Compare commits

..

5 Commits

Author SHA1 Message Date
Ettore Di Giacinto
2a03905920 Merge branch 'master' into cleanup_deps 2024-08-21 13:10:46 +02:00
Ettore Di Giacinto
35297ebc14 Drop also ttf files
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2024-08-21 13:03:26 +02:00
Ettore Di Giacinto
b303805df9 fix marked 2024-08-21 13:02:19 +02:00
Ettore Di Giacinto
32d51797d9 fix alpine.js 2024-08-21 13:02:19 +02:00
Ettore Di Giacinto
af09b019ed fix(assets): generate assets on build time
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2024-08-21 13:02:19 +02:00
267 changed files with 2277 additions and 7745 deletions

View File

@@ -9,7 +9,6 @@
# Param 2: email
#
config_user() {
echo "Configuring git for $1 <$2>"
local gcn=$(git config --global user.name)
if [ -z "${gcn}" ]; then
echo "Setting up git user / remote"
@@ -25,7 +24,6 @@ config_user() {
# Param 2: remote url
#
config_remote() {
echo "Adding git remote and fetching $2 as $1"
local gr=$(git remote -v | grep $1)
if [ -z "${gr}" ]; then
git remote add $1 $2
@@ -34,22 +32,18 @@ config_remote() {
}
# Setup special .ssh files
# Prints out lines of text to make things pretty
#
# Param 1: bash array, filenames relative to the customization directory that should be copied to ~/.ssh
setup_ssh() {
echo "starting ~/.ssh directory setup..."
mkdir -p "${HOME}.ssh"
chmod 0700 "${HOME}/.ssh"
echo "-----"
local files=("$@")
for file in "${files[@]}" ; do
for file in "${files[@]}"; then
local cfile="/devcontainer-customization/${file}"
local hfile="${HOME}/.ssh/${file}"
local hfile="~/.ssh/${file}"
if [ ! -f "${hfile}" ]; then
echo "copying \"${file}\""
echo "copying ${file}"
cp "${cfile}" "${hfile}"
chmod 600 "${hfile}"
fi
done
echo "~/.ssh directory setup complete!"
ls ~/.ssh
}

View File

@@ -29,14 +29,9 @@ def calculate_sha256(file_path):
def manual_safety_check_hf(repo_id):
scanResponse = requests.get('https://huggingface.co/api/models/' + repo_id + "/scan")
scan = scanResponse.json()
# Check if 'hasUnsafeFile' exists in the response
if 'hasUnsafeFile' in scan:
if scan['hasUnsafeFile']:
return scan
else:
return None
else:
return None
if scan['hasUnsafeFile']:
return scan
return None
download_type, repo_id_or_url = parse_uri(uri)

View File

@@ -6,7 +6,6 @@ import (
"io/ioutil"
"os"
"github.com/microcosm-cc/bluemonday"
"gopkg.in/yaml.v3"
)
@@ -280,12 +279,6 @@ func main() {
return
}
// Ensure that all arbitrary text content is sanitized before display
for i, m := range models {
models[i].Name = bluemonday.StrictPolicy().Sanitize(m.Name)
models[i].Description = bluemonday.StrictPolicy().Sanitize(m.Description)
}
// render the template
data := struct {
Models []*GalleryModel

View File

@@ -9,8 +9,6 @@ updates:
directory: "/"
schedule:
interval: "weekly"
ignore:
- dependency-name: "github.com/mudler/LocalAI/pkg/grpc/proto"
- package-ecosystem: "github-actions"
# Workflow files stored in the default location of `.github/workflows`. (You don't need to specify `/.github/workflows` for `directory`. You can use `directory: "/"`.)
directory: "/"

View File

@@ -56,7 +56,7 @@ jobs:
rm -rfv ${{ matrix.variable }}_message.txt
rm -rfv ${{ matrix.variable }}_commit.txt
- name: Create Pull Request
uses: peter-evans/create-pull-request@v7
uses: peter-evans/create-pull-request@v6
with:
token: ${{ secrets.UPDATE_BOT_TOKEN }}
push-to-fork: ci-forks/LocalAI

View File

@@ -17,7 +17,7 @@ jobs:
run: |
bash .github/bump_docs.sh ${{ matrix.repository }}
- name: Create Pull Request
uses: peter-evans/create-pull-request@v7
uses: peter-evans/create-pull-request@v6
with:
token: ${{ secrets.UPDATE_BOT_TOKEN }}
push-to-fork: ci-forks/LocalAI

View File

@@ -36,7 +36,7 @@ jobs:
sudo chmod 777 /hf_cache
bash .github/checksum_checker.sh gallery/index.yaml
- name: Create Pull Request
uses: peter-evans/create-pull-request@v7
uses: peter-evans/create-pull-request@v6
with:
token: ${{ secrets.UPDATE_BOT_TOKEN }}
push-to-fork: ci-forks/LocalAI

View File

@@ -33,7 +33,7 @@ jobs:
run: |
CGO_ENABLED=0 make build-api
- name: rm
uses: appleboy/ssh-action@v1.1.0
uses: appleboy/ssh-action@v1.0.3
with:
host: ${{ secrets.EXPLORER_SSH_HOST }}
username: ${{ secrets.EXPLORER_SSH_USERNAME }}
@@ -53,7 +53,7 @@ jobs:
rm: true
target: ./local-ai
- name: restarting
uses: appleboy/ssh-action@v1.1.0
uses: appleboy/ssh-action@v1.0.3
with:
host: ${{ secrets.EXPLORER_SSH_HOST }}
username: ${{ secrets.EXPLORER_SSH_USERNAME }}

View File

@@ -13,78 +13,6 @@ concurrency:
cancel-in-progress: true
jobs:
hipblas-jobs:
uses: ./.github/workflows/image_build.yml
with:
tag-latest: ${{ matrix.tag-latest }}
tag-suffix: ${{ matrix.tag-suffix }}
ffmpeg: ${{ matrix.ffmpeg }}
image-type: ${{ matrix.image-type }}
build-type: ${{ matrix.build-type }}
cuda-major-version: ${{ matrix.cuda-major-version }}
cuda-minor-version: ${{ matrix.cuda-minor-version }}
platforms: ${{ matrix.platforms }}
runs-on: ${{ matrix.runs-on }}
base-image: ${{ matrix.base-image }}
grpc-base-image: ${{ matrix.grpc-base-image }}
aio: ${{ matrix.aio }}
makeflags: ${{ matrix.makeflags }}
latest-image: ${{ matrix.latest-image }}
latest-image-aio: ${{ matrix.latest-image-aio }}
secrets:
dockerUsername: ${{ secrets.DOCKERHUB_USERNAME }}
dockerPassword: ${{ secrets.DOCKERHUB_PASSWORD }}
quayUsername: ${{ secrets.LOCALAI_REGISTRY_USERNAME }}
quayPassword: ${{ secrets.LOCALAI_REGISTRY_PASSWORD }}
strategy:
# Pushing with all jobs in parallel
# eats the bandwidth of all the nodes
max-parallel: 2
matrix:
include:
- build-type: 'hipblas'
platforms: 'linux/amd64'
tag-latest: 'auto'
tag-suffix: '-hipblas-ffmpeg'
ffmpeg: 'true'
image-type: 'extras'
aio: "-aio-gpu-hipblas"
base-image: "rocm/dev-ubuntu-22.04:6.1"
grpc-base-image: "ubuntu:22.04"
latest-image: 'latest-gpu-hipblas'
latest-image-aio: 'latest-aio-gpu-hipblas'
runs-on: 'arc-runner-set'
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'hipblas'
platforms: 'linux/amd64'
tag-latest: 'false'
tag-suffix: '-hipblas'
ffmpeg: 'false'
image-type: 'extras'
base-image: "rocm/dev-ubuntu-22.04:6.1"
grpc-base-image: "ubuntu:22.04"
runs-on: 'arc-runner-set'
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'hipblas'
platforms: 'linux/amd64'
tag-latest: 'false'
tag-suffix: '-hipblas-ffmpeg-core'
ffmpeg: 'true'
image-type: 'core'
base-image: "rocm/dev-ubuntu-22.04:6.1"
grpc-base-image: "ubuntu:22.04"
runs-on: 'arc-runner-set'
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'hipblas'
platforms: 'linux/amd64'
tag-latest: 'false'
tag-suffix: '-hipblas-core'
ffmpeg: 'false'
image-type: 'core'
base-image: "rocm/dev-ubuntu-22.04:6.1"
grpc-base-image: "ubuntu:22.04"
runs-on: 'arc-runner-set'
makeflags: "--jobs=3 --output-sync=target"
self-hosted-jobs:
uses: ./.github/workflows/image_build.yml
with:
@@ -111,7 +39,7 @@ jobs:
strategy:
# Pushing with all jobs in parallel
# eats the bandwidth of all the nodes
max-parallel: ${{ github.event_name != 'pull_request' && 5 || 8 }}
max-parallel: ${{ github.event_name != 'pull_request' && 6 || 10 }}
matrix:
include:
# Extra images
@@ -194,6 +122,29 @@ jobs:
base-image: "ubuntu:22.04"
runs-on: 'arc-runner-set'
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'hipblas'
platforms: 'linux/amd64'
tag-latest: 'auto'
tag-suffix: '-hipblas-ffmpeg'
ffmpeg: 'true'
image-type: 'extras'
aio: "-aio-gpu-hipblas"
base-image: "rocm/dev-ubuntu-22.04:6.1"
grpc-base-image: "ubuntu:22.04"
latest-image: 'latest-gpu-hipblas'
latest-image-aio: 'latest-aio-gpu-hipblas'
runs-on: 'arc-runner-set'
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'hipblas'
platforms: 'linux/amd64'
tag-latest: 'false'
tag-suffix: '-hipblas'
ffmpeg: 'false'
image-type: 'extras'
base-image: "rocm/dev-ubuntu-22.04:6.1"
grpc-base-image: "ubuntu:22.04"
runs-on: 'arc-runner-set'
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'sycl_f16'
platforms: 'linux/amd64'
tag-latest: 'auto'
@@ -261,6 +212,26 @@ jobs:
image-type: 'core'
runs-on: 'arc-runner-set'
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'hipblas'
platforms: 'linux/amd64'
tag-latest: 'false'
tag-suffix: '-hipblas-ffmpeg-core'
ffmpeg: 'true'
image-type: 'core'
base-image: "rocm/dev-ubuntu-22.04:6.1"
grpc-base-image: "ubuntu:22.04"
runs-on: 'arc-runner-set'
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'hipblas'
platforms: 'linux/amd64'
tag-latest: 'false'
tag-suffix: '-hipblas-core'
ffmpeg: 'false'
image-type: 'core'
base-image: "rocm/dev-ubuntu-22.04:6.1"
grpc-base-image: "ubuntu:22.04"
runs-on: 'arc-runner-set'
makeflags: "--jobs=3 --output-sync=target"
core-image-build:
uses: ./.github/workflows/image_build.yml

View File

@@ -79,7 +79,7 @@ jobs:
args: ${{ steps.summarize.outputs.message }}
- name: Setup tmate session if fails
if: ${{ failure() }}
uses: mxschmitt/action-tmate@v3.19
uses: mxschmitt/action-tmate@v3.18
with:
detached: true
connect-timeout-seconds: 180
@@ -161,7 +161,7 @@ jobs:
TWITTER_ACCESS_TOKEN_SECRET: ${{ secrets.TWITTER_ACCESS_TOKEN_SECRET }}
- name: Setup tmate session if fails
if: ${{ failure() }}
uses: mxschmitt/action-tmate@v3.19
uses: mxschmitt/action-tmate@v3.18
with:
detached: true
connect-timeout-seconds: 180

View File

@@ -123,7 +123,7 @@ jobs:
release/*
- name: Setup tmate session if tests fail
if: ${{ failure() }}
uses: mxschmitt/action-tmate@v3.19
uses: mxschmitt/action-tmate@v3.18
with:
detached: true
connect-timeout-seconds: 180
@@ -232,7 +232,7 @@ jobs:
release/*
- name: Setup tmate session if tests fail
if: ${{ failure() }}
uses: mxschmitt/action-tmate@v3.19
uses: mxschmitt/action-tmate@v3.18
with:
detached: true
connect-timeout-seconds: 180
@@ -294,7 +294,7 @@ jobs:
export C_INCLUDE_PATH=/usr/local/include
export CPLUS_INCLUDE_PATH=/usr/local/include
export PATH=$PATH:$GOPATH/bin
export SKIP_GRPC_BACKEND=backend-assets/grpc/whisper
make dist
- uses: actions/upload-artifact@v4
with:
@@ -308,7 +308,7 @@ jobs:
release/*
- name: Setup tmate session if tests fail
if: ${{ failure() }}
uses: mxschmitt/action-tmate@v3.19
uses: mxschmitt/action-tmate@v3.18
with:
detached: true
connect-timeout-seconds: 180
@@ -327,7 +327,7 @@ jobs:
cache: false
- name: Dependencies
run: |
brew install protobuf grpc libomp llvm
brew install protobuf grpc
go install google.golang.org/grpc/cmd/protoc-gen-go-grpc@1958fcbe2ca8bd93af633f11e97d44e567e945af
go install google.golang.org/protobuf/cmd/protoc-gen-go@v1.34.2
- name: Build
@@ -336,7 +336,7 @@ jobs:
export C_INCLUDE_PATH=/usr/local/include
export CPLUS_INCLUDE_PATH=/usr/local/include
export PATH=$PATH:$GOPATH/bin
export CC=/opt/homebrew/opt/llvm/bin/clang
make dist
- uses: actions/upload-artifact@v4
with:
@@ -350,7 +350,7 @@ jobs:
release/*
- name: Setup tmate session if tests fail
if: ${{ failure() }}
uses: mxschmitt/action-tmate@v3.19
uses: mxschmitt/action-tmate@v3.18
with:
detached: true
connect-timeout-seconds: 180

View File

@@ -18,7 +18,7 @@ jobs:
if: ${{ github.actor != 'dependabot[bot]' }}
- name: Run Gosec Security Scanner
if: ${{ github.actor != 'dependabot[bot]' }}
uses: securego/gosec@v2.21.4
uses: securego/gosec@master
with:
# we let the report trigger content trigger a failure using the GitHub Security features.
args: '-no-fail -fmt sarif -out results.sarif ./...'

