request_serializer=backend__pb2.HealthMessage.SerializeToString,
|
||||
response_deserializer=backend__pb2.Reply.FromString,
|
||||
)
|
||||
self.Predict = channel.unary_unary(
|
||||
'/backend.Backend/Predict',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.Reply.FromString,
|
||||
)
|
||||
self.LoadModel = channel.unary_unary(
|
||||
'/backend.Backend/LoadModel',
|
||||
request_serializer=backend__pb2.ModelOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.Result.FromString,
|
||||
)
|
||||
self.PredictStream = channel.unary_stream(
|
||||
'/backend.Backend/PredictStream',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.Reply.FromString,
|
||||
)
|
||||
self.Embedding = channel.unary_unary(
|
||||
'/backend.Backend/Embedding',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.EmbeddingResult.FromString,
|
||||
)
|
||||
self.GenerateImage = channel.unary_unary(
|
||||
'/backend.Backend/GenerateImage',
|
||||
request_serializer=backend__pb2.GenerateImageRequest.SerializeToString,
|
||||
response_deserializer=backend__pb2.Result.FromString,
|
||||
)
|
||||
self.AudioTranscription = channel.unary_unary(
|
||||
'/backend.Backend/AudioTranscription',
|
||||
request_serializer=backend__pb2.TranscriptRequest.SerializeToString,
|
||||
response_deserializer=backend__pb2.TranscriptResult.FromString,
|
||||
)
|
||||
self.TTS = channel.unary_unary(
|
||||
'/backend.Backend/TTS',
|
||||
request_serializer=backend__pb2.TTSRequest.SerializeToString,
|
||||
response_deserializer=backend__pb2.Result.FromString,
|
||||
)
|
||||
self.TokenizeString = channel.unary_unary(
|
||||
'/backend.Backend/TokenizeString',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.TokenizationResponse.FromString,
|
||||
)
|
||||
self.Status = channel.unary_unary(
|
||||
'/backend.Backend/Status',
|
||||
request_serializer=backend__pb2.HealthMessage.SerializeToString,
|
||||
response_deserializer=backend__pb2.StatusResponse.FromString,
|
||||
)
|
||||
|
||||
|
||||
class BackendServicer(object):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
|
||||
def Health(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def Predict(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def LoadModel(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def PredictStream(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def Embedding(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def GenerateImage(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def AudioTranscription(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def TTS(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def TokenizeString(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def Status(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
|
||||
def add_BackendServicer_to_server(servicer, server):
|
||||
rpc_method_handlers = {
|
||||
'Health': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Health,
|
||||
request_deserializer=backend__pb2.HealthMessage.FromString,
|
||||
response_serializer=backend__pb2.Reply.SerializeToString,
|
||||
),
|
||||
'Predict': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Predict,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.Reply.SerializeToString,
|
||||
),
|
||||
'LoadModel': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.LoadModel,
|
||||
request_deserializer=backend__pb2.ModelOptions.FromString,
|
||||
response_serializer=backend__pb2.Result.SerializeToString,
|
||||
),
|
||||
'PredictStream': grpc.unary_stream_rpc_method_handler(
|
||||
servicer.PredictStream,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.Reply.SerializeToString,
|
||||
),
|
||||
'Embedding': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Embedding,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.EmbeddingResult.SerializeToString,
|
||||
),
|
||||
'GenerateImage': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.GenerateImage,
|
||||
request_deserializer=backend__pb2.GenerateImageRequest.FromString,
|
||||
response_serializer=backend__pb2.Result.SerializeToString,
|
||||
),
|
||||
'AudioTranscription': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.AudioTranscription,
|
||||
request_deserializer=backend__pb2.TranscriptRequest.FromString,
|
||||
response_serializer=backend__pb2.TranscriptResult.SerializeToString,
|
||||
),
|
||||
'TTS': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.TTS,
|
||||
request_deserializer=backend__pb2.TTSRequest.FromString,
|
||||
response_serializer=backend__pb2.Result.SerializeToString,
|
||||
),
|
||||
'TokenizeString': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.TokenizeString,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.TokenizationResponse.SerializeToString,
|
||||
),
|
||||
'Status': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Status,
|
||||
request_deserializer=backend__pb2.HealthMessage.FromString,
|
||||
response_serializer=backend__pb2.StatusResponse.SerializeToString,
|
||||
),
|
||||
}
|
||||
generic_handler = grpc.method_handlers_generic_handler(
|
||||
'backend.Backend', rpc_method_handlers)
|
||||
server.add_generic_rpc_handlers((generic_handler,))
|
||||
|
||||
|
||||
# This class is part of an EXPERIMENTAL API.
|
||||
class Backend(object):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
|
||||
@staticmethod
|
||||
def Health(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Health',
|
||||
backend__pb2.HealthMessage.SerializeToString,
|
||||
backend__pb2.Reply.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def Predict(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Predict',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.Reply.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def LoadModel(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/LoadModel',
|
||||
backend__pb2.ModelOptions.SerializeToString,
|
||||
backend__pb2.Result.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def PredictStream(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_stream(request, target, '/backend.Backend/PredictStream',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.Reply.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def Embedding(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Embedding',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.EmbeddingResult.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def GenerateImage(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/GenerateImage',
|
||||
backend__pb2.GenerateImageRequest.SerializeToString,
|
||||
backend__pb2.Result.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def AudioTranscription(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/AudioTranscription',
|
||||
backend__pb2.TranscriptRequest.SerializeToString,
|
||||
backend__pb2.TranscriptResult.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def TTS(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/TTS',
|
||||
backend__pb2.TTSRequest.SerializeToString,
|
||||
backend__pb2.Result.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def TokenizeString(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/TokenizeString',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.TokenizationResponse.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def Status(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Status',
|
||||
backend__pb2.HealthMessage.SerializeToString,
|
||||
backend__pb2.StatusResponse.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
@@ -1,16 +1,25 @@
|
||||
|
||||
.PHONY: transformers-musicgen
|
||||
transformers-musicgen:
|
||||
transformers-musicgen: protogen
|
||||
$(MAKE) -C ../common-env/transformers
|
||||
|
||||
.PHONY: run
|
||||
run:
|
||||
run: protogen
|
||||
@echo "Running transformers..."
|
||||
bash run.sh
|
||||
@echo "transformers run."
|
||||
|
||||
.PHONY: test
|
||||
test:
|
||||
test: protogen
|
||||
@echo "Testing transformers..."
|
||||
bash test.sh
|
||||
@echo "transformers tested."
|
||||
|
||||
.PHONY: protogen
|
||||
protogen: backend_pb2_grpc.py backend_pb2.py
|
||||
|
||||
.PHONY: protogen-clean
|
||||
protogen-clean:
|
||||
$(RM) backend_pb2_grpc.py backend_pb2.py
|
||||
|
||||
backend_pb2_grpc.py backend_pb2.py:
|
||||
python3 -m grpc_tools.protoc -I../.. --python_out=. --grpc_python_out=. backend.proto
|
||||
File diff suppressed because one or more lines are too long
@@ -1,363 +0,0 @@
|
||||
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT!
|
||||
"""Client and server classes corresponding to protobuf-defined services."""
|
||||
import grpc
|
||||
|
||||
import backend_pb2 as backend__pb2
|
||||
|
||||
|
||||
class BackendStub(object):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
|
||||
def __init__(self, channel):
|
||||
"""Constructor.
|
||||
|
||||
Args:
|
||||
channel: A grpc.Channel.
|
||||
"""
|
||||
self.Health = channel.unary_unary(
|
||||
'/backend.Backend/Health',
|
||||
request_serializer=backend__pb2.HealthMessage.SerializeToString,
|
||||
response_deserializer=backend__pb2.Reply.FromString,
|
||||
)
|
||||
self.Predict = channel.unary_unary(
|
||||
'/backend.Backend/Predict',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.Reply.FromString,
|
||||
)
|
||||
self.LoadModel = channel.unary_unary(
|
||||
'/backend.Backend/LoadModel',
|
||||
request_serializer=backend__pb2.ModelOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.Result.FromString,
|
||||
)
|
||||
self.PredictStream = channel.unary_stream(
|
||||
'/backend.Backend/PredictStream',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.Reply.FromString,
|
||||
)
|
||||
self.Embedding = channel.unary_unary(
|
||||
'/backend.Backend/Embedding',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.EmbeddingResult.FromString,
|
||||
)
|
||||
self.GenerateImage = channel.unary_unary(
|
||||
'/backend.Backend/GenerateImage',
|
||||
request_serializer=backend__pb2.GenerateImageRequest.SerializeToString,
|
||||
response_deserializer=backend__pb2.Result.FromString,
|
||||
)
|
||||
self.AudioTranscription = channel.unary_unary(
|
||||
'/backend.Backend/AudioTranscription',
|
||||
request_serializer=backend__pb2.TranscriptRequest.SerializeToString,
|
||||
response_deserializer=backend__pb2.TranscriptResult.FromString,
|
||||
)
|
||||
self.TTS = channel.unary_unary(
|
||||
'/backend.Backend/TTS',
|
||||
request_serializer=backend__pb2.TTSRequest.SerializeToString,
|
||||
response_deserializer=backend__pb2.Result.FromString,
|
||||
)
|
||||
self.TokenizeString = channel.unary_unary(
|
||||
'/backend.Backend/TokenizeString',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.TokenizationResponse.FromString,
|
||||
)
|
||||
self.Status = channel.unary_unary(
|
||||
'/backend.Backend/Status',
|
||||
request_serializer=backend__pb2.HealthMessage.SerializeToString,
|
||||
response_deserializer=backend__pb2.StatusResponse.FromString,
|
||||
)
|
||||
|
||||
|
||||
class BackendServicer(object):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
|
||||
def Health(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def Predict(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def LoadModel(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def PredictStream(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def Embedding(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def GenerateImage(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def AudioTranscription(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def TTS(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def TokenizeString(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def Status(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
|
||||
def add_BackendServicer_to_server(servicer, server):
|
||||
rpc_method_handlers = {
|
||||
'Health': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Health,
|
||||
request_deserializer=backend__pb2.HealthMessage.FromString,
|
||||
response_serializer=backend__pb2.Reply.SerializeToString,
|
||||
),
|
||||
'Predict': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Predict,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.Reply.SerializeToString,
|
||||
),
|
||||
'LoadModel': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.LoadModel,
|
||||
request_deserializer=backend__pb2.ModelOptions.FromString,
|
||||
response_serializer=backend__pb2.Result.SerializeToString,
|
||||
),
|
||||
'PredictStream': grpc.unary_stream_rpc_method_handler(
|
||||
servicer.PredictStream,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.Reply.SerializeToString,
|
||||
),
|
||||
'Embedding': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Embedding,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.EmbeddingResult.SerializeToString,
|
||||
),
|
||||
'GenerateImage': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.GenerateImage,
|
||||
request_deserializer=backend__pb2.GenerateImageRequest.FromString,
|
||||
response_serializer=backend__pb2.Result.SerializeToString,
|
||||
),
|
||||
'AudioTranscription': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.AudioTranscription,
|
||||
request_deserializer=backend__pb2.TranscriptRequest.FromString,
|
||||
response_serializer=backend__pb2.TranscriptResult.SerializeToString,
|
||||
),
|
||||
'TTS': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.TTS,
|
||||
request_deserializer=backend__pb2.TTSRequest.FromString,
|
||||
response_serializer=backend__pb2.Result.SerializeToString,
|
||||
),
|
||||
'TokenizeString': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.TokenizeString,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.TokenizationResponse.SerializeToString,
|
||||
),
|
||||
'Status': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Status,
|
||||
request_deserializer=backend__pb2.HealthMessage.FromString,
|
||||
response_serializer=backend__pb2.StatusResponse.SerializeToString,
|
||||
),
|
||||
}
|
||||
generic_handler = grpc.method_handlers_generic_handler(
|
||||
'backend.Backend', rpc_method_handlers)
|
||||
server.add_generic_rpc_handlers((generic_handler,))
|
||||
|
||||
|
||||
# This class is part of an EXPERIMENTAL API.
|
||||
class Backend(object):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
|
||||
@staticmethod
|
||||
def Health(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Health',
|
||||
backend__pb2.HealthMessage.SerializeToString,
|
||||
backend__pb2.Reply.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def Predict(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Predict',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.Reply.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def LoadModel(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/LoadModel',
|
||||
backend__pb2.ModelOptions.SerializeToString,
|
||||
backend__pb2.Result.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def PredictStream(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_stream(request, target, '/backend.Backend/PredictStream',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.Reply.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def Embedding(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Embedding',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.EmbeddingResult.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def GenerateImage(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/GenerateImage',
|
||||
backend__pb2.GenerateImageRequest.SerializeToString,
|
||||
backend__pb2.Result.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def AudioTranscription(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/AudioTranscription',
|
||||
backend__pb2.TranscriptRequest.SerializeToString,
|
||||
backend__pb2.TranscriptResult.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def TTS(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/TTS',
|
||||
backend__pb2.TTSRequest.SerializeToString,
|
||||
backend__pb2.Result.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def TokenizeString(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/TokenizeString',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.TokenizationResponse.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def Status(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Status',
|
||||
backend__pb2.HealthMessage.SerializeToString,
|
||||
backend__pb2.StatusResponse.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
@@ -8,7 +8,7 @@ echo "Launching gRPC server for transformers-musicgen"
|
||||
export PATH=$PATH:/opt/conda/bin
|
||||
|
||||
# Activate conda environment
|
||||
source activate transformers-musicgen
|
||||
source activate transformers
|
||||
|
||||
# get the directory where the bash script is located
|
||||
DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
|
||||
|
||||
@@ -1,16 +1,26 @@
|
||||
.PHONY: transformers
|
||||
transformers:
|
||||
transformers: protogen
|
||||
$(MAKE) -C ../common-env/transformers
|
||||
|
||||
.PHONY: run
|
||||
run:
|
||||
run: protogen
|
||||
@echo "Running transformers..."
|
||||
bash run.sh
|
||||
@echo "transformers run."
|
||||
|
||||
# It is not working well by using command line. It only6 works with IDE like VSCode.
|
||||
.PHONY: test
|
||||
test:
|
||||
test: protogen
|
||||
@echo "Testing transformers..."
|
||||
bash test.sh
|
||||
@echo "transformers tested."
|
||||
|
||||
.PHONY: protogen
|
||||
protogen: backend_pb2_grpc.py backend_pb2.py
|
||||
|
||||
.PHONY: protogen-clean
|
||||
protogen-clean:
|
||||
$(RM) backend_pb2_grpc.py backend_pb2.py
|
||||
|
||||
backend_pb2_grpc.py backend_pb2.py:
|
||||
python3 -m grpc_tools.protoc -I../.. --python_out=. --grpc_python_out=. backend.proto
|
||||
File diff suppressed because one or more lines are too long
@@ -1,363 +0,0 @@
|
||||
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT!
|
||||
"""Client and server classes corresponding to protobuf-defined services."""
|
||||
import grpc
|
||||
|
||||
import backend_pb2 as backend__pb2
|
||||
|
||||
|
||||
class BackendStub(object):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
|
||||
def __init__(self, channel):
|
||||
"""Constructor.
|
||||
|
||||
Args:
|
||||
channel: A grpc.Channel.
|
||||
"""
|
||||
self.Health = channel.unary_unary(
|
||||
'/backend.Backend/Health',
|
||||
request_serializer=backend__pb2.HealthMessage.SerializeToString,
|
||||
response_deserializer=backend__pb2.Reply.FromString,
|
||||
)
|
||||
self.Predict = channel.unary_unary(
|
||||
'/backend.Backend/Predict',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.Reply.FromString,
|
||||
)
|
||||
self.LoadModel = channel.unary_unary(
|
||||
'/backend.Backend/LoadModel',
|
||||
request_serializer=backend__pb2.ModelOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.Result.FromString,
|
||||
)
|
||||
self.PredictStream = channel.unary_stream(
|
||||
'/backend.Backend/PredictStream',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.Reply.FromString,
|
||||
)
|
||||
self.Embedding = channel.unary_unary(
|
||||
'/backend.Backend/Embedding',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.EmbeddingResult.FromString,
|
||||
)
|
||||
self.GenerateImage = channel.unary_unary(
|
||||
'/backend.Backend/GenerateImage',
|
||||
request_serializer=backend__pb2.GenerateImageRequest.SerializeToString,
|
||||
response_deserializer=backend__pb2.Result.FromString,
|
||||
)
|
||||
self.AudioTranscription = channel.unary_unary(
|
||||
'/backend.Backend/AudioTranscription',
|
||||
request_serializer=backend__pb2.TranscriptRequest.SerializeToString,
|
||||
response_deserializer=backend__pb2.TranscriptResult.FromString,
|
||||
)
|
||||
self.TTS = channel.unary_unary(
|
||||
'/backend.Backend/TTS',
|
||||
request_serializer=backend__pb2.TTSRequest.SerializeToString,
|
||||
response_deserializer=backend__pb2.Result.FromString,
|
||||
)
|
||||
self.TokenizeString = channel.unary_unary(
|
||||
'/backend.Backend/TokenizeString',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.TokenizationResponse.FromString,
|
||||
)
|
||||
self.Status = channel.unary_unary(
|
||||
'/backend.Backend/Status',
|
||||
request_serializer=backend__pb2.HealthMessage.SerializeToString,
|
||||
response_deserializer=backend__pb2.StatusResponse.FromString,
|
||||
)
|
||||
|
||||
|
||||
class BackendServicer(object):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
|
||||
def Health(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def Predict(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def LoadModel(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def PredictStream(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def Embedding(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def GenerateImage(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def AudioTranscription(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def TTS(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def TokenizeString(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def Status(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
|
||||
def add_BackendServicer_to_server(servicer, server):
|
||||
rpc_method_handlers = {
|
||||
'Health': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Health,
|
||||
request_deserializer=backend__pb2.HealthMessage.FromString,
|
||||
response_serializer=backend__pb2.Reply.SerializeToString,
|
||||
),
|
||||
'Predict': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Predict,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.Reply.SerializeToString,
|
||||
),
|
||||
'LoadModel': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.LoadModel,
|
||||
request_deserializer=backend__pb2.ModelOptions.FromString,
|
||||
response_serializer=backend__pb2.Result.SerializeToString,
|
||||
),
|
||||
'PredictStream': grpc.unary_stream_rpc_method_handler(
|
||||
servicer.PredictStream,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.Reply.SerializeToString,
|
||||
),
|
||||
'Embedding': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Embedding,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.EmbeddingResult.SerializeToString,
|
||||
),
|
||||
'GenerateImage': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.GenerateImage,
|
||||
request_deserializer=backend__pb2.GenerateImageRequest.FromString,
|
||||
response_serializer=backend__pb2.Result.SerializeToString,
|
||||
),
|
||||
'AudioTranscription': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.AudioTranscription,
|
||||
request_deserializer=backend__pb2.TranscriptRequest.FromString,
|
||||
response_serializer=backend__pb2.TranscriptResult.SerializeToString,
|
||||
),
|
||||
'TTS': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.TTS,
|
||||
request_deserializer=backend__pb2.TTSRequest.FromString,
|
||||
response_serializer=backend__pb2.Result.SerializeToString,
|
||||
),
|
||||
'TokenizeString': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.TokenizeString,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.TokenizationResponse.SerializeToString,
|
||||
),
|
||||
'Status': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Status,
|
||||
request_deserializer=backend__pb2.HealthMessage.FromString,
|
||||
response_serializer=backend__pb2.StatusResponse.SerializeToString,
|
||||
),
|
||||
}
|
||||
generic_handler = grpc.method_handlers_generic_handler(
|
||||
'backend.Backend', rpc_method_handlers)
|
||||
server.add_generic_rpc_handlers((generic_handler,))
|
||||
|
||||
|
||||
# This class is part of an EXPERIMENTAL API.
|
||||
class Backend(object):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
|
||||
@staticmethod
|
||||
def Health(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Health',
|
||||
backend__pb2.HealthMessage.SerializeToString,
|
||||
backend__pb2.Reply.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def Predict(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Predict',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.Reply.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def LoadModel(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/LoadModel',
|
||||
backend__pb2.ModelOptions.SerializeToString,
|
||||
backend__pb2.Result.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def PredictStream(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_stream(request, target, '/backend.Backend/PredictStream',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.Reply.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def Embedding(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Embedding',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.EmbeddingResult.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def GenerateImage(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/GenerateImage',
|
||||
backend__pb2.GenerateImageRequest.SerializeToString,
|
||||
backend__pb2.Result.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def AudioTranscription(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/AudioTranscription',
|
||||
backend__pb2.TranscriptRequest.SerializeToString,
|
||||
backend__pb2.TranscriptResult.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def TTS(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/TTS',
|
||||
backend__pb2.TTSRequest.SerializeToString,
|
||||
backend__pb2.Result.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def TokenizeString(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/TokenizeString',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.TokenizationResponse.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def Status(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Status',
|
||||
backend__pb2.HealthMessage.SerializeToString,
|
||||
backend__pb2.StatusResponse.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
@@ -3,18 +3,28 @@ export SKIP_CONDA=1
|
||||
endif
|
||||
|
||||
.PHONY: ttsvalle
|
||||
ttsvalle:
|
||||
ttsvalle: protogen
|
||||
$(MAKE) -C ../common-env/transformers
|
||||
bash install.sh
|
||||
|
||||
.PHONY: run
|
||||
run:
|
||||
run: protogen
|
||||
@echo "Running ttsvalle..."
|
||||
bash run.sh
|
||||
@echo "ttsvalle run."
|
||||
|
||||
.PHONY: test
|
||||
test:
|
||||
test: protogen
|
||||
@echo "Testing valle..."
|
||||
bash test.sh
|
||||
@echo "valle tested."
|
||||
|
||||
.PHONY: protogen
|
||||
protogen: backend_pb2_grpc.py backend_pb2.py
|
||||
|
||||
.PHONY: protogen-clean
|
||||
protogen-clean:
|
||||
$(RM) backend_pb2_grpc.py backend_pb2.py
|
||||
|
||||
backend_pb2_grpc.py backend_pb2.py:
|
||||
python3 -m grpc_tools.protoc -I../.. --python_out=. --grpc_python_out=. backend.proto
|
||||
File diff suppressed because one or more lines are too long
@@ -1,363 +0,0 @@
|
||||
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT!
|
||||
"""Client and server classes corresponding to protobuf-defined services."""
|
||||
import grpc
|
||||
|
||||
import backend_pb2 as backend__pb2
|
||||
|
||||
|
||||
class BackendStub(object):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
|
||||
def __init__(self, channel):
|
||||
"""Constructor.
|
||||
|
||||
Args:
|
||||
channel: A grpc.Channel.
|
||||
"""
|
||||
self.Health = channel.unary_unary(
|
||||
'/backend.Backend/Health',
|
||||
request_serializer=backend__pb2.HealthMessage.SerializeToString,
|
||||
response_deserializer=backend__pb2.Reply.FromString,
|
||||
)
|
||||
self.Predict = channel.unary_unary(
|
||||
'/backend.Backend/Predict',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.Reply.FromString,
|
||||
)
|
||||
self.LoadModel = channel.unary_unary(
|
||||
'/backend.Backend/LoadModel',
|
||||
request_serializer=backend__pb2.ModelOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.Result.FromString,
|
||||
)
|
||||
self.PredictStream = channel.unary_stream(
|
||||
'/backend.Backend/PredictStream',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.Reply.FromString,
|
||||
)
|
||||
self.Embedding = channel.unary_unary(
|
||||
'/backend.Backend/Embedding',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.EmbeddingResult.FromString,
|
||||
)
|
||||
self.GenerateImage = channel.unary_unary(
|
||||
'/backend.Backend/GenerateImage',
|
||||
request_serializer=backend__pb2.GenerateImageRequest.SerializeToString,
|
||||
response_deserializer=backend__pb2.Result.FromString,
|
||||
)
|
||||
self.AudioTranscription = channel.unary_unary(
|
||||
'/backend.Backend/AudioTranscription',
|
||||
request_serializer=backend__pb2.TranscriptRequest.SerializeToString,
|
||||
response_deserializer=backend__pb2.TranscriptResult.FromString,
|
||||
)
|
||||
self.TTS = channel.unary_unary(
|
||||
'/backend.Backend/TTS',
|
||||
request_serializer=backend__pb2.TTSRequest.SerializeToString,
|
||||
response_deserializer=backend__pb2.Result.FromString,
|
||||
)
|
||||
self.TokenizeString = channel.unary_unary(
|
||||
'/backend.Backend/TokenizeString',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.TokenizationResponse.FromString,
|
||||
)
|
||||
self.Status = channel.unary_unary(
|
||||
'/backend.Backend/Status',
|
||||
request_serializer=backend__pb2.HealthMessage.SerializeToString,
|
||||
response_deserializer=backend__pb2.StatusResponse.FromString,
|
||||
)
|
||||
|
||||
|
||||
class BackendServicer(object):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
|
||||
def Health(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def Predict(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def LoadModel(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def PredictStream(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def Embedding(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def GenerateImage(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def AudioTranscription(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def TTS(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def TokenizeString(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def Status(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
|
||||
def add_BackendServicer_to_server(servicer, server):
|
||||
rpc_method_handlers = {
|
||||
'Health': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Health,
|
||||
request_deserializer=backend__pb2.HealthMessage.FromString,
|
||||
response_serializer=backend__pb2.Reply.SerializeToString,
|
||||
),
|
||||
'Predict': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Predict,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.Reply.SerializeToString,
|
||||
),
|
||||
'LoadModel': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.LoadModel,
|
||||
request_deserializer=backend__pb2.ModelOptions.FromString,
|
||||
response_serializer=backend__pb2.Result.SerializeToString,
|
||||
),
|
||||
'PredictStream': grpc.unary_stream_rpc_method_handler(
|
||||
servicer.PredictStream,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.Reply.SerializeToString,
|
||||
),
|
||||
'Embedding': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Embedding,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.EmbeddingResult.SerializeToString,
|
||||
),
|
||||
'GenerateImage': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.GenerateImage,
|
||||
request_deserializer=backend__pb2.GenerateImageRequest.FromString,
|
||||
response_serializer=backend__pb2.Result.SerializeToString,
|
||||
),
|
||||
'AudioTranscription': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.AudioTranscription,
|
||||
request_deserializer=backend__pb2.TranscriptRequest.FromString,
|
||||
response_serializer=backend__pb2.TranscriptResult.SerializeToString,
|
||||
),
|
||||
'TTS': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.TTS,
|
||||
request_deserializer=backend__pb2.TTSRequest.FromString,
|
||||
response_serializer=backend__pb2.Result.SerializeToString,
|
||||
),
|
||||
'TokenizeString': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.TokenizeString,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.TokenizationResponse.SerializeToString,
|
||||
),
|
||||
'Status': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Status,
|
||||
request_deserializer=backend__pb2.HealthMessage.FromString,
|
||||
response_serializer=backend__pb2.StatusResponse.SerializeToString,
|
||||
),
|
||||
}
|
||||
generic_handler = grpc.method_handlers_generic_handler(
|
||||
'backend.Backend', rpc_method_handlers)
|
||||
server.add_generic_rpc_handlers((generic_handler,))
|
||||
|
||||
|
||||
# This class is part of an EXPERIMENTAL API.
|
||||
class Backend(object):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
|
||||
@staticmethod
|
||||
def Health(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Health',
|
||||
backend__pb2.HealthMessage.SerializeToString,
|
||||
backend__pb2.Reply.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def Predict(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Predict',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.Reply.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def LoadModel(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/LoadModel',
|
||||
backend__pb2.ModelOptions.SerializeToString,
|
||||
backend__pb2.Result.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def PredictStream(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_stream(request, target, '/backend.Backend/PredictStream',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.Reply.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def Embedding(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Embedding',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.EmbeddingResult.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def GenerateImage(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/GenerateImage',
|
||||
backend__pb2.GenerateImageRequest.SerializeToString,
|
||||
backend__pb2.Result.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def AudioTranscription(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/AudioTranscription',
|
||||
backend__pb2.TranscriptRequest.SerializeToString,
|
||||
backend__pb2.TranscriptResult.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def TTS(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/TTS',
|
||||
backend__pb2.TTSRequest.SerializeToString,
|
||||
backend__pb2.Result.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def TokenizeString(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/TokenizeString',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.TokenizationResponse.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def Status(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Status',
|
||||
backend__pb2.HealthMessage.SerializeToString,
|
||||
backend__pb2.StatusResponse.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
@@ -1,15 +1,25 @@
|
||||
.PHONY: vllm
|
||||
vllm:
|
||||
vllm: protogen
|
||||
$(MAKE) -C ../common-env/transformers
|
||||
|
||||
.PHONY: run
|
||||
run:
|
||||
run: protogen
|
||||
@echo "Running vllm..."
