Compare commits

...

16 Commits

Author SHA1 Message Date
Ettore Di Giacinto
7643719a80 debug
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2024-07-22 11:51:45 +02:00
Ettore Di Giacinto
19282af059 models(gallery): add calme-2.4-llama3-70b (#2942)
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2024-07-21 22:01:15 +02:00
Ettore Di Giacinto
9c0c11e8a0 models(gallery): add StellarDong-72b (#2941)
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2024-07-21 21:57:30 +02:00
Ettore Di Giacinto
3f7eddb039 models(gallery): add calme-2.8-qwen2-7b (#2940)
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2024-07-21 21:51:52 +02:00
Ettore Di Giacinto
77ad49333a models(gallery): add calme-2.3-phi3-4b (#2939)
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2024-07-21 21:45:04 +02:00
Ettore Di Giacinto
ef5e8326c8 models(gallery): add celestev1.2 (#2937)
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2024-07-21 10:31:44 +02:00
LocalAI [bot]
86509e6002 chore: ⬆️ Update ggerganov/llama.cpp (#2936)
⬆️ Update ggerganov/llama.cpp

Signed-off-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: mudler <2420543+mudler@users.noreply.github.com>
2024-07-20 21:35:21 +00:00
LocalAI [bot]
8667a67695 docs: ⬆️ update docs version mudler/LocalAI (#2935)
⬆️ Update docs version mudler/LocalAI

Signed-off-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: mudler <2420543+mudler@users.noreply.github.com>
2024-07-20 21:33:54 +00:00
Ettore Di Giacinto
f505d7ab3f models(gallery): add archangel_sft_pythia2-8b (#2933)
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2024-07-20 16:17:34 +02:00
Ettore Di Giacinto
450dbed820 models(gallery): add suzume-orpo (#2932)
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2024-07-20 16:16:29 +02:00
Ettore Di Giacinto
46b86f7e6e models(gallery): add tulu 8b and 70b (#2931)
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2024-07-20 16:03:44 +02:00
Ettore Di Giacinto
0ee1f8c1cf ci(Makefile): enable p2p on cross-arm64 builds (#2928)
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2024-07-20 10:43:34 +02:00
Ettore Di Giacinto
87bd831aba docs: add federation (#2929)
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2024-07-20 10:43:18 +02:00
Ettore Di Giacinto
f9f83791d1 ci(release): run also on tags
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2024-07-20 09:15:48 +02:00
LocalAI [bot]
e75f73bf73 chore: ⬆️ Update ggerganov/llama.cpp (#2927)
⬆️ Update ggerganov/llama.cpp

Signed-off-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: mudler <2420543+mudler@users.noreply.github.com>
2024-07-19 22:10:26 +00:00
LocalAI [bot]
bd277162c7 docs: ⬆️ update docs version mudler/LocalAI (#2926)
⬆️ Update docs version mudler/LocalAI

Signed-off-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: mudler <2420543+mudler@users.noreply.github.com>
2024-07-19 21:56:58 +00:00
6 changed files with 265 additions and 34 deletions

View File

@@ -4,6 +4,8 @@ on:
push:
branches:
- master
tags:
- 'v*'
pull_request:
env:

View File

@@ -8,7 +8,7 @@ DETECT_LIBS?=true
# llama.cpp versions
GOLLAMA_REPO?=https://github.com/go-skynet/go-llama.cpp
GOLLAMA_VERSION?=2b57a8ae43e4699d3dc5d1496a1ccd42922993be
CPPLLAMA_VERSION?=705b7ecf60e667ced57c15d67aa86865e3cc7aa7
CPPLLAMA_VERSION?=45f2c19cc57286eead7b232ce8028273a817aa4d
# gpt4all version
GPT4ALL_REPO?=https://github.com/nomic-ai/gpt4all
@@ -377,6 +377,7 @@ build: prepare backend-assets grpcs ## Build the project
$(info ${GREEN}I BUILD_TYPE: ${YELLOW}$(BUILD_TYPE)${RESET})
$(info ${GREEN}I GO_TAGS: ${YELLOW}$(GO_TAGS)${RESET})
$(info ${GREEN}I LD_FLAGS: ${YELLOW}$(LD_FLAGS)${RESET})
ls -liah backend-assets/grpc
ifneq ($(BACKEND_LIBS),)
$(MAKE) backend-assets/lib
cp -f $(BACKEND_LIBS) backend-assets/lib/
@@ -421,7 +422,7 @@ else
endif
dist-cross-linux-arm64:
CMAKE_ARGS="$(CMAKE_ARGS) -DGGML_NATIVE=off" GRPC_BACKENDS="backend-assets/grpc/llama-cpp-fallback backend-assets/grpc/llama-cpp-grpc backend-assets/util/llama-cpp-rpc-server" \
CMAKE_ARGS="$(CMAKE_ARGS) -DGGML_NATIVE=off" GRPC_BACKENDS="backend-assets/grpc/llama-cpp-fallback backend-assets/grpc/llama-cpp-grpc backend-assets/util/llama-cpp-rpc-server" GO_TAGS="p2p" \
STATIC=true $(MAKE) build
mkdir -p release
# if BUILD_ID is empty, then we don't append it to the binary name

