Compare commits

..

52 Commits

Author SHA1 Message Date
Ettore Di Giacinto
ce724a7e55 docs: improve getting started (#1553)
* docs: improve getting started

Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>

* cleanups

* Use dockerhub links

* Shrink command to minimum

---------

Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2024-01-06 01:04:14 +01:00
LocalAI [bot]
0a06c80801 ⬆️ Update ggerganov/llama.cpp (#1547)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-01-05 23:27:51 +01:00
LocalAI [bot]
edc55ade61 ⬆️ Update docs version mudler/LocalAI (#1546)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
Co-authored-by: lunamidori5 <118759930+lunamidori5@users.noreply.github.com>
2024-01-05 23:27:30 +01:00
Ettore Di Giacinto
09e5d9007b feat: embedded model configurations, add popular model examples, refactoring (#1532)
* move downloader out

* separate startup functions for preloading configuration files

* docs: add popular model examples

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* shorteners

* Add llava

* Add mistral-openorca

* Better link to build section

* docs: update

* fixup

* Drop code dups

* Minor fixups

* Apply suggestions from code review

Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>

* ci: try to cache gRPC build during tests

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* ci: do not build all images for tests, just necessary

* ci: cache gRPC also in release pipeline

* fixes

* Update model_preload_test.go

Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>

---------

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2024-01-05 23:16:33 +01:00
Ettore Di Giacinto
db926896bd Revert "[Refactor]: Core/API Split" (#1550)
Revert "[Refactor]: Core/API Split (#1506)"

This reverts commit ab7b4d5ee9.
2024-01-05 18:04:46 +01:00
Dave
ab7b4d5ee9 [Refactor]: Core/API Split (#1506)
Refactors api folder to core, creates firm split between backend code and api frontend.
2024-01-05 15:34:56 +01:00
Ettore Di Giacinto
bcf02449b3 ci(dockerhub): push images also to dockerhub (#1542)
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2024-01-04 08:32:29 +01:00
LocalAI [bot]
d48faf35ab ⬆️ Update ggerganov/llama.cpp (#1544)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-01-04 00:08:03 +01:00
Ettore Di Giacinto
583bd28a5c fix(diffusers): add omegaconf dependency (#1540)
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2024-01-04 00:06:41 +01:00
LocalAI [bot]
7e1d8c489b ⬆️ Update ggerganov/llama.cpp (#1533)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-01-03 08:43:35 +01:00
LocalAI [bot]
de28867374 ⬆️ Update ggerganov/llama.cpp (#1531)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2024-01-02 00:28:22 +00:00
Ettore Di Giacinto
a1aa6cb7c2 fix(entrypoint): cd to backend dir before start (#1530)
Certain backends as vall-e-x are not meant to be used as a library, so
we want to start the process in the same folder where the backend and
all the assets are fixes #1394
2024-01-01 22:02:48 +01:00
Ettore Di Giacinto
85e2767dca feat: add trimsuffix (#1528) 2024-01-01 14:39:42 +01:00
Ettore Di Giacinto
fd48cb6506 deps(llama.cpp): update and sync grpc server (#1527)
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2024-01-01 14:39:31 +01:00
Ettore Di Giacinto
522659eb59 feat(prepare): allow to specify additional files to download (#1526) 2024-01-01 14:39:13 +01:00
Ettore Di Giacinto
f068efe509 docs(phi-2): add example (#1525) 2024-01-01 10:51:47 +01:00
Ettore Di Giacinto
726fe416bb docs: update hot topics
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2024-01-01 10:41:39 +01:00
Ettore Di Giacinto
66fa4f1767 feat: share models by url (#1522)
* feat: allow to pass by models via args

* expose it also as an env/arg

* docs: enhancements to build/requirements

* do not display status always

* print download status

* not all mesages are debug
2024-01-01 10:31:03 +01:00
Ettore Di Giacinto
d6565f3b99 Update _index.en.md
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2023-12-31 10:58:22 +01:00
LocalAI [bot]
27686ff20b ⬆️ Update ggerganov/llama.cpp (#1518)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2023-12-31 00:19:08 +00:00
LocalAI [bot]
a8b865022f ⬆️ Update docs version mudler/LocalAI (#1517)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2023-12-30 23:50:24 +00:00
Ettore Di Giacinto
c1888a8062 feat(preload): prepare models in galleries (#1515)
Previously if applying models from the gallery API, we didn't actually
allowed remote URLs as models as nothing was actually downloading the
models referenced in the configuration file. Now we call Preload after
we have all the models loaded in memory.
2023-12-30 18:55:18 +01:00
Ettore Di Giacinto
a95bb0521d fix(download): correctly check for not found error (#1514) 2023-12-30 15:36:46 +01:00
Chris Natale
e2311a145c Fix: Set proper Homebrew install location for x86 Macs (#1510)
* set proper Homebrew install location for x86 Macs

* fix: remove prior conditional that my logic replaces
2023-12-30 12:37:26 +01:00
lunamidori5
d4e0bab6be Update version.json (2.3.0) (#1511)
Update version.json

Signed-off-by: lunamidori5 <118759930+lunamidori5@users.noreply.github.com>
2023-12-30 10:19:46 +01:00
LocalAI [bot]
5b0dc20e4c ⬆️ Update ggerganov/llama.cpp (#1509)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2023-12-30 09:19:07 +00:00
Ettore Di Giacinto
9723c3c21d Update README.md
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2023-12-28 23:06:40 +01:00
Ettore Di Giacinto
9dc32275ad Update README.md
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2023-12-28 23:03:44 +01:00
Ettore Di Giacinto
611c11f57b Update README.md
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2023-12-28 23:03:10 +01:00
Ettore Di Giacinto
763d1f524a Update README.md
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2023-12-28 23:01:52 +01:00
LocalAI [bot]
6428003c3b ⬆️ Update ggerganov/llama.cpp (#1503)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2023-12-28 22:44:50 +01:00
LocalAI [bot]
2eac4f93bb ⬆️ Update ggerganov/llama.cpp (#1501)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2023-12-28 00:51:29 +00:00
JZacharie
24adf9cbcb remove default to stablediffusion (#1500) 2023-12-27 23:16:49 +00:00
LocalAI [bot]
c45f581c47 ⬆️ Update ggerganov/llama.cpp (#1496)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2023-12-26 19:15:58 -05:00
Ettore Di Giacinto
ae0c48e6bd ci(apple): speedups (#1471)
* ci(apple): install grpc from brew

* ci(apple): use brew deps also on release

* ci(linux): install grpc from package manager

* ci: set concurrency

* Revert "ci(linux): install grpc from package manager"

This reverts commit 004e3e308e.
2023-12-26 19:19:37 +01:00
LocalAI [bot]
4ca649154d ⬆️ Update ggerganov/llama.cpp (#1495)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2023-12-26 17:53:59 +00:00
Ettore Di Giacinto
66dd387858 Update README.md
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
2023-12-25 09:04:35 +01:00
LocalAI [bot]
9789f5a96a ⬆️ Update ggerganov/llama.cpp (#1492)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2023-12-25 02:43:35 -05:00
Gianluca Boiano
cae7b197ec feat: add tiny dream stable diffusion support (#1283)
Signed-off-by: Gianluca Boiano <morf3089@gmail.com>
2023-12-24 19:27:24 +00:00
l
f7621b2c6c feat: partial download (#1486)
* add .partial download

* fix Stat check

* review partial download
2023-12-24 19:39:33 +01:00
Ettore Di Giacinto
95eb72bfd3 feat: add 🐸 coqui (#1489)
* feat: add coqui

* docs: update news
2023-12-24 19:38:54 +01:00
BobMaster
7e2d101a46 fix: guidance_scale not work in sd (#1488)
Signed-off-by: hibobmaster <32976627+hibobmaster@users.noreply.github.com>
2023-12-24 19:24:52 +01:00
Sertaç Özercan
6597881854 fix: exllama2 backend (#1484)
Signed-off-by: Sertac Ozercan <sozercan@gmail.com>
2023-12-24 08:32:12 +00:00
LocalAI [bot]
eaa899df63 ⬆️ Update ggerganov/whisper.cpp (#1483)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2023-12-24 02:53:29 -05:00
LocalAI [bot]
16ed0bd0c5 ⬆️ Update ggerganov/llama.cpp (#1482)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2023-12-24 02:53:12 -05:00
Ettore Di Giacinto
939187a129 env(conda): use transformers for vall-e-x (#1481) 2023-12-23 14:31:34 -05:00
Ettore Di Giacinto
4b520c3343 docs: add langchain4j integration (#1476)
* docs: add langchain4j integration

Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>

* Update docs/content/integrations/langchain4j.md

Co-authored-by: LangChain4j <langchain4j@gmail.com>
Signed-off-by: lunamidori5 <118759930+lunamidori5@users.noreply.github.com>

* Update langchain4j.md

Signed-off-by: lunamidori5 <118759930+lunamidori5@users.noreply.github.com>

---------

Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
Signed-off-by: lunamidori5 <118759930+lunamidori5@users.noreply.github.com>
Co-authored-by: lunamidori5 <118759930+lunamidori5@users.noreply.github.com>
Co-authored-by: LangChain4j <langchain4j@gmail.com>
2023-12-23 09:13:56 +00:00
LocalAI [bot]
51215d480a ⬆️ Update ggerganov/whisper.cpp (#1480)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2023-12-23 09:11:40 +00:00
LocalAI [bot]
987f0041d3 ⬆️ Update ggerganov/llama.cpp (#1469)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2023-12-23 00:05:56 +00:00
LocalAI [bot]
a29de9bf50 ⬆️ Update donomii/go-rwkv.cpp (#1478)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2023-12-22 15:02:32 +01:00
LocalAI [bot]
9bd5831fda ⬆️ Update ggerganov/whisper.cpp (#1479)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2023-12-22 08:26:39 +01:00
LocalAI [bot]
59f0f2f0fd ⬆️ Update docs version mudler/LocalAI (#1477)
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: mudler <mudler@users.noreply.github.com>
2023-12-22 00:28:42 +00:00
73 changed files with 2422 additions and 666 deletions

86
.github/workflows/image-pr.yml vendored Normal file
View File

@@ -0,0 +1,86 @@
---
name: 'build container images tests'
on:
pull_request:
concurrency:
group: ci-${{ github.head_ref || github.ref }}-${{ github.repository }}
cancel-in-progress: true
jobs:
extras-image-build:
uses: ./.github/workflows/image_build.yml
with:
tag-latest: ${{ matrix.tag-latest }}
tag-suffix: ${{ matrix.tag-suffix }}
ffmpeg: ${{ matrix.ffmpeg }}
image-type: ${{ matrix.image-type }}
build-type: ${{ matrix.build-type }}
cuda-major-version: ${{ matrix.cuda-major-version }}
cuda-minor-version: ${{ matrix.cuda-minor-version }}
platforms: ${{ matrix.platforms }}
runs-on: ${{ matrix.runs-on }}
secrets:
dockerUsername: ${{ secrets.DOCKERHUB_USERNAME }}
dockerPassword: ${{ secrets.DOCKERHUB_PASSWORD }}
quayUsername: ${{ secrets.LOCALAI_REGISTRY_USERNAME }}
quayPassword: ${{ secrets.LOCALAI_REGISTRY_PASSWORD }}
strategy:
# Pushing with all jobs in parallel
# eats the bandwidth of all the nodes
max-parallel: ${{ github.event_name != 'pull_request' && 2 || 4 }}
matrix:
include:
- build-type: ''
platforms: 'linux/amd64'
tag-latest: 'false'
tag-suffix: '-ffmpeg'
ffmpeg: 'true'
image-type: 'extras'
runs-on: 'arc-runner-set'
- build-type: 'cublas'
cuda-major-version: "12"
cuda-minor-version: "1"
platforms: 'linux/amd64'
tag-latest: 'false'
tag-suffix: '-cublas-cuda12-ffmpeg'
ffmpeg: 'true'
image-type: 'extras'
runs-on: 'arc-runner-set'
core-image-build:
uses: ./.github/workflows/image_build.yml
with:
tag-latest: ${{ matrix.tag-latest }}
tag-suffix: ${{ matrix.tag-suffix }}
ffmpeg: ${{ matrix.ffmpeg }}
image-type: ${{ matrix.image-type }}
build-type: ${{ matrix.build-type }}
cuda-major-version: ${{ matrix.cuda-major-version }}
cuda-minor-version: ${{ matrix.cuda-minor-version }}
platforms: ${{ matrix.platforms }}
runs-on: ${{ matrix.runs-on }}
secrets:
dockerUsername: ${{ secrets.DOCKERHUB_USERNAME }}
dockerPassword: ${{ secrets.DOCKERHUB_PASSWORD }}
quayUsername: ${{ secrets.LOCALAI_REGISTRY_USERNAME }}
quayPassword: ${{ secrets.LOCALAI_REGISTRY_PASSWORD }}
strategy:
matrix:
include:
- build-type: ''
platforms: 'linux/amd64'
tag-latest: 'false'
tag-suffix: '-ffmpeg-core'
ffmpeg: 'true'
image-type: 'core'
runs-on: 'ubuntu-latest'
- build-type: 'cublas'
cuda-major-version: "12"
cuda-minor-version: "1"
platforms: 'linux/amd64'
tag-latest: 'false'
tag-suffix: '-cublas-cuda12-ffmpeg-core'
ffmpeg: 'true'
image-type: 'core'
runs-on: 'ubuntu-latest'

View File

@@ -2,7 +2,6 @@
name: 'build container images'
on:
pull_request:
push:
branches:
- master
@@ -27,8 +26,10 @@ jobs:
platforms: ${{ matrix.platforms }}
runs-on: ${{ matrix.runs-on }}
secrets:
dockerUsername: ${{ secrets.LOCALAI_REGISTRY_USERNAME }}
dockerPassword: ${{ secrets.LOCALAI_REGISTRY_PASSWORD }}
dockerUsername: ${{ secrets.DOCKERHUB_USERNAME }}
dockerPassword: ${{ secrets.DOCKERHUB_PASSWORD }}
quayUsername: ${{ secrets.LOCALAI_REGISTRY_USERNAME }}
quayPassword: ${{ secrets.LOCALAI_REGISTRY_PASSWORD }}
strategy:
# Pushing with all jobs in parallel
# eats the bandwidth of all the nodes
@@ -107,8 +108,10 @@ jobs:
platforms: ${{ matrix.platforms }}
runs-on: ${{ matrix.runs-on }}
secrets:
dockerUsername: ${{ secrets.LOCALAI_REGISTRY_USERNAME }}
dockerPassword: ${{ secrets.LOCALAI_REGISTRY_PASSWORD }}
dockerUsername: ${{ secrets.DOCKERHUB_USERNAME }}
dockerPassword: ${{ secrets.DOCKERHUB_PASSWORD }}
quayUsername: ${{ secrets.LOCALAI_REGISTRY_USERNAME }}
quayPassword: ${{ secrets.LOCALAI_REGISTRY_PASSWORD }}
strategy:
matrix:
include:

View File

@@ -46,6 +46,10 @@ on:
required: true
dockerPassword:
required: true
quayUsername:
required: true
quayPassword:
required: true
jobs:
reusable_image-build:
runs-on: ${{ inputs.runs-on }}
@@ -100,7 +104,9 @@ jobs:
id: meta
uses: docker/metadata-action@v5
with:
images: quay.io/go-skynet/local-ai
images: |
quay.io/go-skynet/local-ai
localai/localai
tags: |
type=ref,event=branch
type=semver,pattern={{raw}}
@@ -122,10 +128,17 @@ jobs:
if: github.event_name != 'pull_request'
uses: docker/login-action@v3
with:
registry: quay.io
username: ${{ secrets.dockerUsername }}
password: ${{ secrets.dockerPassword }}
- name: Login to DockerHub
if: github.event_name != 'pull_request'
uses: docker/login-action@v3
with:
registry: quay.io
username: ${{ secrets.quayUsername }}
password: ${{ secrets.quayPassword }}
- name: Build and push
uses: docker/build-push-action@v5
with:

View File

@@ -5,6 +5,10 @@ on: push
permissions:
contents: write
concurrency:
group: ci-releases-${{ github.head_ref || github.ref }}-${{ github.repository }}
cancel-in-progress: true
jobs:
build-linux:
strategy:
@@ -30,10 +34,22 @@ jobs:
sudo apt-get update
sudo apt-get install build-essential ffmpeg
- name: Cache grpc
id: cache-grpc
uses: actions/cache@v3
with:
path: grpc
key: ${{ runner.os }}-grpc
- name: Build grpc
if: steps.cache-grpc.outputs.cache-hit != 'true'
run: |
git clone --recurse-submodules -b v1.58.0 --depth 1 --shallow-submodules https://github.com/grpc/grpc && \
cd grpc && mkdir -p cmake/build && cd cmake/build && cmake -DgRPC_INSTALL=ON \
-DgRPC_BUILD_TESTS=OFF \
../.. && sudo make -j12 install
cd grpc && mkdir -p cmake/build && cd cmake/build && cmake -DgRPC_INSTALL=ON \
-DgRPC_BUILD_TESTS=OFF \
../.. && sudo make -j12
- name: Install gRPC
run: |
cd grpc && cd cmake/build && sudo make -j12 install
- name: Build
id: build
@@ -74,10 +90,7 @@ jobs:
go-version: '>=1.21.0'
- name: Dependencies
run: |
git clone --recurse-submodules -b v1.58.0 --depth 1 --shallow-submodules https://github.com/grpc/grpc && \
cd grpc && mkdir -p cmake/build && cd cmake/build && cmake -DgRPC_INSTALL=ON \
-DgRPC_BUILD_TESTS=OFF \
../.. && make -j12 install && rm -rf grpc
brew install protobuf grpc
- name: Build
id: build
env:

View File

@@ -222,29 +222,56 @@ jobs:
# export PATH=$PATH:/opt/conda/bin
# make -C backend/python/vllm
# make -C backend/python/vllm test
# tests-vallex:
# runs-on: ubuntu-latest
# steps:
# - name: Clone
# uses: actions/checkout@v4
# with:
# submodules: true
# - name: Dependencies
# run: |
# sudo apt-get update
# sudo apt-get install build-essential ffmpeg
# curl https://repo.anaconda.com/pkgs/misc/gpgkeys/anaconda.asc | gpg --dearmor > conda.gpg && \
# sudo install -o root -g root -m 644 conda.gpg /usr/share/keyrings/conda-archive-keyring.gpg && \
# gpg --keyring /usr/share/keyrings/conda-archive-keyring.gpg --no-default-keyring --fingerprint 34161F5BF5EB1D4BFBBB8F0A8AEB4F8B29D82806 && \
# sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" > /etc/apt/sources.list.d/conda.list' && \
# sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" | tee -a /etc/apt/sources.list.d/conda.list' && \
# sudo apt-get update && \
# sudo apt-get install -y conda
# sudo apt-get install -y ca-certificates cmake curl patch
# sudo apt-get install -y libopencv-dev && sudo ln -s /usr/include/opencv4/opencv2 /usr/include/opencv2
# sudo rm -rfv /usr/bin/conda || true
# - name: Test vall-e-x
# run: |
# export PATH=$PATH:/opt/conda/bin
# make -C backend/python/vall-e-x
# make -C backend/python/vall-e-x test
tests-vallex:
runs-on: ubuntu-latest
steps:
- name: Clone
uses: actions/checkout@v4
with:
submodules: true
- name: Dependencies
run: |
sudo apt-get update
sudo apt-get install build-essential ffmpeg
curl https://repo.anaconda.com/pkgs/misc/gpgkeys/anaconda.asc | gpg --dearmor > conda.gpg && \
sudo install -o root -g root -m 644 conda.gpg /usr/share/keyrings/conda-archive-keyring.gpg && \
gpg --keyring /usr/share/keyrings/conda-archive-keyring.gpg --no-default-keyring --fingerprint 34161F5BF5EB1D4BFBBB8F0A8AEB4F8B29D82806 && \
sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" > /etc/apt/sources.list.d/conda.list' && \
sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" | tee -a /etc/apt/sources.list.d/conda.list' && \
sudo apt-get update && \
sudo apt-get install -y conda
sudo apt-get install -y ca-certificates cmake curl patch
sudo apt-get install -y libopencv-dev && sudo ln -s /usr/include/opencv4/opencv2 /usr/include/opencv2
sudo rm -rfv /usr/bin/conda || true
- name: Test vall-e-x
run: |
export PATH=$PATH:/opt/conda/bin
make -C backend/python/vall-e-x
make -C backend/python/vall-e-x test
tests-coqui:
runs-on: ubuntu-latest
steps:
- name: Clone
uses: actions/checkout@v4
with:
submodules: true
- name: Dependencies
run: |
sudo apt-get update
sudo apt-get install build-essential ffmpeg
curl https://repo.anaconda.com/pkgs/misc/gpgkeys/anaconda.asc | gpg --dearmor > conda.gpg && \
sudo install -o root -g root -m 644 conda.gpg /usr/share/keyrings/conda-archive-keyring.gpg && \
gpg --keyring /usr/share/keyrings/conda-archive-keyring.gpg --no-default-keyring --fingerprint 34161F5BF5EB1D4BFBBB8F0A8AEB4F8B29D82806 && \
sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" > /etc/apt/sources.list.d/conda.list' && \
sudo /bin/bash -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" | tee -a /etc/apt/sources.list.d/conda.list' && \
sudo apt-get update && \
sudo apt-get install -y conda
sudo apt-get install -y ca-certificates cmake curl patch espeak espeak-ng
sudo rm -rfv /usr/bin/conda || true
- name: Test coqui
run: |
export PATH=$PATH:/opt/conda/bin
make -C backend/python/coqui
make -C backend/python/coqui test

View File

@@ -86,11 +86,22 @@ jobs:
sudo cp -rfv sources/go-piper/piper-phonemize/pi/lib/. /usr/lib/ && \
# Pre-build stable diffusion before we install a newer version of abseil (not compatible with stablediffusion-ncn)
GO_TAGS="stablediffusion tts" GRPC_BACKENDS=backend-assets/grpc/stablediffusion make build
- name: Cache grpc
id: cache-grpc
uses: actions/cache@v3
with:
path: grpc
key: ${{ runner.os }}-grpc
- name: Build grpc
if: steps.cache-grpc.outputs.cache-hit != 'true'
run: |
git clone --recurse-submodules -b v1.58.0 --depth 1 --shallow-submodules https://github.com/grpc/grpc && \
cd grpc && mkdir -p cmake/build && cd cmake/build && cmake -DgRPC_INSTALL=ON \
-DgRPC_BUILD_TESTS=OFF \
../.. && sudo make -j12 install
cd grpc && mkdir -p cmake/build && cd cmake/build && cmake -DgRPC_INSTALL=ON \
-DgRPC_BUILD_TESTS=OFF \
../.. && sudo make -j12
- name: Install gRPC
run: |
cd grpc && cd cmake/build && sudo make -j12 install
- name: Test
run: |
GO_TAGS="stablediffusion tts" make test
@@ -114,10 +125,7 @@ jobs:
run: go version
- name: Dependencies
run: |
git clone --recurse-submodules -b v1.58.0 --depth 1 --shallow-submodules https://github.com/grpc/grpc && \
cd grpc && mkdir -p cmake/build && cd cmake/build && cmake -DgRPC_INSTALL=ON \
-DgRPC_BUILD_TESTS=OFF \
../.. && make -j12 install && rm -rf grpc
brew install protobuf grpc
- name: Test
run: |
export C_INCLUDE_PATH=/usr/local/include

