Compare commits

..

1 Commits

Author SHA1 Message Date
Ettore Di Giacinto
95f773ee4b experiment: build with a single image with all the deps
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2024-07-01 19:43:18 +02:00
577 changed files with 14464 additions and 22940 deletions

View File

@@ -1,23 +0,0 @@
meta {
name: musicgen
type: http
seq: 1
}
post {
url: {{PROTOCOL}}{{HOST}}:{{PORT}}/v1/sound-generation
body: json
auth: none
}
headers {
Content-Type: application/json
}
body:json {
{
"model_id": "facebook/musicgen-small",
"text": "Exciting 80s Newscast Interstitial",
"duration_seconds": 8
}
}

View File

@@ -1,11 +0,0 @@
meta {
name: model delete
type: http
seq: 7
}
post {
url: {{PROTOCOL}}{{HOST}}:{{PORT}}/models/galleries
body: none
auth: none
}

View File

Binary file not shown.

View File

@@ -1,16 +0,0 @@
meta {
name: transcribe
type: http
seq: 1
}
post {
url: {{PROTOCOL}}{{HOST}}:{{PORT}}/v1/audio/transcriptions
body: multipartForm
auth: none
}
body:multipart-form {
file: @file(transcription/gb1.ogg)
model: whisper-1
}

View File

@@ -1,17 +0,0 @@
#!/bin/bash
cd /workspace
# Get the files into the volume without a bind mount
if [ ! -d ".git" ]; then
git clone https://github.com/mudler/LocalAI.git .
else
git fetch
fi
echo "Standard Post-Create script completed."
if [ -f "/devcontainer-customization/postcreate.sh" ]; then
echo "Launching customization postcreate.sh"
bash "/devcontainer-customization/postcreate.sh"
fi

View File

@@ -1,16 +0,0 @@
#!/bin/bash
cd /workspace
# Grab the pre-stashed backend assets to avoid build issues
cp -r /build/backend-assets /workspace/backend-assets
# Ensures generated source files are present upon load
make prepare
echo "Standard Post-Start script completed."
if [ -f "/devcontainer-customization/poststart.sh" ]; then
echo "Launching customization poststart.sh"
bash "/devcontainer-customization/poststart.sh"
fi

View File

@@ -1,55 +0,0 @@
#!/bin/bash
# This file contains some really simple functions that are useful when building up customization scripts.
# Checks if the git config has a user registered - and sets it up if not.
#
# Param 1: name
# Param 2: email
#
config_user() {
echo "Configuring git for $1 <$2>"
local gcn=$(git config --global user.name)
if [ -z "${gcn}" ]; then
echo "Setting up git user / remote"
git config --global user.name "$1"
git config --global user.email "$2"
fi
}
# Checks if the git remote is configured - and sets it up if not. Fetches either way.
#
# Param 1: remote name
# Param 2: remote url
#
config_remote() {
echo "Adding git remote and fetching $2 as $1"
local gr=$(git remote -v | grep $1)
if [ -z "${gr}" ]; then
git remote add $1 $2
fi
git fetch $1
}
# Setup special .ssh files
# Prints out lines of text to make things pretty
# Param 1: bash array, filenames relative to the customization directory that should be copied to ~/.ssh
setup_ssh() {
echo "starting ~/.ssh directory setup..."
mkdir -p "${HOME}.ssh"
chmod 0700 "${HOME}/.ssh"
echo "-----"
local files=("$@")
for file in "${files[@]}" ; do
local cfile="/devcontainer-customization/${file}"
local hfile="${HOME}/.ssh/${file}"
if [ ! -f "${hfile}" ]; then
echo "copying \"${file}\""
cp "${cfile}" "${hfile}"
chmod 600 "${hfile}"
fi
done
echo "~/.ssh directory setup complete!"
}

View File

@@ -1,25 +0,0 @@
Place any additional resources your environment requires in this directory
Script hooks are currently called for:
`postcreate.sh` and `poststart.sh`
If files with those names exist here, they will be called at the end of the normal script.
This is a good place to set things like `git config --global user.name` are set - and to handle any other files that are mounted via this directory.
To assist in doing so, `source /.devcontainer-scripts/utils.sh` will provide utility functions that may be useful - for example:
```
#!/bin/bash
source "/.devcontainer-scripts/utils.sh"
sshfiles=("config", "key.pub")
setup_ssh "${sshfiles[@]}"
config_user "YOUR NAME" "YOUR EMAIL"
config_remote "REMOTE NAME" "REMOTE URL"
```

View File

@@ -1,24 +0,0 @@
{
"$schema": "https://raw.githubusercontent.com/devcontainers/spec/main/schemas/devContainer.schema.json",
"name": "LocalAI",
"workspaceFolder": "/workspace",
"dockerComposeFile": [ "./docker-compose-devcontainer.yml" ],
"service": "api",
"shutdownAction": "stopCompose",
"customizations": {
"vscode": {
"extensions": [
"golang.go",
"ms-vscode.makefile-tools",
"ms-azuretools.vscode-docker",
"ms-python.python",
"ms-python.debugpy",
"wayou.vscode-todo-highlight",
"waderyan.gitblame"
]
}
},
"forwardPorts": [8080, 3000],
"postCreateCommand": "bash /.devcontainer-scripts/postcreate.sh",
"postStartCommand": "bash /.devcontainer-scripts/poststart.sh"
}

View File

@@ -1,48 +0,0 @@
services:
api:
build:
context: ..
dockerfile: Dockerfile
target: devcontainer
args:
- FFMPEG=true
- IMAGE_TYPE=extras
- GO_TAGS=stablediffusion p2p tts
env_file:
- ../.env
ports:
- 8080:8080
volumes:
- localai_workspace:/workspace
- ../models:/host-models
- ./customization:/devcontainer-customization
command: /bin/sh -c "while sleep 1000; do :; done"
cap_add:
- SYS_PTRACE
security_opt:
- seccomp:unconfined
prometheus:
image: prom/prometheus
container_name: prometheus
command:
- '--config.file=/etc/prometheus/prometheus.yml'
ports:
- 9090:9090
restart: unless-stopped
volumes:
- ./prometheus:/etc/prometheus
- prom_data:/prometheus
grafana:
image: grafana/grafana
container_name: grafana
ports:
- 3000:3000
restart: unless-stopped
environment:
- GF_SECURITY_ADMIN_USER=admin
- GF_SECURITY_ADMIN_PASSWORD=grafana
volumes:
- ./grafana:/etc/grafana/provisioning/datasources
volumes:
prom_data:
localai_workspace:

View File

@@ -1,10 +0,0 @@
apiVersion: 1
datasources:
- name: Prometheus
type: prometheus
url: http://prometheus:9090
isDefault: true
access: proxy
editable: true

View File

@@ -1,21 +0,0 @@
global:
scrape_interval: 15s
scrape_timeout: 10s
evaluation_interval: 15s
alerting:
alertmanagers:
- static_configs:
- targets: []
scheme: http
timeout: 10s
api_version: v1
scrape_configs:
- job_name: prometheus
honor_timestamps: true
scrape_interval: 15s
scrape_timeout: 10s
metrics_path: /metrics
scheme: http
static_configs:
- targets:
- localhost:9090

View File

@@ -1,7 +1,6 @@
.idea
.github
.vscode
.devcontainer
models
examples/chatbot-ui/models
examples/rwkv/models

3
.env
View File

@@ -79,9 +79,6 @@
### Enable to run parallel requests
# LOCALAI_PARALLEL_REQUESTS=true
# Enable to allow p2p mode
# LOCALAI_P2P=true
### Watchdog settings
###
# Enables watchdog to kill backends that are inactive for too much time

1
.gitattributes vendored
View File

@@ -1,2 +1 @@
*.sh text eol=lf
backend/cpp/llama/*.hpp linguist-vendored

13
.github/bump_deps.sh vendored
View File

@@ -6,17 +6,4 @@ VAR=$3
LAST_COMMIT=$(curl -s -H "Accept: application/vnd.github.VERSION.sha" "https://api.github.com/repos/$REPO/commits/$BRANCH")
# Read $VAR from Makefile (only first match)
set +e
CURRENT_COMMIT="$(grep -m1 "^$VAR?=" Makefile | cut -d'=' -f2)"
set -e
sed -i Makefile -e "s/$VAR?=.*/$VAR?=$LAST_COMMIT/"
if [ -z "$CURRENT_COMMIT" ]; then
echo "Could not find $VAR in Makefile."
exit 0
fi
echo "Changes: https://github.com/$REPO/compare/${CURRENT_COMMIT}..${LAST_COMMIT}" >> "${VAR}_message.txt"
echo "${LAST_COMMIT}" >> "${VAR}_commit.txt"

View File

@@ -1,85 +0,0 @@
import hashlib
from huggingface_hub import hf_hub_download, get_paths_info
import requests
import sys
import os
uri = sys.argv[1]
file_name = uri.split('/')[-1]
# Function to parse the URI and determine download method
def parse_uri(uri):
if uri.startswith('huggingface://'):
repo_id = uri.split('://')[1]
return 'huggingface', repo_id.rsplit('/', 1)[0]
elif 'huggingface.co' in uri:
parts = uri.split('/resolve/')
if len(parts) > 1:
repo_path = parts[0].split('https://huggingface.co/')[-1]
return 'huggingface', repo_path
return 'direct', uri
def calculate_sha256(file_path):
sha256_hash = hashlib.sha256()
with open(file_path, 'rb') as f:
for byte_block in iter(lambda: f.read(4096), b''):
sha256_hash.update(byte_block)
return sha256_hash.hexdigest()
def manual_safety_check_hf(repo_id):
scanResponse = requests.get('https://huggingface.co/api/models/' + repo_id + "/scan")
scan = scanResponse.json()
# Check if 'hasUnsafeFile' exists in the response
if 'hasUnsafeFile' in scan:
if scan['hasUnsafeFile']:
return scan
else:
return None
else:
return None
download_type, repo_id_or_url = parse_uri(uri)
new_checksum = None
file_path = None
# Decide download method based on URI type
if download_type == 'huggingface':
# Check if the repo is flagged as dangerous by HF
hazard = manual_safety_check_hf(repo_id_or_url)
if hazard != None:
print(f'Error: HuggingFace has detected security problems for {repo_id_or_url}: {str(hazard)}', filename=file_name)
sys.exit(5)
# Use HF API to pull sha
for file in get_paths_info(repo_id_or_url, [file_name], repo_type='model'):
try:
new_checksum = file.lfs.sha256
break
except Exception as e:
print(f'Error from Hugging Face Hub: {str(e)}', file=sys.stderr)
sys.exit(2)
if new_checksum is None:
try:
file_path = hf_hub_download(repo_id=repo_id_or_url, filename=file_name)
except Exception as e:
print(f'Error from Hugging Face Hub: {str(e)}', file=sys.stderr)
sys.exit(2)
else:
response = requests.get(repo_id_or_url)
if response.status_code == 200:
with open(file_name, 'wb') as f:
f.write(response.content)
file_path = file_name
elif response.status_code == 404:
print(f'File not found: {response.status_code}', file=sys.stderr)
sys.exit(2)
else:
print(f'Error downloading file: {response.status_code}', file=sys.stderr)
sys.exit(1)
if new_checksum is None:
new_checksum = calculate_sha256(file_path)
print(new_checksum)
os.remove(file_path)
else:
print(new_checksum)

View File

@@ -14,14 +14,77 @@ function check_and_update_checksum() {
idx="$5"
# Download the file and calculate new checksum using Python
new_checksum=$(python3 ./.github/check_and_update.py $uri)
result=$?
new_checksum=$(python3 -c "
import hashlib
from huggingface_hub import hf_hub_download, get_paths_info
import requests
import sys
import os
if [[ $result -eq 5 ]]; then
echo "Contaminated entry detected, deleting entry for $model_name..."
yq eval -i "del([$idx])" "$input_yaml"
return
fi
uri = '$uri'
file_name = uri.split('/')[-1]
# Function to parse the URI and determine download method
# Function to parse the URI and determine download method
def parse_uri(uri):
if uri.startswith('huggingface://'):
repo_id = uri.split('://')[1]
return 'huggingface', repo_id.rsplit('/', 1)[0]
elif 'huggingface.co' in uri:
parts = uri.split('/resolve/')
if len(parts) > 1:
repo_path = parts[0].split('https://huggingface.co/')[-1]
return 'huggingface', repo_path
return 'direct', uri
def calculate_sha256(file_path):
sha256_hash = hashlib.sha256()
with open(file_path, 'rb') as f:
for byte_block in iter(lambda: f.read(4096), b''):
sha256_hash.update(byte_block)
return sha256_hash.hexdigest()
download_type, repo_id_or_url = parse_uri(uri)
new_checksum = None
# Decide download method based on URI type
if download_type == 'huggingface':
# Use HF API to pull sha
for file in get_paths_info(repo_id_or_url, [file_name], repo_type='model'):
try:
new_checksum = file.lfs.sha256
break
except Exception as e:
print(f'Error from Hugging Face Hub: {str(e)}', file=sys.stderr)
sys.exit(2)
if new_checksum is None:
try:
file_path = hf_hub_download(repo_id=repo_id_or_url, filename=file_name)
except Exception as e:
print(f'Error from Hugging Face Hub: {str(e)}', file=sys.stderr)
sys.exit(2)
else:
response = requests.get(repo_id_or_url)
if response.status_code == 200:
with open(file_name, 'wb') as f:
f.write(response.content)
file_path = file_name
elif response.status_code == 404:
print(f'File not found: {response.status_code}', file=sys.stderr)
sys.exit(2)
else:
print(f'Error downloading file: {response.status_code}', file=sys.stderr)
sys.exit(1)
if new_checksum is None:
new_checksum = calculate_sha256(file_path)
print(new_checksum)
os.remove(file_path)
else:
print(new_checksum)
")
if [[ "$new_checksum" == "" ]]; then
echo "Error calculating checksum for $file_name. Skipping..."
@@ -31,7 +94,7 @@ function check_and_update_checksum() {
echo "Checksum for $file_name: $new_checksum"
# Compare and update the YAML file if checksums do not match
result=$?
if [[ $result -eq 2 ]]; then
echo "File not found, deleting entry for $file_name..."
# yq eval -i "del(.[$idx].files[] | select(.filename == \"$file_name\"))" "$input_yaml"

View File

@@ -6,7 +6,6 @@ import (
"io/ioutil"
"os"
"github.com/microcosm-cc/bluemonday"
"gopkg.in/yaml.v3"
)
@@ -280,12 +279,6 @@ func main() {
return
}
// Ensure that all arbitrary text content is sanitized before display
for i, m := range models {
models[i].Name = bluemonday.StrictPolicy().Sanitize(m.Name)
models[i].Description = bluemonday.StrictPolicy().Sanitize(m.Description)
}
// render the template
data := struct {
Models []*GalleryModel

110
.github/dependabot.yml vendored
View File

@@ -1,16 +1,10 @@
# https://docs.github.com/en/code-security/dependabot/dependabot-version-updates/configuration-options-for-the-dependabot.yml-file
version: 2
updates:
- package-ecosystem: "gitsubmodule"
directory: "/"
schedule:
interval: "weekly"
- package-ecosystem: "gomod"
directory: "/"
schedule:
interval: "weekly"
ignore:
- dependency-name: "github.com/mudler/LocalAI/pkg/grpc/proto"
- package-ecosystem: "github-actions"
# Workflow files stored in the default location of `.github/workflows`. (You don't need to specify `/.github/workflows` for `directory`. You can use `directory: "/"`.)
directory: "/"
@@ -29,107 +23,3 @@ updates:
schedule:
# Check for updates to GitHub Actions every weekday
interval: "weekly"
- package-ecosystem: "pip"
directory: "/backend/python/autogptq"
schedule:
interval: "weekly"
- package-ecosystem: "pip"
directory: "/backend/python/bark"
schedule:
interval: "weekly"
- package-ecosystem: "pip"
directory: "/backend/python/common/template"
schedule:
interval: "weekly"
- package-ecosystem: "pip"
directory: "/backend/python/coqui"
schedule:
interval: "weekly"
- package-ecosystem: "pip"
directory: "/backend/python/diffusers"
schedule:
interval: "weekly"
- package-ecosystem: "pip"
directory: "/backend/python/exllama"
schedule:
interval: "weekly"
- package-ecosystem: "pip"
directory: "/backend/python/exllama2"
schedule:
interval: "weekly"
- package-ecosystem: "pip"
directory: "/backend/python/mamba"
schedule:
interval: "weekly"
- package-ecosystem: "pip"
directory: "/backend/python/openvoice"
schedule:
interval: "weekly"
- package-ecosystem: "pip"
directory: "/backend/python/parler-tts"
schedule:
interval: "weekly"
- package-ecosystem: "pip"
directory: "/backend/python/rerankers"
schedule:
interval: "weekly"
- package-ecosystem: "pip"
directory: "/backend/python/sentencetransformers"
schedule:
interval: "weekly"
- package-ecosystem: "pip"
directory: "/backend/python/transformers"
schedule:
interval: "weekly"
- package-ecosystem: "pip"
directory: "/backend/python/transformers-musicgen"
schedule:
interval: "weekly"
- package-ecosystem: "pip"
directory: "/backend/python/vall-e-x"
schedule:
interval: "weekly"
- package-ecosystem: "pip"
directory: "/backend/python/vllm"
schedule:
interval: "weekly"
- package-ecosystem: "pip"
directory: "/examples/chainlit"
schedule:
interval: "weekly"
- package-ecosystem: "pip"
directory: "/examples/functions"
schedule:
interval: "weekly"
- package-ecosystem: "pip"
directory: "/examples/langchain/langchainpy-localai-example"
schedule:
interval: "weekly"
- package-ecosystem: "pip"
directory: "/examples/langchain-chroma"
schedule:
interval: "weekly"
- package-ecosystem: "pip"
directory: "/examples/streamlit-bot"
schedule:
interval: "weekly"
- package-ecosystem: "docker"
directory: "/examples/k8sgpt"
schedule:
interval: "weekly"
- package-ecosystem: "docker"
directory: "/examples/kubernetes"
schedule:
interval: "weekly"
- package-ecosystem: "docker"
directory: "/examples/langchain"
schedule:
interval: "weekly"
- package-ecosystem: "gomod"
directory: "/examples/semantic-todo"
schedule:
interval: "weekly"
- package-ecosystem: "docker"
directory: "/examples/telegram-bot"
schedule:
interval: "weekly"

5
.github/labeler.yml vendored
View File

@@ -1,11 +1,6 @@
enhancements:
- head-branch: ['^feature', 'feature']
dependencies:
- any:
- changed-files:
- any-glob-to-any-file: 'Makefile'
kind/documentation:
- any:
- changed-files:

3
.github/release.yml vendored
View File

@@ -13,9 +13,6 @@ changelog:
labels:
- bug
- regression
- title: "🖧 P2P area"
labels:
- area/p2p
- title: Exciting New Features 🎉
labels:
- Semver-Minor

View File

@@ -9,17 +9,32 @@ jobs:
fail-fast: false
matrix:
include:
- repository: "go-skynet/go-llama.cpp"
variable: "GOLLAMA_VERSION"
branch: "master"
- repository: "ggerganov/llama.cpp"
variable: "CPPLLAMA_VERSION"
branch: "master"
- repository: "go-skynet/go-ggml-transformers.cpp"
variable: "GOGGMLTRANSFORMERS_VERSION"
branch: "master"
- repository: "donomii/go-rwkv.cpp"
variable: "RWKV_VERSION"
branch: "main"
- repository: "ggerganov/whisper.cpp"
variable: "WHISPER_CPP_VERSION"
branch: "master"
- repository: "PABannier/bark.cpp"
variable: "BARKCPP_VERSION"
- repository: "go-skynet/go-bert.cpp"
variable: "BERT_VERSION"
branch: "master"
- repository: "go-skynet/bloomz.cpp"
variable: "BLOOMZ_VERSION"
branch: "main"
- repository: "leejet/stable-diffusion.cpp"
variable: "STABLEDIFFUSION_GGML_VERSION"
- repository: "nomic-ai/gpt4all"
variable: "GPT4ALL_VERSION"
branch: "main"
- repository: "mudler/go-ggllm.cpp"
variable: "GOGGLLM_VERSION"
branch: "master"
- repository: "mudler/go-stable-diffusion"
variable: "STABLEDIFFUSION_VERSION"
@@ -31,30 +46,17 @@ jobs:
steps:
- uses: actions/checkout@v4
- name: Bump dependencies 🔧
id: bump
run: |
bash .github/bump_deps.sh ${{ matrix.repository }} ${{ matrix.branch }} ${{ matrix.variable }}
{
echo 'message<<EOF'
cat "${{ matrix.variable }}_message.txt"
echo EOF
} >> "$GITHUB_OUTPUT"
{
echo 'commit<<EOF'
cat "${{ matrix.variable }}_commit.txt"
echo EOF
} >> "$GITHUB_OUTPUT"
rm -rfv ${{ matrix.variable }}_message.txt
rm -rfv ${{ matrix.variable }}_commit.txt
- name: Create Pull Request
uses: peter-evans/create-pull-request@v7
uses: peter-evans/create-pull-request@v6
with:
token: ${{ secrets.UPDATE_BOT_TOKEN }}
push-to-fork: ci-forks/LocalAI
commit-message: ':arrow_up: Update ${{ matrix.repository }}'
title: 'chore: :arrow_up: Update ${{ matrix.repository }} to `${{ steps.bump.outputs.commit }}`'
title: ':arrow_up: Update ${{ matrix.repository }}'
branch: "update/${{ matrix.variable }}"
body: ${{ steps.bump.outputs.message }}
body: Bump of ${{ matrix.repository }} version
signoff: true

View File

@@ -17,12 +17,12 @@ jobs:
run: |
bash .github/bump_docs.sh ${{ matrix.repository }}
- name: Create Pull Request
uses: peter-evans/create-pull-request@v7
uses: peter-evans/create-pull-request@v6
with:
token: ${{ secrets.UPDATE_BOT_TOKEN }}
push-to-fork: ci-forks/LocalAI
commit-message: ':arrow_up: Update docs version ${{ matrix.repository }}'
title: 'docs: :arrow_up: update docs version ${{ matrix.repository }}'
title: ':arrow_up: Update docs version ${{ matrix.repository }}'
branch: "update/docs"
body: Bump of ${{ matrix.repository }} version inside docs
signoff: true

View File

@@ -20,12 +20,12 @@ jobs:
run: |
sudo apt-get update
sudo apt-get install -y pip wget
sudo pip install --upgrade pip
sudo pip install --upgrade pip
pip install huggingface_hub
- name: 'Setup yq'
uses: dcarbone/install-yq-action@v1.3.1
uses: dcarbone/install-yq-action@v1.1.1
with:
version: 'v4.44.2'
version: 'v4.43.1'
download-compressed: true
force: true
@@ -36,12 +36,12 @@ jobs:
sudo chmod 777 /hf_cache
bash .github/checksum_checker.sh gallery/index.yaml
- name: Create Pull Request
uses: peter-evans/create-pull-request@v7
uses: peter-evans/create-pull-request@v6
with:
token: ${{ secrets.UPDATE_BOT_TOKEN }}
push-to-fork: ci-forks/LocalAI
commit-message: ':arrow_up: Checksum updates in gallery/index.yaml'
title: 'chore(model-gallery): :arrow_up: update checksum'
title: 'models(gallery): :arrow_up: update checksum'
branch: "update/checksum"
body: Updating checksums in gallery/index.yaml
signoff: true

View File

@@ -14,7 +14,7 @@ jobs:
steps:
- name: Dependabot metadata
id: metadata
uses: dependabot/fetch-metadata@v2.2.0
uses: dependabot/fetch-metadata@v2.1.0
with:
github-token: "${{ secrets.GITHUB_TOKEN }}"
skip-commit-verification: true

View File

@@ -1,64 +0,0 @@
name: Explorer deployment
on:
push:
branches:
- master
tags:
- 'v*'
concurrency:
group: ci-deploy-${{ github.head_ref || github.ref }}-${{ github.repository }}
jobs:
build-linux:
runs-on: ubuntu-latest
steps:
- name: Clone
uses: actions/checkout@v4
with:
submodules: true
- uses: actions/setup-go@v5
with:
go-version: '1.21.x'
cache: false
- name: Dependencies
run: |
sudo apt-get update
sudo apt-get install -y wget curl build-essential ffmpeg protobuf-compiler ccache upx-ucl gawk cmake libgmock-dev
go install google.golang.org/grpc/cmd/protoc-gen-go-grpc@1958fcbe2ca8bd93af633f11e97d44e567e945af
go install google.golang.org/protobuf/cmd/protoc-gen-go@v1.34.2
make protogen-go
- name: Build api
run: |
CGO_ENABLED=0 make build-api
- name: rm
uses: appleboy/ssh-action@v1.2.0
with:
host: ${{ secrets.EXPLORER_SSH_HOST }}
username: ${{ secrets.EXPLORER_SSH_USERNAME }}
key: ${{ secrets.EXPLORER_SSH_KEY }}
port: ${{ secrets.EXPLORER_SSH_PORT }}
script: |
sudo rm -rf local-ai/ || true
- name: copy file via ssh
uses: appleboy/scp-action@v0.1.7
with:
host: ${{ secrets.EXPLORER_SSH_HOST }}
username: ${{ secrets.EXPLORER_SSH_USERNAME }}
key: ${{ secrets.EXPLORER_SSH_KEY }}
port: ${{ secrets.EXPLORER_SSH_PORT }}
source: "local-ai"
overwrite: true
rm: true
target: ./local-ai
- name: restarting
uses: appleboy/ssh-action@v1.2.0
with:
host: ${{ secrets.EXPLORER_SSH_HOST }}
username: ${{ secrets.EXPLORER_SSH_USERNAME }}
key: ${{ secrets.EXPLORER_SSH_KEY }}
port: ${{ secrets.EXPLORER_SSH_PORT }}
script: |
sudo cp -rfv local-ai/local-ai /usr/bin/local-ai
sudo systemctl restart local-ai

View File

@@ -1,83 +0,0 @@
name: Comment PRs
on:
pull_request_target:
jobs:
comment-pr:
env:
MODEL_NAME: hermes-2-theta-llama-3-8b
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v3
with:
ref: "${{ github.event.pull_request.merge_commit_sha }}"
fetch-depth: 0 # needed to checkout all branches for this Action to work
- uses: mudler/localai-github-action@v1
with:
model: 'hermes-2-theta-llama-3-8b' # Any from models.localai.io, or from huggingface.com with: "huggingface://<repository>/file"
# Check the PR diff using the current branch and the base branch of the PR
- uses: GrantBirki/git-diff-action@v2.7.0
id: git-diff-action
with:
json_diff_file_output: diff.json
raw_diff_file_output: diff.txt
file_output_only: "true"
base_branch: ${{ github.event.pull_request.base.sha }}
- name: Show diff
env:
DIFF: ${{ steps.git-diff-action.outputs.raw-diff-path }}
run: |
cat $DIFF
- name: Summarize
env:
DIFF: ${{ steps.git-diff-action.outputs.raw-diff-path }}
id: summarize
run: |
input="$(cat $DIFF)"
# Define the LocalAI API endpoint
API_URL="http://localhost:8080/chat/completions"
# Create a JSON payload using jq to handle special characters
json_payload=$(jq -n --arg input "$input" '{
model: "'$MODEL_NAME'",
messages: [
{
role: "system",
content: "You are LocalAI-bot in Github that helps understanding PRs and assess complexity. Explain what has changed in this PR diff and why"
},
{
role: "user",
content: $input
}
]
}')
# Send the request to LocalAI
response=$(curl -s -X POST $API_URL \
-H "Content-Type: application/json" \
-d "$json_payload")
# Extract the summary from the response
summary="$(echo $response | jq -r '.choices[0].message.content')"
# Print the summary
# -H "Authorization: Bearer $API_KEY" \
echo "Summary:"
echo "$summary"
echo "payload sent"
echo "$json_payload"
{
echo 'message<<EOF'
echo "$summary"
echo EOF
} >> "$GITHUB_OUTPUT"
docker logs --tail 10 local-ai
- uses: mshick/add-pr-comment@v2
if: always()
with:
repo-token: ${{ secrets.UPDATE_BOT_TOKEN }}
message: ${{ steps.summarize.outputs.message }}
message-failure: |
Uh oh! Could not analyze this PR, maybe it's too big?