View File

@@ -5,17 +5,65 @@ weight = 15
url = "/features/distribute/"
+++
This functionality enables LocalAI to distribute inference requests across multiple worker nodes, improving efficiency and performance. Nodes are automatically discovered and connect via p2p by using a shared token which makes sure the communication is secure and private between the nodes of the network.
LocalAI supports two modes of distributed inferencing via p2p:
- **Federated Mode**: Requests are shared between the cluster and routed to a single worker node in the network based on the load balancer's decision.
- **Worker Mode**: Requests are processed by all the workers which contributes to the final inference result (by sharing the model weights).
## Usage
Starting LocalAI with `--p2p` generates a shared token for connecting multiple instances: and that's all you need to create AI clusters, eliminating the need for intricate network setups.
Simply navigate to the "Swarm" section in the WebUI and follow the on-screen instructions.
For fully shared instances, initiate LocalAI with --p2p --federated and adhere to the Swarm section's guidance. This feature, while still experimental, offers a tech preview quality experience.
### Federated mode
Federated mode allows to launch multiple LocalAI instances and connect them together in a federated network. This mode is useful when you want to distribute the load of the inference across multiple nodes, but you want to have a single point of entry for the API. In the Swarm section of the WebUI, you can see the instructions to connect multiple instances together.
![346663124-1d2324fd-8b55-4fa2-9856-721a467969c2](https://github.com/user-attachments/assets/19ebd44a-20ff-412c-b92f-cfb8efbe4b21)
To start a LocalAI server in federated mode, run:
```bash
local-ai run --p2p --federated
```
This will generate a token that you can use to connect other LocalAI instances to the network or others can use to join the network. If you already have a token, you can specify it using the `TOKEN` environment variable.
To start a load balanced server that routes the requests to the network, run with the `TOKEN`:
```bash
local-ai federated
```
To see all the available options, run `local-ai federated --help`.
The instructions are displayed in the "Swarm" section of the WebUI, guiding you through the process of connecting multiple instances.
### Workers mode
{{% alert note %}}
This feature is available exclusively with llama-cpp compatible models.
This feature was introduced in [LocalAI pull request #2324](https://github.com/mudler/LocalAI/pull/2324) and is based on the upstream work in [llama.cpp pull request #6829](https://github.com/ggerganov/llama.cpp/pull/6829).
{{% /alert %}}
This functionality enables LocalAI to distribute inference requests across multiple worker nodes, improving efficiency and performance.
To connect multiple workers to a single LocalAI instance, start first a server in p2p mode:
## Usage
```bash
local-ai run --p2p
```
### Starting Workers
And navigate the WebUI to the "Swarm" section to see the instructions to connect multiple workers to the network.
![346663124-1d2324fd-8b55-4fa2-9856-721a467969c2](https://github.com/user-attachments/assets/b8cadddf-a467-49cf-a1ed-8850de95366d)
### Without P2P
To start workers for distributing the computational load, run:
@@ -23,48 +71,27 @@ To start workers for distributing the computational load, run:
local-ai worker llama-cpp-rpc <listening_address> <listening_port>
```
Alternatively, you can build the RPC server following the llama.cpp [README](https://github.com/ggerganov/llama.cpp/blob/master/examples/rpc/README.md), which is compatible with LocalAI.
### Starting LocalAI
To start the LocalAI server, which handles API requests, specify the worker addresses using the `LLAMACPP_GRPC_SERVERS` environment variable:
And you can specify the address of the workers when starting LocalAI with the `LLAMACPP_GRPC_SERVERS` environment variable:
```bash
LLAMACPP_GRPC_SERVERS="address1:port,address2:port" local-ai run
```
The workload on the LocalAI server will then be distributed across the specified nodes.
## Peer-to-Peer Networking
Alternatively, you can build the RPC workers/server following the llama.cpp [README](https://github.com/ggerganov/llama.cpp/blob/master/examples/rpc/README.md), which is compatible with LocalAI.
![output](https://github.com/mudler/LocalAI/assets/2420543/8ca277cf-c208-4562-8929-808b2324b584)
## Manual example (worker)
Workers can also connect to each other in a peer-to-peer network, distributing the workload in a decentralized manner.
A shared token between the server and the workers is required for communication within the peer-to-peer network. This feature supports both local network (using mDNS discovery) and DHT for communication across different networks.
The token is automatically generated when starting the server with the `--p2p` flag. Workers can be started with the token using `local-ai worker p2p-llama-cpp-rpc` and specifying the token via the environment variable `TOKEN` or with the `--token` argument.
A network is established between the server and workers using DHT and mDNS discovery protocols. The llama.cpp RPC server is automatically started and exposed to the peer-to-peer network, allowing the API server to connect.
When the HTTP server starts, it discovers workers in the network and creates port forwards to the local service. Llama.cpp is configured to use these services. For more details on the implementation, refer to [LocalAI pull request #2343](https://github.com/mudler/LocalAI/pull/2343).
### Usage
Use the WebUI to guide you in the process of starting new workers. This example shows the manual steps to highlight the process.
1. Start the server with `--p2p`:
```bash
./local-ai run --p2p
# 1:02AM INF loading environment variables from file envFile=.env
# 1:02AM INF Setting logging to info
# 1:02AM INF P2P mode enabled
# 1:02AM INF No token provided, generating one
# 1:02AM INF Generated Token:
# XXXXXXXXXXX
# 1:02AM INF Press a button to proceed
# Get the token in the Swarm section of the WebUI
```
Copy the displayed token and press Enter.
Copy the token from the WebUI or via API call (e.g., `curl http://localhost:8000/p2p/token`) and save it for later use.
To reuse the same token later, restart the server with `--p2ptoken` or `P2P_TOKEN`.
@@ -93,12 +120,14 @@ The server logs should indicate that new workers are being discovered.
3. Start inference as usual on the server initiated in step 1.
![output](https://github.com/mudler/LocalAI/assets/2420543/8ca277cf-c208-4562-8929-808b2324b584)
## Notes
- If running in p2p mode with container images, make sure you start the container with `--net host` or `network_mode: host` in the docker-compose file.