View File

@@ -13,10 +13,10 @@ ARG TARGETVARIANT
ENV BUILD_TYPE=${BUILD_TYPE}
ENV EXTERNAL_GRPC_BACKENDS="huggingface-embeddings:/build/backend/python/sentencetransformers/run.sh,petals:/build/backend/python/petals/run.sh,transformers:/build/backend/python/transformers/run.sh,sentencetransformers:/build/backend/python/sentencetransformers/run.sh,autogptq:/build/backend/python/autogptq/run.sh,bark:/build/backend/python/bark/run.sh,diffusers:/build/backend/python/diffusers/run.sh,exllama:/build/backend/python/exllama/run.sh,vall-e-x:/build/backend/python/vall-e-x/run.sh,vllm:/build/backend/python/vllm/run.sh,exllama2:/build/backend/python/exllama2/run.sh,transformers-musicgen:/build/backend/python/transformers-musicgen/run.sh"
ENV EXTERNAL_GRPC_BACKENDS="coqui:/build/backend/python/coqui/run.sh,huggingface-embeddings:/build/backend/python/sentencetransformers/run.sh,petals:/build/backend/python/petals/run.sh,transformers:/build/backend/python/transformers/run.sh,sentencetransformers:/build/backend/python/sentencetransformers/run.sh,autogptq:/build/backend/python/autogptq/run.sh,bark:/build/backend/python/bark/run.sh,diffusers:/build/backend/python/diffusers/run.sh,exllama:/build/backend/python/exllama/run.sh,vall-e-x:/build/backend/python/vall-e-x/run.sh,vllm:/build/backend/python/vllm/run.sh,exllama2:/build/backend/python/exllama2/run.sh,transformers-musicgen:/build/backend/python/transformers-musicgen/run.sh"
ENV GALLERIES='[{"name":"model-gallery", "url":"github:go-skynet/model-gallery/index.yaml"}, {"url": "github:go-skynet/model-gallery/huggingface.yaml","name":"huggingface"}]'
ARG GO_TAGS="stablediffusion tts"
ARG GO_TAGS="stablediffusion tinydream tts"
RUN apt-get update && \
apt-get install -y ca-certificates curl patch pip cmake && apt-get clean
@@ -69,10 +69,7 @@ RUN curl https://repo.anaconda.com/pkgs/misc/gpgkeys/anaconda.asc | gpg --dearmo
ENV PATH="/root/.cargo/bin:${PATH}"
RUN pip install --upgrade pip
RUN curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh -s -- -y
# \
# ; fi
RUN apt-get install -y espeak-ng espeak
###################################
###################################
@@ -192,6 +189,9 @@ RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
PATH=$PATH:/opt/conda/bin make -C backend/python/transformers-musicgen \
; fi
RUN if [ "${IMAGE_TYPE}" = "extras" ]; then \
PATH=$PATH:/opt/conda/bin make -C backend/python/coqui \
; fi
# Define the health check command
HEALTHCHECK --interval=1m --timeout=10m --retries=10 \

View File

@@ -8,7 +8,7 @@ GOLLAMA_VERSION?=aeba71ee842819da681ea537e78846dc75949ac0
GOLLAMA_STABLE_VERSION?=50cee7712066d9e38306eccadcfbb44ea87df4b7
CPPLLAMA_VERSION?=328b83de23b33240e28f4e74900d1d06726f5eb1
CPPLLAMA_VERSION?=eec22a1c6378d9a013943cbddb4330c0da621442
# gpt4all version
GPT4ALL_REPO?=https://github.com/nomic-ai/gpt4all
@@ -19,10 +19,10 @@ GOGGMLTRANSFORMERS_VERSION?=ffb09d7dd71e2cbc6c5d7d05357d230eea6f369a
# go-rwkv version
RWKV_REPO?=https://github.com/donomii/go-rwkv.cpp
RWKV_VERSION?=8f6d062fa80ed4ac4a00d1ac53aa4de54183fffe
RWKV_VERSION?=633c5a3485c403cb2520693dc0991a25dace9f0f
# whisper.cpp version
WHISPER_CPP_VERSION?=9286d3f584240ba58bd44a1bd1e85141579c78d4
WHISPER_CPP_VERSION?=37a709f6558c6d9783199e2b8cbb136e1c41d346
# bert.cpp version
BERT_VERSION?=6abe312cded14042f6b7c3cd8edf082713334a4d
@@ -33,6 +33,9 @@ PIPER_VERSION?=d6b6275ba037dabdba4a8b65dfdf6b2a73a67f07
# stablediffusion version
STABLEDIFFUSION_VERSION?=902db5f066fd137697e3b69d0fa10d4782bd2c2f
# tinydream version
TINYDREAM_VERSION?=772a9c0d9aaf768290e63cca3c904fe69faf677a
export BUILD_TYPE?=
export STABLE_BUILD_TYPE?=$(BUILD_TYPE)
export CMAKE_ARGS?=
@@ -129,6 +132,11 @@ ifeq ($(findstring stablediffusion,$(GO_TAGS)),stablediffusion)
OPTIONAL_GRPC+=backend-assets/grpc/stablediffusion
endif
ifeq ($(findstring tinydream,$(GO_TAGS)),tinydream)
# OPTIONAL_TARGETS+=go-tiny-dream/libtinydream.a
OPTIONAL_GRPC+=backend-assets/grpc/tinydream
endif
ifeq ($(findstring tts,$(GO_TAGS)),tts)
# OPTIONAL_TARGETS+=go-piper/libpiper_binding.a
# OPTIONAL_TARGETS+=backend-assets/espeak-ng-data
@@ -172,6 +180,14 @@ sources/go-stable-diffusion:
sources/go-stable-diffusion/libstablediffusion.a:
$(MAKE) -C sources/go-stable-diffusion libstablediffusion.a
## tiny-dream
sources/go-tiny-dream:
git clone --recurse-submodules https://github.com/M0Rf30/go-tiny-dream sources/go-tiny-dream
cd sources/go-tiny-dream && git checkout -b build $(TINYDREAM_VERSION) && git submodule update --init --recursive --depth 1
sources/go-tiny-dream/libtinydream.a:
$(MAKE) -C sources/go-tiny-dream libtinydream.a
## RWKV
sources/go-rwkv:
git clone --recurse-submodules $(RWKV_REPO) sources/go-rwkv
@@ -232,7 +248,7 @@ sources/go-piper/libpiper_binding.a: sources/go-piper
backend/cpp/llama/llama.cpp:
LLAMA_VERSION=$(CPPLLAMA_VERSION) $(MAKE) -C backend/cpp/llama llama.cpp
get-sources: backend/cpp/llama/llama.cpp sources/go-llama sources/go-llama-ggml sources/go-ggml-transformers sources/gpt4all sources/go-piper sources/go-rwkv sources/whisper.cpp sources/go-bert sources/go-stable-diffusion
get-sources: backend/cpp/llama/llama.cpp sources/go-llama sources/go-llama-ggml sources/go-ggml-transformers sources/gpt4all sources/go-piper sources/go-rwkv sources/whisper.cpp sources/go-bert sources/go-stable-diffusion sources/go-tiny-dream
touch $@
replace:
@@ -243,6 +259,7 @@ replace:
$(GOCMD) mod edit -replace github.com/ggerganov/whisper.cpp/bindings/go=$(shell pwd)/sources/whisper.cpp/bindings/go
$(GOCMD) mod edit -replace github.com/go-skynet/go-bert.cpp=$(shell pwd)/sources/go-bert
$(GOCMD) mod edit -replace github.com/mudler/go-stable-diffusion=$(shell pwd)/sources/go-stable-diffusion
$(GOCMD) mod edit -replace github.com/M0Rf30/go-tiny-dream=$(shell pwd)/sources/go-tiny-dream
$(GOCMD) mod edit -replace github.com/mudler/go-piper=$(shell pwd)/sources/go-piper
prepare-sources: get-sources replace
@@ -261,6 +278,7 @@ rebuild: ## Rebuilds the project
$(MAKE) -C sources/go-stable-diffusion clean
$(MAKE) -C sources/go-bert clean
$(MAKE) -C sources/go-piper clean
$(MAKE) -C sources/go-tiny-dream clean
$(MAKE) build
prepare: prepare-sources $(OPTIONAL_TARGETS)
@@ -395,6 +413,7 @@ protogen-python:
python3 -m grpc_tools.protoc -Ibackend/ --python_out=backend/python/exllama/ --grpc_python_out=backend/python/exllama/ backend/backend.proto
python3 -m grpc_tools.protoc -Ibackend/ --python_out=backend/python/bark/ --grpc_python_out=backend/python/bark/ backend/backend.proto
python3 -m grpc_tools.protoc -Ibackend/ --python_out=backend/python/diffusers/ --grpc_python_out=backend/python/diffusers/ backend/backend.proto
python3 -m grpc_tools.protoc -Ibackend/ --python_out=backend/python/coqui/ --grpc_python_out=backend/python/coqui/ backend/backend.proto
python3 -m grpc_tools.protoc -Ibackend/ --python_out=backend/python/vall-e-x/ --grpc_python_out=backend/python/vall-e-x/ backend/backend.proto
python3 -m grpc_tools.protoc -Ibackend/ --python_out=backend/python/vllm/ --grpc_python_out=backend/python/vllm/ backend/backend.proto
python3 -m grpc_tools.protoc -Ibackend/ --python_out=backend/python/petals/ --grpc_python_out=backend/python/petals/ backend/backend.proto
@@ -405,6 +424,7 @@ protogen-python:
prepare-extra-conda-environments:
$(MAKE) -C backend/python/autogptq
$(MAKE) -C backend/python/bark
$(MAKE) -C backend/python/coqui
$(MAKE) -C backend/python/diffusers
$(MAKE) -C backend/python/vllm
$(MAKE) -C backend/python/sentencetransformers
@@ -522,9 +542,13 @@ backend-assets/grpc/stablediffusion: backend-assets/grpc
if [ ! -f backend-assets/grpc/stablediffusion ]; then \
$(MAKE) sources/go-stable-diffusion/libstablediffusion.a; \
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(shell pwd)/sources/go-stable-diffusion/ LIBRARY_PATH=$(shell pwd)/sources/go-stable-diffusion/ \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/stablediffusion ./backend/go/image/; \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/stablediffusion ./backend/go/image/stablediffusion; \
fi
backend-assets/grpc/tinydream: backend-assets/grpc sources/go-tiny-dream/libtinydream.a
CGO_LDFLAGS="$(CGO_LDFLAGS)" LIBRARY_PATH=$(shell pwd)/go-tiny-dream \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/tinydream ./backend/go/image/tinydream
backend-assets/grpc/piper: backend-assets/grpc backend-assets/espeak-ng-data sources/go-piper/libpiper_binding.a
CGO_CXXFLAGS="$(PIPER_CGO_CXXFLAGS)" CGO_LDFLAGS="$(PIPER_CGO_LDFLAGS)" LIBRARY_PATH=$(shell pwd)/sources/go-piper \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/piper ./backend/go/tts/

View File

@@ -20,16 +20,15 @@
</a>
</p>
[<img src="https://img.shields.io/badge/dockerhub-images-important.svg?logo=Docker">](https://hub.docker.com/r/localai/localai)
[<img src="https://img.shields.io/badge/quay.io-images-important.svg?">](https://quay.io/repository/go-skynet/local-ai?tab=tags&tag=latest)
> :bulb: Get help - [❓FAQ](https://localai.io/faq/) [💭Discussions](https://github.com/go-skynet/LocalAI/discussions) [:speech_balloon: Discord](https://discord.gg/uJAeKSAGDy) [:book: Documentation website](https://localai.io/)
>
> [💻 Quickstart](https://localai.io/basics/getting_started/) [📣 News](https://localai.io/basics/news/) [ 🛫 Examples ](https://github.com/go-skynet/LocalAI/tree/master/examples/) [ 🖼️ Models ](https://localai.io/models/) [ 🚀 Roadmap ](https://github.com/mudler/LocalAI/issues?q=is%3Aissue+is%3Aopen+label%3Aroadmap)
[![tests](https://github.com/go-skynet/LocalAI/actions/workflows/test.yml/badge.svg)](https://github.com/go-skynet/LocalAI/actions/workflows/test.yml)[![Build and Release](https://github.com/go-skynet/LocalAI/actions/workflows/release.yaml/badge.svg)](https://github.com/go-skynet/LocalAI/actions/workflows/release.yaml)[![build container images](https://github.com/go-skynet/LocalAI/actions/workflows/image.yml/badge.svg)](https://github.com/go-skynet/LocalAI/actions/workflows/image.yml)[![Bump dependencies](https://github.com/go-skynet/LocalAI/actions/workflows/bump_deps.yaml/badge.svg)](https://github.com/go-skynet/LocalAI/actions/workflows/bump_deps.yaml)[![Artifact Hub](https://img.shields.io/endpoint?url=https://artifacthub.io/badge/repository/localai)](https://artifacthub.io/packages/search?repo=localai)
**LocalAI** is the free, Open Source OpenAI alternative. LocalAI act as a drop-in replacement REST API thats compatible with OpenAI API specifications for local inferencing. It allows you to run LLMs, generate images, audio (and not only) locally or on-prem with consumer grade hardware, supporting multiple model families. Does not require GPU.
<p align="center"><b>Follow LocalAI </b></p>
<p align="center">
<a href="https://twitter.com/LocalAI_API" target="blank">
<img src="https://img.shields.io/twitter/follow/LocalAI_API?label=Follow: LocalAI_API&style=social" alt="Follow LocalAI_API"/>
@@ -38,38 +37,18 @@
<img src="https://dcbadge.vercel.app/api/server/uJAeKSAGDy?style=flat-square&theme=default-inverted" alt="Join LocalAI Discord Community"/>
</a>
<p align="center"><b>Connect with the Creator </b></p>
<p align="center">
<a href="https://twitter.com/mudler_it" target="blank">
<img src="https://img.shields.io/twitter/follow/mudler_it?label=Follow: mudler_it&style=social" alt="Follow mudler_it"/>
</a>
<a href='https://github.com/mudler'>
<img alt="Follow on Github" src="https://img.shields.io/badge/Follow-mudler-black?logo=github&link=https%3A%2F%2Fgithub.com%2Fmudler">
</a>
</p>
<p align="center"><b>Share LocalAI Repository</b></p>
<p align="center">
<a href="https://twitter.com/intent/tweet?text=Check%20this%20GitHub%20repository%20out.%20LocalAI%20-%20Let%27s%20you%20easily%20run%20LLM%20locally.&url=https://github.com/go-skynet/LocalAI&hashtags=LocalAI,AI" target="blank">
<img src="https://img.shields.io/twitter/follow/_LocalAI?label=Share Repo on Twitter&style=social" alt="Follow _LocalAI"/></a>
<a href="https://t.me/share/url?text=Check%20this%20GitHub%20repository%20out.%20LocalAI%20-%20Let%27s%20you%20easily%20run%20LLM%20locally.&url=https://github.com/go-skynet/LocalAI" target="_blank"><img src="https://img.shields.io/twitter/url?label=Telegram&logo=Telegram&style=social&url=https://github.com/go-skynet/LocalAI" alt="Share on Telegram"/></a>
<a href="https://api.whatsapp.com/send?text=Check%20this%20GitHub%20repository%20out.%20LocalAI%20-%20Let%27s%20you%20easily%20run%20LLM%20locally.%20https://github.com/go-skynet/LocalAI"><img src="https://img.shields.io/twitter/url?label=whatsapp&logo=whatsapp&style=social&url=https://github.com/go-skynet/LocalAI" /></a> <a href="https://www.reddit.com/submit?url=https://github.com/go-skynet/LocalAI&title=Check%20this%20GitHub%20repository%20out.%20LocalAI%20-%20Let%27s%20you%20easily%20run%20LLM%20locally.
" target="blank">
<img src="https://img.shields.io/twitter/url?label=Reddit&logo=Reddit&style=social&url=https://github.com/go-skynet/LocalAI" alt="Share on Reddit"/>
</a> <a href="mailto:?subject=Check%20this%20GitHub%20repository%20out.%20LocalAI%20-%20Let%27s%20you%20easily%20run%20LLM%20locally.%3A%0Ahttps://github.com/go-skynet/LocalAI" target="_blank"><img src="https://img.shields.io/twitter/url?label=Gmail&logo=Gmail&style=social&url=https://github.com/go-skynet/LocalAI"/></a> <a href="https://www.buymeacoffee.com/mudler" target="_blank"><img src="https://cdn.buymeacoffee.com/buttons/default-orange.png" alt="Buy Me A Coffee" height="23" width="100" style="border-radius:1px"></a>
</p>
## 💻 [Getting started](https://localai.io/basics/getting_started/index.html)
**LocalAI** is the free, Open Source OpenAI alternative. LocalAI act as a drop-in replacement REST API thats compatible with OpenAI API specifications for local inferencing. It allows you to run LLMs, generate images, audio (and not only) locally or on-prem with consumer grade hardware, supporting multiple model families. Does not require GPU.
## 🔥🔥 Hot topics / Roadmap
[Roadmap](https://github.com/mudler/LocalAI/issues?q=is%3Aissue+is%3Aopen+label%3Aroadmap)
🆕 New! [LLM finetuning guide](https://localai.io/advanced/fine-tuning/)
- Start and share models with config file: https://github.com/mudler/LocalAI/pull/1522
- 🐸 Coqui: https://github.com/mudler/LocalAI/pull/1489
- Inline templates: https://github.com/mudler/LocalAI/pull/1452
- Mixtral: https://github.com/mudler/LocalAI/pull/1449
- Img2vid https://github.com/mudler/LocalAI/pull/1442
- Musicgen https://github.com/mudler/LocalAI/pull/1387
Hot topics (looking for contributors):
- Backends v2: https://github.com/mudler/LocalAI/issues/1126
@@ -77,22 +56,7 @@ Hot topics (looking for contributors):
If you want to help and contribute, issues up for grabs: https://github.com/mudler/LocalAI/issues?q=is%3Aissue+is%3Aopen+label%3A%22up+for+grabs%22
<hr>
In a nutshell:
- Local, OpenAI drop-in alternative REST API. You own your data.
- NO GPU required. NO Internet access is required either
- Optional, GPU Acceleration is available in `llama.cpp`-compatible LLMs. See also the [build section](https://localai.io/basics/build/index.html).
- Supports multiple models
- 🏃 Once loaded the first time, it keep models loaded in memory for faster inference
- ⚡ Doesn't shell-out, but uses C++ bindings for a faster inference and better performance.
LocalAI was created by [Ettore Di Giacinto](https://github.com/mudler/) and is a community-driven project, focused on making the AI accessible to anyone. Any contribution, feedback and PR is welcome!
Note that this started just as a [fun weekend project](https://localai.io/#backstory) in order to try to create the necessary pieces for a full AI assistant like `ChatGPT`: the community is growing fast and we are working hard to make it better and more stable. If you want to help, please consider contributing (see below)!
## 💻 [Getting started](https://localai.io/basics/getting_started/index.html)
## 🚀 [Features](https://localai.io/features/)
@@ -124,6 +88,13 @@ Model galleries
Other:
- Helm chart https://github.com/go-skynet/helm-charts
- VSCode extension https://github.com/badgooooor/localai-vscode-plugin
- Local Smart assistant https://github.com/mudler/LocalAGI
- Home Assistant https://github.com/sammcj/homeassistant-localai / https://github.com/drndos/hass-openai-custom-conversation
- Discord bot https://github.com/mudler/LocalAGI/tree/main/examples/discord
- Slack bot https://github.com/mudler/LocalAGI/tree/main/examples/slack
- Telegram bot https://github.com/mudler/LocalAI/tree/master/examples/telegram-bot
- Examples: https://github.com/mudler/LocalAI/tree/master/examples/
### 🔗 Resources

View File

@@ -16,6 +16,7 @@ import (
"github.com/go-skynet/LocalAI/metrics"
"github.com/go-skynet/LocalAI/pkg/assets"
"github.com/go-skynet/LocalAI/pkg/model"
"github.com/go-skynet/LocalAI/pkg/startup"
"github.com/gofiber/fiber/v2"
"github.com/gofiber/fiber/v2/middleware/cors"
@@ -36,6 +37,8 @@ func Startup(opts ...options.AppOption) (*options.Option, *config.ConfigLoader,
log.Info().Msgf("Starting LocalAI using %d threads, with models path: %s", options.Threads, options.Loader.ModelPath)
log.Info().Msgf("LocalAI version: %s", internal.PrintableVersion())
startup.PreloadModelsConfigurations(options.Loader.ModelPath, options.ModelsURL...)
cl := config.NewConfigLoader()
if err := cl.LoadConfigs(options.Loader.ModelPath); err != nil {
log.Error().Msgf("error loading config files: %s", err.Error())
@@ -51,6 +54,18 @@ func Startup(opts ...options.AppOption) (*options.Option, *config.ConfigLoader,
log.Error().Msgf("error downloading models: %s", err.Error())
}
if options.PreloadJSONModels != "" {
if err := localai.ApplyGalleryFromString(options.Loader.ModelPath, options.PreloadJSONModels, cl, options.Galleries); err != nil {
return nil, nil, err
}
}
if options.PreloadModelsFromPath != "" {
if err := localai.ApplyGalleryFromFile(options.Loader.ModelPath, options.PreloadModelsFromPath, cl, options.Galleries); err != nil {
return nil, nil, err
}
}
if options.Debug {
for _, v := range cl.ListConfigs() {
cfg, _ := cl.GetConfig(v)
@@ -67,18 +82,6 @@ func Startup(opts ...options.AppOption) (*options.Option, *config.ConfigLoader,
}
}
if options.PreloadJSONModels != "" {
if err := localai.ApplyGalleryFromString(options.Loader.ModelPath, options.PreloadJSONModels, cl, options.Galleries); err != nil {
return nil, nil, err
}
}
if options.PreloadModelsFromPath != "" {
if err := localai.ApplyGalleryFromFile(options.Loader.ModelPath, options.PreloadModelsFromPath, cl, options.Galleries); err != nil {
return nil, nil, err
}
}
// turn off any process that was started by GRPC if the context is canceled
go func() {
<-options.Context.Done()

View File

@@ -16,9 +16,9 @@ import (
. "github.com/go-skynet/LocalAI/api"
"github.com/go-skynet/LocalAI/api/options"
"github.com/go-skynet/LocalAI/metrics"
"github.com/go-skynet/LocalAI/pkg/downloader"
"github.com/go-skynet/LocalAI/pkg/gallery"
"github.com/go-skynet/LocalAI/pkg/model"
"github.com/go-skynet/LocalAI/pkg/utils"
"github.com/gofiber/fiber/v2"
. "github.com/onsi/ginkgo/v2"
. "github.com/onsi/gomega"
@@ -61,7 +61,7 @@ func getModelStatus(url string) (response map[string]interface{}) {
}
func getModels(url string) (response []gallery.GalleryModel) {
utils.GetURI(url, func(url string, i []byte) error {
downloader.GetURI(url, func(url string, i []byte) error {
// Unmarshal YAML data into a struct
return json.Unmarshal(i, &response)
})

View File

@@ -159,6 +159,9 @@ func Finetune(config config.Config, input, prediction string) string {
for _, c := range config.TrimSpace {
prediction = strings.TrimSpace(strings.TrimPrefix(prediction, c))
}
return prediction
for _, c := range config.TrimSuffix {
prediction = strings.TrimSpace(strings.TrimSuffix(prediction, c))
}
return prediction
}