View File

@@ -133,7 +133,7 @@ jobs:
PATH="$PATH:/root/go/bin" GO_TAGS="stablediffusion tts" make --jobs 5 --output-sync=target test
- name: Setup tmate session if tests fail
if: ${{ failure() }}
uses: mxschmitt/action-tmate@v3.19
uses: mxschmitt/action-tmate@v3.18
with:
detached: true
connect-timeout-seconds: 180
@@ -178,26 +178,17 @@ jobs:
uses: actions/checkout@v4
with:
submodules: true
- name: Dependencies
run: |
# Install protoc
curl -L -s https://github.com/protocolbuffers/protobuf/releases/download/v26.1/protoc-26.1-linux-x86_64.zip -o protoc.zip && \
unzip -j -d /usr/local/bin protoc.zip bin/protoc && \
rm protoc.zip
go install google.golang.org/protobuf/cmd/protoc-gen-go@v1.34.2
go install google.golang.org/grpc/cmd/protoc-gen-go-grpc@1958fcbe2ca8bd93af633f11e97d44e567e945af
PATH="$PATH:$HOME/go/bin" make protogen-go
- name: Build images
run: |
docker build --build-arg FFMPEG=true --build-arg IMAGE_TYPE=extras --build-arg EXTRA_BACKENDS=rerankers --build-arg MAKEFLAGS="--jobs=5 --output-sync=target" -t local-ai:tests -f Dockerfile .
BASE_IMAGE=local-ai:tests DOCKER_AIO_IMAGE=local-ai-aio:test make docker-aio
- name: Test
run: |
PATH="$PATH:$HOME/go/bin" LOCALAI_MODELS_DIR=$PWD/models LOCALAI_IMAGE_TAG=test LOCALAI_IMAGE=local-ai-aio \
LOCALAI_MODELS_DIR=$PWD/models LOCALAI_IMAGE_TAG=test LOCALAI_IMAGE=local-ai-aio \
make run-e2e-aio
- name: Setup tmate session if tests fail
if: ${{ failure() }}
uses: mxschmitt/action-tmate@v3.19
uses: mxschmitt/action-tmate@v3.18
with:
detached: true
connect-timeout-seconds: 180
@@ -223,19 +214,18 @@ jobs:
run: go version
- name: Dependencies
run: |
brew install protobuf grpc make protoc-gen-go protoc-gen-go-grpc libomp llvm
brew install protobuf grpc make protoc-gen-go protoc-gen-go-grpc
pip install --user --no-cache-dir grpcio-tools==1.64.1
- name: Test
run: |
export C_INCLUDE_PATH=/usr/local/include
export CPLUS_INCLUDE_PATH=/usr/local/include
export CC=/opt/homebrew/opt/llvm/bin/clang
# Used to run the newer GNUMake version from brew that supports --output-sync
export PATH="/opt/homebrew/opt/make/libexec/gnubin:$PATH"
BUILD_TYPE="GITHUB_CI_HAS_BROKEN_METAL" CMAKE_ARGS="-DGGML_F16C=OFF -DGGML_AVX512=OFF -DGGML_AVX2=OFF -DGGML_FMA=OFF" make --jobs 4 --output-sync=target test
- name: Setup tmate session if tests fail
if: ${{ failure() }}
uses: mxschmitt/action-tmate@v3.19
uses: mxschmitt/action-tmate@v3.18
with:
detached: true
connect-timeout-seconds: 180

View File

@@ -25,7 +25,7 @@ jobs:
run: |
make protogen-go swagger
- name: Create Pull Request
uses: peter-evans/create-pull-request@v7
uses: peter-evans/create-pull-request@v6
with:
token: ${{ secrets.UPDATE_BOT_TOKEN }}
push-to-fork: ci-forks/LocalAI

View File

@@ -15,6 +15,8 @@ Thank you for your interest in contributing to LocalAI! We appreciate your time
- [Documentation](#documentation)
- [Community and Communication](#community-and-communication)
## Getting Started
### Prerequisites
@@ -52,7 +54,7 @@ If you find a bug, have a feature request, or encounter any issues, please check
## Coding Guidelines
- No specific coding guidelines at the moment. Please make sure the code can be tested. The most popular lint tools like [`golangci-lint`](https://golangci-lint.run) can help you here.
- No specific coding guidelines at the moment. Please make sure the code can be tested. The most popular lint tools like []`golangci-lint`](https://golangci-lint.run) can help you here.
## Testing
@@ -82,3 +84,5 @@ We are welcome the contribution of the documents, please open new PR or create a
- You can reach out via the Github issue tracker.
- Open a new discussion at [Discussion](https://github.com/go-skynet/LocalAI/discussions)
- Join the Discord channel [Discord](https://discord.gg/uJAeKSAGDy)
---

View File

@@ -9,13 +9,11 @@ FROM ${BASE_IMAGE} AS requirements-core
USER root
ARG GO_VERSION=1.22.6
ARG CMAKE_VERSION=3.26.4
ARG CMAKE_FROM_SOURCE=false
ARG TARGETARCH
ARG TARGETVARIANT
ENV DEBIAN_FRONTEND=noninteractive
ENV EXTERNAL_GRPC_BACKENDS="coqui:/build/backend/python/coqui/run.sh,huggingface-embeddings:/build/backend/python/sentencetransformers/run.sh,transformers:/build/backend/python/transformers/run.sh,sentencetransformers:/build/backend/python/sentencetransformers/run.sh,rerankers:/build/backend/python/rerankers/run.sh,autogptq:/build/backend/python/autogptq/run.sh,bark:/build/backend/python/bark/run.sh,diffusers:/build/backend/python/diffusers/run.sh,openvoice:/build/backend/python/openvoice/run.sh,vall-e-x:/build/backend/python/vall-e-x/run.sh,vllm:/build/backend/python/vllm/run.sh,mamba:/build/backend/python/mamba/run.sh,exllama2:/build/backend/python/exllama2/run.sh,transformers-musicgen:/build/backend/python/transformers-musicgen/run.sh,parler-tts:/build/backend/python/parler-tts/run.sh"
ENV EXTERNAL_GRPC_BACKENDS="coqui:/build/backend/python/coqui/run.sh,huggingface-embeddings:/build/backend/python/sentencetransformers/run.sh,transformers:/build/backend/python/transformers/run.sh,sentencetransformers:/build/backend/python/sentencetransformers/run.sh,rerankers:/build/backend/python/rerankers/run.sh,autogptq:/build/backend/python/autogptq/run.sh,bark:/build/backend/python/bark/run.sh,diffusers:/build/backend/python/diffusers/run.sh,exllama:/build/backend/python/exllama/run.sh,openvoice:/build/backend/python/openvoice/run.sh,vall-e-x:/build/backend/python/vall-e-x/run.sh,vllm:/build/backend/python/vllm/run.sh,mamba:/build/backend/python/mamba/run.sh,exllama2:/build/backend/python/exllama2/run.sh,transformers-musicgen:/build/backend/python/transformers-musicgen/run.sh,parler-tts:/build/backend/python/parler-tts/run.sh"
RUN apt-get update && \
@@ -23,25 +21,13 @@ RUN apt-get update && \
build-essential \
ccache \
ca-certificates \
curl libssl-dev \
cmake \
curl \
git \
unzip upx-ucl && \
apt-get clean && \
rm -rf /var/lib/apt/lists/*
# Install CMake (the version in 22.04 is too old)
RUN <<EOT bash
if [ "${CMAKE_FROM_SOURCE}}" = "true" ]; then
curl -L -s https://github.com/Kitware/CMake/releases/download/v${CMAKE_VERSION}/cmake-${CMAKE_VERSION}.tar.gz -o cmake.tar.gz && tar xvf cmake.tar.gz && cd cmake-${CMAKE_VERSION} && ./configure && make && make install
else
apt-get update && \
apt-get install -y \
cmake && \
apt-get clean && \
rm -rf /var/lib/apt/lists/*
fi
EOT
# Install Go
RUN curl -L -s https://go.dev/dl/go${GO_VERSION}.linux-${TARGETARCH}.tar.gz | tar -C /usr/local -xz
ENV PATH=$PATH:/root/go/bin:/usr/local/go/bin
@@ -202,8 +188,6 @@ FROM ${GRPC_BASE_IMAGE} AS grpc
# This is a bit of a hack, but it's required in order to be able to effectively cache this layer in CI
ARG GRPC_MAKEFLAGS="-j4 -Otarget"
ARG GRPC_VERSION=v1.65.0
ARG CMAKE_FROM_SOURCE=false
ARG CMAKE_VERSION=3.26.4
ENV MAKEFLAGS=${GRPC_MAKEFLAGS}
@@ -212,24 +196,12 @@ WORKDIR /build
RUN apt-get update && \
apt-get install -y --no-install-recommends \
ca-certificates \
build-essential curl libssl-dev \
build-essential \
cmake \
git && \
apt-get clean && \
rm -rf /var/lib/apt/lists/*
# Install CMake (the version in 22.04 is too old)
RUN <<EOT bash
if [ "${CMAKE_FROM_SOURCE}}" = "true" ]; then
curl -L -s https://github.com/Kitware/CMake/releases/download/v${CMAKE_VERSION}/cmake-${CMAKE_VERSION}.tar.gz -o cmake.tar.gz && tar xvf cmake.tar.gz && cd cmake-${CMAKE_VERSION} && ./configure && make && make install
else
apt-get update && \
apt-get install -y \
cmake && \
apt-get clean && \
rm -rf /var/lib/apt/lists/*
fi
EOT
# We install GRPC to a different prefix here so that we can copy in only the build artifacts later
# saves several hundred MB on the final docker image size vs copying in the entire GRPC source tree
# and running make install in the target container
@@ -291,20 +263,14 @@ EOT
# In most cases, builder is the image you should be using - however, this can save build time if one just needs to copy backend-assets/grpc/stablediffusion and nothing else.
FROM builder-base AS builder-sd
# stablediffusion does not tolerate a newer version of abseil, copy only over enough elements to build it
COPY Makefile .
COPY go.mod .
COPY go.sum .
COPY backend/backend.proto ./backend/backend.proto
COPY backend/go/image/stablediffusion ./backend/go/image/stablediffusion
COPY pkg/grpc ./pkg/grpc
COPY pkg/stablediffusion ./pkg/stablediffusion
RUN git init
RUN make sources/go-stable-diffusion
RUN touch prepare-sources
COPY . .
COPY .git .
# Actually build the backend
RUN GRPC_BACKENDS=backend-assets/grpc/stablediffusion make backend-assets/grpc/stablediffusion
RUN make prepare
# stablediffusion does not tolerate a newer version of abseil, build it first
RUN GRPC_BACKENDS=backend-assets/grpc/stablediffusion make build
###################################
###################################
@@ -319,20 +285,8 @@ COPY --from=grpc /opt/grpc /usr/local
# Rebuild with defaults backends
WORKDIR /build
COPY . .
COPY .git .
RUN make prepare
## Build the binary
## If it's CUDA or hipblas, we want to skip some of the llama-compat backends to save space
## We only leave the most CPU-optimized variant and the fallback for the cublas/hipblas build
## (both will use CUDA or hipblas for the actual computation)
RUN if [ "${BUILD_TYPE}" = "cublas" ] || [ "${BUILD_TYPE}" = "hipblas" ]; then \
SKIP_GRPC_BACKEND="backend-assets/grpc/llama-cpp-avx backend-assets/grpc/llama-cpp-avx2" make build; \
else \
make build; \
fi
RUN make build
RUN if [ ! -d "/build/sources/go-piper/piper-phonemize/pi/lib/" ]; then \
mkdir -p /build/sources/go-piper/piper-phonemize/pi/lib/ \
@@ -366,8 +320,9 @@ RUN if [ "${FFMPEG}" = "true" ]; then \
RUN apt-get update && \
apt-get install -y --no-install-recommends \
ssh less wget
# For the devcontainer, leave apt functional in case additional devtools are needed at runtime.
ssh less && \
apt-get clean && \
rm -rf /var/lib/apt/lists/*
RUN go install github.com/go-delve/delve/cmd/dlv@latest
@@ -445,6 +400,9 @@ RUN if [[ ( "${EXTRA_BACKENDS}" =~ "coqui" || -z "${EXTRA_BACKENDS}" ) && "$IMAG
; fi && \
if [[ ( "${EXTRA_BACKENDS}" =~ "transformers-musicgen" || -z "${EXTRA_BACKENDS}" ) && "$IMAGE_TYPE" == "extras" ]]; then \
make -C backend/python/transformers-musicgen \
; fi && \
if [[ ( "${EXTRA_BACKENDS}" =~ "exllama1" || -z "${EXTRA_BACKENDS}" ) && "$IMAGE_TYPE" == "extras" ]]; then \
make -C backend/python/exllama \
; fi
RUN if [[ ( "${EXTRA_BACKENDS}" =~ "vall-e-x" || -z "${EXTRA_BACKENDS}" ) && "$IMAGE_TYPE" == "extras" ]]; then \