View File

@@ -75,7 +75,7 @@ jobs:
uses: actions/checkout@v4
- name: Cache GRPC
uses: docker/build-push-action@v6
uses: docker/build-push-action@v5
with:
builder: ${{ steps.buildx.outputs.name }}
# The build-args MUST be an EXACT match between the image cache and other workflow steps that want to use that cache.
@@ -84,11 +84,11 @@ jobs:
build-args: |
GRPC_BASE_IMAGE=${{ matrix.grpc-base-image }}
GRPC_MAKEFLAGS=--jobs=4 --output-sync=target
GRPC_VERSION=v1.65.0
GRPC_VERSION=v1.64.0
context: .
file: ./Dockerfile
cache-to: type=gha,ignore-error=true
cache-from: type=gha
target: grpc
platforms: ${{ matrix.platforms }}
push: false
push: false

View File

@@ -15,7 +15,7 @@ jobs:
strategy:
matrix:
include:
- base-image: intel/oneapi-basekit:2025.0.0-0-devel-ubuntu22.04
- base-image: intel/oneapi-basekit:2024.1.0-devel-ubuntu22.04
runs-on: 'ubuntu-latest'
platforms: 'linux/amd64'
runs-on: ${{matrix.runs-on}}
@@ -46,7 +46,7 @@ jobs:
uses: actions/checkout@v4
- name: Cache Intel images
uses: docker/build-push-action@v6
uses: docker/build-push-action@v5
with:
builder: ${{ steps.buildx.outputs.name }}
build-args: |

View File

@@ -35,19 +35,18 @@ jobs:
max-parallel: ${{ github.event_name != 'pull_request' && 4 || 8 }}
matrix:
include:
# This is basically covered by the AIO test
# - build-type: ''
# platforms: 'linux/amd64'
# tag-latest: 'false'
# tag-suffix: '-ffmpeg'
# ffmpeg: 'true'
# image-type: 'extras'
# runs-on: 'arc-runner-set'
# base-image: "ubuntu:22.04"
# makeflags: "--jobs=3 --output-sync=target"
- build-type: ''
platforms: 'linux/amd64'
tag-latest: 'false'
tag-suffix: '-ffmpeg'
ffmpeg: 'true'
image-type: 'extras'
runs-on: 'arc-runner-set'
base-image: "ubuntu:22.04"
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'cublas'
cuda-major-version: "12"
cuda-minor-version: "0"
cuda-minor-version: "5"
platforms: 'linux/amd64'
tag-latest: 'false'
tag-suffix: '-cublas-cuda12-ffmpeg'
@@ -56,85 +55,85 @@ jobs:
runs-on: 'arc-runner-set'
base-image: "ubuntu:22.04"
makeflags: "--jobs=3 --output-sync=target"
# - build-type: 'hipblas'
# platforms: 'linux/amd64'
# tag-latest: 'false'
# tag-suffix: '-hipblas'
# ffmpeg: 'false'
# image-type: 'extras'
# base-image: "rocm/dev-ubuntu-22.04:6.1"
# grpc-base-image: "ubuntu:22.04"
# runs-on: 'arc-runner-set'
# makeflags: "--jobs=3 --output-sync=target"
# - build-type: 'sycl_f16'
# platforms: 'linux/amd64'
# tag-latest: 'false'
# base-image: "quay.io/go-skynet/intel-oneapi-base:latest"
# grpc-base-image: "ubuntu:22.04"
# tag-suffix: 'sycl-f16-ffmpeg'
# ffmpeg: 'true'
# image-type: 'extras'
# runs-on: 'arc-runner-set'
# makeflags: "--jobs=3 --output-sync=target"
# core-image-build:
# uses: ./.github/workflows/image_build.yml
# with:
# tag-latest: ${{ matrix.tag-latest }}
# tag-suffix: ${{ matrix.tag-suffix }}
# ffmpeg: ${{ matrix.ffmpeg }}
# image-type: ${{ matrix.image-type }}
# build-type: ${{ matrix.build-type }}
# cuda-major-version: ${{ matrix.cuda-major-version }}
# cuda-minor-version: ${{ matrix.cuda-minor-version }}
# platforms: ${{ matrix.platforms }}
# runs-on: ${{ matrix.runs-on }}
# base-image: ${{ matrix.base-image }}
# grpc-base-image: ${{ matrix.grpc-base-image }}
# makeflags: ${{ matrix.makeflags }}
# secrets:
# dockerUsername: ${{ secrets.DOCKERHUB_USERNAME }}
# dockerPassword: ${{ secrets.DOCKERHUB_PASSWORD }}
# quayUsername: ${{ secrets.LOCALAI_REGISTRY_USERNAME }}
# quayPassword: ${{ secrets.LOCALAI_REGISTRY_PASSWORD }}
# strategy:
# matrix:
# include:
# - build-type: ''
# platforms: 'linux/amd64'
# tag-latest: 'false'
# tag-suffix: '-ffmpeg-core'
# ffmpeg: 'true'
# image-type: 'core'
# runs-on: 'ubuntu-latest'
# base-image: "ubuntu:22.04"
# makeflags: "--jobs=4 --output-sync=target"
# - build-type: 'sycl_f16'
# platforms: 'linux/amd64'
# tag-latest: 'false'
# base-image: "quay.io/go-skynet/intel-oneapi-base:latest"
# grpc-base-image: "ubuntu:22.04"
# tag-suffix: 'sycl-f16-ffmpeg-core'
# ffmpeg: 'true'
# image-type: 'core'
# runs-on: 'arc-runner-set'
# makeflags: "--jobs=3 --output-sync=target"
# - build-type: 'cublas'
# cuda-major-version: "12"
# cuda-minor-version: "0"
# platforms: 'linux/amd64'
# tag-latest: 'false'
# tag-suffix: '-cublas-cuda12-ffmpeg-core'
# ffmpeg: 'true'
# image-type: 'core'
# runs-on: 'ubuntu-latest'
# base-image: "ubuntu:22.04"
# makeflags: "--jobs=4 --output-sync=target"
# - build-type: 'vulkan'
# platforms: 'linux/amd64'
# tag-latest: 'false'
# tag-suffix: '-vulkan-ffmpeg-core'
# ffmpeg: 'true'
# image-type: 'core'
# runs-on: 'ubuntu-latest'
# base-image: "ubuntu:22.04"
# makeflags: "--jobs=4 --output-sync=target"
- build-type: 'hipblas'
platforms: 'linux/amd64'
tag-latest: 'false'
tag-suffix: '-hipblas'
ffmpeg: 'false'
image-type: 'extras'
base-image: "rocm/dev-ubuntu-22.04:6.1"
grpc-base-image: "ubuntu:22.04"
runs-on: 'arc-runner-set'
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'sycl_f16'
platforms: 'linux/amd64'
tag-latest: 'false'
base-image: "quay.io/go-skynet/intel-oneapi-base:latest"
grpc-base-image: "ubuntu:22.04"
tag-suffix: 'sycl-f16-ffmpeg'
ffmpeg: 'true'
image-type: 'extras'
runs-on: 'arc-runner-set'
makeflags: "--jobs=3 --output-sync=target"
core-image-build:
uses: ./.github/workflows/image_build.yml
with:
tag-latest: ${{ matrix.tag-latest }}
tag-suffix: ${{ matrix.tag-suffix }}
ffmpeg: ${{ matrix.ffmpeg }}
image-type: ${{ matrix.image-type }}
build-type: ${{ matrix.build-type }}
cuda-major-version: ${{ matrix.cuda-major-version }}
cuda-minor-version: ${{ matrix.cuda-minor-version }}
platforms: ${{ matrix.platforms }}
runs-on: ${{ matrix.runs-on }}
base-image: ${{ matrix.base-image }}
grpc-base-image: ${{ matrix.grpc-base-image }}
makeflags: ${{ matrix.makeflags }}
secrets:
dockerUsername: ${{ secrets.DOCKERHUB_USERNAME }}
dockerPassword: ${{ secrets.DOCKERHUB_PASSWORD }}
quayUsername: ${{ secrets.LOCALAI_REGISTRY_USERNAME }}
quayPassword: ${{ secrets.LOCALAI_REGISTRY_PASSWORD }}
strategy:
matrix:
include:
- build-type: ''
platforms: 'linux/amd64'
tag-latest: 'false'
tag-suffix: '-ffmpeg-core'
ffmpeg: 'true'
image-type: 'core'
runs-on: 'ubuntu-latest'
base-image: "ubuntu:22.04"
makeflags: "--jobs=4 --output-sync=target"
- build-type: 'sycl_f16'
platforms: 'linux/amd64'
tag-latest: 'false'
base-image: "quay.io/go-skynet/intel-oneapi-base:latest"
grpc-base-image: "ubuntu:22.04"
tag-suffix: 'sycl-f16-ffmpeg-core'
ffmpeg: 'true'
image-type: 'core'
runs-on: 'arc-runner-set'
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'cublas'
cuda-major-version: "12"
cuda-minor-version: "5"
platforms: 'linux/amd64'
tag-latest: 'false'
tag-suffix: '-cublas-cuda12-ffmpeg-core'
ffmpeg: 'true'
image-type: 'core'
runs-on: 'ubuntu-latest'
base-image: "ubuntu:22.04"
makeflags: "--jobs=4 --output-sync=target"
- build-type: 'vulkan'
platforms: 'linux/amd64'
tag-latest: 'false'
tag-suffix: '-vulkan-ffmpeg-core'
ffmpeg: 'true'
image-type: 'core'
runs-on: 'ubuntu-latest'
base-image: "ubuntu:22.04"
makeflags: "--jobs=4 --output-sync=target"

View File

@@ -13,78 +13,6 @@ concurrency:
cancel-in-progress: true
jobs:
hipblas-jobs:
uses: ./.github/workflows/image_build.yml
with:
tag-latest: ${{ matrix.tag-latest }}
tag-suffix: ${{ matrix.tag-suffix }}
ffmpeg: ${{ matrix.ffmpeg }}
image-type: ${{ matrix.image-type }}
build-type: ${{ matrix.build-type }}
cuda-major-version: ${{ matrix.cuda-major-version }}
cuda-minor-version: ${{ matrix.cuda-minor-version }}
platforms: ${{ matrix.platforms }}
runs-on: ${{ matrix.runs-on }}
base-image: ${{ matrix.base-image }}
grpc-base-image: ${{ matrix.grpc-base-image }}
aio: ${{ matrix.aio }}
makeflags: ${{ matrix.makeflags }}
latest-image: ${{ matrix.latest-image }}
latest-image-aio: ${{ matrix.latest-image-aio }}
secrets:
dockerUsername: ${{ secrets.DOCKERHUB_USERNAME }}
dockerPassword: ${{ secrets.DOCKERHUB_PASSWORD }}
quayUsername: ${{ secrets.LOCALAI_REGISTRY_USERNAME }}
quayPassword: ${{ secrets.LOCALAI_REGISTRY_PASSWORD }}
strategy:
# Pushing with all jobs in parallel
# eats the bandwidth of all the nodes
max-parallel: 2
matrix:
include:
- build-type: 'hipblas'
platforms: 'linux/amd64'
tag-latest: 'auto'
tag-suffix: '-hipblas-ffmpeg'
ffmpeg: 'true'
image-type: 'extras'
aio: "-aio-gpu-hipblas"
base-image: "rocm/dev-ubuntu-22.04:6.1"
grpc-base-image: "ubuntu:22.04"
latest-image: 'latest-gpu-hipblas'
latest-image-aio: 'latest-aio-gpu-hipblas'
runs-on: 'arc-runner-set'
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'hipblas'
platforms: 'linux/amd64'
tag-latest: 'false'
tag-suffix: '-hipblas'
ffmpeg: 'false'
image-type: 'extras'
base-image: "rocm/dev-ubuntu-22.04:6.1"
grpc-base-image: "ubuntu:22.04"
runs-on: 'arc-runner-set'
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'hipblas'
platforms: 'linux/amd64'
tag-latest: 'false'
tag-suffix: '-hipblas-ffmpeg-core'
ffmpeg: 'true'
image-type: 'core'
base-image: "rocm/dev-ubuntu-22.04:6.1"
grpc-base-image: "ubuntu:22.04"
runs-on: 'arc-runner-set'
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'hipblas'
platforms: 'linux/amd64'
tag-latest: 'false'
tag-suffix: '-hipblas-core'
ffmpeg: 'false'
image-type: 'core'
base-image: "rocm/dev-ubuntu-22.04:6.1"
grpc-base-image: "ubuntu:22.04"
runs-on: 'arc-runner-set'
makeflags: "--jobs=3 --output-sync=target"
self-hosted-jobs:
uses: ./.github/workflows/image_build.yml
with:
@@ -111,7 +39,7 @@ jobs:
strategy:
# Pushing with all jobs in parallel
# eats the bandwidth of all the nodes
max-parallel: ${{ github.event_name != 'pull_request' && 5 || 8 }}
max-parallel: ${{ github.event_name != 'pull_request' && 6 || 10 }}
matrix:
include:
# Extra images
@@ -136,7 +64,7 @@ jobs:
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'cublas'
cuda-major-version: "11"
cuda-minor-version: "7"
cuda-minor-version: "8"
platforms: 'linux/amd64'
tag-latest: 'false'
tag-suffix: '-cublas-cuda11'
@@ -147,7 +75,7 @@ jobs:
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'cublas'
cuda-major-version: "12"
cuda-minor-version: "0"
cuda-minor-version: "5"
platforms: 'linux/amd64'
tag-latest: 'false'
tag-suffix: '-cublas-cuda12'
@@ -158,7 +86,7 @@ jobs:
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'cublas'
cuda-major-version: "11"
cuda-minor-version: "7"
cuda-minor-version: "8"
platforms: 'linux/amd64'
tag-latest: 'auto'
tag-suffix: '-cublas-cuda11-ffmpeg'
@@ -172,7 +100,7 @@ jobs:
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'cublas'
cuda-major-version: "12"
cuda-minor-version: "0"
cuda-minor-version: "5"
platforms: 'linux/amd64'
tag-latest: 'auto'
tag-suffix: '-cublas-cuda12-ffmpeg'
@@ -194,6 +122,29 @@ jobs:
base-image: "ubuntu:22.04"
runs-on: 'arc-runner-set'
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'hipblas'
platforms: 'linux/amd64'
tag-latest: 'auto'
tag-suffix: '-hipblas-ffmpeg'
ffmpeg: 'true'
image-type: 'extras'
aio: "-aio-gpu-hipblas"
base-image: "rocm/dev-ubuntu-22.04:6.1"
grpc-base-image: "ubuntu:22.04"
latest-image: 'latest-gpu-hipblas'
latest-image-aio: 'latest-aio-gpu-hipblas'
runs-on: 'arc-runner-set'
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'hipblas'
platforms: 'linux/amd64'
tag-latest: 'false'
tag-suffix: '-hipblas'
ffmpeg: 'false'
image-type: 'extras'
base-image: "rocm/dev-ubuntu-22.04:6.1"
grpc-base-image: "ubuntu:22.04"
runs-on: 'arc-runner-set'
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'sycl_f16'
platforms: 'linux/amd64'
tag-latest: 'auto'
@@ -261,6 +212,26 @@ jobs:
image-type: 'core'
runs-on: 'arc-runner-set'
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'hipblas'
platforms: 'linux/amd64'
tag-latest: 'false'
tag-suffix: '-hipblas-ffmpeg-core'
ffmpeg: 'true'
image-type: 'core'
base-image: "rocm/dev-ubuntu-22.04:6.1"
grpc-base-image: "ubuntu:22.04"
runs-on: 'arc-runner-set'
makeflags: "--jobs=3 --output-sync=target"
- build-type: 'hipblas'
platforms: 'linux/amd64'
tag-latest: 'false'
tag-suffix: '-hipblas-core'
ffmpeg: 'false'
image-type: 'core'
base-image: "rocm/dev-ubuntu-22.04:6.1"
grpc-base-image: "ubuntu:22.04"
runs-on: 'arc-runner-set'
makeflags: "--jobs=3 --output-sync=target"
core-image-build:
uses: ./.github/workflows/image_build.yml
@@ -303,7 +274,7 @@ jobs:
makeflags: "--jobs=4 --output-sync=target"
- build-type: 'cublas'
cuda-major-version: "11"
cuda-minor-version: "7"
cuda-minor-version: "8"
platforms: 'linux/amd64'
tag-latest: 'false'
tag-suffix: '-cublas-cuda11-core'
@@ -314,7 +285,7 @@ jobs:
makeflags: "--jobs=4 --output-sync=target"
- build-type: 'cublas'
cuda-major-version: "12"
cuda-minor-version: "0"
cuda-minor-version: "5"
platforms: 'linux/amd64'
tag-latest: 'false'
tag-suffix: '-cublas-cuda12-core'
@@ -325,7 +296,7 @@ jobs:
makeflags: "--jobs=4 --output-sync=target"
- build-type: 'cublas'
cuda-major-version: "11"
cuda-minor-version: "7"
cuda-minor-version: "8"
platforms: 'linux/amd64'
tag-latest: 'false'
tag-suffix: '-cublas-cuda11-ffmpeg-core'
@@ -336,7 +307,7 @@ jobs:
makeflags: "--jobs=4 --output-sync=target"
- build-type: 'cublas'
cuda-major-version: "12"
cuda-minor-version: "0"
cuda-minor-version: "5"
platforms: 'linux/amd64'
tag-latest: 'false'
tag-suffix: '-cublas-cuda12-ffmpeg-core'

View File

@@ -23,7 +23,7 @@ on:
type: string
cuda-minor-version:
description: 'CUDA minor version'
default: "4"
default: "5"
type: string
platforms:
description: 'Platforms'
@@ -215,7 +215,7 @@ jobs:
password: ${{ secrets.quayPassword }}
- name: Build and push
uses: docker/build-push-action@v6
uses: docker/build-push-action@v5
if: github.event_name != 'pull_request'
with:
builder: ${{ steps.buildx.outputs.name }}
@@ -232,7 +232,7 @@ jobs:
BASE_IMAGE=${{ inputs.base-image }}
GRPC_BASE_IMAGE=${{ inputs.grpc-base-image || inputs.base-image }}
GRPC_MAKEFLAGS=--jobs=4 --output-sync=target
GRPC_VERSION=v1.65.0
GRPC_VERSION=v1.64.0
MAKEFLAGS=${{ inputs.makeflags }}
context: .
file: ./Dockerfile
@@ -243,7 +243,7 @@ jobs:
labels: ${{ steps.meta.outputs.labels }}
### Start testing image
- name: Build and push
uses: docker/build-push-action@v6
uses: docker/build-push-action@v5
if: github.event_name == 'pull_request'
with:
builder: ${{ steps.buildx.outputs.name }}
@@ -260,7 +260,7 @@ jobs:
BASE_IMAGE=${{ inputs.base-image }}
GRPC_BASE_IMAGE=${{ inputs.grpc-base-image || inputs.base-image }}
GRPC_MAKEFLAGS=--jobs=4 --output-sync=target
GRPC_VERSION=v1.65.0
GRPC_VERSION=v1.64.0
MAKEFLAGS=${{ inputs.makeflags }}
context: .
file: ./Dockerfile
@@ -276,7 +276,7 @@ jobs:
## End testing image
- name: Build and push AIO image
if: inputs.aio != ''
uses: docker/build-push-action@v6
uses: docker/build-push-action@v5
with:
builder: ${{ steps.buildx.outputs.name }}
build-args: |
@@ -291,7 +291,7 @@ jobs:
- name: Build and push AIO image (dockerhub)
if: inputs.aio != ''
uses: docker/build-push-action@v6
uses: docker/build-push-action@v5
with:
builder: ${{ steps.buildx.outputs.name }}
build-args: |