View File

@@ -1,6 +1,7 @@
package api_config
import (
"errors"
"fmt"
"io/fs"
"os"
@@ -8,6 +9,7 @@ import (
"strings"
"sync"
"github.com/go-skynet/LocalAI/pkg/downloader"
"github.com/go-skynet/LocalAI/pkg/utils"
"github.com/rs/zerolog/log"
"gopkg.in/yaml.v3"
@@ -51,6 +53,14 @@ type Config struct {
// CUDA
// Explicitly enable CUDA or not (some backends might need it)
CUDA bool `yaml:"cuda"`
DownloadFiles []File `yaml:"download_files"`
}
type File struct {
Filename string `yaml:"filename" json:"filename"`
SHA256 string `yaml:"sha256" json:"sha256"`
URI string `yaml:"uri" json:"uri"`
}
type VallE struct {
@@ -102,16 +112,18 @@ type LLMConfig struct {
StopWords []string `yaml:"stopwords"`
Cutstrings []string `yaml:"cutstrings"`
TrimSpace []string `yaml:"trimspace"`
ContextSize int `yaml:"context_size"`
NUMA bool `yaml:"numa"`
LoraAdapter string `yaml:"lora_adapter"`
LoraBase string `yaml:"lora_base"`
LoraScale float32 `yaml:"lora_scale"`
NoMulMatQ bool `yaml:"no_mulmatq"`
DraftModel string `yaml:"draft_model"`
NDraft int32 `yaml:"n_draft"`
Quantization string `yaml:"quantization"`
MMProj string `yaml:"mmproj"`
TrimSuffix []string `yaml:"trimsuffix"`
ContextSize int `yaml:"context_size"`
NUMA bool `yaml:"numa"`
LoraAdapter string `yaml:"lora_adapter"`
LoraBase string `yaml:"lora_base"`
LoraScale float32 `yaml:"lora_scale"`
NoMulMatQ bool `yaml:"no_mulmatq"`
DraftModel string `yaml:"draft_model"`
NDraft int32 `yaml:"n_draft"`
Quantization string `yaml:"quantization"`
MMProj string `yaml:"mmproj"`
RopeScaling string `yaml:"rope_scaling"`
YarnExtFactor float32 `yaml:"yarn_ext_factor"`
@@ -266,22 +278,44 @@ func (cm *ConfigLoader) ListConfigs() []string {
return res
}
// Preload prepare models if they are not local but url or huggingface repositories
func (cm *ConfigLoader) Preload(modelPath string) error {
cm.Lock()
defer cm.Unlock()
status := func(fileName, current, total string, percent float64) {
utils.DisplayDownloadFunction(fileName, current, total, percent)
}
log.Info().Msgf("Preloading models from %s", modelPath)
for i, config := range cm.configs {
// Download files and verify their SHA
for _, file := range config.DownloadFiles {
log.Debug().Msgf("Checking %q exists and matches SHA", file.Filename)
if err := utils.VerifyPath(file.Filename, modelPath); err != nil {
return err
}
// Create file path
filePath := filepath.Join(modelPath, file.Filename)
if err := downloader.DownloadFile(file.URI, filePath, file.SHA256, status); err != nil {
return err
}
}
modelURL := config.PredictionOptions.Model
modelURL = utils.ConvertURL(modelURL)
if strings.HasPrefix(modelURL, "http://") || strings.HasPrefix(modelURL, "https://") {
modelURL = downloader.ConvertURL(modelURL)
if downloader.LooksLikeURL(modelURL) {
// md5 of model name
md5Name := utils.MD5(modelURL)
// check if file exists
if _, err := os.Stat(filepath.Join(modelPath, md5Name)); err == os.ErrNotExist {
err := utils.DownloadFile(modelURL, filepath.Join(modelPath, md5Name), "", func(fileName, current, total string, percent float64) {
log.Info().Msgf("Downloading %s: %s/%s (%.2f%%)", fileName, current, total, percent)
})
if _, err := os.Stat(filepath.Join(modelPath, md5Name)); errors.Is(err, os.ErrNotExist) {
err := downloader.DownloadFile(modelURL, filepath.Join(modelPath, md5Name), "", status)
if err != nil {
return err
}

View File

@@ -130,6 +130,12 @@ func (g *galleryApplier) Start(c context.Context, cm *config.ConfigLoader) {
continue
}
err = cm.Preload(g.modelPath)
if err != nil {
updateError(err)
continue
}
g.updateStatus(op.id, &galleryOpStatus{Processed: true, Message: "completed", Progress: 100})
}
}

View File

@@ -122,8 +122,12 @@ func ImageEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fiber.Ctx
log.Debug().Msgf("Parameter Config: %+v", config)
// XXX: Only stablediffusion is supported for now
if config.Backend == "" {
switch config.Backend {
case "stablediffusion":
config.Backend = model.StableDiffusionBackend
case "tinydream":
config.Backend = model.TinyDreamBackend
case "":
config.Backend = model.StableDiffusionBackend
}

View File

@@ -40,9 +40,12 @@ type Option struct {
SingleBackend bool
ParallelBackendRequests bool
WatchDogIdle bool
WatchDogBusy bool
WatchDog bool
WatchDogIdle bool
WatchDogBusy bool
WatchDog bool
ModelsURL []string
WatchDogBusyTimeout, WatchDogIdleTimeout time.Duration
}
@@ -63,6 +66,12 @@ func NewOptions(o ...AppOption) *Option {
return opt
}
func WithModelsURL(urls ...string) AppOption {
return func(o *Option) {
o.ModelsURL = urls
}
}
func WithCors(b bool) AppOption {
return func(o *Option) {
o.CORS = b

View File

@@ -17,9 +17,17 @@ cmake_minimum_required(VERSION 3.15)
set(TARGET grpc-server)
set(_PROTOBUF_LIBPROTOBUF libprotobuf)
set(_REFLECTION grpc++_reflection)
if (${CMAKE_SYSTEM_NAME} MATCHES "Darwin")
link_directories("/opt/homebrew/lib")
include_directories("/opt/homebrew/include")
# Set correct Homebrew install folder for Apple Silicon and Intel Macs
if (CMAKE_HOST_SYSTEM_PROCESSOR MATCHES "arm64")
set(HOMEBREW_DEFAULT_PREFIX "/opt/homebrew")
else()
set(HOMEBREW_DEFAULT_PREFIX "/usr/local")
endif()
link_directories("${HOMEBREW_DEFAULT_PREFIX}/lib")
include_directories("${HOMEBREW_DEFAULT_PREFIX}/include")
endif()
find_package(absl CONFIG REQUIRED)

View File

@@ -26,6 +26,7 @@
#include <mutex>
#include <chrono>
#include <regex>
#include <condition_variable>
#include <grpcpp/ext/proto_server_reflection_plugin.h>
#include <grpcpp/grpcpp.h>
#include <grpcpp/health_check_service_interface.h>
@@ -40,12 +41,15 @@ using backend::HealthMessage;
///// LLAMA.CPP server code below
#define DEFAULT_OAICOMPAT_MODEL "gpt-3.5-turbo-0613"
using json = nlohmann::json;
struct server_params
{
std::string hostname = "127.0.0.1";
std::string api_key;
std::string public_path = "examples/server/public";
int32_t port = 8080;
int32_t read_timeout = 600;
@@ -89,7 +93,7 @@ static inline bool is_base64(uint8_t c)
return (isalnum(c) || (c == '+') || (c == '/'));
}
static std::vector<uint8_t> base64_decode(std::string const &encoded_string)
static std::vector<uint8_t> base64_decode(const std::string & encoded_string)
{
int i = 0;
int j = 0;
@@ -216,10 +220,10 @@ struct slot_image
int32_t id;
bool request_encode_image = false;
float* image_embedding = nullptr;
float * image_embedding = nullptr;
int32_t image_tokens = 0;
clip_image_u8 img_data;
clip_image_u8 * img_data;
std::string prefix_prompt; // before of this image
};
@@ -441,15 +445,16 @@ struct llama_client_slot
generated_token_probs.clear();
for (slot_image &img : images)
for (slot_image & img : images)
{
free(img.image_embedding);
delete[] img.img_data.data;
if (img.img_data) {
clip_image_u8_free(img.img_data);
}
img.prefix_prompt = "";
}
images.clear();
// llama_set_rng_seed(ctx, params.seed); in batched the seed matter???????
}
bool has_budget(gpt_params &global_params) {
@@ -550,7 +555,9 @@ struct llama_server_context
std::vector<task_result> queue_results;
std::vector<task_multi> queue_multitasks;
std::mutex mutex_tasks; // also guards id_gen, and queue_multitasks
std::condition_variable condition_tasks;
std::mutex mutex_results;
std::condition_variable condition_results;
~llama_server_context()
{
@@ -769,6 +776,42 @@ struct llama_server_context
slot->prompt = "";
}
slot->sparams.penalty_prompt_tokens.clear();
slot->sparams.use_penalty_prompt_tokens = false;
const auto &penalty_prompt = data.find("penalty_prompt");
if (penalty_prompt != data.end())
{
if (penalty_prompt->is_string())
{
const auto penalty_prompt_string = penalty_prompt->get<std::string>();
auto penalty_tokens = llama_tokenize(model, penalty_prompt_string, false);
slot->sparams.penalty_prompt_tokens.swap(penalty_tokens);
if (slot->params.n_predict > 0)
{
slot->sparams.penalty_prompt_tokens.reserve(slot->sparams.penalty_prompt_tokens.size() + slot->params.n_predict);
}
slot->sparams.use_penalty_prompt_tokens = true;
}
else if (penalty_prompt->is_array())
{
const auto n_tokens = penalty_prompt->size();
slot->sparams.penalty_prompt_tokens.reserve(n_tokens + std::max(0, slot->params.n_predict));
const int n_vocab = llama_n_vocab(model);
for (const auto &penalty_token : *penalty_prompt)
{
if (penalty_token.is_number_integer())
{
const auto tok = penalty_token.get<llama_token>();
if (tok >= 0 && tok < n_vocab)
{
slot->sparams.penalty_prompt_tokens.push_back(tok);
}
}
}
slot->sparams.use_penalty_prompt_tokens = true;
}
}
slot->sparams.logit_bias.clear();
if (json_value(data, "ignore_eos", false))
@@ -821,24 +864,17 @@ struct llama_server_context
{
for (const auto &img : *images_data)
{
std::string data_b64 = img["data"].get<std::string>();
const std::vector<uint8_t> image_buffer = base64_decode(img["data"].get<std::string>());
slot_image img_sl;
img_sl.id = img.count("id") != 0 ? img["id"].get<int>() : slot->images.size();
int width, height, channels;
std::vector<uint8_t> image_buffer = base64_decode(data_b64);
data_b64.clear();
auto data = stbi_load_from_memory(image_buffer.data(), image_buffer.size(), &width, &height, &channels, 3);
if (!data) {
img_sl.img_data = clip_image_u8_init();
if (!clip_image_load_from_bytes(image_buffer.data(), image_buffer.size(), img_sl.img_data))
{
LOG_TEE("slot %i - failed to load image [id: %i]\n", slot->id, img_sl.id);
return false;
}
LOG_TEE("slot %i - image loaded [id: %i] resolution (%i x %i)\n", slot->id, img_sl.id, width, height);
img_sl.img_data.nx = width;
img_sl.img_data.ny = height;
img_sl.img_data.size = width * height * 3;
img_sl.img_data.data = new uint8_t[width * height * 3]();
memcpy(img_sl.img_data.data, data, width * height * 3);
stbi_image_free(data);
LOG_TEE("slot %i - loaded image\n", slot->id);
img_sl.request_encode_image = true;
slot->images.push_back(img_sl);
}
@@ -893,6 +929,7 @@ struct llama_server_context
llama_sampling_free(slot->ctx_sampling);
}
slot->ctx_sampling = llama_sampling_init(slot->sparams);
llama_set_rng_seed(ctx, slot->params.seed);
slot->command = LOAD_PROMPT;
all_slots_are_idle = false;
@@ -1000,6 +1037,12 @@ struct llama_server_context
slot.generated_text += token_str;
slot.has_next_token = true;
if (slot.ctx_sampling->params.use_penalty_prompt_tokens && result.tok != -1)
{
// we can change penalty_prompt_tokens because it is always created from scratch each request
slot.ctx_sampling->params.penalty_prompt_tokens.push_back(result.tok);
}
// check if there is incomplete UTF-8 character at the end
bool incomplete = false;
for (unsigned i = 1; i < 5 && i <= slot.generated_text.size(); ++i)
@@ -1106,8 +1149,8 @@ struct llama_server_context
{
continue;
}
clip_image_f32 img_res;
if (!clip_image_preprocess(clp_ctx, &img.img_data, &img_res, /*pad2square =*/ true))
clip_image_f32 * img_res = clip_image_f32_init();
if (!clip_image_preprocess(clp_ctx, img.img_data, img_res, /*pad2square =*/ true))
{
LOG_TEE("Error processing the given image");
clip_free(clp_ctx);
@@ -1122,11 +1165,12 @@ struct llama_server_context
return false;
}
LOG_TEE("slot %i - encoding image [id: %i]\n", slot.id, img.id);
if (!clip_image_encode(clp_ctx, params.n_threads, &img_res, img.image_embedding))
if (!clip_image_encode(clp_ctx, params.n_threads, img_res, img.image_embedding))
{
LOG_TEE("Unable to encode image\n");
return false;
}
clip_image_f32_free(img_res);
img.request_encode_image = false;
}
@@ -1135,7 +1179,7 @@ struct llama_server_context
void send_error(task_server& task, std::string error)
{
std::lock_guard<std::mutex> lock(mutex_results);
std::unique_lock<std::mutex> lock(mutex_results);
task_result res;
res.id = task.id;
res.multitask_id = task.multitask_id;
@@ -1143,6 +1187,7 @@ struct llama_server_context
res.error = true;
res.result_json = { { "content", error } };
queue_results.push_back(res);
condition_results.notify_all();
}
void add_multi_task(int id, std::vector<int>& sub_ids)
@@ -1152,6 +1197,7 @@ struct llama_server_context
multi.id = id;
std::copy(sub_ids.begin(), sub_ids.end(), std::inserter(multi.subtasks_remaining, multi.subtasks_remaining.end()));
queue_multitasks.push_back(multi);
condition_tasks.notify_one();
}
void update_multi_task(int multitask_id, int subtask_id, task_result& result)
@@ -1163,6 +1209,7 @@ struct llama_server_context
{
multitask.subtasks_remaining.erase(subtask_id);
multitask.results.push_back(result);
condition_tasks.notify_one();
}
}
}
@@ -1181,7 +1228,7 @@ struct llama_server_context
{"n_ctx", slot.n_ctx},
{"model", params.model_alias},
{"seed", slot.params.seed},
{"temp", slot.sparams.temp},
{"temperature", slot.sparams.temp},
{"top_k", slot.sparams.top_k},
{"top_p", slot.sparams.top_p},
{"min_p", slot.sparams.min_p},
@@ -1191,6 +1238,8 @@ struct llama_server_context
{"repeat_penalty", slot.sparams.penalty_repeat},
{"presence_penalty", slot.sparams.penalty_present},
{"frequency_penalty", slot.sparams.penalty_freq},
{"penalty_prompt_tokens", slot.sparams.penalty_prompt_tokens},
{"use_penalty_prompt_tokens", slot.sparams.use_penalty_prompt_tokens},
{"mirostat", slot.sparams.mirostat},
{"mirostat_tau", slot.sparams.mirostat_tau},
{"mirostat_eta", slot.sparams.mirostat_eta},
@@ -1208,7 +1257,7 @@ struct llama_server_context
void send_partial_response(llama_client_slot &slot, completion_token_output tkn)
{
std::lock_guard<std::mutex> lock(mutex_results);
std::unique_lock<std::mutex> lock(mutex_results);
task_result res;
res.id = slot.task_id;
res.multitask_id = slot.multitask_id;
@@ -1244,11 +1293,12 @@ struct llama_server_context
}
queue_results.push_back(res);
condition_results.notify_all();
}
void send_final_response(llama_client_slot &slot)
{
std::lock_guard<std::mutex> lock(mutex_results);
std::unique_lock<std::mutex> lock(mutex_results);
task_result res;
res.id = slot.task_id;
res.multitask_id = slot.multitask_id;
@@ -1304,11 +1354,12 @@ struct llama_server_context
}
queue_results.push_back(res);
condition_results.notify_all();
}
void send_embedding(llama_client_slot &slot)
{
std::lock_guard<std::mutex> lock(mutex_results);
std::unique_lock<std::mutex> lock(mutex_results);
task_result res;
res.id = slot.task_id;
res.multitask_id = slot.multitask_id;
@@ -1336,6 +1387,7 @@ struct llama_server_context
};
}
queue_results.push_back(res);
condition_results.notify_all();
}
int request_completion(json data, bool infill, bool embedding, int multitask_id)
@@ -1359,6 +1411,7 @@ struct llama_server_context
// otherwise, it's a single-prompt task, we actually queue it
queue_tasks.push_back(task);
condition_tasks.notify_one();
return task.id;
}
@@ -1366,13 +1419,10 @@ struct llama_server_context
{
while (true)
{
std::this_thread::sleep_for(std::chrono::microseconds(5));
std::lock_guard<std::mutex> lock(mutex_results);
if (queue_results.empty())
{
continue;
}
std::unique_lock<std::mutex> lock(mutex_results);
condition_results.wait(lock, [&]{
return !queue_results.empty();
});
for (int i = 0; i < (int) queue_results.size(); i++)
{
@@ -1468,12 +1518,13 @@ struct llama_server_context
void request_cancel(int task_id)
{
std::lock_guard<std::mutex> lock(mutex_tasks);
std::unique_lock<std::mutex> lock(mutex_tasks);
task_server task;
task.id = id_gen++;
task.type = CANCEL_TASK;
task.target_id = task_id;
queue_tasks.push_back(task);
condition_tasks.notify_one();
}
int split_multiprompt_task(task_server& multiprompt_task)
@@ -1499,7 +1550,7 @@ struct llama_server_context
void process_tasks()
{
std::lock_guard<std::mutex> lock(mutex_tasks);
std::unique_lock<std::mutex> lock(mutex_tasks);
while (!queue_tasks.empty())
{
task_server task = queue_tasks.front();
@@ -1571,6 +1622,7 @@ struct llama_server_context
std::lock_guard<std::mutex> lock(mutex_results);
queue_results.push_back(aggregate_result);
condition_results.notify_all();
queue_iterator = queue_multitasks.erase(queue_iterator);
}
@@ -1601,8 +1653,10 @@ struct llama_server_context
LOG_TEE("all slots are idle and system prompt is empty, clear the KV cache\n");
kv_cache_clear();
}
// avoid 100% usage of cpu all time
std::this_thread::sleep_for(std::chrono::milliseconds(5));
std::unique_lock<std::mutex> lock(mutex_tasks);
condition_tasks.wait(lock, [&]{
return !queue_tasks.empty();
});
}
for (llama_client_slot &slot : slots)
@@ -1962,28 +2016,35 @@ json oaicompat_completion_params_parse(
llama_params["__oaicompat"] = true;
// Map OpenAI parameters to llama.cpp parameters
//
// For parameters that are defined by the OpenAI documentation (e.g.
// temperature), we explicitly specify OpenAI's intended default; we
// need to do that because sometimes OpenAI disagrees with llama.cpp
//
// https://platform.openai.com/docs/api-reference/chat/create
llama_sampling_params default_sparams;
llama_params["model"] = json_value(body, "model", std::string("uknown"));
llama_params["prompt"] = format_chatml(body["messages"]); // OpenAI 'messages' to llama.cpp 'prompt'
llama_params["cache_prompt"] = json_value(body, "cache_prompt", false);
llama_params["temperature"] = json_value(body, "temperature", 0.8);
llama_params["top_k"] = json_value(body, "top_k", 40);
llama_params["top_p"] = json_value(body, "top_p", 0.95);
llama_params["temperature"] = json_value(body, "temperature", 0.0);
llama_params["top_k"] = json_value(body, "top_k", default_sparams.top_k);
llama_params["top_p"] = json_value(body, "top_p", 1.0);
llama_params["n_predict"] = json_value(body, "max_tokens", -1);
llama_params["logit_bias"] = json_value(body, "logit_bias",json::object());
llama_params["frequency_penalty"] = json_value(body, "frequency_penalty", 0.0);
llama_params["presence_penalty"] = json_value(body, "presence_penalty", 0.0);
llama_params["seed"] = json_value(body, "seed", 0);
llama_params["seed"] = json_value(body, "seed", LLAMA_DEFAULT_SEED);
llama_params["stream"] = json_value(body, "stream", false);
llama_params["mirostat"] = json_value(body, "mirostat", false);
llama_params["mirostat_tau"] = json_value(body, "mirostat_tau", 0.0);
llama_params["mirostat_eta"] = json_value(body, "mirostat_eta", 0.0);
llama_params["penalize_nl"] = json_value(body, "penalize_nl", false);
llama_params["typical_p"] = json_value(body, "typical_p", 0.0);
llama_params["repeat_last_n"] = json_value(body, "repeat_last_n", 0);
llama_params["mirostat"] = json_value(body, "mirostat", default_sparams.mirostat);
llama_params["mirostat_tau"] = json_value(body, "mirostat_tau", default_sparams.mirostat_tau);
llama_params["mirostat_eta"] = json_value(body, "mirostat_eta", default_sparams.mirostat_eta);
llama_params["penalize_nl"] = json_value(body, "penalize_nl", default_sparams.penalize_nl);
llama_params["typical_p"] = json_value(body, "typical_p", default_sparams.typical_p);
llama_params["repeat_last_n"] = json_value(body, "repeat_last_n", default_sparams.penalty_last_n);
llama_params["ignore_eos"] = json_value(body, "ignore_eos", false);
llama_params["tfs_z"] = json_value(body, "tfs_z", 0.0);
llama_params["tfs_z"] = json_value(body, "tfs_z", default_sparams.tfs_z);
if (llama_params.count("grammar") != 0) {
if (body.count("grammar") != 0) {
llama_params["grammar"] = json_value(body, "grammar", json::object());
}

View File

@@ -15,7 +15,7 @@ var (
func main() {
flag.Parse()
if err := grpc.StartServer(*addr, &StableDiffusion{}); err != nil {
if err := grpc.StartServer(*addr, &Image{}); err != nil {
panic(err)
}
}

View File

@@ -8,20 +8,20 @@ import (
"github.com/go-skynet/LocalAI/pkg/stablediffusion"
)
type StableDiffusion struct {
type Image struct {
base.SingleThread
stablediffusion *stablediffusion.StableDiffusion
}
func (sd *StableDiffusion) Load(opts *pb.ModelOptions) error {
func (image *Image) Load(opts *pb.ModelOptions) error {
var err error
// Note: the Model here is a path to a directory containing the model files
sd.stablediffusion, err = stablediffusion.New(opts.ModelFile)
image.stablediffusion, err = stablediffusion.New(opts.ModelFile)
return err
}
func (sd *StableDiffusion) GenerateImage(opts *pb.GenerateImageRequest) error {
return sd.stablediffusion.GenerateImage(
func (image *Image) GenerateImage(opts *pb.GenerateImageRequest) error {
return image.stablediffusion.GenerateImage(
int(opts.Height),
int(opts.Width),
int(opts.Mode),