View File

@@ -8,7 +8,7 @@ DETECT_LIBS?=true
# llama.cpp versions
GOLLAMA_REPO?=https://github.com/go-skynet/go-llama.cpp
GOLLAMA_VERSION?=2b57a8ae43e4699d3dc5d1496a1ccd42922993be
CPPLLAMA_VERSION?=45f097645efb11b6d09a5b4adbbfd7c312ac0126
CPPLLAMA_VERSION?=2f3c1466ff46a2413b0e363a5005c46538186ee6
# go-rwkv version
RWKV_REPO?=https://github.com/donomii/go-rwkv.cpp
@@ -16,7 +16,7 @@ RWKV_VERSION?=661e7ae26d442f5cfebd2a0881b44e8c55949ec6
# whisper.cpp version
WHISPER_REPO?=https://github.com/ggerganov/whisper.cpp
WHISPER_CPP_VERSION?=a5abfe6a90495f7bf19fe70d016ecc255e97359c
WHISPER_CPP_VERSION?=d65786ea540a5aef21f67cacfa6f134097727780
# bert.cpp version
BERT_REPO?=https://github.com/go-skynet/go-bert.cpp
@@ -338,7 +338,7 @@ rebuild: ## Rebuilds the project
$(MAKE) -C sources/go-tiny-dream clean
$(MAKE) build
prepare: prepare-sources $(OPTIONAL_TARGETS)
prepare: prepare-sources gen-assets $(OPTIONAL_TARGETS)
clean: ## Remove build related file
$(GOCMD) clean -cache
@@ -359,9 +359,6 @@ clean-tests:
rm -rf test-dir
rm -rf core/http/backend-assets
clean-dc: clean
cp -r /build/backend-assets /workspace/backend-assets
## Build:
build: prepare backend-assets grpcs ## Build the project
$(info ${GREEN}I local-ai build info:${RESET})
@@ -468,15 +465,15 @@ run-e2e-image:
ls -liah $(abspath ./tests/e2e-fixtures)
docker run -p 5390:8080 -e MODELS_PATH=/models -e THREADS=1 -e DEBUG=true -d --rm -v $(TEST_DIR):/models --gpus all --name e2e-tests-$(RANDOM) localai-tests
run-e2e-aio: protogen-go
run-e2e-aio:
@echo 'Running e2e AIO tests'
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --flake-attempts $(TEST_FLAKES) -v -r ./tests/e2e-aio
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --flake-attempts 5 -v -r ./tests/e2e-aio
test-e2e:
@echo 'Running e2e tests'
BUILD_TYPE=$(BUILD_TYPE) \
LOCALAI_API=http://$(E2E_BRIDGE_IP):5390/v1 \
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --flake-attempts $(TEST_FLAKES) -v -r ./tests/e2e
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --flake-attempts 5 -v -r ./tests/e2e
teardown-e2e:
rm -rf $(TEST_DIR) || true
@@ -484,24 +481,24 @@ teardown-e2e:
test-llama: prepare-test
TEST_DIR=$(abspath ./)/test-dir/ FIXTURES=$(abspath ./)/tests/fixtures CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models \
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="llama" --flake-attempts $(TEST_FLAKES) -v -r $(TEST_PATHS)
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="llama" --flake-attempts 5 -v -r $(TEST_PATHS)
test-llama-gguf: prepare-test
TEST_DIR=$(abspath ./)/test-dir/ FIXTURES=$(abspath ./)/tests/fixtures CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models \
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="llama-gguf" --flake-attempts $(TEST_FLAKES) -v -r $(TEST_PATHS)
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="llama-gguf" --flake-attempts 5 -v -r $(TEST_PATHS)
test-tts: prepare-test
TEST_DIR=$(abspath ./)/test-dir/ FIXTURES=$(abspath ./)/tests/fixtures CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models \
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="tts" --flake-attempts $(TEST_FLAKES) -v -r $(TEST_PATHS)
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="tts" --flake-attempts 1 -v -r $(TEST_PATHS)
test-stablediffusion: prepare-test
TEST_DIR=$(abspath ./)/test-dir/ FIXTURES=$(abspath ./)/tests/fixtures CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models \
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="stablediffusion" --flake-attempts $(TEST_FLAKES) -v -r $(TEST_PATHS)
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="stablediffusion" --flake-attempts 1 -v -r $(TEST_PATHS)
test-stores: backend-assets/grpc/local-store
mkdir -p tests/integration/backend-assets/grpc
cp -f backend-assets/grpc/local-store tests/integration/backend-assets/grpc/
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="stores" --flake-attempts $(TEST_FLAKES) -v -r tests/integration
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="stores" --flake-attempts 1 -v -r tests/integration
test-container:
docker build --target requirements -t local-ai-test-container .
@@ -537,10 +534,10 @@ protogen-go-clean:
$(RM) bin/*
.PHONY: protogen-python
protogen-python: autogptq-protogen bark-protogen coqui-protogen diffusers-protogen exllama2-protogen mamba-protogen rerankers-protogen sentencetransformers-protogen transformers-protogen parler-tts-protogen transformers-musicgen-protogen vall-e-x-protogen vllm-protogen openvoice-protogen
protogen-python: autogptq-protogen bark-protogen coqui-protogen diffusers-protogen exllama-protogen exllama2-protogen mamba-protogen rerankers-protogen sentencetransformers-protogen transformers-protogen parler-tts-protogen transformers-musicgen-protogen vall-e-x-protogen vllm-protogen openvoice-protogen
.PHONY: protogen-python-clean
protogen-python-clean: autogptq-protogen-clean bark-protogen-clean coqui-protogen-clean diffusers-protogen-clean exllama2-protogen-clean mamba-protogen-clean sentencetransformers-protogen-clean rerankers-protogen-clean transformers-protogen-clean transformers-musicgen-protogen-clean parler-tts-protogen-clean vall-e-x-protogen-clean vllm-protogen-clean openvoice-protogen-clean
protogen-python-clean: autogptq-protogen-clean bark-protogen-clean coqui-protogen-clean diffusers-protogen-clean exllama-protogen-clean exllama2-protogen-clean mamba-protogen-clean sentencetransformers-protogen-clean rerankers-protogen-clean transformers-protogen-clean transformers-musicgen-protogen-clean parler-tts-protogen-clean vall-e-x-protogen-clean vllm-protogen-clean openvoice-protogen-clean
.PHONY: autogptq-protogen
autogptq-protogen:
@@ -574,6 +571,14 @@ diffusers-protogen:
diffusers-protogen-clean:
$(MAKE) -C backend/python/diffusers protogen-clean
.PHONY: exllama-protogen
exllama-protogen:
$(MAKE) -C backend/python/exllama protogen
.PHONY: exllama-protogen-clean
exllama-protogen-clean:
$(MAKE) -C backend/python/exllama protogen-clean
.PHONY: exllama2-protogen
exllama2-protogen:
$(MAKE) -C backend/python/exllama2 protogen
@@ -670,6 +675,7 @@ prepare-extra-conda-environments: protogen-python
$(MAKE) -C backend/python/parler-tts
$(MAKE) -C backend/python/vall-e-x
$(MAKE) -C backend/python/openvoice
$(MAKE) -C backend/python/exllama
$(MAKE) -C backend/python/exllama2
prepare-test-extra: protogen-python
@@ -840,7 +846,7 @@ endif
backend-assets/grpc/whisper: sources/whisper.cpp sources/whisper.cpp/libwhisper.a backend-assets/grpc
CGO_LDFLAGS="$(CGO_LDFLAGS) $(CGO_LDFLAGS_WHISPER)" C_INCLUDE_PATH="$(CURDIR)/sources/whisper.cpp/include:$(CURDIR)/sources/whisper.cpp/ggml/include" LIBRARY_PATH=$(CURDIR)/sources/whisper.cpp \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/whisper ./backend/go/transcribe/whisper
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/whisper ./backend/go/transcribe/
ifneq ($(UPX),)
$(UPX) backend-assets/grpc/whisper
endif