View File

@@ -1,168 +0,0 @@
name: Notifications for new models
on:
pull_request:
types:
- closed
jobs:
notify-discord:
if: ${{ (github.event.pull_request.merged == true) && (contains(github.event.pull_request.labels.*.name, 'area/ai-model')) }}
env:
MODEL_NAME: hermes-2-theta-llama-3-8b
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0 # needed to checkout all branches for this Action to work
- uses: mudler/localai-github-action@v1
with:
model: 'hermes-2-theta-llama-3-8b' # Any from models.localai.io, or from huggingface.com with: "huggingface://<repository>/file"
# Check the PR diff using the current branch and the base branch of the PR
- uses: GrantBirki/git-diff-action@v2.7.0
id: git-diff-action
with:
json_diff_file_output: diff.json
raw_diff_file_output: diff.txt
file_output_only: "true"
- name: Summarize
env:
DIFF: ${{ steps.git-diff-action.outputs.raw-diff-path }}
id: summarize
run: |
input="$(cat $DIFF)"
# Define the LocalAI API endpoint
API_URL="http://localhost:8080/chat/completions"
# Create a JSON payload using jq to handle special characters
json_payload=$(jq -n --arg input "$input" '{
model: "'$MODEL_NAME'",
messages: [
{
role: "system",
content: "You are LocalAI-bot. Write a discord message to notify everyone about the new model from the git diff. Make it informal. An example can include: the URL of the model, the name, and a brief description of the model if exists. Also add an hint on how to install it in LocalAI and that can be browsed over https://models.localai.io. For example: local-ai run model_name_here"
},
{
role: "user",
content: $input
}
]
}')
# Send the request to LocalAI
response=$(curl -s -X POST $API_URL \
-H "Content-Type: application/json" \
-d "$json_payload")
# Extract the summary from the response
summary="$(echo $response | jq -r '.choices[0].message.content')"
# Print the summary
# -H "Authorization: Bearer $API_KEY" \
echo "Summary:"
echo "$summary"
echo "payload sent"
echo "$json_payload"
{
echo 'message<<EOF'
echo "$summary"
echo EOF
} >> "$GITHUB_OUTPUT"
docker logs --tail 10 local-ai
- name: Discord notification
env:
DISCORD_WEBHOOK: ${{ secrets.DISCORD_WEBHOOK_URL }}
DISCORD_USERNAME: "LocalAI-Bot"
DISCORD_AVATAR: "https://avatars.githubusercontent.com/u/139863280?v=4"
uses: Ilshidur/action-discord@master
with:
args: ${{ steps.summarize.outputs.message }}
- name: Setup tmate session if fails
if: ${{ failure() }}
uses: mxschmitt/action-tmate@v3.19
with:
detached: true
connect-timeout-seconds: 180
limit-access-to-actor: true
notify-twitter:
if: ${{ (github.event.pull_request.merged == true) && (contains(github.event.pull_request.labels.*.name, 'area/ai-model')) }}
env:
MODEL_NAME: hermes-2-theta-llama-3-8b
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0 # needed to checkout all branches for this Action to work
- name: Start LocalAI
run: |
echo "Starting LocalAI..."
docker run -e -ti -d --name local-ai -p 8080:8080 localai/localai:master-ffmpeg-core run --debug $MODEL_NAME
until [ "`docker inspect -f {{.State.Health.Status}} local-ai`" == "healthy" ]; do echo "Waiting for container to be ready"; docker logs --tail 10 local-ai; sleep 2; done
# Check the PR diff using the current branch and the base branch of the PR
- uses: GrantBirki/git-diff-action@v2.7.0
id: git-diff-action
with:
json_diff_file_output: diff.json
raw_diff_file_output: diff.txt
file_output_only: "true"
- name: Summarize
env:
DIFF: ${{ steps.git-diff-action.outputs.raw-diff-path }}
id: summarize
run: |
input="$(cat $DIFF)"
# Define the LocalAI API endpoint
API_URL="http://localhost:8080/chat/completions"
# Create a JSON payload using jq to handle special characters
json_payload=$(jq -n --arg input "$input" '{
model: "'$MODEL_NAME'",
messages: [
{
role: "system",
content: "You are LocalAI-bot. Write a twitter message to notify everyone about the new model from the git diff. Make it informal and really short. An example can include: the name, and a brief description of the model if exists. Also add an hint on how to install it in LocalAI. For example: local-ai run model_name_here"
},
{
role: "user",
content: $input
}
]
}')
# Send the request to LocalAI
response=$(curl -s -X POST $API_URL \
-H "Content-Type: application/json" \
-d "$json_payload")
# Extract the summary from the response
summary="$(echo $response | jq -r '.choices[0].message.content')"
# Print the summary
# -H "Authorization: Bearer $API_KEY" \
echo "Summary:"
echo "$summary"
echo "payload sent"
echo "$json_payload"
{
echo 'message<<EOF'
echo "$summary"
echo EOF
} >> "$GITHUB_OUTPUT"
docker logs --tail 10 local-ai
- uses: Eomm/why-don-t-you-tweet@v2
with:
tweet-message: ${{ steps.summarize.outputs.message }}
env:
# Get your tokens from https://developer.twitter.com/apps
TWITTER_CONSUMER_API_KEY: ${{ secrets.TWITTER_APP_KEY }}
TWITTER_CONSUMER_API_SECRET: ${{ secrets.TWITTER_APP_SECRET }}
TWITTER_ACCESS_TOKEN: ${{ secrets.TWITTER_ACCESS_TOKEN }}
TWITTER_ACCESS_TOKEN_SECRET: ${{ secrets.TWITTER_ACCESS_TOKEN_SECRET }}
- name: Setup tmate session if fails
if: ${{ failure() }}
uses: mxschmitt/action-tmate@v3.19
with:
detached: true
connect-timeout-seconds: 180
limit-access-to-actor: true

View File

@@ -1,63 +0,0 @@
name: Release notifications
on:
release:
types:
- published
jobs:
notify-discord:
runs-on: ubuntu-latest
env:
RELEASE_BODY: ${{ github.event.release.body }}
RELEASE_TITLE: ${{ github.event.release.name }}
RELEASE_TAG_NAME: ${{ github.event.release.tag_name }}
steps:
- uses: mudler/localai-github-action@v1
with:
model: 'hermes-2-theta-llama-3-8b' # Any from models.localai.io, or from huggingface.com with: "huggingface://<repository>/file"
- name: Summarize
id: summarize
run: |
input="$RELEASE_TITLE\b$RELEASE_BODY"
# Define the LocalAI API endpoint
API_URL="http://localhost:8080/chat/completions"
# Create a JSON payload using jq to handle special characters
json_payload=$(jq -n --arg input "$input" '{
model: "'$MODEL_NAME'",
messages: [
{
role: "system",
content: "Write a discord message with a bullet point summary of the release notes."
},
{
role: "user",
content: $input
}
]
}')
# Send the request to LocalAI API
response=$(curl -s -X POST $API_URL \
-H "Content-Type: application/json" \
-d "$json_payload")
# Extract the summary from the response
summary=$(echo $response | jq -r '.choices[0].message.content')
# Print the summary
# -H "Authorization: Bearer $API_KEY" \
{
echo 'message<<EOF'
echo "$summary"
echo EOF
} >> "$GITHUB_OUTPUT"
- name: Discord notification
env:
DISCORD_WEBHOOK: ${{ secrets.DISCORD_WEBHOOK_URL_RELEASE }}
DISCORD_USERNAME: "LocalAI-Bot"
DISCORD_AVATAR: "https://avatars.githubusercontent.com/u/139863280?v=4"
uses: Ilshidur/action-discord@master
with:
args: ${{ steps.summarize.outputs.message }}

View File

@@ -1,28 +0,0 @@
name: Check PR style
on:
pull_request_target:
types:
- opened
- reopened
- edited
- synchronize
jobs:
title-lint:
runs-on: ubuntu-latest
permissions:
statuses: write
steps:
- uses: aslafy-z/conventional-pr-title-action@v3
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
# check-pr-description:
# runs-on: ubuntu-latest
# steps:
# - uses: actions/checkout@v2
# - uses: jadrol/pr-description-checker-action@v1.0.0
# id: description-checker
# with:
# repo-token: ${{ secrets.GITHUB_TOKEN }}
# exempt-labels: no qa

View File

@@ -1,15 +1,11 @@
name: Build and Release
on:
push:
branches:
- master
tags:
- 'v*'
pull_request:
- push
- pull_request
env:
GRPC_VERSION: v1.65.0
GRPC_VERSION: v1.64.0
permissions:
contents: write
@@ -31,11 +27,12 @@ jobs:
with:
go-version: '1.21.x'
cache: false
- name: Dependencies
run: |
sudo apt-get update
sudo apt-get install build-essential ffmpeg protobuf-compiler ccache upx-ucl gawk
sudo apt-get install -qy binutils-aarch64-linux-gnu gcc-aarch64-linux-gnu g++-aarch64-linux-gnu libgmock-dev
sudo apt-get install build-essential ffmpeg protobuf-compiler ccache
sudo apt-get install -qy binutils-aarch64-linux-gnu gcc-aarch64-linux-gnu g++-aarch64-linux-gnu
- name: Install CUDA Dependencies
run: |
curl -O https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/cross-linux-aarch64/cuda-keyring_1.1-1_all.deb
@@ -43,7 +40,7 @@ jobs:
sudo apt-get update
sudo apt-get install -y cuda-cross-aarch64 cuda-nvcc-cross-aarch64-${CUDA_VERSION} libcublas-cross-aarch64-${CUDA_VERSION}
env:
CUDA_VERSION: 12-4
CUDA_VERSION: 12-5
- name: Cache grpc
id: cache-grpc
uses: actions/cache@v4
@@ -55,8 +52,7 @@ jobs:
run: |
git clone --recurse-submodules -b ${{ env.GRPC_VERSION }} --depth 1 --shallow-submodules https://github.com/grpc/grpc && \
cd grpc && sed -i "216i\ TESTONLY" "third_party/abseil-cpp/absl/container/CMakeLists.txt" && mkdir -p cmake/build && \
cd cmake/build && cmake -DgRPC_INSTALL=ON \
cd grpc && mkdir -p cmake/build && cd cmake/build && cmake -DgRPC_INSTALL=ON \
-DgRPC_BUILD_TESTS=OFF \
../.. && sudo make --jobs 5 --output-sync=target
- name: Install gRPC
@@ -100,13 +96,14 @@ jobs:
CROSS_TOOLCHAIN=/usr/$GNU_HOST
CROSS_STAGING_PREFIX=$CROSS_TOOLCHAIN/stage
CMAKE_CROSS_TOOLCHAIN=/tmp/arm.toolchain.cmake
go install google.golang.org/grpc/cmd/protoc-gen-go-grpc@1958fcbe2ca8bd93af633f11e97d44e567e945af
go install google.golang.org/protobuf/cmd/protoc-gen-go@v1.34.2
go install google.golang.org/grpc/cmd/protoc-gen-go-grpc@8ba23be9613c672d40ae261d2a1335d639bdd59b
go install google.golang.org/protobuf/cmd/protoc-gen-go@v1.34.0
export PATH=$PATH:$GOPATH/bin
export PATH=/usr/local/cuda/bin:$PATH
sudo rm -rf /usr/aarch64-linux-gnu/lib/libstdc++.so.6
sudo cp -rf /usr/aarch64-linux-gnu/lib/libstdc++.so* /usr/aarch64-linux-gnu/lib/libstdc++.so.6
sudo cp /usr/aarch64-linux-gnu/lib/ld-linux-aarch64.so.1 ld.so
GO_TAGS=p2p \
BACKEND_LIBS="./grpc/cmake/cross_build/third_party/re2/libre2.a ./grpc/cmake/cross_build/libgrpc.a ./grpc/cmake/cross_build/libgrpc++.a ./grpc/cmake/cross_build/third_party/protobuf/libprotobuf.a /usr/aarch64-linux-gnu/lib/libc.so.6 /usr/aarch64-linux-gnu/lib/libstdc++.so.6 /usr/aarch64-linux-gnu/lib/libgomp.so.1 /usr/aarch64-linux-gnu/lib/libm.so.6 /usr/aarch64-linux-gnu/lib/libgcc_s.so.1 /usr/aarch64-linux-gnu/lib/libdl.so.2 /usr/aarch64-linux-gnu/lib/libpthread.so.0 ./ld.so" \
GOOS=linux \
GOARCH=arm64 \
@@ -123,7 +120,7 @@ jobs:
release/*
- name: Setup tmate session if tests fail
if: ${{ failure() }}
uses: mxschmitt/action-tmate@v3.19
uses: mxschmitt/action-tmate@v3.18
with:
detached: true
connect-timeout-seconds: 180
@@ -150,7 +147,7 @@ jobs:
- name: Dependencies
run: |
sudo apt-get update
sudo apt-get install -y wget curl build-essential ffmpeg protobuf-compiler ccache upx-ucl gawk cmake libgmock-dev
sudo apt-get install -y wget curl build-essential ffmpeg protobuf-compiler ccache cmake
- name: Intel Dependencies
run: |
wget -O- https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB | gpg --dearmor | sudo tee /usr/share/keyrings/oneapi-archive-keyring.gpg > /dev/null
@@ -164,7 +161,7 @@ jobs:
sudo apt-get update
sudo apt-get install -y cuda-nvcc-${CUDA_VERSION} libcublas-dev-${CUDA_VERSION}
env:
CUDA_VERSION: 12-5
CUDA_VERSION: 12-3
- name: "Install Hipblas"
env:
ROCM_VERSION: "6.1"
@@ -200,8 +197,7 @@ jobs:
if: steps.cache-grpc.outputs.cache-hit != 'true'
run: |
git clone --recurse-submodules -b ${{ env.GRPC_VERSION }} --depth 1 --shallow-submodules https://github.com/grpc/grpc && \
cd grpc && sed -i "216i\ TESTONLY" "third_party/abseil-cpp/absl/container/CMakeLists.txt" && mkdir -p cmake/build && \
cd cmake/build && cmake -DgRPC_INSTALL=ON \
cd grpc && mkdir -p cmake/build && cd cmake/build && cmake -DgRPC_INSTALL=ON \
-DgRPC_BUILD_TESTS=OFF \
../.. && sudo make --jobs 5 --output-sync=target
- name: Install gRPC
@@ -211,14 +207,15 @@ jobs:
- name: Build
id: build
run: |
go install google.golang.org/grpc/cmd/protoc-gen-go-grpc@1958fcbe2ca8bd93af633f11e97d44e567e945af
go install google.golang.org/protobuf/cmd/protoc-gen-go@v1.34.2
go install google.golang.org/grpc/cmd/protoc-gen-go-grpc@8ba23be9613c672d40ae261d2a1335d639bdd59b
go install google.golang.org/protobuf/cmd/protoc-gen-go@v1.34.0
export PATH=$PATH:$GOPATH/bin
export PATH=/usr/local/cuda/bin:$PATH
export PATH=/opt/rocm/bin:$PATH
source /opt/intel/oneapi/setvars.sh
sudo cp /lib64/ld-linux-x86-64.so.2 ld.so
BACKEND_LIBS="./ld.so ./sources/go-piper/piper/build/fi/lib/libfmt.a ./sources/go-piper/piper-phonemize/pi/lib/libonnxruntime.so.1.14.1 ./sources/go-piper/piper-phonemize/pi/src/libespeak-ng/libespeak-ng.so /usr/lib/x86_64-linux-gnu/libdl.so.2 /usr/lib/x86_64-linux-gnu/librt.so.1 /usr/lib/x86_64-linux-gnu/libpthread.so.0 ./sources/go-piper/piper-phonemize/pi/lib/libpiper_phonemize.so.1 ./sources/go-piper/piper/build/si/lib/libspdlog.a ./sources/go-piper/espeak/ei/lib/libucd.so" \
GO_TAGS=p2p \
BACKEND_LIBS="./ld.so /usr/lib/x86_64-linux-gnu/libstdc++.so.6 /usr/lib/x86_64-linux-gnu/libm.so.6 /usr/lib/x86_64-linux-gnu/libgcc_s.so.1 /usr/lib/x86_64-linux-gnu/libc.so.6 /usr/lib/x86_64-linux-gnu/libgomp.so.1" \
make -j4 dist
- uses: actions/upload-artifact@v4
with:
@@ -232,7 +229,7 @@ jobs:
release/*
- name: Setup tmate session if tests fail
if: ${{ failure() }}
uses: mxschmitt/action-tmate@v3.19
uses: mxschmitt/action-tmate@v3.18
with:
detached: true
connect-timeout-seconds: 180
@@ -251,9 +248,9 @@ jobs:
- name: Dependencies
run: |
sudo apt-get update
sudo apt-get install -y --no-install-recommends libopencv-dev protobuf-compiler ccache upx-ucl
go install google.golang.org/grpc/cmd/protoc-gen-go-grpc@1958fcbe2ca8bd93af633f11e97d44e567e945af
go install google.golang.org/protobuf/cmd/protoc-gen-go@v1.34.2
sudo apt-get install -y --no-install-recommends libopencv-dev protobuf-compiler ccache
go install google.golang.org/grpc/cmd/protoc-gen-go-grpc@8ba23be9613c672d40ae261d2a1335d639bdd59b
go install google.golang.org/protobuf/cmd/protoc-gen-go@v1.34.0
- name: Build stablediffusion
run: |
export PATH=$PATH:$GOPATH/bin
@@ -272,8 +269,8 @@ jobs:
files: |
release/*
build-macOS-x86_64:
runs-on: macos-13
build-macOS-arm64:
runs-on: macos-14
steps:
- name: Clone
uses: actions/checkout@v4
@@ -294,50 +291,8 @@ jobs:
export C_INCLUDE_PATH=/usr/local/include
export CPLUS_INCLUDE_PATH=/usr/local/include
export PATH=$PATH:$GOPATH/bin
export SKIP_GRPC_BACKEND=backend-assets/grpc/whisper
make dist
- uses: actions/upload-artifact@v4
with:
name: LocalAI-MacOS-x86_64
path: release/
- name: Release
uses: softprops/action-gh-release@v2
if: startsWith(github.ref, 'refs/tags/')
with:
files: |
release/*
- name: Setup tmate session if tests fail
if: ${{ failure() }}
uses: mxschmitt/action-tmate@v3.19
with:
detached: true
connect-timeout-seconds: 180
limit-access-to-actor: true
build-macOS-arm64:
runs-on: macos-14
steps:
- name: Clone
uses: actions/checkout@v4
with:
submodules: true
- uses: actions/setup-go@v5
with:
go-version: '1.21.x'
cache: false
- name: Dependencies
run: |
brew install protobuf grpc libomp llvm
go install google.golang.org/grpc/cmd/protoc-gen-go-grpc@1958fcbe2ca8bd93af633f11e97d44e567e945af
go install google.golang.org/protobuf/cmd/protoc-gen-go@v1.34.2
- name: Build
id: build
run: |
export C_INCLUDE_PATH=/usr/local/include
export CPLUS_INCLUDE_PATH=/usr/local/include
export PATH=$PATH:$GOPATH/bin
export CC=/opt/homebrew/opt/llvm/bin/clang
make dist
BACKEND_LIBS="$(ls /opt/homebrew/opt/grpc/lib/*.dylib /opt/homebrew/opt/re2/lib/*.dylib /opt/homebrew/opt/openssl@3/lib/*.dylib /opt/homebrew/opt/protobuf/lib/*.dylib /opt/homebrew/opt/abseil/lib/*.dylib | xargs)" GO_TAGS=p2p make dist
- uses: actions/upload-artifact@v4
with:
name: LocalAI-MacOS-arm64
@@ -350,7 +305,7 @@ jobs:
release/*
- name: Setup tmate session if tests fail
if: ${{ failure() }}
uses: mxschmitt/action-tmate@v3.19
uses: mxschmitt/action-tmate@v3.18
with:
detached: true
connect-timeout-seconds: 180

View File

@@ -18,7 +18,7 @@ jobs:
if: ${{ github.actor != 'dependabot[bot]' }}
- name: Run Gosec Security Scanner
if: ${{ github.actor != 'dependabot[bot]' }}
uses: securego/gosec@v2.21.4
uses: securego/gosec@master
with:
# we let the report trigger content trigger a failure using the GitHub Security features.
args: '-no-fail -fmt sarif -out results.sarif ./...'

View File

@@ -19,7 +19,7 @@ jobs:
steps:
- name: Clone
uses: actions/checkout@v4
with:
with:
submodules: true
- name: Dependencies
run: |
@@ -29,8 +29,8 @@ jobs:
curl -LsSf https://astral.sh/uv/install.sh | sh
sudo apt-get install -y ca-certificates cmake curl patch python3-pip
sudo apt-get install -y libopencv-dev
pip install --user --no-cache-dir grpcio-tools==1.64.1
pip install --user grpcio-tools==1.64.0
- name: Test transformers
run: |
make --jobs=5 --output-sync=target -C backend/python/transformers
@@ -41,7 +41,7 @@ jobs:
steps:
- name: Clone
uses: actions/checkout@v4
with:
with:
submodules: true
- name: Dependencies
run: |
@@ -51,8 +51,8 @@ jobs:
curl -LsSf https://astral.sh/uv/install.sh | sh
sudo apt-get install -y ca-certificates cmake curl patch python3-pip
sudo apt-get install -y libopencv-dev
pip install --user --no-cache-dir grpcio-tools==1.64.1
pip install --user grpcio-tools==1.64.0
- name: Test sentencetransformers
run: |
make --jobs=5 --output-sync=target -C backend/python/sentencetransformers
@@ -64,7 +64,7 @@ jobs:
steps:
- name: Clone
uses: actions/checkout@v4
with:
with:
submodules: true
- name: Dependencies
run: |
@@ -74,7 +74,7 @@ jobs:
curl -LsSf https://astral.sh/uv/install.sh | sh
sudo apt-get install -y ca-certificates cmake curl patch python3-pip
sudo apt-get install -y libopencv-dev
pip install --user --no-cache-dir grpcio-tools==1.64.1
pip install --user grpcio-tools==1.64.0
- name: Test rerankers
run: |
@@ -86,7 +86,7 @@ jobs:
steps:
- name: Clone
uses: actions/checkout@v4
with:
with:
submodules: true
- name: Dependencies
run: |
@@ -96,7 +96,7 @@ jobs:
sudo apt-get install -y libopencv-dev
# Install UV
curl -LsSf https://astral.sh/uv/install.sh | sh
pip install --user --no-cache-dir grpcio-tools==1.64.1
pip install --user grpcio-tools==1.64.0
- name: Test diffusers
run: |
make --jobs=5 --output-sync=target -C backend/python/diffusers
@@ -107,7 +107,7 @@ jobs:
steps:
- name: Clone
uses: actions/checkout@v4
with:
with:
submodules: true
- name: Dependencies
run: |
@@ -117,26 +117,19 @@ jobs:
curl -LsSf https://astral.sh/uv/install.sh | sh
sudo apt-get install -y ca-certificates cmake curl patch python3-pip
sudo apt-get install -y libopencv-dev
pip install --user --no-cache-dir grpcio-tools==1.64.1
pip install --user grpcio-tools==1.64.0
- name: Test parler-tts
run: |
make --jobs=5 --output-sync=target -C backend/python/parler-tts
make --jobs=5 --output-sync=target -C backend/python/parler-tts test
- name: Setup tmate session if tests fail
if: ${{ failure() }}
uses: mxschmitt/action-tmate@v3.19
with:
detached: true
connect-timeout-seconds: 180
limit-access-to-actor: true
tests-openvoice:
runs-on: ubuntu-latest
steps:
- name: Clone
uses: actions/checkout@v4
with:
with:
submodules: true
- name: Dependencies
run: |
@@ -146,7 +139,7 @@ jobs:
curl -LsSf https://astral.sh/uv/install.sh | sh
sudo apt-get install -y ca-certificates cmake curl patch python3-pip
sudo apt-get install -y libopencv-dev
pip install --user --no-cache-dir grpcio-tools==1.64.1
pip install --user grpcio-tools==1.64.0
- name: Test openvoice
run: |
@@ -158,7 +151,7 @@ jobs:
steps:
- name: Clone
uses: actions/checkout@v4
with:
with:
submodules: true
- name: Dependencies
run: |
@@ -168,13 +161,39 @@ jobs:
curl -LsSf https://astral.sh/uv/install.sh | sh
sudo apt-get install -y ca-certificates cmake curl patch python3-pip
sudo apt-get install -y libopencv-dev
pip install --user --no-cache-dir grpcio-tools==1.64.1
pip install --user grpcio-tools==1.64.0
- name: Test transformers-musicgen
run: |
make --jobs=5 --output-sync=target -C backend/python/transformers-musicgen
make --jobs=5 --output-sync=target -C backend/python/transformers-musicgen test
# tests-petals:
# runs-on: ubuntu-latest
# steps:
# - name: Clone
# uses: actions/checkout@v4
# with:
# submodules: true
# - name: Dependencies
# run: |
# sudo apt-get update
# sudo apt-get install build-essential ffmpeg
# # Install UV
# curl -LsSf https://astral.sh/uv/install.sh | sh
# sudo apt-get install -y ca-certificates cmake curl patch python3-pip
# sudo apt-get install -y libopencv-dev
# pip install --user grpcio-tools==1.64.0
# - name: Test petals
# run: |
# make --jobs=5 --output-sync=target -C backend/python/petals
# make --jobs=5 --output-sync=target -C backend/python/petals test
# tests-bark:
# runs-on: ubuntu-latest
# steps:
@@ -220,7 +239,7 @@ jobs:
# df -h
# - name: Clone
# uses: actions/checkout@v4
# with:
# with:
# submodules: true
# - name: Dependencies
# run: |
@@ -230,14 +249,14 @@ jobs:
# curl -LsSf https://astral.sh/uv/install.sh | sh
# sudo apt-get install -y ca-certificates cmake curl patch python3-pip
# sudo apt-get install -y libopencv-dev
# pip install --user --no-cache-dir grpcio-tools==1.64.1
# pip install --user grpcio-tools==1.64.0
# - name: Test bark
# run: |
# make --jobs=5 --output-sync=target -C backend/python/bark
# make --jobs=5 --output-sync=target -C backend/python/bark test
# Below tests needs GPU. Commented out for now
# TODO: Re-enable as soon as we have GPU nodes
# tests-vllm:
@@ -245,7 +264,7 @@ jobs:
# steps:
# - name: Clone
# uses: actions/checkout@v4
# with:
# with:
# submodules: true
# - name: Dependencies
# run: |
@@ -255,7 +274,7 @@ jobs:
# curl -LsSf https://astral.sh/uv/install.sh | sh
# sudo apt-get install -y ca-certificates cmake curl patch python3-pip
# sudo apt-get install -y libopencv-dev
# pip install --user --no-cache-dir grpcio-tools==1.64.1
# pip install --user grpcio-tools==1.64.0
# - name: Test vllm
# run: |
# make --jobs=5 --output-sync=target -C backend/python/vllm
@@ -265,7 +284,7 @@ jobs:
steps:
- name: Clone
uses: actions/checkout@v4
with:
with:
submodules: true
- name: Dependencies
run: |
@@ -275,7 +294,7 @@ jobs:
curl -LsSf https://astral.sh/uv/install.sh | sh
sudo apt-get install -y ca-certificates cmake curl patch python3-pip
sudo apt-get install -y libopencv-dev
pip install --user --no-cache-dir grpcio-tools==1.64.1
pip install --user grpcio-tools==1.64.0
- name: Test vall-e-x
run: |
make --jobs=5 --output-sync=target -C backend/python/vall-e-x
@@ -286,7 +305,7 @@ jobs:
steps:
- name: Clone
uses: actions/checkout@v4
with:
with:
submodules: true
- name: Dependencies
run: |
@@ -295,8 +314,8 @@ jobs:
sudo apt-get install -y ca-certificates cmake curl patch espeak espeak-ng python3-pip
# Install UV
curl -LsSf https://astral.sh/uv/install.sh | sh
pip install --user --no-cache-dir grpcio-tools==1.64.1
pip install --user grpcio-tools==1.64.0
- name: Test coqui
run: |
make --jobs=5 --output-sync=target -C backend/python/coqui
make --jobs=5 --output-sync=target -C backend/python/coqui test
make --jobs=5 --output-sync=target -C backend/python/coqui test