View File

@@ -0,0 +1,21 @@
package main
// Note: this is started internally by LocalAI and a server is allocated for each model
import (
"flag"
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
)
var (
addr = flag.String("addr", "localhost:50051", "the address to connect to")
)
func main() {
flag.Parse()
if err := grpc.StartServer(*addr, &Image{}); err != nil {
panic(err)
}
}

View File

@@ -0,0 +1,32 @@
package main
// This is a wrapper to statisfy the GRPC service interface
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
import (
"github.com/go-skynet/LocalAI/pkg/grpc/base"
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
"github.com/go-skynet/LocalAI/pkg/tinydream"
)
type Image struct {
base.SingleThread
tinydream *tinydream.TinyDream
}
func (image *Image) Load(opts *pb.ModelOptions) error {
var err error
// Note: the Model here is a path to a directory containing the model files
image.tinydream, err = tinydream.New(opts.ModelFile)
return err
}
func (image *Image) GenerateImage(opts *pb.GenerateImageRequest) error {
return image.tinydream.GenerateImage(
int(opts.Height),
int(opts.Width),
int(opts.Step),
int(opts.Seed),
opts.PositivePrompt,
opts.NegativePrompt,
opts.Dst)
}

View File

@@ -53,7 +53,7 @@ dependencies:
- mpmath==1.3.0
- multidict==6.0.4
- multiprocess==0.70.15
- networkx==3.1
- networkx
- numpy==1.26.0
- nvidia-cublas-cu12==12.1.3.1
- nvidia-cuda-cupti-cu12==12.1.105
@@ -68,7 +68,7 @@ dependencies:
- nvidia-nvjitlink-cu12==12.2.140
- nvidia-nvtx-cu12==12.1.105
- packaging==23.2
- pandas==2.1.1
- pandas
- peft==0.5.0
- git+https://github.com/bigscience-workshop/petals
- protobuf==4.24.4
@@ -90,10 +90,28 @@ dependencies:
- torchaudio==2.1.0
- tqdm==4.66.1
- transformers==4.34.0
- TTS==0.22.0
- triton==2.1.0
- typing-extensions==4.8.0
- tzdata==2023.3
- urllib3==1.26.17
- xxhash==3.4.1
- yarl==1.9.2
- soundfile
- langid
- wget
- unidecode
- pyopenjtalk-prebuilt
- pypinyin
- inflect
- cn2an
- jieba
- eng_to_ipa
- openai-whisper
- matplotlib
- gradio==3.41.2
- nltk
- sudachipy
- sudachidict_core
- vocos
prefix: /opt/conda/envs/transformers

View File

@@ -33,6 +33,7 @@ dependencies:
- boto3==1.28.61
- botocore==1.31.61
- certifi==2023.7.22
- TTS==0.22.0
- charset-normalizer==3.3.0
- datasets==2.14.5
- sentence-transformers==2.2.2
@@ -53,10 +54,10 @@ dependencies:
- mpmath==1.3.0
- multidict==6.0.4
- multiprocess==0.70.15
- networkx==3.1
- networkx
- numpy==1.26.0
- packaging==23.2
- pandas==2.1.1
- pandas
- peft==0.5.0
- git+https://github.com/bigscience-workshop/petals
- protobuf==4.24.4
@@ -84,4 +85,21 @@ dependencies:
- urllib3==1.26.17
- xxhash==3.4.1
- yarl==1.9.2
prefix: /opt/conda/envs/transformers
- soundfile
- langid
- wget
- unidecode
- pyopenjtalk-prebuilt
- pypinyin
- inflect
- cn2an
- jieba
- eng_to_ipa
- openai-whisper
- matplotlib
- gradio==3.41.2
- nltk
- sudachipy
- sudachidict_core
- vocos
prefix: /opt/conda/envs/transformers

View File

@@ -0,0 +1,15 @@
.PHONY: coqui
coqui:
$(MAKE) -C ../common-env/transformers
.PHONY: run
run:
@echo "Running coqui..."
bash run.sh
@echo "coqui run."
.PHONY: test
test:
@echo "Testing coqui..."
bash test.sh
@echo "coqui tested."

View File

@@ -0,0 +1,11 @@
# Creating a separate environment for ttsbark project
```
make coqui
```
# Testing the gRPC server
```
make test
```

View File

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,363 @@
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT!
"""Client and server classes corresponding to protobuf-defined services."""
import grpc
import backend_pb2 as backend__pb2
class BackendStub(object):
"""Missing associated documentation comment in .proto file."""
def __init__(self, channel):
"""Constructor.
Args:
channel: A grpc.Channel.
"""
self.Health = channel.unary_unary(
'/backend.Backend/Health',
request_serializer=backend__pb2.HealthMessage.SerializeToString,
response_deserializer=backend__pb2.Reply.FromString,
)
self.Predict = channel.unary_unary(
'/backend.Backend/Predict',
request_serializer=backend__pb2.PredictOptions.SerializeToString,
response_deserializer=backend__pb2.Reply.FromString,
)
self.LoadModel = channel.unary_unary(
'/backend.Backend/LoadModel',
request_serializer=backend__pb2.ModelOptions.SerializeToString,
response_deserializer=backend__pb2.Result.FromString,
)
self.PredictStream = channel.unary_stream(
'/backend.Backend/PredictStream',
request_serializer=backend__pb2.PredictOptions.SerializeToString,
response_deserializer=backend__pb2.Reply.FromString,
)
self.Embedding = channel.unary_unary(
'/backend.Backend/Embedding',
request_serializer=backend__pb2.PredictOptions.SerializeToString,
response_deserializer=backend__pb2.EmbeddingResult.FromString,
)
self.GenerateImage = channel.unary_unary(
'/backend.Backend/GenerateImage',
request_serializer=backend__pb2.GenerateImageRequest.SerializeToString,
response_deserializer=backend__pb2.Result.FromString,
)
self.AudioTranscription = channel.unary_unary(
'/backend.Backend/AudioTranscription',
request_serializer=backend__pb2.TranscriptRequest.SerializeToString,
response_deserializer=backend__pb2.TranscriptResult.FromString,
)
self.TTS = channel.unary_unary(
'/backend.Backend/TTS',
request_serializer=backend__pb2.TTSRequest.SerializeToString,
response_deserializer=backend__pb2.Result.FromString,
)
self.TokenizeString = channel.unary_unary(
'/backend.Backend/TokenizeString',
request_serializer=backend__pb2.PredictOptions.SerializeToString,
response_deserializer=backend__pb2.TokenizationResponse.FromString,
)
self.Status = channel.unary_unary(
'/backend.Backend/Status',
request_serializer=backend__pb2.HealthMessage.SerializeToString,
response_deserializer=backend__pb2.StatusResponse.FromString,
)
class BackendServicer(object):
"""Missing associated documentation comment in .proto file."""
def Health(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def Predict(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def LoadModel(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def PredictStream(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def Embedding(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def GenerateImage(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def AudioTranscription(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def TTS(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def TokenizeString(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def Status(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def add_BackendServicer_to_server(servicer, server):
rpc_method_handlers = {
'Health': grpc.unary_unary_rpc_method_handler(
servicer.Health,
request_deserializer=backend__pb2.HealthMessage.FromString,
response_serializer=backend__pb2.Reply.SerializeToString,
),
'Predict': grpc.unary_unary_rpc_method_handler(
servicer.Predict,
request_deserializer=backend__pb2.PredictOptions.FromString,
response_serializer=backend__pb2.Reply.SerializeToString,
),
'LoadModel': grpc.unary_unary_rpc_method_handler(
servicer.LoadModel,
request_deserializer=backend__pb2.ModelOptions.FromString,
response_serializer=backend__pb2.Result.SerializeToString,
),
'PredictStream': grpc.unary_stream_rpc_method_handler(
servicer.PredictStream,
request_deserializer=backend__pb2.PredictOptions.FromString,
response_serializer=backend__pb2.Reply.SerializeToString,
),
'Embedding': grpc.unary_unary_rpc_method_handler(
servicer.Embedding,
request_deserializer=backend__pb2.PredictOptions.FromString,
response_serializer=backend__pb2.EmbeddingResult.SerializeToString,
),
'GenerateImage': grpc.unary_unary_rpc_method_handler(
servicer.GenerateImage,
request_deserializer=backend__pb2.GenerateImageRequest.FromString,
response_serializer=backend__pb2.Result.SerializeToString,
),
'AudioTranscription': grpc.unary_unary_rpc_method_handler(
servicer.AudioTranscription,
request_deserializer=backend__pb2.TranscriptRequest.FromString,
response_serializer=backend__pb2.TranscriptResult.SerializeToString,
),
'TTS': grpc.unary_unary_rpc_method_handler(
servicer.TTS,
request_deserializer=backend__pb2.TTSRequest.FromString,
response_serializer=backend__pb2.Result.SerializeToString,
),
'TokenizeString': grpc.unary_unary_rpc_method_handler(
servicer.TokenizeString,
request_deserializer=backend__pb2.PredictOptions.FromString,
response_serializer=backend__pb2.TokenizationResponse.SerializeToString,
),
'Status': grpc.unary_unary_rpc_method_handler(
servicer.Status,
request_deserializer=backend__pb2.HealthMessage.FromString,
response_serializer=backend__pb2.StatusResponse.SerializeToString,
),
}
generic_handler = grpc.method_handlers_generic_handler(
'backend.Backend', rpc_method_handlers)
server.add_generic_rpc_handlers((generic_handler,))
# This class is part of an EXPERIMENTAL API.
class Backend(object):
"""Missing associated documentation comment in .proto file."""
@staticmethod
def Health(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Health',
backend__pb2.HealthMessage.SerializeToString,
backend__pb2.Reply.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def Predict(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Predict',
backend__pb2.PredictOptions.SerializeToString,
backend__pb2.Reply.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def LoadModel(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/LoadModel',
backend__pb2.ModelOptions.SerializeToString,
backend__pb2.Result.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def PredictStream(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_stream(request, target, '/backend.Backend/PredictStream',
backend__pb2.PredictOptions.SerializeToString,
backend__pb2.Reply.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def Embedding(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Embedding',
backend__pb2.PredictOptions.SerializeToString,
backend__pb2.EmbeddingResult.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def GenerateImage(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/GenerateImage',
backend__pb2.GenerateImageRequest.SerializeToString,
backend__pb2.Result.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def AudioTranscription(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/AudioTranscription',
backend__pb2.TranscriptRequest.SerializeToString,
backend__pb2.TranscriptResult.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def TTS(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/TTS',
backend__pb2.TTSRequest.SerializeToString,
backend__pb2.Result.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def TokenizeString(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/TokenizeString',
backend__pb2.PredictOptions.SerializeToString,
backend__pb2.TokenizationResponse.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def Status(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/backend.Backend/Status',
backend__pb2.HealthMessage.SerializeToString,
backend__pb2.StatusResponse.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)

View File

@@ -0,0 +1,97 @@
#!/usr/bin/env python3
"""
This is an extra gRPC server of LocalAI for Bark TTS
"""
from concurrent import futures
import time
import argparse
import signal
import sys
import os
import backend_pb2
import backend_pb2_grpc
import torch
from TTS.api import TTS
import grpc
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
# If MAX_WORKERS are specified in the environment use it, otherwise default to 1
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1'))
COQUI_LANGUAGE = os.environ.get('COQUI_LANGUAGE', 'en')
# Implement the BackendServicer class with the service methods
class BackendServicer(backend_pb2_grpc.BackendServicer):
"""
BackendServicer is the class that implements the gRPC service
"""
def Health(self, request, context):
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
def LoadModel(self, request, context):
# Get device
device = "cuda" if request.CUDA else "cpu"
if not torch.cuda.is_available() and request.CUDA:
return backend_pb2.Result(success=False, message="CUDA is not available")
# List available 🐸TTS models
print(TTS().list_models())
if os.path.isabs(request.AudioPath):
self.AudioPath = request.AudioPath
elif request.AudioPath and request.ModelFile != "" and not os.path.isabs(request.AudioPath):
# get base path of modelFile
modelFileBase = os.path.dirname(request.ModelFile)
# modify LoraAdapter to be relative to modelFileBase
self.AudioPath = os.path.join(modelFileBase, request.AudioPath)
try:
print("Preparing models, please wait", file=sys.stderr)
self.tts = TTS(request.Model).to(device)
except Exception as err:
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
# Implement your logic here for the LoadModel service
# Replace this with your desired response
return backend_pb2.Result(message="Model loaded successfully", success=True)
def TTS(self, request, context):
try:
self.tts.tts_to_file(text=request.text, speaker_wav=self.AudioPath, language=COQUI_LANGUAGE, file_path=request.dst)
except Exception as err:
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
return backend_pb2.Result(success=True)
def serve(address):
server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS))
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
server.add_insecure_port(address)
server.start()
print("Server started. Listening on: " + address, file=sys.stderr)
# Define the signal handler function
def signal_handler(sig, frame):
print("Received termination signal. Shutting down...")
server.stop(0)
sys.exit(0)
# Set the signal handlers for SIGINT and SIGTERM
signal.signal(signal.SIGINT, signal_handler)
signal.signal(signal.SIGTERM, signal_handler)
try:
while True:
time.sleep(_ONE_DAY_IN_SECONDS)
except KeyboardInterrupt:
server.stop(0)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run the gRPC server.")
parser.add_argument(
"--addr", default="localhost:50051", help="The address to bind the server to."
)
args = parser.parse_args()
serve(args.addr)

14
backend/python/coqui/run.sh Executable file
View File

@@ -0,0 +1,14 @@
#!/bin/bash
##
## A bash script wrapper that runs the ttsbark server with conda
export PATH=$PATH:/opt/conda/bin
# Activate conda environment
source activate transformers
# get the directory where the bash script is located
DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
python $DIR/coqui_server.py $@

View File

@@ -0,0 +1,82 @@
"""
A test script to test the gRPC service
"""
import unittest
import subprocess
import time
import backend_pb2
import backend_pb2_grpc
import grpc
class TestBackendServicer(unittest.TestCase):
"""
TestBackendServicer is the class that tests the gRPC service
"""
def setUp(self):
"""
This method sets up the gRPC service by starting the server
"""
self.service = subprocess.Popen(["python3", "coqui_server.py", "--addr", "localhost:50051"])
time.sleep(10)
def tearDown(self) -> None:
"""
This method tears down the gRPC service by terminating the server
"""
self.service.terminate()
self.service.wait()
def test_server_startup(self):
"""
This method tests if the server starts up successfully
"""
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.Health(backend_pb2.HealthMessage())
self.assertEqual(response.message, b'OK')
except Exception as err:
print(err)
self.fail("Server failed to start")
finally:
self.tearDown()
def test_load_model(self):
"""
This method tests if the model is loaded successfully
"""
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.LoadModel(backend_pb2.ModelOptions(Model="tts_models/en/vctk/vits"))
print(response)
self.assertTrue(response.success)
self.assertEqual(response.message, "Model loaded successfully")
except Exception as err:
print(err)
self.fail("LoadModel service failed")
finally:
self.tearDown()
def test_tts(self):
"""
This method tests if the embeddings are generated successfully
"""
try:
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.LoadModel(backend_pb2.ModelOptions(Model="tts_models/en/vctk/vits"))
self.assertTrue(response.success)
tts_request = backend_pb2.TTSRequest(text="80s TV news production music hit for tonight's biggest story")
tts_response = stub.TTS(tts_request)
self.assertIsNotNone(tts_response)
except Exception as err:
print(err)
self.fail("TTS service failed")
finally:
self.tearDown()

View File

@@ -0,0 +1,11 @@
#!/bin/bash
##
## A bash script wrapper that runs the bark server with conda
# Activate conda environment
source activate transformers
# get the directory where the bash script is located
DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
python -m unittest $DIR/test.py

View File

@@ -149,9 +149,9 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
local = False
modelFile = request.Model
cfg_scale = 7
self.cfg_scale = 7
if request.CFGScale != 0:
cfg_scale = request.CFGScale
self.cfg_scale = request.CFGScale
clipmodel = "runwayml/stable-diffusion-v1-5"
if request.CLIPModel != "":
@@ -173,17 +173,14 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
if (request.PipelineType == "StableDiffusionImg2ImgPipeline") or (request.IMG2IMG and request.PipelineType == ""):
if fromSingleFile:
self.pipe = StableDiffusionImg2ImgPipeline.from_single_file(modelFile,
torch_dtype=torchType,
guidance_scale=cfg_scale)
torch_dtype=torchType)
else:
self.pipe = StableDiffusionImg2ImgPipeline.from_pretrained(request.Model,
torch_dtype=torchType,
guidance_scale=cfg_scale)
torch_dtype=torchType)
elif request.PipelineType == "StableDiffusionDepth2ImgPipeline":
self.pipe = StableDiffusionDepth2ImgPipeline.from_pretrained(request.Model,
torch_dtype=torchType,
guidance_scale=cfg_scale)
torch_dtype=torchType)
## img2vid
elif request.PipelineType == "StableVideoDiffusionPipeline":
self.img2vid=True
@@ -197,38 +194,32 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
self.pipe = AutoPipelineForText2Image.from_pretrained(request.Model,
torch_dtype=torchType,
use_safetensors=SAFETENSORS,
variant=variant,
guidance_scale=cfg_scale)
variant=variant)
elif request.PipelineType == "StableDiffusionPipeline":
if fromSingleFile:
self.pipe = StableDiffusionPipeline.from_single_file(modelFile,
torch_dtype=torchType,
guidance_scale=cfg_scale)
torch_dtype=torchType)
else:
self.pipe = StableDiffusionPipeline.from_pretrained(request.Model,
torch_dtype=torchType,
guidance_scale=cfg_scale)
torch_dtype=torchType)
elif request.PipelineType == "DiffusionPipeline":
self.pipe = DiffusionPipeline.from_pretrained(request.Model,
torch_dtype=torchType,
guidance_scale=cfg_scale)
torch_dtype=torchType)
elif request.PipelineType == "VideoDiffusionPipeline":
self.txt2vid=True
self.pipe = DiffusionPipeline.from_pretrained(request.Model,
torch_dtype=torchType,
guidance_scale=cfg_scale)
torch_dtype=torchType)
elif request.PipelineType == "StableDiffusionXLPipeline":
if fromSingleFile:
self.pipe = StableDiffusionXLPipeline.from_single_file(modelFile,
torch_dtype=torchType, use_safetensors=True,
guidance_scale=cfg_scale)
torch_dtype=torchType,
use_safetensors=True)
else:
self.pipe = StableDiffusionXLPipeline.from_pretrained(
request.Model,
torch_dtype=torchType,
use_safetensors=True,
variant=variant,
guidance_scale=cfg_scale)
variant=variant)
if CLIPSKIP and request.CLIPSkip != 0:
self.clip_skip = request.CLIPSkip
@@ -384,12 +375,12 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
image = image.resize((1024, 576))
generator = torch.manual_seed(request.seed)
frames = self.pipe(image, decode_chunk_size=CHUNK_SIZE, generator=generator).frames[0]
frames = self.pipe(image, guidance_scale=self.cfg_scale, decode_chunk_size=CHUNK_SIZE, generator=generator).frames[0]
export_to_video(frames, request.dst, fps=FPS)
return backend_pb2.Result(message="Media generated successfully", success=True)
if self.txt2vid:
video_frames = self.pipe(prompt, num_inference_steps=steps, num_frames=int(FRAMES)).frames
video_frames = self.pipe(prompt, guidance_scale=self.cfg_scale, num_inference_steps=steps, num_frames=int(FRAMES)).frames
export_to_video(video_frames, request.dst)
return backend_pb2.Result(message="Media generated successfully", success=True)
@@ -398,13 +389,15 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
conditioning = self.compel.build_conditioning_tensor(prompt)
kwargs["prompt_embeds"]= conditioning
# pass the kwargs dictionary to the self.pipe method
image = self.pipe(
image = self.pipe(
guidance_scale=self.cfg_scale,
**kwargs
).images[0]
else:
# pass the kwargs dictionary to the self.pipe method
image = self.pipe(
prompt,
prompt,
guidance_scale=self.cfg_scale,
**kwargs
).images[0]

View File

@@ -53,6 +53,7 @@ dependencies:
- nvidia-nccl-cu12==2.18.1
- nvidia-nvjitlink-cu12==12.2.140
- nvidia-nvtx-cu12==12.1.105
- omegaconf
- packaging==23.2
- pillow==10.0.1
- protobuf==4.24.4

View File

@@ -11,4 +11,6 @@ source activate exllama
# get the directory where the bash script is located
DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
cd $DIR
python $DIR/exllama.py $@

View File

@@ -7,7 +7,8 @@ import backend_pb2_grpc
import argparse
import signal
import sys
import os, glob
import os
import glob
from pathlib import Path
import torch
@@ -21,7 +22,7 @@ from exllamav2.generator import (
)
from exllamav2 import(
from exllamav2 import (
ExLlamaV2,
ExLlamaV2Config,
ExLlamaV2Cache,
@@ -40,6 +41,7 @@ MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1'))
class BackendServicer(backend_pb2_grpc.BackendServicer):
def Health(self, request, context):
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
def LoadModel(self, request, context):
try:
model_directory = request.ModelFile
@@ -50,7 +52,7 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
model = ExLlamaV2(config)
cache = ExLlamaV2Cache(model, lazy = True)
cache = ExLlamaV2Cache(model, lazy=True)
model.load_autosplit(cache)
tokenizer = ExLlamaV2Tokenizer(config)
@@ -59,7 +61,7 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
generator = ExLlamaV2BaseGenerator(model, cache, tokenizer)
self.generator= generator
self.generator = generator
generator.warmup()
self.model = model
@@ -85,17 +87,18 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
if request.Tokens != 0:
tokens = request.Tokens
output = self.generator.generate_simple(request.Prompt, settings, tokens, seed = self.seed)
output = self.generator.generate_simple(
request.Prompt, settings, tokens)
# Remove prompt from response if present
if request.Prompt in output:
output = output.replace(request.Prompt, "")
return backend_pb2.Result(message=bytes(t, encoding='utf-8'))
return backend_pb2.Result(message=bytes(output, encoding='utf-8'))
def PredictStream(self, request, context):
# Implement PredictStream RPC
#for reply in some_data_generator():
# for reply in some_data_generator():
# yield reply
# Not implemented yet
return self.Predict(request, context)
@@ -124,6 +127,7 @@ def serve(address):
except KeyboardInterrupt:
server.stop(0)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run the gRPC server.")
parser.add_argument(
@@ -131,4 +135,4 @@ if __name__ == "__main__":
)
args = parser.parse_args()
serve(args.addr)
serve(args.addr)

View File

@@ -11,4 +11,6 @@ source activate exllama2
# get the directory where the bash script is located
DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
cd $DIR
python $DIR/exllama2_backend.py $@

View File

@@ -1,8 +1,6 @@
.PHONY: ttsvalle
ttsvalle:
@echo "Creating virtual environment..."
@conda env create --name ttsvalle --file ttsvalle.yml
@echo "Virtual environment created."
$(MAKE) -C ../common-env/transformers
bash install.sh
.PHONY: run