View File

@@ -40,7 +40,7 @@
> :bulb: Get help - [❓FAQ](https://localai.io/faq/) [💭Discussions](https://github.com/go-skynet/LocalAI/discussions) [:speech_balloon: Discord](https://discord.gg/uJAeKSAGDy) [:book: Documentation website](https://localai.io/)
>
> [💻 Quickstart](https://localai.io/basics/getting_started/) [🖼️ Models](https://models.localai.io/) [🚀 Roadmap](https://github.com/mudler/LocalAI/issues?q=is%3Aissue+is%3Aopen+label%3Aroadmap) [🥽 Demo](https://demo.localai.io) [🌍 Explorer](https://explorer.localai.io) [🛫 Examples](https://github.com/go-skynet/LocalAI/tree/master/examples/)
> [💻 Quickstart](https://localai.io/basics/getting_started/) [📣 News](https://localai.io/basics/news/) [ 🛫 Examples ](https://github.com/go-skynet/LocalAI/tree/master/examples/) [ 🖼️ Models ](https://localai.io/models/) [ 🚀 Roadmap ](https://github.com/mudler/LocalAI/issues?q=is%3Aissue+is%3Aopen+label%3Aroadmap)
[![tests](https://github.com/go-skynet/LocalAI/actions/workflows/test.yml/badge.svg)](https://github.com/go-skynet/LocalAI/actions/workflows/test.yml)[![Build and Release](https://github.com/go-skynet/LocalAI/actions/workflows/release.yaml/badge.svg)](https://github.com/go-skynet/LocalAI/actions/workflows/release.yaml)[![build container images](https://github.com/go-skynet/LocalAI/actions/workflows/image.yml/badge.svg)](https://github.com/go-skynet/LocalAI/actions/workflows/image.yml)[![Bump dependencies](https://github.com/go-skynet/LocalAI/actions/workflows/bump_deps.yaml/badge.svg)](https://github.com/go-skynet/LocalAI/actions/workflows/bump_deps.yaml)[![Artifact Hub](https://img.shields.io/endpoint?url=https://artifacthub.io/badge/repository/localai)](https://artifacthub.io/packages/search?repo=localai)
@@ -66,26 +66,12 @@ docker run -ti --name local-ai -p 8080:8080 localai/localai:latest-aio-cpu
# docker run -ti --name local-ai -p 8080:8080 --gpus all localai/localai:latest-gpu-nvidia-cuda-12
```
To load models:
```bash
# From the model gallery (see available models with `local-ai models list`, in the WebUI from the model tab, or visiting https://models.localai.io)
local-ai run llama-3.2-1b-instruct:q4_k_m
# Start LocalAI with the phi-2 model directly from huggingface
local-ai run huggingface://TheBloke/phi-2-GGUF/phi-2.Q8_0.gguf
# Install and run a model from the Ollama OCI registry
local-ai run ollama://gemma:2b
# Run a model from a configuration file
local-ai run https://gist.githubusercontent.com/.../phi-2.yaml
# Install and run a model from a standard OCI registry (e.g., Docker Hub)
local-ai run oci://localai/phi-2:latest
```
[💻 Getting started](https://localai.io/basics/getting_started/index.html)
## 📰 Latest project news
## 🔥🔥 Hot topics / Roadmap
[Roadmap](https://github.com/mudler/LocalAI/issues?q=is%3Aissue+is%3Aopen+label%3Aroadmap)
- Aug 2024: 🆕 FLUX-1, [P2P Explorer](https://explorer.localai.io)
- July 2024: 🔥🔥 🆕 P2P Dashboard, LocalAI Federated mode and AI Swarms: https://github.com/mudler/LocalAI/pull/2723
- June 2024: 🆕 You can browse now the model gallery without LocalAI! Check out https://models.localai.io
- June 2024: Support for models from OCI registries: https://github.com/mudler/LocalAI/pull/2628
@@ -96,12 +82,8 @@ local-ai run oci://localai/phi-2:latest
- May 2024: Chat, TTS, and Image generation in the WebUI: https://github.com/mudler/LocalAI/pull/2222
- April 2024: Reranker API: https://github.com/mudler/LocalAI/pull/2121
Roadmap items: [List of issues](https://github.com/mudler/LocalAI/issues?q=is%3Aissue+is%3Aopen+label%3Aroadmap)
Hot topics (looking for contributors):
## 🔥🔥 Hot topics (looking for help):
- Multimodal with vLLM and Video understanding: https://github.com/mudler/LocalAI/pull/3729
- Realtime API https://github.com/mudler/LocalAI/issues/3714
- 🔥🔥 Distributed, P2P Global community pools: https://github.com/mudler/LocalAI/issues/3113
- WebUI improvements: https://github.com/mudler/LocalAI/issues/2156
- Backends v2: https://github.com/mudler/LocalAI/issues/1126

View File

@@ -2,7 +2,7 @@ backend: llama-cpp
context_size: 4096
f16: true
mmap: true
name: gpt-4o
name: gpt-4-vision-preview
roles:
user: "USER:"

View File

@@ -2,7 +2,7 @@ backend: llama-cpp
context_size: 4096
f16: true
mmap: true
name: gpt-4o
name: gpt-4-vision-preview
roles:
user: "USER:"

View File

@@ -1,6 +1,6 @@
name: stablediffusion
parameters:
model: Lykon/dreamshaper-8
model: runwayml/stable-diffusion-v1-5
backend: diffusers
step: 25
f16: true

View File

@@ -2,7 +2,7 @@ backend: llama-cpp
context_size: 4096
mmap: false
f16: false
name: gpt-4o
name: gpt-4-vision-preview
roles:
user: "USER:"

View File

@@ -16,7 +16,6 @@ service Backend {
rpc GenerateImage(GenerateImageRequest) returns (Result) {}
rpc AudioTranscription(TranscriptRequest) returns (TranscriptResult) {}
rpc TTS(TTSRequest) returns (Result) {}
rpc SoundGeneration(SoundGenerationRequest) returns (Result) {}
rpc TokenizeString(PredictOptions) returns (TokenizationResponse) {}
rpc Status(HealthMessage) returns (StatusResponse) {}
@@ -26,19 +25,6 @@ service Backend {
rpc StoresFind(StoresFindOptions) returns (StoresFindResult) {}
rpc Rerank(RerankRequest) returns (RerankResult) {}
rpc GetMetrics(MetricsRequest) returns (MetricsResponse);
}
// Define the empty request
message MetricsRequest {}
message MetricsResponse {
int32 slot_id = 1;
string prompt_json_for_slot = 2; // Stores the prompt as a JSON string.
float tokens_per_second = 3;
int32 tokens_generated = 4;
int32 prompt_tokens_processed = 5;
}
message RerankRequest {
@@ -147,9 +133,6 @@ message PredictOptions {
repeated string Images = 42;
bool UseTokenizerTemplate = 43;
repeated Message Messages = 44;
repeated string Videos = 45;
repeated string Audios = 46;
string CorrelationId = 47;
}
// The response message containing the result
@@ -287,17 +270,6 @@ message TTSRequest {
optional string language = 5;
}
message SoundGenerationRequest {
string text = 1;
string model = 2;
string dst = 3;
optional float duration = 4;
optional float temperature = 5;
optional bool sample = 6;
optional string src = 7;
optional int32 src_divisor = 8;
}
message TokenizationResponse {
int32 length = 1;
repeated int32 tokens = 2;

View File

@@ -13,15 +13,15 @@
#include <getopt.h>
#include "clip.h"
#include "llava.h"
#include "log.h"
#include "stb_image.h"
#include "common.h"
#include "json.hpp"
#include "llama.h"
#include "grammar-parser.h"
#include "backend.pb.h"
#include "backend.grpc.pb.h"
#include "utils.hpp"
#include "sampling.h"
// include std::regex
#include <cstddef>
#include <thread>
@@ -113,7 +113,7 @@ static std::string tokens_to_str(llama_context *ctx, Iter begin, Iter end)
std::string ret;
for (; begin != end; ++begin)
{
ret += common_token_to_piece(ctx, *begin);
ret += llama_token_to_piece(ctx, *begin);
}
return ret;
}
@@ -121,7 +121,7 @@ static std::string tokens_to_str(llama_context *ctx, Iter begin, Iter end)
// format incomplete utf-8 multibyte character for output
static std::string tokens_to_output_formatted_string(const llama_context *ctx, const llama_token token)
{
std::string out = token == -1 ? "" : common_token_to_piece(ctx, token);
std::string out = token == -1 ? "" : llama_token_to_piece(ctx, token);
// if the size is 1 and first bit is 1, meaning it's a partial character
// (size > 1 meaning it's already a known token)
if (out.size() == 1 && (out[0] & 0x80) == 0x80)
@@ -203,8 +203,8 @@ struct llama_client_slot
std::string stopping_word;
// sampling
struct common_sampler_params sparams;
common_sampler *ctx_sampling = nullptr;
struct llama_sampling_params sparams;
llama_sampling_context *ctx_sampling = nullptr;
int32_t ga_i = 0; // group-attention state
int32_t ga_n = 1; // group-attention factor
@@ -257,7 +257,7 @@ struct llama_client_slot
images.clear();
}
bool has_budget(common_params &global_params) {
bool has_budget(gpt_params &global_params) {
if (params.n_predict == -1 && global_params.n_predict == -1)
{
return true; // limitless
@@ -391,39 +391,6 @@ struct llama_metrics {
}
};
struct llava_embd_batch {
std::vector<llama_pos> pos;
std::vector<int32_t> n_seq_id;
std::vector<llama_seq_id> seq_id_0;
std::vector<llama_seq_id *> seq_ids;
std::vector<int8_t> logits;
llama_batch batch;
llava_embd_batch(float * embd, int32_t n_tokens, llama_pos pos_0, llama_seq_id seq_id) {
pos .resize(n_tokens);
n_seq_id.resize(n_tokens);
seq_ids .resize(n_tokens + 1);
logits .resize(n_tokens);
seq_id_0.resize(1);
seq_id_0[0] = seq_id;
seq_ids [n_tokens] = nullptr;
batch = {
/*n_tokens =*/ n_tokens,
/*tokens =*/ nullptr,
/*embd =*/ embd,
/*pos =*/ pos.data(),
/*n_seq_id =*/ n_seq_id.data(),
/*seq_id =*/ seq_ids.data(),
/*logits =*/ logits.data(),
};
for (int i = 0; i < n_tokens; i++) {
batch.pos [i] = pos_0 + i;
batch.n_seq_id[i] = 1;
batch.seq_id [i] = seq_id_0.data();
batch.logits [i] = false;
}
}
};
struct llama_server_context
{
llama_model *model = nullptr;
@@ -431,7 +398,7 @@ struct llama_server_context
clip_ctx *clp_ctx = nullptr;
common_params params;
gpt_params params;
llama_batch batch;
@@ -474,7 +441,7 @@ struct llama_server_context
}
}
bool load_model(const common_params &params_)
bool load_model(const gpt_params &params_)
{
params = params_;
if (!params.mmproj.empty()) {
@@ -482,7 +449,7 @@ struct llama_server_context
LOG_INFO("Multi Modal Mode Enabled", {});
clp_ctx = clip_model_load(params.mmproj.c_str(), /*verbosity=*/ 1);
if(clp_ctx == nullptr) {
LOG_ERR("unable to load clip model: %s", params.mmproj.c_str());
LOG_ERROR("unable to load clip model", {{"model", params.mmproj}});
return false;
}
@@ -491,12 +458,12 @@ struct llama_server_context
}
}
common_init_result common_init = common_init_from_params(params);
model = common_init.model;
ctx = common_init.context;
llama_init_result llama_init = llama_init_from_gpt_params(params);
model = llama_init.model;
ctx = llama_init.context;
if (model == nullptr)
{
LOG_ERR("unable to load model: %s", params.model.c_str());
LOG_ERROR("unable to load model", {{"model", params.model}});
return false;
}
@@ -504,7 +471,7 @@ struct llama_server_context
const int n_embd_clip = clip_n_mmproj_embd(clp_ctx);
const int n_embd_llm = llama_n_embd(model);
if (n_embd_clip != n_embd_llm) {
LOG("%s: embedding dim of the multimodal projector (%d) is not equal to that of LLaMA (%d). Make sure that you use the correct mmproj file.\n", __func__, n_embd_clip, n_embd_llm);
LOG_TEE("%s: embedding dim of the multimodal projector (%d) is not equal to that of LLaMA (%d). Make sure that you use the correct mmproj file.\n", __func__, n_embd_clip, n_embd_llm);
llama_free(ctx);
llama_free_model(model);
return false;
@@ -523,21 +490,11 @@ struct llama_server_context
std::vector<char> buf(1);
int res = llama_chat_apply_template(model, nullptr, chat, 1, true, buf.data(), buf.size());
if (res < 0) {
LOG_ERR("The chat template comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses", __func__);
LOG_ERROR("The chat template comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses", {});
sparams.chat_template = "<|im_start|>"; // llama_chat_apply_template only checks if <|im_start|> exist in the template
}
}
llama_client_slot* get_active_slot() {
for (llama_client_slot& slot : slots) {
// Check if the slot is currently processing
if (slot.is_processing()) {
return &slot; // Return the active slot
}
}
return nullptr; // No active slot found
}
void initialize() {
// create slots
all_slots_are_idle = true;
@@ -611,12 +568,12 @@ struct llama_server_context
std::vector<llama_token> p;
if (first)
{
p = common_tokenize(ctx, s, add_bos, TMP_FORCE_SPECIAL);
p = ::llama_tokenize(ctx, s, add_bos, TMP_FORCE_SPECIAL);
first = false;
}
else
{
p = common_tokenize(ctx, s, false, TMP_FORCE_SPECIAL);
p = ::llama_tokenize(ctx, s, false, TMP_FORCE_SPECIAL);