View File

@@ -10,7 +10,7 @@ on:
- '*'
env:
GRPC_VERSION: v1.65.0
GRPC_VERSION: v1.64.0
concurrency:
group: ci-tests-${{ github.head_ref || github.ref }}-${{ github.repository }}
@@ -70,8 +70,7 @@ jobs:
- name: Dependencies
run: |
sudo apt-get update
sudo apt-get install build-essential ccache upx-ucl curl ffmpeg
sudo apt-get install -y libgmock-dev
sudo apt-get install build-essential curl ffmpeg
curl https://repo.anaconda.com/pkgs/misc/gpgkeys/anaconda.asc | gpg --dearmor > conda.gpg && \
sudo install -o root -g root -m 644 conda.gpg /usr/share/keyrings/conda-archive-keyring.gpg && \
gpg --keyring /usr/share/keyrings/conda-archive-keyring.gpg --no-default-keyring --fingerprint 34161F5BF5EB1D4BFBBB8F0A8AEB4F8B29D82806 && \
@@ -94,8 +93,8 @@ jobs:
sudo apt-get install -y cuda-nvcc-${CUDA_VERSION} libcublas-dev-${CUDA_VERSION}
export CUDACXX=/usr/local/cuda/bin/nvcc
go install google.golang.org/protobuf/cmd/protoc-gen-go@v1.34.2
go install google.golang.org/grpc/cmd/protoc-gen-go-grpc@1958fcbe2ca8bd93af633f11e97d44e567e945af
go install google.golang.org/protobuf/cmd/protoc-gen-go@v1.34.0
go install google.golang.org/grpc/cmd/protoc-gen-go-grpc@8ba23be9613c672d40ae261d2a1335d639bdd59b
# The python3-grpc-tools package in 22.04 is too old
pip install --user grpcio-tools
@@ -110,7 +109,7 @@ jobs:
# Pre-build stable diffusion before we install a newer version of abseil (not compatible with stablediffusion-ncn)
PATH="$PATH:/root/go/bin" GO_TAGS="stablediffusion tts" GRPC_BACKENDS=backend-assets/grpc/stablediffusion make build
env:
CUDA_VERSION: 12-4
CUDA_VERSION: 12-3
- name: Cache grpc
id: cache-grpc
uses: actions/cache@v4
@@ -121,8 +120,7 @@ jobs:
if: steps.cache-grpc.outputs.cache-hit != 'true'
run: |
git clone --recurse-submodules -b ${{ env.GRPC_VERSION }} --depth 1 --jobs 5 --shallow-submodules https://github.com/grpc/grpc && \
cd grpc && sed -i "216i\ TESTONLY" "third_party/abseil-cpp/absl/container/CMakeLists.txt" && mkdir -p cmake/build && cd cmake/build && \
cmake -DgRPC_INSTALL=ON \
cd grpc && mkdir -p cmake/build && cd cmake/build && cmake -DgRPC_INSTALL=ON \
-DgRPC_BUILD_TESTS=OFF \
../.. && sudo make --jobs 5
- name: Install gRPC
@@ -133,7 +131,7 @@ jobs:
PATH="$PATH:/root/go/bin" GO_TAGS="stablediffusion tts" make --jobs 5 --output-sync=target test
- name: Setup tmate session if tests fail
if: ${{ failure() }}
uses: mxschmitt/action-tmate@v3.19
uses: mxschmitt/action-tmate@v3.18
with:
detached: true
connect-timeout-seconds: 180
@@ -178,26 +176,17 @@ jobs:
uses: actions/checkout@v4
with:
submodules: true
- name: Dependencies
run: |
# Install protoc
curl -L -s https://github.com/protocolbuffers/protobuf/releases/download/v26.1/protoc-26.1-linux-x86_64.zip -o protoc.zip && \
unzip -j -d /usr/local/bin protoc.zip bin/protoc && \
rm protoc.zip
go install google.golang.org/protobuf/cmd/protoc-gen-go@v1.34.2
go install google.golang.org/grpc/cmd/protoc-gen-go-grpc@1958fcbe2ca8bd93af633f11e97d44e567e945af
PATH="$PATH:$HOME/go/bin" make protogen-go
- name: Build images
run: |
docker build --build-arg FFMPEG=true --build-arg IMAGE_TYPE=extras --build-arg EXTRA_BACKENDS=rerankers --build-arg MAKEFLAGS="--jobs=5 --output-sync=target" -t local-ai:tests -f Dockerfile .
BASE_IMAGE=local-ai:tests DOCKER_AIO_IMAGE=local-ai-aio:test make docker-aio
- name: Test
run: |
PATH="$PATH:$HOME/go/bin" LOCALAI_MODELS_DIR=$PWD/models LOCALAI_IMAGE_TAG=test LOCALAI_IMAGE=local-ai-aio \
LOCALAI_MODELS_DIR=$PWD/models LOCALAI_IMAGE_TAG=test LOCALAI_IMAGE=local-ai-aio \
make run-e2e-aio
- name: Setup tmate session if tests fail
if: ${{ failure() }}
uses: mxschmitt/action-tmate@v3.19
uses: mxschmitt/action-tmate@v3.18
with:
detached: true
connect-timeout-seconds: 180
@@ -223,19 +212,18 @@ jobs:
run: go version
- name: Dependencies
run: |
brew install protobuf grpc make protoc-gen-go protoc-gen-go-grpc libomp llvm
pip install --user --no-cache-dir grpcio-tools
brew install protobuf grpc make protoc-gen-go protoc-gen-go-grpc
pip install --user grpcio-tools==1.64.0
- name: Test
run: |
export C_INCLUDE_PATH=/usr/local/include
export CPLUS_INCLUDE_PATH=/usr/local/include
export CC=/opt/homebrew/opt/llvm/bin/clang
# Used to run the newer GNUMake version from brew that supports --output-sync
export PATH="/opt/homebrew/opt/make/libexec/gnubin:$PATH"
BUILD_TYPE="GITHUB_CI_HAS_BROKEN_METAL" CMAKE_ARGS="-DGGML_F16C=OFF -DGGML_AVX512=OFF -DGGML_AVX2=OFF -DGGML_FMA=OFF" make --jobs 4 --output-sync=target test
- name: Setup tmate session if tests fail
if: ${{ failure() }}
uses: mxschmitt/action-tmate@v3.19
uses: mxschmitt/action-tmate@v3.18
with:
detached: true
connect-timeout-seconds: 180

View File

@@ -13,19 +13,13 @@ jobs:
- uses: actions/setup-go@v5
with:
go-version: 'stable'
- name: Dependencies
run: |
sudo apt-get update
sudo apt-get install protobuf-compiler
- run: |
go install github.com/swaggo/swag/cmd/swag@latest
go install google.golang.org/grpc/cmd/protoc-gen-go-grpc@1958fcbe2ca8bd93af633f11e97d44e567e945af
go install google.golang.org/protobuf/cmd/protoc-gen-go@v1.34.2
- name: Bump swagger 🔧
run: |
make protogen-go swagger
make swagger
- name: Create Pull Request
uses: peter-evans/create-pull-request@v7
uses: peter-evans/create-pull-request@v6
with:
token: ${{ secrets.UPDATE_BOT_TOKEN }}
push-to-fork: ci-forks/LocalAI

5
.gitignore vendored
View File

@@ -2,7 +2,6 @@
/sources/
__pycache__/
*.a
*.o
get-sources
prepare-sources
/backend/cpp/llama/grpc-server
@@ -13,6 +12,7 @@ prepare-sources
go-ggml-transformers
go-gpt2
go-rwkv
whisper.cpp
/bloomz
go-bert
@@ -54,6 +54,3 @@ docs/static/gallery.html
# backend virtual environments
**/venv
# per-developer customization files for the development container
.devcontainer/customization/*

21
.vscode/launch.json vendored
View File

@@ -3,12 +3,12 @@
"configurations": [
{
"name": "Python: Current File",
"type": "debugpy",
"type": "python",
"request": "launch",
"program": "${file}",
"console": "integratedTerminal",
"justMyCode": false,
"cwd": "${fileDirname}",
"cwd": "${workspaceFolder}/examples/langchain-chroma",
"env": {
"OPENAI_API_BASE": "http://localhost:8080/v1",
"OPENAI_API_KEY": "abc"
@@ -19,16 +19,15 @@
"type": "go",
"request": "launch",
"mode": "debug",
"program": "${workspaceRoot}",
"args": [],
"program": "${workspaceFolder}/main.go",
"args": [
"api"
],
"env": {
"LOCALAI_LOG_LEVEL": "debug",
"LOCALAI_P2P": "true",
"LOCALAI_FEDERATED": "true"
},
"buildFlags": ["-tags", "stablediffusion p2p tts", "-v"],
"envFile": "${workspaceFolder}/.env",
"cwd": "${workspaceRoot}"
"C_INCLUDE_PATH": "${workspaceFolder}/go-llama:${workspaceFolder}/go-stable-diffusion/:${workspaceFolder}/gpt4all/gpt4all-bindings/golang/:${workspaceFolder}/go-gpt2:${workspaceFolder}/go-rwkv:${workspaceFolder}/whisper.cpp:${workspaceFolder}/go-bert:${workspaceFolder}/bloomz",
"LIBRARY_PATH": "${workspaceFolder}/go-llama:${workspaceFolder}/go-stable-diffusion/:${workspaceFolder}/gpt4all/gpt4all-bindings/golang/:${workspaceFolder}/go-gpt2:${workspaceFolder}/go-rwkv:${workspaceFolder}/whisper.cpp:${workspaceFolder}/go-bert:${workspaceFolder}/bloomz",
"DEBUG": "true"
}
}
]
}

View File

@@ -15,6 +15,8 @@ Thank you for your interest in contributing to LocalAI! We appreciate your time
- [Documentation](#documentation)
- [Community and Communication](#community-and-communication)
## Getting Started
### Prerequisites
@@ -52,7 +54,7 @@ If you find a bug, have a feature request, or encounter any issues, please check
## Coding Guidelines
- No specific coding guidelines at the moment. Please make sure the code can be tested. The most popular lint tools like [`golangci-lint`](https://golangci-lint.run) can help you here.
- No specific coding guidelines at the moment. Please make sure the code can be tested. The most popular lint tools like []`golangci-lint`](https://golangci-lint.run) can help you here.
## Testing
@@ -82,3 +84,5 @@ We are welcome the contribution of the documents, please open new PR or create a
- You can reach out via the Github issue tracker.
- Open a new discussion at [Discussion](https://github.com/go-skynet/LocalAI/discussions)
- Join the Discord channel [Discord](https://discord.gg/uJAeKSAGDy)
---

View File

@@ -5,17 +5,21 @@ ARG INTEL_BASE_IMAGE=${BASE_IMAGE}
# The requirements-core target is common to all images. It should not be placed in requirements-core unless every single build will use it.
FROM ${BASE_IMAGE} AS requirements-core
# TODO(mudler): install all accellerators here
# and use make dist instead of build.
# TODO(mudler): modify make dist to build also go-piper and stablediffusion
# This way the same binary can work for everything(!)
# TODO(mudler): also make sure that we bundle all the required libs in the backend-assets/lib
# For the GPU-accell we are going to generate a tar file instead that will be extracted by the bash installer, and the libs will also be installed in the final docker image, so no need to pull ALL the dependencies
USER root
ARG GO_VERSION=1.22.6
ARG CMAKE_VERSION=3.26.4
ARG CMAKE_FROM_SOURCE=false
ARG GO_VERSION=1.22.4
ARG TARGETARCH
ARG TARGETVARIANT
ENV DEBIAN_FRONTEND=noninteractive
ENV EXTERNAL_GRPC_BACKENDS="coqui:/build/backend/python/coqui/run.sh,huggingface-embeddings:/build/backend/python/sentencetransformers/run.sh,transformers:/build/backend/python/transformers/run.sh,sentencetransformers:/build/backend/python/sentencetransformers/run.sh,rerankers:/build/backend/python/rerankers/run.sh,autogptq:/build/backend/python/autogptq/run.sh,bark:/build/backend/python/bark/run.sh,diffusers:/build/backend/python/diffusers/run.sh,openvoice:/build/backend/python/openvoice/run.sh,vall-e-x:/build/backend/python/vall-e-x/run.sh,vllm:/build/backend/python/vllm/run.sh,mamba:/build/backend/python/mamba/run.sh,exllama2:/build/backend/python/exllama2/run.sh,transformers-musicgen:/build/backend/python/transformers-musicgen/run.sh,parler-tts:/build/backend/python/parler-tts/run.sh"
ENV EXTERNAL_GRPC_BACKENDS="coqui:/build/backend/python/coqui/run.sh,huggingface-embeddings:/build/backend/python/sentencetransformers/run.sh,petals:/build/backend/python/petals/run.sh,transformers:/build/backend/python/transformers/run.sh,sentencetransformers:/build/backend/python/sentencetransformers/run.sh,rerankers:/build/backend/python/rerankers/run.sh,autogptq:/build/backend/python/autogptq/run.sh,bark:/build/backend/python/bark/run.sh,diffusers:/build/backend/python/diffusers/run.sh,exllama:/build/backend/python/exllama/run.sh,openvoice:/build/backend/python/openvoice/run.sh,vall-e-x:/build/backend/python/vall-e-x/run.sh,vllm:/build/backend/python/vllm/run.sh,mamba:/build/backend/python/mamba/run.sh,exllama2:/build/backend/python/exllama2/run.sh,transformers-musicgen:/build/backend/python/transformers-musicgen/run.sh,parler-tts:/build/backend/python/parler-tts/run.sh"
RUN apt-get update && \
@@ -23,28 +27,16 @@ RUN apt-get update && \
build-essential \
ccache \
ca-certificates \
curl libssl-dev \
cmake \
curl \
git \
unzip upx-ucl && \
unzip && \
apt-get clean && \
rm -rf /var/lib/apt/lists/*
# Install CMake (the version in 22.04 is too old)
RUN <<EOT bash
if [ "${CMAKE_FROM_SOURCE}}" = "true" ]; then
curl -L -s https://github.com/Kitware/CMake/releases/download/v${CMAKE_VERSION}/cmake-${CMAKE_VERSION}.tar.gz -o cmake.tar.gz && tar xvf cmake.tar.gz && cd cmake-${CMAKE_VERSION} && ./configure && make && make install
else
apt-get update && \
apt-get install -y \
cmake && \
apt-get clean && \
rm -rf /var/lib/apt/lists/*
fi
EOT
# Install Go
RUN curl -L -s https://go.dev/dl/go${GO_VERSION}.linux-${TARGETARCH}.tar.gz | tar -C /usr/local -xz
ENV PATH=$PATH:/root/go/bin:/usr/local/go/bin
ENV PATH $PATH:/root/go/bin:/usr/local/go/bin
# Install grpc compilers
RUN go install google.golang.org/protobuf/cmd/protoc-gen-go@v1.34.2 && \
@@ -53,23 +45,22 @@ RUN go install google.golang.org/protobuf/cmd/protoc-gen-go@v1.34.2 && \
COPY --chmod=644 custom-ca-certs/* /usr/local/share/ca-certificates/
RUN update-ca-certificates
RUN test -n "$TARGETARCH" \
|| (echo 'warn: missing $TARGETARCH, either set this `ARG` manually, or run using `docker buildkit`')
# Use the variables in subsequent instructions
RUN echo "Target Architecture: $TARGETARCH"
RUN echo "Target Variant: $TARGETVARIANT"
# Cuda
ENV PATH=/usr/local/cuda/bin:${PATH}
ENV PATH /usr/local/cuda/bin:${PATH}
# HipBLAS requirements
ENV PATH=/opt/rocm/bin:${PATH}
ENV PATH /opt/rocm/bin:${PATH}
# OpenBLAS requirements and stable diffusion
# OpenBLAS requirements and stable diffusion, tts (espeak)
RUN apt-get update && \
apt-get install -y --no-install-recommends \
libopenblas-dev \
espeak-ng \
espeak \
libopencv-dev && \
apt-get clean && \
rm -rf /var/lib/apt/lists/*
@@ -79,24 +70,24 @@ RUN ln -s /usr/include/opencv4/opencv2 /usr/include/opencv2
WORKDIR /build
RUN test -n "$TARGETARCH" \
|| (echo 'warn: missing $TARGETARCH, either set this `ARG` manually, or run using `docker buildkit`')
###################################
###################################
# The requirements-extras target is for any builds with IMAGE_TYPE=extras. It should not be placed in this target unless every IMAGE_TYPE=extras build will use it
FROM requirements-core AS requirements-extras
# Install uv as a system package
RUN curl -LsSf https://astral.sh/uv/install.sh | UV_INSTALL_DIR=/usr/bin sh
RUN curl -LsSf https://astral.sh/uv/install.sh | sh
ENV PATH="/root/.cargo/bin:${PATH}"
RUN curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh -s -- -y
RUN apt-get update && \
apt-get install -y --no-install-recommends \
espeak-ng \
espeak \
python3-pip \
python-is-python3 \
python3-dev llvm \
python3-dev \
python3-venv && \
apt-get clean && \
rm -rf /var/lib/apt/lists/* && \
@@ -108,13 +99,12 @@ RUN pip install --user grpcio-tools
###################################
###################################
# The requirements-drivers target is for BUILD_TYPE specific items. If you need to install something specific to CUDA, or specific to ROCM, it goes here.
# This target will be built on top of requirements-core or requirements-extras as retermined by the IMAGE_TYPE build-arg
FROM requirements-${IMAGE_TYPE} AS requirements-drivers
# Base image for the build-type.
FROM requirements-${IMAGE_TYPE} AS run-requirements-drivers
ARG BUILD_TYPE
ARG CUDA_MAJOR_VERSION=12
ARG CUDA_MINOR_VERSION=0
ARG CUDA_MINOR_VERSION=5
ENV BUILD_TYPE=${BUILD_TYPE}
@@ -123,11 +113,11 @@ RUN <<EOT bash
if [ "${BUILD_TYPE}" = "vulkan" ]; then
apt-get update && \
apt-get install -y --no-install-recommends \
software-properties-common pciutils wget gpg-agent && \
software-properties-common pciutils wget gpg-agent && \
wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | apt-key add - && \
wget -qO /etc/apt/sources.list.d/lunarg-vulkan-jammy.list https://packages.lunarg.com/vulkan/lunarg-vulkan-jammy.list && \
apt-get update && \
apt-get install -y \
apt-get install -y \
vulkan-sdk && \
apt-get clean && \
rm -rf /var/lib/apt/lists/*
@@ -139,13 +129,33 @@ RUN <<EOT bash
if [ "${BUILD_TYPE}" = "cublas" ]; then
apt-get update && \
apt-get install -y --no-install-recommends \
software-properties-common pciutils
software-properties-common pciutils
if [ "amd64" = "$TARGETARCH" ]; then
curl -O https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-keyring_1.1-1_all.deb
fi
fi
if [ "arm64" = "$TARGETARCH" ]; then
curl -O https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/arm64/cuda-keyring_1.1-1_all.deb
fi
dpkg -i cuda-keyring_1.1-1_all.deb && \
rm -f cuda-keyring_1.1-1_all.deb && \
apt-get update && \
apt-get install -y --no-install-recommends \
cuda-nvcc-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} \
libcufft-dev-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} \
libcurand-dev-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} \
libcublas-dev-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} \
libcusparse-dev-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} \
libcusolver-dev-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} && \
apt-get clean && \
rm -rf /var/lib/apt/lists/*
fi
EOT
RUN if [ "${BUILD_TYPE}" = "cublas" ]; then \
apt-get update && \
apt-get install -y --no-install-recommends \
software-properties-common pciutils && \
curl -O https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-keyring_1.1-1_all.deb && \
dpkg -i cuda-keyring_1.1-1_all.deb && \
rm -f cuda-keyring_1.1-1_all.deb && \
apt-get update && \
@@ -157,9 +167,8 @@ RUN <<EOT bash
libcusparse-dev-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} \
libcusolver-dev-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} && \
apt-get clean && \
rm -rf /var/lib/apt/lists/*
fi
EOT
rm -rf /var/lib/apt/lists/* \
; fi
# If we are building with clblas support, we need the libraries for the builds
RUN if [ "${BUILD_TYPE}" = "clblas" ]; then \
@@ -182,6 +191,82 @@ RUN if [ "${BUILD_TYPE}" = "hipblas" ]; then \
ldconfig \
; fi
# The build-requirements-drivers target is for BUILD_TYPE specific items. If you need to install something specific to CUDA, or specific to ROCM, it goes here.
# This target will be built on top of requirements-core or requirements-extras as retermined by the IMAGE_TYPE build-arg
FROM requirements-${IMAGE_TYPE} AS build-requirements-drivers
ARG BUILD_TYPE
ARG CUDA_MAJOR_VERSION=12
ARG CUDA_MINOR_VERSION=5
ENV BUILD_TYPE=${BUILD_TYPE}
# Vulkan requirements
RUN <<EOT bash
apt-get update && \
apt-get install -y --no-install-recommends \
software-properties-common pciutils wget gpg-agent && \
wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | apt-key add - && \
wget -qO /etc/apt/sources.list.d/lunarg-vulkan-jammy.list https://packages.lunarg.com/vulkan/lunarg-vulkan-jammy.list && \
apt-get update && \
apt-get install -y \
vulkan-sdk && \
apt-get clean && \
rm -rf /var/lib/apt/lists/*
EOT
# CuBLAS requirements
RUN <<EOT bash
apt-get update && \
apt-get install -y --no-install-recommends \
software-properties-common pciutils
if [ "amd64" = "$TARGETARCH" ]; then
curl -O https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-keyring_1.1-1_all.deb
fi
if [ "arm64" = "$TARGETARCH" ]; then
curl -O https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/arm64/cuda-keyring_1.1-1_all.deb
fi
dpkg -i cuda-keyring_1.1-1_all.deb && \
rm -f cuda-keyring_1.1-1_all.deb && \
apt-get update && \
apt-get install -y --no-install-recommends \
cuda-nvcc-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} \
libcufft-dev-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} \
libcurand-dev-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} \
libcublas-dev-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} \
libcusparse-dev-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} \
libcusolver-dev-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} && \
apt-get clean && \
rm -rf /var/lib/apt/lists/*
EOT
# clblas
RUN apt-get update && \
apt-get install -y --no-install-recommends \
libclblast-dev && \
apt-get clean && \
rm -rf /var/lib/apt/lists/*
# intel
RUN wget -O- https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB | gpg --dearmor | tee /usr/share/keyrings/oneapi-archive-keyring.gpg > /dev/null && echo "deb [signed-by=/usr/share/keyrings/oneapi-archive-keyring.gpg] https://apt.repos.intel.com/oneapi all main" | tee /etc/apt/sources.list.d/oneAPI.list && apt update && apt install -y intel-basekit && apt-get clean && \
rm -rf /var/lib/apt/lists/*
# hipblas
RUN wget https://repo.radeon.com/rocm/rocm.gpg.key -O - | \
gpg --dearmor | tee /etc/apt/keyrings/rocm.gpg > /dev/null && apt-get update && \
echo "deb [arch=amd64 signed-by=/etc/apt/keyrings/rocm.gpg] https://repo.radeon.com/amdgpu/6.1.2/ubuntu jammy main" \
| tee /etc/apt/sources.list.d/amdgpu.list && \
echo "deb [arch=amd64 signed-by=/etc/apt/keyrings/rocm.gpg] https://repo.radeon.com/rocm/apt/6.1.2 jammy main" | tee --append /etc/apt/sources.list.d/rocm.list && printf 'Package: *\nPin: release o=repo.radeon.com\nPin-Priority: 600' | tee /etc/apt/preferences.d/rocm-pin-600 && \
apt update && \
apt-get install -y --no-install-recommends \
hipblas-dev rocm-dev \
rocblas-dev && \
apt-get clean && \
rm -rf /var/lib/apt/lists/* && \
# I have no idea why, but the ROCM lib packages don't trigger ldconfig after they install, which results in local-ai and others not being able
# to locate the libraries. We run ldconfig ourselves to work around this packaging deficiency
ldconfig
###################################
###################################
@@ -202,9 +287,7 @@ FROM ${GRPC_BASE_IMAGE} AS grpc
# This is a bit of a hack, but it's required in order to be able to effectively cache this layer in CI
ARG GRPC_MAKEFLAGS="-j4 -Otarget"
ARG GRPC_VERSION=v1.65.0
ARG CMAKE_FROM_SOURCE=false
ARG CMAKE_VERSION=3.26.4
ARG GRPC_VERSION=v1.64.2
ENV MAKEFLAGS=${GRPC_MAKEFLAGS}
@@ -213,31 +296,18 @@ WORKDIR /build
RUN apt-get update && \
apt-get install -y --no-install-recommends \
ca-certificates \
build-essential curl libssl-dev \
build-essential \
cmake \
git && \
apt-get clean && \
rm -rf /var/lib/apt/lists/*
# Install CMake (the version in 22.04 is too old)
RUN <<EOT bash
if [ "${CMAKE_FROM_SOURCE}}" = "true" ]; then
curl -L -s https://github.com/Kitware/CMake/releases/download/v${CMAKE_VERSION}/cmake-${CMAKE_VERSION}.tar.gz -o cmake.tar.gz && tar xvf cmake.tar.gz && cd cmake-${CMAKE_VERSION} && ./configure && make && make install
else
apt-get update && \
apt-get install -y \
cmake && \
apt-get clean && \
rm -rf /var/lib/apt/lists/*
fi
EOT
# We install GRPC to a different prefix here so that we can copy in only the build artifacts later
# saves several hundred MB on the final docker image size vs copying in the entire GRPC source tree
# and running make install in the target container
RUN git clone --recurse-submodules --jobs 4 -b ${GRPC_VERSION} --depth 1 --shallow-submodules https://github.com/grpc/grpc && \
mkdir -p /build/grpc/cmake/build && \
cd /build/grpc/cmake/build && \
sed -i "216i\ TESTONLY" "../../third_party/abseil-cpp/absl/container/CMakeLists.txt" && \
cmake -DgRPC_INSTALL=ON -DgRPC_BUILD_TESTS=OFF -DCMAKE_INSTALL_PREFIX:PATH=/opt/grpc ../.. && \
make && \
make install && \
@@ -246,14 +316,13 @@ RUN git clone --recurse-submodules --jobs 4 -b ${GRPC_VERSION} --depth 1 --shall
###################################
###################################
# The builder-base target has the arguments, variables, and copies shared between full builder images and the uncompiled devcontainer
FROM requirements-drivers AS builder-base
# The builder target compiles LocalAI. This target is not the target that will be uploaded to the registry.
# Adjustments to the build process should likely be made here.
FROM build-requirements-drivers AS builder
ARG GO_TAGS="stablediffusion tts p2p"
ARG GRPC_BACKENDS
ARG MAKEFLAGS
ARG LD_FLAGS="-s -w"
ENV GRPC_BACKENDS=${GRPC_BACKENDS}
ENV GO_TAGS=${GO_TAGS}
@@ -261,12 +330,14 @@ ENV MAKEFLAGS=${MAKEFLAGS}
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
ENV NVIDIA_REQUIRE_CUDA="cuda>=${CUDA_MAJOR_VERSION}.0"
ENV NVIDIA_VISIBLE_DEVICES=all
ENV LD_FLAGS=${LD_FLAGS}
RUN echo "GO_TAGS: $GO_TAGS" && echo "TARGETARCH: $TARGETARCH"
WORKDIR /build
COPY . .
COPY .git .
RUN echo "GO_TAGS: $GO_TAGS"
RUN make prepare
# We need protoc installed, and the version in 22.04 is too old. We will create one as part installing the GRPC build below
# but that will also being in a newer version of absl which stablediffusion cannot compile with. This version of protoc is only
@@ -284,56 +355,16 @@ RUN <<EOT bash
fi
EOT
###################################
###################################
# This first portion of builder holds the layers specifically used to build backend-assets/grpc/stablediffusion
# In most cases, builder is the image you should be using - however, this can save build time if one just needs to copy backend-assets/grpc/stablediffusion and nothing else.
FROM builder-base AS builder-sd
# stablediffusion does not tolerate a newer version of abseil, copy only over enough elements to build it
COPY Makefile .
COPY go.mod .
COPY go.sum .
COPY backend/backend.proto ./backend/backend.proto
COPY backend/go/image/stablediffusion ./backend/go/image/stablediffusion
COPY pkg/grpc ./pkg/grpc
COPY pkg/stablediffusion ./pkg/stablediffusion
RUN git init
RUN make sources/go-stable-diffusion
RUN touch prepare-sources
# Actually build the backend
RUN GRPC_BACKENDS=backend-assets/grpc/stablediffusion make backend-assets/grpc/stablediffusion
###################################
###################################
# The builder target compiles LocalAI. This target is not the target that will be uploaded to the registry.
# Adjustments to the build process should likely be made here.
FROM builder-sd AS builder
# stablediffusion does not tolerate a newer version of abseil, build it first
RUN GRPC_BACKENDS=backend-assets/grpc/stablediffusion make build
# Install the pre-built GRPC
COPY --from=grpc /opt/grpc /usr/local
# Rebuild with defaults backends
WORKDIR /build
COPY . .
COPY .git .
RUN make prepare
## Build the binary
## If it's CUDA or hipblas, we want to skip some of the llama-compat backends to save space
## We only leave the most CPU-optimized variant and the fallback for the cublas/hipblas build
## (both will use CUDA or hipblas for the actual computation)
RUN if [ "${BUILD_TYPE}" = "cublas" ] || [ "${BUILD_TYPE}" = "hipblas" ]; then \
SKIP_GRPC_BACKEND="backend-assets/grpc/llama-cpp-avx backend-assets/grpc/llama-cpp-avx2" make build; \
else \
make build; \
fi
# Need to build tts and stablediffusion separately first (?)
RUN make dist && rm release/*.sha256 && mv release/* local-ai
RUN if [ ! -d "/build/sources/go-piper/piper-phonemize/pi/lib/" ]; then \
mkdir -p /build/sources/go-piper/piper-phonemize/pi/lib/ \
@@ -343,43 +374,9 @@ RUN if [ ! -d "/build/sources/go-piper/piper-phonemize/pi/lib/" ]; then \
###################################
###################################
# The devcontainer target is not used on CI. It is a target for developers to use locally -
# rather than copying files it mounts them locally and leaves building to the developer
FROM builder-base AS devcontainer
ARG FFMPEG
COPY --from=grpc /opt/grpc /usr/local
COPY --from=builder-sd /build/backend-assets/grpc/stablediffusion /build/backend-assets/grpc/stablediffusion
COPY .devcontainer-scripts /.devcontainer-scripts
# Add FFmpeg
RUN if [ "${FFMPEG}" = "true" ]; then \
apt-get update && \
apt-get install -y --no-install-recommends \
ffmpeg && \
apt-get clean && \
rm -rf /var/lib/apt/lists/* \
; fi
RUN apt-get update && \
apt-get install -y --no-install-recommends \
ssh less wget
# For the devcontainer, leave apt functional in case additional devtools are needed at runtime.
RUN go install github.com/go-delve/delve/cmd/dlv@latest
RUN go install github.com/mikefarah/yq/v4@latest
###################################
###################################
# This is the final target. The result of this target will be the image uploaded to the registry.
# If you cannot find a more suitable place for an addition, this layer is a suitable place for it.
FROM requirements-drivers
FROM run-requirements-drivers
ARG FFMPEG
ARG BUILD_TYPE
@@ -424,10 +421,11 @@ RUN make prepare-sources
COPY --from=builder /build/local-ai ./
# Copy shared libraries for piper
# TODO(mudler): bundle these libs in backend-assets/lib/ (like we do for llama.cpp deps)
COPY --from=builder /build/sources/go-piper/piper-phonemize/pi/lib/* /usr/lib/
# do not let stablediffusion rebuild (requires an older version of absl)
COPY --from=builder-sd /build/backend-assets/grpc/stablediffusion ./backend-assets/grpc/stablediffusion
COPY --from=builder /build/backend-assets/grpc/stablediffusion ./backend-assets/grpc/stablediffusion
# Change the shell to bash so we can use [[ tests below
SHELL ["/bin/bash", "-c"]
@@ -446,6 +444,9 @@ RUN if [[ ( "${EXTRA_BACKENDS}" =~ "coqui" || -z "${EXTRA_BACKENDS}" ) && "$IMAG
; fi && \
if [[ ( "${EXTRA_BACKENDS}" =~ "transformers-musicgen" || -z "${EXTRA_BACKENDS}" ) && "$IMAGE_TYPE" == "extras" ]]; then \
make -C backend/python/transformers-musicgen \
; fi && \
if [[ ( "${EXTRA_BACKENDS}" =~ "exllama1" || -z "${EXTRA_BACKENDS}" ) && "$IMAGE_TYPE" == "extras" ]]; then \
make -C backend/python/exllama \
; fi
RUN if [[ ( "${EXTRA_BACKENDS}" =~ "vall-e-x" || -z "${EXTRA_BACKENDS}" ) && "$IMAGE_TYPE" == "extras" ]]; then \
@@ -454,6 +455,9 @@ RUN if [[ ( "${EXTRA_BACKENDS}" =~ "vall-e-x" || -z "${EXTRA_BACKENDS}" ) && "$I
if [[ ( "${EXTRA_BACKENDS}" =~ "openvoice" || -z "${EXTRA_BACKENDS}" ) && "$IMAGE_TYPE" == "extras" ]]; then \
make -C backend/python/openvoice \
; fi && \
if [[ ( "${EXTRA_BACKENDS}" =~ "petals" || -z "${EXTRA_BACKENDS}" ) && "$IMAGE_TYPE" == "extras" ]]; then \
make -C backend/python/petals \
; fi && \
if [[ ( "${EXTRA_BACKENDS}" =~ "sentencetransformers" || -z "${EXTRA_BACKENDS}" ) && "$IMAGE_TYPE" == "extras" ]]; then \
make -C backend/python/sentencetransformers \
; fi && \