|
||||
bash run.sh
|
||||
@echo "vllm run."
|
||||
|
||||
.PHONY: test
|
||||
test:
|
||||
test: protogen
|
||||
@echo "Testing vllm..."
|
||||
bash test.sh
|
||||
@echo "vllm tested."
|
||||
@echo "vllm tested."
|
||||
|
||||
.PHONY: protogen
|
||||
protogen: backend_pb2_grpc.py backend_pb2.py
|
||||
|
||||
.PHONY: protogen-clean
|
||||
protogen-clean:
|
||||
$(RM) backend_pb2_grpc.py backend_pb2.py
|
||||
|
||||
backend_pb2_grpc.py backend_pb2.py:
|
||||
python3 -m grpc_tools.protoc -I../.. --python_out=. --grpc_python_out=. backend.proto
|
||||
File diff suppressed because one or more lines are too long
@@ -1,363 +0,0 @@
|
||||
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT!
|
||||
"""Client and server classes corresponding to protobuf-defined services."""
|
||||
import grpc
|
||||
|
||||
import backend_pb2 as backend__pb2
|
||||
|
||||
|
||||
class BackendStub(object):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
|
||||
def __init__(self, channel):
|
||||
"""Constructor.
|
||||
|
||||
Args:
|
||||
channel: A grpc.Channel.
|
||||
"""
|
||||
self.Health = channel.unary_unary(
|
||||
'/backend.Backend/Health',
|
||||
request_serializer=backend__pb2.HealthMessage.SerializeToString,
|
||||
response_deserializer=backend__pb2.Reply.FromString,
|
||||
)
|
||||
self.Predict = channel.unary_unary(
|
||||
'/backend.Backend/Predict',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.Reply.FromString,
|
||||
)
|
||||
self.LoadModel = channel.unary_unary(
|
||||
'/backend.Backend/LoadModel',
|
||||
request_serializer=backend__pb2.ModelOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.Result.FromString,
|
||||
)
|
||||
self.PredictStream = channel.unary_stream(
|
||||
'/backend.Backend/PredictStream',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.Reply.FromString,
|
||||
)
|
||||
self.Embedding = channel.unary_unary(
|
||||
'/backend.Backend/Embedding',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.EmbeddingResult.FromString,
|
||||
)
|
||||
self.GenerateImage = channel.unary_unary(
|
||||
'/backend.Backend/GenerateImage',
|
||||
request_serializer=backend__pb2.GenerateImageRequest.SerializeToString,
|
||||
response_deserializer=backend__pb2.Result.FromString,
|
||||
)
|
||||
self.AudioTranscription = channel.unary_unary(
|
||||
'/backend.Backend/AudioTranscription',
|
||||
request_serializer=backend__pb2.TranscriptRequest.SerializeToString,
|
||||
response_deserializer=backend__pb2.TranscriptResult.FromString,
|
||||
)
|
||||
self.TTS = channel.unary_unary(
|
||||
'/backend.Backend/TTS',
|
||||
request_serializer=backend__pb2.TTSRequest.SerializeToString,
|
||||
response_deserializer=backend__pb2.Result.FromString,
|
||||
)
|
||||
self.TokenizeString = channel.unary_unary(
|
||||
'/backend.Backend/TokenizeString',
|
||||
request_serializer=backend__pb2.PredictOptions.SerializeToString,
|
||||
response_deserializer=backend__pb2.TokenizationResponse.FromString,
|
||||
)
|
||||
self.Status = channel.unary_unary(
|
||||
'/backend.Backend/Status',
|
||||
request_serializer=backend__pb2.HealthMessage.SerializeToString,
|
||||
response_deserializer=backend__pb2.StatusResponse.FromString,
|
||||
)
|
||||
|
||||
|
||||
class BackendServicer(object):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
|
||||
def Health(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def Predict(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def LoadModel(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def PredictStream(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def Embedding(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def GenerateImage(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def AudioTranscription(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def TTS(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def TokenizeString(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
def Status(self, request, context):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
|
||||
context.set_details('Method not implemented!')
|
||||
raise NotImplementedError('Method not implemented!')
|
||||
|
||||
|
||||
def add_BackendServicer_to_server(servicer, server):
|
||||
rpc_method_handlers = {
|
||||
'Health': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Health,
|
||||
request_deserializer=backend__pb2.HealthMessage.FromString,
|
||||
response_serializer=backend__pb2.Reply.SerializeToString,
|
||||
),
|
||||
'Predict': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Predict,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.Reply.SerializeToString,
|
||||
),
|
||||
'LoadModel': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.LoadModel,
|
||||
request_deserializer=backend__pb2.ModelOptions.FromString,
|
||||
response_serializer=backend__pb2.Result.SerializeToString,
|
||||
),
|
||||
'PredictStream': grpc.unary_stream_rpc_method_handler(
|
||||
servicer.PredictStream,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.Reply.SerializeToString,
|
||||
),
|
||||
'Embedding': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Embedding,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.EmbeddingResult.SerializeToString,
|
||||
),
|
||||
'GenerateImage': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.GenerateImage,
|
||||
request_deserializer=backend__pb2.GenerateImageRequest.FromString,
|
||||
response_serializer=backend__pb2.Result.SerializeToString,
|
||||
),
|
||||
'AudioTranscription': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.AudioTranscription,
|
||||
request_deserializer=backend__pb2.TranscriptRequest.FromString,
|
||||
response_serializer=backend__pb2.TranscriptResult.SerializeToString,
|
||||
),
|
||||
'TTS': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.TTS,
|
||||
request_deserializer=backend__pb2.TTSRequest.FromString,
|
||||
response_serializer=backend__pb2.Result.SerializeToString,
|
||||
),
|
||||
'TokenizeString': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.TokenizeString,
|
||||
request_deserializer=backend__pb2.PredictOptions.FromString,
|
||||
response_serializer=backend__pb2.TokenizationResponse.SerializeToString,
|
||||
),
|
||||
'Status': grpc.unary_unary_rpc_method_handler(
|
||||
servicer.Status,
|
||||
request_deserializer=backend__pb2.HealthMessage.FromString,
|
||||
response_serializer=backend__pb2.StatusResponse.SerializeToString,
|
||||
),
|
||||
}
|
||||
generic_handler = grpc.method_handlers_generic_handler(
|
||||
'backend.Backend', rpc_method_handlers)
|
||||
server.add_generic_rpc_handlers((generic_handler,))
|
||||
|
||||
|
||||
# This class is part of an EXPERIMENTAL API.
|
||||
class Backend(object):
|
||||
"""Missing associated documentation comment in .proto file."""
|
||||
|
||||
@staticmethod
|
||||
def Health(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Health',
|
||||
backend__pb2.HealthMessage.SerializeToString,
|
||||
backend__pb2.Reply.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def Predict(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Predict',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.Reply.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def LoadModel(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/LoadModel',
|
||||
backend__pb2.ModelOptions.SerializeToString,
|
||||
backend__pb2.Result.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def PredictStream(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_stream(request, target, '/backend.Backend/PredictStream',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.Reply.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def Embedding(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Embedding',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.EmbeddingResult.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def GenerateImage(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/GenerateImage',
|
||||
backend__pb2.GenerateImageRequest.SerializeToString,
|
||||
backend__pb2.Result.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def AudioTranscription(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/AudioTranscription',
|
||||
backend__pb2.TranscriptRequest.SerializeToString,
|
||||
backend__pb2.TranscriptResult.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def TTS(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/TTS',
|
||||
backend__pb2.TTSRequest.SerializeToString,
|
||||
backend__pb2.Result.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def TokenizeString(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/TokenizeString',
|
||||
backend__pb2.PredictOptions.SerializeToString,
|
||||
backend__pb2.TokenizationResponse.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
|
||||
@staticmethod
|
||||
def Status(request,
|
||||
target,
|
||||
options=(),
|
||||
channel_credentials=None,
|
||||
call_credentials=None,
|
||||
insecure=False,
|
||||
compression=None,
|
||||
wait_for_ready=None,
|
||||
timeout=None,
|
||||
metadata=None):
|
||||
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Status',
|
||||
backend__pb2.HealthMessage.SerializeToString,
|
||||
backend__pb2.StatusResponse.FromString,
|
||||
options, channel_credentials,
|
||||
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
|
||||
@@ -14,6 +14,7 @@ from vllm.engine.arg_utils import AsyncEngineArgs
|
||||
from vllm.engine.async_llm_engine import AsyncLLMEngine
|
||||
from vllm.sampling_params import SamplingParams
|
||||
from vllm.utils import random_uuid
|
||||
from vllm.transformers_utils.tokenizer import get_tokenizer
|
||||
|
||||
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
|
||||
|
||||
@@ -71,7 +72,7 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
|
||||
"""
|
||||
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
|
||||
|
||||
def LoadModel(self, request, context):
|
||||
async def LoadModel(self, request, context):
|
||||
"""
|
||||
Loads a language model.
|
||||
|
||||
@@ -103,6 +104,18 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
|
||||
self.llm = AsyncLLMEngine.from_engine_args(engine_args)
|
||||
except Exception as err:
|
||||
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
|
||||
|
||||
try:
|
||||
engine_model_config = await self.llm.get_model_config()
|
||||
self.tokenizer = get_tokenizer(
|
||||
engine_model_config.tokenizer,
|
||||
tokenizer_mode=engine_model_config.tokenizer_mode,
|
||||
trust_remote_code=engine_model_config.trust_remote_code,
|
||||
truncation_side="left",
|
||||
)
|
||||
except Exception as err:
|
||||
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
|
||||
|
||||
return backend_pb2.Result(message="Model loaded successfully", success=True)
|
||||
|
||||
async def Predict(self, request, context):
|
||||
@@ -161,9 +174,15 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
|
||||
if request.Seed != 0:
|
||||
sampling_params.seed = request.Seed
|
||||
|
||||
prompt = request.Prompt
|
||||
|
||||
# If tokenizer template is enabled and messages are provided instead of prompt apply the tokenizer template
|
||||
if not request.Prompt and request.UseTokenizerTemplate and request.Messages:
|
||||
prompt = self.tokenizer.apply_chat_template(request.Messages, tokenize=False, add_generation_prompt=True)
|
||||
|
||||
# Generate text
|
||||
request_id = random_uuid()
|
||||
outputs = self.llm.generate(request.Prompt, sampling_params, request_id)
|
||||
outputs = self.llm.generate(prompt, sampling_params, request_id)
|
||||
|
||||
# Stream the results
|
||||
generated_text = ""
|
||||
|
||||
@@ -2,14 +2,100 @@ package backend
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"time"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
"github.com/go-skynet/LocalAI/core/schema"
|
||||
"github.com/google/uuid"
|
||||
|
||||
"github.com/go-skynet/LocalAI/pkg/concurrency"
|
||||
"github.com/go-skynet/LocalAI/pkg/grpc"
|
||||
model "github.com/go-skynet/LocalAI/pkg/model"
|
||||
"github.com/go-skynet/LocalAI/pkg/model"
|
||||
)
|
||||
|
||||
func ModelEmbedding(s string, tokens []int, loader *model.ModelLoader, backendConfig config.BackendConfig, appConfig *config.ApplicationConfig) (func() ([]float32, error), error) {
|
||||
type EmbeddingsBackendService struct {
|
||||
ml *model.ModelLoader
|
||||
bcl *config.BackendConfigLoader
|
||||
appConfig *config.ApplicationConfig
|
||||
}
|
||||
|
||||
func NewEmbeddingsBackendService(ml *model.ModelLoader, bcl *config.BackendConfigLoader, appConfig *config.ApplicationConfig) *EmbeddingsBackendService {
|
||||
return &EmbeddingsBackendService{
|
||||
ml: ml,
|
||||
bcl: bcl,
|
||||
appConfig: appConfig,
|
||||
}
|
||||
}
|
||||
|
||||
func (ebs *EmbeddingsBackendService) Embeddings(request *schema.OpenAIRequest) <-chan concurrency.ErrorOr[*schema.OpenAIResponse] {
|
||||
|
||||
resultChannel := make(chan concurrency.ErrorOr[*schema.OpenAIResponse])
|
||||
go func(request *schema.OpenAIRequest) {
|
||||
if request.Model == "" {
|
||||
request.Model = model.StableDiffusionBackend
|
||||
}
|
||||
|
||||
bc, request, err := ebs.bcl.LoadBackendConfigForModelAndOpenAIRequest(request.Model, request, ebs.appConfig)
|
||||
if err != nil {
|
||||
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: err}
|
||||
close(resultChannel)
|
||||
return
|
||||
}
|
||||
|
||||
items := []schema.Item{}
|
||||
|
||||
for i, s := range bc.InputToken {
|
||||
// get the model function to call for the result
|
||||
embedFn, err := modelEmbedding("", s, ebs.ml, bc, ebs.appConfig)
|
||||
if err != nil {
|
||||
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: err}
|
||||
close(resultChannel)
|
||||
return
|
||||
}
|
||||
|
||||
embeddings, err := embedFn()
|
||||
if err != nil {
|
||||
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: err}
|
||||
close(resultChannel)
|
||||
return
|
||||
}
|
||||
items = append(items, schema.Item{Embedding: embeddings, Index: i, Object: "embedding"})
|
||||
}
|
||||
|
||||
for i, s := range bc.InputStrings {
|
||||
// get the model function to call for the result
|
||||
embedFn, err := modelEmbedding(s, []int{}, ebs.ml, bc, ebs.appConfig)
|
||||
if err != nil {
|
||||
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: err}
|
||||
close(resultChannel)
|
||||
return
|
||||
}
|
||||
|
||||
embeddings, err := embedFn()
|
||||
if err != nil {
|
||||
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: err}
|
||||
close(resultChannel)
|
||||
return
|
||||
}
|
||||
items = append(items, schema.Item{Embedding: embeddings, Index: i, Object: "embedding"})
|
||||
}
|
||||
|
||||
id := uuid.New().String()
|
||||
created := int(time.Now().Unix())
|
||||
resp := &schema.OpenAIResponse{
|
||||
ID: id,
|
||||
Created: created,
|
||||
Model: request.Model, // we have to return what the user sent here, due to OpenAI spec.
|
||||
Data: items,
|
||||
Object: "list",
|
||||
}
|
||||
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Value: resp}
|
||||
close(resultChannel)
|
||||
}(request)
|
||||
return resultChannel
|
||||
}
|
||||
|
||||
func modelEmbedding(s string, tokens []int, loader *model.ModelLoader, backendConfig *config.BackendConfig, appConfig *config.ApplicationConfig) (func() ([]float32, error), error) {
|
||||
modelFile := backendConfig.Model
|
||||
|
||||
grpcOpts := gRPCModelOpts(backendConfig)
|
||||
|
||||
@@ -1,18 +1,252 @@
|
||||
package backend
|
||||
|
||||
import (
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
"bufio"
|
||||
"encoding/base64"
|
||||
"fmt"
|
||||
"io"
|
||||
"net/http"
|
||||
"os"
|
||||
"path/filepath"
|
||||
"strconv"
|
||||
"strings"
|
||||
"time"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
"github.com/go-skynet/LocalAI/core/schema"
|
||||
"github.com/google/uuid"
|
||||
"github.com/rs/zerolog/log"
|
||||
|
||||
"github.com/go-skynet/LocalAI/pkg/concurrency"
|
||||
"github.com/go-skynet/LocalAI/pkg/grpc/proto"
|
||||
model "github.com/go-skynet/LocalAI/pkg/model"
|
||||
"github.com/go-skynet/LocalAI/pkg/model"
|
||||
)
|
||||
|
||||
func ImageGeneration(height, width, mode, step, seed int, positive_prompt, negative_prompt, src, dst string, loader *model.ModelLoader, backendConfig config.BackendConfig, appConfig *config.ApplicationConfig) (func() error, error) {
|
||||
type ImageGenerationBackendService struct {
|
||||
ml *model.ModelLoader
|
||||
bcl *config.BackendConfigLoader
|
||||
appConfig *config.ApplicationConfig
|
||||
BaseUrlForGeneratedImages string
|
||||
}
|
||||
|
||||
func NewImageGenerationBackendService(ml *model.ModelLoader, bcl *config.BackendConfigLoader, appConfig *config.ApplicationConfig) *ImageGenerationBackendService {
|
||||
return &ImageGenerationBackendService{
|
||||
ml: ml,
|
||||
bcl: bcl,
|
||||
appConfig: appConfig,
|
||||
}
|
||||
}
|
||||
|
||||
func (igbs *ImageGenerationBackendService) GenerateImage(request *schema.OpenAIRequest) <-chan concurrency.ErrorOr[*schema.OpenAIResponse] {
|
||||
resultChannel := make(chan concurrency.ErrorOr[*schema.OpenAIResponse])
|
||||
go func(request *schema.OpenAIRequest) {
|
||||
bc, request, err := igbs.bcl.LoadBackendConfigForModelAndOpenAIRequest(request.Model, request, igbs.appConfig)
|
||||
if err != nil {
|
||||
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: err}
|
||||
close(resultChannel)
|
||||
return
|
||||
}
|
||||
|
||||
src := ""
|
||||
if request.File != "" {
|
||||
|
||||
var fileData []byte
|
||||
// check if input.File is an URL, if so download it and save it
|
||||
// to a temporary file
|
||||
if strings.HasPrefix(request.File, "http://") || strings.HasPrefix(request.File, "https://") {
|
||||
out, err := downloadFile(request.File)
|
||||
if err != nil {
|
||||
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: fmt.Errorf("failed downloading file:%w", err)}
|
||||
close(resultChannel)
|
||||
return
|
||||
}
|
||||
defer os.RemoveAll(out)
|
||||
|
||||
fileData, err = os.ReadFile(out)
|
||||
if err != nil {
|
||||
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: fmt.Errorf("failed reading file:%w", err)}
|
||||
close(resultChannel)
|
||||
return
|
||||
}
|
||||
|
||||
} else {
|
||||
// base 64 decode the file and write it somewhere
|
||||
// that we will cleanup
|
||||
fileData, err = base64.StdEncoding.DecodeString(request.File)
|
||||
if err != nil {
|
||||
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: err}
|
||||
close(resultChannel)
|
||||
return
|
||||
}
|
||||
}
|
||||
|
||||
// Create a temporary file
|
||||
outputFile, err := os.CreateTemp(igbs.appConfig.ImageDir, "b64")
|
||||
if err != nil {
|
||||
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: err}
|
||||
close(resultChannel)
|
||||
return
|
||||
}
|
||||
// write the base64 result
|
||||
writer := bufio.NewWriter(outputFile)
|
||||
_, err = writer.Write(fileData)
|
||||
if err != nil {
|
||||
outputFile.Close()
|
||||
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: err}
|
||||
close(resultChannel)
|
||||
return
|
||||
}
|
||||
outputFile.Close()
|
||||
src = outputFile.Name()
|
||||
defer os.RemoveAll(src)
|
||||
}
|
||||
|
||||
log.Debug().Msgf("Parameter Config: %+v", bc)
|
||||
|
||||
switch bc.Backend {
|
||||
case "stablediffusion":
|
||||
bc.Backend = model.StableDiffusionBackend
|
||||
case "tinydream":
|
||||
bc.Backend = model.TinyDreamBackend
|
||||
case "":
|
||||
bc.Backend = model.StableDiffusionBackend
|
||||
if bc.Model == "" {
|
||||
bc.Model = "stablediffusion_assets" // TODO: check?
|
||||
}
|
||||
}
|
||||
|
||||
sizeParts := strings.Split(request.Size, "x")
|
||||
if len(sizeParts) != 2 {
|
||||
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: fmt.Errorf("invalid value for 'size'")}
|
||||
close(resultChannel)
|
||||
return
|
||||
}
|
||||
width, err := strconv.Atoi(sizeParts[0])
|
||||
if err != nil {
|
||||
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: fmt.Errorf("invalid value for 'size'")}
|
||||
close(resultChannel)
|
||||
return
|
||||
}
|
||||
height, err := strconv.Atoi(sizeParts[1])
|
||||
if err != nil {
|
||||
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: fmt.Errorf("invalid value for 'size'")}
|
||||
close(resultChannel)
|
||||
return
|
||||
}
|
||||
|
||||
b64JSON := false
|
||||
if request.ResponseFormat.Type == "b64_json" {
|
||||
b64JSON = true
|
||||
}
|
||||
// src and clip_skip
|
||||
var result []schema.Item
|
||||
for _, i := range bc.PromptStrings {
|
||||
n := request.N
|
||||
if request.N == 0 {
|
||||
n = 1
|
||||
}
|
||||
for j := 0; j < n; j++ {
|
||||
prompts := strings.Split(i, "|")
|
||||
positive_prompt := prompts[0]
|
||||
negative_prompt := ""
|
||||
if len(prompts) > 1 {
|
||||
negative_prompt = prompts[1]
|
||||
}
|
||||
|
||||
mode := 0
|
||||
step := bc.Step
|
||||
if step == 0 {
|
||||
step = 15
|
||||
}
|
||||
|
||||
if request.Mode != 0 {
|
||||
mode = request.Mode
|
||||
}
|
||||
|
||||
if request.Step != 0 {
|
||||
step = request.Step
|
||||
}
|
||||
|
||||
tempDir := ""
|
||||
if !b64JSON {
|
||||
tempDir = igbs.appConfig.ImageDir
|
||||
}
|
||||
// Create a temporary file
|
||||
outputFile, err := os.CreateTemp(tempDir, "b64")
|
||||
if err != nil {
|
||||
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: err}
|
||||
close(resultChannel)
|
||||
return
|
||||
}
|
||||
outputFile.Close()
|
||||
output := outputFile.Name() + ".png"
|
||||
// Rename the temporary file
|
||||
err = os.Rename(outputFile.Name(), output)
|
||||
if err != nil {
|
||||
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: err}
|
||||
close(resultChannel)
|
||||
return
|
||||
}
|
||||
|
||||
if request.Seed == nil {
|
||||
zVal := 0 // Idiomatic way to do this? Actually needed?
|
||||
request.Seed = &zVal
|
||||
}
|
||||
|
||||
fn, err := imageGeneration(height, width, mode, step, *request.Seed, positive_prompt, negative_prompt, src, output, igbs.ml, bc, igbs.appConfig)
|
||||
if err != nil {
|
||||
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: err}
|
||||
close(resultChannel)
|
||||
return
|
||||
}
|
||||
if err := fn(); err != nil {
|
||||
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: err}
|
||||
close(resultChannel)
|
||||
return
|
||||
}
|
||||
|
||||
item := &schema.Item{}
|
||||
|
||||
if b64JSON {
|
||||
defer os.RemoveAll(output)
|
||||
data, err := os.ReadFile(output)
|
||||
if err != nil {
|
||||
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Error: err}
|
||||
close(resultChannel)
|
||||
return
|
||||
}
|
||||
item.B64JSON = base64.StdEncoding.EncodeToString(data)
|
||||
} else {
|
||||
base := filepath.Base(output)
|
||||
item.URL = igbs.BaseUrlForGeneratedImages + base
|
||||
}
|
||||
|
||||
result = append(result, *item)
|
||||
}
|
||||
}
|
||||
|
||||
id := uuid.New().String()
|
||||
created := int(time.Now().Unix())
|
||||
resp := &schema.OpenAIResponse{
|
||||
ID: id,
|
||||
Created: created,
|
||||
Data: result,
|
||||
}
|
||||
resultChannel <- concurrency.ErrorOr[*schema.OpenAIResponse]{Value: resp}
|
||||
close(resultChannel)
|
||||
}(request)
|
||||
return resultChannel
|
||||
}
|
||||
|
||||
func imageGeneration(height, width, mode, step, seed int, positive_prompt, negative_prompt, src, dst string, loader *model.ModelLoader, backendConfig *config.BackendConfig, appConfig *config.ApplicationConfig) (func() error, error) {
|
||||
|
||||
threads := backendConfig.Threads
|
||||
if *threads == 0 && appConfig.Threads != 0 {
|
||||
threads = &appConfig.Threads
|
||||
}
|
||||
|
||||
gRPCOpts := gRPCModelOpts(backendConfig)
|
||||
|
||||
opts := modelOpts(backendConfig, appConfig, []model.Option{
|
||||
model.WithBackendString(backendConfig.Backend),
|
||||
model.WithAssetDir(appConfig.AssetsDestination),
|
||||
@@ -50,3 +284,24 @@ func ImageGeneration(height, width, mode, step, seed int, positive_prompt, negat
|
||||
|
||||
return fn, nil
|
||||
}
|
||||
|
||||
// TODO: Replace this function with pkg/downloader - no reason to have a (crappier) bespoke download file fn here, but get things working before that change.
|
||||
func downloadFile(url string) (string, error) {
|
||||
// Get the data
|
||||
resp, err := http.Get(url)
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
defer resp.Body.Close()
|
||||
|
||||
// Create the file
|
||||
out, err := os.CreateTemp("", "image")
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
defer out.Close()
|
||||
|
||||
// Write the body to file
|
||||
_, err = io.Copy(out, resp.Body)
|
||||
return out.Name(), err
|
||||
}
|
||||
|
||||
@@ -2,6 +2,7 @@ package backend
|
||||
|
||||
import (
|
||||
"context"
|
||||
"fmt"
|
||||
"os"
|
||||
"regexp"
|
||||
"strings"
|
||||
@@ -9,16 +10,23 @@ import (
|
||||
"unicode/utf8"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
"github.com/go-skynet/LocalAI/core/schema"
|
||||
"github.com/rs/zerolog/log"
|
||||
|
||||
"github.com/go-skynet/LocalAI/pkg/concurrency"
|
||||
"github.com/go-skynet/LocalAI/pkg/gallery"
|
||||
"github.com/go-skynet/LocalAI/pkg/grpc"
|
||||
model "github.com/go-skynet/LocalAI/pkg/model"
|
||||
"github.com/go-skynet/LocalAI/pkg/grpc/proto"
|
||||
"github.com/go-skynet/LocalAI/pkg/model"
|
||||
"github.com/go-skynet/LocalAI/pkg/utils"
|
||||
)
|
||||
|
||||
type LLMResponse struct {
|
||||
Response string // should this be []byte?
|
||||
Usage TokenUsage
|
||||
type LLMRequest struct {
|
||||
Id int // TODO Remove if not used.
|
||||
Text string
|
||||
Images []string
|
||||
RawMessages []schema.Message
|
||||
// TODO: Other Modalities?
|
||||
}
|
||||
|
||||
type TokenUsage struct {
|
||||
@@ -26,85 +34,127 @@ type TokenUsage struct {
|
||||
Completion int
|
||||
}
|
||||
|
||||
func ModelInference(ctx context.Context, s string, images []string, loader *model.ModelLoader, c config.BackendConfig, o *config.ApplicationConfig, tokenCallback func(string, TokenUsage) bool) (func() (LLMResponse, error), error) {
|
||||
modelFile := c.Model
|
||||
threads := c.Threads
|
||||
if *threads == 0 && o.Threads != 0 {
|
||||
threads = &o.Threads
|
||||
type LLMResponse struct {
|
||||
Request *LLMRequest
|
||||
Response string // should this be []byte?
|
||||
Usage TokenUsage
|
||||
}
|
||||
|
||||
// TODO: Does this belong here or in core/services/openai.go?