}
prompt_tokens.insert(prompt_tokens.end(), p.begin(), p.end());
}
@@ -633,7 +590,7 @@ struct llama_server_context
else
{
auto s = json_prompt.template get<std::string>();
prompt_tokens = common_tokenize(ctx, s, add_bos, TMP_FORCE_SPECIAL);
prompt_tokens = ::llama_tokenize(ctx, s, add_bos, TMP_FORCE_SPECIAL);
}
return prompt_tokens;
@@ -662,7 +619,7 @@ struct llama_server_context
bool launch_slot_with_data(llama_client_slot* &slot, json data) {
slot_params default_params;
common_sampler_params default_sparams;
llama_sampling_params default_sparams;
slot->params.stream = json_value(data, "stream", false);
slot->params.cache_prompt = json_value(data, "cache_prompt", false);
@@ -671,7 +628,7 @@ struct llama_server_context
slot->sparams.top_p = json_value(data, "top_p", default_sparams.top_p);
slot->sparams.min_p = json_value(data, "min_p", default_sparams.min_p);
slot->sparams.tfs_z = json_value(data, "tfs_z", default_sparams.tfs_z);
slot->sparams.typ_p = json_value(data, "typical_p", default_sparams.typ_p);
slot->sparams.typical_p = json_value(data, "typical_p", default_sparams.typical_p);
slot->sparams.temp = json_value(data, "temperature", default_sparams.temp);
slot->sparams.dynatemp_range = json_value(data, "dynatemp_range", default_sparams.dynatemp_range);
slot->sparams.dynatemp_exponent = json_value(data, "dynatemp_exponent", default_sparams.dynatemp_exponent);
@@ -684,7 +641,7 @@ struct llama_server_context
slot->sparams.mirostat_eta = json_value(data, "mirostat_eta", default_sparams.mirostat_eta);
slot->sparams.penalize_nl = json_value(data, "penalize_nl", default_sparams.penalize_nl);
slot->params.n_keep = json_value(data, "n_keep", slot->params.n_keep);
slot->sparams.seed = json_value(data, "seed", default_sparams.seed);
slot->params.seed = json_value(data, "seed", default_params.seed);
slot->sparams.grammar = json_value(data, "grammar", default_sparams.grammar);
slot->sparams.n_probs = json_value(data, "n_probs", default_sparams.n_probs);
slot->sparams.min_keep = json_value(data, "min_keep", default_sparams.min_keep);
@@ -708,7 +665,6 @@ struct llama_server_context
slot->params.input_prefix = "";
}
if (data.count("input_suffix") != 0)
{
slot->params.input_suffix = data["input_suffix"];
@@ -727,10 +683,6 @@ struct llama_server_context
slot->prompt = "";
}
if (json_value(data, "ignore_eos", false)) {
slot->sparams.logit_bias.push_back({llama_token_eos(model), -INFINITY});
}
/*
slot->sparams.penalty_prompt_tokens.clear();
slot->sparams.use_penalty_prompt_tokens = false;
const auto &penalty_prompt = data.find("penalty_prompt");
@@ -766,10 +718,14 @@ struct llama_server_context
slot->sparams.use_penalty_prompt_tokens = true;
}
}
*/
slot->sparams.logit_bias.clear();
if (json_value(data, "ignore_eos", false))
{
slot->sparams.logit_bias[llama_token_eos(model)] = -INFINITY;
}
const auto &logit_bias = data.find("logit_bias");
if (logit_bias != data.end() && logit_bias->is_array())
{
@@ -797,21 +753,21 @@ struct llama_server_context
llama_token tok = el[0].get<llama_token>();
if (tok >= 0 && tok < n_vocab)
{
slot->sparams.logit_bias.push_back({tok, bias});
slot->sparams.logit_bias[tok] = bias;
}
}
else if (el[0].is_string())
{
auto toks = common_tokenize(model, el[0].get<std::string>(), false);
auto toks = llama_tokenize(model, el[0].get<std::string>(), false);
for (auto tok : toks)
{
slot->sparams.logit_bias.push_back({tok, bias});
slot->sparams.logit_bias[tok] = bias;
}
}
}
}
}
slot->params.antiprompt.clear();
const auto &stop = data.find("stop");
@@ -825,22 +781,24 @@ struct llama_server_context
}
}
}
const auto & samplers = data.find("samplers");
if (samplers != data.end() && samplers->is_array()) {
const auto &samplers_sequence = data.find("samplers");
if (samplers_sequence != data.end() && samplers_sequence->is_array())
{
std::vector<std::string> sampler_names;
for (const auto & name : *samplers) {
if (name.is_string()) {
sampler_names.emplace_back(name);
}
for (const auto &sampler_name : *samplers_sequence)
{
if (sampler_name.is_string())
{
sampler_names.emplace_back(sampler_name);
}
slot->sparams.samplers = common_sampler_types_from_names(sampler_names, false);
}
slot->sparams.samplers_sequence = llama_sampling_types_from_names(sampler_names, false);
}
else
{
slot->sparams.samplers = default_sparams.samplers;
slot->sparams.samplers_sequence = default_sparams.samplers_sequence;
}
if (multimodal)
{
@@ -856,11 +814,10 @@ struct llama_server_context
img_sl.img_data = clip_image_u8_init();
if (!clip_image_load_from_bytes(image_buffer.data(), image_buffer.size(), img_sl.img_data))
{
LOG_ERR("%s: failed to load image, slot_id: %d, img_sl_id: %d",
__func__,
slot->id,
img_sl.id
);
LOG_ERROR("failed to load image", {
{"slot_id", slot->id},
{"img_sl_id", img_sl.id}
});
return false;
}
LOG_VERBOSE("image loaded", {
@@ -898,12 +855,12 @@ struct llama_server_context
}
}
if (!found) {
LOG("ERROR: Image with id: %i, not found.\n", img_id);
LOG_TEE("ERROR: Image with id: %i, not found.\n", img_id);
slot->images.clear();
return false;
}
} catch (const std::invalid_argument& e) {
LOG("Invalid image number id in prompt\n");
LOG_TEE("Invalid image number id in prompt\n");
slot->images.clear();
return false;
}
@@ -918,10 +875,10 @@ struct llama_server_context
if (slot->ctx_sampling != nullptr)
{
common_sampler_free(slot->ctx_sampling);
llama_sampling_free(slot->ctx_sampling);
}
slot->ctx_sampling = common_sampler_init(model, slot->sparams);
//llama_set_rng_seed(ctx, slot->params.seed);
slot->ctx_sampling = llama_sampling_init(slot->sparams);
llama_set_rng_seed(ctx, slot->params.seed);
slot->command = LOAD_PROMPT;
all_slots_are_idle = false;
@@ -931,7 +888,7 @@ struct llama_server_context
{"task_id", slot->task_id},
});
// LOG("sampling: \n%s\n", llama_sampling_print(slot->sparams).c_str());
LOG_TEE("sampling: \n%s\n", llama_sampling_print(slot->sparams).c_str());
return true;
}
@@ -947,13 +904,13 @@ struct llama_server_context
system_tokens.clear();
if (!system_prompt.empty()) {
system_tokens = common_tokenize(ctx, system_prompt, add_bos_token);
system_tokens = ::llama_tokenize(ctx, system_prompt, add_bos_token);
common_batch_clear(batch);
llama_batch_clear(batch);
for (int i = 0; i < (int)system_tokens.size(); ++i)
{
common_batch_add(batch, system_tokens[i], i, { 0 }, false);
llama_batch_add(batch, system_tokens[i], i, { 0 }, false);
}
for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += params.n_batch)
@@ -967,10 +924,11 @@ struct llama_server_context
batch.n_seq_id + i,
batch.seq_id + i,
batch.logits + i,
0, 0, 0, // unused
};
if (llama_decode(ctx, batch_view) != 0)
{
LOG("%s: llama_decode() failed\n", __func__);
LOG_TEE("%s: llama_decode() failed\n", __func__);
return;
}
}
@@ -982,7 +940,7 @@ struct llama_server_context
}
}
LOG("system prompt updated\n");
LOG_TEE("system prompt updated\n");
system_need_update = false;
}
@@ -1041,20 +999,18 @@ struct llama_server_context
bool process_token(completion_token_output &result, llama_client_slot &slot) {
// remember which tokens were sampled - used for repetition penalties during sampling
const std::string token_str = common_token_to_piece(ctx, result.tok);
const std::string token_str = llama_token_to_piece(ctx, result.tok);
slot.sampled = result.tok;
// search stop word and delete it
slot.generated_text += token_str;
slot.has_next_token = true;
/*
if (slot.ctx_sampling->params.use_penalty_prompt_tokens && result.tok != -1)
{
// we can change penalty_prompt_tokens because it is always created from scratch each request
slot.ctx_sampling->params.penalty_prompt_tokens.push_back(result.tok);
}
*/
// check if there is incomplete UTF-8 character at the end
bool incomplete = false;
@@ -1163,8 +1119,8 @@ struct llama_server_context
continue;
}
if (!llava_image_embed_make_with_clip_img(clp_ctx, params.cpuparams.n_threads, img.img_data, &img.image_embedding, &img.image_tokens)) {
LOG("Error processing the given image");
if (!llava_image_embed_make_with_clip_img(clp_ctx, params.n_threads, img.img_data, &img.image_embedding, &img.image_tokens)) {
LOG_TEE("Error processing the given image");
return false;
}
@@ -1176,7 +1132,7 @@ struct llama_server_context
void send_error(task_server& task, const std::string &error)
{
LOG("task %i - error: %s\n", task.id, error.c_str());
LOG_TEE("task %i - error: %s\n", task.id, error.c_str());
task_result res;
res.id = task.id;
res.multitask_id = task.multitask_id;
@@ -1188,11 +1144,13 @@ struct llama_server_context
json get_formated_generation(llama_client_slot &slot)
{
std::vector<std::string> samplers;
samplers.reserve(slot.sparams.samplers.size());
for (const auto & sampler : slot.sparams.samplers)
const auto eos_bias = slot.sparams.logit_bias.find(llama_token_eos(model));
const bool ignore_eos = eos_bias != slot.sparams.logit_bias.end() &&
eos_bias->second < 0.0f && std::isinf(eos_bias->second);
std::vector<std::string> samplers_sequence;
for (const auto &sampler_type : slot.sparams.samplers_sequence)
{
samplers.emplace_back(common_sampler_type_to_str(sampler));
samplers_sequence.emplace_back(llama_sampling_type_to_str(sampler_type));
}
return json {
@@ -1207,11 +1165,13 @@ struct llama_server_context
{"top_p", slot.sparams.top_p},
{"min_p", slot.sparams.min_p},
{"tfs_z", slot.sparams.tfs_z},
{"typical_p", slot.sparams.typ_p},
{"typical_p", slot.sparams.typical_p},
{"repeat_last_n", slot.sparams.penalty_last_n},
{"repeat_penalty", slot.sparams.penalty_repeat},
{"presence_penalty", slot.sparams.penalty_present},
{"frequency_penalty", slot.sparams.penalty_freq},
{"penalty_prompt_tokens", slot.sparams.penalty_prompt_tokens},
{"use_penalty_prompt_tokens", slot.sparams.use_penalty_prompt_tokens},
{"mirostat", slot.sparams.mirostat},
{"mirostat_tau", slot.sparams.mirostat_tau},
{"mirostat_eta", slot.sparams.mirostat_eta},
@@ -1219,13 +1179,13 @@ struct llama_server_context
{"stop", slot.params.antiprompt},
{"n_predict", slot.params.n_predict},
{"n_keep", params.n_keep},
{"ignore_eos", slot.sparams.ignore_eos},
{"ignore_eos", ignore_eos},
{"stream", slot.params.stream},
// {"logit_bias", slot.sparams.logit_bias},
{"logit_bias", slot.sparams.logit_bias},
{"n_probs", slot.sparams.n_probs},
{"min_keep", slot.sparams.min_keep},
{"grammar", slot.sparams.grammar},
{"samplers", samplers}
{"samplers", samplers_sequence}
};
}
@@ -1248,7 +1208,7 @@ struct llama_server_context
if (slot.sparams.n_probs > 0)
{
std::vector<completion_token_output> probs_output = {};
const std::vector<llama_token> to_send_toks = common_tokenize(ctx, tkn.text_to_send, false);
const std::vector<llama_token> to_send_toks = llama_tokenize(ctx, tkn.text_to_send, false);
size_t probs_pos = std::min(slot.sent_token_probs_index, slot.generated_token_probs.size());
size_t probs_stop_pos = std::min(slot.sent_token_probs_index + to_send_toks.size(), slot.generated_token_probs.size());
if (probs_pos < probs_stop_pos)
@@ -1300,7 +1260,7 @@ struct llama_server_context
std::vector<completion_token_output> probs = {};
if (!slot.params.stream && slot.stopped_word)
{
const std::vector<llama_token> stop_word_toks = common_tokenize(ctx, slot.stopping_word, false);
const std::vector<llama_token> stop_word_toks = llama_tokenize(ctx, slot.stopping_word, false);
probs = std::vector<completion_token_output>(slot.generated_token_probs.begin(), slot.generated_token_probs.end() - stop_word_toks.size());
}
else
@@ -1411,10 +1371,11 @@ struct llama_server_context
batch.n_seq_id + i,
batch.seq_id + i,
batch.logits + i,
0, 0, 0, // unused
};
if (llama_decode(ctx, batch_view))
{
LOG("%s : failed to eval\n", __func__);
LOG_TEE("%s : failed to eval\n", __func__);
return false;
}
}
@@ -1429,18 +1390,17 @@ struct llama_server_context
}