View File

@@ -3,12 +3,13 @@
##
## A bash script installs the required dependencies of VALL-E-X and prepares the environment
export PATH=$PATH:/opt/conda/bin
export SHA=3faaf8ccadb154d63b38070caf518ce9309ea0f4
# Activate conda environment
source activate ttsvalle
source activate transformers
echo $CONDA_PREFIX
git clone https://github.com/Plachtaa/VALL-E-X.git $CONDA_PREFIX/vall-e-x && pushd $CONDA_PREFIX/vall-e-x && pip install -r requirements.txt && popd
git clone https://github.com/Plachtaa/VALL-E-X.git $CONDA_PREFIX/vall-e-x && pushd $CONDA_PREFIX/vall-e-x && git checkout -b build $SHA && pip install -r requirements.txt && popd
cp -rfv $CONDA_PREFIX/vall-e-x/* ./

View File

@@ -5,9 +5,11 @@
export PATH=$PATH:/opt/conda/bin
# Activate conda environment
source activate ttsvalle
source activate transformers
# get the directory where the bash script is located
DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
cd $DIR
python $DIR/ttsvalle.py $@

View File

@@ -3,7 +3,7 @@
## A bash script wrapper that runs the ttsvalle server with conda
# Activate conda environment
source activate ttsvalle
source activate transformers
# get the directory where the bash script is located
DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"

View File

@@ -18,14 +18,15 @@ title = "LocalAI"
</a>
</p>
[<img src="https://img.shields.io/badge/dockerhub-images-important.svg?logo=Docker">](https://hub.docker.com/r/localai/localai)
[<img src="https://img.shields.io/badge/quay.io-images-important.svg?">](https://quay.io/repository/go-skynet/local-ai?tab=tags&tag=latest)
> 💡 Get help - [❓FAQ](https://localai.io/faq/) [❓How tos](https://localai.io/howtos/) [💭Discussions](https://github.com/go-skynet/LocalAI/discussions) [💭Discord](https://discord.gg/uJAeKSAGDy)
>
> [💻 Quickstart](https://localai.io/basics/getting_started/) [📣 News](https://localai.io/basics/news/) [ 🛫 Examples ](https://github.com/go-skynet/LocalAI/tree/master/examples/) [ 🖼️ Models ](https://localai.io/models/) [ 🚀 Roadmap ](https://github.com/mudler/LocalAI/issues?q=is%3Aissue+is%3Aopen+label%3Aroadmap)
**LocalAI** is the free, Open Source OpenAI alternative. LocalAI act as a drop-in replacement REST API that's compatible with OpenAI API specifications for local inferencing. It allows you to run LLMs, generate images, audio (and not only) locally or on-prem with consumer grade hardware, supporting multiple model families that are compatible with the ggml format. Does not require GPU. It is maintained by [mudler](https://github.com/mudler).
<p align="center"><b>Follow LocalAI </b></p>
<p align="center">
<a href="https://twitter.com/LocalAI_API" target="blank">
<img src="https://img.shields.io/twitter/follow/LocalAI_API?label=Follow: LocalAI_API&style=social" alt="Follow LocalAI_API"/>
@@ -34,45 +35,19 @@ title = "LocalAI"
<img src="https://dcbadge.vercel.app/api/server/uJAeKSAGDy?style=flat-square&theme=default-inverted" alt="Join LocalAI Discord Community"/>
</a>
<p align="center"><b>Connect with the Creator </b></p>
<p align="center">
<a href="https://twitter.com/mudler_it" target="blank">
<img src="https://img.shields.io/twitter/follow/mudler_it?label=Follow: mudler_it&style=social" alt="Follow mudler_it"/>
</a>
<a href='https://github.com/mudler'>
<img alt="Follow on Github" src="https://img.shields.io/badge/Follow-mudler-black?logo=github&link=https%3A%2F%2Fgithub.com%2Fmudler">
</a>
</p>
<p align="center"><b>Share LocalAI Repository</b></p>
<p align="center">
<a href="https://twitter.com/intent/tweet?text=Check%20this%20GitHub%20repository%20out.%20LocalAI%20-%20Let%27s%20you%20easily%20run%20LLM%20locally.&url=https://github.com/go-skynet/LocalAI&hashtags=LocalAI,AI" target="blank">
<img src="https://img.shields.io/twitter/follow/_LocalAI?label=Share Repo on Twitter&style=social" alt="Follow _LocalAI"/></a>
<a href="https://t.me/share/url?text=Check%20this%20GitHub%20repository%20out.%20LocalAI%20-%20Let%27s%20you%20easily%20run%20LLM%20locally.&url=https://github.com/go-skynet/LocalAI" target="_blank"><img src="https://img.shields.io/twitter/url?label=Telegram&logo=Telegram&style=social&url=https://github.com/go-skynet/LocalAI" alt="Share on Telegram"/></a>
<a href="https://api.whatsapp.com/send?text=Check%20this%20GitHub%20repository%20out.%20LocalAI%20-%20Let%27s%20you%20easily%20run%20LLM%20locally.%20https://github.com/go-skynet/LocalAI"><img src="https://img.shields.io/twitter/url?label=whatsapp&logo=whatsapp&style=social&url=https://github.com/go-skynet/LocalAI" /></a> <a href="https://www.reddit.com/submit?url=https://github.com/go-skynet/LocalAI&title=Check%20this%20GitHub%20repository%20out.%20LocalAI%20-%20Let%27s%20you%20easily%20run%20LLM%20locally.
" target="blank">
<img src="https://img.shields.io/twitter/url?label=Reddit&logo=Reddit&style=social&url=https://github.com/go-skynet/LocalAI" alt="Share on Reddit"/>
</a> <a href="mailto:?subject=Check%20this%20GitHub%20repository%20out.%20LocalAI%20-%20Let%27s%20you%20easily%20run%20LLM%20locally.%3A%0Ahttps://github.com/go-skynet/LocalAI" target="_blank"><img src="https://img.shields.io/twitter/url?label=Gmail&logo=Gmail&style=social&url=https://github.com/go-skynet/LocalAI"/></a> <a href="https://www.buymeacoffee.com/mudler" target="_blank"><img src="https://cdn.buymeacoffee.com/buttons/default-orange.png" alt="Buy Me A Coffee" height="23" width="100" style="border-radius:1px"></a>
</p>
<hr>
In a nutshell:
- Local, OpenAI drop-in alternative REST API. You own your data.
- NO GPU required. NO Internet access is required either
- Optional, GPU Acceleration is available in `llama.cpp`-compatible LLMs. See also the [build section](https://localai.io/basics/build/index.html).
- Optional, GPU Acceleration is available. See also the [build section](https://localai.io/basics/build/index.html).
- Supports multiple models
- 🏃 Once loaded the first time, it keep models loaded in memory for faster inference
- ⚡ Doesn't shell-out, but uses C++ bindings for a faster inference and better performance.
- ⚡ Doesn't shell-out, but uses bindings for a faster inference and better performance.
LocalAI was created by [Ettore Di Giacinto](https://github.com/mudler/) and is a community-driven project, focused on making the AI accessible to anyone. Any contribution, feedback and PR is welcome!
LocalAI is focused on making the AI accessible to anyone. Any contribution, feedback and PR is welcome!
Note that this started just as a fun weekend project by [mudler](https://github.com/mudler) in order to try to create the necessary pieces for a full AI assistant like `ChatGPT`: the community is growing fast and we are working hard to make it better and more stable. If you want to help, please consider contributing (see below)!
Note that this started just as a [fun weekend project](https://localai.io/#backstory) in order to try to create the necessary pieces for a full AI assistant like `ChatGPT`: the community is growing fast and we are working hard to make it better and more stable. If you want to help, please consider contributing (see below)!
## 🚀 Features
@@ -86,19 +61,6 @@ Note that this started just as a [fun weekend project](https://localai.io/#backs
- 🖼️ [Download Models directly from Huggingface ](https://localai.io/models/)
- 🆕 [Vision API](https://localai.io/features/gpt-vision/)
## 🔥🔥 Hot topics / Roadmap
[Roadmap](https://github.com/mudler/LocalAI/issues?q=is%3Aissue+is%3Aopen+label%3Aroadmap)
🆕 New! [LLM finetuning guide](https://localai.io/advanced/fine-tuning/)
Hot topics (looking for contributors):
- Backends v2: https://github.com/mudler/LocalAI/issues/1126
- Improving UX v2: https://github.com/mudler/LocalAI/issues/1373
If you want to help and contribute, issues up for grabs: https://github.com/mudler/LocalAI/issues?q=is%3Aissue+is%3Aopen+label%3A%22up+for+grabs%22
## How does it work?
LocalAI is an API written in Go that serves as an OpenAI shim, enabling software already developed with OpenAI SDKs to seamlessly integrate with LocalAI. It can be effortlessly implemented as a substitute, even on consumer-grade hardware. This capability is achieved by employing various C++ backends, including [ggml](https://github.com/ggerganov/ggml), to perform inference on LLMs using both CPU and, if desired, GPU. Internally LocalAI backends are just gRPC server, indeed you can specify and build your own gRPC server and extend LocalAI in runtime as well. It is possible to specify external gRPC server and/or binaries that LocalAI will manage internally.
@@ -139,6 +101,8 @@ LocalAI couldn't have been built without the help of great software already avai
- https://github.com/rhasspy/piper
- https://github.com/cmp-nct/ggllm.cpp
## Backstory
As much as typical open source projects starts, I, [mudler](https://github.com/mudler/), was fiddling around with [llama.cpp](https://github.com/ggerganov/llama.cpp) over my long nights and wanted to have a way to call it from `go`, as I am a Golang developer and use it extensively. So I've created `LocalAI` (or what was initially known as `llama-cli`) and added an API to it.

View File

@@ -9,7 +9,7 @@ weight = 6
In order to define default prompts, model parameters (such as custom default `top_p` or `top_k`), LocalAI can be configured to serve user-defined models with a set of default parameters and templates.
You can create multiple `yaml` files in the models path or either specify a single YAML configuration file.
In order to configure a model, you can create multiple `yaml` files in the models path or either specify a single YAML configuration file.
Consider the following `models` folder in the `example/chatbot-ui`:
```
@@ -96,6 +96,12 @@ Specifying a `config-file` via CLI allows to declare models in a single file as
See also [chatbot-ui](https://github.com/go-skynet/LocalAI/tree/master/examples/chatbot-ui) as an example on how to use config files.
It is possible to specify a full URL or a short-hand URL to a YAML model configuration file and use it on start with local-ai, for example to use phi-2:
```
local-ai github://mudler/LocalAI/examples/configurations/phi-2.yaml@master
```
### Full config model file reference
```yaml
@@ -359,15 +365,37 @@ docker run --env REBUILD=true localai
docker run --env-file .env localai
```
### Build only a single backend
### CLI parameters
You can control the backends that are built by setting the `GRPC_BACKENDS` environment variable. For instance, to build only the `llama-cpp` backend only:
You can control LocalAI with command line arguments, to specify a binding address, or the number of threads.
```bash
make GRPC_BACKENDS=backend-assets/grpc/llama-cpp build
```
By default, all the backends are built.
| Parameter | Environmental Variable | Default Variable | Description |
| ------------------------------ | ------------------------------- | -------------------------------------------------- | ------------------------------------------------------------------- |
| --f16 | $F16 | false | Enable f16 mode |
| --debug | $DEBUG | false | Enable debug mode |
| --cors | $CORS | false | Enable CORS support |
| --cors-allow-origins value | $CORS_ALLOW_ORIGINS | | Specify origins allowed for CORS |
| --threads value | $THREADS | 4 | Number of threads to use for parallel computation |
| --models-path value | $MODELS_PATH | ./models | Path to the directory containing models used for inferencing |
| --preload-models value | $PRELOAD_MODELS | | List of models to preload in JSON format at startup |
| --preload-models-config value | $PRELOAD_MODELS_CONFIG | | A config with a list of models to apply at startup. Specify the path to a YAML config file |
| --config-file value | $CONFIG_FILE | | Path to the config file |
| --address value | $ADDRESS | :8080 | Specify the bind address for the API server |
| --image-path value | $IMAGE_PATH | | Path to the directory used to store generated images |
| --context-size value | $CONTEXT_SIZE | 512 | Default context size of the model |
| --upload-limit value | $UPLOAD_LIMIT | 15 | Default upload limit in megabytes (audio file upload) |
| --galleries | $GALLERIES | | Allows to set galleries from command line |
|--parallel-requests | $PARALLEL_REQUESTS | false | Enable backends to handle multiple requests in parallel. This is for backends that supports multiple requests in parallel, like llama.cpp or vllm |
| --single-active-backend | $SINGLE_ACTIVE_BACKEND | false | Allow only one backend to be running |
| --api-keys value | $API_KEY | empty | List of API Keys to enable API authentication. When this is set, all the requests must be authenticated with one of these API keys.
| --enable-watchdog-idle | $WATCHDOG_IDLE | false | Enable watchdog for stopping idle backends. This will stop the backends if are in idle state for too long. (default: false) [$WATCHDOG_IDLE]
| --enable-watchdog-busy | $WATCHDOG_BUSY | false | Enable watchdog for stopping busy backends that exceed a defined threshold.|
| --watchdog-busy-timeout value | $WATCHDOG_BUSY_TIMEOUT | 5m | Watchdog timeout. This will restart the backend if it crashes. |
| --watchdog-idle-timeout value | $WATCHDOG_IDLE_TIMEOUT | 15m | Watchdog idle timeout. This will restart the backend if it crashes. |
| --preload-backend-only | $PRELOAD_BACKEND_ONLY | false | If set, the api is NOT launched, and only the preloaded models / backends are started. This is intended for multi-node setups. |
| --external-grpc-backends | EXTERNAL_GRPC_BACKENDS | none | Comma separated list of external gRPC backends to use. Format: `name:host:port` or `name:/path/to/file` |
### Extra backends

View File

@@ -7,16 +7,15 @@ url = '/basics/build/'
+++
### Build locally
### Build
#### Container image
Requirements:
Either Docker/podman, or
- Golang >= 1.21
- Cmake/make
- GCC
- Docker or podman, or a container engine
In order to build the `LocalAI` container image locally you can use `docker`:
In order to build the `LocalAI` container image locally you can use `docker`, for example:
```
# build the image
@@ -24,7 +23,45 @@ docker build -t localai .
docker run localai
```
Or you can build the manually binary with `make`:
#### Locally
In order to build LocalAI locally, you need the following requirements:
- Golang >= 1.21
- Cmake/make
- GCC
- GRPC
To install the dependencies follow the instructions below:
{{< tabs >}}
{{% tab name="Apple" %}}
```bash
brew install abseil cmake go grpc protobuf wget
```
{{% /tab %}}
{{% tab name="Debian" %}}
```bash
apt install protobuf-compiler-grpc libgrpc-dev make cmake
```
{{% /tab %}}
{{% tab name="From source" %}}
Specify `BUILD_GRPC_FOR_BACKEND_LLAMA=true` to build automatically the gRPC dependencies
```bash
make ... BUILD_GRPC_FOR_BACKEND_LLAMA=true build
```
{{% /tab %}}
{{< /tabs >}}
To build LocalAI with `make`:
```
git clone https://github.com/go-skynet/LocalAI
@@ -32,7 +69,7 @@ cd LocalAI
make build
```
To run: `./local-ai`
This should produce the binary `local-ai`
{{% notice note %}}
@@ -54,7 +91,7 @@ docker run --rm -ti -p 8080:8080 -e DEBUG=true -e MODELS_PATH=/models -e THREADS
{{% /notice %}}
### Build on mac
### Example: Build on mac
Building on Mac (M1 or M2) works, but you may need to install some prerequisites using `brew`.
@@ -188,6 +225,24 @@ make BUILD_TYPE=metal build
# Note: only models quantized with q4_0 are supported!
```
### Build only a single backend
You can control the backends that are built by setting the `GRPC_BACKENDS` environment variable. For instance, to build only the `llama-cpp` backend only:
```bash
make GRPC_BACKENDS=backend-assets/grpc/llama-cpp build
```
By default, all the backends are built.
### Specific llama.cpp version
To build with a specific version of llama.cpp, set `CPPLLAMA_VERSION` to the tag or wanted sha:
```
CPPLLAMA_VERSION=<sha> make build
```
### Windows compatibility
Make sure to give enough resources to the running container. See https://github.com/go-skynet/LocalAI/issues/2

View File

@@ -15,11 +15,19 @@ This section contains instruction on how to use LocalAI with GPU acceleration.
For accelleration for AMD or Metal HW there are no specific container images, see the [build]({{%relref "build/#acceleration" %}})
{{% /notice %}}
### CUDA
### CUDA(NVIDIA) acceleration
Requirement: nvidia-container-toolkit (installation instructions [1](https://www.server-world.info/en/note?os=Ubuntu_22.04&p=nvidia&f=2) [2](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html))
To use CUDA, use the images with the `cublas` tag.
To check what CUDA version do you need, you can either run `nvidia-smi` or `nvcc --version`.
Alternatively, you can also check nvidia-smi with docker:
```
docker run --runtime=nvidia --rm nvidia/cuda nvidia-smi
```
To use CUDA, use the images with the `cublas` tag, for example.
The image list is on [quay](https://quay.io/repository/go-skynet/local-ai?tab=tags):