|
||||
type LLMResponseBundle struct {
|
||||
Request *schema.OpenAIRequest
|
||||
Response []schema.Choice
|
||||
Usage TokenUsage
|
||||
}
|
||||
|
||||
type LLMBackendService struct {
|
||||
bcl *config.BackendConfigLoader
|
||||
ml *model.ModelLoader
|
||||
appConfig *config.ApplicationConfig
|
||||
ftMutex sync.Mutex
|
||||
cutstrings map[string]*regexp.Regexp
|
||||
}
|
||||
|
||||
func NewLLMBackendService(ml *model.ModelLoader, bcl *config.BackendConfigLoader, appConfig *config.ApplicationConfig) *LLMBackendService {
|
||||
return &LLMBackendService{
|
||||
bcl: bcl,
|
||||
ml: ml,
|
||||
appConfig: appConfig,
|
||||
ftMutex: sync.Mutex{},
|
||||
cutstrings: make(map[string]*regexp.Regexp),
|
||||
}
|
||||
grpcOpts := gRPCModelOpts(c)
|
||||
}
|
||||
|
||||
// TODO: Should ctx param be removed and replaced with hardcoded req.Context?
|
||||
func (llmbs *LLMBackendService) Inference(ctx context.Context, req *LLMRequest, bc *config.BackendConfig, enableTokenChannel bool) (
|
||||
resultChannel <-chan concurrency.ErrorOr[*LLMResponse], tokenChannel <-chan concurrency.ErrorOr[*LLMResponse], err error) {
|
||||
|
||||
threads := bc.Threads
|
||||
if (threads == nil || *threads == 0) && llmbs.appConfig.Threads != 0 {
|
||||
threads = &llmbs.appConfig.Threads
|
||||
}
|
||||
|
||||
grpcOpts := gRPCModelOpts(bc)
|
||||
|
||||
var inferenceModel grpc.Backend
|
||||
var err error
|
||||
|
||||
opts := modelOpts(c, o, []model.Option{
|
||||
opts := modelOpts(bc, llmbs.appConfig, []model.Option{
|
||||
model.WithLoadGRPCLoadModelOpts(grpcOpts),
|
||||
model.WithThreads(uint32(*threads)), // some models uses this to allocate threads during startup
|
||||
model.WithAssetDir(o.AssetsDestination),
|
||||
model.WithModel(modelFile),
|
||||
model.WithContext(o.Context),
|
||||
model.WithAssetDir(llmbs.appConfig.AssetsDestination),
|
||||
model.WithModel(bc.Model),
|
||||
model.WithContext(llmbs.appConfig.Context),
|
||||
})
|
||||
|
||||
if c.Backend != "" {
|
||||
opts = append(opts, model.WithBackendString(c.Backend))
|
||||
if bc.Backend != "" {
|
||||
opts = append(opts, model.WithBackendString(bc.Backend))
|
||||
}
|
||||
|
||||
// Check if the modelFile exists, if it doesn't try to load it from the gallery
|
||||
if o.AutoloadGalleries { // experimental
|
||||
if _, err := os.Stat(modelFile); os.IsNotExist(err) {
|
||||
// Check if bc.Model exists, if it doesn't try to load it from the gallery
|
||||
if llmbs.appConfig.AutoloadGalleries { // experimental
|
||||
if _, err := os.Stat(bc.Model); os.IsNotExist(err) {
|
||||
utils.ResetDownloadTimers()
|
||||
// if we failed to load the model, we try to download it
|
||||
err := gallery.InstallModelFromGalleryByName(o.Galleries, modelFile, loader.ModelPath, gallery.GalleryModel{}, utils.DisplayDownloadFunction)
|
||||
err := gallery.InstallModelFromGalleryByName(llmbs.appConfig.Galleries, bc.Model, llmbs.appConfig.ModelPath, gallery.GalleryModel{}, utils.DisplayDownloadFunction)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
return nil, nil, err
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if c.Backend == "" {
|
||||
inferenceModel, err = loader.GreedyLoader(opts...)
|
||||
if bc.Backend == "" {
|
||||
log.Debug().Msgf("backend not known for %q, falling back to greedy loader to find it", bc.Model)
|
||||
inferenceModel, err = llmbs.ml.GreedyLoader(opts...)
|
||||
} else {
|
||||
inferenceModel, err = loader.BackendLoader(opts...)
|
||||
inferenceModel, err = llmbs.ml.BackendLoader(opts...)
|
||||
}
|
||||
|
||||
if err != nil {
|
||||
return nil, err
|
||||
log.Error().Err(err).Msg("[llmbs.Inference] failed to load a backend")
|
||||
return
|
||||
}
|
||||
|
||||
// in GRPC, the backend is supposed to answer to 1 single token if stream is not supported
|
||||
fn := func() (LLMResponse, error) {
|
||||
opts := gRPCPredictOpts(c, loader.ModelPath)
|
||||
opts.Prompt = s
|
||||
opts.Images = images
|
||||
grpcPredOpts := gRPCPredictOpts(bc, llmbs.appConfig.ModelPath)
|
||||
grpcPredOpts.Prompt = req.Text
|
||||
grpcPredOpts.Images = req.Images
|
||||
|
||||
tokenUsage := TokenUsage{}
|
||||
|
||||
// check the per-model feature flag for usage, since tokenCallback may have a cost.
|
||||
// Defaults to off as for now it is still experimental
|
||||
if c.FeatureFlag.Enabled("usage") {
|
||||
userTokenCallback := tokenCallback
|
||||
if userTokenCallback == nil {
|
||||
userTokenCallback = func(token string, usage TokenUsage) bool {
|
||||
return true
|
||||
}
|
||||
if bc.TemplateConfig.UseTokenizerTemplate && req.Text == "" {
|
||||
grpcPredOpts.UseTokenizerTemplate = true
|
||||
protoMessages := make([]*proto.Message, len(req.RawMessages), len(req.RawMessages))
|
||||
for i, message := range req.RawMessages {
|
||||
protoMessages[i] = &proto.Message{
|
||||
Role: message.Role,
|
||||
}
|
||||
|
||||
promptInfo, pErr := inferenceModel.TokenizeString(ctx, opts)
|
||||
if pErr == nil && promptInfo.Length > 0 {
|
||||
tokenUsage.Prompt = int(promptInfo.Length)
|
||||
}
|
||||
|
||||
tokenCallback = func(token string, usage TokenUsage) bool {
|
||||
tokenUsage.Completion++
|
||||
return userTokenCallback(token, tokenUsage)
|
||||
switch ct := message.Content.(type) {
|
||||
case string:
|
||||
protoMessages[i].Content = ct
|
||||
default:
|
||||
err = fmt.Errorf("unsupported type for schema.Message.Content for inference: %T", ct)
|
||||
return
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if tokenCallback != nil {
|
||||
ss := ""
|
||||
tokenUsage := TokenUsage{}
|
||||
|
||||
promptInfo, pErr := inferenceModel.TokenizeString(ctx, grpcPredOpts)
|
||||
if pErr == nil && promptInfo.Length > 0 {
|
||||
tokenUsage.Prompt = int(promptInfo.Length)
|
||||
}
|
||||
|
||||
rawResultChannel := make(chan concurrency.ErrorOr[*LLMResponse])
|
||||
// TODO this next line is the biggest argument for taking named return values _back_ out!!!
|
||||
var rawTokenChannel chan concurrency.ErrorOr[*LLMResponse]
|
||||
|
||||
if enableTokenChannel {
|
||||
rawTokenChannel = make(chan concurrency.ErrorOr[*LLMResponse])
|
||||
|
||||
// TODO Needs better name
|
||||
ss := ""
|
||||
|
||||
go func() {
|
||||
var partialRune []byte
|
||||
err := inferenceModel.PredictStream(ctx, opts, func(chars []byte) {
|
||||
err := inferenceModel.PredictStream(ctx, grpcPredOpts, func(chars []byte) {
|
||||
partialRune = append(partialRune, chars...)
|
||||
|
||||
for len(partialRune) > 0 {
|
||||
@@ -114,48 +164,126 @@ func ModelInference(ctx context.Context, s string, images []string, loader *mode
|
||||
break
|
||||
}
|
||||
|
||||
tokenCallback(string(r), tokenUsage)
|
||||
tokenUsage.Completion++
|
||||
rawTokenChannel <- concurrency.ErrorOr[*LLMResponse]{Value: &LLMResponse{
|
||||
Response: string(r),
|
||||
Usage: tokenUsage,
|
||||
}}
|
||||
|
||||
ss += string(r)
|
||||
|
||||
partialRune = partialRune[size:]
|
||||
}
|
||||
})
|
||||
return LLMResponse{
|
||||
Response: ss,
|
||||
Usage: tokenUsage,
|
||||
}, err
|
||||
} else {
|
||||
// TODO: Is the chicken bit the only way to get here? is that acceptable?
|
||||
reply, err := inferenceModel.Predict(ctx, opts)
|
||||
close(rawTokenChannel)
|
||||
if err != nil {
|
||||
return LLMResponse{}, err
|
||||
rawResultChannel <- concurrency.ErrorOr[*LLMResponse]{Error: err}
|
||||
} else {
|
||||
rawResultChannel <- concurrency.ErrorOr[*LLMResponse]{Value: &LLMResponse{
|
||||
Response: ss,
|
||||
Usage: tokenUsage,
|
||||
}}
|
||||
}
|
||||
return LLMResponse{
|
||||
Response: string(reply.Message),
|
||||
Usage: tokenUsage,
|
||||
}, err
|
||||
}
|
||||
close(rawResultChannel)
|
||||
}()
|
||||
} else {
|
||||
go func() {
|
||||
reply, err := inferenceModel.Predict(ctx, grpcPredOpts)
|
||||
if tokenUsage.Prompt == 0 {
|
||||
tokenUsage.Prompt = int(reply.PromptTokens)
|
||||
}
|
||||
if tokenUsage.Completion == 0 {
|
||||
tokenUsage.Completion = int(reply.Tokens)
|
||||
}
|
||||
if err != nil {
|
||||
rawResultChannel <- concurrency.ErrorOr[*LLMResponse]{Error: err}
|
||||
close(rawResultChannel)
|
||||
} else {
|
||||
rawResultChannel <- concurrency.ErrorOr[*LLMResponse]{Value: &LLMResponse{
|
||||
Response: string(reply.Message),
|
||||
Usage: tokenUsage,
|
||||
}}
|
||||
close(rawResultChannel)
|
||||
}
|
||||
}()
|
||||
}
|
||||
|
||||
return fn, nil
|
||||
resultChannel = rawResultChannel
|
||||
tokenChannel = rawTokenChannel
|
||||
return
|
||||
}
|
||||
|
||||
var cutstrings map[string]*regexp.Regexp = make(map[string]*regexp.Regexp)
|
||||
var mu sync.Mutex = sync.Mutex{}
|
||||
// TODO: Should predInput be a seperate param still, or should this fn handle extracting it from request??
|
||||
func (llmbs *LLMBackendService) GenerateText(predInput string, request *schema.OpenAIRequest, bc *config.BackendConfig,
|
||||
mappingFn func(*LLMResponse) schema.Choice, enableCompletionChannels bool, enableTokenChannels bool) (
|
||||
// Returns:
|
||||
resultChannel <-chan concurrency.ErrorOr[*LLMResponseBundle], completionChannels []<-chan concurrency.ErrorOr[*LLMResponse], tokenChannels []<-chan concurrency.ErrorOr[*LLMResponse], err error) {
|
||||
|
||||
func Finetune(config config.BackendConfig, input, prediction string) string {
|
||||
rawChannel := make(chan concurrency.ErrorOr[*LLMResponseBundle])
|
||||
resultChannel = rawChannel
|
||||
|
||||
if request.N == 0 { // number of completions to return
|
||||
request.N = 1
|
||||
}
|
||||
images := []string{}
|
||||
for _, m := range request.Messages {
|
||||
images = append(images, m.StringImages...)
|
||||
}
|
||||
|
||||
for i := 0; i < request.N; i++ {
|
||||
|
||||
individualResultChannel, tokenChannel, infErr := llmbs.Inference(request.Context, &LLMRequest{
|
||||
Text: predInput,
|
||||
Images: images,
|
||||
RawMessages: request.Messages,
|
||||
}, bc, enableTokenChannels)
|
||||
if infErr != nil {
|
||||
err = infErr // Avoids complaints about redeclaring err but looks dumb
|
||||
return
|
||||
}
|
||||
completionChannels = append(completionChannels, individualResultChannel)
|
||||
tokenChannels = append(tokenChannels, tokenChannel)
|
||||
}
|
||||
|
||||
go func() {
|
||||
initialBundle := LLMResponseBundle{
|
||||
Request: request,
|
||||
Response: []schema.Choice{},
|
||||
Usage: TokenUsage{},
|
||||
}
|
||||
|
||||
wg := concurrency.SliceOfChannelsReducer(completionChannels, rawChannel, func(iv concurrency.ErrorOr[*LLMResponse], ov concurrency.ErrorOr[*LLMResponseBundle]) concurrency.ErrorOr[*LLMResponseBundle] {
|
||||
if iv.Error != nil {
|
||||
ov.Error = iv.Error
|
||||
// TODO: Decide if we should wipe partials or not?
|
||||
return ov
|
||||
}
|
||||
ov.Value.Usage.Prompt += iv.Value.Usage.Prompt
|
||||
ov.Value.Usage.Completion += iv.Value.Usage.Completion
|
||||
|
||||
ov.Value.Response = append(ov.Value.Response, mappingFn(iv.Value))
|
||||
return ov
|
||||
}, concurrency.ErrorOr[*LLMResponseBundle]{Value: &initialBundle}, true)
|
||||
wg.Wait()
|
||||
|
||||
}()
|
||||
|
||||
return
|
||||
}
|
||||
|
||||
func (llmbs *LLMBackendService) Finetune(config config.BackendConfig, input, prediction string) string {
|
||||
if config.Echo {
|
||||
prediction = input + prediction
|
||||
}
|
||||
|
||||
for _, c := range config.Cutstrings {
|
||||
mu.Lock()
|
||||
reg, ok := cutstrings[c]
|
||||
llmbs.ftMutex.Lock()
|
||||
reg, ok := llmbs.cutstrings[c]
|
||||
if !ok {
|
||||
cutstrings[c] = regexp.MustCompile(c)
|
||||
reg = cutstrings[c]
|
||||
llmbs.cutstrings[c] = regexp.MustCompile(c)
|
||||
reg = llmbs.cutstrings[c]
|
||||
}
|
||||
mu.Unlock()
|
||||
llmbs.ftMutex.Unlock()
|
||||
prediction = reg.ReplaceAllString(prediction, "")
|
||||
}
|
||||
|
||||
|
||||
@@ -10,7 +10,7 @@ import (
|
||||
model "github.com/go-skynet/LocalAI/pkg/model"
|
||||
)
|
||||
|
||||
func modelOpts(c config.BackendConfig, so *config.ApplicationConfig, opts []model.Option) []model.Option {
|
||||
func modelOpts(bc *config.BackendConfig, so *config.ApplicationConfig, opts []model.Option) []model.Option {
|
||||
if so.SingleBackend {
|
||||
opts = append(opts, model.WithSingleActiveBackend())
|
||||
}
|
||||
@@ -19,12 +19,12 @@ func modelOpts(c config.BackendConfig, so *config.ApplicationConfig, opts []mode
|
||||
opts = append(opts, model.EnableParallelRequests)
|
||||
}
|
||||
|
||||
if c.GRPC.Attempts != 0 {
|
||||
opts = append(opts, model.WithGRPCAttempts(c.GRPC.Attempts))
|
||||
if bc.GRPC.Attempts != 0 {
|
||||
opts = append(opts, model.WithGRPCAttempts(bc.GRPC.Attempts))
|
||||
}
|
||||
|
||||
if c.GRPC.AttemptsSleepTime != 0 {
|
||||
opts = append(opts, model.WithGRPCAttemptsDelay(c.GRPC.AttemptsSleepTime))
|
||||
if bc.GRPC.AttemptsSleepTime != 0 {
|
||||
opts = append(opts, model.WithGRPCAttemptsDelay(bc.GRPC.AttemptsSleepTime))
|
||||
}
|
||||
|
||||
for k, v := range so.ExternalGRPCBackends {
|
||||
@@ -34,7 +34,7 @@ func modelOpts(c config.BackendConfig, so *config.ApplicationConfig, opts []mode
|
||||
return opts
|
||||
}
|
||||
|
||||
func getSeed(c config.BackendConfig) int32 {
|
||||
func getSeed(c *config.BackendConfig) int32 {
|
||||
seed := int32(*c.Seed)
|
||||
if seed == config.RAND_SEED {
|
||||
seed = rand.Int31()
|
||||
@@ -43,7 +43,7 @@ func getSeed(c config.BackendConfig) int32 {
|
||||
return seed
|
||||
}
|
||||
|
||||
func gRPCModelOpts(c config.BackendConfig) *pb.ModelOptions {
|
||||
func gRPCModelOpts(c *config.BackendConfig) *pb.ModelOptions {
|
||||
b := 512
|
||||
if c.Batch != 0 {
|
||||
b = c.Batch
|
||||
@@ -104,47 +104,47 @@ func gRPCModelOpts(c config.BackendConfig) *pb.ModelOptions {
|
||||
}
|
||||
}
|
||||
|
||||
func gRPCPredictOpts(c config.BackendConfig, modelPath string) *pb.PredictOptions {
|
||||
func gRPCPredictOpts(bc *config.BackendConfig, modelPath string) *pb.PredictOptions {
|
||||
promptCachePath := ""
|
||||
if c.PromptCachePath != "" {
|
||||
p := filepath.Join(modelPath, c.PromptCachePath)
|
||||
if bc.PromptCachePath != "" {
|
||||
p := filepath.Join(modelPath, bc.PromptCachePath)
|
||||
os.MkdirAll(filepath.Dir(p), 0755)
|
||||
promptCachePath = p
|
||||
}
|
||||
|
||||
return &pb.PredictOptions{
|
||||
Temperature: float32(*c.Temperature),
|
||||
TopP: float32(*c.TopP),
|
||||
NDraft: c.NDraft,
|
||||
TopK: int32(*c.TopK),
|
||||
Tokens: int32(*c.Maxtokens),
|
||||
Threads: int32(*c.Threads),
|
||||
PromptCacheAll: c.PromptCacheAll,
|
||||
PromptCacheRO: c.PromptCacheRO,
|
||||
Temperature: float32(*bc.Temperature),
|
||||
TopP: float32(*bc.TopP),
|
||||
NDraft: bc.NDraft,
|
||||
TopK: int32(*bc.TopK),
|
||||
Tokens: int32(*bc.Maxtokens),
|
||||
Threads: int32(*bc.Threads),
|
||||
PromptCacheAll: bc.PromptCacheAll,
|
||||
PromptCacheRO: bc.PromptCacheRO,
|
||||
PromptCachePath: promptCachePath,
|
||||
F16KV: *c.F16,
|
||||
DebugMode: *c.Debug,
|
||||
Grammar: c.Grammar,
|
||||
NegativePromptScale: c.NegativePromptScale,
|
||||
RopeFreqBase: c.RopeFreqBase,
|
||||
RopeFreqScale: c.RopeFreqScale,
|
||||
NegativePrompt: c.NegativePrompt,
|
||||
Mirostat: int32(*c.LLMConfig.Mirostat),
|
||||
MirostatETA: float32(*c.LLMConfig.MirostatETA),
|
||||
MirostatTAU: float32(*c.LLMConfig.MirostatTAU),
|
||||
Debug: *c.Debug,
|
||||
StopPrompts: c.StopWords,
|
||||
Repeat: int32(c.RepeatPenalty),
|
||||
NKeep: int32(c.Keep),
|
||||
Batch: int32(c.Batch),
|
||||
IgnoreEOS: c.IgnoreEOS,
|
||||
Seed: getSeed(c),
|
||||
FrequencyPenalty: float32(c.FrequencyPenalty),
|
||||
MLock: *c.MMlock,
|
||||
MMap: *c.MMap,
|
||||
MainGPU: c.MainGPU,
|
||||
TensorSplit: c.TensorSplit,
|
||||
TailFreeSamplingZ: float32(*c.TFZ),
|
||||
TypicalP: float32(*c.TypicalP),
|
||||
F16KV: *bc.F16,
|
||||
DebugMode: *bc.Debug,
|
||||
Grammar: bc.Grammar,
|
||||
NegativePromptScale: bc.NegativePromptScale,
|
||||
RopeFreqBase: bc.RopeFreqBase,
|
||||
RopeFreqScale: bc.RopeFreqScale,
|
||||
NegativePrompt: bc.NegativePrompt,
|
||||
Mirostat: int32(*bc.LLMConfig.Mirostat),
|
||||
MirostatETA: float32(*bc.LLMConfig.MirostatETA),
|
||||
MirostatTAU: float32(*bc.LLMConfig.MirostatTAU),
|
||||
Debug: *bc.Debug,
|
||||
StopPrompts: bc.StopWords,
|
||||
Repeat: int32(bc.RepeatPenalty),
|
||||
NKeep: int32(bc.Keep),
|
||||
Batch: int32(bc.Batch),
|
||||
IgnoreEOS: bc.IgnoreEOS,
|
||||
Seed: getSeed(bc),
|
||||
FrequencyPenalty: float32(bc.FrequencyPenalty),
|
||||
MLock: *bc.MMlock,
|
||||
MMap: *bc.MMap,
|
||||
MainGPU: bc.MainGPU,
|
||||
TensorSplit: bc.TensorSplit,
|
||||
TailFreeSamplingZ: float32(*bc.TFZ),
|
||||
TypicalP: float32(*bc.TypicalP),
|
||||
}
|
||||
}
|
||||
|
||||
@@ -7,11 +7,48 @@ import (
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
"github.com/go-skynet/LocalAI/core/schema"
|
||||
|
||||
"github.com/go-skynet/LocalAI/pkg/concurrency"
|
||||
"github.com/go-skynet/LocalAI/pkg/grpc/proto"
|
||||
model "github.com/go-skynet/LocalAI/pkg/model"
|
||||
"github.com/go-skynet/LocalAI/pkg/model"
|
||||
)
|
||||
|
||||
func ModelTranscription(audio, language string, ml *model.ModelLoader, backendConfig config.BackendConfig, appConfig *config.ApplicationConfig) (*schema.Result, error) {
|
||||
type TranscriptionBackendService struct {
|
||||
ml *model.ModelLoader
|
||||
bcl *config.BackendConfigLoader
|
||||
appConfig *config.ApplicationConfig
|
||||
}
|
||||
|
||||
func NewTranscriptionBackendService(ml *model.ModelLoader, bcl *config.BackendConfigLoader, appConfig *config.ApplicationConfig) *TranscriptionBackendService {
|
||||
return &TranscriptionBackendService{
|
||||
ml: ml,
|
||||
bcl: bcl,
|
||||
appConfig: appConfig,
|
||||
}
|
||||
}
|
||||
|
||||
func (tbs *TranscriptionBackendService) Transcribe(request *schema.OpenAIRequest) <-chan concurrency.ErrorOr[*schema.TranscriptionResult] {
|
||||
responseChannel := make(chan concurrency.ErrorOr[*schema.TranscriptionResult])
|
||||
go func(request *schema.OpenAIRequest) {
|
||||
bc, request, err := tbs.bcl.LoadBackendConfigForModelAndOpenAIRequest(request.Model, request, tbs.appConfig)
|
||||
if err != nil {
|
||||
responseChannel <- concurrency.ErrorOr[*schema.TranscriptionResult]{Error: fmt.Errorf("failed reading parameters from request:%w", err)}
|
||||
close(responseChannel)
|
||||
return
|
||||
}
|
||||
|
||||
tr, err := modelTranscription(request.File, request.Language, tbs.ml, bc, tbs.appConfig)
|
||||
if err != nil {
|
||||
responseChannel <- concurrency.ErrorOr[*schema.TranscriptionResult]{Error: err}
|
||||
close(responseChannel)
|
||||
return
|
||||
}
|
||||
responseChannel <- concurrency.ErrorOr[*schema.TranscriptionResult]{Value: tr}
|
||||
close(responseChannel)
|
||||
}(request)
|
||||
return responseChannel
|
||||
}
|
||||
|
||||
func modelTranscription(audio, language string, ml *model.ModelLoader, backendConfig *config.BackendConfig, appConfig *config.ApplicationConfig) (*schema.TranscriptionResult, error) {
|
||||
|
||||
opts := modelOpts(backendConfig, appConfig, []model.Option{
|
||||
model.WithBackendString(model.WhisperBackend),
|
||||
|
||||
@@ -7,29 +7,60 @@ import (
|
||||
"path/filepath"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
"github.com/go-skynet/LocalAI/core/schema"
|
||||
|
||||
"github.com/go-skynet/LocalAI/pkg/concurrency"
|
||||
"github.com/go-skynet/LocalAI/pkg/grpc/proto"
|
||||
model "github.com/go-skynet/LocalAI/pkg/model"
|
||||
"github.com/go-skynet/LocalAI/pkg/model"
|
||||
"github.com/go-skynet/LocalAI/pkg/utils"
|
||||
)
|
||||
|
||||
func generateUniqueFileName(dir, baseName, ext string) string {
|
||||
counter := 1
|
||||
fileName := baseName + ext
|
||||
type TextToSpeechBackendService struct {
|
||||
ml *model.ModelLoader
|
||||
bcl *config.BackendConfigLoader
|
||||
appConfig *config.ApplicationConfig
|
||||
}
|
||||
|
||||
for {
|
||||
filePath := filepath.Join(dir, fileName)
|
||||
_, err := os.Stat(filePath)
|
||||
if os.IsNotExist(err) {
|
||||
return fileName
|
||||
}
|
||||
|
||||
counter++
|
||||
fileName = fmt.Sprintf("%s_%d%s", baseName, counter, ext)
|
||||
func NewTextToSpeechBackendService(ml *model.ModelLoader, bcl *config.BackendConfigLoader, appConfig *config.ApplicationConfig) *TextToSpeechBackendService {
|
||||
return &TextToSpeechBackendService{
|
||||
ml: ml,
|
||||
bcl: bcl,
|
||||
appConfig: appConfig,
|
||||
}
|
||||
}
|
||||
|
||||
func ModelTTS(backend, text, modelFile, voice string, loader *model.ModelLoader, appConfig *config.ApplicationConfig, backendConfig config.BackendConfig) (string, *proto.Result, error) {
|
||||
func (ttsbs *TextToSpeechBackendService) TextToAudioFile(request *schema.TTSRequest) <-chan concurrency.ErrorOr[*string] {
|
||||
responseChannel := make(chan concurrency.ErrorOr[*string])
|
||||
go func(request *schema.TTSRequest) {
|
||||
cfg, err := ttsbs.bcl.LoadBackendConfigFileByName(request.Model, ttsbs.appConfig.ModelPath,
|
||||
config.LoadOptionDebug(ttsbs.appConfig.Debug),
|
||||
config.LoadOptionThreads(ttsbs.appConfig.Threads),
|
||||
config.LoadOptionContextSize(ttsbs.appConfig.ContextSize),
|
||||
config.LoadOptionF16(ttsbs.appConfig.F16),
|
||||
)
|
||||
if err != nil {
|
||||
responseChannel <- concurrency.ErrorOr[*string]{Error: err}
|
||||
close(responseChannel)
|
||||
return
|
||||
}
|
||||
|
||||
if request.Backend != "" {
|
||||
cfg.Backend = request.Backend
|
||||
}
|
||||
|
||||
outFile, _, err := modelTTS(cfg.Backend, request.Input, cfg.Model, request.Voice, ttsbs.ml, ttsbs.appConfig, cfg)
|
||||
if err != nil {
|
||||
responseChannel <- concurrency.ErrorOr[*string]{Error: err}
|
||||
close(responseChannel)
|
||||
return
|
||||
}
|
||||
responseChannel <- concurrency.ErrorOr[*string]{Value: &outFile}
|
||||
close(responseChannel)
|
||||
}(request)
|
||||
return responseChannel
|
||||
}
|
||||
|
||||
func modelTTS(backend, text, modelFile string, voice string, loader *model.ModelLoader, appConfig *config.ApplicationConfig, backendConfig *config.BackendConfig) (string, *proto.Result, error) {
|
||||
bb := backend
|
||||
if bb == "" {
|
||||
bb = model.PiperBackend
|
||||
@@ -37,7 +68,7 @@ func ModelTTS(backend, text, modelFile, voice string, loader *model.ModelLoader,
|
||||
|
||||
grpcOpts := gRPCModelOpts(backendConfig)
|
||||
|
||||
opts := modelOpts(config.BackendConfig{}, appConfig, []model.Option{
|
||||
opts := modelOpts(&config.BackendConfig{}, appConfig, []model.Option{
|
||||
model.WithBackendString(bb),
|
||||
model.WithModel(modelFile),
|
||||
model.WithContext(appConfig.Context),
|
||||
@@ -87,3 +118,19 @@ func ModelTTS(backend, text, modelFile, voice string, loader *model.ModelLoader,
|
||||
|
||||
return filePath, res, err
|
||||
}
|
||||
|
||||
func generateUniqueFileName(dir, baseName, ext string) string {
|
||||
counter := 1
|
||||
fileName := baseName + ext
|
||||
|
||||
for {
|
||||
filePath := filepath.Join(dir, fileName)
|
||||
_, err := os.Stat(filePath)
|
||||
if os.IsNotExist(err) {
|
||||
return fileName
|
||||
}
|
||||
|
||||
counter++
|
||||
fileName = fmt.Sprintf("%s_%d%s", baseName, counter, ext)
|
||||
}
|
||||
}
|
||||
|
||||
20
core/cli/cli.go
Normal file
20
core/cli/cli.go
Normal file
@@ -0,0 +1,20 @@
|
||||
package cli
|
||||
|
||||
import "embed"
|
||||
|
||||
type Context struct {
|
||||
Debug bool `env:"LOCALAI_DEBUG,DEBUG" default:"false" hidden:"" help:"DEPRECATED, use --log-level=debug instead. Enable debug logging"`