const int n_embd = llama_n_embd(model);
float * embd = img.image_embedding + i * n_embd;
llava_embd_batch llava_batch = llava_embd_batch(embd, n_eval, slot.n_past, 0);
if (llama_decode(ctx, llava_batch.batch))
llama_batch batch_img = { n_eval, nullptr, (img.image_embedding + i * n_embd), nullptr, nullptr, nullptr, nullptr, slot.n_past, 1, 0, };
if (llama_decode(ctx, batch_img))
{
LOG("%s : failed to eval image\n", __func__);
LOG_TEE("%s : failed to eval image\n", __func__);
return false;
}
slot.n_past += n_eval;
}
image_idx++;
common_batch_clear(batch);
llama_batch_clear(batch);
// append prefix of next image
const auto json_prompt = (image_idx >= (int) slot.images.size()) ?
@@ -1450,7 +1410,7 @@ struct llama_server_context
std::vector<llama_token> append_tokens = tokenize(json_prompt, false); // has next image
for (int i = 0; i < (int) append_tokens.size(); ++i)
{
common_batch_add(batch, append_tokens[i], system_tokens.size() + slot.n_past, { slot.id }, true);
llama_batch_add(batch, append_tokens[i], system_tokens.size() + slot.n_past, { slot.id }, true);
slot.n_past += 1;
}
}
@@ -1582,7 +1542,7 @@ struct llama_server_context
update_system_prompt();
}
common_batch_clear(batch);
llama_batch_clear(batch);
if (all_slots_are_idle)
{
@@ -1616,7 +1576,7 @@ struct llama_server_context
slot.n_past = 0;
slot.truncated = false;
slot.has_next_token = true;
LOG("Context exhausted. Slot %d released (%d tokens in cache)\n", slot.id, (int) slot.cache_tokens.size());
LOG_TEE("Context exhausted. Slot %d released (%d tokens in cache)\n", slot.id, (int) slot.cache_tokens.size());
continue;
// END LOCALAI changes
@@ -1660,7 +1620,7 @@ struct llama_server_context
// TODO: we always have to take into account the "system_tokens"
// this is not great and needs to be improved somehow
common_batch_add(batch, slot.sampled, system_tokens.size() + slot_npast, { slot.id }, true);
llama_batch_add(batch, slot.sampled, system_tokens.size() + slot_npast, { slot.id }, true);
slot.n_past += 1;
}
@@ -1754,7 +1714,7 @@ struct llama_server_context
if (!slot.params.cache_prompt)
{
common_sampler_reset(slot.ctx_sampling);
llama_sampling_reset(slot.ctx_sampling);
slot.n_past = 0;
slot.n_past_se = 0;
@@ -1766,7 +1726,7 @@ struct llama_server_context
// push the prompt into the sampling context (do not apply grammar)
for (auto &token : prompt_tokens)
{
common_sampler_accept(slot.ctx_sampling, token, false);
llama_sampling_accept(slot.ctx_sampling, ctx, token, false);
}
slot.n_past = common_part(slot.cache_tokens, prompt_tokens);
@@ -1858,17 +1818,16 @@ struct llama_server_context
ga_i += ga_w/ga_n;
}
}
common_batch_add(batch, prefix_tokens[slot.n_past], system_tokens.size() + slot_npast, {slot.id }, false);
llama_batch_add(batch, prefix_tokens[slot.n_past], system_tokens.size() + slot_npast, {slot.id }, false);
slot_npast++;
}
if (has_images && !ingest_images(slot, n_batch))
{
LOG_ERR("%s: failed processing images Slot id : %d, Task id: %d",
__func__,
slot.id,
slot.task_id
);
LOG_ERROR("failed processing images", {
"slot_id", slot.id,
"task_id", slot.task_id,
});
// FIXME @phymbert: to be properly tested
// early returning without changing the slot state will block the slot for ever
// no one at the moment is checking the return value
@@ -1908,10 +1867,10 @@ struct llama_server_context
const int bd = (slot.ga_w / slot.ga_n) * (slot.ga_n - 1);
const int dd = (slot.ga_w / slot.ga_n) - ib * bd - slot.ga_w;
LOG("\n");
LOG("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", slot.ga_i, slot.n_past_se, ib * bd, slot.ga_i + ib * bd, slot.n_past_se + ib * bd);
LOG("div: [%6d, %6d] / %6d -> [%6d, %6d]\n", slot.ga_i + ib * bd, slot.ga_i + ib * bd + slot.ga_w, slot.ga_n, (slot.ga_i + ib * bd) / slot.ga_n, (slot.ga_i + ib * bd + slot.ga_w) / slot.ga_n);
LOG("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", slot.ga_i + ib * bd + slot.ga_w, slot.n_past_se + ib * bd, dd, slot.ga_i + ib * bd + slot.ga_w + dd, slot.n_past_se + ib * bd + dd);
LOG_TEE("\n");
LOG_TEE("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", slot.ga_i, slot.n_past_se, ib * bd, slot.ga_i + ib * bd, slot.n_past_se + ib * bd);
LOG_TEE("div: [%6d, %6d] / %6d -> [%6d, %6d]\n", slot.ga_i + ib * bd, slot.ga_i + ib * bd + slot.ga_w, slot.ga_n, (slot.ga_i + ib * bd) / slot.ga_n, (slot.ga_i + ib * bd + slot.ga_w) / slot.ga_n);
LOG_TEE("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", slot.ga_i + ib * bd + slot.ga_w, slot.n_past_se + ib * bd, dd, slot.ga_i + ib * bd + slot.ga_w + dd, slot.n_past_se + ib * bd + dd);
llama_kv_cache_seq_add(ctx, slot.id, slot.ga_i, slot.n_past_se, ib * bd);
llama_kv_cache_seq_div(ctx, slot.id, slot.ga_i + ib * bd, slot.ga_i + ib * bd + slot.ga_w,slot.ga_n);
@@ -1921,7 +1880,7 @@ struct llama_server_context
slot.ga_i += slot.ga_w / slot.ga_n;
LOG("\nn_past_old = %d, n_past = %d, ga_i = %d\n\n", slot.n_past_se + bd, slot.n_past_se, slot.ga_i);
LOG_TEE("\nn_past_old = %d, n_past = %d, ga_i = %d\n\n", slot.n_past_se + bd, slot.n_past_se, slot.ga_i);
}
slot.n_past_se += n_tokens;
}
@@ -1936,6 +1895,7 @@ struct llama_server_context
batch.n_seq_id + i,
batch.seq_id + i,
batch.logits + i,
0, 0, 0, // unused
};
const int ret = llama_decode(ctx, batch_view);
@@ -1945,11 +1905,11 @@ struct llama_server_context
if (n_batch == 1 || ret < 0)
{
// if you get here, it means the KV cache is full - try increasing it via the context size
LOG("%s : failed to decode the batch, n_batch = %d, ret = %d\n", __func__, n_batch, ret);
LOG_TEE("%s : failed to decode the batch, n_batch = %d, ret = %d\n", __func__, n_batch, ret);
return false;
}
LOG("%s : failed to find free space in the KV cache, retrying with smaller n_batch = %d\n", __func__, n_batch / 2);
LOG_TEE("%s : failed to find free space in the KV cache, retrying with smaller n_batch = %d\n", __func__, n_batch / 2);
// retry with half the batch size to try to find a free slot in the KV cache
n_batch /= 2;
@@ -1974,9 +1934,9 @@ struct llama_server_context
}
completion_token_output result;
const llama_token id = common_sampler_sample(slot.ctx_sampling, ctx, slot.i_batch - i);
const llama_token id = llama_sampling_sample(slot.ctx_sampling, ctx, NULL, slot.i_batch - i);
common_sampler_accept(slot.ctx_sampling, id, true);
llama_sampling_accept(slot.ctx_sampling, ctx, id, true);
slot.n_decoded += 1;
if (slot.n_decoded == 1)
@@ -1986,14 +1946,19 @@ struct llama_server_context
metrics.on_prompt_eval(slot);
}
llama_token_data_array cur_p = { slot.ctx_sampling->cur.data(), slot.ctx_sampling->cur.size(), false };
result.tok = id;
const auto * cur_p = common_sampler_get_candidates(slot.ctx_sampling);
for (size_t i = 0; i < (size_t) slot.sparams.n_probs; ++i) {
result.probs.push_back({
cur_p->data[i].id,
i >= cur_p->size ? 0.0f : cur_p->data[i].p,
});
const int32_t n_probs = slot.sparams.n_probs;
if (slot.sparams.temp <= 0 && n_probs > 0)
{
// for llama_sample_token_greedy we need to sort candidates
llama_sample_softmax(ctx, &cur_p);
}
for (size_t i = 0; i < std::min(cur_p.size, (size_t)n_probs); ++i)
{
result.probs.push_back({cur_p.data[i].id, cur_p.data[i].p});
}
if (!process_token(result, slot))
@@ -2040,7 +2005,7 @@ static json format_partial_response(
struct token_translator
{
llama_context * ctx;
std::string operator()(llama_token tok) const { return common_token_to_piece(ctx, tok); }
std::string operator()(llama_token tok) const { return llama_token_to_piece(ctx, tok); }
std::string operator()(const completion_token_output &cto) const { return (*this)(cto.tok); }
};
@@ -2147,9 +2112,6 @@ json parse_options(bool streaming, const backend::PredictOptions* predict, llama
data["ignore_eos"] = predict->ignoreeos();
data["embeddings"] = predict->embeddings();
// Add the correlationid to json data
data["correlation_id"] = predict->correlationid();
// for each image in the request, add the image data
//
for (int i = 0; i < predict->images_size(); i++) {
@@ -2234,7 +2196,7 @@ json parse_options(bool streaming, const backend::PredictOptions* predict, llama
// }
static void params_parse(const backend::ModelOptions* request,
common_params & params) {
gpt_params & params) {
// this is comparable to: https://github.com/ggerganov/llama.cpp/blob/d9b33fe95bd257b36c84ee5769cc048230067d6f/examples/server/server.cpp#L1809
@@ -2248,7 +2210,7 @@ static void params_parse(const backend::ModelOptions* request,
params.model_alias = request->modelfile();
params.n_ctx = request->contextsize();
//params.memory_f16 = request->f16memory();
params.cpuparams.n_threads = request->threads();
params.n_threads = request->threads();
params.n_gpu_layers = request->ngpulayers();
params.n_batch = request->nbatch();
// Set params.n_parallel by environment variable (LLAMA_PARALLEL), defaults to 1
@@ -2342,7 +2304,7 @@ public:
grpc::Status LoadModel(ServerContext* context, const backend::ModelOptions* request, backend::Result* result) {
// Implement LoadModel RPC
common_params params;
gpt_params params;
params_parse(request, params);
llama_backend_init();
@@ -2388,11 +2350,6 @@ public:
int32_t tokens_evaluated = result.result_json.value("tokens_evaluated", 0);
reply.set_prompt_tokens(tokens_evaluated);
// Log Request Correlation Id
LOG_VERBOSE("correlation:", {
{ "id", data["correlation_id"] }
});
// Send the reply
writer->Write(reply);
@@ -2416,12 +2373,6 @@ public:
std::string completion_text;
task_result result = llama.queue_results.recv(task_id);
if (!result.error && result.stop) {
// Log Request Correlation Id
LOG_VERBOSE("correlation:", {
{ "id", data["correlation_id"] }
});
completion_text = result.result_json.value("content", "");
int32_t tokens_predicted = result.result_json.value("tokens_predicted", 0);
int32_t tokens_evaluated = result.result_json.value("tokens_evaluated", 0);
@@ -2461,31 +2412,6 @@ public:
return grpc::Status::OK;
}
grpc::Status GetMetrics(ServerContext* context, const backend::MetricsRequest* request, backend::MetricsResponse* response) {
llama_client_slot* active_slot = llama.get_active_slot();
if (active_slot != nullptr) {
// Calculate the tokens per second using existing logic
double tokens_per_second = 1e3 / active_slot->t_token_generation * active_slot->n_decoded;
// Populate the response with metrics
response->set_slot_id(active_slot->id);
response->set_prompt_json_for_slot(active_slot->prompt.dump());
response->set_tokens_per_second(tokens_per_second);
response->set_tokens_generated(active_slot->n_decoded);
response->set_prompt_tokens_processed(active_slot->num_prompt_tokens_processed);
} else {
// Handle case when no active slot exists
response->set_slot_id(0);
response->set_prompt_json_for_slot("");
response->set_tokens_per_second(0);
response->set_tokens_generated(0);
response->set_prompt_tokens_processed(0);
}
return grpc::Status::OK;
}
};
void RunServer(const std::string& server_address) {

View File

@@ -1,13 +0,0 @@
diff --git a/examples/llava/clip.cpp b/examples/llava/clip.cpp
index 342042ff..224db9b5 100644
--- a/examples/llava/clip.cpp
+++ b/examples/llava/clip.cpp
@@ -2419,7 +2419,7 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
struct ggml_tensor * patches = ggml_graph_get_tensor(gf, "patches");
int* patches_data = (int*)malloc(ggml_nbytes(patches));
for (int i = 0; i < num_patches; i++) {
- patches_data[i] = i + 1;
+ patches_data[i] = i;
}
ggml_backend_tensor_set(patches, patches_data, 0, ggml_nbytes(patches));
free(patches_data);

View File

@@ -1,12 +1,5 @@
#!/bin/bash
## Patches
## Apply patches from the `patches` directory
for patch in $(ls patches); do
echo "Applying patch $patch"
patch -d llama.cpp/ -p1 < patches/$patch
done
cp -r CMakeLists.txt llama.cpp/examples/grpc-server/
cp -r grpc-server.cpp llama.cpp/examples/grpc-server/