- Only a single model is supported currently.
- Ensure the server detects new workers before starting inference. Currently, additional workers cannot be added once inference has begun.
- For more details on the implementation, refer to [LocalAI pull request #2343](https://github.com/mudler/LocalAI/pull/2343)
## Environment Variables

View File

@@ -1,3 +1,3 @@
{
"version": "v2.18.1"
"version": "v2.19.1"
}

View File

@@ -24,6 +24,33 @@
- filename: DeepSeek-Coder-V2-Lite-Instruct-Q4_K_M.gguf
sha256: 50ec78036433265965ed1afd0667c00c71c12aa70bcf383be462cb8e159db6c0
uri: huggingface://LoneStriker/DeepSeek-Coder-V2-Lite-Instruct-GGUF/DeepSeek-Coder-V2-Lite-Instruct-Q4_K_M.gguf
- name: "archangel_sft_pythia2-8b"
url: "github:mudler/LocalAI/gallery/tuluv2.yaml@master"
icon: https://gist.github.com/assets/29318529/fe2d8391-dbd1-4b7e-9dc4-7cb97e55bc06
license: apache-2.0
urls:
- https://huggingface.co/ContextualAI/archangel_sft_pythia2-8b
- https://huggingface.co/RichardErkhov/ContextualAI_-_archangel_sft_pythia2-8b-gguf
- https://github.com/ContextualAI/HALOs
description: |
datasets:
- stanfordnlp/SHP
- Anthropic/hh-rlhf
- OpenAssistant/oasst1
This repo contains the model checkpoints for:
- model family pythia2-8b
- optimized with the loss SFT
- aligned using the SHP, Anthropic HH and Open Assistant datasets.
Please refer to our [code repository](https://github.com/ContextualAI/HALOs) or [blog](https://contextual.ai/better-cheaper-faster-llm-alignment-with-kto/) which contains intructions for training your own HALOs and links to our model cards.
overrides:
parameters:
model: archangel_sft_pythia2-8b.Q4_K_M.gguf
files:
- filename: archangel_sft_pythia2-8b.Q4_K_M.gguf
sha256: a47782c55ef2b39b19644213720a599d9849511a73c9ebb0c1de749383c0a0f8
uri: huggingface://RichardErkhov/ContextualAI_-_archangel_sft_pythia2-8b-gguf/archangel_sft_pythia2-8b.Q4_K_M.gguf
- &qwen2
## Start QWEN2
url: "github:mudler/LocalAI/gallery/chatml.yaml@master"
@@ -220,6 +247,36 @@
- filename: Qwen2-Wukong-7B-Q4_K_M.gguf
sha256: 6b8ca6649c33fc84d4892ebcff1214f0b34697aced784f0d6d32e284a15943ad
uri: huggingface://bartowski/Qwen2-Wukong-7B-GGUF/Qwen2-Wukong-7B-Q4_K_M.gguf
- !!merge <<: *qwen2
name: "calme-2.8-qwen2-7b"
icon: https://huggingface.co/MaziyarPanahi/calme-2.8-qwen2-7b/resolve/main/qwen2-fine-tunes-maziyar-panahi.webp
urls:
- https://huggingface.co/MaziyarPanahi/calme-2.8-qwen2-7b
- https://huggingface.co/MaziyarPanahi/calme-2.8-qwen2-7b-GGUF
description: |
This is a fine-tuned version of the Qwen/Qwen2-7B model. It aims to improve the base model across all benchmarks.
overrides:
parameters:
model: Qwen2-7B-Instruct-v0.8.Q4_K_M.gguf
files:
- filename: Qwen2-7B-Instruct-v0.8.Q4_K_M.gguf
sha256: 8c1b3efe9fa6ae1b37942ef26473cb4e0aed0f8038b60d4b61e5bffb61e49b7e
uri: huggingface://MaziyarPanahi/calme-2.8-qwen2-7b-GGUF/Qwen2-7B-Instruct-v0.8.Q4_K_M.gguf
- !!merge <<: *qwen2
name: "stellardong-72b-i1"
icon: https://huggingface.co/smelborp/StellarDong-72b/resolve/main/stellardong.png
urls:
- https://huggingface.co/smelborp/StellarDong-72b
- https://huggingface.co/mradermacher/StellarDong-72b-i1-GGUF
description: |
Magnum + Nova = you won't believe how stellar this dong is!!
overrides:
parameters:
model: StellarDong-72b.i1-Q4_K_M.gguf
files:
- filename: StellarDong-72b.i1-Q4_K_M.gguf