View File

@@ -1,4 +1,4 @@
+++
disableToc = false
title = "Getting started"
@@ -6,7 +6,11 @@ weight = 1
url = '/basics/getting_started/'
+++
`LocalAI` is available as a container image and binary. It can be used with docker, podman, kubernetes and any container engine. You can check out all the available images with corresponding tags [here](https://quay.io/repository/go-skynet/local-ai?tab=tags&tag=latest).
`LocalAI` is available as a container image and binary. It can be used with docker, podman, kubernetes and any container engine.
Container images are published to [quay.io](https://quay.io/repository/go-skynet/local-ai?tab=tags&tag=latest) and [Dockerhub](https://hub.docker.com/r/localai/localai).
[<img src="https://img.shields.io/badge/dockerhub-images-important.svg?logo=Docker">](https://hub.docker.com/r/localai/localai)
[<img src="https://img.shields.io/badge/quay.io-images-important.svg?">](https://quay.io/repository/go-skynet/local-ai?tab=tags&tag=latest)
See also our [How to]({{%relref "howtos" %}}) section for end-to-end guided examples curated by the community.
@@ -14,6 +18,8 @@ See also our [How to]({{%relref "howtos" %}}) section for end-to-end guided exam
The easiest way to run LocalAI is by using [`docker compose`](https://docs.docker.com/compose/install/) or with [Docker](https://docs.docker.com/engine/install/) (to build locally, see the [build section]({{%relref "build" %}})).
LocalAI needs at least a model file to work, or a configuration YAML file, or both. You can customize further model defaults and specific settings with a configuration file (see [advanced]({{%relref "advanced" %}})).
{{% notice note %}}
To run with GPU Accelleration, see [GPU acceleration]({{%relref "features/gpu-acceleration" %}}).
{{% /notice %}}
@@ -111,10 +117,93 @@ helm show values go-skynet/local-ai > values.yaml
helm install local-ai go-skynet/local-ai -f values.yaml
```
{{% /tab %}}
{{% tab name="From binary" %}}
LocalAI binary releases are available in [Github](https://github.com/go-skynet/LocalAI/releases).
{{% /tab %}}
{{% tab name="From source" %}}
See the [build section]({{%relref "build" %}}).
{{% /tab %}}
{{< /tabs >}}
### Running Popular models (one-click!)
{{% notice note %}}
Note: this feature currently is available only on master builds.
{{% /notice %}}
You can run `local-ai` directly with a model name, and it will download the model and start the API with the model loaded.
> Don't need GPU acceleration? use the CPU images which are lighter and do not have Nvidia dependencies
{{< tabs >}}
{{% tab name="CPU-only" %}}
| Model | Docker command |
| --- | --- |
| phi2 | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-ffmpeg-core phi-2``` |
| llava | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-ffmpeg-core llava``` |
| mistral-openorca | ```docker run -ti -p 8080:8080 localai/localai:{{< version >}}-ffmpeg-core mistral-openorca``` |
{{% /tab %}}
{{% tab name="GPU (CUDA 11)" %}}
> To know which version of CUDA do you have available, you can check with `nvidia-smi` or `nvcc --version`
| Model | Docker command |
| --- | --- |
| phi-2 | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda11-core phi-2``` |
| llava | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda11-core llava``` |
| mistral-openorca | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda11-core mistral-openorca``` |
{{% /tab %}}
{{% tab name="GPU (CUDA 12)" %}}
> To know which version of CUDA do you have available, you can check with `nvidia-smi` or `nvcc --version`
| Model | Docker command |
| --- | --- |
| phi-2 | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda12-core phi-2``` |
| llava | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda12-core llava``` |
| mistral-openorca | ```docker run -ti -p 8080:8080 --gpus all localai/localai:{{< version >}}-cublas-cuda12-core mistral-openorca``` |
{{% /tab %}}
{{< /tabs >}}
{{% notice note %}}
LocalAI can be started (either the container image or the binary) with a list of model config files URLs or our short-handed format (e.g. `huggingface://`. `github://`). It works by passing the urls as arguments or environment variable, for example:
```
local-ai github://owner/repo/file.yaml@branch
# Env
MODELS="github://owner/repo/file.yaml@branch,github://owner/repo/file.yaml@branch" local-ai
# Args
local-ai --models github://owner/repo/file.yaml@branch --models github://owner/repo/file.yaml@branch
```
For example, to start localai with phi-2, it's possible for instance to also use a full config file from gists:
```bash
docker run -p 8080:8080 localai/localai:{{< version >}}-ffmpeg-core https://gist.githubusercontent.com/mudler/ad601a0488b497b69ec549150d9edd18/raw/a8a8869ef1bb7e3830bf5c0bae29a0cce991ff8d/phi-2.yaml
```
The file should be a valid YAML configuration file, for the full syntax see [advanced]({{%relref "advanced" %}}).
{{% /notice %}}
### Container images
LocalAI has a set of images to support CUDA, ffmpeg and 'vanilla' (CPU-only). The image list is on [quay](https://quay.io/repository/go-skynet/local-ai?tab=tags):
@@ -131,6 +220,11 @@ Core Images - Smaller images without predownload python dependencies
{{% /tab %}}
{{% tab name="GPU Images CUDA 11" %}}
Images with Nvidia accelleration support
> If you do not know which version of CUDA do you have available, you can check with `nvidia-smi` or `nvcc --version`
- `master-cublas-cuda11`
- `master-cublas-cuda11-core`
- `{{< version >}}-cublas-cuda11`
@@ -142,6 +236,11 @@ Core Images - Smaller images without predownload python dependencies
{{% /tab %}}
{{% tab name="GPU Images CUDA 12" %}}
Images with Nvidia accelleration support
> If you do not know which version of CUDA do you have available, you can check with `nvidia-smi` or `nvcc --version`
- `master-cublas-cuda12`
- `master-cublas-cuda12-core`
- `{{< version >}}-cublas-cuda12`
@@ -201,212 +300,9 @@ curl http://localhost:8080/v1/chat/completions -H "Content-Type: application/jso
To see other model configurations, see also the example section [here](https://github.com/mudler/LocalAI/tree/master/examples/configurations).
### From binaries
LocalAI binary releases are available in [Github](https://github.com/go-skynet/LocalAI/releases).
You can control LocalAI with command line arguments, to specify a binding address, or the number of threads.
### CLI parameters
| Parameter | Environmental Variable | Default Variable | Description |
| ------------------------------ | ------------------------------- | -------------------------------------------------- | ------------------------------------------------------------------- |
| --f16 | $F16 | false | Enable f16 mode |
| --debug | $DEBUG | false | Enable debug mode |
| --cors | $CORS | false | Enable CORS support |
| --cors-allow-origins value | $CORS_ALLOW_ORIGINS | | Specify origins allowed for CORS |
| --threads value | $THREADS | 4 | Number of threads to use for parallel computation |
| --models-path value | $MODELS_PATH | ./models | Path to the directory containing models used for inferencing |
| --preload-models value | $PRELOAD_MODELS | | List of models to preload in JSON format at startup |
| --preload-models-config value | $PRELOAD_MODELS_CONFIG | | A config with a list of models to apply at startup. Specify the path to a YAML config file |
| --config-file value | $CONFIG_FILE | | Path to the config file |
| --address value | $ADDRESS | :8080 | Specify the bind address for the API server |
| --image-path value | $IMAGE_PATH | | Path to the directory used to store generated images |
| --context-size value | $CONTEXT_SIZE | 512 | Default context size of the model |
| --upload-limit value | $UPLOAD_LIMIT | 15 | Default upload limit in megabytes (audio file upload) |
| --galleries | $GALLERIES | | Allows to set galleries from command line |
|--parallel-requests | $PARALLEL_REQUESTS | false | Enable backends to handle multiple requests in parallel. This is for backends that supports multiple requests in parallel, like llama.cpp or vllm |
| --single-active-backend | $SINGLE_ACTIVE_BACKEND | false | Allow only one backend to be running |
| --api-keys value | $API_KEY | empty | List of API Keys to enable API authentication. When this is set, all the requests must be authenticated with one of these API keys.
| --enable-watchdog-idle | $WATCHDOG_IDLE | false | Enable watchdog for stopping idle backends. This will stop the backends if are in idle state for too long. (default: false) [$WATCHDOG_IDLE]
| --enable-watchdog-busy | $WATCHDOG_BUSY | false | Enable watchdog for stopping busy backends that exceed a defined threshold.|
| --watchdog-busy-timeout value | $WATCHDOG_BUSY_TIMEOUT | 5m | Watchdog timeout. This will restart the backend if it crashes. |
| --watchdog-idle-timeout value | $WATCHDOG_IDLE_TIMEOUT | 15m | Watchdog idle timeout. This will restart the backend if it crashes. |
| --preload-backend-only | $PRELOAD_BACKEND_ONLY | false | If set, the api is NOT launched, and only the preloaded models / backends are started. This is intended for multi-node setups. |
| --external-grpc-backends | EXTERNAL_GRPC_BACKENDS | none | Comma separated list of external gRPC backends to use. Format: `name:host:port` or `name:/path/to/file` |
### Run LocalAI in Kubernetes
LocalAI can be installed inside Kubernetes with helm.
Requirements:
- SSD storage class, or disable `mmap` to load the whole model in memory
<details>
By default, the helm chart will install LocalAI instance using the ggml-gpt4all-j model without persistent storage.
1. Add the helm repo
```bash
helm repo add go-skynet https://go-skynet.github.io/helm-charts/
```
2. Install the helm chart:
```bash
helm repo update
helm install local-ai go-skynet/local-ai -f values.yaml
```
> **Note:** For further configuration options, see the [helm chart repository on GitHub](https://github.com/go-skynet/helm-charts).
### Example values
Deploy a single LocalAI pod with 6GB of persistent storage serving up a `ggml-gpt4all-j` model with custom prompt.
```yaml
### values.yaml
replicaCount: 1
deployment:
image: quay.io/go-skynet/local-ai:latest ##(This is for CPU only, to use GPU change it to a image that supports GPU IE "v2.0.0-cublas-cuda12-core")
env:
threads: 4
context_size: 512
modelsPath: "/models"
resources:
{}
# We usually recommend not to specify default resources and to leave this as a conscious
# choice for the user. This also increases chances charts run on environments with little
# resources, such as Minikube. If you do want to specify resources, uncomment the following
# lines, adjust them as necessary, and remove the curly braces after 'resources:'.
# limits:
# cpu: 100m
# memory: 128Mi
# requests:
# cpu: 100m
# memory: 128Mi
# Prompt templates to include
# Note: the keys of this map will be the names of the prompt template files
promptTemplates:
{}
# ggml-gpt4all-j.tmpl: |
# The prompt below is a question to answer, a task to complete, or a conversation to respond to; decide which and write an appropriate response.
# ### Prompt:
# {{.Input}}
# ### Response:
# Models to download at runtime
models:
# Whether to force download models even if they already exist
forceDownload: false
# The list of URLs to download models from
# Note: the name of the file will be the name of the loaded model
list:
- url: "https://gpt4all.io/models/ggml-gpt4all-j.bin"
# basicAuth: base64EncodedCredentials
# Persistent storage for models and prompt templates.
# PVC and HostPath are mutually exclusive. If both are enabled,
# PVC configuration takes precedence. If neither are enabled, ephemeral
# storage is used.
persistence:
pvc:
enabled: false
size: 6Gi
accessModes:
- ReadWriteOnce
annotations: {}
# Optional
storageClass: ~
hostPath:
enabled: false
path: "/models"
service:
type: ClusterIP
port: 80
annotations: {}
# If using an AWS load balancer, you'll need to override the default 60s load balancer idle timeout
# service.beta.kubernetes.io/aws-load-balancer-connection-idle-timeout: "1200"
ingress:
enabled: false
className: ""
annotations:
{}
# kubernetes.io/ingress.class: nginx
# kubernetes.io/tls-acme: "true"
hosts:
- host: chart-example.local
paths:
- path: /
pathType: ImplementationSpecific
tls: []
# - secretName: chart-example-tls
# hosts:
# - chart-example.local
nodeSelector: {}
tolerations: []
affinity: {}
```
</details>
### Build from source
See the [build section]({{%relref "build" %}}).
### Other examples
### Examples
![Screenshot from 2023-04-26 23-59-55](https://user-images.githubusercontent.com/2420543/234715439-98d12e03-d3ce-4f94-ab54-2b256808e05e.png)
To see other examples on how to integrate with other projects for instance for question answering or for using it with chatbot-ui, see: [examples](https://github.com/go-skynet/LocalAI/tree/master/examples/).
### Clients
OpenAI clients are already compatible with LocalAI by overriding the basePath, or the target URL.
## Javascript
<details>
https://github.com/openai/openai-node/
```javascript
import { Configuration, OpenAIApi } from 'openai';
const configuration = new Configuration({
basePath: `http://localhost:8080/v1`
});
const openai = new OpenAIApi(configuration);
```
</details>
## Python
<details>
https://github.com/openai/openai-python
Set the `OPENAI_API_BASE` environment variable, or by code:
```python
import openai
openai.api_base = "http://localhost:8080/v1"
# create a chat completion
chat_completion = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Hello world"}])
# print the completion
print(completion.choices[0].message.content)
```
</details>

View File

@@ -0,0 +1,399 @@
+++
disableToc = false
title = "LangChain4j"
description="LangChain for Java: Supercharge your Java application with the power of LLMs"
weight = 2
+++
Github: https://github.com/langchain4j/langchain4j
[![](https://img.shields.io/twitter/follow/langchain4j)](https://twitter.com/intent/follow?screen_name=langchain4j)
[![](https://dcbadge.vercel.app/api/server/JzTFvyjG6R?compact=true&style=flat)](https://discord.gg/JzTFvyjG6R)
## Project goals
The goal of this project is to simplify the integration of AI/LLM capabilities into your Java application.
This can be achieved thanks to:
- **A simple and coherent layer of abstractions**, designed to ensure that your code does not depend on concrete implementations such as LLM providers, embedding store providers, etc. This allows for easy swapping of components.
- **Numerous implementations of the above-mentioned abstractions**, providing you with a variety of LLMs and embedding stores to choose from.
- **Range of in-demand features on top of LLMs, such as:**
- The capability to **ingest your own data** (documentation, codebase, etc.), allowing the LLM to act and respond based on your data.
- **Autonomous agents** for delegating tasks (defined on the fly) to the LLM, which will strive to complete them.
- **Prompt templates** to help you achieve the highest possible quality of LLM responses.
- **Memory** to provide context to the LLM for your current and past conversations.
- **Structured outputs** for receiving responses from the LLM with a desired structure as Java POJOs.
- **"AI Services"** for declaratively defining complex AI behavior behind a simple API.
- **Chains** to reduce the need for extensive boilerplate code in common use-cases.
- **Auto-moderation** to ensure that all inputs and outputs to/from the LLM are not harmful.
## News
12 November:
- Integration with [OpenSearch](https://opensearch.org/) by [@riferrei](https://github.com/riferrei)
- Add support for loading documents from S3 by [@jmgang](https://github.com/jmgang)
- Integration with [PGVector](https://github.com/pgvector/pgvector) by [@kevin-wu-os](https://github.com/kevin-wu-os)
- Integration with [Ollama](https://ollama.ai/) by [@Martin7-1](https://github.com/Martin7-1)
- Integration with [Amazon Bedrock](https://aws.amazon.com/bedrock/) by [@pascalconfluent](https://github.com/pascalconfluent)
- Adding Memory Id to Tool Method Call by [@benedictstrube](https://github.com/benedictstrube)
- [And more](https://github.com/langchain4j/langchain4j/releases/tag/0.24.0)
29 September:
- Updates to models API: return `Response<T>` instead of `T`. `Response<T>` contains token usage and finish reason.
- All model and embedding store integrations now live in their own modules
- Integration with [Vespa](https://vespa.ai/) by [@Heezer](https://github.com/Heezer)
- Integration with [Elasticsearch](https://www.elastic.co/) by [@Martin7-1](https://github.com/Martin7-1)
- Integration with [Redis](https://redis.io/) by [@Martin7-1](https://github.com/Martin7-1)
- Integration with [Milvus](https://milvus.io/) by [@IuriiKoval](https://github.com/IuriiKoval)
- Integration with [Astra DB](https://www.datastax.com/products/datastax-astra) and [Cassandra](https://cassandra.apache.org/) by [@clun](https://github.com/clun)
- Added support for overlap in document splitters
- Some bugfixes and smaller improvements
29 August:
- Offline [text classification with embeddings](https://github.com/langchain4j/langchain4j-examples/blob/main/other-examples/src/main/java/embedding/classification/EmbeddingModelTextClassifierExample.java)
- Integration with [Google Vertex AI](https://cloud.google.com/vertex-ai) by [@kuraleta](https://github.com/kuraleta)
- Reworked [document splitters](https://github.com/langchain4j/langchain4j/blob/main/langchain4j/src/main/java/dev/langchain4j/data/document/splitter/DocumentSplitters.java)
- In-memory embedding store can now be easily persisted
- [And more](https://github.com/langchain4j/langchain4j/releases/tag/0.22.0)
19 August:
- Integration with [Azure OpenAI](https://learn.microsoft.com/en-us/azure/ai-services/openai/overview) by [@kuraleta](https://github.com/kuraleta)
- Integration with Qwen models (DashScope) by [@jiangsier-xyz](https://github.com/jiangsier-xyz)
- [Integration with Chroma](https://github.com/langchain4j/langchain4j-examples/blob/main/other-examples/src/main/java/embedding/store/ChromaEmbeddingStoreExample.java) by [@kuraleta](https://github.com/kuraleta)
- [Support for persistent ChatMemory](https://github.com/langchain4j/langchain4j-examples/blob/main/other-examples/src/main/java/ServiceWithPersistentMemoryForEachUserExample.java)
10 August:
- [Integration with Weaviate](https://github.com/langchain4j/langchain4j-examples/blob/main/other-examples/src/main/java/embedding/store/WeaviateEmbeddingStoreExample.java) by [@Heezer](https://github.com/Heezer)
- [Support for DOC, XLS and PPT document types](https://github.com/langchain4j/langchain4j-examples/blob/main/other-examples/src/main/java/DocumentLoaderExamples.java) by [@oognuyh](https://github.com/oognuyh)
- [Separate chat memory for each user](https://github.com/langchain4j/langchain4j-examples/blob/main/other-examples/src/main/java/ServiceWithMemoryForEachUserExample.java)
- [Custom in-process embedding models](https://github.com/langchain4j/langchain4j-examples/blob/main/other-examples/src/main/java/embedding/model/InProcessEmbeddingModelExamples.java)
- Added lots of Javadoc
- [And more](https://github.com/langchain4j/langchain4j/releases/tag/0.19.0)
26 July:
- We've added integration with [LocalAI](https://localai.io/). Now, you can use LLMs hosted locally!
- Added support for [response streaming in AI Services](https://github.com/langchain4j/langchain4j-examples/blob/main/other-examples/src/main/java/ServiceWithStreamingExample.java).
21 July:
- Now, you can do [text embedding inside your JVM](https://github.com/langchain4j/langchain4j-examples/blob/main/other-examples/src/main/java/embedding/model/InProcessEmbeddingModelExamples.java).
17 July:
- You can now try out OpenAI's `gpt-3.5-turbo` and `text-embedding-ada-002` models with LangChain4j for free, without needing an OpenAI account and keys! Simply use the API key "demo".
15 July:
- Added EmbeddingStoreIngestor
- Redesigned document loaders (see FileSystemDocumentLoader)
- Simplified ConversationalRetrievalChain
- Renamed DocumentSegment into TextSegment
- Added output parsers for numeric types
- Added @UserName for AI Services
- Fixed [23](https://github.com/langchain4j/langchain4j/issues/23) and [24](https://github.com/langchain4j/langchain4j/issues/24)
11 July:
- Added ["Dynamic Tools"](https://github.com/langchain4j/langchain4j-examples/blob/main/other-examples/src/main/java/ServiceWithDynamicToolsExample.java):
Now, the LLM can generate code for tasks that require precise calculations, such as math and string manipulation. This will be dynamically executed in a style akin to GPT-4's code interpreter!
We use [Judge0, hosted by Rapid API](https://rapidapi.com/judge0-official/api/judge0-ce/pricing), for code execution. You can subscribe and receive 50 free executions per day.
5 July:
- Now you can [add your custom knowledge base to "AI Services"](https://github.com/langchain4j/langchain4j-examples/blob/main/spring-boot-example/src/test/java/dev/example/CustomerSupportApplicationTest.java).
Relevant information will be automatically retrieved and injected into the prompt. This way, the LLM will have a
context of your data and will answer based on it!
- The current date and time can now be automatically injected into the prompt using
special `{{current_date}}`, `{{current_time}}` and `{{current_date_time}}` placeholders.
3 July:
- Added support for Spring Boot 3
2 July:
- [Added Spring Boot Starter](https://github.com/langchain4j/langchain4j-examples/blob/main/spring-boot-example/src/test/java/dev/example/CustomerSupportApplicationTest.java)
- Added support for HuggingFace models
1 July:
- [Added "Tools"](https://github.com/langchain4j/langchain4j-examples/blob/main/other-examples/src/main/java/ServiceWithToolsExample.java) (support for OpenAI functions)
## Highlights
You can declaratively define concise "AI Services" that are powered by LLMs:
```java
interface Assistant {
String chat(String userMessage);
}
Assistant assistant = AiServices.create(Assistant.class, model);
String answer = assistant.chat("Hello");
System.out.println(answer);
// Hello! How can I assist you today?
```
You can use LLM as a classifier:
```java
enum Sentiment {
POSITIVE, NEUTRAL, NEGATIVE
}
interface SentimentAnalyzer {
@UserMessage("Analyze sentiment of {{it}}")
Sentiment analyzeSentimentOf(String text);
@UserMessage("Does {{it}} have a positive sentiment?")
boolean isPositive(String text);
}
SentimentAnalyzer sentimentAnalyzer = AiServices.create(SentimentAnalyzer.class, model);