cp -rfv json.hpp llama.cpp/examples/grpc-server/

View File

@@ -480,4 +480,31 @@ static inline std::vector<uint8_t> base64_decode(const std::string & encoded_str
}
return ret;
}
//
// random string / id
//
static std::string random_string()
{
static const std::string str("0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz");
std::random_device rd;
std::mt19937 generator(rd());
std::string result(32, ' ');
for (int i = 0; i < 32; ++i) {
result[i] = str[generator() % str.size()];
}
return result;
}
static std::string gen_chatcmplid()
{
std::stringstream chatcmplid;
chatcmplid << "chatcmpl-" << random_string();
return chatcmplid.str();
}

View File

@@ -0,0 +1,104 @@
package main
import (
"fmt"
"os"
"os/exec"
"path/filepath"
"github.com/ggerganov/whisper.cpp/bindings/go/pkg/whisper"
"github.com/go-audio/wav"
"github.com/mudler/LocalAI/core/schema"
)
func ffmpegCommand(args []string) (string, error) {
cmd := exec.Command("ffmpeg", args...) // Constrain this to ffmpeg to permit security scanner to see that the command is safe.
cmd.Env = os.Environ()
out, err := cmd.CombinedOutput()
return string(out), err
}
// AudioToWav converts audio to wav for transcribe.
// TODO: use https://github.com/mccoyst/ogg?
func audioToWav(src, dst string) error {
commandArgs := []string{"-i", src, "-format", "s16le", "-ar", "16000", "-ac", "1", "-acodec", "pcm_s16le", dst}
out, err := ffmpegCommand(commandArgs)
if err != nil {
return fmt.Errorf("error: %w out: %s", err, out)
}
return nil
}
func Transcript(model whisper.Model, audiopath, language string, translate bool, threads uint) (schema.TranscriptionResult, error) {
res := schema.TranscriptionResult{}
dir, err := os.MkdirTemp("", "whisper")
if err != nil {
return res, err
}
defer os.RemoveAll(dir)
convertedPath := filepath.Join(dir, "converted.wav")
if err := audioToWav(audiopath, convertedPath); err != nil {
return res, err
}
// Open samples
fh, err := os.Open(convertedPath)
if err != nil {
return res, err
}
defer fh.Close()
// Read samples
d := wav.NewDecoder(fh)
buf, err := d.FullPCMBuffer()
if err != nil {
return res, err
}
data := buf.AsFloat32Buffer().Data
// Process samples
context, err := model.NewContext()
if err != nil {
return res, err
}
context.SetThreads(threads)
if language != "" {
context.SetLanguage(language)
} else {
context.SetLanguage("auto")
}
if translate {
context.SetTranslate(true)
}
if err := context.Process(data, nil, nil); err != nil {
return res, err
}
for {
s, err := context.NextSegment()
if err != nil {
break
}
var tokens []int
for _, t := range s.Tokens {
tokens = append(tokens, t.Id)
}
segment := schema.Segment{Id: s.Num, Text: s.Text, Start: s.Start, End: s.End, Tokens: tokens}
res.Segments = append(res.Segments, segment)
res.Text += s.Text
}
return res, nil
}

View File

@@ -0,0 +1,26 @@
package main
// This is a wrapper to statisfy the GRPC service interface
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
import (
"github.com/ggerganov/whisper.cpp/bindings/go/pkg/whisper"
"github.com/mudler/LocalAI/core/schema"
"github.com/mudler/LocalAI/pkg/grpc/base"
pb "github.com/mudler/LocalAI/pkg/grpc/proto"
)
type Whisper struct {
base.SingleThread
whisper whisper.Model
}
func (sd *Whisper) Load(opts *pb.ModelOptions) error {
// Note: the Model here is a path to a directory containing the model files
w, err := whisper.New(opts.ModelFile)
sd.whisper = w
return err
}
func (sd *Whisper) AudioTranscription(opts *pb.TranscriptRequest) (schema.TranscriptionResult, error) {
return Transcript(sd.whisper, opts.Dst, opts.Language, opts.Translate, uint(opts.Threads))
}

View File

@@ -1,105 +0,0 @@
package main
// This is a wrapper to statisfy the GRPC service interface
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
import (
"os"
"path/filepath"
"github.com/ggerganov/whisper.cpp/bindings/go/pkg/whisper"
"github.com/go-audio/wav"
"github.com/mudler/LocalAI/pkg/grpc/base"
pb "github.com/mudler/LocalAI/pkg/grpc/proto"
"github.com/mudler/LocalAI/pkg/utils"
)
type Whisper struct {
base.SingleThread
whisper whisper.Model
}
func (sd *Whisper) Load(opts *pb.ModelOptions) error {
// Note: the Model here is a path to a directory containing the model files
w, err := whisper.New(opts.ModelFile)
sd.whisper = w
return err
}
func (sd *Whisper) AudioTranscription(opts *pb.TranscriptRequest) (pb.TranscriptResult, error) {
dir, err := os.MkdirTemp("", "whisper")
if err != nil {
return pb.TranscriptResult{}, err
}
defer os.RemoveAll(dir)
convertedPath := filepath.Join(dir, "converted.wav")
if err := utils.AudioToWav(opts.Dst, convertedPath); err != nil {
return pb.TranscriptResult{}, err
}
// Open samples
fh, err := os.Open(convertedPath)
if err != nil {
return pb.TranscriptResult{}, err
}
defer fh.Close()
// Read samples
d := wav.NewDecoder(fh)
buf, err := d.FullPCMBuffer()
if err != nil {
return pb.TranscriptResult{}, err
}
data := buf.AsFloat32Buffer().Data
// Process samples
context, err := sd.whisper.NewContext()
if err != nil {
return pb.TranscriptResult{}, err
}
context.SetThreads(uint(opts.Threads))
if opts.Language != "" {
context.SetLanguage(opts.Language)
} else {
context.SetLanguage("auto")
}
if opts.Translate {
context.SetTranslate(true)
}
if err := context.Process(data, nil, nil); err != nil {
return pb.TranscriptResult{}, err
}
segments := []*pb.TranscriptSegment{}
text := ""
for {
s, err := context.NextSegment()
if err != nil {
break
}
var tokens []int32
for _, t := range s.Tokens {
tokens = append(tokens, int32(t.Id))
}
segment := &pb.TranscriptSegment{Id: int32(s.Num), Text: s.Text, Start: int64(s.Start), End: int64(s.End), Tokens: tokens}
segments = append(segments, segment)
text += s.Text
}
return pb.TranscriptResult{
Segments: segments,
Text: text,
}, nil
}

View File

@@ -1,2 +1,2 @@
--extra-index-url https://download.pytorch.org/whl/cu118
torch==2.4.1+cu118
torch

View File

@@ -1 +1 @@
torch==2.4.1
torch

View File

@@ -1,2 +1,2 @@
--extra-index-url https://download.pytorch.org/whl/rocm6.0
torch==2.4.1+rocm6.0
torch

View File

@@ -2,4 +2,4 @@
intel-extension-for-pytorch
torch
optimum[openvino]
setuptools==75.1.0 # https://github.com/mudler/LocalAI/issues/2406
setuptools==72.1.0 # https://github.com/mudler/LocalAI/issues/2406

View File

@@ -1,6 +1,6 @@
accelerate
auto-gptq==0.7.1
grpcio==1.67.0
grpcio==1.65.4
protobuf
certifi
transformers

View File

@@ -1,4 +1,4 @@
transformers
accelerate
torch==2.4.1
torchaudio==2.4.1
torch
torchaudio

View File

@@ -1,5 +1,5 @@
--extra-index-url https://download.pytorch.org/whl/cu118
torch==2.4.1+cu118
torchaudio==2.4.1+cu118
torch
torchaudio
transformers
accelerate

View File

@@ -1,4 +1,4 @@
torch==2.4.1
torchaudio==2.4.1
torch
torchaudio
transformers
accelerate

View File

@@ -1,5 +1,5 @@
--extra-index-url https://download.pytorch.org/whl/rocm6.0
torch==2.4.1+rocm6.0
torchaudio==2.4.1+rocm6.0
torch
torchaudio
transformers
accelerate

View File

@@ -3,6 +3,6 @@ intel-extension-for-pytorch
torch
torchaudio
optimum[openvino]
setuptools==75.1.0 # https://github.com/mudler/LocalAI/issues/2406
setuptools==70.3.0 # https://github.com/mudler/LocalAI/issues/2406
transformers
accelerate

View File

@@ -1,4 +1,4 @@
bark==0.1.5
grpcio==1.67.0
grpcio==1.65.5
protobuf
certifi

View File

@@ -1,2 +1,2 @@
grpcio==1.67.0
grpcio==1.65.5
protobuf

View File

@@ -1,4 +1,3 @@
transformers
accelerate
torch==2.4.1
coqui-tts
torch

View File

@@ -1,6 +1,5 @@
--extra-index-url https://download.pytorch.org/whl/cu118
torch==2.4.1+cu118
torchaudio==2.4.1+cu118
torch
torchaudio
transformers
accelerate
coqui-tts
accelerate

View File

@@ -1,5 +1,4 @@
torch==2.4.1
torchaudio==2.4.1
torch
torchaudio
transformers
accelerate
coqui-tts
accelerate

View File

@@ -1,6 +1,5 @@
--extra-index-url https://download.pytorch.org/whl/rocm6.0
torch==2.4.1+rocm6.0
torchaudio==2.4.1+rocm6.0
torch
torchaudio
transformers
accelerate
coqui-tts
accelerate

View File

@@ -3,7 +3,6 @@ intel-extension-for-pytorch
torch
torchaudio
optimum[openvino]
setuptools==75.1.0 # https://github.com/mudler/LocalAI/issues/2406
setuptools==72.1.0 # https://github.com/mudler/LocalAI/issues/2406
transformers
accelerate
coqui-tts
accelerate

View File

@@ -1,4 +1,4 @@
grpcio==1.67.0
TTS==0.22.0
grpcio==1.65.5
protobuf
certifi
packaging==24.1
certifi

View File

@@ -19,7 +19,7 @@ class TestBackendServicer(unittest.TestCase):
This method sets up the gRPC service by starting the server
"""
self.service = subprocess.Popen(["python3", "backend.py", "--addr", "localhost:50051"])
time.sleep(30)
time.sleep(10)
def tearDown(self) -> None:
"""

View File

@@ -168,7 +168,7 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
if request.CFGScale != 0:
self.cfg_scale = request.CFGScale
clipmodel = "Lykon/dreamshaper-8"
clipmodel = "runwayml/stable-diffusion-v1-5"
if request.CLIPModel != "":
clipmodel = request.CLIPModel
clipsubfolder = "text_encoder"

View File

@@ -5,5 +5,5 @@ accelerate
compel
peft
sentencepiece
torch==2.4.1
torch
optimum-quanto

View File

@@ -1,5 +1,5 @@
--extra-index-url https://download.pytorch.org/whl/cu118
torch==2.4.1+cu118
torch
diffusers
opencv-python
transformers

View File

@@ -1,4 +1,4 @@
torch==2.4.1
torch
diffusers
opencv-python
transformers

View File

@@ -3,7 +3,7 @@ intel-extension-for-pytorch
torch
torchvision
optimum[openvino]
setuptools==75.1.0 # https://github.com/mudler/LocalAI/issues/2406
setuptools==70.3.0 # https://github.com/mudler/LocalAI/issues/2406
diffusers
opencv-python
transformers

View File

@@ -1,5 +1,5 @@
setuptools
grpcio==1.67.0
grpcio==1.65.4
pillow
protobuf
certifi

View File

@@ -53,7 +53,7 @@ class TestBackendServicer(unittest.TestCase):
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.LoadModel(backend_pb2.ModelOptions(Model="Lykon/dreamshaper-8"))
response = stub.LoadModel(backend_pb2.ModelOptions(Model="runwayml/stable-diffusion-v1-5"))
self.assertTrue(response.success)
self.assertEqual(response.message, "Model loaded successfully")
except Exception as err:
@@ -71,7 +71,7 @@ class TestBackendServicer(unittest.TestCase):
self.setUp()
with grpc.insecure_channel("localhost:50051") as channel:
stub = backend_pb2_grpc.BackendStub(channel)
response = stub.LoadModel(backend_pb2.ModelOptions(Model="Lykon/dreamshaper-8"))
response = stub.LoadModel(backend_pb2.ModelOptions(Model="runwayml/stable-diffusion-v1-5"))
print(response.message)
self.assertTrue(response.success)
image_req = backend_pb2.GenerateImageRequest(positive_prompt="cat", width=16,height=16, dst="test.jpg")
@@ -81,4 +81,4 @@ class TestBackendServicer(unittest.TestCase):
print(err)
self.fail("Image gen service failed")
finally:
self.tearDown()
self.tearDown()

1
backend/python/exllama/.gitignore vendored Normal file
View File

@@ -0,0 +1 @@
source

View File

@@ -0,0 +1,25 @@
export CONDA_ENV_PATH = "exllama.yml"
.PHONY: exllama
exllama: protogen
bash install.sh ${CONDA_ENV_PATH}
.PHONY: run
run: protogen
@echo "Running exllama..."
bash run.sh
@echo "exllama run."
.PHONY: protogen
protogen: backend_pb2_grpc.py backend_pb2.py
.PHONY: protogen-clean
protogen-clean:
$(RM) backend_pb2_grpc.py backend_pb2.py
backend_pb2_grpc.py backend_pb2.py:
python3 -m grpc_tools.protoc -I../.. --python_out=. --grpc_python_out=. backend.proto
.PHONY: clean
clean: protogen-clean
$(RM) -r venv source __pycache__

View File

@@ -0,0 +1,5 @@
# Creating a separate environment for the exllama project
```
make exllama
```

159
backend/python/exllama/backend.py Executable file
View File

@@ -0,0 +1,159 @@
#!/usr/bin/env python3
import grpc
from concurrent import futures
import time
import backend_pb2
import backend_pb2_grpc
import argparse
import signal
import sys
import os, glob
from pathlib import Path
import torch
import torch.nn.functional as F