|
||||
LogLevel *string `env:"LOCALAI_LOG_LEVEL" enum:"error,warn,info,debug" help:"Set the level of logs to output [${enum}]"`
|
||||
|
||||
// This field is not a command line argument/flag, the struct tag excludes it from the parsed CLI
|
||||
BackendAssets embed.FS `kong:"-"`
|
||||
}
|
||||
|
||||
var CLI struct {
|
||||
Context `embed:""`
|
||||
|
||||
Run RunCMD `cmd:"" help:"Run LocalAI, this the default command if no other command is specified. Run 'local-ai run --help' for more information" default:"withargs"`
|
||||
Models ModelsCMD `cmd:"" help:"Manage LocalAI models and definitions"`
|
||||
TTS TTSCMD `cmd:"" help:"Convert text to speech"`
|
||||
Transcript TranscriptCMD `cmd:"" help:"Convert audio to text"`
|
||||
}
|
||||
74
core/cli/models.go
Normal file
74
core/cli/models.go
Normal file
@@ -0,0 +1,74 @@
|
||||
package cli
|
||||
|
||||
import (
|
||||
"encoding/json"
|
||||
"fmt"
|
||||
|
||||
"github.com/go-skynet/LocalAI/pkg/gallery"
|
||||
"github.com/rs/zerolog/log"
|
||||
"github.com/schollz/progressbar/v3"
|
||||
)
|
||||
|
||||
type ModelsCMDFlags struct {
|
||||
Galleries string `env:"LOCALAI_GALLERIES,GALLERIES" help:"JSON list of galleries" group:"models"`
|
||||
ModelsPath string `env:"LOCALAI_MODELS_PATH,MODELS_PATH" type:"path" default:"${basepath}/models" help:"Path containing models used for inferencing" group:"storage"`
|
||||
}
|
||||
|
||||
type ModelsList struct {
|
||||
ModelsCMDFlags `embed:""`
|
||||
}
|
||||
|
||||
type ModelsInstall struct {
|
||||
ModelArgs []string `arg:"" optional:"" name:"models" help:"Model configuration URLs to load"`
|
||||
|
||||
ModelsCMDFlags `embed:""`
|
||||
}
|
||||
|
||||
type ModelsCMD struct {
|
||||
List ModelsList `cmd:"" help:"List the models avaiable in your galleries" default:"withargs"`
|
||||
Install ModelsInstall `cmd:"" help:"Install a model from the gallery"`
|
||||
}
|
||||
|
||||
func (ml *ModelsList) Run(ctx *Context) error {
|
||||
var galleries []gallery.Gallery
|
||||
if err := json.Unmarshal([]byte(ml.Galleries), &galleries); err != nil {
|
||||
log.Error().Err(err).Msg("unable to load galleries")
|
||||
}
|
||||
|
||||
models, err := gallery.AvailableGalleryModels(galleries, ml.ModelsPath)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
for _, model := range models {
|
||||
if model.Installed {
|
||||
fmt.Printf(" * %s@%s (installed)\n", model.Gallery.Name, model.Name)
|
||||
} else {
|
||||
fmt.Printf(" - %s@%s\n", model.Gallery.Name, model.Name)
|
||||
}
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
func (mi *ModelsInstall) Run(ctx *Context) error {
|
||||
modelName := mi.ModelArgs[0]
|
||||
|
||||
var galleries []gallery.Gallery
|
||||
if err := json.Unmarshal([]byte(mi.Galleries), &galleries); err != nil {
|
||||
log.Error().Err(err).Msg("unable to load galleries")
|
||||
}
|
||||
|
||||
progressBar := progressbar.NewOptions(
|
||||
1000,
|
||||
progressbar.OptionSetDescription(fmt.Sprintf("downloading model %s", modelName)),
|
||||
progressbar.OptionShowBytes(false),
|
||||
progressbar.OptionClearOnFinish(),
|
||||
)
|
||||
progressCallback := func(fileName string, current string, total string, percentage float64) {
|
||||
progressBar.Set(int(percentage * 10))
|
||||
}
|
||||
err := gallery.InstallModelFromGallery(galleries, modelName, mi.ModelsPath, gallery.GalleryModel{}, progressCallback)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
return nil
|
||||
}
|
||||
155
core/cli/run.go
Normal file
155
core/cli/run.go
Normal file
@@ -0,0 +1,155 @@
|
||||
package cli
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"os"
|
||||
"strings"
|
||||
"time"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
"github.com/go-skynet/LocalAI/core/http"
|
||||
"github.com/go-skynet/LocalAI/core/startup"
|
||||
"github.com/rs/zerolog/log"
|
||||
)
|
||||
|
||||
type RunCMD struct {
|
||||
ModelArgs []string `arg:"" optional:"" name:"models" help:"Model configuration URLs to load"`
|
||||
|
||||
ModelsPath string `env:"LOCALAI_MODELS_PATH,MODELS_PATH" type:"path" default:"${basepath}/models" help:"Path containing models used for inferencing" group:"storage"`
|
||||
BackendAssetsPath string `env:"LOCALAI_BACKEND_ASSETS_PATH,BACKEND_ASSETS_PATH" type:"path" default:"/tmp/localai/backend_data" help:"Path used to extract libraries that are required by some of the backends in runtime" group:"storage"`
|
||||
ImagePath string `env:"LOCALAI_IMAGE_PATH,IMAGE_PATH" type:"path" default:"/tmp/generated/images" help:"Location for images generated by backends (e.g. stablediffusion)" group:"storage"`
|
||||
AudioPath string `env:"LOCALAI_AUDIO_PATH,AUDIO_PATH" type:"path" default:"/tmp/generated/audio" help:"Location for audio generated by backends (e.g. piper)" group:"storage"`
|
||||
UploadPath string `env:"LOCALAI_UPLOAD_PATH,UPLOAD_PATH" type:"path" default:"/tmp/localai/upload" help:"Path to store uploads from files api" group:"storage"`
|
||||
ConfigPath string `env:"LOCALAI_CONFIG_PATH,CONFIG_PATH" default:"/tmp/localai/config" group:"storage"`
|
||||
LocalaiConfigDir string `env:"LOCALAI_CONFIG_DIR" type:"path" default:"${basepath}/configuration" help:"Directory for dynamic loading of certain configuration files (currently api_keys.json and external_backends.json)" group:"storage"`
|
||||
// The alias on this option is there to preserve functionality with the old `--config-file` parameter
|
||||
ModelsConfigFile string `env:"LOCALAI_MODELS_CONFIG_FILE,CONFIG_FILE" aliases:"config-file" help:"YAML file containing a list of model backend configs" group:"storage"`
|
||||
|
||||
Galleries string `env:"LOCALAI_GALLERIES,GALLERIES" help:"JSON list of galleries" group:"models"`
|
||||
AutoloadGalleries bool `env:"LOCALAI_AUTOLOAD_GALLERIES,AUTOLOAD_GALLERIES" group:"models"`
|
||||
RemoteLibrary string `env:"LOCALAI_REMOTE_LIBRARY,REMOTE_LIBRARY" default:"${remoteLibraryURL}" help:"A LocalAI remote library URL" group:"models"`
|
||||
PreloadModels string `env:"LOCALAI_PRELOAD_MODELS,PRELOAD_MODELS" help:"A List of models to apply in JSON at start" group:"models"`
|
||||
Models []string `env:"LOCALAI_MODELS,MODELS" help:"A List of model configuration URLs to load" group:"models"`
|
||||
PreloadModelsConfig string `env:"LOCALAI_PRELOAD_MODELS_CONFIG,PRELOAD_MODELS_CONFIG" help:"A List of models to apply at startup. Path to a YAML config file" group:"models"`
|
||||
|
||||
F16 bool `name:"f16" env:"LOCALAI_F16,F16" help:"Enable GPU acceleration" group:"performance"`
|
||||
Threads int `env:"LOCALAI_THREADS,THREADS" short:"t" default:"4" help:"Number of threads used for parallel computation. Usage of the number of physical cores in the system is suggested" group:"performance"`
|
||||
ContextSize int `env:"LOCALAI_CONTEXT_SIZE,CONTEXT_SIZE" default:"512" help:"Default context size for models" group:"performance"`
|
||||
|
||||
Address string `env:"LOCALAI_ADDRESS,ADDRESS" default:":8080" help:"Bind address for the API server" group:"api"`
|
||||
CORS bool `env:"LOCALAI_CORS,CORS" help:"" group:"api"`
|
||||
CORSAllowOrigins string `env:"LOCALAI_CORS_ALLOW_ORIGINS,CORS_ALLOW_ORIGINS" group:"api"`
|
||||
UploadLimit int `env:"LOCALAI_UPLOAD_LIMIT,UPLOAD_LIMIT" default:"15" help:"Default upload-limit in MB" group:"api"`
|
||||
APIKeys []string `env:"LOCALAI_API_KEY,API_KEY" help:"List of API Keys to enable API authentication. When this is set, all the requests must be authenticated with one of these API keys" group:"api"`
|
||||
DisableWelcome bool `env:"LOCALAI_DISABLE_WELCOME,DISABLE_WELCOME" default:"false" help:"Disable welcome pages" group:"api"`
|
||||
|
||||
ParallelRequests bool `env:"LOCALAI_PARALLEL_REQUESTS,PARALLEL_REQUESTS" help:"Enable backends to handle multiple requests in parallel if they support it (e.g.: llama.cpp or vllm)" group:"backends"`
|
||||
SingleActiveBackend bool `env:"LOCALAI_SINGLE_ACTIVE_BACKEND,SINGLE_ACTIVE_BACKEND" help:"Allow only one backend to be run at a time" group:"backends"`
|
||||
PreloadBackendOnly bool `env:"LOCALAI_PRELOAD_BACKEND_ONLY,PRELOAD_BACKEND_ONLY" default:"false" help:"Do not launch the API services, only the preloaded models / backends are started (useful for multi-node setups)" group:"backends"`
|
||||
ExternalGRPCBackends []string `env:"LOCALAI_EXTERNAL_GRPC_BACKENDS,EXTERNAL_GRPC_BACKENDS" help:"A list of external grpc backends" group:"backends"`
|
||||
EnableWatchdogIdle bool `env:"LOCALAI_WATCHDOG_IDLE,WATCHDOG_IDLE" default:"false" help:"Enable watchdog for stopping backends that are idle longer than the watchdog-idle-timeout" group:"backends"`
|
||||
WatchdogIdleTimeout string `env:"LOCALAI_WATCHDOG_IDLE_TIMEOUT,WATCHDOG_IDLE_TIMEOUT" default:"15m" help:"Threshold beyond which an idle backend should be stopped" group:"backends"`
|
||||
EnableWatchdogBusy bool `env:"LOCALAI_WATCHDOG_BUSY,WATCHDOG_BUSY" default:"false" help:"Enable watchdog for stopping backends that are busy longer than the watchdog-busy-timeout" group:"backends"`
|
||||
WatchdogBusyTimeout string `env:"LOCALAI_WATCHDOG_BUSY_TIMEOUT,WATCHDOG_BUSY_TIMEOUT" default:"5m" help:"Threshold beyond which a busy backend should be stopped" group:"backends"`
|
||||
}
|
||||
|
||||
func (r *RunCMD) Run(ctx *Context) error {
|
||||
opts := []config.AppOption{
|
||||
config.WithConfigFile(r.ModelsConfigFile),
|
||||
config.WithJSONStringPreload(r.PreloadModels),
|
||||
config.WithYAMLConfigPreload(r.PreloadModelsConfig),
|
||||
config.WithModelPath(r.ModelsPath),
|
||||
config.WithContextSize(r.ContextSize),
|
||||
config.WithDebug(*ctx.LogLevel == "debug"),
|
||||
config.WithImageDir(r.ImagePath),
|
||||
config.WithAudioDir(r.AudioPath),
|
||||
config.WithUploadDir(r.UploadPath),
|
||||
config.WithConfigsDir(r.ConfigPath),
|
||||
config.WithF16(r.F16),
|
||||
config.WithStringGalleries(r.Galleries),
|
||||
config.WithModelLibraryURL(r.RemoteLibrary),
|
||||
config.WithDisableMessage(false),
|
||||
config.WithCors(r.CORS),
|
||||
config.WithCorsAllowOrigins(r.CORSAllowOrigins),
|
||||
config.WithThreads(r.Threads),
|
||||
config.WithBackendAssets(ctx.BackendAssets),
|
||||
config.WithBackendAssetsOutput(r.BackendAssetsPath),
|
||||
config.WithUploadLimitMB(r.UploadLimit),
|
||||
config.WithApiKeys(r.APIKeys),
|
||||
config.WithModelsURL(append(r.Models, r.ModelArgs...)...),
|
||||
}
|
||||
|
||||
idleWatchDog := r.EnableWatchdogIdle
|
||||
busyWatchDog := r.EnableWatchdogBusy
|
||||
|
||||
if r.DisableWelcome {
|
||||
opts = append(opts, config.DisableWelcomePage)
|
||||
}
|
||||
|
||||
if idleWatchDog || busyWatchDog {
|
||||
opts = append(opts, config.EnableWatchDog)
|
||||
if idleWatchDog {
|
||||
opts = append(opts, config.EnableWatchDogIdleCheck)
|
||||
dur, err := time.ParseDuration(r.WatchdogIdleTimeout)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
opts = append(opts, config.SetWatchDogIdleTimeout(dur))
|
||||
}
|
||||
if busyWatchDog {
|
||||
opts = append(opts, config.EnableWatchDogBusyCheck)
|
||||
dur, err := time.ParseDuration(r.WatchdogBusyTimeout)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
opts = append(opts, config.SetWatchDogBusyTimeout(dur))
|
||||
}
|
||||
}
|
||||
if r.ParallelRequests {
|
||||
opts = append(opts, config.EnableParallelBackendRequests)
|
||||
}
|
||||
if r.SingleActiveBackend {
|
||||
opts = append(opts, config.EnableSingleBackend)
|
||||
}
|
||||
|
||||
// split ":" to get backend name and the uri
|
||||
for _, v := range r.ExternalGRPCBackends {
|
||||
backend := v[:strings.IndexByte(v, ':')]
|
||||
uri := v[strings.IndexByte(v, ':')+1:]
|
||||
opts = append(opts, config.WithExternalBackend(backend, uri))
|
||||
}
|
||||
|
||||
if r.AutoloadGalleries {
|
||||
opts = append(opts, config.EnableGalleriesAutoload)
|
||||
}
|
||||
|
||||
if r.PreloadBackendOnly {
|
||||
_, err := startup.Startup(opts...)
|
||||
return err
|
||||
}
|
||||
|
||||
application, err := startup.Startup(opts...)
|
||||
|
||||
if err != nil {
|
||||
return fmt.Errorf("failed basic startup tasks with error %s", err.Error())
|
||||
}
|
||||
|
||||
// Watch the configuration directory
|
||||
// If the directory does not exist, we don't watch it
|
||||
if _, err := os.Stat(r.LocalaiConfigDir); err == nil {
|
||||
closeConfigWatcherFn, err := startup.WatchConfigDirectory(r.LocalaiConfigDir, application.ApplicationConfig)
|
||||
defer closeConfigWatcherFn()
|
||||
|
||||
if err != nil {
|
||||
return fmt.Errorf("failed while watching configuration directory %s", r.LocalaiConfigDir)
|
||||
}
|
||||
}
|
||||
|
||||
appHTTP, err := http.App(application)
|
||||
if err != nil {
|
||||
log.Error().Err(err).Msg("error during HTTP App construction")
|
||||
return err
|
||||
}
|
||||
|
||||
return appHTTP.Listen(r.Address)
|
||||
}
|
||||
65
core/cli/transcript.go
Normal file
65
core/cli/transcript.go
Normal file
@@ -0,0 +1,65 @@
|
||||
package cli
|
||||
|
||||
import (
|
||||
"context"
|
||||
"errors"
|
||||
"fmt"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/backend"
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
"github.com/go-skynet/LocalAI/core/schema"
|
||||
"github.com/go-skynet/LocalAI/pkg/model"
|
||||
)
|
||||
|
||||
type TranscriptCMD struct {
|
||||
Filename string `arg:""`
|
||||
|
||||
Backend string `short:"b" default:"whisper" help:"Backend to run the transcription model"`
|
||||
Model string `short:"m" required:"" help:"Model name to run the TTS"`
|
||||
Language string `short:"l" help:"Language of the audio file"`
|
||||
Threads int `short:"t" default:"1" help:"Number of threads used for parallel computation"`
|
||||
ModelsPath string `env:"LOCALAI_MODELS_PATH,MODELS_PATH" type:"path" default:"${basepath}/models" help:"Path containing models used for inferencing" group:"storage"`
|
||||
BackendAssetsPath string `env:"LOCALAI_BACKEND_ASSETS_PATH,BACKEND_ASSETS_PATH" type:"path" default:"/tmp/localai/backend_data" help:"Path used to extract libraries that are required by some of the backends in runtime" group:"storage"`
|
||||
}
|
||||
|
||||
func (t *TranscriptCMD) Run(ctx *Context) error {
|
||||
opts := &config.ApplicationConfig{
|
||||
ModelPath: t.ModelsPath,
|
||||
Context: context.Background(),
|
||||
AssetsDestination: t.BackendAssetsPath,
|
||||
}
|
||||
|
||||
cl := config.NewBackendConfigLoader()
|
||||
ml := model.NewModelLoader(opts.ModelPath)
|
||||
if err := cl.LoadBackendConfigsFromPath(t.ModelsPath); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
c, exists := cl.GetBackendConfig(t.Model)
|
||||
if !exists {
|
||||
return errors.New("model not found")
|
||||
}
|
||||
|
||||
c.Threads = &t.Threads
|
||||
|
||||
defer ml.StopAllGRPC()
|
||||
|
||||
tbs := backend.NewTranscriptionBackendService(ml, cl, opts)
|
||||
|
||||
resultChannel := tbs.Transcribe(&schema.OpenAIRequest{
|
||||
PredictionOptions: schema.PredictionOptions{
|
||||
Language: t.Language,
|
||||
},
|
||||
File: t.Filename,
|
||||
})
|
||||
|
||||
r := <-resultChannel
|
||||
|
||||
if r.Error != nil {
|
||||
return r.Error
|
||||
}
|
||||
for _, segment := range r.Value.Segments {
|
||||
fmt.Println(segment.Start.String(), "-", segment.Text)
|
||||
}
|
||||
return nil
|
||||
}
|
||||
71
core/cli/tts.go
Normal file
71
core/cli/tts.go
Normal file
@@ -0,0 +1,71 @@
|
||||
package cli
|
||||
|
||||
import (
|
||||
"context"
|
||||
"fmt"
|
||||
"os"
|
||||
"path/filepath"
|
||||
"strings"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/backend"
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
"github.com/go-skynet/LocalAI/core/schema"
|
||||
"github.com/go-skynet/LocalAI/pkg/model"
|
||||
)
|
||||
|
||||
type TTSCMD struct {
|
||||
Text []string `arg:""`
|
||||
|
||||
Backend string `short:"b" default:"piper" help:"Backend to run the TTS model"`
|
||||
Model string `short:"m" required:"" help:"Model name to run the TTS"`
|
||||
Voice string `short:"v" help:"Voice name to run the TTS"`
|
||||
OutputFile string `short:"o" type:"path" help:"The path to write the output wav file"`
|
||||
ModelsPath string `env:"LOCALAI_MODELS_PATH,MODELS_PATH" type:"path" default:"${basepath}/models" help:"Path containing models used for inferencing" group:"storage"`
|
||||
BackendAssetsPath string `env:"LOCALAI_BACKEND_ASSETS_PATH,BACKEND_ASSETS_PATH" type:"path" default:"/tmp/localai/backend_data" help:"Path used to extract libraries that are required by some of the backends in runtime" group:"storage"`
|
||||
}
|
||||
|
||||
func (t *TTSCMD) Run(ctx *Context) error {
|
||||
outputFile := t.OutputFile
|
||||
outputDir := t.BackendAssetsPath
|
||||
if outputFile != "" {
|
||||
outputDir = filepath.Dir(outputFile)
|
||||
}
|
||||
|
||||
text := strings.Join(t.Text, " ")
|
||||
|
||||
opts := &config.ApplicationConfig{
|
||||
ModelPath: t.ModelsPath,
|
||||
Context: context.Background(),
|
||||
AudioDir: outputDir,
|
||||
AssetsDestination: t.BackendAssetsPath,
|
||||
}
|
||||
ml := model.NewModelLoader(opts.ModelPath)
|
||||
|
||||
defer ml.StopAllGRPC()
|
||||
|
||||
ttsbs := backend.NewTextToSpeechBackendService(ml, config.NewBackendConfigLoader(), opts)
|
||||
|
||||
request := &schema.TTSRequest{
|
||||
Model: t.Model,
|
||||
Input: text,
|
||||
Backend: t.Backend,
|
||||
Voice: t.Voice,
|
||||
}
|
||||
|
||||
resultsChannel := ttsbs.TextToAudioFile(request)
|
||||
|
||||
rawResult := <-resultsChannel
|
||||
|
||||
if rawResult.Error != nil {
|
||||
return rawResult.Error
|
||||
}
|
||||
if outputFile != "" {
|
||||
if err := os.Rename(*rawResult.Value, outputFile); err != nil {
|
||||
return err
|
||||
}
|
||||
fmt.Printf("Generated file %q\n", outputFile)
|
||||
} else {
|
||||
fmt.Printf("Generated file %q\n", *rawResult.Value)
|
||||
}
|
||||
return nil
|
||||
}
|
||||
151
core/clients/store.go
Normal file
151
core/clients/store.go
Normal file
@@ -0,0 +1,151 @@
|
||||
package clients
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"encoding/json"
|
||||
"fmt"
|
||||
"io"
|
||||
"net/http"
|
||||
)
|
||||
|
||||
// Define a struct to hold the store API client
|
||||
type StoreClient struct {
|
||||
BaseURL string
|
||||
Client *http.Client
|
||||
}
|
||||
|
||||
type SetRequest struct {
|
||||
Keys [][]float32 `json:"keys"`
|
||||
Values []string `json:"values"`
|
||||
}
|
||||
|
||||
type GetRequest struct {
|
||||
Keys [][]float32 `json:"keys"`
|
||||
}
|
||||
|
||||
type GetResponse struct {
|
||||
Keys [][]float32 `json:"keys"`
|
||||
Values []string `json:"values"`
|
||||
}
|
||||
|
||||
type DeleteRequest struct {
|
||||
Keys [][]float32 `json:"keys"`
|
||||
}
|
||||
|
||||
type FindRequest struct {
|
||||
TopK int `json:"topk"`
|
||||
Key []float32 `json:"key"`
|
||||
}
|
||||
|
||||
type FindResponse struct {
|
||||
Keys [][]float32 `json:"keys"`
|
||||
Values []string `json:"values"`
|
||||
Similarities []float32 `json:"similarities"`
|
||||
}
|
||||
|
||||
// Constructor for StoreClient
|
||||
func NewStoreClient(baseUrl string) *StoreClient {
|
||||
return &StoreClient{
|
||||
BaseURL: baseUrl,
|
||||
Client: &http.Client{},
|
||||
}
|
||||
}
|
||||
|
||||
// Implement Set method
|
||||
func (c *StoreClient) Set(req SetRequest) error {
|
||||
return c.doRequest("stores/set", req)
|
||||
}
|
||||
|
||||
// Implement Get method
|
||||
func (c *StoreClient) Get(req GetRequest) (*GetResponse, error) {
|
||||
body, err := c.doRequestWithResponse("stores/get", req)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
var resp GetResponse
|
||||
err = json.Unmarshal(body, &resp)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
return &resp, nil
|
||||
}
|
||||
|
||||
// Implement Delete method
|
||||
func (c *StoreClient) Delete(req DeleteRequest) error {
|
||||
return c.doRequest("stores/delete", req)
|
||||
}
|
||||
|
||||
// Implement Find method
|
||||
func (c *StoreClient) Find(req FindRequest) (*FindResponse, error) {
|
||||
body, err := c.doRequestWithResponse("stores/find", req)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
var resp FindResponse
|
||||
err = json.Unmarshal(body, &resp)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
return &resp, nil
|
||||
}
|
||||
|
||||
// Helper function to perform a request without expecting a response body
|
||||
func (c *StoreClient) doRequest(path string, data interface{}) error {
|
||||
jsonData, err := json.Marshal(data)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
req, err := http.NewRequest("POST", c.BaseURL+"/"+path, bytes.NewBuffer(jsonData))
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
req.Header.Set("Content-Type", "application/json")
|
||||
|
||||
resp, err := c.Client.Do(req)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
defer resp.Body.Close()
|
||||
|
||||
if resp.StatusCode != http.StatusOK {
|
||||
return fmt.Errorf("API request to %s failed with status code %d", path, resp.StatusCode)
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
// Helper function to perform a request and parse the response body
|
||||
func (c *StoreClient) doRequestWithResponse(path string, data interface{}) ([]byte, error) {
|
||||
jsonData, err := json.Marshal(data)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
req, err := http.NewRequest("POST", c.BaseURL+"/"+path, bytes.NewBuffer(jsonData))
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
req.Header.Set("Content-Type", "application/json")
|
||||
|
||||
resp, err := c.Client.Do(req)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
defer resp.Body.Close()
|
||||
|
||||
if resp.StatusCode != http.StatusOK {
|
||||
return nil, fmt.Errorf("API request to %s failed with status code %d", path, resp.StatusCode)
|
||||
}
|
||||
|
||||
body, err := io.ReadAll(resp.Body)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
return body, nil
|
||||
}
|
||||
@@ -1,22 +1,7 @@
|
||||
package config
|
||||
|
||||
import (
|
||||
"errors"
|
||||
"fmt"
|
||||
"io/fs"
|
||||
"os"
|
||||
"path/filepath"
|
||||
"sort"
|
||||
"strings"
|
||||
"sync"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/schema"
|
||||
"github.com/go-skynet/LocalAI/pkg/downloader"
|
||||
"github.com/go-skynet/LocalAI/pkg/utils"
|
||||
"github.com/rs/zerolog/log"
|
||||
"gopkg.in/yaml.v3"
|
||||
|
||||
"github.com/charmbracelet/glamour"
|
||||
)
|
||||
|
||||
const (
|
||||
@@ -165,11 +150,12 @@ type Functions struct {
|
||||
}
|
||||
|
||||
type TemplateConfig struct {
|
||||
Chat string `yaml:"chat"`
|
||||
ChatMessage string `yaml:"chat_message"`
|
||||
Completion string `yaml:"completion"`
|
||||
Edit string `yaml:"edit"`
|
||||
Functions string `yaml:"function"`
|
||||
Chat string `yaml:"chat"`
|
||||
ChatMessage string `yaml:"chat_message"`
|
||||
Completion string `yaml:"completion"`
|
||||
Edit string `yaml:"edit"`
|
||||
Functions string `yaml:"function"`
|
||||
UseTokenizerTemplate bool `yaml:"use_tokenizer_template"`
|
||||
}
|
||||
|
||||
func (c *BackendConfig) SetFunctionCallString(s string) {
|
||||
@@ -198,7 +184,7 @@ func (c *BackendConfig) FunctionToCall() string {
|
||||
}
|
||||
|
||||
func (cfg *BackendConfig) SetDefaults(opts ...ConfigLoaderOption) {
|
||||
lo := &LoadOptions{}
|
||||
lo := &ConfigLoaderOptions{}
|
||||
lo.Apply(opts...)