415
Makefile
View File

@@ -3,53 +3,42 @@ GOTEST=$(GOCMD) test
GOVET=$(GOCMD) vet
BINARY_NAME=local-ai
DETECT_LIBS?=true
# llama.cpp versions
GOLLAMA_REPO?=https://github.com/go-skynet/go-llama.cpp
GOLLAMA_VERSION?=2b57a8ae43e4699d3dc5d1496a1ccd42922993be
CPPLLAMA_VERSION?=cc98896db858df7aa40d0e16a505883ef196a482
GOLLAMA_STABLE_VERSION?=2b57a8ae43e4699d3dc5d1496a1ccd42922993be
CPPLLAMA_VERSION?=9ef07800622e4c371605f9419864d15667c3558f
# gpt4all version
GPT4ALL_REPO?=https://github.com/nomic-ai/gpt4all
GPT4ALL_VERSION?=27a8b020c36b0df8f8b82a252d261cda47cf44b8
# go-rwkv version
RWKV_REPO?=https://github.com/donomii/go-rwkv.cpp
RWKV_VERSION?=661e7ae26d442f5cfebd2a0881b44e8c55949ec6
# whisper.cpp version
WHISPER_REPO?=https://github.com/ggerganov/whisper.cpp
WHISPER_CPP_VERSION?=6266a9f9e56a5b925e9892acf650f3eb1245814d
WHISPER_CPP_VERSION?=b29b3b29240aac8b71ce8e5a4360c1f1562ad66f
# bert.cpp version
BERT_VERSION?=710044b124545415f555e4260d16b146c725a6e4
# go-piper version
PIPER_REPO?=https://github.com/mudler/go-piper
PIPER_VERSION?=e10ca041a885d4a8f3871d52924b47792d5e5aa0
PIPER_VERSION?=9d0100873a7dbb0824dfea40e8cec70a1b110759
# stablediffusion version
STABLEDIFFUSION_REPO?=https://github.com/mudler/go-stable-diffusion
STABLEDIFFUSION_VERSION?=4a3cd6aeae6f66ee57eae9a0075f8c58c3a6a38f
# tinydream version
TINYDREAM_REPO?=https://github.com/M0Rf30/go-tiny-dream
TINYDREAM_VERSION?=c04fa463ace9d9a6464313aa5f9cd0f953b6c057
# bark.cpp
BARKCPP_REPO?=https://github.com/PABannier/bark.cpp.git
BARKCPP_VERSION?=v1.0.0
# stablediffusion.cpp (ggml)
STABLEDIFFUSION_GGML_REPO?=https://github.com/leejet/stable-diffusion.cpp
STABLEDIFFUSION_GGML_VERSION?=4570715727f35e5a07a76796d823824c8f42206c
ONNX_VERSION?=1.20.0
ONNX_ARCH?=x64
ONNX_OS?=linux
export BUILD_TYPE?=
export STABLE_BUILD_TYPE?=$(BUILD_TYPE)
export CMAKE_ARGS?=
export BACKEND_LIBS?=
CGO_LDFLAGS?=
CGO_LDFLAGS_WHISPER?=
CGO_LDFLAGS_WHISPER+=-lggml
CUDA_LIBPATH?=/usr/local/cuda/lib64/
GO_TAGS?=
BUILD_ID?=
NATIVE?=false
TEST_DIR=/tmp/test
@@ -59,9 +48,9 @@ RANDOM := $(shell bash -c 'echo $$RANDOM')
VERSION?=$(shell git describe --always --tags || echo "dev" )
# go tool nm ./local-ai | grep Commit
LD_FLAGS?=-s -w
override LD_FLAGS += -X "github.com/mudler/LocalAI/internal.Version=$(VERSION)"
override LD_FLAGS += -X "github.com/mudler/LocalAI/internal.Commit=$(shell git rev-parse HEAD)"
LD_FLAGS?=
override LD_FLAGS += -X "github.com/go-skynet/LocalAI/internal.Version=$(VERSION)"
override LD_FLAGS += -X "github.com/go-skynet/LocalAI/internal.Commit=$(shell git rev-parse HEAD)"
OPTIONAL_TARGETS?=
@@ -73,14 +62,6 @@ WHITE := $(shell tput -Txterm setaf 7)
CYAN := $(shell tput -Txterm setaf 6)
RESET := $(shell tput -Txterm sgr0)
UPX?=
# check if upx exists
ifeq (, $(shell which upx))
UPX=
else
UPX=$(shell which upx)
endif
# Default Docker bridge IP
E2E_BRIDGE_IP?=172.17.0.1
@@ -88,25 +69,7 @@ ifndef UNAME_S
UNAME_S := $(shell uname -s)
endif
# IF native is false, we add -DGGML_NATIVE=OFF to CMAKE_ARGS
ifeq ($(NATIVE),false)
CMAKE_ARGS+=-DGGML_NATIVE=OFF
endif
# Detect if we are running on arm64
ifneq (,$(findstring aarch64,$(shell uname -m)))
ONNX_ARCH=aarch64
endif
ifeq ($(OS),Darwin)
ONNX_OS=osx
ifneq (,$(findstring aarch64,$(shell uname -m)))
ONNX_ARCH=arm64
else ifneq (,$(findstring arm64,$(shell uname -m)))
ONNX_ARCH=arm64
else
ONNX_ARCH=x86_64
endif
ifeq ($(OSX_SIGNING_IDENTITY),)
OSX_SIGNING_IDENTITY := $(shell security find-identity -v -p codesigning | grep '"' | head -n 1 | sed -E 's/.*"(.*)"/\1/')
@@ -119,25 +82,24 @@ ifeq ($(OS),Darwin)
else ifneq ($(BUILD_TYPE),metal)
CMAKE_ARGS+=-DGGML_METAL=OFF
export GGML_NO_ACCELERATE=1
export GGML_NO_METAL=1
endif
ifeq ($(BUILD_TYPE),metal)
# -lcblas removed: it seems to always be listed as a duplicate flag.
CGO_LDFLAGS += -framework Accelerate
endif
else
CGO_LDFLAGS_WHISPER+=-lgomp
endif
ifeq ($(BUILD_TYPE),openblas)
CGO_LDFLAGS+=-lopenblas
export GGML_OPENBLAS=1
export WHISPER_OPENBLAS=1
endif
ifeq ($(BUILD_TYPE),cublas)
CGO_LDFLAGS+=-lcublas -lcudart -L$(CUDA_LIBPATH)
export GGML_CUDA=1
export WHISPER_CUDA=1
CGO_LDFLAGS_WHISPER+=-L$(CUDA_LIBPATH)/stubs/ -lcuda -lcufft
endif
@@ -145,14 +107,6 @@ ifeq ($(BUILD_TYPE),vulkan)
CMAKE_ARGS+=-DGGML_VULKAN=1
endif
ifneq (,$(findstring sycl,$(BUILD_TYPE)))
export GGML_SYCL=1
endif
ifeq ($(BUILD_TYPE),sycl_f16)
export GGML_SYCL_F16=1
endif
ifeq ($(BUILD_TYPE),hipblas)
ROCM_HOME ?= /opt/rocm
ROCM_PATH ?= /opt/rocm
@@ -161,26 +115,27 @@ ifeq ($(BUILD_TYPE),hipblas)
export CC=$(ROCM_HOME)/llvm/bin/clang
# llama-ggml has no hipblas support, so override it here.
export STABLE_BUILD_TYPE=
export GGML_HIP=1
export WHISPER_HIPBLAS=1
GPU_TARGETS ?= gfx900,gfx906,gfx908,gfx940,gfx941,gfx942,gfx90a,gfx1030,gfx1031,gfx1100,gfx1101
AMDGPU_TARGETS ?= "$(GPU_TARGETS)"
CMAKE_ARGS+=-DGGML_HIP=ON -DAMDGPU_TARGETS="$(AMDGPU_TARGETS)" -DGPU_TARGETS="$(GPU_TARGETS)"
CMAKE_ARGS+=-DGGML_HIPBLAS=ON -DAMDGPU_TARGETS="$(AMDGPU_TARGETS)" -DGPU_TARGETS="$(GPU_TARGETS)"
CGO_LDFLAGS += -O3 --rtlib=compiler-rt -unwindlib=libgcc -lhipblas -lrocblas --hip-link -L${ROCM_HOME}/lib/llvm/lib
endif
ifeq ($(BUILD_TYPE),metal)
CGO_LDFLAGS+=-framework Foundation -framework Metal -framework MetalKit -framework MetalPerformanceShaders
export GGML_METAL=1
export WHISPER_METAL=1
endif
ifeq ($(BUILD_TYPE),clblas)
CGO_LDFLAGS+=-lOpenCL -lclblast
export GGML_OPENBLAS=1
export WHISPER_CLBLAST=1
endif
# glibc-static or glibc-devel-static required
ifeq ($(STATIC),true)
LD_FLAGS+=-linkmode external -extldflags -static
LD_FLAGS=-linkmode external -extldflags -static
endif
ifeq ($(findstring stablediffusion,$(GO_TAGS)),stablediffusion)
@@ -202,26 +157,18 @@ ifeq ($(findstring tts,$(GO_TAGS)),tts)
endif
ALL_GRPC_BACKENDS=backend-assets/grpc/huggingface
ALL_GRPC_BACKENDS+=backend-assets/grpc/bert-embeddings
ALL_GRPC_BACKENDS+=backend-assets/grpc/llama-cpp-avx
ALL_GRPC_BACKENDS+=backend-assets/grpc/llama-cpp-avx2
ALL_GRPC_BACKENDS+=backend-assets/grpc/llama-cpp-fallback
ALL_GRPC_BACKENDS+=backend-assets/grpc/llama-ggml
ALL_GRPC_BACKENDS+=backend-assets/grpc/llama-cpp-grpc
ALL_GRPC_BACKENDS+=backend-assets/util/llama-cpp-rpc-server
ALL_GRPC_BACKENDS+=backend-assets/grpc/gpt4all
ALL_GRPC_BACKENDS+=backend-assets/grpc/rwkv
ALL_GRPC_BACKENDS+=backend-assets/grpc/whisper
ifeq ($(ONNX_OS),linux)
ifeq ($(ONNX_ARCH),x64)
ALL_GRPC_BACKENDS+=backend-assets/grpc/bark-cpp
ALL_GRPC_BACKENDS+=backend-assets/grpc/stablediffusion-ggml
endif
endif
ALL_GRPC_BACKENDS+=backend-assets/grpc/local-store
ALL_GRPC_BACKENDS+=backend-assets/grpc/silero-vad
ALL_GRPC_BACKENDS+=$(OPTIONAL_GRPC)
# Use filter-out to remove the specified backends
ALL_GRPC_BACKENDS := $(filter-out $(SKIP_GRPC_BACKEND),$(ALL_GRPC_BACKENDS))
GRPC_BACKENDS?=$(ALL_GRPC_BACKENDS) $(OPTIONAL_GRPC)
TEST_PATHS?=./api/... ./pkg/... ./core/...
@@ -239,142 +186,92 @@ endif
all: help
## BERT embeddings
sources/go-bert.cpp:
git clone --recurse-submodules https://github.com/go-skynet/go-bert.cpp sources/go-bert.cpp
cd sources/go-bert.cpp && git checkout -b build $(BERT_VERSION) && git submodule update --init --recursive --depth 1
sources/go-bert.cpp/libgobert.a: sources/go-bert.cpp
$(MAKE) -C sources/go-bert.cpp libgobert.a
## go-llama.cpp
sources/go-llama.cpp:
mkdir -p sources/go-llama.cpp
cd sources/go-llama.cpp && \
git init && \
git remote add origin $(GOLLAMA_REPO) && \
git fetch origin && \
git checkout $(GOLLAMA_VERSION) && \
git submodule update --init --recursive --depth 1 --single-branch
git clone --recurse-submodules https://github.com/go-skynet/go-llama.cpp sources/go-llama.cpp
cd sources/go-llama.cpp && git checkout -b build $(GOLLAMA_STABLE_VERSION) && git submodule update --init --recursive --depth 1
sources/go-llama.cpp/libbinding.a: sources/go-llama.cpp
$(MAKE) -C sources/go-llama.cpp BUILD_TYPE=$(STABLE_BUILD_TYPE) libbinding.a
## bark.cpp
sources/bark.cpp:
git clone --recursive $(BARKCPP_REPO) sources/bark.cpp && \
cd sources/bark.cpp && \
git checkout $(BARKCPP_VERSION) && \
git submodule update --init --recursive --depth 1 --single-branch
sources/bark.cpp/build/libbark.a: sources/bark.cpp
cd sources/bark.cpp && \
mkdir -p build && \
cd build && \
cmake $(CMAKE_ARGS) .. && \
cmake --build . --config Release
backend/go/bark/libbark.a: sources/bark.cpp/build/libbark.a
$(MAKE) -C backend/go/bark libbark.a
## go-piper
sources/go-piper:
mkdir -p sources/go-piper
cd sources/go-piper && \
git init && \
git remote add origin $(PIPER_REPO) && \
git fetch origin && \
git checkout $(PIPER_VERSION) && \
git submodule update --init --recursive --depth 1 --single-branch
git clone --recurse-submodules https://github.com/mudler/go-piper sources/go-piper
cd sources/go-piper && git checkout -b build $(PIPER_VERSION) && git submodule update --init --recursive --depth 1
sources/go-piper/libpiper_binding.a: sources/go-piper
$(MAKE) -C sources/go-piper libpiper_binding.a example/main piper.o
## stable diffusion (onnx)
## GPT4ALL
sources/gpt4all:
git clone --recurse-submodules $(GPT4ALL_REPO) sources/gpt4all
cd sources/gpt4all && git checkout -b build $(GPT4ALL_VERSION) && git submodule update --init --recursive --depth 1
sources/gpt4all/gpt4all-bindings/golang/libgpt4all.a: sources/gpt4all
$(MAKE) -C sources/gpt4all/gpt4all-bindings/golang/ libgpt4all.a
## RWKV
sources/go-rwkv.cpp:
git clone --recurse-submodules $(RWKV_REPO) sources/go-rwkv.cpp
cd sources/go-rwkv.cpp && git checkout -b build $(RWKV_VERSION) && git submodule update --init --recursive --depth 1
sources/go-rwkv.cpp/librwkv.a: sources/go-rwkv.cpp
cd sources/go-rwkv.cpp && cd rwkv.cpp && cmake . -DRWKV_BUILD_SHARED_LIBRARY=OFF && cmake --build . && cp librwkv.a ..
## stable diffusion
sources/go-stable-diffusion:
mkdir -p sources/go-stable-diffusion
cd sources/go-stable-diffusion && \
git init && \
git remote add origin $(STABLEDIFFUSION_REPO) && \
git fetch origin && \
git checkout $(STABLEDIFFUSION_VERSION) && \
git submodule update --init --recursive --depth 1 --single-branch
git clone --recurse-submodules https://github.com/mudler/go-stable-diffusion sources/go-stable-diffusion
cd sources/go-stable-diffusion && git checkout -b build $(STABLEDIFFUSION_VERSION) && git submodule update --init --recursive --depth 1
sources/go-stable-diffusion/libstablediffusion.a: sources/go-stable-diffusion
CPATH="$(CPATH):/usr/include/opencv4" $(MAKE) -C sources/go-stable-diffusion libstablediffusion.a
## stablediffusion (ggml)
sources/stablediffusion-ggml.cpp:
git clone --recursive $(STABLEDIFFUSION_GGML_REPO) sources/stablediffusion-ggml.cpp && \
cd sources/stablediffusion-ggml.cpp && \
git checkout $(STABLEDIFFUSION_GGML_VERSION) && \
git submodule update --init --recursive --depth 1 --single-branch
sources/stablediffusion-ggml.cpp/build/libstable-diffusion.a: sources/stablediffusion-ggml.cpp
cd sources/stablediffusion-ggml.cpp && \
mkdir -p build && \
cd build && \
cmake $(CMAKE_ARGS) .. && \
cmake --build . --config Release
backend/go/image/stablediffusion-ggml/libsd.a: sources/stablediffusion-ggml.cpp/build/libstable-diffusion.a
$(MAKE) -C backend/go/image/stablediffusion-ggml libsd.a
backend-assets/grpc/stablediffusion-ggml: backend/go/image/stablediffusion-ggml/libsd.a backend-assets/grpc
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(CURDIR)/backend/go/image/stablediffusion-ggml/ LIBRARY_PATH=$(CURDIR)/backend/go/image/stablediffusion-ggml/ \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/stablediffusion-ggml ./backend/go/image/stablediffusion-ggml/
ifneq ($(UPX),)
$(UPX) backend-assets/grpc/stablediffusion-ggml
endif
sources/onnxruntime:
mkdir -p sources/onnxruntime
curl -L https://github.com/microsoft/onnxruntime/releases/download/v$(ONNX_VERSION)/onnxruntime-$(ONNX_OS)-$(ONNX_ARCH)-$(ONNX_VERSION).tgz -o sources/onnxruntime/onnxruntime-$(ONNX_OS)-$(ONNX_ARCH)-$(ONNX_VERSION).tgz
cd sources/onnxruntime && tar -xvf onnxruntime-$(ONNX_OS)-$(ONNX_ARCH)-$(ONNX_VERSION).tgz && rm onnxruntime-$(ONNX_OS)-$(ONNX_ARCH)-$(ONNX_VERSION).tgz
cd sources/onnxruntime && mv onnxruntime-$(ONNX_OS)-$(ONNX_ARCH)-$(ONNX_VERSION)/* ./
backend-assets/lib/libonnxruntime.so.1: backend-assets/lib sources/onnxruntime
cp -rfv sources/onnxruntime/lib/* backend-assets/lib/
ifeq ($(OS),Darwin)
mv backend-assets/lib/libonnxruntime.$(ONNX_VERSION).dylib backend-assets/lib/libonnxruntime.dylib
else
mv backend-assets/lib/libonnxruntime.so.$(ONNX_VERSION) backend-assets/lib/libonnxruntime.so.1
endif
## tiny-dream
sources/go-tiny-dream:
mkdir -p sources/go-tiny-dream
cd sources/go-tiny-dream && \
git init && \
git remote add origin $(TINYDREAM_REPO) && \
git fetch origin && \
git checkout $(TINYDREAM_VERSION) && \
git submodule update --init --recursive --depth 1 --single-branch
git clone --recurse-submodules https://github.com/M0Rf30/go-tiny-dream sources/go-tiny-dream
cd sources/go-tiny-dream && git checkout -b build $(TINYDREAM_VERSION) && git submodule update --init --recursive --depth 1
sources/go-tiny-dream/libtinydream.a: sources/go-tiny-dream
$(MAKE) -C sources/go-tiny-dream libtinydream.a
## whisper
sources/whisper.cpp:
mkdir -p sources/whisper.cpp
cd sources/whisper.cpp && \
git init && \
git remote add origin $(WHISPER_REPO) && \
git fetch origin && \
git checkout $(WHISPER_CPP_VERSION) && \
git submodule update --init --recursive --depth 1 --single-branch
git clone https://github.com/ggerganov/whisper.cpp sources/whisper.cpp
cd sources/whisper.cpp && git checkout -b build $(WHISPER_CPP_VERSION) && git submodule update --init --recursive --depth 1
sources/whisper.cpp/libwhisper.a: sources/whisper.cpp
cd sources/whisper.cpp && $(MAKE) libwhisper.a libggml.a
cd sources/whisper.cpp && $(MAKE) libwhisper.a
get-sources: sources/go-llama.cpp sources/go-piper sources/stablediffusion-ggml.cpp sources/bark.cpp sources/whisper.cpp sources/go-stable-diffusion sources/go-tiny-dream backend/cpp/llama/llama.cpp
get-sources: sources/go-llama.cpp sources/gpt4all sources/go-piper sources/go-rwkv.cpp sources/whisper.cpp sources/go-bert.cpp sources/go-stable-diffusion sources/go-tiny-dream
replace:
$(GOCMD) mod edit -replace github.com/donomii/go-rwkv.cpp=$(CURDIR)/sources/go-rwkv.cpp
$(GOCMD) mod edit -replace github.com/ggerganov/whisper.cpp=$(CURDIR)/sources/whisper.cpp
$(GOCMD) mod edit -replace github.com/ggerganov/whisper.cpp/bindings/go=$(CURDIR)/sources/whisper.cpp/bindings/go
$(GOCMD) mod edit -replace github.com/go-skynet/go-bert.cpp=$(CURDIR)/sources/go-bert.cpp
$(GOCMD) mod edit -replace github.com/M0Rf30/go-tiny-dream=$(CURDIR)/sources/go-tiny-dream
$(GOCMD) mod edit -replace github.com/mudler/go-piper=$(CURDIR)/sources/go-piper
$(GOCMD) mod edit -replace github.com/mudler/go-stable-diffusion=$(CURDIR)/sources/go-stable-diffusion
$(GOCMD) mod edit -replace github.com/nomic-ai/gpt4all/gpt4all-bindings/golang=$(CURDIR)/sources/gpt4all/gpt4all-bindings/golang
$(GOCMD) mod edit -replace github.com/go-skynet/go-llama.cpp=$(CURDIR)/sources/go-llama.cpp
dropreplace:
$(GOCMD) mod edit -dropreplace github.com/donomii/go-rwkv.cpp
$(GOCMD) mod edit -dropreplace github.com/ggerganov/whisper.cpp
$(GOCMD) mod edit -dropreplace github.com/ggerganov/whisper.cpp/bindings/go
$(GOCMD) mod edit -dropreplace github.com/go-skynet/go-bert.cpp
$(GOCMD) mod edit -dropreplace github.com/M0Rf30/go-tiny-dream
$(GOCMD) mod edit -dropreplace github.com/mudler/go-piper
$(GOCMD) mod edit -dropreplace github.com/mudler/go-stable-diffusion
$(GOCMD) mod edit -dropreplace github.com/nomic-ai/gpt4all/gpt4all-bindings/golang
$(GOCMD) mod edit -dropreplace github.com/go-skynet/go-llama.cpp
prepare-sources: get-sources replace
@@ -384,8 +281,11 @@ prepare-sources: get-sources replace
rebuild: ## Rebuilds the project
$(GOCMD) clean -cache
$(MAKE) -C sources/go-llama.cpp clean
$(MAKE) -C sources/gpt4all/gpt4all-bindings/golang/ clean
$(MAKE) -C sources/go-rwkv.cpp clean
$(MAKE) -C sources/whisper.cpp clean
$(MAKE) -C sources/go-stable-diffusion clean
$(MAKE) -C sources/go-bert.cpp clean
$(MAKE) -C sources/go-piper clean
$(MAKE) -C sources/go-tiny-dream clean
$(MAKE) build
@@ -400,9 +300,7 @@ clean: ## Remove build related file
rm -rf release/
rm -rf backend-assets/*
$(MAKE) -C backend/cpp/grpc clean
$(MAKE) -C backend/go/bark clean
$(MAKE) -C backend/cpp/llama clean
$(MAKE) -C backend/go/image/stablediffusion-ggml clean
rm -rf backend/cpp/llama-* || true
$(MAKE) dropreplace
$(MAKE) protogen-clean
@@ -413,49 +311,40 @@ clean-tests:
rm -rf test-dir
rm -rf core/http/backend-assets
clean-dc: clean
cp -r /build/backend-assets /workspace/backend-assets
## Build:
build: prepare backend-assets grpcs ## Build the project
$(info ${GREEN}I local-ai build info:${RESET})
$(info ${GREEN}I BUILD_TYPE: ${YELLOW}$(BUILD_TYPE)${RESET})
$(info ${GREEN}I GO_TAGS: ${YELLOW}$(GO_TAGS)${RESET})
$(info ${GREEN}I LD_FLAGS: ${YELLOW}$(LD_FLAGS)${RESET})
$(info ${GREEN}I UPX: ${YELLOW}$(UPX)${RESET})
ifneq ($(BACKEND_LIBS),)
$(MAKE) backend-assets/lib
cp -f $(BACKEND_LIBS) backend-assets/lib/
cp $(BACKEND_LIBS) backend-assets/lib/
endif
CGO_LDFLAGS="$(CGO_LDFLAGS)" $(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o $(BINARY_NAME) ./
build-minimal:
BUILD_GRPC_FOR_BACKEND_LLAMA=true GRPC_BACKENDS="backend-assets/grpc/llama-cpp-avx2" GO_TAGS=p2p $(MAKE) build
BUILD_GRPC_FOR_BACKEND_LLAMA=true GRPC_BACKENDS="backend-assets/grpc/llama-cpp-avx2" GO_TAGS=none $(MAKE) build
build-api:
BUILD_GRPC_FOR_BACKEND_LLAMA=true BUILD_API_ONLY=true GO_TAGS=p2p $(MAKE) build
BUILD_GRPC_FOR_BACKEND_LLAMA=true BUILD_API_ONLY=true GO_TAGS=none $(MAKE) build
backend-assets/lib:
mkdir -p backend-assets/lib
dist:
$(MAKE) backend-assets/grpc/llama-cpp-avx2
ifeq ($(DETECT_LIBS),true)
scripts/prepare-libs.sh backend-assets/grpc/llama-cpp-avx2
endif
ifeq ($(OS),Darwin)
BUILD_TYPE=none $(MAKE) backend-assets/grpc/llama-cpp-fallback
$(info ${GREEN}I Skip CUDA/hipblas build on MacOS${RESET})
else
ifneq ($(ARCH),arm64)
$(MAKE) backend-assets/grpc/llama-cpp-cuda
$(MAKE) backend-assets/grpc/llama-cpp-hipblas
$(MAKE) backend-assets/grpc/llama-cpp-sycl_f16
$(MAKE) backend-assets/grpc/llama-cpp-sycl_f32
endif
GO_TAGS="tts p2p" $(MAKE) build
ifeq ($(DETECT_LIBS),true)
scripts/prepare-libs.sh backend-assets/grpc/piper
endif
GO_TAGS="tts p2p" STATIC=true $(MAKE) build
STATIC=true $(MAKE) build
mkdir -p release
# if BUILD_ID is empty, then we don't append it to the binary name
ifeq ($(BUILD_ID),)
@@ -466,8 +355,8 @@ else
shasum -a 256 release/$(BINARY_NAME)-$(BUILD_ID)-$(OS)-$(ARCH) > release/$(BINARY_NAME)-$(BUILD_ID)-$(OS)-$(ARCH).sha256
endif
dist-cross-linux-arm64:
CMAKE_ARGS="$(CMAKE_ARGS) -DGGML_NATIVE=off" GRPC_BACKENDS="backend-assets/grpc/llama-cpp-fallback backend-assets/grpc/llama-cpp-grpc backend-assets/util/llama-cpp-rpc-server" GO_TAGS="p2p" \
dist-cross-linux-arm64:
CMAKE_ARGS="$(CMAKE_ARGS) -DGGML_NATIVE=off" GRPC_BACKENDS="backend-assets/grpc/llama-cpp-fallback backend-assets/grpc/llama-cpp-grpc backend-assets/util/llama-cpp-rpc-server" \
STATIC=true $(MAKE) build
mkdir -p release
# if BUILD_ID is empty, then we don't append it to the binary name
@@ -493,6 +382,8 @@ test-models/testmodel.ggml:
wget -q https://huggingface.co/ggerganov/whisper.cpp/resolve/main/ggml-base.en.bin -O test-models/whisper-en
wget -q https://huggingface.co/mudler/all-MiniLM-L6-v2/resolve/main/ggml-model-q4_0.bin -O test-models/bert
wget -q https://cdn.openai.com/whisper/draft-20220913a/micro-machines.wav -O test-dir/audio.wav
wget -q https://huggingface.co/mudler/rwkv-4-raven-1.5B-ggml/resolve/main/RWKV-4-Raven-1B5-v11-Eng99%2525-Other1%2525-20230425-ctx4096_Q4_0.bin -O test-models/rwkv
wget -q https://raw.githubusercontent.com/saharNooby/rwkv.cpp/5eb8f09c146ea8124633ab041d9ea0b1f1db4459/rwkv/20B_tokenizer.json -O test-models/rwkv.tokenizer.json
cp tests/models_fixtures/* test-models
prepare-test: grpcs
@@ -504,7 +395,8 @@ test: prepare test-models/testmodel.ggml grpcs
export GO_TAGS="tts stablediffusion debug"
$(MAKE) prepare-test
HUGGINGFACE_GRPC=$(abspath ./)/backend/python/sentencetransformers/run.sh TEST_DIR=$(abspath ./)/test-dir/ FIXTURES=$(abspath ./)/tests/fixtures CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models \
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="!llama && !llama-gguf" --flake-attempts $(TEST_FLAKES) --fail-fast -v -r $(TEST_PATHS)
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="!gpt4all && !llama && !llama-gguf" --flake-attempts $(TEST_FLAKES) --fail-fast -v -r $(TEST_PATHS)
$(MAKE) test-gpt4all
$(MAKE) test-llama
$(MAKE) test-llama-gguf
$(MAKE) test-tts
@@ -514,46 +406,50 @@ prepare-e2e:
mkdir -p $(TEST_DIR)
cp -rfv $(abspath ./tests/e2e-fixtures)/gpu.yaml $(TEST_DIR)/gpu.yaml
test -e $(TEST_DIR)/ggllm-test-model.bin || wget -q https://huggingface.co/TheBloke/CodeLlama-7B-Instruct-GGUF/resolve/main/codellama-7b-instruct.Q2_K.gguf -O $(TEST_DIR)/ggllm-test-model.bin
docker build --build-arg GRPC_BACKENDS="$(GRPC_BACKENDS)" --build-arg IMAGE_TYPE=core --build-arg BUILD_TYPE=$(BUILD_TYPE) --build-arg CUDA_MAJOR_VERSION=12 --build-arg CUDA_MINOR_VERSION=0 --build-arg FFMPEG=true -t localai-tests .
docker build --build-arg GRPC_BACKENDS="$(GRPC_BACKENDS)" --build-arg IMAGE_TYPE=core --build-arg BUILD_TYPE=$(BUILD_TYPE) --build-arg CUDA_MAJOR_VERSION=12 --build-arg CUDA_MINOR_VERSION=5 --build-arg FFMPEG=true -t localai-tests .
run-e2e-image:
ls -liah $(abspath ./tests/e2e-fixtures)
docker run -p 5390:8080 -e MODELS_PATH=/models -e THREADS=1 -e DEBUG=true -d --rm -v $(TEST_DIR):/models --gpus all --name e2e-tests-$(RANDOM) localai-tests
run-e2e-aio: protogen-go
run-e2e-aio:
@echo 'Running e2e AIO tests'
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --flake-attempts $(TEST_FLAKES) -v -r ./tests/e2e-aio
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --flake-attempts 5 -v -r ./tests/e2e-aio
test-e2e:
@echo 'Running e2e tests'
BUILD_TYPE=$(BUILD_TYPE) \
LOCALAI_API=http://$(E2E_BRIDGE_IP):5390/v1 \
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --flake-attempts $(TEST_FLAKES) -v -r ./tests/e2e
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --flake-attempts 5 -v -r ./tests/e2e
teardown-e2e:
rm -rf $(TEST_DIR) || true
docker stop $$(docker ps -q --filter ancestor=localai-tests)
test-gpt4all: prepare-test
TEST_DIR=$(abspath ./)/test-dir/ FIXTURES=$(abspath ./)/tests/fixtures CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models \
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="gpt4all" --flake-attempts 5 -v -r $(TEST_PATHS)
test-llama: prepare-test
TEST_DIR=$(abspath ./)/test-dir/ FIXTURES=$(abspath ./)/tests/fixtures CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models \
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="llama" --flake-attempts $(TEST_FLAKES) -v -r $(TEST_PATHS)
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="llama" --flake-attempts 5 -v -r $(TEST_PATHS)
test-llama-gguf: prepare-test
TEST_DIR=$(abspath ./)/test-dir/ FIXTURES=$(abspath ./)/tests/fixtures CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models \
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="llama-gguf" --flake-attempts $(TEST_FLAKES) -v -r $(TEST_PATHS)
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="llama-gguf" --flake-attempts 5 -v -r $(TEST_PATHS)
test-tts: prepare-test
TEST_DIR=$(abspath ./)/test-dir/ FIXTURES=$(abspath ./)/tests/fixtures CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models \
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="tts" --flake-attempts $(TEST_FLAKES) -v -r $(TEST_PATHS)
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="tts" --flake-attempts 1 -v -r $(TEST_PATHS)
test-stablediffusion: prepare-test
TEST_DIR=$(abspath ./)/test-dir/ FIXTURES=$(abspath ./)/tests/fixtures CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models \
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="stablediffusion" --flake-attempts $(TEST_FLAKES) -v -r $(TEST_PATHS)
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="stablediffusion" --flake-attempts 1 -v -r $(TEST_PATHS)
test-stores: backend-assets/grpc/local-store
mkdir -p tests/integration/backend-assets/grpc
cp -f backend-assets/grpc/local-store tests/integration/backend-assets/grpc/
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="stores" --flake-attempts $(TEST_FLAKES) -v -r tests/integration
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="stores" --flake-attempts 1 -v -r tests/integration
test-container:
docker build --target requirements -t local-ai-test-container .
@@ -589,10 +485,10 @@ protogen-go-clean:
$(RM) bin/*
.PHONY: protogen-python
protogen-python: autogptq-protogen bark-protogen coqui-protogen diffusers-protogen exllama2-protogen mamba-protogen rerankers-protogen sentencetransformers-protogen transformers-protogen parler-tts-protogen transformers-musicgen-protogen vall-e-x-protogen vllm-protogen openvoice-protogen
protogen-python: autogptq-protogen bark-protogen coqui-protogen diffusers-protogen exllama-protogen exllama2-protogen mamba-protogen petals-protogen rerankers-protogen sentencetransformers-protogen transformers-protogen parler-tts-protogen transformers-musicgen-protogen vall-e-x-protogen vllm-protogen openvoice-protogen
.PHONY: protogen-python-clean
protogen-python-clean: autogptq-protogen-clean bark-protogen-clean coqui-protogen-clean diffusers-protogen-clean exllama2-protogen-clean mamba-protogen-clean sentencetransformers-protogen-clean rerankers-protogen-clean transformers-protogen-clean transformers-musicgen-protogen-clean parler-tts-protogen-clean vall-e-x-protogen-clean vllm-protogen-clean openvoice-protogen-clean
protogen-python-clean: autogptq-protogen-clean bark-protogen-clean coqui-protogen-clean diffusers-protogen-clean exllama-protogen-clean exllama2-protogen-clean mamba-protogen-clean petals-protogen-clean sentencetransformers-protogen-clean rerankers-protogen-clean transformers-protogen-clean transformers-musicgen-protogen-clean parler-tts-protogen-clean vall-e-x-protogen-clean vllm-protogen-clean openvoice-protogen-clean
.PHONY: autogptq-protogen
autogptq-protogen:
@@ -626,6 +522,14 @@ diffusers-protogen:
diffusers-protogen-clean:
$(MAKE) -C backend/python/diffusers protogen-clean
.PHONY: exllama-protogen
exllama-protogen:
$(MAKE) -C backend/python/exllama protogen
.PHONY: exllama-protogen-clean
exllama-protogen-clean:
$(MAKE) -C backend/python/exllama protogen-clean
.PHONY: exllama2-protogen
exllama2-protogen:
$(MAKE) -C backend/python/exllama2 protogen
@@ -642,6 +546,14 @@ mamba-protogen:
mamba-protogen-clean:
$(MAKE) -C backend/python/mamba protogen-clean
.PHONY: petals-protogen
petals-protogen:
$(MAKE) -C backend/python/petals protogen
.PHONY: petals-protogen-clean
petals-protogen-clean:
$(MAKE) -C backend/python/petals protogen-clean
.PHONY: rerankers-protogen
rerankers-protogen:
$(MAKE) -C backend/python/rerankers protogen
@@ -722,6 +634,8 @@ prepare-extra-conda-environments: protogen-python
$(MAKE) -C backend/python/parler-tts
$(MAKE) -C backend/python/vall-e-x
$(MAKE) -C backend/python/openvoice
$(MAKE) -C backend/python/exllama
$(MAKE) -C backend/python/petals
$(MAKE) -C backend/python/exllama2
prepare-test-extra: protogen-python
@@ -742,14 +656,25 @@ backend-assets/espeak-ng-data: sources/go-piper sources/go-piper/libpiper_bindin
mkdir -p backend-assets/espeak-ng-data
@cp -rf sources/go-piper/piper-phonemize/pi/share/espeak-ng-data/. backend-assets/espeak-ng-data
backend-assets/gpt4all: sources/gpt4all sources/gpt4all/gpt4all-bindings/golang/libgpt4all.a
mkdir -p backend-assets/gpt4all
@cp sources/gpt4all/gpt4all-bindings/golang/buildllm/*.so backend-assets/gpt4all/ || true
@cp sources/gpt4all/gpt4all-bindings/golang/buildllm/*.dylib backend-assets/gpt4all/ || true
@cp sources/gpt4all/gpt4all-bindings/golang/buildllm/*.dll backend-assets/gpt4all/ || true
backend-assets/grpc: protogen-go replace
mkdir -p backend-assets/grpc
backend-assets/grpc/bert-embeddings: sources/go-bert.cpp sources/go-bert.cpp/libgobert.a backend-assets/grpc
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(CURDIR)/sources/go-bert.cpp LIBRARY_PATH=$(CURDIR)/sources/go-bert.cpp \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/bert-embeddings ./backend/go/llm/bert/
backend-assets/grpc/gpt4all: sources/gpt4all sources/gpt4all/gpt4all-bindings/golang/libgpt4all.a backend-assets/gpt4all backend-assets/grpc
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(CURDIR)/sources/gpt4all/gpt4all-bindings/golang/ LIBRARY_PATH=$(CURDIR)/sources/gpt4all/gpt4all-bindings/golang/ \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/gpt4all ./backend/go/llm/gpt4all/
backend-assets/grpc/huggingface: backend-assets/grpc
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/huggingface ./backend/go/llm/langchain/
ifneq ($(UPX),)
$(UPX) backend-assets/grpc/huggingface
endif
backend/cpp/llama/llama.cpp:
LLAMA_VERSION=$(CPPLLAMA_VERSION) $(MAKE) -C backend/cpp/llama llama.cpp
@@ -777,63 +702,67 @@ else
endif
# This target is for manually building a variant with-auto detected flags
backend-assets/grpc/llama-cpp: backend-assets/grpc backend/cpp/llama/llama.cpp
backend-assets/grpc/llama-cpp: backend-assets/grpc
cp -rf backend/cpp/llama backend/cpp/llama-cpp
$(MAKE) -C backend/cpp/llama-cpp purge
$(info ${GREEN}I llama-cpp build info:avx2${RESET})
$(MAKE) VARIANT="llama-cpp" build-llama-cpp-grpc-server
cp -rfv backend/cpp/llama-cpp/grpc-server backend-assets/grpc/llama-cpp
backend-assets/grpc/llama-cpp-avx2: backend-assets/grpc backend/cpp/llama/llama.cpp
backend-assets/grpc/llama-cpp-avx2: backend-assets/grpc
cp -rf backend/cpp/llama backend/cpp/llama-avx2
$(MAKE) -C backend/cpp/llama-avx2 purge
$(info ${GREEN}I llama-cpp build info:avx2${RESET})
CMAKE_ARGS="$(CMAKE_ARGS) -DGGML_AVX=on -DGGML_AVX2=on -DGGML_AVX512=off -DGGML_FMA=on -DGGML_F16C=on" $(MAKE) VARIANT="llama-avx2" build-llama-cpp-grpc-server
cp -rfv backend/cpp/llama-avx2/grpc-server backend-assets/grpc/llama-cpp-avx2
backend-assets/grpc/llama-cpp-avx: backend-assets/grpc backend/cpp/llama/llama.cpp
backend-assets/grpc/llama-cpp-avx: backend-assets/grpc
cp -rf backend/cpp/llama backend/cpp/llama-avx
$(MAKE) -C backend/cpp/llama-avx purge
$(info ${GREEN}I llama-cpp build info:avx${RESET})
CMAKE_ARGS="$(CMAKE_ARGS) -DGGML_AVX=on -DGGML_AVX2=off -DGGML_AVX512=off -DGGML_FMA=off -DGGML_F16C=off" $(MAKE) VARIANT="llama-avx" build-llama-cpp-grpc-server
cp -rfv backend/cpp/llama-avx/grpc-server backend-assets/grpc/llama-cpp-avx
backend-assets/grpc/llama-cpp-fallback: backend-assets/grpc backend/cpp/llama/llama.cpp
backend-assets/grpc/llama-cpp-fallback: backend-assets/grpc
cp -rf backend/cpp/llama backend/cpp/llama-fallback
$(MAKE) -C backend/cpp/llama-fallback purge
$(info ${GREEN}I llama-cpp build info:fallback${RESET})
CMAKE_ARGS="$(CMAKE_ARGS) -DGGML_AVX=off -DGGML_AVX2=off -DGGML_AVX512=off -DGGML_FMA=off -DGGML_F16C=off" $(MAKE) VARIANT="llama-fallback" build-llama-cpp-grpc-server
cp -rfv backend/cpp/llama-fallback/grpc-server backend-assets/grpc/llama-cpp-fallback
# TODO: every binary should have its own folder instead, so can have different metal implementations
ifeq ($(BUILD_TYPE),metal)
cp backend/cpp/llama-fallback/llama.cpp/build/bin/default.metallib backend-assets/grpc/
endif
backend-assets/grpc/llama-cpp-cuda: backend-assets/grpc backend/cpp/llama/llama.cpp
backend-assets/grpc/llama-cpp-cuda: backend-assets/grpc
cp -rf backend/cpp/llama backend/cpp/llama-cuda
$(MAKE) -C backend/cpp/llama-cuda purge
$(info ${GREEN}I llama-cpp build info:cuda${RESET})
CMAKE_ARGS="$(CMAKE_ARGS) -DGGML_AVX=on -DGGML_AVX2=off -DGGML_AVX512=off -DGGML_FMA=off -DGGML_F16C=off -DGGML_CUDA=ON" $(MAKE) VARIANT="llama-cuda" build-llama-cpp-grpc-server
cp -rfv backend/cpp/llama-cuda/grpc-server backend-assets/grpc/llama-cpp-cuda
backend-assets/grpc/llama-cpp-hipblas: backend-assets/grpc backend/cpp/llama/llama.cpp
backend-assets/grpc/llama-cpp-hipblas: backend-assets/grpc
cp -rf backend/cpp/llama backend/cpp/llama-hipblas
$(MAKE) -C backend/cpp/llama-hipblas purge
$(info ${GREEN}I llama-cpp build info:hipblas${RESET})
CMAKE_ARGS="$(CMAKE_ARGS) -DGGML_AVX=off -DGGML_AVX2=off -DGGML_AVX512=off -DGGML_FMA=off -DGGML_F16C=off" BUILD_TYPE="hipblas" $(MAKE) VARIANT="llama-hipblas" build-llama-cpp-grpc-server
BUILD_TYPE="hipblas" $(MAKE) VARIANT="llama-hipblas" build-llama-cpp-grpc-server
cp -rfv backend/cpp/llama-hipblas/grpc-server backend-assets/grpc/llama-cpp-hipblas
backend-assets/grpc/llama-cpp-sycl_f16: backend-assets/grpc backend/cpp/llama/llama.cpp
backend-assets/grpc/llama-cpp-sycl_f16: backend-assets/grpc
cp -rf backend/cpp/llama backend/cpp/llama-sycl_f16
$(MAKE) -C backend/cpp/llama-sycl_f16 purge
$(info ${GREEN}I llama-cpp build info:sycl_f16${RESET})
BUILD_TYPE="sycl_f16" $(MAKE) VARIANT="llama-sycl_f16" build-llama-cpp-grpc-server
cp -rfv backend/cpp/llama-sycl_f16/grpc-server backend-assets/grpc/llama-cpp-sycl_f16
backend-assets/grpc/llama-cpp-sycl_f32: backend-assets/grpc backend/cpp/llama/llama.cpp
backend-assets/grpc/llama-cpp-sycl_f32: backend-assets/grpc
cp -rf backend/cpp/llama backend/cpp/llama-sycl_f32
$(MAKE) -C backend/cpp/llama-sycl_f32 purge
$(info ${GREEN}I llama-cpp build info:sycl_f32${RESET})
BUILD_TYPE="sycl_f32" $(MAKE) VARIANT="llama-sycl_f32" build-llama-cpp-grpc-server
cp -rfv backend/cpp/llama-sycl_f32/grpc-server backend-assets/grpc/llama-cpp-sycl_f32
backend-assets/grpc/llama-cpp-grpc: backend-assets/grpc backend/cpp/llama/llama.cpp
backend-assets/grpc/llama-cpp-grpc: backend-assets/grpc
cp -rf backend/cpp/llama backend/cpp/llama-grpc
$(MAKE) -C backend/cpp/llama-grpc purge
$(info ${GREEN}I llama-cpp build info:grpc${RESET})
@@ -847,57 +776,29 @@ backend-assets/util/llama-cpp-rpc-server: backend-assets/grpc/llama-cpp-grpc
backend-assets/grpc/llama-ggml: sources/go-llama.cpp sources/go-llama.cpp/libbinding.a backend-assets/grpc
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(CURDIR)/sources/go-llama.cpp LIBRARY_PATH=$(CURDIR)/sources/go-llama.cpp \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/llama-ggml ./backend/go/llm/llama-ggml/
ifneq ($(UPX),)
$(UPX) backend-assets/grpc/llama-ggml
endif
backend-assets/grpc/bark-cpp: backend/go/bark/libbark.a backend-assets/grpc
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(CURDIR)/backend/go/bark/ LIBRARY_PATH=$(CURDIR)/backend/go/bark/ \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/bark-cpp ./backend/go/bark/
ifneq ($(UPX),)
$(UPX) backend-assets/grpc/bark-cpp
endif
backend-assets/grpc/piper: sources/go-piper sources/go-piper/libpiper_binding.a backend-assets/grpc backend-assets/espeak-ng-data
CGO_CXXFLAGS="$(PIPER_CGO_CXXFLAGS)" CGO_LDFLAGS="$(PIPER_CGO_LDFLAGS)" LIBRARY_PATH=$(CURDIR)/sources/go-piper \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/piper ./backend/go/tts/
ifneq ($(UPX),)
$(UPX) backend-assets/grpc/piper
endif
backend-assets/grpc/rwkv: sources/go-rwkv.cpp sources/go-rwkv.cpp/librwkv.a backend-assets/grpc
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(CURDIR)/sources/go-rwkv.cpp LIBRARY_PATH=$(CURDIR)/sources/go-rwkv.cpp \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/rwkv ./backend/go/llm/rwkv
backend-assets/grpc/stablediffusion: sources/go-stable-diffusion sources/go-stable-diffusion/libstablediffusion.a backend-assets/grpc
CGO_LDFLAGS="$(CGO_LDFLAGS)" CPATH="$(CPATH):$(CURDIR)/sources/go-stable-diffusion/:/usr/include/opencv4" LIBRARY_PATH=$(CURDIR)/sources/go-stable-diffusion/ \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/stablediffusion ./backend/go/image/stablediffusion
ifneq ($(UPX),)
$(UPX) backend-assets/grpc/stablediffusion
endif
backend-assets/grpc/silero-vad: backend-assets/grpc backend-assets/lib/libonnxruntime.so.1
CGO_LDFLAGS="$(CGO_LDFLAGS)" CPATH="$(CPATH):$(CURDIR)/sources/onnxruntime/include/" LIBRARY_PATH=$(CURDIR)/backend-assets/lib \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/silero-vad ./backend/go/vad/silero
ifneq ($(UPX),)
$(UPX) backend-assets/grpc/silero-vad
endif
backend-assets/grpc/tinydream: sources/go-tiny-dream sources/go-tiny-dream/libtinydream.a backend-assets/grpc
CGO_LDFLAGS="$(CGO_LDFLAGS)" LIBRARY_PATH=$(CURDIR)/go-tiny-dream \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/tinydream ./backend/go/image/tinydream
ifneq ($(UPX),)
$(UPX) backend-assets/grpc/tinydream
endif
backend-assets/grpc/whisper: sources/whisper.cpp sources/whisper.cpp/libwhisper.a backend-assets/grpc
CGO_LDFLAGS="$(CGO_LDFLAGS) $(CGO_LDFLAGS_WHISPER)" C_INCLUDE_PATH="$(CURDIR)/sources/whisper.cpp/include:$(CURDIR)/sources/whisper.cpp/ggml/include" LIBRARY_PATH=$(CURDIR)/sources/whisper.cpp \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/whisper ./backend/go/transcribe/whisper
ifneq ($(UPX),)
$(UPX) backend-assets/grpc/whisper
endif
CGO_LDFLAGS="$(CGO_LDFLAGS) $(CGO_LDFLAGS_WHISPER)" C_INCLUDE_PATH=$(CURDIR)/sources/whisper.cpp LIBRARY_PATH=$(CURDIR)/sources/whisper.cpp \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/whisper ./backend/go/transcribe/
backend-assets/grpc/local-store: backend-assets/grpc
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/local-store ./backend/go/stores/
ifneq ($(UPX),)
$(UPX) backend-assets/grpc/local-store
endif
grpcs: prepare $(GRPC_BACKENDS)
@@ -939,7 +840,7 @@ docker-aio-all:
docker-image-intel:
docker build \
--build-arg BASE_IMAGE=intel/oneapi-basekit:2025.0.0-0-devel-ubuntu22.04 \
--build-arg BASE_IMAGE=intel/oneapi-basekit:2024.1.0-devel-ubuntu22.04 \
--build-arg IMAGE_TYPE=$(IMAGE_TYPE) \
--build-arg GO_TAGS="none" \
--build-arg MAKEFLAGS="$(DOCKER_MAKEFLAGS)" \
@@ -947,7 +848,7 @@ docker-image-intel:
docker-image-intel-xpu:
docker build \
--build-arg BASE_IMAGE=intel/oneapi-basekit:2025.0.0-0-devel-ubuntu22.04 \
--build-arg BASE_IMAGE=intel/oneapi-basekit:2024.1.0-devel-ubuntu22.04 \
--build-arg IMAGE_TYPE=$(IMAGE_TYPE) \
--build-arg GO_TAGS="none" \
--build-arg MAKEFLAGS="$(DOCKER_MAKEFLAGS)" \
@@ -962,7 +863,7 @@ gen-assets:
$(GOCMD) run core/dependencies_manager/manager.go embedded/webui_static.yaml core/http/static/assets
## Documentation
docs/layouts/_default:
docs/layouts/_default:
mkdir -p docs/layouts/_default
docs/static/gallery.html: docs/layouts/_default
@@ -977,4 +878,4 @@ docs-clean:
.PHONY: docs
docs: docs/static/gallery.html
cd docs && hugo serve
cd docs && hugo serve