from torch import version as torch_version
from source.tokenizer import ExLlamaTokenizer
from source.generator import ExLlamaGenerator
from source.model import ExLlama, ExLlamaCache, ExLlamaConfig
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
# If MAX_WORKERS are specified in the environment use it, otherwise default to 1
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1'))
# Implement the BackendServicer class with the service methods
class BackendServicer(backend_pb2_grpc.BackendServicer):
def generate(self,prompt, max_new_tokens):
self.generator.end_beam_search()
# Tokenizing the input
ids = self.generator.tokenizer.encode(prompt)
self.generator.gen_begin_reuse(ids)
initial_len = self.generator.sequence[0].shape[0]
has_leading_space = False
decoded_text = ''
for i in range(max_new_tokens):
token = self.generator.gen_single_token()
if i == 0 and self.generator.tokenizer.tokenizer.IdToPiece(int(token)).startswith(''):
has_leading_space = True
decoded_text = self.generator.tokenizer.decode(self.generator.sequence[0][initial_len:])
if has_leading_space:
decoded_text = ' ' + decoded_text
if token.item() == self.generator.tokenizer.eos_token_id:
break
return decoded_text
def Health(self, request, context):
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
def LoadModel(self, request, context):
try:
# https://github.com/turboderp/exllama/blob/master/example_cfg.py
model_directory = request.ModelFile
# Locate files we need within that directory
tokenizer_path = os.path.join(model_directory, "tokenizer.model")
model_config_path = os.path.join(model_directory, "config.json")
st_pattern = os.path.join(model_directory, "*.safetensors")
model_path = glob.glob(st_pattern)[0]
# Create config, model, tokenizer and generator
config = ExLlamaConfig(model_config_path) # create config from config.json
config.model_path = model_path # supply path to model weights file
if (request.ContextSize):
config.max_seq_len = request.ContextSize # override max sequence length
config.max_attention_size = request.ContextSize**2 # Should be set to context_size^2.
# https://github.com/turboderp/exllama/issues/220#issuecomment-1720324163
# Set Rope scaling.
if (request.RopeFreqScale):
# Alpha value for Rope scaling.
# Higher value increases context but adds perplexity.
# alpha_value and compress_pos_emb are mutually exclusive.
# https://github.com/turboderp/exllama/issues/115
config.alpha_value = request.RopeFreqScale
config.calculate_rotary_embedding_base()
model = ExLlama(config) # create ExLlama instance and load the weights
tokenizer = ExLlamaTokenizer(tokenizer_path) # create tokenizer from tokenizer model file
cache = ExLlamaCache(model, batch_size = 2) # create cache for inference
generator = ExLlamaGenerator(model, tokenizer, cache) # create generator
self.generator= generator
self.model = model
self.tokenizer = tokenizer
self.cache = cache
except Exception as err:
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
return backend_pb2.Result(message="Model loaded successfully", success=True)
def Predict(self, request, context):
penalty = 1.15
if request.Penalty != 0.0:
penalty = request.Penalty
self.generator.settings.token_repetition_penalty_max = penalty
self.generator.settings.temperature = request.Temperature
self.generator.settings.top_k = request.TopK
self.generator.settings.top_p = request.TopP
tokens = 512
if request.Tokens != 0:
tokens = request.Tokens
if self.cache.batch_size == 1:
del self.cache
self.cache = ExLlamaCache(self.model, batch_size=2)
self.generator = ExLlamaGenerator(self.model, self.tokenizer, self.cache)
t = self.generate(request.Prompt, tokens)
# Remove prompt from response if present
if request.Prompt in t:
t = t.replace(request.Prompt, "")
return backend_pb2.Result(message=bytes(t, encoding='utf-8'))
def PredictStream(self, request, context):
# Implement PredictStream RPC
#for reply in some_data_generator():
# yield reply
# Not implemented yet
return self.Predict(request, context)
def serve(address):
server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS))
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
server.add_insecure_port(address)
server.start()
print("Server started. Listening on: " + address, file=sys.stderr)
# Define the signal handler function
def signal_handler(sig, frame):
print("Received termination signal. Shutting down...")
server.stop(0)
sys.exit(0)
# Set the signal handlers for SIGINT and SIGTERM
signal.signal(signal.SIGINT, signal_handler)
signal.signal(signal.SIGTERM, signal_handler)
try:
while True:
time.sleep(_ONE_DAY_IN_SECONDS)
except KeyboardInterrupt:
server.stop(0)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run the gRPC server.")
parser.add_argument(
"--addr", default="localhost:50051", help="The address to bind the server to."
)
args = parser.parse_args()
serve(args.addr)

View File

@@ -0,0 +1,13 @@
#!/bin/bash
set -e
LIMIT_TARGETS="cublas"
source $(dirname $0)/../common/libbackend.sh
installRequirements
git clone https://github.com/turboderp/exllama $MY_DIR/source
uv pip install ${BUILD_ISOLATION_FLAG} --requirement ${MY_DIR}/source/requirements.txt
cp -v ./*py $MY_DIR/source/

View File

@@ -0,0 +1,3 @@
transformers
accelerate
torch

View File

@@ -0,0 +1,4 @@
--extra-index-url https://download.pytorch.org/whl/cu118
torch
transformers
accelerate

View File

@@ -0,0 +1,3 @@
torch
transformers
accelerate

View File

@@ -0,0 +1,4 @@
grpcio==1.65.5
protobuf
certifi
setuptools

7
backend/python/exllama/run.sh Executable file
View File

@@ -0,0 +1,7 @@
#!/bin/bash
LIMIT_TARGETS="cublas"
BACKEND_FILE="${MY_DIR}/source/backend.py"
source $(dirname $0)/../common/libbackend.sh
startBackend $@

6
backend/python/exllama/test.sh Executable file
View File

@@ -0,0 +1,6 @@
#!/bin/bash
set -e
source $(dirname $0)/../common/libbackend.sh
runUnittests

View File

@@ -1,3 +1,3 @@
transformers
accelerate
torch==2.4.1
torch

View File

@@ -1,4 +1,4 @@
--extra-index-url https://download.pytorch.org/whl/cu118
torch==2.4.1+cu118
torch
transformers
accelerate

View File

@@ -1,3 +1,3 @@
torch==2.4.1
torch
transformers
accelerate

View File

@@ -1,4 +1,4 @@
grpcio==1.67.0
grpcio==1.65.4
protobuf
certifi
wheel

View File

@@ -1,2 +1,2 @@
torch==2.4.1
torch
transformers

View File

@@ -1,3 +1,3 @@
--extra-index-url https://download.pytorch.org/whl/cu118
torch==2.4.1+cu118
torch
transformers

View File

@@ -1,2 +1,2 @@
torch==2.4.1
torch
transformers

View File

@@ -1,3 +1,3 @@
grpcio==1.67.0
grpcio==1.65.5
protobuf
certifi

View File

@@ -1,3 +1 @@
torch==2.4.1
git+https://github.com/myshell-ai/MeloTTS.git
git+https://github.com/myshell-ai/OpenVoice.git
torch

View File

@@ -1,4 +1,2 @@
--extra-index-url https://download.pytorch.org/whl/cu118
torch==2.4.1+cu118
git+https://github.com/myshell-ai/MeloTTS.git
git+https://github.com/myshell-ai/OpenVoice.git
torch

View File

@@ -1,3 +1 @@
torch==2.4.1
git+https://github.com/myshell-ai/MeloTTS.git
git+https://github.com/myshell-ai/OpenVoice.git
torch

View File

@@ -1,4 +1,2 @@
--extra-index-url https://download.pytorch.org/whl/rocm6.0
torch==2.4.1+rocm6.0
git+https://github.com/myshell-ai/MeloTTS.git
git+https://github.com/myshell-ai/OpenVoice.git
torch

View File

@@ -2,22 +2,22 @@
intel-extension-for-pytorch
torch
optimum[openvino]
grpcio==1.67.0
grpcio==1.65.5
protobuf
librosa==0.9.1
faster-whisper==0.9.0
faster-whisper==1.0.3
pydub==0.25.1
wavmark==0.0.3
numpy==1.22.0
numpy==1.26.4
eng_to_ipa==0.0.2
inflect==7.0.0
unidecode==1.3.7
whisper-timestamped==1.14.2
whisper-timestamped==1.15.4
openai
python-dotenv
pypinyin==0.50.0
cn2an==0.5.22
jieba==0.42.1
gradio==4.38.1
langid==1.1.6
git+https://github.com/myshell-ai/MeloTTS.git
git+https://github.com/myshell-ai/OpenVoice.git

View File

@@ -1,10 +1,10 @@
grpcio==1.67.0
grpcio==1.65.5
protobuf
librosa
faster-whisper
pydub==0.25.1
wavmark==0.0.3
numpy==1.22.0
numpy
eng_to_ipa==0.0.2
inflect
unidecode
@@ -13,8 +13,8 @@ openai
python-dotenv
pypinyin
cn2an==0.5.22
networkx==2.8.8
jieba==0.42.1
gradio==3.48.0
gradio
langid==1.1.6
llvmlite==0.43.0
git+https://github.com/myshell-ai/MeloTTS.git
git+https://github.com/myshell-ai/OpenVoice.git

View File

@@ -19,7 +19,7 @@ class TestBackendServicer(unittest.TestCase):
This method sets up the gRPC service by starting the server
"""
self.service = subprocess.Popen(["python3", "backend.py", "--addr", "localhost:50051"])
time.sleep(30)
time.sleep(10)
def tearDown(self) -> None:
"""

View File

@@ -15,12 +15,5 @@ installRequirements
# https://github.com/descriptinc/audiotools/issues/101
# incompatible protobuf versions.
PYDIR=python3.10
pyenv="${MY_DIR}/venv/lib/${PYDIR}/site-packages/google/protobuf/internal/"
if [ ! -d ${pyenv} ]; then
echo "(parler-tts/install.sh): Error: ${pyenv} does not exist"
exit 1
fi
curl -L https://raw.githubusercontent.com/protocolbuffers/protobuf/main/python/google/protobuf/internal/builder.py -o ${pyenv}/builder.py
PYDIR=$(ls ${MY_DIR}/venv/lib)
curl -L https://raw.githubusercontent.com/protocolbuffers/protobuf/main/python/google/protobuf/internal/builder.py -o ${MY_DIR}/venv/lib/${PYDIR}/site-packages/google/protobuf/internal/builder.py

View File

@@ -1,3 +1,3 @@
transformers
accelerate
torch==2.4.1
torch

View File

@@ -1,5 +1,5 @@
--extra-index-url https://download.pytorch.org/whl/cu118
torch==2.4.1+cu118
torchaudio==2.4.1+cu118
torch
torchaudio
transformers
accelerate

View File

@@ -1,4 +1,4 @@
torch==2.4.1
torchaudio==2.4.1
torch
torchaudio
transformers
accelerate

View File

@@ -1,5 +1,5 @@
--extra-index-url https://download.pytorch.org/whl/rocm6.0
torch==2.3.0+rocm6.0
torchaudio==2.3.0+rocm6.0
torch
torchaudio
transformers
accelerate
accelerate

View File

@@ -3,6 +3,6 @@ intel-extension-for-pytorch
torch
torchaudio
optimum[openvino]
setuptools==75.1.0 # https://github.com/mudler/LocalAI/issues/2406
setuptools==72.1.0 # https://github.com/mudler/LocalAI/issues/2406
transformers
accelerate

View File

@@ -1,4 +1,4 @@
grpcio==1.67.0
grpcio==1.65.5
protobuf
certifi
llvmlite==0.43.0

View File

@@ -1,4 +1,4 @@
transformers
accelerate
torch==2.4.1
torch
rerankers[transformers]

View File

@@ -1,5 +1,5 @@
--extra-index-url https://download.pytorch.org/whl/cu118
transformers
accelerate
torch==2.4.1+cu118
torch
rerankers[transformers]

View File

@@ -1,4 +1,4 @@
transformers
accelerate
torch==2.4.1
torch
rerankers[transformers]

View File

@@ -1,5 +1,5 @@
--extra-index-url https://download.pytorch.org/whl/rocm6.0
transformers
accelerate
torch==2.4.1+rocm6.0
torch
rerankers[transformers]

View File

@@ -5,4 +5,4 @@ accelerate
torch
rerankers[transformers]
optimum[openvino]
setuptools==75.1.0 # https://github.com/mudler/LocalAI/issues/2406
setuptools==72.1.0 # https://github.com/mudler/LocalAI/issues/2406

View File

@@ -1,3 +1,3 @@
grpcio==1.67.0
grpcio==1.65.4
protobuf
certifi

View File

@@ -55,7 +55,7 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
"""
model_name = request.Model
try:
self.model = SentenceTransformer(model_name, trust_remote_code=request.TrustRemoteCode)
self.model = SentenceTransformer(model_name)
except Exception as err:
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")

View File

@@ -1,6 +1,6 @@
torch==2.4.1
torch
accelerate
transformers
bitsandbytes
sentence-transformers==3.2.0
sentence-transformers==3.0.1
transformers

View File

@@ -1,5 +1,5 @@
--extra-index-url https://download.pytorch.org/whl/cu118
torch==2.4.1+cu118
torch
accelerate
sentence-transformers==3.2.0
sentence-transformers==3.0.1
transformers

View File

@@ -1,4 +1,4 @@
torch==2.4.1
torch
accelerate
sentence-transformers==3.2.0
sentence-transformers==3.0.1
transformers

Some files were not shown because too many files have changed in this diff Show More