Sentiment sentiment = sentimentAnalyzer.analyzeSentimentOf("It is good!");
// POSITIVE
boolean positive = sentimentAnalyzer.isPositive("It is bad!");
// false
```
You can easily extract structured information from unstructured data:
```java
class Person {
private String firstName;
private String lastName;
private LocalDate birthDate;
public String toString() {...}
}
interface PersonExtractor {
@UserMessage("Extract information about a person from {{it}}")
Person extractPersonFrom(String text);
}
PersonExtractor extractor = AiServices.create(PersonExtractor.class, model);
String text = "In 1968, amidst the fading echoes of Independence Day, "
+ "a child named John arrived under the calm evening sky. "
+ "This newborn, bearing the surname Doe, marked the start of a new journey.";
Person person = extractor.extractPersonFrom(text);
// Person { firstName = "John", lastName = "Doe", birthDate = 1968-07-04 }
```
You can define more sophisticated prompt templates using mustache syntax:
```java
interface Translator {
@SystemMessage("You are a professional translator into {{language}}")
@UserMessage("Translate the following text: {{text}}")
String translate(@V("text") String text, @V("language") String language);
}
Translator translator = AiServices.create(Translator.class, model);
String translation = translator.translate("Hello, how are you?", "Italian");
// Ciao, come stai?
```
You can provide tools that LLMs can use! Can be anything: retrieve information from DB, call APIs, etc.
See example [here](https://github.com/langchain4j/langchain4j-examples/blob/main/other-examples/src/main/java/ServiceWithToolsExample.java).
## Compatibility
- Java: 8 or higher
- Spring Boot: 2 or 3
## Getting started
1. Add LangChain4j OpenAI dependency to your project:
- Maven:
```
<dependency>
<groupId>dev.langchain4j</groupId>
<artifactId>langchain4j-open-ai</artifactId>
<version>0.24.0</version>
</dependency>
```
- Gradle:
```
implementation 'dev.langchain4j:langchain4j-open-ai:0.24.0'
```
2. Import your OpenAI API key:
```java
String apiKey = System.getenv("OPENAI_API_KEY");
```
You can use the API key "demo" to test OpenAI, which we provide for free.
[How to gen an API key?](https://github.com/langchain4j/langchain4j#how-to-get-an-api-key)
3. Create an instance of a model and start interacting:
```java
OpenAiChatModel model = OpenAiChatModel.withApiKey(apiKey);
String answer = model.generate("Hello world!");
System.out.println(answer); // Hello! How can I assist you today?
```
## Disclaimer
Please note that the library is in active development and:
- Many features are still missing. We are working hard on implementing them ASAP.
- API might change at any moment. At this point, we prioritize good design in the future over backward compatibility
now. We hope for your understanding.
- We need your input! Please [let us know](https://github.com/langchain4j/langchain4j/issues/new/choose) what features you need and your concerns about the current implementation.
## Current capabilities:
- AI Services:
- [Simple](https://github.com/langchain4j/langchain4j-examples/blob/main/other-examples/src/main/java/SimpleServiceExample.java)
- [With Memory](https://github.com/langchain4j/langchain4j-examples/blob/main/other-examples/src/main/java/ServiceWithMemoryExample.java)
- [With Tools](https://github.com/langchain4j/langchain4j-examples/blob/main/other-examples/src/main/java/ServiceWithToolsExample.java)
- [With Streaming](https://github.com/langchain4j/langchain4j-examples/blob/main/other-examples/src/main/java/ServiceWithStreamingExample.java)
- [With Retriever](https://github.com/langchain4j/langchain4j-examples/blob/main/other-examples/src/main/java/ServiceWithRetrieverExample.java)
- [With Auto-Moderation](https://github.com/langchain4j/langchain4j-examples/blob/main/other-examples/src/main/java/ServiceWithAutoModerationExample.java)
- [With Structured Outputs, Structured Prompts, etc](https://github.com/langchain4j/langchain4j-examples/blob/main/other-examples/src/main/java/OtherServiceExamples.java)
- Integration with [OpenAI](https://platform.openai.com/docs/introduction) and [Azure OpenAI](https://learn.microsoft.com/en-us/azure/ai-services/openai/overview) for:
- [Chats](https://platform.openai.com/docs/guides/chat) (sync + streaming + functions)
- [Completions](https://platform.openai.com/docs/guides/completion) (sync + streaming)
- [Embeddings](https://platform.openai.com/docs/guides/embeddings)
- Integration with [Google Vertex AI](https://cloud.google.com/vertex-ai) for:
- [Chats](https://cloud.google.com/vertex-ai/docs/generative-ai/chat/chat-prompts)
- [Completions](https://cloud.google.com/vertex-ai/docs/generative-ai/text/text-overview)
- [Embeddings](https://cloud.google.com/vertex-ai/docs/generative-ai/embeddings/get-text-embeddings)
- Integration with [HuggingFace Inference API](https://huggingface.co/docs/api-inference/index) for:
- [Chats](https://huggingface.co/docs/api-inference/detailed_parameters#text-generation-task)
- [Completions](https://huggingface.co/docs/api-inference/detailed_parameters#text-generation-task)
- [Embeddings](https://huggingface.co/docs/api-inference/detailed_parameters#feature-extraction-task)
- Integration with [LocalAI](https://localai.io/) for:
- Chats (sync + streaming + functions)
- Completions (sync + streaming)
- Embeddings
- Integration with [DashScope](https://dashscope.aliyun.com/) for:
- Chats (sync + streaming)
- Completions (sync + streaming)
- Embeddings
- [Chat memory](https://github.com/langchain4j/langchain4j-examples/blob/main/other-examples/src/main/java/ChatMemoryExamples.java)
- [Persistent chat memory](https://github.com/langchain4j/langchain4j-examples/blob/main/other-examples/src/main/java/ServiceWithPersistentMemoryForEachUserExample.java)
- [Chat with Documents](https://github.com/langchain4j/langchain4j-examples/blob/main/other-examples/src/main/java/ChatWithDocumentsExamples.java)
- Integration with [Astra DB](https://www.datastax.com/products/datastax-astra) and [Cassandra](https://cassandra.apache.org/)
- [Integration](https://github.com/langchain4j/langchain4j-examples/blob/main/chroma-example/src/main/java/ChromaEmbeddingStoreExample.java) with [Chroma](https://www.trychroma.com/)
- [Integration](https://github.com/langchain4j/langchain4j-examples/blob/main/elasticsearch-example/src/main/java/ElasticsearchEmbeddingStoreExample.java) with [Elasticsearch](https://www.elastic.co/)
- [Integration](https://github.com/langchain4j/langchain4j-examples/blob/main/milvus-example/src/main/java/MilvusEmbeddingStoreExample.java) with [Milvus](https://milvus.io/)
- [Integration](https://github.com/langchain4j/langchain4j-examples/blob/main/pinecone-example/src/main/java/PineconeEmbeddingStoreExample.java) with [Pinecone](https://www.pinecone.io/)
- [Integration](https://github.com/langchain4j/langchain4j-examples/blob/main/redis-example/src/main/java/RedisEmbeddingStoreExample.java) with [Redis](https://redis.io/)
- [Integration](https://github.com/langchain4j/langchain4j-examples/blob/main/vespa-example/src/main/java/VespaEmbeddingStoreExample.java) with [Vespa](https://vespa.ai/)
- [Integration](https://github.com/langchain4j/langchain4j-examples/blob/main/weaviate-example/src/main/java/WeaviateEmbeddingStoreExample.java) with [Weaviate](https://weaviate.io/)
- [In-memory embedding store](https://github.com/langchain4j/langchain4j-examples/blob/main/other-examples/src/main/java/embedding/store/InMemoryEmbeddingStoreExample.java) (can be persisted)
- [Structured outputs](https://github.com/langchain4j/langchain4j-examples/blob/main/other-examples/src/main/java/OtherServiceExamples.java)
- [Prompt templates](https://github.com/langchain4j/langchain4j-examples/blob/main/other-examples/src/main/java/PromptTemplateExamples.java)
- [Structured prompt templates](https://github.com/langchain4j/langchain4j-examples/blob/main/other-examples/src/main/java/StructuredPromptTemplateExamples.java)
- [Streaming of LLM responses](https://github.com/langchain4j/langchain4j-examples/blob/main/other-examples/src/main/java/StreamingExamples.java)
- [Loading txt, html, pdf, doc, xls and ppt documents from the file system and via URL](https://github.com/langchain4j/langchain4j-examples/blob/main/other-examples/src/main/java/DocumentLoaderExamples.java)
- [Splitting documents into segments](https://github.com/langchain4j/langchain4j-examples/blob/main/other-examples/src/main/java/ChatWithDocumentsExamples.java):
- by paragraphs, lines, sentences, words, etc
- recursively
- with overlap
- Token count estimation (so that you can predict how much you will pay)
## Coming soon:
- Extending "AI Service" features
- Integration with more LLM providers (commercial and free)
- Integrations with more embedding stores (commercial and free)
- Support for more document types
- Long-term memory for chatbots and agents
- Chain-of-Thought and Tree-of-Thought
## Request features
Please [let us know](https://github.com/langchain4j/langchain4j/issues/new/choose) what features you need!
## Contribute
Please help us make this open-source library better by contributing.
Some guidelines:
1. Follow [Google's Best Practices for Java Libraries](https://jlbp.dev/).
2. Keep the code compatible with Java 8.
3. Avoid adding new dependencies as much as possible. If absolutely necessary, try to (re)use the same libraries which are already present.
4. Follow existing code styles present in the project.
5. Ensure to add Javadoc where necessary.
6. Provide unit and/or integration tests for your code.
7. Large features should be discussed with maintainers before implementation.
## Use cases
You might ask why would I need all of this?
Here are a couple of examples:
- You want to implement a custom AI-powered chatbot that has access to your data and behaves the way you want it:
- Customer support chatbot that can:
- politely answer customer questions
- take /change/cancel orders
- Educational assistant that can:
- Teach various subjects
- Explain unclear parts
- Assess user's understanding/knowledge
- You want to process a lot of unstructured data (files, web pages, etc) and extract structured information from them.
For example:
- extract insights from customer reviews and support chat history
- extract interesting information from the websites of your competitors
- extract insights from CVs of job applicants
- You want to generate information, for example:
- Emails tailored for each of your customers
- Content for your app/website:
- Blog posts
- Stories
- You want to transform information, for example:
- Summarize
- Proofread and rewrite
- Translate
## Best practices
We highly recommend
watching [this amazing 90-minute tutorial](https://www.deeplearning.ai/short-courses/chatgpt-prompt-engineering-for-developers/)
on prompt engineering best practices, presented by Andrew Ng (DeepLearning.AI) and Isa Fulford (OpenAI).
This course will teach you how to use LLMs efficiently and achieve the best possible results. Good investment of your
time!
Here are some best practices for using LLMs:
- Be responsible. Use AI for Good.
- Be specific. The more specific your query, the best results you will get.
- Add a ["Lets think step by step" instruction](https://arxiv.org/pdf/2205.11916.pdf) to your prompt.
- Specify steps to achieve the desired goal yourself. This will make the LLM do what you want it to do.
- Provide examples. Sometimes it is best to show LLM a few examples of what you want instead of trying to explain it.
- Ask LLM to provide structured output (JSON, XML, etc). This way you can parse response more easily and distinguish
different parts of it.
- Use unusual delimiters, such as \```triple backticks``` to help the LLM distinguish
data or input from instructions.
## How to get an API key
You will need an API key from OpenAI (paid) or HuggingFace (free) to use LLMs hosted by them.
We recommend using OpenAI LLMs (`gpt-3.5-turbo` and `gpt-4`) as they are by far the most capable and are reasonably priced.
It will cost approximately $0.01 to generate 10 pages (A4 format) of text with `gpt-3.5-turbo`. With `gpt-4`, the cost will be $0.30 to generate the same amount of text. However, for some use cases, this higher cost may be justified.
[How to get OpenAI API key](https://www.howtogeek.com/885918/how-to-get-an-openai-api-key/).
For embeddings, we recommend using one of the models from the [HuggingFace MTEB leaderboard](https://huggingface.co/spaces/mteb/leaderboard).
You'll have to find the best one for your specific use case.
Here's how to get a HuggingFace API key:
- Create an account on https://huggingface.co
- Go to https://huggingface.co/settings/tokens
- Generate a new access token

View File

@@ -167,11 +167,6 @@ curl -H "Content-Type: application/json" -d @- http://localhost:8080/v1/images/
## img2vid
{{% notice note %}}
Experimental and available only on master builds. See: https://github.com/mudler/LocalAI/pull/1442
{{% /notice %}}
```yaml
name: img2vid
@@ -193,12 +188,6 @@ curl -H "Content-Type: application/json" -X POST -d @- http://localhost:8080/v1/
## txt2vid
{{% notice note %}}
Experimental and available only on master builds. See: https://github.com/mudler/LocalAI/pull/1442
{{% /notice %}}
```yaml
name: txt2vid
parameters:

View File

@@ -1,3 +1,3 @@
{
"version": "v2.1.0"
"version": "v2.4.0"
}

53
embedded/embedded.go Normal file
View File

@@ -0,0 +1,53 @@
package embedded
import (
"embed"
"fmt"
"slices"
"strings"
"github.com/go-skynet/LocalAI/pkg/assets"
"gopkg.in/yaml.v3"
)
var modelShorteners map[string]string
//go:embed model_library.yaml
var modelLibrary []byte
//go:embed models/*
var embeddedModels embed.FS
func ModelShortURL(s string) string {
if _, ok := modelShorteners[s]; ok {
s = modelShorteners[s]
}
return s
}
func init() {
yaml.Unmarshal(modelLibrary, &modelShorteners)
}
// ExistsInModelsLibrary checks if a model exists in the embedded models library
func ExistsInModelsLibrary(s string) bool {
f := fmt.Sprintf("%s.yaml", s)
a := []string{}
for _, j := range assets.ListFiles(embeddedModels) {
a = append(a, strings.TrimPrefix(j, "models/"))
}
return slices.Contains(a, f)
}
// ResolveContent returns the content in the embedded model library
func ResolveContent(s string) ([]byte, error) {
if ExistsInModelsLibrary(s) {
return embeddedModels.ReadFile(fmt.Sprintf("models/%s.yaml", s))
}
return nil, fmt.Errorf("cannot find model %s", s)
}

View File

@@ -0,0 +1,9 @@
###
###
### This file contains the list of models that are available in the library
### The URLs are automatically expanded when local-ai is being called with the key as argument
###
### For models with an entire YAML file to be embededd, put the file inside the `models`
### directory, it will be automatically available with the file name as key (without the .yaml extension)
phi-2: "github://mudler/LocalAI/examples/configurations/phi-2.yaml@master"

View File

@@ -0,0 +1,31 @@
backend: llama-cpp
context_size: 4096
f16: true
gpu_layers: 90
mmap: true
name: llava
roles:
user: "USER:"
assistant: "ASSISTANT:"
system: "SYSTEM:"
mmproj: bakllava-mmproj.gguf
parameters:
model: bakllava.gguf
temperature: 0.2
top_k: 40
top_p: 0.95
template:
chat: |
A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.
{{.Input}}
ASSISTANT:
download_files:
- filename: bakllava.gguf
uri: huggingface://mys/ggml_bakllava-1/ggml-model-q4_k.gguf
- filename: bakllava-mmproj.gguf
uri: huggingface://mys/ggml_bakllava-1/mmproj-model-f16.gguf

View File

@@ -0,0 +1,23 @@
name: mistral-openorca
mmap: true
parameters:
model: huggingface://TheBloke/Mistral-7B-OpenOrca-GGUF/mistral-7b-openorca.Q6_K.gguf
temperature: 0.2
top_k: 40
top_p: 0.95
template:
chat_message: |
<|im_start|>{{if eq .RoleName "assistant"}}assistant{{else if eq .RoleName "system"}}system{{else if eq .RoleName "user"}}user{{end}}
{{if .Content}}{{.Content}}{{end}}
<|im_end|>
chat: |
{{.Input}}
<|im_start|>assistant
completion: |
{{.Input}}
context_size: 4096
f16: true
stopwords:
- <|im_end|>

View File

@@ -67,6 +67,17 @@ curl http://localhost:8080/v1/chat/completions -H "Content-Type: application/jso
```
### Phi-2
```
cp -r examples/configurations/phi-2.yaml models/
curl http://localhost:8080/v1/chat/completions -H "Content-Type: application/json" -d '{
"model": "phi-2",
"messages": [{"role": "user", "content": "How are you doing?", "temperature": 0.1}]
}'
```
### Mixtral
```

View File

@@ -0,0 +1,17 @@
name: phi-2
context_size: 2048
f16: true
gpu_layers: 90
mmap: true
trimsuffix:
- "\n"
parameters:
model: huggingface://TheBloke/phi-2-GGUF/phi-2.Q8_0.gguf
temperature: 0.2
top_k: 40
top_p: 0.95
template:
chat: &template |
Instruct: {{.Input}}
Output:
completion: *template

3
go.mod
View File

@@ -3,10 +3,10 @@ module github.com/go-skynet/LocalAI
go 1.21
require (
github.com/M0Rf30/go-tiny-dream v0.0.0-20231128165230-772a9c0d9aaf
github.com/donomii/go-rwkv.cpp v0.0.0-20230715075832-c898cd0f62df
github.com/ggerganov/whisper.cpp/bindings/go v0.0.0-20230628193450-85ed71aaec8e
github.com/go-audio/wav v1.1.0
github.com/go-skynet/bloomz.cpp v0.0.0-20230529155654-1834e77b83fa
github.com/go-skynet/go-bert.cpp v0.0.0-20230716133540-6abe312cded1
github.com/go-skynet/go-ggml-transformers.cpp v0.0.0-20230714203132-ffb09d7dd71e
github.com/go-skynet/go-llama.cpp v0.0.0-20231009155254-aeba71ee8428
@@ -17,7 +17,6 @@ require (
github.com/imdario/mergo v0.3.16
github.com/json-iterator/go v1.1.12
github.com/mholt/archiver/v3 v3.5.1
github.com/mudler/go-ggllm.cpp v0.0.0-20230709223052-862477d16eef
github.com/mudler/go-processmanager v0.0.0-20230818213616-f204007f963c
github.com/mudler/go-stable-diffusion v0.0.0-20230605122230-d89260f598af
github.com/nomic-ai/gpt4all/gpt4all-bindings/golang v0.0.0-20231022042237-c25dc5193530

19
go.sum
View File

@@ -1,3 +1,5 @@
github.com/M0Rf30/go-tiny-dream v0.0.0-20231128165230-772a9c0d9aaf h1:UgjXLcE9I+VaVz7uBIlzAnyZIXwiDlIiTWqCh159aUI=
github.com/M0Rf30/go-tiny-dream v0.0.0-20231128165230-772a9c0d9aaf/go.mod h1:UOf2Mb/deUri5agct5OJ4SLWjhI+kZKbsUVUeRb24I0=
github.com/andybalholm/brotli v1.0.1/go.mod h1:loMXtMfwqflxFJPmdbJO0a3KNoPuLBgiu3qAvBg8x/Y=
github.com/andybalholm/brotli v1.0.5 h1:8uQZIdzKmjc/iuPu7O2ioW48L81FgatrcpfFmiq/cCs=
github.com/andybalholm/brotli v1.0.5/go.mod h1:fO7iG3H7G2nSZ7m0zPUDn85XEX2GTukHGRSepvi9Eig=
@@ -39,8 +41,6 @@ github.com/go-logr/stdr v1.2.2 h1:hSWxHoqTgW2S2qGc0LTAI563KZ5YKYRhT3MFKZMbjag=
github.com/go-logr/stdr v1.2.2/go.mod h1:mMo/vtBO5dYbehREoey6XUKy/eSumjCCveDpRre4VKE=
github.com/go-ole/go-ole v1.2.6 h1:/Fpf6oFPoeFik9ty7siob0G6Ke8QvQEuVcuChpwXzpY=
github.com/go-ole/go-ole v1.2.6/go.mod h1:pprOEPIfldk/42T2oK7lQ4v4JSDwmV0As9GaiUsvbm0=
github.com/go-skynet/bloomz.cpp v0.0.0-20230529155654-1834e77b83fa h1:gxr68r/6EWroay4iI81jxqGCDbKotY4+CiwdUkBz2NQ=
github.com/go-skynet/bloomz.cpp v0.0.0-20230529155654-1834e77b83fa/go.mod h1:wc0fJ9V04yiYTfgKvE5RUUSRQ5Kzi0Bo4I+U3nNOUuA=
github.com/go-skynet/go-bert.cpp v0.0.0-20230716133540-6abe312cded1 h1:yXvc7QfGtoZ51tUW/YVjoTwAfh8HG88XU7UOrbNlz5Y=
github.com/go-skynet/go-bert.cpp v0.0.0-20230716133540-6abe312cded1/go.mod h1:fYjkCDRzC+oRLHSjQoajmYK6AmeJnmEanV27CClAcDc=
github.com/go-skynet/go-ggml-transformers.cpp v0.0.0-20230714203132-ffb09d7dd71e h1:4reMY29i1eOZaRaSTMPNyXI7X8RMNxCTfDDBXYzrbr0=
@@ -71,7 +71,6 @@ github.com/google/go-cmp v0.3.1/go.mod h1:8QqcDgzrUqlUb/G2PQTWiueGozuR1884gddMyw
github.com/google/go-cmp v0.4.0/go.mod h1:v8dTdLbMG2kIc/vJvl+f65V22dbkXbowE6jgT/gNBxE=
github.com/google/go-cmp v0.5.5/go.mod h1:v8dTdLbMG2kIc/vJvl+f65V22dbkXbowE6jgT/gNBxE=
github.com/google/go-cmp v0.5.6/go.mod h1:v8dTdLbMG2kIc/vJvl+f65V22dbkXbowE6jgT/gNBxE=
github.com/google/go-cmp v0.5.9 h1:O2Tfq5qg4qc4AmwVlvv0oLiVAGB7enBSJ2x2DqQFi38=
github.com/google/go-cmp v0.5.9/go.mod h1:17dUlkBOakJ0+DkrSSNjCkIjxS6bF9zb3elmeNGIjoY=
github.com/google/go-cmp v0.6.0 h1:ofyhxvXcZhMsU5ulbFiLKl/XBFqE1GSq7atu8tAmTRI=
github.com/google/go-cmp v0.6.0/go.mod h1:17dUlkBOakJ0+DkrSSNjCkIjxS6bF9zb3elmeNGIjoY=
@@ -125,18 +124,12 @@ github.com/modern-go/concurrent v0.0.0-20180306012644-bacd9c7ef1dd h1:TRLaZ9cD/w
github.com/modern-go/concurrent v0.0.0-20180306012644-bacd9c7ef1dd/go.mod h1:6dJC0mAP4ikYIbvyc7fijjWJddQyLn8Ig3JB5CqoB9Q=
github.com/modern-go/reflect2 v1.0.2 h1:xBagoLtFs94CBntxluKeaWgTMpvLxC4ur3nMaC9Gz0M=
github.com/modern-go/reflect2 v1.0.2/go.mod h1:yWuevngMOJpCy52FWWMvUC8ws7m/LJsjYzDa0/r8luk=
github.com/mudler/go-ggllm.cpp v0.0.0-20230709223052-862477d16eef h1:OJZtJ5vYhlkTJI0RHIl62kOkhiINQEhZgsXlwmmNDhM=
github.com/mudler/go-ggllm.cpp v0.0.0-20230709223052-862477d16eef/go.mod h1:00giAi/vwF8LX29JBjkPQhtASsivPnGNzB6sdmk8JGE=
github.com/mudler/go-piper v0.0.0-20230621222733-56b8a81b4760 h1:OFVkSxR7CRSRSNm5dvpMRZwmSwWa8EMMnHbc84fW5tU=
github.com/mudler/go-piper v0.0.0-20230621222733-56b8a81b4760/go.mod h1:O7SwdSWMilAWhBZMK9N9Y/oBDyMMzshE3ju8Xkexwig=
github.com/mudler/go-processmanager v0.0.0-20230818213616-f204007f963c h1:CI5uGwqBpN8N7BrSKC+nmdfw+9nPQIDyjHHlaIiitZI=
github.com/mudler/go-processmanager v0.0.0-20230818213616-f204007f963c/go.mod h1:gY3wyrhkRySJtmtI/JPt4a2mKv48h/M9pEZIW+SjeC0=
github.com/mudler/go-stable-diffusion v0.0.0-20230605122230-d89260f598af h1:XFq6OUqsWQam0OrEr05okXsJK/TQur3zoZTHbiZD3Ks=
github.com/mudler/go-stable-diffusion v0.0.0-20230605122230-d89260f598af/go.mod h1:8ufRkpz/S/9ahkaxzZ5i4WMgO9w4InEhuRoT7vK5Rnw=
github.com/nomic-ai/gpt4all/gpt4all-bindings/golang v0.0.0-20231013181651-22de3c56bdd4 h1:82J4t94Mmt0lva/OoxNlHkKrMSdSUZXkAjTFnlFFsow=
github.com/nomic-ai/gpt4all/gpt4all-bindings/golang v0.0.0-20231013181651-22de3c56bdd4/go.mod h1:4T3CHXyrt+7FQHXaxULZfPjHbD8/99WuDDJa0YVZARI=
github.com/nomic-ai/gpt4all/gpt4all-bindings/golang v0.0.0-20231016205817-9a19c740ee84 h1:AiFzd+M2Uxz67fdn4nCnKR70me5yf88rXhoqhvfRDak=
github.com/nomic-ai/gpt4all/gpt4all-bindings/golang v0.0.0-20231016205817-9a19c740ee84/go.mod h1:4T3CHXyrt+7FQHXaxULZfPjHbD8/99WuDDJa0YVZARI=
github.com/nomic-ai/gpt4all/gpt4all-bindings/golang v0.0.0-20231022042237-c25dc5193530 h1:YXMxHwHMB9jCBo2Yu5gz3mTB3T1TnZs/HmPLv15LUSA=
github.com/nomic-ai/gpt4all/gpt4all-bindings/golang v0.0.0-20231022042237-c25dc5193530/go.mod h1:4T3CHXyrt+7FQHXaxULZfPjHbD8/99WuDDJa0YVZARI=
github.com/nwaples/rardecode v1.1.0 h1:vSxaY8vQhOcVr4mm5e8XllHWTiM4JF507A0Katqw7MQ=
@@ -153,8 +146,6 @@ github.com/onsi/ginkgo/v2 v2.13.0/go.mod h1:TE309ZR8s5FsKKpuB1YAQYBzCaAfUgatB/xl