|
||||
|
||||
ctx := lo.ctxSize
|
||||
@@ -311,287 +297,3 @@ func (cfg *BackendConfig) SetDefaults(opts ...ConfigLoaderOption) {
|
||||
cfg.Debug = &trueV
|
||||
}
|
||||
}
|
||||
|
||||
////// Config Loader ////////
|
||||
|
||||
type BackendConfigLoader struct {
|
||||
configs map[string]BackendConfig
|
||||
sync.Mutex
|
||||
}
|
||||
|
||||
type LoadOptions struct {
|
||||
debug bool
|
||||
threads, ctxSize int
|
||||
f16 bool
|
||||
}
|
||||
|
||||
func LoadOptionDebug(debug bool) ConfigLoaderOption {
|
||||
return func(o *LoadOptions) {
|
||||
o.debug = debug
|
||||
}
|
||||
}
|
||||
|
||||
func LoadOptionThreads(threads int) ConfigLoaderOption {
|
||||
return func(o *LoadOptions) {
|
||||
o.threads = threads
|
||||
}
|
||||
}
|
||||
|
||||
func LoadOptionContextSize(ctxSize int) ConfigLoaderOption {
|
||||
return func(o *LoadOptions) {
|
||||
o.ctxSize = ctxSize
|
||||
}
|
||||
}
|
||||
|
||||
func LoadOptionF16(f16 bool) ConfigLoaderOption {
|
||||
return func(o *LoadOptions) {
|
||||
o.f16 = f16
|
||||
}
|
||||
}
|
||||
|
||||
type ConfigLoaderOption func(*LoadOptions)
|
||||
|
||||
func (lo *LoadOptions) Apply(options ...ConfigLoaderOption) {
|
||||
for _, l := range options {
|
||||
l(lo)
|
||||
}
|
||||
}
|
||||
|
||||
// Load a config file for a model
|
||||
func (cl *BackendConfigLoader) LoadBackendConfigFileByName(modelName, modelPath string, opts ...ConfigLoaderOption) (*BackendConfig, error) {
|
||||
|
||||
// Load a config file if present after the model name
|
||||
cfg := &BackendConfig{
|
||||
PredictionOptions: schema.PredictionOptions{
|
||||
Model: modelName,
|
||||
},
|
||||
}
|
||||
|
||||
cfgExisting, exists := cl.GetBackendConfig(modelName)
|
||||
if exists {
|
||||
cfg = &cfgExisting
|
||||
} else {
|
||||
// Try loading a model config file
|
||||
modelConfig := filepath.Join(modelPath, modelName+".yaml")
|
||||
if _, err := os.Stat(modelConfig); err == nil {
|
||||
if err := cl.LoadBackendConfig(
|
||||
modelConfig, opts...,
|
||||
); err != nil {
|
||||
return nil, fmt.Errorf("failed loading model config (%s) %s", modelConfig, err.Error())
|
||||
}
|
||||
cfgExisting, exists = cl.GetBackendConfig(modelName)
|
||||
if exists {
|
||||
cfg = &cfgExisting
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
cfg.SetDefaults(opts...)
|
||||
|
||||
return cfg, nil
|
||||
}
|
||||
|
||||
func NewBackendConfigLoader() *BackendConfigLoader {
|
||||
return &BackendConfigLoader{
|
||||
configs: make(map[string]BackendConfig),
|
||||
}
|
||||
}
|
||||
func ReadBackendConfigFile(file string, opts ...ConfigLoaderOption) ([]*BackendConfig, error) {
|
||||
c := &[]*BackendConfig{}
|
||||
f, err := os.ReadFile(file)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("cannot read config file: %w", err)
|
||||
}
|
||||
if err := yaml.Unmarshal(f, c); err != nil {
|
||||
return nil, fmt.Errorf("cannot unmarshal config file: %w", err)
|
||||
}
|
||||
|
||||
for _, cc := range *c {
|
||||
cc.SetDefaults(opts...)
|
||||
}
|
||||
|
||||
return *c, nil
|
||||
}
|
||||
|
||||
func ReadBackendConfig(file string, opts ...ConfigLoaderOption) (*BackendConfig, error) {
|
||||
lo := &LoadOptions{}
|
||||
lo.Apply(opts...)
|
||||
|
||||
c := &BackendConfig{}
|
||||
f, err := os.ReadFile(file)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("cannot read config file: %w", err)
|
||||
}
|
||||
if err := yaml.Unmarshal(f, c); err != nil {
|
||||
return nil, fmt.Errorf("cannot unmarshal config file: %w", err)
|
||||
}
|
||||
|
||||
c.SetDefaults(opts...)
|
||||
return c, nil
|
||||
}
|
||||
|
||||
func (cm *BackendConfigLoader) LoadBackendConfigFile(file string, opts ...ConfigLoaderOption) error {
|
||||
cm.Lock()
|
||||
defer cm.Unlock()
|
||||
c, err := ReadBackendConfigFile(file, opts...)
|
||||
if err != nil {
|
||||
return fmt.Errorf("cannot load config file: %w", err)
|
||||
}
|
||||
|
||||
for _, cc := range c {
|
||||
cm.configs[cc.Name] = *cc
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
func (cl *BackendConfigLoader) LoadBackendConfig(file string, opts ...ConfigLoaderOption) error {
|
||||
cl.Lock()
|
||||
defer cl.Unlock()
|
||||
c, err := ReadBackendConfig(file, opts...)
|
||||
if err != nil {
|
||||
return fmt.Errorf("cannot read config file: %w", err)
|
||||
}
|
||||
|
||||
cl.configs[c.Name] = *c
|
||||
return nil
|
||||
}
|
||||
|
||||
func (cl *BackendConfigLoader) GetBackendConfig(m string) (BackendConfig, bool) {
|
||||
cl.Lock()
|
||||
defer cl.Unlock()
|
||||
v, exists := cl.configs[m]
|
||||
return v, exists
|
||||
}
|
||||
|
||||
func (cl *BackendConfigLoader) GetAllBackendConfigs() []BackendConfig {
|
||||
cl.Lock()
|
||||
defer cl.Unlock()
|
||||
var res []BackendConfig
|
||||
for _, v := range cl.configs {
|
||||
res = append(res, v)
|
||||
}
|
||||
|
||||
sort.SliceStable(res, func(i, j int) bool {
|
||||
return res[i].Name < res[j].Name
|
||||
})
|
||||
|
||||
return res
|
||||
}
|
||||
|
||||
func (cl *BackendConfigLoader) ListBackendConfigs() []string {
|
||||
cl.Lock()
|
||||
defer cl.Unlock()
|
||||
var res []string
|
||||
for k := range cl.configs {
|
||||
res = append(res, k)
|
||||
}
|
||||
return res
|
||||
}
|
||||
|
||||
// Preload prepare models if they are not local but url or huggingface repositories
|
||||
func (cl *BackendConfigLoader) Preload(modelPath string) error {
|
||||
cl.Lock()
|
||||
defer cl.Unlock()
|
||||
|
||||
status := func(fileName, current, total string, percent float64) {
|
||||
utils.DisplayDownloadFunction(fileName, current, total, percent)
|
||||
}
|
||||
|
||||
log.Info().Msgf("Preloading models from %s", modelPath)
|
||||
|
||||
renderMode := "dark"
|
||||
if os.Getenv("COLOR") != "" {
|
||||
renderMode = os.Getenv("COLOR")
|
||||
}
|
||||
|
||||
glamText := func(t string) {
|
||||
out, err := glamour.Render(t, renderMode)
|
||||
if err == nil && os.Getenv("NO_COLOR") == "" {
|
||||
fmt.Println(out)
|
||||
} else {
|
||||
fmt.Println(t)
|
||||
}
|
||||
}
|
||||
|
||||
for i, config := range cl.configs {
|
||||
|
||||
// Download files and verify their SHA
|
||||
for _, file := range config.DownloadFiles {
|
||||
log.Debug().Msgf("Checking %q exists and matches SHA", file.Filename)
|
||||
|
||||
if err := utils.VerifyPath(file.Filename, modelPath); err != nil {
|
||||
return err
|
||||
}
|
||||
// Create file path
|
||||
filePath := filepath.Join(modelPath, file.Filename)
|
||||
|
||||
if err := downloader.DownloadFile(file.URI, filePath, file.SHA256, status); err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
|
||||
modelURL := config.PredictionOptions.Model
|
||||
modelURL = downloader.ConvertURL(modelURL)
|
||||
|
||||
if downloader.LooksLikeURL(modelURL) {
|
||||
// md5 of model name
|
||||
md5Name := utils.MD5(modelURL)
|
||||
|
||||
// check if file exists
|
||||
if _, err := os.Stat(filepath.Join(modelPath, md5Name)); errors.Is(err, os.ErrNotExist) {
|
||||
err := downloader.DownloadFile(modelURL, filepath.Join(modelPath, md5Name), "", status)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
|
||||
cc := cl.configs[i]
|
||||
c := &cc
|
||||
c.PredictionOptions.Model = md5Name
|
||||
cl.configs[i] = *c
|
||||
}
|
||||
if cl.configs[i].Name != "" {
|
||||
glamText(fmt.Sprintf("**Model name**: _%s_", cl.configs[i].Name))
|
||||
}
|
||||
if cl.configs[i].Description != "" {
|
||||
//glamText("**Description**")
|
||||
glamText(cl.configs[i].Description)
|
||||
}
|
||||
if cl.configs[i].Usage != "" {
|
||||
//glamText("**Usage**")
|
||||
glamText(cl.configs[i].Usage)
|
||||
}
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
// LoadBackendConfigsFromPath reads all the configurations of the models from a path
|
||||
// (non-recursive)
|
||||
func (cm *BackendConfigLoader) LoadBackendConfigsFromPath(path string, opts ...ConfigLoaderOption) error {
|
||||
cm.Lock()
|
||||
defer cm.Unlock()
|
||||
entries, err := os.ReadDir(path)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
files := make([]fs.FileInfo, 0, len(entries))
|
||||
for _, entry := range entries {
|
||||
info, err := entry.Info()
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
files = append(files, info)
|
||||
}
|
||||
for _, file := range files {
|
||||
// Skip templates, YAML and .keep files
|
||||
if !strings.Contains(file.Name(), ".yaml") && !strings.Contains(file.Name(), ".yml") {
|
||||
continue
|
||||
}
|
||||
c, err := ReadBackendConfig(filepath.Join(path, file.Name()), opts...)
|
||||
if err == nil {
|
||||
cm.configs[c.Name] = *c
|
||||
}
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
509
core/config/backend_config_loader.go
Normal file
509
core/config/backend_config_loader.go
Normal file
@@ -0,0 +1,509 @@
|
||||
package config
|
||||
|
||||
import (
|
||||
"encoding/json"
|
||||
"errors"
|
||||
"fmt"
|
||||
"io/fs"
|
||||
"os"
|
||||
"path/filepath"
|
||||
"sort"
|
||||
"strings"
|
||||
"sync"
|
||||
|
||||
"github.com/charmbracelet/glamour"
|
||||
"github.com/go-skynet/LocalAI/core/schema"
|
||||
"github.com/go-skynet/LocalAI/pkg/downloader"
|
||||
"github.com/go-skynet/LocalAI/pkg/grammar"
|
||||
"github.com/go-skynet/LocalAI/pkg/utils"
|
||||
"github.com/rs/zerolog/log"
|
||||
"gopkg.in/yaml.v2"
|
||||
)
|
||||
|
||||
type BackendConfigLoader struct {
|
||||
configs map[string]BackendConfig
|
||||
sync.Mutex
|
||||
}
|
||||
|
||||
type ConfigLoaderOptions struct {
|
||||
debug bool
|
||||
threads, ctxSize int
|
||||
f16 bool
|
||||
}
|
||||
|
||||
func LoadOptionDebug(debug bool) ConfigLoaderOption {
|
||||
return func(o *ConfigLoaderOptions) {
|
||||
o.debug = debug
|
||||
}
|
||||
}
|
||||
|
||||
func LoadOptionThreads(threads int) ConfigLoaderOption {
|
||||
return func(o *ConfigLoaderOptions) {
|
||||
o.threads = threads
|
||||
}
|
||||
}
|
||||
|
||||
func LoadOptionContextSize(ctxSize int) ConfigLoaderOption {
|
||||
return func(o *ConfigLoaderOptions) {
|
||||
o.ctxSize = ctxSize
|
||||
}
|
||||
}
|
||||
|
||||
func LoadOptionF16(f16 bool) ConfigLoaderOption {
|
||||
return func(o *ConfigLoaderOptions) {
|
||||
o.f16 = f16
|
||||
}
|
||||
}
|
||||
|
||||
type ConfigLoaderOption func(*ConfigLoaderOptions)
|
||||
|
||||
func (lo *ConfigLoaderOptions) Apply(options ...ConfigLoaderOption) {
|
||||
for _, l := range options {
|
||||
l(lo)
|
||||
}
|
||||
}
|
||||
|
||||
func NewBackendConfigLoader() *BackendConfigLoader {
|
||||
return &BackendConfigLoader{
|
||||
configs: make(map[string]BackendConfig),
|
||||
}
|
||||
}
|
||||
|
||||
func (bcl *BackendConfigLoader) LoadBackendConfig(file string, opts ...ConfigLoaderOption) error {
|
||||
bcl.Lock()
|
||||
defer bcl.Unlock()
|
||||
c, err := readBackendConfig(file, opts...)
|
||||
if err != nil {
|
||||
return fmt.Errorf("cannot read config file: %w", err)
|
||||
}
|
||||
|
||||
bcl.configs[c.Name] = *c
|
||||
return nil
|
||||
}
|
||||
|
||||
func (bcl *BackendConfigLoader) GetBackendConfig(m string) (BackendConfig, bool) {
|
||||
bcl.Lock()
|
||||
defer bcl.Unlock()
|
||||
v, exists := bcl.configs[m]
|
||||
return v, exists
|
||||
}
|
||||
|
||||
func (bcl *BackendConfigLoader) GetAllBackendConfigs() []BackendConfig {
|
||||
bcl.Lock()
|
||||
defer bcl.Unlock()
|
||||
var res []BackendConfig
|
||||
for _, v := range bcl.configs {
|
||||
res = append(res, v)
|
||||
}
|
||||
sort.SliceStable(res, func(i, j int) bool {
|
||||
return res[i].Name < res[j].Name
|
||||
})
|
||||
return res
|
||||
}
|
||||
|
||||
func (bcl *BackendConfigLoader) ListBackendConfigs() []string {
|
||||
bcl.Lock()
|
||||
defer bcl.Unlock()
|
||||
var res []string
|
||||
for k := range bcl.configs {
|
||||
res = append(res, k)
|
||||
}
|
||||
return res
|
||||
}
|
||||
|
||||
// Preload prepare models if they are not local but url or huggingface repositories
|
||||
func (bcl *BackendConfigLoader) Preload(modelPath string) error {
|
||||
bcl.Lock()
|
||||
defer bcl.Unlock()
|
||||
|
||||
status := func(fileName, current, total string, percent float64) {
|
||||
utils.DisplayDownloadFunction(fileName, current, total, percent)
|
||||
}
|
||||
|
||||
log.Info().Msgf("Preloading models from %s", modelPath)
|
||||
|
||||
renderMode := "dark"
|
||||
if os.Getenv("COLOR") != "" {
|
||||
renderMode = os.Getenv("COLOR")
|
||||
}
|
||||
|
||||
glamText := func(t string) {
|
||||
out, err := glamour.Render(t, renderMode)
|
||||
if err == nil && os.Getenv("NO_COLOR") == "" {
|
||||
fmt.Println(out)
|
||||
} else {
|
||||
fmt.Println(t)
|
||||
}
|
||||
}
|
||||
|
||||
for i, config := range bcl.configs {
|
||||
|
||||
// Download files and verify their SHA
|
||||
for _, file := range config.DownloadFiles {
|
||||
log.Debug().Msgf("Checking %q exists and matches SHA", file.Filename)
|
||||
|
||||
if err := utils.VerifyPath(file.Filename, modelPath); err != nil {
|
||||
return err
|
||||
}
|
||||
// Create file path
|
||||
filePath := filepath.Join(modelPath, file.Filename)
|
||||
|
||||
if err := downloader.DownloadFile(file.URI, filePath, file.SHA256, status); err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
|
||||
modelURL := config.PredictionOptions.Model
|
||||
modelURL = downloader.ConvertURL(modelURL)
|
||||
|
||||
if downloader.LooksLikeURL(modelURL) {
|
||||
// md5 of model name
|
||||
md5Name := utils.MD5(modelURL)
|
||||
|
||||
// check if file exists
|
||||
if _, err := os.Stat(filepath.Join(modelPath, md5Name)); errors.Is(err, os.ErrNotExist) {
|
||||
err := downloader.DownloadFile(modelURL, filepath.Join(modelPath, md5Name), "", status)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
|
||||
cc := bcl.configs[i]
|
||||
c := &cc
|
||||
c.PredictionOptions.Model = md5Name
|
||||
bcl.configs[i] = *c
|
||||
}
|
||||
if bcl.configs[i].Name != "" {
|
||||
glamText(fmt.Sprintf("**Model name**: _%s_", bcl.configs[i].Name))
|
||||
}
|
||||
if bcl.configs[i].Description != "" {
|
||||
//glamText("**Description**")
|
||||
glamText(bcl.configs[i].Description)
|
||||
}
|
||||
if bcl.configs[i].Usage != "" {
|
||||
//glamText("**Usage**")
|
||||
glamText(bcl.configs[i].Usage)
|
||||
}
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
func (bcl *BackendConfigLoader) LoadBackendConfigsFromPath(path string, opts ...ConfigLoaderOption) error {
|
||||
bcl.Lock()
|
||||
defer bcl.Unlock()
|
||||
entries, err := os.ReadDir(path)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
files := make([]fs.FileInfo, 0, len(entries))
|
||||
for _, entry := range entries {
|
||||
info, err := entry.Info()
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
files = append(files, info)
|
||||
}
|
||||
for _, file := range files {
|
||||
// Skip templates, YAML and .keep files
|
||||
if !strings.Contains(file.Name(), ".yaml") && !strings.Contains(file.Name(), ".yml") {
|
||||
continue
|
||||
}
|
||||
c, err := readBackendConfig(filepath.Join(path, file.Name()), opts...)
|
||||
if err == nil {
|
||||
bcl.configs[c.Name] = *c
|
||||
}
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
func (bcl *BackendConfigLoader) LoadBackendConfigFile(file string, opts ...ConfigLoaderOption) error {
|
||||
bcl.Lock()
|
||||
defer bcl.Unlock()
|
||||
c, err := readBackendConfigFile(file, opts...)
|
||||
if err != nil {
|
||||
return fmt.Errorf("cannot load config file: %w", err)
|
||||
}
|
||||
|
||||
for _, cc := range c {
|
||||
bcl.configs[cc.Name] = *cc
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
//////////
|
||||
|
||||
// Load a config file for a model
|
||||
func (bcl *BackendConfigLoader) LoadBackendConfigFileByName(modelName string, modelPath string, opts ...ConfigLoaderOption) (*BackendConfig, error) {
|
||||
|
||||
// Load a config file if present after the model name
|
||||
cfg := &BackendConfig{
|
||||
PredictionOptions: schema.PredictionOptions{
|
||||
Model: modelName,
|
||||
},
|
||||
}
|
||||
|
||||
cfgExisting, exists := bcl.GetBackendConfig(modelName)
|
||||
if exists {
|
||||
cfg = &cfgExisting
|
||||
} else {
|
||||
// Load a config file if present after the model name
|
||||
modelConfig := filepath.Join(modelPath, modelName+".yaml")
|
||||
if _, err := os.Stat(modelConfig); err == nil {
|
||||
if err := bcl.LoadBackendConfig(modelConfig); err != nil {
|
||||
return nil, fmt.Errorf("failed loading model config (%s) %s", modelConfig, err.Error())
|
||||
}
|
||||
cfgExisting, exists = bcl.GetBackendConfig(modelName)
|
||||
if exists {
|
||||
cfg = &cfgExisting
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
cfg.SetDefaults(opts...)
|
||||
return cfg, nil
|
||||
}
|
||||
|
||||
func readBackendConfigFile(file string, opts ...ConfigLoaderOption) ([]*BackendConfig, error) {
|
||||
c := &[]*BackendConfig{}
|
||||
f, err := os.ReadFile(file)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("cannot read config file: %w", err)
|
||||
}
|
||||
if err := yaml.Unmarshal(f, c); err != nil {
|
||||
return nil, fmt.Errorf("cannot unmarshal config file: %w", err)
|
||||
}
|
||||
|
||||
for _, cc := range *c {
|
||||
cc.SetDefaults(opts...)
|
||||
}
|
||||
|
||||
return *c, nil
|
||||
}
|
||||
|
||||
func readBackendConfig(file string, opts ...ConfigLoaderOption) (*BackendConfig, error) {
|
||||
c := &BackendConfig{}
|
||||
f, err := os.ReadFile(file)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("cannot read config file: %w", err)
|
||||
}
|
||||
if err := yaml.Unmarshal(f, c); err != nil {
|
||||
return nil, fmt.Errorf("cannot unmarshal config file: %w", err)
|
||||
}
|
||||
|
||||
c.SetDefaults(opts...)
|
||||
return c, nil
|
||||
}
|
||||
|
||||
func (bcl *BackendConfigLoader) LoadBackendConfigForModelAndOpenAIRequest(modelFile string, input *schema.OpenAIRequest, appConfig *ApplicationConfig) (*BackendConfig, *schema.OpenAIRequest, error) {
|
||||
cfg, err := bcl.LoadBackendConfigFileByName(modelFile, appConfig.ModelPath,
|
||||
LoadOptionContextSize(appConfig.ContextSize),
|
||||
LoadOptionDebug(appConfig.Debug),
|
||||
LoadOptionF16(appConfig.F16),
|
||||
LoadOptionThreads(appConfig.Threads),
|
||||
)
|
||||
|
||||
// Set the parameters for the language model prediction
|
||||
updateBackendConfigFromOpenAIRequest(cfg, input)
|
||||
|
||||
return cfg, input, err
|
||||
}
|
||||
|
||||
func updateBackendConfigFromOpenAIRequest(bc *BackendConfig, request *schema.OpenAIRequest) {
|
||||
if request.Echo {
|
||||
bc.Echo = request.Echo
|
||||
}
|
||||
if request.TopK != nil && *request.TopK != 0 {
|
||||
bc.TopK = request.TopK
|
||||
}
|
||||
if request.TopP != nil && *request.TopP != 0 {
|
||||
bc.TopP = request.TopP
|
||||
}
|
||||
|
||||
if request.Backend != "" {
|
||||
bc.Backend = request.Backend
|
||||
}
|
||||
|
||||
if request.ClipSkip != 0 {
|
||||
bc.Diffusers.ClipSkip = request.ClipSkip
|
||||
}
|
||||
|
||||
if request.ModelBaseName != "" {
|
||||
bc.AutoGPTQ.ModelBaseName = request.ModelBaseName
|
||||
}
|
||||
|
||||
if request.NegativePromptScale != 0 {
|
||||
bc.NegativePromptScale = request.NegativePromptScale
|
||||
}
|
||||
|
||||
if request.UseFastTokenizer {
|
||||
bc.UseFastTokenizer = request.UseFastTokenizer
|
||||
}
|
||||
|
||||
if request.NegativePrompt != "" {
|
||||
bc.NegativePrompt = request.NegativePrompt
|
||||
}
|
||||
|
||||
if request.RopeFreqBase != 0 {
|
||||
bc.RopeFreqBase = request.RopeFreqBase
|
||||
}
|
||||
|
||||
if request.RopeFreqScale != 0 {
|
||||
bc.RopeFreqScale = request.RopeFreqScale
|
||||
}
|
||||
|
||||
if request.Grammar != "" {
|
||||
bc.Grammar = request.Grammar
|
||||
}
|
||||
|
||||
if request.Temperature != nil && *request.Temperature != 0 {
|
||||
bc.Temperature = request.Temperature
|
||||
}
|
||||
|
||||
if request.Maxtokens != nil && *request.Maxtokens != 0 {
|
||||
bc.Maxtokens = request.Maxtokens
|
||||
}
|
||||
|
||||
switch stop := request.Stop.(type) {
|
||||
case string:
|
||||
if stop != "" {
|
||||
bc.StopWords = append(bc.StopWords, stop)
|
||||
}
|
||||
case []interface{}:
|
||||
for _, pp := range stop {
|
||||
if s, ok := pp.(string); ok {
|
||||
bc.StopWords = append(bc.StopWords, s)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if len(request.Tools) > 0 {
|
||||
for _, tool := range request.Tools {
|
||||
request.Functions = append(request.Functions, tool.Function)
|
||||
}
|
||||
}
|
||||
|
||||
if request.ToolsChoice != nil {
|
||||
var toolChoice grammar.Tool
|
||||
switch content := request.ToolsChoice.(type) {
|
||||
case string:
|
||||
_ = json.Unmarshal([]byte(content), &toolChoice)
|
||||
case map[string]interface{}:
|
||||
dat, _ := json.Marshal(content)
|
||||
_ = json.Unmarshal(dat, &toolChoice)
|
||||
}
|
||||
request.FunctionCall = map[string]interface{}{
|
||||
"name": toolChoice.Function.Name,
|
||||
}
|
||||
}
|
||||
|
||||
// Decode each request's message content
|
||||
index := 0
|
||||
for i, m := range request.Messages {
|
||||
switch content := m.Content.(type) {
|
||||
case string:
|
||||
request.Messages[i].StringContent = content
|
||||
case []interface{}:
|
||||
dat, _ := json.Marshal(content)
|
||||
c := []schema.Content{}
|
||||
json.Unmarshal(dat, &c)
|
||||
for _, pp := range c {
|
||||
if pp.Type == "text" {
|
||||
request.Messages[i].StringContent = pp.Text
|
||||
} else if pp.Type == "image_url" {
|
||||
// Detect if pp.ImageURL is an URL, if it is download the image and encode it in base64:
|
||||
base64, err := utils.GetImageURLAsBase64(pp.ImageURL.URL)
|
||||
if err == nil {
|
||||
request.Messages[i].StringImages = append(request.Messages[i].StringImages, base64) // TODO: make sure that we only return base64 stuff
|
||||
// set a placeholder for each image
|
||||
request.Messages[i].StringContent = fmt.Sprintf("[img-%d]", index) + request.Messages[i].StringContent
|
||||
index++
|
||||
} else {
|
||||
fmt.Print("Failed encoding image", err)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if request.RepeatPenalty != 0 {
|
||||
bc.RepeatPenalty = request.RepeatPenalty
|
||||
}
|
||||
|
||||
if request.FrequencyPenalty != 0 {
|
||||
bc.FrequencyPenalty = request.FrequencyPenalty
|
||||
}
|
||||
|
||||
if request.PresencePenalty != 0 {
|
||||
bc.PresencePenalty = request.PresencePenalty
|
||||
}
|
||||
|
||||
if request.Keep != 0 {
|
||||
bc.Keep = request.Keep
|
||||
}
|
||||
|
||||
if request.Batch != 0 {
|
||||
bc.Batch = request.Batch
|
||||
}
|
||||
|
||||
if request.IgnoreEOS {
|
||||
bc.IgnoreEOS = request.IgnoreEOS
|
||||
}
|
||||
|
||||
if request.Seed != nil {
|
||||
bc.Seed = request.Seed
|
||||
}
|
||||
|
||||
if request.TypicalP != nil {
|
||||
bc.TypicalP = request.TypicalP
|
||||
}
|
||||
|
||||
switch inputs := request.Input.(type) {
|
||||
case string:
|
||||
if inputs != "" {
|
||||
bc.InputStrings = append(bc.InputStrings, inputs)
|
||||
}
|
||||
case []interface{}:
|
||||
for _, pp := range inputs {
|
||||
switch i := pp.(type) {
|
||||
case string:
|
||||
bc.InputStrings = append(bc.InputStrings, i)
|
||||
case []interface{}:
|
||||
tokens := []int{}
|
||||
for _, ii := range i {
|
||||
tokens = append(tokens, int(ii.(float64)))
|
||||
}
|
||||
bc.InputToken = append(bc.InputToken, tokens)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Can be either a string or an object
|
||||
switch fnc := request.FunctionCall.(type) {
|
||||
case string:
|
||||
if fnc != "" {
|
||||
bc.SetFunctionCallString(fnc)
|
||||
}
|
||||
case map[string]interface{}:
|
||||
var name string
|
||||
n, exists := fnc["name"]
|
||||
if exists {
|
||||
nn, e := n.(string)
|
||||
if e {
|
||||
name = nn
|
||||
}
|
||||
}
|
||||
bc.SetFunctionCallNameString(name)
|
||||
}
|
||||
|
||||
switch p := request.Prompt.(type) {
|
||||
case string:
|
||||
bc.PromptStrings = append(bc.PromptStrings, p)
|
||||
case []interface{}:
|
||||
for _, pp := range p {
|
||||
if s, ok := pp.(string); ok {
|
||||
bc.PromptStrings = append(bc.PromptStrings, s)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
6
core/config/exports_test.go
Normal file
6
core/config/exports_test.go
Normal file
@@ -0,0 +1,6 @@
|
||||
package config
|
||||
|
||||
// This file re-exports private functions to be used directly in unit tests.