sha256: 4c5012f0a034f40a044904891343ade2594f29c28a8a9d8052916de4dc5a61df
uri: huggingface://mradermacher/StellarDong-72b-i1-GGUF/StellarDong-72b.i1-Q4_K_M.gguf
- &mistral03
## START Mistral
url: "github:mudler/LocalAI/gallery/mistral-0.3.yaml@master"
@@ -3146,6 +3203,89 @@
- filename: L3-8B-Celeste-v1-Q4_K_M.gguf
sha256: ed5277719965fb6bbcce7d16742e3bac4a8d5b8f52133261a3402a480cd65317
uri: huggingface://bartowski/L3-8B-Celeste-v1-GGUF/L3-8B-Celeste-v1-Q4_K_M.gguf
- !!merge <<: *llama3
name: "l3-8b-celeste-v1.2"
icon: https://cdn-uploads.huggingface.co/production/uploads/630cf5d14ca0a22768bbe10c/Zv__LDTO-nHvpuxPcCgUU.webp
urls:
- https://huggingface.co/mudler/L3-8B-Celeste-V1.2-Q4_K_M-GGUF
description: |
Trained on LLaMA 3 8B Instruct at 8K context using Reddit Writing Prompts, Opus 15K Instruct an c2 logs cleaned.
This is a roleplay model any instruction following capabilities outside roleplay contexts are coincidental.
overrides:
parameters:
model: l3-8b-celeste-v1.2-q4_k_m.gguf
files:
- filename: l3-8b-celeste-v1.2-q4_k_m.gguf
sha256: 7752204c0e9f627ff5726eb69bb6114974cafbc934a993ad019abfba62002783
uri: huggingface://mudler/L3-8B-Celeste-V1.2-Q4_K_M-GGUF/l3-8b-celeste-v1.2-q4_k_m.gguf
- !!merge <<: *llama3
name: "llama-3-tulu-2-8b-i1"
icon: https://huggingface.co/datasets/allenai/blog-images/resolve/main/tulu-v2/Tulu%20V2%20banner.png
urls:
- https://huggingface.co/allenai/llama-3-tulu-2-8b
- https://huggingface.co/mradermacher/llama-3-tulu-2-8b-i1-GGUF
description: |
Tulu is a series of language models that are trained to act as helpful assistants. Llama 3 Tulu V2 8B is a fine-tuned version of Llama 3 that was trained on a mix of publicly available, synthetic and human datasets.
overrides:
parameters:
model: llama-3-tulu-2-8b.i1-Q4_K_M.gguf
files:
- filename: llama-3-tulu-2-8b.i1-Q4_K_M.gguf
sha256: f859c22bfa64f461e9ffd973dc7ad6a78bb98b1dda6f49abfa416a4022b7e333
uri: huggingface://mradermacher/llama-3-tulu-2-8b-i1-GGUF/llama-3-tulu-2-8b.i1-Q4_K_M.gguf
- !!merge <<: *llama3
name: "llama-3-tulu-2-dpo-70b-i1"
icon: https://huggingface.co/datasets/allenai/blog-images/resolve/main/tulu-v2/Tulu%20V2%20banner.png
urls:
- https://huggingface.co/allenai/llama-3-tulu-2-dpo-70b
- https://huggingface.co/mradermacher/llama-3-tulu-2-dpo-70b-i1-GGUF
description: |
Tulu is a series of language models that are trained to act as helpful assistants. Llama 3 Tulu V2 8B is a fine-tuned version of Llama 3 that was trained on a mix of publicly available, synthetic and human datasets.
overrides:
parameters:
model: llama-3-tulu-2-dpo-70b.i1-Q4_K_M.gguf
files:
- filename: llama-3-tulu-2-dpo-70b.i1-Q4_K_M.gguf
sha256: fc309bbdf1e2bdced954c4c8dc1f9a885c547017ee5e750bfde645af89e3d3a5
uri: huggingface://mradermacher/llama-3-tulu-2-dpo-70b-i1-GGUF/llama-3-tulu-2-dpo-70b.i1-Q4_K_M.gguf
- !!merge <<: *llama3
license: cc-by-nc-4.0
name: "suzume-llama-3-8b-multilingual-orpo-borda-top25"
icon: https://cdn-uploads.huggingface.co/production/uploads/64b63f8ad57e02621dc93c8b/kWQSu02YfgYdUQqv4s5lq.png
urls:
- https://huggingface.co/lightblue/suzume-llama-3-8B-multilingual-orpo-borda-top25
- https://huggingface.co/RichardErkhov/lightblue_-_suzume-llama-3-8B-multilingual-orpo-borda-top25-gguf
description: |
This is Suzume ORPO, an ORPO trained fine-tune of the lightblue/suzume-llama-3-8B-multilingual model using our lightblue/mitsu dataset.