github.com/onsi/gomega v1.7.1/go.mod h1:XdKZgCCFLUoM/7CFJVPcG8C1xQ1AJ0vpAezJrB7JYyY=
github.com/onsi/gomega v1.10.1/go.mod h1:iN09h71vgCQne3DLsj+A5owkum+a2tYe+TOCB1ybHNo=
github.com/onsi/gomega v1.16.0/go.mod h1:HnhC7FXeEQY45zxNK3PPoIUhzk/80Xly9PcubAlGdZY=
github.com/onsi/gomega v1.28.0 h1:i2rg/p9n/UqIDAMFUJ6qIUUMcsqOuUHgbpbu235Vr1c=
github.com/onsi/gomega v1.28.0/go.mod h1:A1H2JE76sI14WIP57LMKj7FVfCHx3g3BcZVjJG8bjX8=
github.com/onsi/gomega v1.28.1 h1:MijcGUbfYuznzK/5R4CPNoUP/9Xvuo20sXfEm6XxoTA=
github.com/onsi/gomega v1.28.1/go.mod h1:9sxs+SwGrKI0+PWe4Fxa9tFQQBG5xSsSbMXOI8PPpoQ=
github.com/otiai10/mint v1.6.1 h1:kgbTJmOpp/0ce7hk3H8jiSuR0MXmpwWRfqUdKww17qg=
@@ -216,8 +207,6 @@ github.com/tklauser/go-sysconf v0.3.12/go.mod h1:Ho14jnntGE1fpdOqQEEaiKRpvIavV0h
github.com/tklauser/numcpus v0.6.0/go.mod h1:FEZLMke0lhOUG6w2JadTzp0a+Nl8PF/GFkQ5UVIcaL4=
github.com/tklauser/numcpus v0.6.1 h1:ng9scYS7az0Bk4OZLvrNXNSAO2Pxr1XXRAPyjhIx+Fk=
github.com/tklauser/numcpus v0.6.1/go.mod h1:1XfjsgE2zo8GVw7POkMbHENHzVg3GzmoZ9fESEdAacY=
github.com/tmc/langchaingo v0.0.0-20231016073620-a02d4fdc0f3a h1:BziGpoF5ZVWMDy6Z1adXnYndRye2fiYWZlmknUFksGA=
github.com/tmc/langchaingo v0.0.0-20231016073620-a02d4fdc0f3a/go.mod h1:SiwyRS7sBSSi6f3NB4dKENw69X6br/wZ2WRkM+8pZWk=
github.com/tmc/langchaingo v0.0.0-20231019140956-c636b3da7701 h1:LquLgmFiKf6eDXdwoUKCIGn5NsR34cLXC6ySYhiE6bA=
github.com/tmc/langchaingo v0.0.0-20231019140956-c636b3da7701/go.mod h1:SiwyRS7sBSSi6f3NB4dKENw69X6br/wZ2WRkM+8pZWk=
github.com/ulikunitz/xz v0.5.8/go.mod h1:nbz6k7qbPmH4IRqmfOplQw/tblSgqTqBwxkY0oWt/14=
@@ -309,12 +298,8 @@ golang.org/x/xerrors v0.0.0-20190717185122-a985d3407aa7/go.mod h1:I/5z698sn9Ka8T
golang.org/x/xerrors v0.0.0-20191011141410-1b5146add898/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
golang.org/x/xerrors v0.0.0-20191204190536-9bdfabe68543/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
golang.org/x/xerrors v0.0.0-20200804184101-5ec99f83aff1/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
google.golang.org/genproto/googleapis/rpc v0.0.0-20230711160842-782d3b101e98 h1:bVf09lpb+OJbByTj913DRJioFFAjf/ZGxEz7MajTp2U=
google.golang.org/genproto/googleapis/rpc v0.0.0-20230711160842-782d3b101e98/go.mod h1:TUfxEVdsvPg18p6AslUXFoLdpED4oBnGwyqk3dV1XzM=
google.golang.org/genproto/googleapis/rpc v0.0.0-20230822172742-b8732ec3820d h1:uvYuEyMHKNt+lT4K3bN6fGswmK8qSvcreM3BwjDh+y4=
google.golang.org/genproto/googleapis/rpc v0.0.0-20230822172742-b8732ec3820d/go.mod h1:+Bk1OCOj40wS2hwAMA+aCW9ypzm63QTBBHp6lQ3p+9M=
google.golang.org/grpc v1.58.3 h1:BjnpXut1btbtgN/6sp+brB2Kbm2LjNXnidYujAVbSoQ=
google.golang.org/grpc v1.58.3/go.mod h1:tgX3ZQDlNJGU96V6yHh1T/JeoBQ2TXdr43YbYSsCJk0=
google.golang.org/grpc v1.59.0 h1:Z5Iec2pjwb+LEOqzpB2MR12/eKFhDPhuqW91O+4bwUk=
google.golang.org/grpc v1.59.0/go.mod h1:aUPDwccQo6OTjy7Hct4AfBPD1GptF4fyUjIkQ9YtF98=
google.golang.org/protobuf v0.0.0-20200109180630-ec00e32a8dfd/go.mod h1:DFci5gLYBciE7Vtevhsrf46CRTquxDuWsQurQQe4oz8=

View File

@@ -99,6 +99,11 @@ func main() {
Usage: "A List of models to apply in JSON at start",
EnvVars: []string{"PRELOAD_MODELS"},
},
&cli.StringFlag{
Name: "models",
Usage: "A List of models URLs configurations.",
EnvVars: []string{"MODELS"},
},
&cli.StringFlag{
Name: "preload-models-config",
Usage: "A List of models to apply at startup. Path to a YAML config file",
@@ -222,6 +227,7 @@ For a list of compatible model, check out: https://localai.io/model-compatibilit
options.WithBackendAssetsOutput(ctx.String("backend-assets-path")),
options.WithUploadLimitMB(ctx.Int("upload-limit")),
options.WithApiKeys(ctx.StringSlice("api-keys")),
options.WithModelsURL(append(ctx.StringSlice("models"), ctx.Args().Slice()...)...),
}
idleWatchDog := ctx.Bool("enable-watchdog-idle")

22
pkg/assets/list.go Normal file
View File

@@ -0,0 +1,22 @@
package assets
import (
"embed"
"io/fs"
)
func ListFiles(content embed.FS) (files []string) {
fs.WalkDir(content, ".", func(path string, d fs.DirEntry, err error) error {
if err != nil {
return err
}
if d.IsDir() {
return nil
}
files = append(files, path)
return nil
})
return
}

View File

@@ -0,0 +1,26 @@
package downloader
import "hash"
type progressWriter struct {
fileName string
total int64
written int64
downloadStatus func(string, string, string, float64)
hash hash.Hash
}
func (pw *progressWriter) Write(p []byte) (n int, err error) {
n, err = pw.hash.Write(p)
pw.written += int64(n)
if pw.total > 0 {
percentage := float64(pw.written) / float64(pw.total) * 100
//log.Debug().Msgf("Downloading %s: %s/%s (%.2f%%)", pw.fileName, formatBytes(pw.written), formatBytes(pw.total), percentage)
pw.downloadStatus(pw.fileName, formatBytes(pw.written), formatBytes(pw.total), percentage)
} else {
pw.downloadStatus(pw.fileName, formatBytes(pw.written), "", 0)
}
return
}

View File

@@ -1,10 +1,9 @@
package utils
package downloader
import (
"crypto/md5"
"crypto/sha256"
"encoding/base64"
"fmt"
"hash"
"io"
"net/http"
"os"
@@ -12,30 +11,20 @@ import (
"strconv"
"strings"
"github.com/go-skynet/LocalAI/pkg/utils"
"github.com/rs/zerolog/log"
)
const (
githubURI = "github:"
HuggingFacePrefix = "huggingface://"
HTTPPrefix = "http://"
HTTPSPrefix = "https://"
GithubURI = "github:"
GithubURI2 = "github://"
)
func GetURI(url string, f func(url string, i []byte) error) error {
if strings.HasPrefix(url, githubURI) {
parts := strings.Split(url, ":")
repoParts := strings.Split(parts[1], "@")
branch := "main"
if len(repoParts) > 1 {
branch = repoParts[1]
}
repoPath := strings.Split(repoParts[0], "/")
org := repoPath[0]
project := repoPath[1]
projectPath := strings.Join(repoPath[2:], "/")
url = fmt.Sprintf("https://raw.githubusercontent.com/%s/%s/%s/%s", org, project, branch, projectPath)
}
url = ConvertURL(url)
if strings.HasPrefix(url, "file://") {
rawURL := strings.TrimPrefix(url, "file://")
@@ -71,10 +60,49 @@ func GetURI(url string, f func(url string, i []byte) error) error {
return f(url, body)
}
func LooksLikeURL(s string) bool {
return strings.HasPrefix(s, HTTPPrefix) ||
strings.HasPrefix(s, HTTPSPrefix) ||
strings.HasPrefix(s, HuggingFacePrefix) ||
strings.HasPrefix(s, GithubURI) ||
strings.HasPrefix(s, GithubURI2)
}
func ConvertURL(s string) string {
switch {
case strings.HasPrefix(s, "huggingface://"):
repository := strings.Replace(s, "huggingface://", "", 1)
case strings.HasPrefix(s, GithubURI2):
repository := strings.Replace(s, GithubURI2, "", 1)
repoParts := strings.Split(repository, "@")
branch := "main"
if len(repoParts) > 1 {
branch = repoParts[1]
}
repoPath := strings.Split(repoParts[0], "/")
org := repoPath[0]
project := repoPath[1]
projectPath := strings.Join(repoPath[2:], "/")
return fmt.Sprintf("https://raw.githubusercontent.com/%s/%s/%s/%s", org, project, branch, projectPath)
case strings.HasPrefix(s, GithubURI):
parts := strings.Split(s, ":")
repoParts := strings.Split(parts[1], "@")
branch := "main"
if len(repoParts) > 1 {
branch = repoParts[1]
}
repoPath := strings.Split(repoParts[0], "/")
org := repoPath[0]
project := repoPath[1]
projectPath := strings.Join(repoPath[2:], "/")
return fmt.Sprintf("https://raw.githubusercontent.com/%s/%s/%s/%s", org, project, branch, projectPath)
case strings.HasPrefix(s, HuggingFacePrefix):
repository := strings.Replace(s, HuggingFacePrefix, "", 1)
// convert repository to a full URL.
// e.g. TheBloke/Mixtral-8x7B-v0.1-GGUF/mixtral-8x7b-v0.1.Q2_K.gguf@main -> https://huggingface.co/TheBloke/Mixtral-8x7B-v0.1-GGUF/resolve/main/mixtral-8x7b-v0.1.Q2_K.gguf
owner := strings.Split(repository, "/")[0]
@@ -94,6 +122,20 @@ func ConvertURL(s string) string {
return s
}
func removePartialFile(tmpFilePath string) error {
_, err := os.Stat(tmpFilePath)
if err == nil {
log.Debug().Msgf("Removing temporary file %s", tmpFilePath)
err = os.Remove(tmpFilePath)
if err != nil {
err1 := fmt.Errorf("failed to remove temporary download file %s: %v", tmpFilePath, err)
log.Warn().Msg(err1.Error())
return err1
}
}
return nil
}
func DownloadFile(url string, filePath, sha string, downloadStatus func(string, string, string, float64)) error {
url = ConvertURL(url)
// Check if the file already exists
@@ -143,15 +185,24 @@ func DownloadFile(url string, filePath, sha string, downloadStatus func(string,
return fmt.Errorf("failed to create parent directory for file %q: %v", filePath, err)
}
// Create and write file content
outFile, err := os.Create(filePath)
// save partial download to dedicated file
tmpFilePath := filePath + ".partial"
// remove tmp file
err = removePartialFile(tmpFilePath)
if err != nil {
return fmt.Errorf("failed to create file %q: %v", filePath, err)
return err
}
// Create and write file content
outFile, err := os.Create(tmpFilePath)
if err != nil {
return fmt.Errorf("failed to create file %q: %v", tmpFilePath, err)
}
defer outFile.Close()
progress := &progressWriter{
fileName: filePath,
fileName: tmpFilePath,
total: resp.ContentLength,
hash: sha256.New(),
downloadStatus: downloadStatus,
@@ -161,6 +212,11 @@ func DownloadFile(url string, filePath, sha string, downloadStatus func(string,
return fmt.Errorf("failed to write file %q: %v", filePath, err)
}
err = os.Rename(tmpFilePath, filePath)
if err != nil {
return fmt.Errorf("failed to rename temporary file %s -> %s: %v", tmpFilePath, filePath, err)
}
if sha != "" {
// Verify SHA
calculatedSHA := fmt.Sprintf("%x", progress.hash.Sum(nil))
@@ -173,10 +229,10 @@ func DownloadFile(url string, filePath, sha string, downloadStatus func(string,
}
log.Info().Msgf("File %q downloaded and verified", filePath)
if IsArchive(filePath) {
if utils.IsArchive(filePath) {
basePath := filepath.Dir(filePath)
log.Info().Msgf("File %q is an archive, uncompressing to %s", filePath, basePath)
if err := ExtractArchive(filePath, basePath); err != nil {
if err := utils.ExtractArchive(filePath, basePath); err != nil {
log.Debug().Msgf("Failed decompressing %q: %s", filePath, err.Error())
return err
}
@@ -185,32 +241,35 @@ func DownloadFile(url string, filePath, sha string, downloadStatus func(string,
return nil
}
type progressWriter struct {
fileName string
total int64
written int64
downloadStatus func(string, string, string, float64)
hash hash.Hash
}
// this function check if the string is an URL, if it's an URL downloads the image in memory
// encodes it in base64 and returns the base64 string
func GetBase64Image(s string) (string, error) {
if strings.HasPrefix(s, "http") {
// download the image
resp, err := http.Get(s)
if err != nil {
return "", err
}
defer resp.Body.Close()
func (pw *progressWriter) Write(p []byte) (n int, err error) {
n, err = pw.hash.Write(p)
pw.written += int64(n)
// read the image data into memory
data, err := io.ReadAll(resp.Body)
if err != nil {
return "", err
}
if pw.total > 0 {
percentage := float64(pw.written) / float64(pw.total) * 100
//log.Debug().Msgf("Downloading %s: %s/%s (%.2f%%)", pw.fileName, formatBytes(pw.written), formatBytes(pw.total), percentage)
pw.downloadStatus(pw.fileName, formatBytes(pw.written), formatBytes(pw.total), percentage)
} else {
pw.downloadStatus(pw.fileName, formatBytes(pw.written), "", 0)
// encode the image data in base64
encoded := base64.StdEncoding.EncodeToString(data)
// return the base64 string
return encoded, nil
}
return
}
// MD5 of a string
func MD5(s string) string {
return fmt.Sprintf("%x", md5.Sum([]byte(s)))
// if the string instead is prefixed with "data:image/jpeg;base64,", drop it
if strings.HasPrefix(s, "data:image/jpeg;base64,") {
return strings.ReplaceAll(s, "data:image/jpeg;base64,", ""), nil
}
return "", fmt.Errorf("not valid string")
}
func formatBytes(bytes int64) string {

View File

@@ -1,7 +1,7 @@
package utils_test
package downloader_test
import (
. "github.com/go-skynet/LocalAI/pkg/utils"
. "github.com/go-skynet/LocalAI/pkg/downloader"
. "github.com/onsi/ginkgo/v2"
. "github.com/onsi/gomega"
)

View File

@@ -6,7 +6,7 @@ import (
"path/filepath"
"strings"
"github.com/go-skynet/LocalAI/pkg/utils"
"github.com/go-skynet/LocalAI/pkg/downloader"
"github.com/imdario/mergo"
"github.com/rs/zerolog/log"
"gopkg.in/yaml.v2"
@@ -140,7 +140,7 @@ func AvailableGalleryModels(galleries []Gallery, basePath string) ([]*GalleryMod
func findGalleryURLFromReferenceURL(url string) (string, error) {
var refFile string
err := utils.GetURI(url, func(url string, d []byte) error {
err := downloader.GetURI(url, func(url string, d []byte) error {
refFile = string(d)
if len(refFile) == 0 {
return fmt.Errorf("invalid reference file at url %s: %s", url, d)
@@ -163,7 +163,7 @@ func getGalleryModels(gallery Gallery, basePath string) ([]*GalleryModel, error)
}
}
err := utils.GetURI(gallery.URL, func(url string, d []byte) error {
err := downloader.GetURI(gallery.URL, func(url string, d []byte) error {
return yaml.Unmarshal(d, &models)
})
if err != nil {

View File

@@ -1,14 +1,11 @@
package gallery
import (
"crypto/sha256"
"fmt"
"hash"
"io"
"os"
"path/filepath"
"strconv"
"github.com/go-skynet/LocalAI/pkg/downloader"
"github.com/go-skynet/LocalAI/pkg/utils"
"github.com/imdario/mergo"
"github.com/rs/zerolog/log"
@@ -66,7 +63,7 @@ type PromptTemplate struct {
func GetGalleryConfigFromURL(url string) (Config, error) {
var config Config
err := utils.GetURI(url, func(url string, d []byte) error {
err := downloader.GetURI(url, func(url string, d []byte) error {
return yaml.Unmarshal(d, &config)
})
if err != nil {
@@ -114,7 +111,7 @@ func InstallModel(basePath, nameOverride string, config *Config, configOverrides
// Create file path
filePath := filepath.Join(basePath, file.Filename)
if err := utils.DownloadFile(file.URI, filePath, file.SHA256, downloadStatus); err != nil {
if err := downloader.DownloadFile(file.URI, filePath, file.SHA256, downloadStatus); err != nil {
return err
}
}
@@ -183,54 +180,3 @@ func InstallModel(basePath, nameOverride string, config *Config, configOverrides
return nil
}
type progressWriter struct {
fileName string
total int64
written int64
downloadStatus func(string, string, string, float64)
hash hash.Hash
}
func (pw *progressWriter) Write(p []byte) (n int, err error) {
n, err = pw.hash.Write(p)
pw.written += int64(n)
if pw.total > 0 {
percentage := float64(pw.written) / float64(pw.total) * 100
//log.Debug().Msgf("Downloading %s: %s/%s (%.2f%%)", pw.fileName, formatBytes(pw.written), formatBytes(pw.total), percentage)
pw.downloadStatus(pw.fileName, formatBytes(pw.written), formatBytes(pw.total), percentage)
} else {
pw.downloadStatus(pw.fileName, formatBytes(pw.written), "", 0)
}
return
}
func formatBytes(bytes int64) string {
const unit = 1024
if bytes < unit {
return strconv.FormatInt(bytes, 10) + " B"
}
div, exp := int64(unit), 0
for n := bytes / unit; n >= unit; n /= unit {
div *= unit
exp++
}
return fmt.Sprintf("%.1f %ciB", float64(bytes)/float64(div), "KMGTPE"[exp])
}
func calculateSHA(filePath string) (string, error) {
file, err := os.Open(filePath)
if err != nil {
return "", err
}
defer file.Close()
hash := sha256.New()
if _, err := io.Copy(hash, file); err != nil {
return "", err
}
return fmt.Sprintf("%x", hash.Sum(nil)), nil
}

View File

@@ -40,6 +40,7 @@ const (
RwkvBackend = "rwkv"
WhisperBackend = "whisper"
StableDiffusionBackend = "stablediffusion"
TinyDreamBackend = "tinydream"
PiperBackend = "piper"
LCHuggingFaceBackend = "langchain-huggingface"
@@ -64,6 +65,7 @@ var AutoLoadBackends []string = []string{
RwkvBackend,
WhisperBackend,
StableDiffusionBackend,
TinyDreamBackend,
PiperBackend,
}
@@ -237,10 +239,10 @@ func (ml *ModelLoader) GreedyLoader(opts ...Option) (*grpc.Client, error) {
for _, b := range o.externalBackends {
allBackendsToAutoLoad = append(allBackendsToAutoLoad, b)
}
log.Debug().Msgf("Loading model '%s' greedly from all the available backends: %s", o.model, strings.Join(allBackendsToAutoLoad, ", "))
log.Info().Msgf("Loading model '%s' greedly from all the available backends: %s", o.model, strings.Join(allBackendsToAutoLoad, ", "))
for _, b := range allBackendsToAutoLoad {
log.Debug().Msgf("[%s] Attempting to load", b)
log.Info().Msgf("[%s] Attempting to load", b)
options := []Option{
WithBackendString(b),
WithModel(o.model),
@@ -255,14 +257,14 @@ func (ml *ModelLoader) GreedyLoader(opts ...Option) (*grpc.Client, error) {
model, modelerr := ml.BackendLoader(options...)
if modelerr == nil && model != nil {
log.Debug().Msgf("[%s] Loads OK", b)
log.Info().Msgf("[%s] Loads OK", b)
return model, nil
} else if modelerr != nil {
err = multierror.Append(err, modelerr)
log.Debug().Msgf("[%s] Fails: %s", b, modelerr.Error())
log.Info().Msgf("[%s] Fails: %s", b, modelerr.Error())
} else if model == nil {
err = multierror.Append(err, fmt.Errorf("backend returned no usable model"))
log.Debug().Msgf("[%s] Fails: %s", b, "backend returned no usable model")
log.Info().Msgf("[%s] Fails: %s", b, "backend returned no usable model")
}
}

View File

@@ -0,0 +1,54 @@
package startup
import (
"errors"
"os"
"path/filepath"
"github.com/go-skynet/LocalAI/embedded"
"github.com/go-skynet/LocalAI/pkg/downloader"
"github.com/go-skynet/LocalAI/pkg/utils"
"github.com/rs/zerolog/log"
)
// PreloadModelsConfigurations will preload models from the given list of URLs
// It will download the model if it is not already present in the model path
// It will also try to resolve if the model is an embedded model YAML configuration
func PreloadModelsConfigurations(modelPath string, models ...string) {
for _, url := range models {
url = embedded.ModelShortURL(url)
switch {
case embedded.ExistsInModelsLibrary(url):
modelYAML, err := embedded.ResolveContent(url)
// If we resolve something, just save it to disk and continue
if err != nil {
log.Error().Msgf("error loading model: %s", err.Error())
continue
}
log.Debug().Msgf("[startup] resolved embedded model: %s", url)
md5Name := utils.MD5(url)
if err := os.WriteFile(filepath.Join(modelPath, md5Name)+".yaml", modelYAML, os.ModePerm); err != nil {
log.Error().Msgf("error loading model: %s", err.Error())
}
case downloader.LooksLikeURL(url):
log.Debug().Msgf("[startup] resolved model to download: %s", url)
// md5 of model name
md5Name := utils.MD5(url)
// check if file exists
if _, err := os.Stat(filepath.Join(modelPath, md5Name)); errors.Is(err, os.ErrNotExist) {
err := downloader.DownloadFile(url, filepath.Join(modelPath, md5Name)+".yaml", "", func(fileName, current, total string, percent float64) {
utils.DisplayDownloadFunction(fileName, current, total, percent)
})
if err != nil {
log.Error().Msgf("error loading model: %s", err.Error())
}
}
default:
log.Warn().Msgf("[startup] failed resolving model '%s'", url)
}
}
}

View File

@@ -0,0 +1,66 @@
package startup_test
import (
"fmt"
"os"
"path/filepath"
. "github.com/go-skynet/LocalAI/pkg/startup"
"github.com/go-skynet/LocalAI/pkg/utils"
. "github.com/onsi/ginkgo/v2"
. "github.com/onsi/gomega"
)
var _ = Describe("Preload test", func() {
Context("Preloading from strings", func() {
It("loads from embedded full-urls", func() {
tmpdir, err := os.MkdirTemp("", "")
Expect(err).ToNot(HaveOccurred())
url := "https://raw.githubusercontent.com/mudler/LocalAI/master/examples/configurations/phi-2.yaml"
fileName := fmt.Sprintf("%s.yaml", utils.MD5(url))
PreloadModelsConfigurations(tmpdir, url)
resultFile := filepath.Join(tmpdir, fileName)
content, err := os.ReadFile(resultFile)
Expect(err).ToNot(HaveOccurred())
Expect(string(content)).To(ContainSubstring("name: phi-2"))
})
It("loads from embedded short-urls", func() {
tmpdir, err := os.MkdirTemp("", "")
Expect(err).ToNot(HaveOccurred())
url := "phi-2"
PreloadModelsConfigurations(tmpdir, url)
entry, err := os.ReadDir(tmpdir)
Expect(err).ToNot(HaveOccurred())
Expect(entry).To(HaveLen(1))
resultFile := entry[0].Name()
content, err := os.ReadFile(filepath.Join(tmpdir, resultFile))
Expect(err).ToNot(HaveOccurred())
Expect(string(content)).To(ContainSubstring("name: phi-2"))
})
It("loads from embedded models", func() {
tmpdir, err := os.MkdirTemp("", "")
Expect(err).ToNot(HaveOccurred())
url := "mistral-openorca"
fileName := fmt.Sprintf("%s.yaml", utils.MD5(url))
PreloadModelsConfigurations(tmpdir, url)
resultFile := filepath.Join(tmpdir, fileName)
content, err := os.ReadFile(resultFile)
Expect(err).ToNot(HaveOccurred())
Expect(string(content)).To(ContainSubstring("name: mistral-openorca"))
})
})
})

View File

@@ -0,0 +1,13 @@
package startup_test
import (
"testing"
. "github.com/onsi/ginkgo/v2"
. "github.com/onsi/gomega"
)
func TestStartup(t *testing.T) {
RegisterFailHandler(Fail)
RunSpecs(t, "LocalAI startup test")
}

36
pkg/tinydream/generate.go Normal file
View File

@@ -0,0 +1,36 @@
//go:build tinydream
// +build tinydream
package tinydream
import (
"fmt"
"path/filepath"
tinyDream "github.com/M0Rf30/go-tiny-dream"
)
func GenerateImage(height, width, step, seed int, positive_prompt, negative_prompt, dst, asset_dir string) error {
fmt.Println(dst)
if height > 512 || width > 512 {
return tinyDream.GenerateImage(
1,
step,
seed,
positive_prompt,
negative_prompt,
filepath.Dir(dst),
asset_dir,
)
}
return tinyDream.GenerateImage(
0,
step,
seed,
positive_prompt,
negative_prompt,
filepath.Dir(dst),
asset_dir,
)
}

View File

@@ -0,0 +1,10 @@
//go:build !tinydream
// +build !tinydream
package tinydream
import "fmt"
func GenerateImage(height, width, step, seed int, positive_prompt, negative_prompt, dst, asset_dir string) error {
return fmt.Errorf("This version of LocalAI was built without the tinytts tag")
}

View File

@@ -0,0 +1,20 @@
package tinydream
import "os"
type TinyDream struct {
assetDir string
}
func New(assetDir string) (*TinyDream, error) {
if _, err := os.Stat(assetDir); err != nil {
return nil, err
}
return &TinyDream{
assetDir: assetDir,
}, nil
}
func (td *TinyDream) GenerateImage(height, width, step, seed int, positive_prompt, negative_prompt, dst string) error {
return GenerateImage(height, width, step, seed, positive_prompt, negative_prompt, dst, td.assetDir)
}

10
pkg/utils/hash.go Normal file
View File

@@ -0,0 +1,10 @@
package utils
import (
"crypto/md5"
"fmt"
)
func MD5(s string) string {
return fmt.Sprintf("%x", md5.Sum([]byte(s)))
}

View File

@@ -29,9 +29,9 @@ func DisplayDownloadFunction(fileName string, current string, total string, perc
}
if total != "" {
log.Debug().Msgf("Downloading %s: %s/%s (%.2f%%) ETA: %s", fileName, current, total, percentage, eta)
log.Info().Msgf("Downloading %s: %s/%s (%.2f%%) ETA: %s", fileName, current, total, percentage, eta)
} else {
log.Debug().Msgf("Downloading: %s", current)
log.Info().Msgf("Downloading: %s", current)
}
}
}