|
||||
// Since this file's name ends in _test.go, theoretically these should not be exposed past the tests.
|
||||
|
||||
var ReadBackendConfigFile = readBackendConfigFile
|
||||
197
core/http/api.go
197
core/http/api.go
@@ -1,23 +1,20 @@
|
||||
package http
|
||||
|
||||
import (
|
||||
"encoding/json"
|
||||
"errors"
|
||||
"os"
|
||||
"strings"
|
||||
|
||||
"github.com/go-skynet/LocalAI/pkg/utils"
|
||||
"github.com/go-skynet/LocalAI/core"
|
||||
fiberContext "github.com/go-skynet/LocalAI/core/http/ctx"
|
||||
"github.com/gofiber/swagger" // swagger handler
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/http/endpoints/elevenlabs"
|
||||
"github.com/go-skynet/LocalAI/core/http/endpoints/localai"
|
||||
"github.com/go-skynet/LocalAI/core/http/endpoints/openai"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
"github.com/go-skynet/LocalAI/core/schema"
|
||||
"github.com/go-skynet/LocalAI/core/services"
|
||||
"github.com/go-skynet/LocalAI/internal"
|
||||
"github.com/go-skynet/LocalAI/pkg/model"
|
||||
model "github.com/go-skynet/LocalAI/pkg/model"
|
||||
|
||||
"github.com/gofiber/fiber/v2"
|
||||
"github.com/gofiber/fiber/v2/middleware/cors"
|
||||
@@ -55,13 +52,12 @@ func readAuthHeader(c *fiber.Ctx) string {
|
||||
// @securityDefinitions.apikey BearerAuth
|
||||
// @in header
|
||||
// @name Authorization
|
||||
|
||||
func App(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *config.ApplicationConfig) (*fiber.App, error) {
|
||||
func App(application *core.Application) (*fiber.App, error) {
|
||||
// Return errors as JSON responses
|
||||
app := fiber.New(fiber.Config{
|
||||
Views: renderEngine(),
|
||||
BodyLimit: appConfig.UploadLimitMB * 1024 * 1024, // this is the default limit of 4MB
|
||||
DisableStartupMessage: appConfig.DisableMessage,
|
||||
BodyLimit: application.ApplicationConfig.UploadLimitMB * 1024 * 1024, // this is the default limit of 4MB
|
||||
DisableStartupMessage: application.ApplicationConfig.DisableMessage,
|
||||
// Override default error handler
|
||||
ErrorHandler: func(ctx *fiber.Ctx, err error) error {
|
||||
// Status code defaults to 500
|
||||
@@ -82,7 +78,7 @@ func App(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *confi
|
||||
},
|
||||
})
|
||||
|
||||
if appConfig.Debug {
|
||||
if application.ApplicationConfig.Debug {
|
||||
app.Use(logger.New(logger.Config{
|
||||
Format: "[${ip}]:${port} ${status} - ${method} ${path}\n",
|
||||
}))
|
||||
@@ -90,7 +86,7 @@ func App(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *confi
|
||||
|
||||
// Default middleware config
|
||||
|
||||
if !appConfig.Debug {
|
||||
if !application.ApplicationConfig.Debug {
|
||||
app.Use(recover.New())
|
||||
}
|
||||
|
||||
@@ -108,25 +104,7 @@ func App(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *confi
|
||||
|
||||
// Auth middleware checking if API key is valid. If no API key is set, no auth is required.
|
||||
auth := func(c *fiber.Ctx) error {
|
||||
if len(appConfig.ApiKeys) == 0 {
|
||||
return c.Next()
|
||||
}
|
||||
|
||||
// Check for api_keys.json file
|
||||
fileContent, err := os.ReadFile("api_keys.json")
|
||||
if err == nil {
|
||||
// Parse JSON content from the file
|
||||
var fileKeys []string
|
||||
err := json.Unmarshal(fileContent, &fileKeys)
|
||||
if err != nil {
|
||||
return c.Status(fiber.StatusInternalServerError).JSON(fiber.Map{"message": "Error parsing api_keys.json"})
|
||||
}
|
||||
|
||||
// Add file keys to options.ApiKeys
|
||||
appConfig.ApiKeys = append(appConfig.ApiKeys, fileKeys...)
|
||||
}
|
||||
|
||||
if len(appConfig.ApiKeys) == 0 {
|
||||
if len(application.ApplicationConfig.ApiKeys) == 0 {
|
||||
return c.Next()
|
||||
}
|
||||
|
||||
@@ -142,7 +120,7 @@ func App(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *confi
|
||||
}
|
||||
|
||||
apiKey := authHeaderParts[1]
|
||||
for _, key := range appConfig.ApiKeys {
|
||||
for _, key := range application.ApplicationConfig.ApiKeys {
|
||||
if apiKey == key {
|
||||
return c.Next()
|
||||
}
|
||||
@@ -151,20 +129,22 @@ func App(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *confi
|
||||
return c.Status(fiber.StatusUnauthorized).JSON(fiber.Map{"message": "Invalid API key"})
|
||||
}
|
||||
|
||||
if appConfig.CORS {
|
||||
if application.ApplicationConfig.CORS {
|
||||
var c func(ctx *fiber.Ctx) error
|
||||
if appConfig.CORSAllowOrigins == "" {
|
||||
if application.ApplicationConfig.CORSAllowOrigins == "" {
|
||||
c = cors.New()
|
||||
} else {
|
||||
c = cors.New(cors.Config{AllowOrigins: appConfig.CORSAllowOrigins})
|
||||
c = cors.New(cors.Config{AllowOrigins: application.ApplicationConfig.CORSAllowOrigins})
|
||||
}
|
||||
|
||||
app.Use(c)
|
||||
}
|
||||
|
||||
fiberContextExtractor := fiberContext.NewFiberContextExtractor(application.ModelLoader, application.ApplicationConfig)
|
||||
|
||||
// LocalAI API endpoints
|
||||
galleryService := services.NewGalleryService(appConfig.ModelPath)
|
||||
galleryService.Start(appConfig.Context, cl)
|
||||
galleryService := services.NewGalleryService(application.ApplicationConfig.ModelPath)
|
||||
galleryService.Start(application.ApplicationConfig.Context, application.BackendConfigLoader)
|
||||
|
||||
app.Get("/version", auth, func(c *fiber.Ctx) error {
|
||||
return c.JSON(struct {
|
||||
@@ -172,29 +152,17 @@ func App(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *confi
|
||||
}{Version: internal.PrintableVersion()})
|
||||
})
|
||||
|
||||
// Make sure directories exists
|
||||
os.MkdirAll(appConfig.ImageDir, 0755)
|
||||
os.MkdirAll(appConfig.AudioDir, 0755)
|
||||
os.MkdirAll(appConfig.UploadDir, 0755)
|
||||
os.MkdirAll(appConfig.ConfigsDir, 0755)
|
||||
os.MkdirAll(appConfig.ModelPath, 0755)
|
||||
|
||||
// Load config jsons
|
||||
utils.LoadConfig(appConfig.UploadDir, openai.UploadedFilesFile, &openai.UploadedFiles)
|
||||
utils.LoadConfig(appConfig.ConfigsDir, openai.AssistantsConfigFile, &openai.Assistants)
|
||||
utils.LoadConfig(appConfig.ConfigsDir, openai.AssistantsFileConfigFile, &openai.AssistantFiles)
|
||||
|
||||
app.Get("/swagger/*", swagger.HandlerDefault) // default
|
||||
|
||||
welcomeRoute(
|
||||
app,
|
||||
cl,
|
||||
ml,
|
||||
appConfig,
|
||||
application.BackendConfigLoader,
|
||||
application.ModelLoader,
|
||||
application.ApplicationConfig,
|
||||
auth,
|
||||
)
|
||||
|
||||
modelGalleryEndpointService := localai.CreateModelGalleryEndpointService(appConfig.Galleries, appConfig.ModelPath, galleryService)
|
||||
modelGalleryEndpointService := localai.CreateModelGalleryEndpointService(application.ApplicationConfig.Galleries, application.ApplicationConfig.ModelPath, galleryService)
|
||||
app.Post("/models/apply", auth, modelGalleryEndpointService.ApplyModelGalleryEndpoint())
|
||||
app.Get("/models/available", auth, modelGalleryEndpointService.ListModelFromGalleryEndpoint())
|
||||
app.Get("/models/galleries", auth, modelGalleryEndpointService.ListModelGalleriesEndpoint())
|
||||
@@ -203,83 +171,85 @@ func App(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *confi
|
||||
app.Get("/models/jobs/:uuid", auth, modelGalleryEndpointService.GetOpStatusEndpoint())
|
||||
app.Get("/models/jobs", auth, modelGalleryEndpointService.GetAllStatusEndpoint())
|
||||
|
||||
app.Post("/tts", auth, localai.TTSEndpoint(cl, ml, appConfig))
|
||||
|
||||
// Elevenlabs
|
||||
app.Post("/v1/text-to-speech/:voice-id", auth, elevenlabs.TTSEndpoint(cl, ml, appConfig))
|
||||
|
||||
// Stores
|
||||
sl := model.NewModelLoader("")
|
||||
app.Post("/stores/set", auth, localai.StoresSetEndpoint(sl, appConfig))
|
||||
app.Post("/stores/delete", auth, localai.StoresDeleteEndpoint(sl, appConfig))
|
||||
app.Post("/stores/get", auth, localai.StoresGetEndpoint(sl, appConfig))
|
||||
app.Post("/stores/find", auth, localai.StoresFindEndpoint(sl, appConfig))
|
||||
storeLoader := model.NewModelLoader("") // TODO: Investigate if this should be migrated to application and reused. Should the path be configurable? Merging for now.
|
||||
app.Post("/stores/set", auth, localai.StoresSetEndpoint(storeLoader, application.ApplicationConfig))
|
||||
app.Post("/stores/delete", auth, localai.StoresDeleteEndpoint(storeLoader, application.ApplicationConfig))
|
||||
app.Post("/stores/get", auth, localai.StoresGetEndpoint(storeLoader, application.ApplicationConfig))
|
||||
app.Post("/stores/find", auth, localai.StoresFindEndpoint(storeLoader, application.ApplicationConfig))
|
||||
|
||||
// openAI compatible API endpoint
|
||||
// openAI compatible API endpoints
|
||||
|
||||
// chat
|
||||
app.Post("/v1/chat/completions", auth, openai.ChatEndpoint(cl, ml, appConfig))
|
||||
app.Post("/chat/completions", auth, openai.ChatEndpoint(cl, ml, appConfig))
|
||||
app.Post("/v1/chat/completions", auth, openai.ChatEndpoint(fiberContextExtractor, application.OpenAIService))
|
||||
app.Post("/chat/completions", auth, openai.ChatEndpoint(fiberContextExtractor, application.OpenAIService))
|
||||
|
||||
// edit
|
||||
app.Post("/v1/edits", auth, openai.EditEndpoint(cl, ml, appConfig))
|
||||
app.Post("/edits", auth, openai.EditEndpoint(cl, ml, appConfig))
|
||||
app.Post("/v1/edits", auth, openai.EditEndpoint(fiberContextExtractor, application.OpenAIService))
|
||||
app.Post("/edits", auth, openai.EditEndpoint(fiberContextExtractor, application.OpenAIService))
|
||||
|
||||
// assistant
|
||||
app.Get("/v1/assistants", auth, openai.ListAssistantsEndpoint(cl, ml, appConfig))
|
||||
app.Get("/assistants", auth, openai.ListAssistantsEndpoint(cl, ml, appConfig))
|
||||
app.Post("/v1/assistants", auth, openai.CreateAssistantEndpoint(cl, ml, appConfig))
|
||||
app.Post("/assistants", auth, openai.CreateAssistantEndpoint(cl, ml, appConfig))
|
||||
app.Delete("/v1/assistants/:assistant_id", auth, openai.DeleteAssistantEndpoint(cl, ml, appConfig))
|
||||
app.Delete("/assistants/:assistant_id", auth, openai.DeleteAssistantEndpoint(cl, ml, appConfig))
|
||||
app.Get("/v1/assistants/:assistant_id", auth, openai.GetAssistantEndpoint(cl, ml, appConfig))
|
||||
app.Get("/assistants/:assistant_id", auth, openai.GetAssistantEndpoint(cl, ml, appConfig))
|
||||
app.Post("/v1/assistants/:assistant_id", auth, openai.ModifyAssistantEndpoint(cl, ml, appConfig))
|
||||
app.Post("/assistants/:assistant_id", auth, openai.ModifyAssistantEndpoint(cl, ml, appConfig))
|
||||
app.Get("/v1/assistants/:assistant_id/files", auth, openai.ListAssistantFilesEndpoint(cl, ml, appConfig))
|
||||
app.Get("/assistants/:assistant_id/files", auth, openai.ListAssistantFilesEndpoint(cl, ml, appConfig))
|
||||
app.Post("/v1/assistants/:assistant_id/files", auth, openai.CreateAssistantFileEndpoint(cl, ml, appConfig))
|
||||
app.Post("/assistants/:assistant_id/files", auth, openai.CreateAssistantFileEndpoint(cl, ml, appConfig))
|
||||
app.Delete("/v1/assistants/:assistant_id/files/:file_id", auth, openai.DeleteAssistantFileEndpoint(cl, ml, appConfig))
|
||||
app.Delete("/assistants/:assistant_id/files/:file_id", auth, openai.DeleteAssistantFileEndpoint(cl, ml, appConfig))
|
||||
app.Get("/v1/assistants/:assistant_id/files/:file_id", auth, openai.GetAssistantFileEndpoint(cl, ml, appConfig))
|
||||
app.Get("/assistants/:assistant_id/files/:file_id", auth, openai.GetAssistantFileEndpoint(cl, ml, appConfig))
|
||||
// TODO: Refactor this to the new style eventually
|
||||
app.Get("/v1/assistants", auth, openai.ListAssistantsEndpoint(application.BackendConfigLoader, application.ModelLoader, application.ApplicationConfig))
|
||||
app.Get("/assistants", auth, openai.ListAssistantsEndpoint(application.BackendConfigLoader, application.ModelLoader, application.ApplicationConfig))
|
||||
app.Post("/v1/assistants", auth, openai.CreateAssistantEndpoint(application.BackendConfigLoader, application.ModelLoader, application.ApplicationConfig))
|
||||
app.Post("/assistants", auth, openai.CreateAssistantEndpoint(application.BackendConfigLoader, application.ModelLoader, application.ApplicationConfig))
|
||||
app.Delete("/v1/assistants/:assistant_id", auth, openai.DeleteAssistantEndpoint(application.BackendConfigLoader, application.ModelLoader, application.ApplicationConfig))
|
||||
app.Delete("/assistants/:assistant_id", auth, openai.DeleteAssistantEndpoint(application.BackendConfigLoader, application.ModelLoader, application.ApplicationConfig))
|
||||
app.Get("/v1/assistants/:assistant_id", auth, openai.GetAssistantEndpoint(application.BackendConfigLoader, application.ModelLoader, application.ApplicationConfig))
|
||||
app.Get("/assistants/:assistant_id", auth, openai.GetAssistantEndpoint(application.BackendConfigLoader, application.ModelLoader, application.ApplicationConfig))
|
||||
app.Post("/v1/assistants/:assistant_id", auth, openai.ModifyAssistantEndpoint(application.BackendConfigLoader, application.ModelLoader, application.ApplicationConfig))
|
||||
app.Post("/assistants/:assistant_id", auth, openai.ModifyAssistantEndpoint(application.BackendConfigLoader, application.ModelLoader, application.ApplicationConfig))
|
||||
app.Get("/v1/assistants/:assistant_id/files", auth, openai.ListAssistantFilesEndpoint(application.BackendConfigLoader, application.ModelLoader, application.ApplicationConfig))
|
||||
app.Get("/assistants/:assistant_id/files", auth, openai.ListAssistantFilesEndpoint(application.BackendConfigLoader, application.ModelLoader, application.ApplicationConfig))
|
||||
app.Post("/v1/assistants/:assistant_id/files", auth, openai.CreateAssistantFileEndpoint(application.BackendConfigLoader, application.ModelLoader, application.ApplicationConfig))
|
||||
app.Post("/assistants/:assistant_id/files", auth, openai.CreateAssistantFileEndpoint(application.BackendConfigLoader, application.ModelLoader, application.ApplicationConfig))
|
||||
app.Delete("/v1/assistants/:assistant_id/files/:file_id", auth, openai.DeleteAssistantFileEndpoint(application.BackendConfigLoader, application.ModelLoader, application.ApplicationConfig))
|
||||
app.Delete("/assistants/:assistant_id/files/:file_id", auth, openai.DeleteAssistantFileEndpoint(application.BackendConfigLoader, application.ModelLoader, application.ApplicationConfig))
|
||||
app.Get("/v1/assistants/:assistant_id/files/:file_id", auth, openai.GetAssistantFileEndpoint(application.BackendConfigLoader, application.ModelLoader, application.ApplicationConfig))
|
||||
app.Get("/assistants/:assistant_id/files/:file_id", auth, openai.GetAssistantFileEndpoint(application.BackendConfigLoader, application.ModelLoader, application.ApplicationConfig))
|
||||
|
||||
// files
|
||||
app.Post("/v1/files", auth, openai.UploadFilesEndpoint(cl, appConfig))
|
||||
app.Post("/files", auth, openai.UploadFilesEndpoint(cl, appConfig))
|
||||
app.Get("/v1/files", auth, openai.ListFilesEndpoint(cl, appConfig))
|
||||
app.Get("/files", auth, openai.ListFilesEndpoint(cl, appConfig))
|
||||
app.Get("/v1/files/:file_id", auth, openai.GetFilesEndpoint(cl, appConfig))
|
||||
app.Get("/files/:file_id", auth, openai.GetFilesEndpoint(cl, appConfig))
|
||||
app.Delete("/v1/files/:file_id", auth, openai.DeleteFilesEndpoint(cl, appConfig))
|
||||
app.Delete("/files/:file_id", auth, openai.DeleteFilesEndpoint(cl, appConfig))
|
||||
app.Get("/v1/files/:file_id/content", auth, openai.GetFilesContentsEndpoint(cl, appConfig))
|
||||
app.Get("/files/:file_id/content", auth, openai.GetFilesContentsEndpoint(cl, appConfig))
|
||||
app.Post("/v1/files", auth, openai.UploadFilesEndpoint(application.BackendConfigLoader, application.ApplicationConfig))
|
||||
app.Post("/files", auth, openai.UploadFilesEndpoint(application.BackendConfigLoader, application.ApplicationConfig))
|
||||
app.Get("/v1/files", auth, openai.ListFilesEndpoint(application.BackendConfigLoader, application.ApplicationConfig))
|
||||
app.Get("/files", auth, openai.ListFilesEndpoint(application.BackendConfigLoader, application.ApplicationConfig))
|
||||
app.Get("/v1/files/:file_id", auth, openai.GetFilesEndpoint(application.BackendConfigLoader, application.ApplicationConfig))
|
||||
app.Get("/files/:file_id", auth, openai.GetFilesEndpoint(application.BackendConfigLoader, application.ApplicationConfig))
|
||||
app.Delete("/v1/files/:file_id", auth, openai.DeleteFilesEndpoint(application.BackendConfigLoader, application.ApplicationConfig))
|
||||
app.Delete("/files/:file_id", auth, openai.DeleteFilesEndpoint(application.BackendConfigLoader, application.ApplicationConfig))
|
||||
app.Get("/v1/files/:file_id/content", auth, openai.GetFilesContentsEndpoint(application.BackendConfigLoader, application.ApplicationConfig))
|
||||
app.Get("/files/:file_id/content", auth, openai.GetFilesContentsEndpoint(application.BackendConfigLoader, application.ApplicationConfig))
|
||||
|
||||
// completion
|
||||
app.Post("/v1/completions", auth, openai.CompletionEndpoint(cl, ml, appConfig))
|
||||
app.Post("/completions", auth, openai.CompletionEndpoint(cl, ml, appConfig))
|
||||
app.Post("/v1/engines/:model/completions", auth, openai.CompletionEndpoint(cl, ml, appConfig))
|
||||
app.Post("/v1/completions", auth, openai.CompletionEndpoint(fiberContextExtractor, application.OpenAIService))
|
||||
app.Post("/completions", auth, openai.CompletionEndpoint(fiberContextExtractor, application.OpenAIService))
|
||||
app.Post("/v1/engines/:model/completions", auth, openai.CompletionEndpoint(fiberContextExtractor, application.OpenAIService))
|
||||
|
||||
// embeddings
|
||||
app.Post("/v1/embeddings", auth, openai.EmbeddingsEndpoint(cl, ml, appConfig))
|
||||
app.Post("/embeddings", auth, openai.EmbeddingsEndpoint(cl, ml, appConfig))
|
||||
app.Post("/v1/engines/:model/embeddings", auth, openai.EmbeddingsEndpoint(cl, ml, appConfig))
|
||||
app.Post("/v1/embeddings", auth, openai.EmbeddingsEndpoint(fiberContextExtractor, application.EmbeddingsBackendService))
|
||||
app.Post("/embeddings", auth, openai.EmbeddingsEndpoint(fiberContextExtractor, application.EmbeddingsBackendService))
|
||||
app.Post("/v1/engines/:model/embeddings", auth, openai.EmbeddingsEndpoint(fiberContextExtractor, application.EmbeddingsBackendService))
|
||||
|
||||
// audio
|
||||
app.Post("/v1/audio/transcriptions", auth, openai.TranscriptEndpoint(cl, ml, appConfig))
|
||||
app.Post("/v1/audio/speech", auth, localai.TTSEndpoint(cl, ml, appConfig))
|
||||
app.Post("/v1/audio/transcriptions", auth, openai.TranscriptEndpoint(fiberContextExtractor, application.TranscriptionBackendService))
|
||||
app.Post("/v1/audio/speech", auth, localai.TTSEndpoint(fiberContextExtractor, application.TextToSpeechBackendService))
|
||||
|
||||
// images
|
||||
app.Post("/v1/images/generations", auth, openai.ImageEndpoint(cl, ml, appConfig))
|
||||
app.Post("/v1/images/generations", auth, openai.ImageEndpoint(fiberContextExtractor, application.ImageGenerationBackendService))
|
||||
|
||||
if appConfig.ImageDir != "" {
|
||||
app.Static("/generated-images", appConfig.ImageDir)
|
||||
// Elevenlabs
|
||||
app.Post("/v1/text-to-speech/:voice-id", auth, elevenlabs.TTSEndpoint(fiberContextExtractor, application.TextToSpeechBackendService))
|
||||
|
||||
// LocalAI TTS?
|
||||
app.Post("/tts", auth, localai.TTSEndpoint(fiberContextExtractor, application.TextToSpeechBackendService))
|
||||
|
||||
if application.ApplicationConfig.ImageDir != "" {
|
||||
app.Static("/generated-images", application.ApplicationConfig.ImageDir)
|
||||
}
|
||||
|
||||
if appConfig.AudioDir != "" {
|
||||
app.Static("/generated-audio", appConfig.AudioDir)
|
||||
if application.ApplicationConfig.AudioDir != "" {
|
||||
app.Static("/generated-audio", application.ApplicationConfig.AudioDir)
|
||||
}
|
||||
|
||||
ok := func(c *fiber.Ctx) error {
|
||||
@@ -291,13 +261,12 @@ func App(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *confi
|
||||
app.Get("/readyz", ok)
|
||||
|
||||
// Experimental Backend Statistics Module
|
||||
backendMonitor := services.NewBackendMonitor(cl, ml, appConfig) // Split out for now
|
||||
app.Get("/backend/monitor", auth, localai.BackendMonitorEndpoint(backendMonitor))
|
||||
app.Post("/backend/shutdown", auth, localai.BackendShutdownEndpoint(backendMonitor))
|
||||
app.Get("/backend/monitor", auth, localai.BackendMonitorEndpoint(application.BackendMonitorService))
|
||||
app.Post("/backend/shutdown", auth, localai.BackendShutdownEndpoint(application.BackendMonitorService))
|
||||
|
||||
// models
|
||||
app.Get("/v1/models", auth, openai.ListModelsEndpoint(cl, ml))
|
||||
app.Get("/models", auth, openai.ListModelsEndpoint(cl, ml))
|
||||
app.Get("/v1/models", auth, openai.ListModelsEndpoint(application.ListModelsService))
|
||||
app.Get("/models", auth, openai.ListModelsEndpoint(application.ListModelsService))
|
||||
|
||||
app.Get("/metrics", auth, localai.LocalAIMetricsEndpoint())
|
||||
|
||||
|
||||
@@ -12,7 +12,9 @@ import (
|
||||
"os"
|
||||
"path/filepath"
|
||||
"runtime"
|
||||
"strings"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core"
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
. "github.com/go-skynet/LocalAI/core/http"
|
||||
"github.com/go-skynet/LocalAI/core/schema"
|
||||
@@ -43,6 +45,7 @@ Can you help rephrasing sentences?
|
||||
type modelApplyRequest struct {
|
||||
ID string `json:"id"`
|
||||
URL string `json:"url"`
|
||||
ConfigURL string `json:"config_url"`
|
||||
Name string `json:"name"`
|
||||
Overrides map[string]interface{} `json:"overrides"`
|
||||
}
|
||||
@@ -204,9 +207,7 @@ var _ = Describe("API test", func() {
|
||||
var cancel context.CancelFunc
|
||||
var tmpdir string
|
||||
var modelDir string
|
||||
var bcl *config.BackendConfigLoader
|
||||
var ml *model.ModelLoader
|
||||
var applicationConfig *config.ApplicationConfig
|
||||
var application *core.Application
|
||||
|
||||
commonOpts := []config.AppOption{
|
||||
config.WithDebug(true),
|
||||
@@ -251,7 +252,7 @@ var _ = Describe("API test", func() {
|
||||
},
|
||||
}
|
||||
|
||||
bcl, ml, applicationConfig, err = startup.Startup(
|
||||
application, err = startup.Startup(
|
||||
append(commonOpts,
|
||||
config.WithContext(c),
|
||||
config.WithGalleries(galleries),
|
||||
@@ -260,7 +261,7 @@ var _ = Describe("API test", func() {
|
||||
config.WithBackendAssetsOutput(backendAssetsDir))...)