We have trained several versions of this model using ORPO and so recommend that you use the best performing model from our tests, lightblue/suzume-llama-3-8B-multilingual-orpo-borda-half.
Note that this model has a non-commerical license as we used the Command R and Command R+ models to generate our training data for this model (lightblue/mitsu).
We are currently working on a developing a commerically usable model, so stay tuned for that!
overrides:
parameters:
model: suzume-llama-3-8B-multilingual-orpo-borda-top25.Q4_K_M.gguf
files:
- filename: suzume-llama-3-8B-multilingual-orpo-borda-top25.Q4_K_M.gguf
sha256: ef75a02c5f38e14a8873c7989188dac6974851b4654279fe1921d2c8018cc388
uri: huggingface://RichardErkhov/lightblue_-_suzume-llama-3-8B-multilingual-orpo-borda-top25-gguf/suzume-llama-3-8B-multilingual-orpo-borda-top25.Q4_K_M.gguf
- !!merge <<: *llama3
name: "calme-2.4-llama3-70b"
icon: https://huggingface.co/MaziyarPanahi/calme-2.4-llama3-70b/resolve/main/llama-3-merges.webp
urls:
- https://huggingface.co/MaziyarPanahi/calme-2.4-llama3-70b
- https://huggingface.co/mradermacher/calme-2.4-llama3-70b-GGUF
description: |
This model is a fine-tune (DPO) of meta-llama/Meta-Llama-3-70B-Instruct model.
overrides:
parameters:
model: calme-2.4-llama3-70b.Q4_K_M.gguf
files:
- filename: calme-2.4-llama3-70b.Q4_K_M.gguf
sha256: 0b44ac8a88395dfc60f1b9d3cfffc0ffef74ec0a302e610ef91fc787187568f2
uri: huggingface://mradermacher/calme-2.4-llama3-70b-GGUF/calme-2.4-llama3-70b.Q4_K_M.gguf
- &command-R
### START Command-r
url: "github:mudler/LocalAI/gallery/command-r.yaml@master"
@@ -3405,7 +3545,23 @@
- filename: phillama-3.8b-v0.1.Q4_K_M.gguf
sha256: da537d352b7aae54bbad0d2cff3e3a1b0e1dc1e1d25bec3aae1d05cf4faee7a2
uri: huggingface://RichardErkhov/raincandy-u_-_phillama-3.8b-v0.1-gguf/phillama-3.8b-v0.1.Q4_K_M.gguf
- !!merge <<: *llama3
name: "calme-2.3-phi3-4b"
icon: https://huggingface.co/MaziyarPanahi/calme-2.1-phi3-4b/resolve/main/phi-3-instruct.webp
urls:
- https://huggingface.co/MaziyarPanahi/calme-2.3-phi3-4b
- https://huggingface.co/MaziyarPanahi/calme-2.3-phi3-4b-GGUF
description: |
MaziyarPanahi/calme-2.1-phi3-4b
This model is a fine-tune (DPO) of microsoft/Phi-3-mini-4k-instruct model.
overrides:
parameters:
model: Phi-3-mini-4k-instruct-v0.3.Q4_K_M.gguf
files:
- filename: Phi-3-mini-4k-instruct-v0.3.Q4_K_M.gguf
sha256: 3a23e1052369c080afb925882bd814cbea5ec859894655a7434c3d49e43a6127
uri: huggingface://MaziyarPanahi/calme-2.3-phi3-4b-GGUF/Phi-3-mini-4k-instruct-v0.3.Q4_K_M.gguf
- &hermes-2-pro-mistral
### START Hermes
url: "github:mudler/LocalAI/gallery/hermes-2-pro-mistral.yaml@master"

43
gallery/tuluv2.yaml Normal file
View File

@@ -0,0 +1,43 @@
---
name: "tuluv2"
config_file: |
mmap: true
template:
chat_message: |
<|{{ .RoleName }}|>
{{ if .FunctionCall -}}
Function call:
{{ else if eq .RoleName "tool" -}}
Function response:
{{ end -}}
{{ if .Content -}}
{{.Content }}
{{ end -}}
{{ if .FunctionCall -}}
{{toJson .FunctionCall}}
{{ end -}}
function: |
<|{{ .RoleName }}|>
{{ if .FunctionCall -}}
Function call:
{{ else if eq .RoleName "tool" -}}
Function response:
{{ end -}}
{{ if .Content -}}
{{.Content }}
{{ end -}}
{{ if .FunctionCall -}}
{{toJson .FunctionCall}}
{{ end -}}
chat: |
{{.Input -}}
<|assistant|>
completion: |
{{.Input}}
context_size: 4096
f16: true
stopwords:
- '<|im_end|>'
- '<dummy32000>'
- '<|endoftext|>'