View File

@@ -38,13 +38,9 @@
</a>
</p>
<p align="center">
<a href="https://trendshift.io/repositories/1484" target="_blank"><img src="https://trendshift.io/api/badge/repositories/1484" alt="go-skynet%2FLocalAI | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/></a>
</p>
> :bulb: Get help - [❓FAQ](https://localai.io/faq/) [💭Discussions](https://github.com/go-skynet/LocalAI/discussions) [:speech_balloon: Discord](https://discord.gg/uJAeKSAGDy) [:book: Documentation website](https://localai.io/)
>
> [💻 Quickstart](https://localai.io/basics/getting_started/) [🖼️ Models](https://models.localai.io/) [🚀 Roadmap](https://github.com/mudler/LocalAI/issues?q=is%3Aissue+is%3Aopen+label%3Aroadmap) [🥽 Demo](https://demo.localai.io) [🌍 Explorer](https://explorer.localai.io) [🛫 Examples](https://github.com/mudler/LocalAI-examples)
> [💻 Quickstart](https://localai.io/basics/getting_started/) [📣 News](https://localai.io/basics/news/) [ 🛫 Examples ](https://github.com/go-skynet/LocalAI/tree/master/examples/) [ 🖼️ Models ](https://localai.io/models/) [ 🚀 Roadmap ](https://github.com/mudler/LocalAI/issues?q=is%3Aissue+is%3Aopen+label%3Aroadmap)
[![tests](https://github.com/go-skynet/LocalAI/actions/workflows/test.yml/badge.svg)](https://github.com/go-skynet/LocalAI/actions/workflows/test.yml)[![Build and Release](https://github.com/go-skynet/LocalAI/actions/workflows/release.yaml/badge.svg)](https://github.com/go-skynet/LocalAI/actions/workflows/release.yaml)[![build container images](https://github.com/go-skynet/LocalAI/actions/workflows/image.yml/badge.svg)](https://github.com/go-skynet/LocalAI/actions/workflows/image.yml)[![Bump dependencies](https://github.com/go-skynet/LocalAI/actions/workflows/bump_deps.yaml/badge.svg)](https://github.com/go-skynet/LocalAI/actions/workflows/bump_deps.yaml)[![Artifact Hub](https://img.shields.io/endpoint?url=https://artifacthub.io/badge/repository/localai)](https://artifacthub.io/packages/search?repo=localai)
@@ -60,67 +56,38 @@ curl https://localai.io/install.sh | sh
Or run with docker:
```bash
# CPU only image:
docker run -ti --name local-ai -p 8080:8080 localai/localai:latest-cpu
# Nvidia GPU:
docker run -ti --name local-ai -p 8080:8080 --gpus all localai/localai:latest-gpu-nvidia-cuda-12
# CPU and GPU image (bigger size):
docker run -ti --name local-ai -p 8080:8080 localai/localai:latest
# AIO images (it will pre-download a set of models ready for use, see https://localai.io/basics/container/)
docker run -ti --name local-ai -p 8080:8080 localai/localai:latest-aio-cpu
```
To load models:
```bash
# From the model gallery (see available models with `local-ai models list`, in the WebUI from the model tab, or visiting https://models.localai.io)
local-ai run llama-3.2-1b-instruct:q4_k_m
# Start LocalAI with the phi-2 model directly from huggingface
local-ai run huggingface://TheBloke/phi-2-GGUF/phi-2.Q8_0.gguf
# Install and run a model from the Ollama OCI registry
local-ai run ollama://gemma:2b
# Run a model from a configuration file
local-ai run https://gist.githubusercontent.com/.../phi-2.yaml
# Install and run a model from a standard OCI registry (e.g., Docker Hub)
local-ai run oci://localai/phi-2:latest
# Alternative images:
# - if you have an Nvidia GPU:
# docker run -ti --name local-ai -p 8080:8080 --gpus all localai/localai:latest-aio-gpu-nvidia-cuda-12
# - without preconfigured models
# docker run -ti --name local-ai -p 8080:8080 localai/localai:latest
# - without preconfigured models for Nvidia GPUs
# docker run -ti --name local-ai -p 8080:8080 --gpus all localai/localai:latest-gpu-nvidia-cuda-12
```
[💻 Getting started](https://localai.io/basics/getting_started/index.html)
## 📰 Latest project news
## 🔥🔥 Hot topics / Roadmap
- Dec 2024: stablediffusion.cpp backend (ggml) added ( https://github.com/mudler/LocalAI/pull/4289 )
- Nov 2024: Bark.cpp backend added ( https://github.com/mudler/LocalAI/pull/4287 )
- Nov 2024: Voice activity detection models (**VAD**) added to the API: https://github.com/mudler/LocalAI/pull/4204
- Oct 2024: examples moved to [LocalAI-examples](https://github.com/mudler/LocalAI-examples)
- Aug 2024: 🆕 FLUX-1, [P2P Explorer](https://explorer.localai.io)
- July 2024: 🔥🔥 🆕 P2P Dashboard, LocalAI Federated mode and AI Swarms: https://github.com/mudler/LocalAI/pull/2723
- June 2024: 🆕 You can browse now the model gallery without LocalAI! Check out https://models.localai.io
- June 2024: Support for models from OCI registries: https://github.com/mudler/LocalAI/pull/2628
- May 2024: 🔥🔥 Decentralized P2P llama.cpp: https://github.com/mudler/LocalAI/pull/2343 (peer2peer llama.cpp!) 👉 Docs https://localai.io/features/distribute/
- May 2024: 🔥🔥 Openvoice: https://github.com/mudler/LocalAI/pull/2334
- May 2024: 🆕 Function calls without grammars and mixed mode: https://github.com/mudler/LocalAI/pull/2328
- May 2024: 🔥🔥 Distributed inferencing: https://github.com/mudler/LocalAI/pull/2324
- May 2024: Chat, TTS, and Image generation in the WebUI: https://github.com/mudler/LocalAI/pull/2222
- April 2024: Reranker API: https://github.com/mudler/LocalAI/pull/2121
[Roadmap](https://github.com/mudler/LocalAI/issues?q=is%3Aissue+is%3Aopen+label%3Aroadmap)
Roadmap items: [List of issues](https://github.com/mudler/LocalAI/issues?q=is%3Aissue+is%3Aopen+label%3Aroadmap)
- 🆕 You can browse now the model gallery without LocalAI! Check out https://models.localai.io
- 🔥🔥 Decentralized llama.cpp: https://github.com/mudler/LocalAI/pull/2343 (peer2peer llama.cpp!) 👉 Docs https://localai.io/features/distribute/
- 🔥🔥 Openvoice: https://github.com/mudler/LocalAI/pull/2334
- 🆕 Function calls without grammars and mixed mode: https://github.com/mudler/LocalAI/pull/2328
- 🔥🔥 Distributed inferencing: https://github.com/mudler/LocalAI/pull/2324
- Chat, TTS, and Image generation in the WebUI: https://github.com/mudler/LocalAI/pull/2222
- Reranker API: https://github.com/mudler/LocalAI/pull/2121
## 🔥🔥 Hot topics (looking for help):
Hot topics (looking for contributors):
- Multimodal with vLLM and Video understanding: https://github.com/mudler/LocalAI/pull/3729
- Realtime API https://github.com/mudler/LocalAI/issues/3714
- 🔥🔥 Distributed, P2P Global community pools: https://github.com/mudler/LocalAI/issues/3113
- WebUI improvements: https://github.com/mudler/LocalAI/issues/2156
- Backends v2: https://github.com/mudler/LocalAI/issues/1126
- Improving UX v2: https://github.com/mudler/LocalAI/issues/1373
- Assistant API: https://github.com/mudler/LocalAI/issues/1273
- Moderation endpoint: https://github.com/mudler/LocalAI/issues/999
- Vulkan: https://github.com/mudler/LocalAI/issues/1647
- Anthropic API: https://github.com/mudler/LocalAI/issues/1808
If you want to help and contribute, issues up for grabs: https://github.com/mudler/LocalAI/issues?q=is%3Aissue+is%3Aopen+label%3A%22up+for+grabs%22
@@ -137,7 +104,6 @@ If you want to help and contribute, issues up for grabs: https://github.com/mudl
- 🥽 [Vision API](https://localai.io/features/gpt-vision/)
- 📈 [Reranker API](https://localai.io/features/reranker/)
- 🆕🖧 [P2P Inferencing](https://localai.io/features/distribute/)
- 🌍 Integrated WebUI!
## 💻 Usage
@@ -166,10 +132,6 @@ Other:
- Slack bot https://github.com/mudler/LocalAGI/tree/main/examples/slack
- Shell-Pilot(Interact with LLM using LocalAI models via pure shell scripts on your Linux or MacOS system) https://github.com/reid41/shell-pilot
- Telegram bot https://github.com/mudler/LocalAI/tree/master/examples/telegram-bot
- Another Telegram Bot https://github.com/JackBekket/Hellper
- Auto-documentation https://github.com/JackBekket/Reflexia
- Github bot which answer on issues, with code and documentation as context https://github.com/JackBekket/GitHelper
- Github Actions: https://github.com/marketplace/actions/start-localai
- Examples: https://github.com/mudler/LocalAI/tree/master/examples/
@@ -183,7 +145,6 @@ Other:
## :book: 🎥 [Media, Blogs, Social](https://localai.io/basics/news/#media-blogs-social)
- [Run Visual studio code with LocalAI (SUSE)](https://www.suse.com/c/running-ai-locally/)
- 🆕 [Run LocalAI on Jetson Nano Devkit](https://mudler.pm/posts/local-ai-jetson-nano-devkit/)
- [Run LocalAI on AWS EKS with Pulumi](https://www.pulumi.com/blog/low-code-llm-apps-with-local-ai-flowise-and-pulumi/)
- [Run LocalAI on AWS](https://staleks.hashnode.dev/installing-localai-on-aws-ec2-instance)
@@ -243,6 +204,7 @@ LocalAI couldn't have been built without the help of great software already avai
- https://github.com/antimatter15/alpaca.cpp
- https://github.com/EdVince/Stable-Diffusion-NCNN
- https://github.com/ggerganov/whisper.cpp
- https://github.com/saharNooby/rwkv.cpp
- https://github.com/rhasspy/piper
## 🤗 Contributors

View File

@@ -1,7 +1,7 @@
name: text-embedding-ada-002
embeddings: true
backend: bert-embeddings
parameters:
model: huggingface://hugging-quants/Llama-3.2-1B-Instruct-Q4_K_M-GGUF/llama-3.2-1b-instruct-q4_k_m.gguf
model: huggingface://mudler/all-MiniLM-L6-v2/ggml-model-q4_0.bin
usage: |
You can test this model with curl like this:

View File

@@ -2,7 +2,7 @@ backend: llama-cpp
context_size: 4096
f16: true
mmap: true
name: gpt-4o
name: gpt-4-vision-preview
roles:
user: "USER:"

View File

@@ -2,7 +2,7 @@ backend: llama-cpp
context_size: 4096
f16: true
mmap: true
name: gpt-4o
name: gpt-4-vision-preview
roles:
user: "USER:"

View File

@@ -1,6 +1,6 @@
name: stablediffusion
parameters:
model: Lykon/dreamshaper-8
model: runwayml/stable-diffusion-v1-5
backend: diffusers
step: 25
f16: true

View File

@@ -2,7 +2,7 @@ backend: llama-cpp
context_size: 4096
mmap: false
f16: false
name: gpt-4o
name: gpt-4-vision-preview
roles:
user: "USER:"

View File

@@ -16,7 +16,6 @@ service Backend {
rpc GenerateImage(GenerateImageRequest) returns (Result) {}
rpc AudioTranscription(TranscriptRequest) returns (TranscriptResult) {}
rpc TTS(TTSRequest) returns (Result) {}
rpc SoundGeneration(SoundGenerationRequest) returns (Result) {}
rpc TokenizeString(PredictOptions) returns (TokenizationResponse) {}
rpc Status(HealthMessage) returns (StatusResponse) {}
@@ -26,21 +25,6 @@ service Backend {
rpc StoresFind(StoresFindOptions) returns (StoresFindResult) {}
rpc Rerank(RerankRequest) returns (RerankResult) {}
rpc GetMetrics(MetricsRequest) returns (MetricsResponse);
rpc VAD(VADRequest) returns (VADResponse) {}
}
// Define the empty request
message MetricsRequest {}
message MetricsResponse {
int32 slot_id = 1;
string prompt_json_for_slot = 2; // Stores the prompt as a JSON string.
float tokens_per_second = 3;
int32 tokens_generated = 4;
int32 prompt_tokens_processed = 5;
}
message RerankRequest {
@@ -149,9 +133,6 @@ message PredictOptions {
repeated string Images = 42;
bool UseTokenizerTemplate = 43;
repeated Message Messages = 44;
repeated string Videos = 45;
repeated string Audios = 46;
string CorrelationId = 47;
}
// The response message containing the result
@@ -221,7 +202,6 @@ message ModelOptions {
int32 SwapSpace = 53;
int32 MaxModelLen = 54;
int32 TensorParallelSize = 55;
string LoadFormat = 58;
string MMProj = 41;
@@ -235,13 +215,6 @@ message ModelOptions {
bool FlashAttention = 56;
bool NoKVOffload = 57;
string ModelPath = 59;
repeated string LoraAdapters = 60;
repeated float LoraScales = 61;
repeated string Options = 62;
}
message Result {
@@ -297,30 +270,6 @@ message TTSRequest {
optional string language = 5;
}
message VADRequest {
repeated float audio = 1;
}
message VADSegment {
float start = 1;
float end = 2;
}
message VADResponse {
repeated VADSegment segments = 1;
}
message SoundGenerationRequest {
string text = 1;
string model = 2;
string dst = 3;
optional float duration = 4;
optional float temperature = 5;
optional bool sample = 6;
optional string src = 7;
optional int32 src_divisor = 8;
}
message TokenizationResponse {
int32 length = 1;
repeated int32 tokens = 2;

View File

@@ -46,14 +46,9 @@ endif
$(INSTALLED_PACKAGES): grpc_build
$(GRPC_REPO):
mkdir -p $(GRPC_REPO)/grpc
cd $(GRPC_REPO)/grpc && \
git init && \
git remote add origin $(GIT_REPO_LIB_GRPC) && \
git fetch origin && \
git checkout $(TAG_LIB_GRPC) && \
git submodule update --init --recursive --depth 1 --single-branch
git clone --depth $(GIT_CLONE_DEPTH) -b $(TAG_LIB_GRPC) $(GIT_REPO_LIB_GRPC) $(GRPC_REPO)/grpc
cd $(GRPC_REPO)/grpc && git submodule update --jobs 2 --init --recursive --depth $(GIT_CLONE_DEPTH)
$(GRPC_BUILD): $(GRPC_REPO)
mkdir -p $(GRPC_BUILD)
cd $(GRPC_BUILD) && cmake $(CMAKE_ARGS) ../$(GRPC_REPO)/grpc && cmake --build . && cmake --build . --target install

View File

@@ -1,6 +1,5 @@
LLAMA_VERSION?=
LLAMA_REPO?=https://github.com/ggerganov/llama.cpp
CMAKE_ARGS?=
BUILD_TYPE?=
@@ -22,7 +21,7 @@ else ifeq ($(BUILD_TYPE),clblas)
CMAKE_ARGS+=-DGGML_CLBLAST=ON -DCLBlast_DIR=/some/path
# If it's hipblas we do have also to set CC=/opt/rocm/llvm/bin/clang CXX=/opt/rocm/llvm/bin/clang++
else ifeq ($(BUILD_TYPE),hipblas)
CMAKE_ARGS+=-DGGML_HIP=ON
CMAKE_ARGS+=-DGGML_HIPBLAS=ON
# If it's OSX, DO NOT embed the metal library - -DGGML_METAL_EMBED_LIBRARY=ON requires further investigation
# But if it's OSX without metal, disable it here
else ifeq ($(OS),Darwin)
@@ -30,7 +29,9 @@ else ifeq ($(OS),Darwin)
CMAKE_ARGS+=-DGGML_METAL=OFF
else
CMAKE_ARGS+=-DGGML_METAL=ON
CMAKE_ARGS+=-DGGML_METAL_EMBED_LIBRARY=ON
# Until this is tested properly, we disable embedded metal file
# as we already embed it as part of the LocalAI assets
CMAKE_ARGS+=-DGGML_METAL_EMBED_LIBRARY=OFF
TARGET+=--target ggml-metal
endif
endif
@@ -44,13 +45,11 @@ ifeq ($(BUILD_TYPE),sycl_f32)
endif
llama.cpp:
mkdir -p llama.cpp
cd llama.cpp && \
git init && \
git remote add origin $(LLAMA_REPO) && \
git fetch origin && \
git checkout -b build $(LLAMA_VERSION) && \
git submodule update --init --recursive --depth 1 --single-branch
git clone --recurse-submodules https://github.com/ggerganov/llama.cpp llama.cpp
if [ -z "$(LLAMA_VERSION)" ]; then \
exit 1; \
fi
cd llama.cpp && git checkout -b build $(LLAMA_VERSION) && git submodule update --init --recursive --depth 1
llama.cpp/examples/grpc-server: llama.cpp
mkdir -p llama.cpp/examples/grpc-server
@@ -72,9 +71,9 @@ clean: purge
grpc-server: llama.cpp llama.cpp/examples/grpc-server
@echo "Building grpc-server with $(BUILD_TYPE) build type and $(CMAKE_ARGS)"
ifneq (,$(findstring sycl,$(BUILD_TYPE)))
+bash -c "source $(ONEAPI_VARS); \
bash -c "source $(ONEAPI_VARS); \
cd llama.cpp && mkdir -p build && cd build && cmake .. $(CMAKE_ARGS) && cmake --build . --config Release $(TARGET)"
else
+cd llama.cpp && mkdir -p build && cd build && cmake .. $(CMAKE_ARGS) && cmake --build . --config Release $(TARGET)
cd llama.cpp && mkdir -p build && cd build && cmake .. $(CMAKE_ARGS) && cmake --build . --config Release $(TARGET)
endif
cp llama.cpp/build/bin/grpc-server .