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
|
||||
app, err = App(bcl, ml, applicationConfig)
|
||||
app, err = App(application)
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
|
||||
go app.Listen("127.0.0.1:9090")
|
||||
@@ -366,6 +367,29 @@ var _ = Describe("API test", func() {
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
Expect(content["backend"]).To(Equal("llama"))
|
||||
})
|
||||
It("apply models from config", func() {
|
||||
response := postModelApplyRequest("http://127.0.0.1:9090/models/apply", modelApplyRequest{
|
||||
ConfigURL: "https://raw.githubusercontent.com/mudler/LocalAI/master/embedded/models/hermes-2-pro-mistral.yaml",
|
||||
})
|
||||
|
||||
Expect(response["uuid"]).ToNot(BeEmpty(), fmt.Sprint(response))
|
||||
|
||||
uuid := response["uuid"].(string)
|
||||
|
||||
Eventually(func() bool {
|
||||
response := getModelStatus("http://127.0.0.1:9090/models/jobs/" + uuid)
|
||||
return response["processed"].(bool)
|
||||
}, "360s", "10s").Should(Equal(true))
|
||||
|
||||
Eventually(func() []string {
|
||||
models, _ := client.ListModels(context.TODO())
|
||||
modelList := []string{}
|
||||
for _, m := range models.Models {
|
||||
modelList = append(modelList, m.ID)
|
||||
}
|
||||
return modelList
|
||||
}, "360s", "10s").Should(ContainElements("hermes-2-pro-mistral"))
|
||||
})
|
||||
It("apply models without overrides", func() {
|
||||
response := postModelApplyRequest("http://127.0.0.1:9090/models/apply", modelApplyRequest{
|
||||
URL: "https://raw.githubusercontent.com/go-skynet/model-gallery/main/bert-embeddings.yaml",
|
||||
@@ -450,11 +474,11 @@ var _ = Describe("API test", func() {
|
||||
})
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
Expect(len(resp2.Choices)).To(Equal(1))
|
||||
Expect(resp2.Choices[0].Message.FunctionCall).ToNot(BeNil())
|
||||
Expect(resp2.Choices[0].Message.FunctionCall.Name).To(Equal("get_current_weather"), resp2.Choices[0].Message.FunctionCall.Name)
|
||||
Expect(resp2.Choices[0].Message.ToolCalls[0].Function).ToNot(BeNil())
|
||||
Expect(resp2.Choices[0].Message.ToolCalls[0].Function.Name).To(Equal("get_current_weather"), resp2.Choices[0].Message.ToolCalls[0].Function.Name)
|
||||
|
||||
var res map[string]string
|
||||
err = json.Unmarshal([]byte(resp2.Choices[0].Message.FunctionCall.Arguments), &res)
|
||||
err = json.Unmarshal([]byte(resp2.Choices[0].Message.ToolCalls[0].Function.Arguments), &res)
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
Expect(res["location"]).To(Equal("San Francisco"), fmt.Sprint(res))
|
||||
Expect(res["unit"]).To(Equal("celcius"), fmt.Sprint(res))
|
||||
@@ -463,9 +487,9 @@ var _ = Describe("API test", func() {
|
||||
})
|
||||
|
||||
It("runs openllama gguf(llama-cpp)", Label("llama-gguf"), func() {
|
||||
if runtime.GOOS != "linux" {
|
||||
Skip("test supported only on linux")
|
||||
}
|
||||
// if runtime.GOOS != "linux" {
|
||||
// Skip("test supported only on linux")
|
||||
// }
|
||||
modelName := "codellama"
|
||||
response := postModelApplyRequest("http://127.0.0.1:9090/models/apply", modelApplyRequest{
|
||||
URL: "github:go-skynet/model-gallery/codellama-7b-instruct.yaml",
|
||||
@@ -480,7 +504,7 @@ var _ = Describe("API test", func() {
|
||||
Eventually(func() bool {
|
||||
response := getModelStatus("http://127.0.0.1:9090/models/jobs/" + uuid)
|
||||
return response["processed"].(bool)
|
||||
}, "360s", "10s").Should(Equal(true))
|
||||
}, "480s", "10s").Should(Equal(true))
|
||||
|
||||
By("testing chat")
|
||||
resp, err := client.CreateChatCompletion(context.TODO(), openai.ChatCompletionRequest{Model: modelName, Messages: []openai.ChatCompletionMessage{
|
||||
@@ -527,11 +551,13 @@ var _ = Describe("API test", func() {
|
||||
})
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
Expect(len(resp2.Choices)).To(Equal(1))
|
||||
Expect(resp2.Choices[0].Message.FunctionCall).ToNot(BeNil())
|
||||
Expect(resp2.Choices[0].Message.FunctionCall.Name).To(Equal("get_current_weather"), resp2.Choices[0].Message.FunctionCall.Name)
|
||||
fmt.Printf("\n--- %+v\n\n", resp2.Choices[0].Message)
|
||||
Expect(resp2.Choices[0].Message.ToolCalls).ToNot(BeNil())
|
||||
Expect(resp2.Choices[0].Message.ToolCalls[0]).ToNot(BeNil())
|
||||
Expect(resp2.Choices[0].Message.ToolCalls[0].Function.Name).To(Equal("get_current_weather"), resp2.Choices[0].Message.ToolCalls[0].Function.Name)
|
||||
|
||||
var res map[string]string
|
||||
err = json.Unmarshal([]byte(resp2.Choices[0].Message.FunctionCall.Arguments), &res)
|
||||
err = json.Unmarshal([]byte(resp2.Choices[0].Message.ToolCalls[0].Function.Arguments), &res)
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
Expect(res["location"]).To(Equal("San Francisco"), fmt.Sprint(res))
|
||||
Expect(res["unit"]).To(Equal("celcius"), fmt.Sprint(res))
|
||||
@@ -585,7 +611,7 @@ var _ = Describe("API test", func() {
|
||||
},
|
||||
}
|
||||
|
||||
bcl, ml, applicationConfig, err = startup.Startup(
|
||||
application, err = startup.Startup(
|
||||
append(commonOpts,
|
||||
config.WithContext(c),
|
||||
config.WithAudioDir(tmpdir),
|
||||
@@ -596,7 +622,7 @@ var _ = Describe("API test", func() {
|
||||
config.WithBackendAssetsOutput(tmpdir))...,
|
||||
)
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
app, err = App(bcl, ml, applicationConfig)
|
||||
app, err = App(application)
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
|
||||
go app.Listen("127.0.0.1:9090")
|
||||
@@ -700,14 +726,14 @@ var _ = Describe("API test", func() {
|
||||
|
||||
var err error
|
||||
|
||||
bcl, ml, applicationConfig, err = startup.Startup(
|
||||
application, err = startup.Startup(
|
||||
append(commonOpts,
|
||||
config.WithExternalBackend("huggingface", os.Getenv("HUGGINGFACE_GRPC")),
|
||||
config.WithContext(c),
|
||||
config.WithModelPath(modelPath),
|
||||
)...)
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
app, err = App(bcl, ml, applicationConfig)
|
||||
app, err = App(application)
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
go app.Listen("127.0.0.1:9090")
|
||||
|
||||
@@ -737,6 +763,11 @@ var _ = Describe("API test", func() {
|
||||
Expect(len(models.Models)).To(Equal(6)) // If "config.yaml" should be included, this should be 8?
|
||||
})
|
||||
It("can generate completions via ggml", func() {
|
||||
bt, ok := os.LookupEnv("BUILD_TYPE")
|
||||
if ok && strings.ToLower(bt) == "metal" {
|
||||
Skip("GGML + Metal is known flaky, skip test temporarily")
|
||||
}
|
||||
|
||||
resp, err := client.CreateCompletion(context.TODO(), openai.CompletionRequest{Model: "testmodel.ggml", Prompt: testPrompt})
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
Expect(len(resp.Choices)).To(Equal(1))
|
||||
@@ -744,6 +775,11 @@ var _ = Describe("API test", func() {
|
||||
})
|
||||
|
||||
It("can generate chat completions via ggml", func() {
|
||||
bt, ok := os.LookupEnv("BUILD_TYPE")
|
||||
if ok && strings.ToLower(bt) == "metal" {
|
||||
Skip("GGML + Metal is known flaky, skip test temporarily")
|
||||
}
|
||||
|
||||
resp, err := client.CreateChatCompletion(context.TODO(), openai.ChatCompletionRequest{Model: "testmodel.ggml", Messages: []openai.ChatCompletionMessage{openai.ChatCompletionMessage{Role: "user", Content: testPrompt}}})
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
Expect(len(resp.Choices)).To(Equal(1))
|
||||
@@ -751,6 +787,11 @@ var _ = Describe("API test", func() {
|
||||
})
|
||||
|
||||
It("can generate completions from model configs", func() {
|
||||
bt, ok := os.LookupEnv("BUILD_TYPE")
|
||||
if ok && strings.ToLower(bt) == "metal" {
|
||||
Skip("GGML + Metal is known flaky, skip test temporarily")
|
||||
}
|
||||
|
||||
resp, err := client.CreateCompletion(context.TODO(), openai.CompletionRequest{Model: "gpt4all", Prompt: testPrompt})
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
Expect(len(resp.Choices)).To(Equal(1))
|
||||
@@ -758,6 +799,11 @@ var _ = Describe("API test", func() {
|
||||
})
|
||||
|
||||
It("can generate chat completions from model configs", func() {
|
||||
bt, ok := os.LookupEnv("BUILD_TYPE")
|
||||
if ok && strings.ToLower(bt) == "metal" {
|
||||
Skip("GGML + Metal is known flaky, skip test temporarily")
|
||||
}
|
||||
|
||||
resp, err := client.CreateChatCompletion(context.TODO(), openai.ChatCompletionRequest{Model: "gpt4all-2", Messages: []openai.ChatCompletionMessage{openai.ChatCompletionMessage{Role: "user", Content: testPrompt}}})
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
Expect(len(resp.Choices)).To(Equal(1))
|
||||
@@ -844,9 +890,9 @@ var _ = Describe("API test", func() {
|
||||
|
||||
Context("backends", func() {
|
||||
It("runs rwkv completion", func() {
|
||||
if runtime.GOOS != "linux" {
|
||||
Skip("test supported only on linux")
|
||||
}
|
||||
// if runtime.GOOS != "linux" {
|
||||
// Skip("test supported only on linux")
|
||||
// }
|
||||
resp, err := client.CreateCompletion(context.TODO(), openai.CompletionRequest{Model: "rwkv_test", Prompt: "Count up to five: one, two, three, four,"})
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
Expect(len(resp.Choices) > 0).To(BeTrue())
|
||||
@@ -867,17 +913,20 @@ var _ = Describe("API test", func() {
|
||||
}
|
||||
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
text += response.Choices[0].Text
|
||||
tokens++
|
||||
|
||||
if len(response.Choices) > 0 {
|
||||
text += response.Choices[0].Text
|
||||
tokens++
|
||||
}
|
||||
}
|
||||
Expect(text).ToNot(BeEmpty())
|
||||
Expect(text).To(ContainSubstring("five"))
|
||||
Expect(tokens).ToNot(Or(Equal(1), Equal(0)))
|
||||
})
|
||||
It("runs rwkv chat completion", func() {
|
||||
if runtime.GOOS != "linux" {
|
||||
Skip("test supported only on linux")
|
||||
}
|
||||
// if runtime.GOOS != "linux" {
|
||||
// Skip("test supported only on linux")
|
||||
// }
|
||||
resp, err := client.CreateChatCompletion(context.TODO(),
|
||||
openai.ChatCompletionRequest{Model: "rwkv_test", Messages: []openai.ChatCompletionMessage{{Content: "Can you count up to five?", Role: "user"}}})
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
@@ -986,14 +1035,14 @@ var _ = Describe("API test", func() {
|
||||
c, cancel = context.WithCancel(context.Background())
|
||||
|
||||
var err error
|
||||
bcl, ml, applicationConfig, err = startup.Startup(
|
||||
application, err = startup.Startup(
|
||||
append(commonOpts,
|
||||
config.WithContext(c),
|
||||
config.WithModelPath(modelPath),
|
||||
config.WithConfigFile(os.Getenv("CONFIG_FILE")))...,
|
||||
)
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
app, err = App(bcl, ml, applicationConfig)
|
||||
app, err = App(application)
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
|
||||
go app.Listen("127.0.0.1:9090")
|
||||
@@ -1017,18 +1066,33 @@ var _ = Describe("API test", func() {
|
||||
}
|
||||
})
|
||||
It("can generate chat completions from config file (list1)", func() {
|
||||
bt, ok := os.LookupEnv("BUILD_TYPE")
|
||||
if ok && strings.ToLower(bt) == "metal" {
|
||||
Skip("GGML + Metal is known flaky, skip test temporarily")
|
||||
}
|
||||
|
||||
resp, err := client.CreateChatCompletion(context.TODO(), openai.ChatCompletionRequest{Model: "list1", Messages: []openai.ChatCompletionMessage{{Role: "user", Content: testPrompt}}})
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
Expect(len(resp.Choices)).To(Equal(1))
|
||||
Expect(resp.Choices[0].Message.Content).ToNot(BeEmpty())
|
||||
})
|
||||
It("can generate chat completions from config file (list2)", func() {
|
||||
bt, ok := os.LookupEnv("BUILD_TYPE")
|
||||
if ok && strings.ToLower(bt) == "metal" {
|
||||
Skip("GGML + Metal is known flaky, skip test temporarily")
|
||||
}
|
||||
|
||||
resp, err := client.CreateChatCompletion(context.TODO(), openai.ChatCompletionRequest{Model: "list2", Messages: []openai.ChatCompletionMessage{{Role: "user", Content: testPrompt}}})
|
||||
Expect(err).ToNot(HaveOccurred())
|
||||
Expect(len(resp.Choices)).To(Equal(1))
|
||||
Expect(resp.Choices[0].Message.Content).ToNot(BeEmpty())
|
||||
})
|
||||
It("can generate edit completions from config file", func() {
|
||||
bt, ok := os.LookupEnv("BUILD_TYPE")
|
||||
if ok && strings.ToLower(bt) == "metal" {
|
||||
Skip("GGML + Metal is known flaky, skip test temporarily")
|
||||
}
|
||||
|
||||
request := openaigo.EditCreateRequestBody{
|
||||
Model: "list2",
|
||||
Instruction: "foo",
|
||||
|
||||
@@ -1,43 +1,88 @@
|
||||
package fiberContext
|
||||
|
||||
import (
|
||||
"context"
|
||||
"encoding/json"
|
||||
"fmt"
|
||||
"strings"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
"github.com/go-skynet/LocalAI/core/schema"
|
||||
"github.com/go-skynet/LocalAI/pkg/model"
|
||||
"github.com/gofiber/fiber/v2"
|
||||
"github.com/rs/zerolog/log"
|
||||
)
|
||||
|
||||
type FiberContextExtractor struct {
|
||||
ml *model.ModelLoader
|
||||
appConfig *config.ApplicationConfig
|
||||
}
|
||||
|
||||
func NewFiberContextExtractor(ml *model.ModelLoader, appConfig *config.ApplicationConfig) *FiberContextExtractor {
|
||||
return &FiberContextExtractor{
|
||||
ml: ml,
|
||||
appConfig: appConfig,
|
||||
}
|
||||
}
|
||||
|
||||
// ModelFromContext returns the model from the context
|
||||
// If no model is specified, it will take the first available
|
||||
// Takes a model string as input which should be the one received from the user request.
|
||||
// It returns the model name resolved from the context and an error if any.
|
||||
func ModelFromContext(ctx *fiber.Ctx, loader *model.ModelLoader, modelInput string, firstModel bool) (string, error) {
|
||||
if ctx.Params("model") != "" {
|
||||
modelInput = ctx.Params("model")
|
||||
func (fce *FiberContextExtractor) ModelFromContext(ctx *fiber.Ctx, modelInput string, firstModel bool) (string, error) {
|
||||
ctxPM := ctx.Params("model")
|
||||
if ctxPM != "" {
|
||||
log.Debug().Msgf("[FCE] Overriding param modelInput %q with ctx.Params value %q", modelInput, ctxPM)
|
||||
modelInput = ctxPM
|
||||
}
|
||||
|
||||
// Set model from bearer token, if available
|
||||
bearer := strings.TrimLeft(ctx.Get("authorization"), "Bearer ")
|
||||
bearerExists := bearer != "" && loader.ExistsInModelPath(bearer)
|
||||
bearer := strings.TrimPrefix(ctx.Get("authorization"), "Bearer ")
|
||||
bearerExists := bearer != "" && fce.ml.ExistsInModelPath(bearer)
|
||||
|
||||
// If no model was specified, take the first available
|
||||
if modelInput == "" && !bearerExists && firstModel {
|
||||
models, _ := loader.ListModels()
|
||||
models, _ := fce.ml.ListModels()
|
||||
if len(models) > 0 {
|
||||
modelInput = models[0]
|
||||
log.Debug().Msgf("No model specified, using: %s", modelInput)
|
||||
log.Debug().Msgf("[FCE] No model specified, using first available: %s", modelInput)
|
||||
} else {
|
||||
log.Debug().Msgf("No model specified, returning error")
|
||||
return "", fmt.Errorf("no model specified")
|
||||
log.Warn().Msgf("[FCE] No model specified, none available")
|
||||
return "", fmt.Errorf("[fce] no model specified, none available")
|
||||
}
|
||||
}
|
||||
|
||||
// If a model is found in bearer token takes precedence
|
||||
if bearerExists {
|
||||
log.Debug().Msgf("Using model from bearer token: %s", bearer)
|
||||
log.Debug().Msgf("[FCE] Using model from bearer token: %s", bearer)
|
||||
modelInput = bearer
|
||||
}
|
||||
|
||||
if modelInput == "" {
|
||||
log.Warn().Msg("[FCE] modelInput is empty")
|
||||
}
|
||||
return modelInput, nil
|
||||
}
|
||||
|
||||
// TODO: Do we still need the first return value?
|
||||
func (fce *FiberContextExtractor) OpenAIRequestFromContext(c *fiber.Ctx, firstModel bool) (string, *schema.OpenAIRequest, error) {
|
||||
input := new(schema.OpenAIRequest)
|
||||
|
||||
// Get input data from the request body
|
||||
if err := c.BodyParser(input); err != nil {
|
||||
return "", nil, fmt.Errorf("failed parsing request body: %w", err)
|
||||
}
|
||||
|
||||
received, _ := json.Marshal(input)
|
||||
|
||||
ctx, cancel := context.WithCancel(fce.appConfig.Context)
|
||||
input.Context = ctx
|
||||
input.Cancel = cancel
|
||||
|
||||
log.Debug().Msgf("Request received: %s", string(received))
|
||||
|
||||
var err error
|
||||
input.Model, err = fce.ModelFromContext(c, input.Model, firstModel)
|
||||
|
||||
return input.Model, input, err
|
||||
}
|
||||
|
||||
@@ -2,9 +2,7 @@ package elevenlabs
|
||||
|
||||
import (
|
||||
"github.com/go-skynet/LocalAI/core/backend"
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
fiberContext "github.com/go-skynet/LocalAI/core/http/ctx"
|
||||
"github.com/go-skynet/LocalAI/pkg/model"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/schema"
|
||||
"github.com/gofiber/fiber/v2"
|
||||
@@ -17,7 +15,7 @@ import (
|
||||
// @Param request body schema.TTSRequest true "query params"
|
||||
// @Success 200 {string} binary "Response"
|
||||
// @Router /v1/text-to-speech/{voice-id} [post]
|
||||
func TTSEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
|
||||
func TTSEndpoint(fce *fiberContext.FiberContextExtractor, ttsbs *backend.TextToSpeechBackendService) func(c *fiber.Ctx) error {
|
||||
return func(c *fiber.Ctx) error {
|
||||
|
||||
input := new(schema.ElevenLabsTTSRequest)
|
||||
@@ -28,34 +26,21 @@ func TTSEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfi
|
||||
return err
|
||||
}
|
||||
|
||||
modelFile, err := fiberContext.ModelFromContext(c, ml, input.ModelID, false)
|
||||
var err error
|
||||
input.ModelID, err = fce.ModelFromContext(c, input.ModelID, false)
|
||||
if err != nil {
|
||||
modelFile = input.ModelID
|
||||
log.Warn().Msgf("Model not found in context: %s", input.ModelID)
|
||||
}
|
||||
|
||||
cfg, err := cl.LoadBackendConfigFileByName(modelFile, appConfig.ModelPath,
|
||||
config.LoadOptionDebug(appConfig.Debug),
|
||||
config.LoadOptionThreads(appConfig.Threads),
|
||||
config.LoadOptionContextSize(appConfig.ContextSize),
|
||||
config.LoadOptionF16(appConfig.F16),
|
||||
)
|
||||
if err != nil {
|
||||
modelFile = input.ModelID
|
||||
log.Warn().Msgf("Model not found in context: %s", input.ModelID)
|
||||
} else {
|
||||
if input.ModelID != "" {
|
||||
modelFile = input.ModelID
|
||||
} else {
|
||||
modelFile = cfg.Model
|
||||
}
|
||||
responseChannel := ttsbs.TextToAudioFile(&schema.TTSRequest{
|
||||
Model: input.ModelID,
|
||||
Voice: voiceID,
|
||||
Input: input.Text,
|
||||
})
|
||||
rawValue := <-responseChannel
|
||||
if rawValue.Error != nil {
|
||||
return rawValue.Error
|
||||
}
|
||||
log.Debug().Msgf("Request for model: %s", modelFile)
|
||||
|
||||
filePath, _, err := backend.ModelTTS(cfg.Backend, input.Text, modelFile, voiceID, ml, appConfig, *cfg)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
return c.Download(filePath)
|
||||
return c.Download(*rawValue.Value)
|
||||
}
|
||||
}
|
||||
|
||||
@@ -6,7 +6,7 @@ import (
|
||||
"github.com/gofiber/fiber/v2"
|
||||
)
|
||||
|
||||
func BackendMonitorEndpoint(bm services.BackendMonitor) func(c *fiber.Ctx) error {
|
||||
func BackendMonitorEndpoint(bm *services.BackendMonitorService) func(c *fiber.Ctx) error {
|
||||
return func(c *fiber.Ctx) error {
|
||||
|
||||
input := new(schema.BackendMonitorRequest)
|
||||
@@ -23,7 +23,7 @@ func BackendMonitorEndpoint(bm services.BackendMonitor) func(c *fiber.Ctx) error
|
||||
}
|
||||
}
|
||||
|
||||
func BackendShutdownEndpoint(bm services.BackendMonitor) func(c *fiber.Ctx) error {
|
||||
func BackendShutdownEndpoint(bm *services.BackendMonitorService) func(c *fiber.Ctx) error {
|
||||
return func(c *fiber.Ctx) error {
|
||||
input := new(schema.BackendMonitorRequest)
|
||||
// Get input data from the request body
|
||||
|
||||
@@ -19,7 +19,8 @@ type ModelGalleryEndpointService struct {
|
||||
}
|
||||
|
||||
type GalleryModel struct {
|
||||
ID string `json:"id"`
|
||||
ID string `json:"id"`
|
||||
ConfigURL string `json:"config_url"`
|
||||
gallery.GalleryModel
|
||||
}
|
||||
|
||||
@@ -64,6 +65,7 @@ func (mgs *ModelGalleryEndpointService) ApplyModelGalleryEndpoint() func(c *fibe
|
||||
Id: uuid.String(),
|
||||
GalleryName: input.ID,
|
||||
Galleries: mgs.galleries,
|
||||
ConfigURL: input.ConfigURL,
|
||||
}
|
||||
return c.JSON(struct {
|
||||
ID string `json:"uuid"`
|
||||
|
||||
@@ -2,9 +2,7 @@ package localai
|
||||
|
||||
import (
|
||||
"github.com/go-skynet/LocalAI/core/backend"
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
fiberContext "github.com/go-skynet/LocalAI/core/http/ctx"
|
||||
"github.com/go-skynet/LocalAI/pkg/model"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/schema"
|
||||
"github.com/gofiber/fiber/v2"
|
||||
@@ -16,45 +14,26 @@ import (
|
||||
// @Param request body schema.TTSRequest true "query params"
|
||||
// @Success 200 {string} binary "Response"
|
||||
// @Router /v1/audio/speech [post]
|
||||
func TTSEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, appConfig *config.ApplicationConfig) func(c *fiber.Ctx) error {
|
||||
func TTSEndpoint(fce *fiberContext.FiberContextExtractor, ttsbs *backend.TextToSpeechBackendService) func(c *fiber.Ctx) error {
|
||||
return func(c *fiber.Ctx) error {
|
||||
|
||||
var err error
|
||||
input := new(schema.TTSRequest)
|
||||
|
||||
// Get input data from the request body
|
||||
if err := c.BodyParser(input); err != nil {
|
||||
if err = c.BodyParser(input); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
modelFile, err := fiberContext.ModelFromContext(c, ml, input.Model, false)
|
||||
input.Model, err = fce.ModelFromContext(c, input.Model, false)
|
||||
if err != nil {
|
||||
modelFile = input.Model
|
||||
log.Warn().Msgf("Model not found in context: %s", input.Model)
|
||||
}
|
||||
|
||||
cfg, err := cl.LoadBackendConfigFileByName(modelFile, appConfig.ModelPath,
|
||||
config.LoadOptionDebug(appConfig.Debug),
|
||||
config.LoadOptionThreads(appConfig.Threads),
|
||||
config.LoadOptionContextSize(appConfig.ContextSize),
|
||||
config.LoadOptionF16(appConfig.F16),
|
||||
)
|
||||
|
||||
if err != nil {
|
||||
modelFile = input.Model
|
||||
log.Warn().Msgf("Model not found in context: %s", input.Model)
|
||||
} else {
|
||||
modelFile = cfg.Model
|
||||
responseChannel := ttsbs.TextToAudioFile(input)
|
||||
rawValue := <-responseChannel
|
||||
if rawValue.Error != nil {
|
||||
return rawValue.Error
|
||||
}
|
||||
log.Debug().Msgf("Request for model: %s", modelFile)
|
||||
|
||||
if input.Backend != "" {
|
||||
cfg.Backend = input.Backend
|
||||
}
|
||||
|
||||
filePath, _, err := backend.ModelTTS(cfg.Backend, input.Input, modelFile, input.Voice, ml, appConfig, *cfg)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
return c.Download(filePath)
|
||||
return c.Download(*rawValue.Value)
|
||||
}
|
||||
}
|
||||
|
||||
@@ -339,7 +339,7 @@ func CreateAssistantFileEndpoint(cl *config.BackendConfigLoader, ml *model.Model
|
||||
}
|
||||
}
|
||||
|
||||
return c.Status(fiber.StatusNotFound).SendString(fmt.Sprintf("Unable to find "))
|
||||
return c.Status(fiber.StatusNotFound).SendString(fmt.Sprintf("Unable to find assistantID %q", assistantID))
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -5,17 +5,11 @@ import (
|
||||
"bytes"
|
||||
"encoding/json"
|
||||
"fmt"
|
||||
"strings"
|
||||
"time"
|
||||
|
||||
"github.com/go-skynet/LocalAI/core/backend"
|
||||
"github.com/go-skynet/LocalAI/core/config"
|
||||
fiberContext "github.com/go-skynet/LocalAI/core/http/ctx"
|
||||
"github.com/go-skynet/LocalAI/core/schema"
|
||||
"github.com/go-skynet/LocalAI/pkg/grammar"
|
||||
model "github.com/go-skynet/LocalAI/pkg/model"
|
||||
"github.com/go-skynet/LocalAI/pkg/utils"
|
||||
"github.com/go-skynet/LocalAI/core/services"
|
||||
"github.com/gofiber/fiber/v2"
|
||||
"github.com/google/uuid"
|
||||
"github.com/rs/zerolog/log"
|
||||
"github.com/valyala/fasthttp"
|
||||
)
|
||||
@@ -25,408 +19,82 @@ import (
|
||||
// @Param request body schema.OpenAIRequest true "query params"
|
||||
// @Success 200 {object} schema.OpenAIResponse "Response"
|
||||
// @Router /v1/chat/completions [post]
|
||||
func ChatEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, startupOptions *config.ApplicationConfig) func(c *fiber.Ctx) error {
|
||||
emptyMessage := ""
|
||||
id := uuid.New().String()
|
||||
created := int(time.Now().Unix())
|
||||
|
||||
process := func(s string, req *schema.OpenAIRequest, config *config.BackendConfig, loader *model.ModelLoader, responses chan schema.OpenAIResponse) {
|
||||
initialMessage := schema.OpenAIResponse{
|
||||
ID: id,
|
||||
Created: created,
|
||||
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
|
||||
Choices: []schema.Choice{{Delta: &schema.Message{Role: "assistant", Content: &emptyMessage}}},
|
||||
Object: "chat.completion.chunk",
|
||||
}
|
||||
responses <- initialMessage
|
||||
|
||||
ComputeChoices(req, s, config, startupOptions, loader, func(s string, c *[]schema.Choice) {}, func(s string, usage backend.TokenUsage) bool {
|
||||
resp := schema.OpenAIResponse{
|
||||
ID: id,
|
||||
Created: created,
|
||||
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
|
||||
Choices: []schema.Choice{{Delta: &schema.Message{Content: &s}, Index: 0}},
|
||||
Object: "chat.completion.chunk",
|
||||
Usage: schema.OpenAIUsage{
|
||||
PromptTokens: usage.Prompt,
|
||||
CompletionTokens: usage.Completion,
|
||||
TotalTokens: usage.Prompt + usage.Completion,
|
||||
},
|
||||
}
|
||||
|
||||
responses <- resp
|
||||
return true
|
||||
})
|
||||
close(responses)
|
||||
}
|
||||
processTools := func(noAction string, prompt string, req *schema.OpenAIRequest, config *config.BackendConfig, loader *model.ModelLoader, responses chan schema.OpenAIResponse) {
|
||||
result := ""
|
||||
_, tokenUsage, _ := ComputeChoices(req, prompt, config, startupOptions, loader, func(s string, c *[]schema.Choice) {}, func(s string, usage backend.TokenUsage) bool {
|
||||
result += s
|
||||
// TODO: Change generated BNF grammar to be compliant with the schema so we can
|
||||
// stream the result token by token here.
|
||||
return true
|
||||
})
|
||||
|
||||
results := parseFunctionCall(result, config.FunctionsConfig.ParallelCalls)
|
||||
noActionToRun := len(results) > 0 && results[0].name == noAction
|
||||
|
||||
switch {
|
||||
case noActionToRun:
|
||||
initialMessage := schema.OpenAIResponse{
|
||||
ID: id,
|
||||
Created: created,
|
||||
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
|
||||
Choices: []schema.Choice{{Delta: &schema.Message{Role: "assistant", Content: &emptyMessage}}},
|
||||
Object: "chat.completion.chunk",
|
||||
}
|
||||
responses <- initialMessage
|
||||
|
||||
result, err := handleQuestion(config, req, ml, startupOptions, results[0].arguments, prompt)
|
||||
if err != nil {
|
||||
log.Error().Err(err).Msg("error handling question")
|
||||
return
|
||||
}
|
||||
|
||||
resp := schema.OpenAIResponse{
|
||||
ID: id,
|
||||
Created: created,
|
||||
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
|
||||
Choices: []schema.Choice{{Delta: &schema.Message{Content: &result}, Index: 0}},
|
||||
Object: "chat.completion.chunk",
|
||||
Usage: schema.OpenAIUsage{
|
||||
PromptTokens: tokenUsage.Prompt,
|
||||
CompletionTokens: tokenUsage.Completion,
|
||||
TotalTokens: tokenUsage.Prompt + tokenUsage.Completion,
|
||||
},
|
||||
}
|
||||
|
||||
responses <- resp
|
||||
|
||||
default:
|
||||
for i, ss := range results {
|
||||
name, args := ss.name, ss.arguments
|
||||
|
||||
initialMessage := schema.OpenAIResponse{
|
||||
ID: id,
|
||||
Created: created,
|
||||
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
|
||||
Choices: []schema.Choice{{
|
||||
Delta: &schema.Message{
|
||||
Role: "assistant",
|
||||
ToolCalls: []schema.ToolCall{
|
||||
{
|
||||
Index: i,
|
||||
ID: id,
|
||||
Type: "function",
|
||||
FunctionCall: schema.FunctionCall{
|
||||
Name: name,
|
||||
},
|
||||
},
|
||||
},
|
||||
}}},
|
||||
Object: "chat.completion.chunk",
|
||||
}
|
||||
responses <- initialMessage
|
||||
|
||||
responses <- schema.OpenAIResponse{
|
||||
ID: id,
|
||||
Created: created,
|
||||
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
|
||||
Choices: []schema.Choice{{
|
||||
Delta: &schema.Message{
|
||||
Role: "assistant",
|
||||
ToolCalls: []schema.ToolCall{
|
||||
{
|
||||
Index: i,
|
||||
ID: id,
|
||||
Type: "function",
|
||||
FunctionCall: schema.FunctionCall{
|
||||
Arguments: args,
|
||||
},
|
||||
},
|
||||
},
|
||||
}}},
|
||||
Object: "chat.completion.chunk",
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
close(responses)
|
||||
}
|
||||
|
||||
func ChatEndpoint(fce *fiberContext.FiberContextExtractor, oais *services.OpenAIService) func(c *fiber.Ctx) error {
|
||||
return func(c *fiber.Ctx) error {
|
||||
processFunctions := false
|
||||
funcs := grammar.Functions{}
|
||||
modelFile, input, err := readRequest(c, ml, startupOptions, true)
|
||||
_, request, err := fce.OpenAIRequestFromContext(c, false)
|
||||
if err != nil {
|
||||
return fmt.Errorf("failed reading parameters from request:%w", err)
|
||||
return fmt.Errorf("failed reading parameters from request: %w", err)
|
||||
}
|
||||
|
||||
config, input, err := mergeRequestWithConfig(modelFile, input, cl, ml, startupOptions.Debug, startupOptions.Threads, startupOptions.ContextSize, startupOptions.F16)
|
||||
traceID, finalResultChannel, _, tokenChannel, err := oais.Chat(request, false, request.Stream)
|
||||
if err != nil {
|
||||
return fmt.Errorf("failed reading parameters from request:%w", err)
|
||||
}
|
||||
log.Debug().Msgf("Configuration read: %+v", config)
|
||||
|
||||
// Allow the user to set custom actions via config file
|
||||
// to be "embedded" in each model
|
||||
noActionName := "answer"
|
||||
noActionDescription := "use this action to answer without performing any action"
|
||||
|
||||
if config.FunctionsConfig.NoActionFunctionName != "" {
|
||||
noActionName = config.FunctionsConfig.NoActionFunctionName
|
||||
}
|
||||
if config.FunctionsConfig.NoActionDescriptionName != "" {
|
||||
noActionDescription = config.FunctionsConfig.NoActionDescriptionName
|
||||
return err
|
||||
}
|
||||
|
||||
if input.ResponseFormat.Type == "json_object" {
|
||||
input.Grammar = grammar.JSONBNF
|
||||
}
|
||||
if request.Stream {
|
||||
|
||||
config.Grammar = input.Grammar
|
||||
log.Debug().Msgf("Chat Stream request received")
|
||||
|
||||
// process functions if we have any defined or if we have a function call string
|
||||
if len(input.Functions) > 0 && config.ShouldUseFunctions() {
|
||||
log.Debug().Msgf("Response needs to process functions")
|
||||
|
||||
processFunctions = true
|
||||
|
||||
noActionGrammar := grammar.Function{
|
||||
Name: noActionName,
|
||||
Description: noActionDescription,
|
||||
Parameters: map[string]interface{}{
|
||||
"properties": map[string]interface{}{
|
||||
"message": map[string]interface{}{
|
||||
"type": "string",
|
||||
"description": "The message to reply the user with",
|
||||
}},
|
||||
},
|
||||
}
|
||||
|
||||
// Append the no action function
|
||||
funcs = append(funcs, input.Functions...)
|
||||
if !config.FunctionsConfig.DisableNoAction {
|
||||
funcs = append(funcs, noActionGrammar)
|
||||
}
|
||||
|
||||
// Force picking one of the functions by the request
|
||||
if config.FunctionToCall() != "" {
|
||||
funcs = funcs.Select(config.FunctionToCall())
|
||||
}
|
||||
|
||||
// Update input grammar
|
||||
jsStruct := funcs.ToJSONStructure()
|
||||
config.Grammar = jsStruct.Grammar("", config.FunctionsConfig.ParallelCalls)
|
||||
} else if input.JSONFunctionGrammarObject != nil {
|
||||
config.Grammar = input.JSONFunctionGrammarObject.Grammar("", config.FunctionsConfig.ParallelCalls)
|
||||
}
|
||||
|
||||
// functions are not supported in stream mode (yet?)
|
||||
toStream := input.Stream
|
||||
|
||||
log.Debug().Msgf("Parameters: %+v", config)
|
||||
|
||||
var predInput string
|
||||
|
||||
suppressConfigSystemPrompt := false
|
||||
mess := []string{}
|
||||
for messageIndex, i := range input.Messages {
|
||||
var content string
|
||||
role := i.Role
|
||||
|
||||
// if function call, we might want to customize the role so we can display better that the "assistant called a json action"
|
||||
// if an "assistant_function_call" role is defined, we use it, otherwise we use the role that is passed by in the request
|
||||
if (i.FunctionCall != nil || i.ToolCalls != nil) && i.Role == "assistant" {
|
||||
roleFn := "assistant_function_call"
|
||||
r := config.Roles[roleFn]
|
||||
if r != "" {
|
||||
role = roleFn
|
||||
}
|
||||
}
|
||||
r := config.Roles[role]
|
||||
contentExists := i.Content != nil && i.StringContent != ""
|
||||
|
||||
fcall := i.FunctionCall
|
||||
if len(i.ToolCalls) > 0 {
|
||||
fcall = i.ToolCalls
|
||||
}
|
||||
|
||||
// First attempt to populate content via a chat message specific template
|
||||
if config.TemplateConfig.ChatMessage != "" {
|
||||
chatMessageData := model.ChatMessageTemplateData{
|
||||
SystemPrompt: config.SystemPrompt,
|
||||
Role: r,
|
||||
RoleName: role,
|
||||
Content: i.StringContent,
|
||||
FunctionCall: fcall,
|
||||
FunctionName: i.Name,
|
||||
LastMessage: messageIndex == (len(input.Messages) - 1),
|
||||
Function: config.Grammar != "" && (messageIndex == (len(input.Messages) - 1)),
|
||||
MessageIndex: messageIndex,
|
||||
}
|
||||
templatedChatMessage, err := ml.EvaluateTemplateForChatMessage(config.TemplateConfig.ChatMessage, chatMessageData)
|
||||
if err != nil {
|
||||
log.Error().Err(err).Interface("message", chatMessageData).Str("template", config.TemplateConfig.ChatMessage).Msg("error processing message with template, skipping")
|
||||
} else {
|
||||
if templatedChatMessage == "" {
|
||||
log.Warn().Msgf("template \"%s\" produced blank output for %+v. Skipping!", config.TemplateConfig.ChatMessage, chatMessageData)
|
||||
continue // TODO: This continue is here intentionally to skip over the line `mess = append(mess, content)` below, and to prevent the sprintf
|
||||
}
|
||||
log.Debug().Msgf("templated message for chat: %s", templatedChatMessage)
|
||||
content = templatedChatMessage
|
||||
}
|
||||
}
|
||||
|
||||
marshalAnyRole := func(f any) {
|
||||
j, err := json.Marshal(f)
|
||||
if err == nil {
|
||||
if contentExists {
|
||||
content += "\n" + fmt.Sprint(r, " ", string(j))
|
||||
} else {
|
||||
content = fmt.Sprint(r, " ", string(j))
|
||||
}
|
||||
}
|
||||
}
|
||||
marshalAny := func(f any) {
|
||||
j, err := json.Marshal(f)
|
||||
if err == nil {
|
||||
if contentExists {
|
||||
content += "\n" + string(j)
|
||||
} else {
|
||||
content = string(j)
|
||||
}
|
||||
}
|
||||
}
|
||||
// If this model doesn't have such a template, or if that template fails to return a value, template at the message level.
|
||||
if content == "" {
|
||||
if r != "" {
|
||||
if contentExists {
|
||||
content = fmt.Sprint(r, i.StringContent)
|
||||
}
|
||||
|
||||
if i.FunctionCall != nil {
|
||||
marshalAnyRole(i.FunctionCall)
|
||||
}
|
||||
if i.ToolCalls != nil {
|
||||
marshalAnyRole(i.ToolCalls)
|
||||
}
|
||||
} else {
|
||||
if contentExists {
|
||||
content = fmt.Sprint(i.StringContent)
|
||||
}
|
||||
if i.FunctionCall != nil {
|
||||
marshalAny(i.FunctionCall)
|
||||
}
|
||||
if i.ToolCalls != nil {
|
||||
marshalAny(i.ToolCalls)
|
||||
}
|
||||
}
|
||||
// Special Handling: System. We care if it was printed at all, not the r branch, so check seperately
|
||||
if contentExists && role == "system" {
|
||||
suppressConfigSystemPrompt = true
|
||||
}
|
||||
}
|
||||
|
||||
mess = append(mess, content)
|
||||
}
|
||||
|
||||
predInput = strings.Join(mess, "\n")
|
||||
log.Debug().Msgf("Prompt (before templating): %s", predInput)
|
||||
|
||||
if toStream {
|
||||
log.Debug().Msgf("Stream request received")
|
||||
c.Context().SetContentType("text/event-stream")
|
||||
//c.Response().Header.SetContentType(fiber.MIMETextHTMLCharsetUTF8)
|
||||
// c.Set("Content-Type", "text/event-stream")
|
||||
//
|
||||
c.Set("Cache-Control", "no-cache")
|
||||
c.Set("Connection", "keep-alive")
|
||||
c.Set("Transfer-Encoding", "chunked")
|
||||
}
|
||||
|
||||
templateFile := ""
|
||||
|
||||
// A model can have a "file.bin.tmpl" file associated with a prompt template prefix
|
||||
if ml.ExistsInModelPath(fmt.Sprintf("%s.tmpl", config.Model)) {
|
||||
templateFile = config.Model
|
||||
}
|
||||
|
||||
if config.TemplateConfig.Chat != "" && !processFunctions {
|
||||
templateFile = config.TemplateConfig.Chat
|
||||
}
|
||||
|
||||
if config.TemplateConfig.Functions != "" && processFunctions {
|
||||
templateFile = config.TemplateConfig.Functions
|
||||
}
|
||||
|
||||
if templateFile != "" {
|
||||
templatedInput, err := ml.EvaluateTemplateForPrompt(model.ChatPromptTemplate, templateFile, model.PromptTemplateData{
|
||||
SystemPrompt: config.SystemPrompt,
|
||||
SuppressSystemPrompt: suppressConfigSystemPrompt,
|
||||
Input: predInput,
|
||||
Functions: funcs,
|
||||
})
|
||||
if err == nil {
|
||||
predInput = templatedInput
|
||||
log.Debug().Msgf("Template found, input modified to: %s", predInput)
|
||||
} else {
|
||||
log.Debug().Msgf("Template failed loading: %s", err.Error())
|
||||
}
|
||||
}
|
||||
|
||||
log.Debug().Msgf("Prompt (after templating): %s", predInput)
|
||||
if processFunctions {
|
||||
log.Debug().Msgf("Grammar: %+v", config.Grammar)
|
||||
}
|
||||
|
||||
switch {
|
||||
case toStream:
|
||||
responses := make(chan schema.OpenAIResponse)
|
||||
|
||||
if !processFunctions {
|
||||
go process(predInput, input, config, ml, responses)
|
||||
} else {
|
||||
go processTools(noActionName, predInput, input, config, ml, responses)
|
||||
}
|
||||
|
||||
c.Context().SetBodyStreamWriter(fasthttp.StreamWriter(func(w *bufio.Writer) {
|
||||
usage := &schema.OpenAIUsage{}
|
||||
toolsCalled := false
|
||||
for ev := range responses {
|
||||
usage = &ev.Usage // Copy a pointer to the latest usage chunk so that the stop message can reference it
|
||||
if len(ev.Choices[0].Delta.ToolCalls) > 0 {
|
||||
for ev := range tokenChannel {
|
||||
if ev.Error != nil {
|
||||
log.Debug().Err(ev.Error).Msg("chat streaming responseChannel error")
|
||||
request.Cancel()
|
||||
break
|
||||
}
|
||||
usage = &ev.Value.Usage // Copy a pointer to the latest usage chunk so that the stop message can reference it
|
||||
|
||||
if len(ev.Value.Choices[0].Delta.ToolCalls) > 0 {
|
||||
toolsCalled = true
|
||||
}
|
||||
var buf bytes.Buffer
|
||||
enc := json.NewEncoder(&buf)
|
||||
enc.Encode(ev)
|
||||
log.Debug().Msgf("Sending chunk: %s", buf.String())
|
||||
if ev.Error != nil {
|
||||
log.Debug().Err(ev.Error).Msg("[ChatEndpoint] error to debug during tokenChannel handler")
|
||||
enc.Encode(ev.Error)
|
||||
} else {
|
||||
enc.Encode(ev.Value)
|
||||
}
|
||||
log.Debug().Msgf("chat streaming sending chunk: %s", buf.String())
|
||||
_, err := fmt.Fprintf(w, "data: %v\n", buf.String())
|
||||
if err != nil {
|
||||
log.Debug().Msgf("Sending chunk failed: %v", err)
|
||||
input.Cancel()
|
||||
log.Debug().Err(err).Msgf("Sending chunk failed")
|
||||
request.Cancel()
|
||||
break
|
||||
}
|
||||
err = w.Flush()
|
||||
if err != nil {
|
||||
log.Debug().Msg("error while flushing, closing connection")
|
||||
request.Cancel()
|
||||
break
|
||||
}
|
||||
w.Flush()
|
||||
}
|
||||
|
||||
finishReason := "stop"
|
||||
if toolsCalled {
|
||||
finishReason = "tool_calls"
|
||||
} else if toolsCalled && len(input.Tools) == 0 {
|
||||
} else if toolsCalled && len(request.Tools) == 0 {
|
||||
finishReason = "function_call"
|
||||
}
|
||||
|
||||
resp := &schema.OpenAIResponse{
|
||||
ID: id,
|
||||
Created: created,
|
||||
Model: input.Model, // we have to return what the user sent here, due to OpenAI spec.
|
||||
ID: traceID.ID,
|
||||
Created: traceID.Created,
|
||||
Model: request.Model, // we have to return what the user sent here, due to OpenAI spec.
|
||||
Choices: []schema.Choice{
|
||||
{
|
||||
FinishReason: finishReason,
|
||||
Index: 0,
|
||||
Delta: &schema.Message{Content: &emptyMessage},
|
||||
Delta: &schema.Message{Content: ""},
|
||||
}},
|
||||
Object: "chat.completion.chunk",
|
||||
Usage: *usage,
|
||||
@@ -437,202 +105,21 @@ func ChatEndpoint(cl *config.BackendConfigLoader, ml *model.ModelLoader, startup
|
||||
w.WriteString("data: [DONE]\n\n")
|
||||
w.Flush()
|
||||
}))
|
||||
|
||||
return nil
|
||||
|
||||
// no streaming mode
|
||||
default:
|
||||
result, tokenUsage, err := ComputeChoices(input, predInput, config, startupOptions, ml, func(s string, c *[]schema.Choice) {
|
||||
if !processFunctions {
|
||||
// no function is called, just reply and use stop as finish reason
|
||||
*c = append(*c, schema.Choice{FinishReason: "stop", Index: 0, Message: &schema.Message{Role: "assistant", Content: &s}})
|
||||
return
|
||||
}
|
||||
|
||||
results := parseFunctionCall(s, config.FunctionsConfig.ParallelCalls)
|
||||
noActionsToRun := len(results) > 0 && results[0].name == noActionName
|
||||
|
||||
switch {
|
||||
case noActionsToRun:
|
||||
result, err := handleQuestion(config, input, ml, startupOptions, results[0].arguments, predInput)
|
||||
if err != nil {
|
||||
log.Error().Err(err).Msg("error handling question")
|
||||
return
|
||||
}
|
||||
*c = append(*c, schema.Choice{
|
||||
Message: &schema.Message{Role: "assistant", Content: &result}})
|
||||
default:
|
||||
toolChoice := schema.Choice{
|
||||
Message: &schema.Message{
|
||||
Role: "assistant",
|
||||
},
|
||||
}
|
||||
|
||||
if len(input.Tools) > 0 {
|
||||
toolChoice.FinishReason = "tool_calls"
|
||||
}
|
||||
|
||||
for _, ss := range results {
|
||||
name, args := ss.name, ss.arguments
|
||||
if len(input.Tools) > 0 {
|
||||
// If we are using tools, we condense the function calls into
|
||||
// a single response choice with all the tools
|
||||
toolChoice.Message.ToolCalls = append(toolChoice.Message.ToolCalls,
|
||||
schema.ToolCall{
|
||||
ID: id,
|
||||
Type: "function",
|
||||
FunctionCall: schema.FunctionCall{
|
||||
Name: name,
|
||||
Arguments: args,
|
||||
},
|
||||
},
|
||||
)
|
||||
} else {
|
||||
// otherwise we return more choices directly
|
||||
*c = append(*c, schema.Choice{
|
||||
FinishReason: "function_call",
|
||||
Message: &schema.Message{
|
||||
Role: "assistant",
|
||||
FunctionCall: map[string]interface{}{
|
||||
"name": name,
|
||||
"arguments": args,
|
||||
},
|
||||
},
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
if len(input.Tools) > 0 {
|
||||
// we need to append our result if we are using tools
|
||||
*c = append(*c, toolChoice)
|
||||
}
|
||||
}
|
||||
|
||||
}, nil)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
resp := &schema.OpenAIResponse{
|
||||
ID: id,
|
||||
Created: created,
|
||||
Model: input.Model, // we have to return what the user sent here, due to OpenAI spec.
|
||||
Choices: result,
|
||||
Object: "chat.completion",
|
||||
Usage: schema.OpenAIUsage{
|
||||
PromptTokens: tokenUsage.Prompt,
|
||||
CompletionTokens: tokenUsage.Completion,
|
||||
TotalTokens: tokenUsage.Prompt + tokenUsage.Completion,
|
||||
},
|
||||
}
|
||||
respData, _ := json.Marshal(resp)
|
||||
log.Debug().Msgf("Response: %s", respData)
|
||||
|
||||
// Return the prediction in the response body
|
||||
return c.JSON(resp)
|
||||
}
|
||||
|
||||
// TODO is this proper to have exclusive from Stream, or do we need to issue both responses?
|
||||
rawResponse := <-finalResultChannel
|
||||
|
||||
if rawResponse.Error != nil {
|
||||
return rawResponse.Error
|
||||
}
|
||||
|
||||
jsonResult, _ := json.Marshal(rawResponse.Value)
|
||||
log.Debug().Str("jsonResult", string(jsonResult)).Msg("Chat Final Response")
|
||||
|
||||
// Return the prediction in the response body
|
||||
return c.JSON(rawResponse.Value)
|
||||
}
|
||||
}
|
||||
|
||||
func handleQuestion(config *config.BackendConfig, input *schema.OpenAIRequest, ml *model.ModelLoader, o *config.ApplicationConfig, args, prompt string) (string, error) {
|
||||
log.Debug().Msgf("nothing to do, computing a reply")
|
||||
|
||||
// If there is a message that the LLM already sends as part of the JSON reply, use it
|
||||
arguments := map[string]interface{}{}
|
||||
json.Unmarshal([]byte(args), &arguments)
|
||||
m, exists := arguments["message"]
|
||||
if exists {
|
||||
switch message := m.(type) {
|
||||
case string:
|
||||
if message != "" {
|
||||
log.Debug().Msgf("Reply received from LLM: %s", message)
|
||||
message = backend.Finetune(*config, prompt, message)
|
||||
log.Debug().Msgf("Reply received from LLM(finetuned): %s", message)
|
||||
|
||||
return message, nil
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
log.Debug().Msgf("No action received from LLM, without a message, computing a reply")
|
||||
// Otherwise ask the LLM to understand the JSON output and the context, and return a message
|
||||
// Note: This costs (in term of CPU/GPU) another computation
|
||||
config.Grammar = ""
|
||||
images := []string{}
|
||||
for _, m := range input.Messages {
|
||||
images = append(images, m.StringImages...)
|
||||
}
|
||||
|
||||
predFunc, err := backend.ModelInference(input.Context, prompt, images, ml, *config, o, nil)
|
||||
if err != nil {
|
||||
log.Error().Err(err).Msg("model inference failed")
|
||||
return "", err
|
||||
}
|
||||
|
||||
prediction, err := predFunc()
|
||||
if err != nil {
|
||||
log.Error().Err(err).Msg("prediction failed")
|
||||
return "", err
|
||||
}
|
||||
return backend.Finetune(*config, prompt, prediction.Response), nil
|
||||
}
|
||||
|
||||
type funcCallResults struct {
|
||||
name string
|
||||
arguments string
|
||||
}
|
||||
|
||||
func parseFunctionCall(llmresult string, multipleResults bool) []funcCallResults {
|
||||
results := []funcCallResults{}
|
||||
|
||||
// TODO: use generics to avoid this code duplication
|
||||
if multipleResults {
|
||||
ss := []map[string]interface{}{}
|
||||
s := utils.EscapeNewLines(llmresult)
|
||||
json.Unmarshal([]byte(s), &ss)
|
||||
log.Debug().Msgf("Function return: %s %+v", s, ss)
|
||||
|
||||
for _, s := range ss {
|
||||
func_name, ok := s["function"]
|
||||
if !ok {
|
||||
continue
|
||||
}
|
||||
args, ok := s["arguments"]
|
||||
if !ok {
|
||||
continue
|
||||
}
|
||||
d, _ := json.Marshal(args)
|
||||
funcName, ok := func_name.(string)
|
||||
if !ok {
|
||||
continue
|
||||
}
|
||||
results = append(results, funcCallResults{name: funcName, arguments: string(d)})
|
||||
}
|
||||
} else {
|
||||
// As we have to change the result before processing, we can't stream the answer token-by-token (yet?)
|
||||
ss := map[string]interface{}{}
|
||||
// This prevent newlines to break JSON parsing for clients
|
||||
s := utils.EscapeNewLines(llmresult)
|
||||
json.Unmarshal([]byte(s), &ss)
|
||||
log.Debug().Msgf("Function return: %s %+v", s, ss)
|
||||
|
||||
// The grammar defines the function name as "function", while OpenAI returns "name"
|
||||
func_name, ok := ss["function"]
|
||||
if !ok {
|
||||
return results
|
||||
}
|
||||
// Similarly, while here arguments is a map[string]interface{}, OpenAI actually want a stringified object
|
||||
args, ok := ss["arguments"] // arguments needs to be a string, but we return an object from the grammar result (TODO: fix)
|
||||
if !ok {
|
||||
return results
|
||||
}
|
||||
d, _ := json.Marshal(args)
|
||||
funcName, ok := func_name.(string)
|
||||
if !ok {
|
||||
return results
|
||||
}
|
||||
results = append(results, funcCallResults{name: funcName, arguments: string(d)})
|
||||
}
|
||||
|
||||
return results
|
||||
}
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user