View File

@@ -13,15 +13,15 @@
#include <getopt.h>
#include "clip.h"
#include "llava.h"
#include "log.h"
#include "stb_image.h"
#include "common.h"
#include "json.hpp"
#include "llama.h"
#include "grammar-parser.h"
#include "backend.pb.h"
#include "backend.grpc.pb.h"
#include "utils.hpp"
#include "sampling.h"
// include std::regex
#include <cstddef>
#include <thread>
@@ -113,7 +113,7 @@ static std::string tokens_to_str(llama_context *ctx, Iter begin, Iter end)
std::string ret;
for (; begin != end; ++begin)
{
ret += common_token_to_piece(ctx, *begin);
ret += llama_token_to_piece(ctx, *begin);
}
return ret;
}
@@ -121,7 +121,7 @@ static std::string tokens_to_str(llama_context *ctx, Iter begin, Iter end)
// format incomplete utf-8 multibyte character for output
static std::string tokens_to_output_formatted_string(const llama_context *ctx, const llama_token token)
{
std::string out = token == -1 ? "" : common_token_to_piece(ctx, token);
std::string out = token == -1 ? "" : llama_token_to_piece(ctx, token);
// if the size is 1 and first bit is 1, meaning it's a partial character
// (size > 1 meaning it's already a known token)
if (out.size() == 1 && (out[0] & 0x80) == 0x80)
@@ -203,8 +203,8 @@ struct llama_client_slot
std::string stopping_word;
// sampling
struct common_params_sampling sparams;
common_sampler *ctx_sampling = nullptr;
struct llama_sampling_params sparams;
llama_sampling_context *ctx_sampling = nullptr;
int32_t ga_i = 0; // group-attention state
int32_t ga_n = 1; // group-attention factor
@@ -257,7 +257,7 @@ struct llama_client_slot
images.clear();
}
bool has_budget(common_params &global_params) {
bool has_budget(gpt_params &global_params) {
if (params.n_predict == -1 && global_params.n_predict == -1)
{
return true; // limitless
@@ -391,39 +391,6 @@ struct llama_metrics {
}
};
struct llava_embd_batch {
std::vector<llama_pos> pos;
std::vector<int32_t> n_seq_id;
std::vector<llama_seq_id> seq_id_0;
std::vector<llama_seq_id *> seq_ids;
std::vector<int8_t> logits;
llama_batch batch;
llava_embd_batch(float * embd, int32_t n_tokens, llama_pos pos_0, llama_seq_id seq_id) {
pos .resize(n_tokens);
n_seq_id.resize(n_tokens);
seq_ids .resize(n_tokens + 1);
logits .resize(n_tokens);
seq_id_0.resize(1);
seq_id_0[0] = seq_id;
seq_ids [n_tokens] = nullptr;
batch = {
/*n_tokens =*/ n_tokens,
/*tokens =*/ nullptr,
/*embd =*/ embd,
/*pos =*/ pos.data(),
/*n_seq_id =*/ n_seq_id.data(),
/*seq_id =*/ seq_ids.data(),
/*logits =*/ logits.data(),
};
for (int i = 0; i < n_tokens; i++) {
batch.pos [i] = pos_0 + i;
batch.n_seq_id[i] = 1;
batch.seq_id [i] = seq_id_0.data();
batch.logits [i] = false;
}
}
};
struct llama_server_context
{
llama_model *model = nullptr;
@@ -431,7 +398,7 @@ struct llama_server_context
clip_ctx *clp_ctx = nullptr;
common_params params;
gpt_params params;
llama_batch batch;
@@ -474,7 +441,7 @@ struct llama_server_context
}
}
bool load_model(const common_params &params_)
bool load_model(const gpt_params &params_)
{
params = params_;
if (!params.mmproj.empty()) {
@@ -482,7 +449,7 @@ struct llama_server_context
LOG_INFO("Multi Modal Mode Enabled", {});
clp_ctx = clip_model_load(params.mmproj.c_str(), /*verbosity=*/ 1);
if(clp_ctx == nullptr) {
LOG_ERR("unable to load clip model: %s", params.mmproj.c_str());
LOG_ERROR("unable to load clip model", {{"model", params.mmproj}});
return false;
}
@@ -491,12 +458,10 @@ struct llama_server_context
}
}
common_init_result common_init = common_init_from_params(params);
model = common_init.model;
ctx = common_init.context;
std::tie(model, ctx) = llama_init_from_gpt_params(params);
if (model == nullptr)
{
LOG_ERR("unable to load model: %s", params.model.c_str());
LOG_ERROR("unable to load model", {{"model", params.model}});
return false;
}
@@ -504,7 +469,7 @@ struct llama_server_context
const int n_embd_clip = clip_n_mmproj_embd(clp_ctx);
const int n_embd_llm = llama_n_embd(model);
if (n_embd_clip != n_embd_llm) {
LOG("%s: embedding dim of the multimodal projector (%d) is not equal to that of LLaMA (%d). Make sure that you use the correct mmproj file.\n", __func__, n_embd_clip, n_embd_llm);
LOG_TEE("%s: embedding dim of the multimodal projector (%d) is not equal to that of LLaMA (%d). Make sure that you use the correct mmproj file.\n", __func__, n_embd_clip, n_embd_llm);
llama_free(ctx);
llama_free_model(model);
return false;
@@ -513,7 +478,7 @@ struct llama_server_context
n_ctx = llama_n_ctx(ctx);
add_bos_token = llama_add_bos_token(model);
add_bos_token = llama_should_add_bos_token(model);
return true;
}
@@ -523,21 +488,11 @@ struct llama_server_context
std::vector<char> buf(1);
int res = llama_chat_apply_template(model, nullptr, chat, 1, true, buf.data(), buf.size());
if (res < 0) {
LOG_ERR("The chat template comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses", __func__);
LOG_ERROR("The chat template comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses", {});
sparams.chat_template = "<|im_start|>"; // llama_chat_apply_template only checks if <|im_start|> exist in the template
}
}
llama_client_slot* get_active_slot() {
for (llama_client_slot& slot : slots) {
// Check if the slot is currently processing
if (slot.is_processing()) {
return &slot; // Return the active slot
}
}
return nullptr; // No active slot found
}
void initialize() {
// create slots
all_slots_are_idle = true;
@@ -611,12 +566,12 @@ struct llama_server_context
std::vector<llama_token> p;
if (first)
{
p = common_tokenize(ctx, s, add_bos, TMP_FORCE_SPECIAL);
p = ::llama_tokenize(ctx, s, add_bos, TMP_FORCE_SPECIAL);
first = false;
}
else
{
p = common_tokenize(ctx, s, false, TMP_FORCE_SPECIAL);
p = ::llama_tokenize(ctx, s, false, TMP_FORCE_SPECIAL);
}
prompt_tokens.insert(prompt_tokens.end(), p.begin(), p.end());
}
@@ -633,7 +588,7 @@ struct llama_server_context
else
{
auto s = json_prompt.template get<std::string>();
prompt_tokens = common_tokenize(ctx, s, add_bos, TMP_FORCE_SPECIAL);
prompt_tokens = ::llama_tokenize(ctx, s, add_bos, TMP_FORCE_SPECIAL);
}
return prompt_tokens;
@@ -662,7 +617,7 @@ struct llama_server_context
bool launch_slot_with_data(llama_client_slot* &slot, json data) {
slot_params default_params;
common_params_sampling default_sparams;
llama_sampling_params default_sparams;
slot->params.stream = json_value(data, "stream", false);
slot->params.cache_prompt = json_value(data, "cache_prompt", false);
@@ -670,7 +625,8 @@ struct llama_server_context
slot->sparams.top_k = json_value(data, "top_k", default_sparams.top_k);
slot->sparams.top_p = json_value(data, "top_p", default_sparams.top_p);
slot->sparams.min_p = json_value(data, "min_p", default_sparams.min_p);
slot->sparams.typ_p = json_value(data, "typical_p", default_sparams.typ_p);
slot->sparams.tfs_z = json_value(data, "tfs_z", default_sparams.tfs_z);
slot->sparams.typical_p = json_value(data, "typical_p", default_sparams.typical_p);
slot->sparams.temp = json_value(data, "temperature", default_sparams.temp);
slot->sparams.dynatemp_range = json_value(data, "dynatemp_range", default_sparams.dynatemp_range);
slot->sparams.dynatemp_exponent = json_value(data, "dynatemp_exponent", default_sparams.dynatemp_exponent);
@@ -683,7 +639,7 @@ struct llama_server_context
slot->sparams.mirostat_eta = json_value(data, "mirostat_eta", default_sparams.mirostat_eta);
slot->sparams.penalize_nl = json_value(data, "penalize_nl", default_sparams.penalize_nl);
slot->params.n_keep = json_value(data, "n_keep", slot->params.n_keep);
slot->sparams.seed = json_value(data, "seed", default_sparams.seed);
slot->params.seed = json_value(data, "seed", default_params.seed);
slot->sparams.grammar = json_value(data, "grammar", default_sparams.grammar);
slot->sparams.n_probs = json_value(data, "n_probs", default_sparams.n_probs);
slot->sparams.min_keep = json_value(data, "min_keep", default_sparams.min_keep);
@@ -707,7 +663,6 @@ struct llama_server_context
slot->params.input_prefix = "";
}
if (data.count("input_suffix") != 0)
{
slot->params.input_suffix = data["input_suffix"];
@@ -726,10 +681,6 @@ struct llama_server_context
slot->prompt = "";
}
if (json_value(data, "ignore_eos", false)) {
slot->sparams.logit_bias.push_back({llama_token_eos(model), -INFINITY});
}
/*
slot->sparams.penalty_prompt_tokens.clear();
slot->sparams.use_penalty_prompt_tokens = false;
const auto &penalty_prompt = data.find("penalty_prompt");
@@ -765,10 +716,14 @@ struct llama_server_context
slot->sparams.use_penalty_prompt_tokens = true;
}
}
*/
slot->sparams.logit_bias.clear();
if (json_value(data, "ignore_eos", false))
{
slot->sparams.logit_bias[llama_token_eos(model)] = -INFINITY;
}
const auto &logit_bias = data.find("logit_bias");
if (logit_bias != data.end() && logit_bias->is_array())
{
@@ -796,21 +751,21 @@ struct llama_server_context
llama_token tok = el[0].get<llama_token>();
if (tok >= 0 && tok < n_vocab)
{
slot->sparams.logit_bias.push_back({tok, bias});
slot->sparams.logit_bias[tok] = bias;
}
}
else if (el[0].is_string())
{
auto toks = common_tokenize(model, el[0].get<std::string>(), false);
auto toks = llama_tokenize(model, el[0].get<std::string>(), false);
for (auto tok : toks)
{
slot->sparams.logit_bias.push_back({tok, bias});
slot->sparams.logit_bias[tok] = bias;
}
}
}
}
}
slot->params.antiprompt.clear();
const auto &stop = data.find("stop");
@@ -824,22 +779,24 @@ struct llama_server_context
}
}
}
const auto & samplers = data.find("samplers");
if (samplers != data.end() && samplers->is_array()) {
const auto &samplers_sequence = data.find("samplers");
if (samplers_sequence != data.end() && samplers_sequence->is_array())
{
std::vector<std::string> sampler_names;
for (const auto & name : *samplers) {
if (name.is_string()) {
sampler_names.emplace_back(name);
}
for (const auto &sampler_name : *samplers_sequence)
{
if (sampler_name.is_string())
{
sampler_names.emplace_back(sampler_name);
}
slot->sparams.samplers = common_sampler_types_from_names(sampler_names, false);
}
slot->sparams.samplers_sequence = llama_sampling_types_from_names(sampler_names, false);
}
else
{
slot->sparams.samplers = default_sparams.samplers;
slot->sparams.samplers_sequence = default_sparams.samplers_sequence;
}
if (multimodal)
{
@@ -855,11 +812,10 @@ struct llama_server_context
img_sl.img_data = clip_image_u8_init();
if (!clip_image_load_from_bytes(image_buffer.data(), image_buffer.size(), img_sl.img_data))
{
LOG_ERR("%s: failed to load image, slot_id: %d, img_sl_id: %d",
__func__,
slot->id,
img_sl.id
);
LOG_ERROR("failed to load image", {
{"slot_id", slot->id},
{"img_sl_id", img_sl.id}
});
return false;
}
LOG_VERBOSE("image loaded", {
@@ -897,12 +853,12 @@ struct llama_server_context
}
}
if (!found) {
LOG("ERROR: Image with id: %i, not found.\n", img_id);
LOG_TEE("ERROR: Image with id: %i, not found.\n", img_id);
slot->images.clear();
return false;
}
} catch (const std::invalid_argument& e) {
LOG("Invalid image number id in prompt\n");
LOG_TEE("Invalid image number id in prompt\n");
slot->images.clear();
return false;
}
@@ -917,10 +873,10 @@ struct llama_server_context
if (slot->ctx_sampling != nullptr)
{
common_sampler_free(slot->ctx_sampling);
llama_sampling_free(slot->ctx_sampling);
}
slot->ctx_sampling = common_sampler_init(model, slot->sparams);
//llama_set_rng_seed(ctx, slot->params.seed);
slot->ctx_sampling = llama_sampling_init(slot->sparams);
llama_set_rng_seed(ctx, slot->params.seed);
slot->command = LOAD_PROMPT;
all_slots_are_idle = false;
@@ -930,7 +886,7 @@ struct llama_server_context
{"task_id", slot->task_id},
});
// LOG("sampling: \n%s\n", llama_sampling_print(slot->sparams).c_str());
LOG_TEE("sampling: \n%s\n", llama_sampling_print(slot->sparams).c_str());
return true;
}
@@ -946,13 +902,13 @@ struct llama_server_context
system_tokens.clear();
if (!system_prompt.empty()) {
system_tokens = common_tokenize(ctx, system_prompt, add_bos_token);
system_tokens = ::llama_tokenize(ctx, system_prompt, add_bos_token);
common_batch_clear(batch);
llama_batch_clear(batch);
for (int i = 0; i < (int)system_tokens.size(); ++i)
{
common_batch_add(batch, system_tokens[i], i, { 0 }, false);
llama_batch_add(batch, system_tokens[i], i, { 0 }, false);
}
for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += params.n_batch)
@@ -966,10 +922,11 @@ struct llama_server_context
batch.n_seq_id + i,
batch.seq_id + i,
batch.logits + i,
0, 0, 0, // unused
};
if (llama_decode(ctx, batch_view) != 0)
{
LOG("%s: llama_decode() failed\n", __func__);
LOG_TEE("%s: llama_decode() failed\n", __func__);
return;
}
}
@@ -981,7 +938,7 @@ struct llama_server_context
}
}
LOG("system prompt updated\n");
LOG_TEE("system prompt updated\n");
system_need_update = false;
}
@@ -1040,20 +997,18 @@ struct llama_server_context
bool process_token(completion_token_output &result, llama_client_slot &slot) {
// remember which tokens were sampled - used for repetition penalties during sampling
const std::string token_str = common_token_to_piece(ctx, result.tok);
const std::string token_str = llama_token_to_piece(ctx, result.tok);
slot.sampled = result.tok;
// search stop word and delete it
slot.generated_text += token_str;
slot.has_next_token = true;
/*
if (slot.ctx_sampling->params.use_penalty_prompt_tokens && result.tok != -1)
{
// we can change penalty_prompt_tokens because it is always created from scratch each request
slot.ctx_sampling->params.penalty_prompt_tokens.push_back(result.tok);
}
*/
// check if there is incomplete UTF-8 character at the end
bool incomplete = false;
@@ -1162,8 +1117,8 @@ struct llama_server_context
continue;
}
if (!llava_image_embed_make_with_clip_img(clp_ctx, params.cpuparams.n_threads, img.img_data, &img.image_embedding, &img.image_tokens)) {
LOG("Error processing the given image");
if (!llava_image_embed_make_with_clip_img(clp_ctx, params.n_threads, img.img_data, &img.image_embedding, &img.image_tokens)) {
LOG_TEE("Error processing the given image");
return false;
}
@@ -1175,7 +1130,7 @@ struct llama_server_context
void send_error(task_server& task, const std::string &error)
{
LOG("task %i - error: %s\n", task.id, error.c_str());
LOG_TEE("task %i - error: %s\n", task.id, error.c_str());
task_result res;
res.id = task.id;
res.multitask_id = task.multitask_id;
@@ -1187,11 +1142,13 @@ struct llama_server_context
json get_formated_generation(llama_client_slot &slot)
{
std::vector<std::string> samplers;
samplers.reserve(slot.sparams.samplers.size());
for (const auto & sampler : slot.sparams.samplers)
const auto eos_bias = slot.sparams.logit_bias.find(llama_token_eos(model));
const bool ignore_eos = eos_bias != slot.sparams.logit_bias.end() &&
eos_bias->second < 0.0f && std::isinf(eos_bias->second);
std::vector<std::string> samplers_sequence;
for (const auto &sampler_type : slot.sparams.samplers_sequence)
{
samplers.emplace_back(common_sampler_type_to_str(sampler));
samplers_sequence.emplace_back(llama_sampling_type_to_str(sampler_type));
}
return json {
@@ -1205,11 +1162,14 @@ struct llama_server_context
{"top_k", slot.sparams.top_k},
{"top_p", slot.sparams.top_p},
{"min_p", slot.sparams.min_p},
{"typical_p", slot.sparams.typ_p},
{"tfs_z", slot.sparams.tfs_z},
{"typical_p", slot.sparams.typical_p},
{"repeat_last_n", slot.sparams.penalty_last_n},
{"repeat_penalty", slot.sparams.penalty_repeat},
{"presence_penalty", slot.sparams.penalty_present},
{"frequency_penalty", slot.sparams.penalty_freq},
{"penalty_prompt_tokens", slot.sparams.penalty_prompt_tokens},
{"use_penalty_prompt_tokens", slot.sparams.use_penalty_prompt_tokens},
{"mirostat", slot.sparams.mirostat},
{"mirostat_tau", slot.sparams.mirostat_tau},
{"mirostat_eta", slot.sparams.mirostat_eta},
@@ -1217,13 +1177,13 @@ struct llama_server_context
{"stop", slot.params.antiprompt},
{"n_predict", slot.params.n_predict},
{"n_keep", params.n_keep},
{"ignore_eos", slot.sparams.ignore_eos},
{"ignore_eos", ignore_eos},
{"stream", slot.params.stream},
// {"logit_bias", slot.sparams.logit_bias},
{"logit_bias", slot.sparams.logit_bias},
{"n_probs", slot.sparams.n_probs},
{"min_keep", slot.sparams.min_keep},
{"grammar", slot.sparams.grammar},
{"samplers", samplers}
{"samplers", samplers_sequence}
};
}
@@ -1246,7 +1206,7 @@ struct llama_server_context
if (slot.sparams.n_probs > 0)
{
std::vector<completion_token_output> probs_output = {};
const std::vector<llama_token> to_send_toks = common_tokenize(ctx, tkn.text_to_send, false);
const std::vector<llama_token> to_send_toks = llama_tokenize(ctx, tkn.text_to_send, false);
size_t probs_pos = std::min(slot.sent_token_probs_index, slot.generated_token_probs.size());
size_t probs_stop_pos = std::min(slot.sent_token_probs_index + to_send_toks.size(), slot.generated_token_probs.size());
if (probs_pos < probs_stop_pos)
@@ -1298,7 +1258,7 @@ struct llama_server_context
std::vector<completion_token_output> probs = {};
if (!slot.params.stream && slot.stopped_word)
{
const std::vector<llama_token> stop_word_toks = common_tokenize(ctx, slot.stopping_word, false);
const std::vector<llama_token> stop_word_toks = llama_tokenize(ctx, slot.stopping_word, false);
probs = std::vector<completion_token_output>(slot.generated_token_probs.begin(), slot.generated_token_probs.end() - stop_word_toks.size());
}
else
@@ -1409,10 +1369,11 @@ struct llama_server_context
batch.n_seq_id + i,
batch.seq_id + i,
batch.logits + i,
0, 0, 0, // unused
};
if (llama_decode(ctx, batch_view))
{
LOG("%s : failed to eval\n", __func__);
LOG_TEE("%s : failed to eval\n", __func__);
return false;
}
}
@@ -1427,18 +1388,17 @@ struct llama_server_context
}
const int n_embd = llama_n_embd(model);
float * embd = img.image_embedding + i * n_embd;
llava_embd_batch llava_batch = llava_embd_batch(embd, n_eval, slot.n_past, 0);
if (llama_decode(ctx, llava_batch.batch))
llama_batch batch_img = { n_eval, nullptr, (img.image_embedding + i * n_embd), nullptr, nullptr, nullptr, nullptr, slot.n_past, 1, 0, };
if (llama_decode(ctx, batch_img))
{
LOG("%s : failed to eval image\n", __func__);
LOG_TEE("%s : failed to eval image\n", __func__);
return false;
}
slot.n_past += n_eval;
}
image_idx++;
common_batch_clear(batch);
llama_batch_clear(batch);
// append prefix of next image
const auto json_prompt = (image_idx >= (int) slot.images.size()) ?
@@ -1448,7 +1408,7 @@ struct llama_server_context
std::vector<llama_token> append_tokens = tokenize(json_prompt, false); // has next image
for (int i = 0; i < (int) append_tokens.size(); ++i)
{
common_batch_add(batch, append_tokens[i], system_tokens.size() + slot.n_past, { slot.id }, true);
llama_batch_add(batch, append_tokens[i], system_tokens.size() + slot.n_past, { slot.id }, true);
slot.n_past += 1;
}
}
@@ -1580,7 +1540,7 @@ struct llama_server_context
update_system_prompt();
}
common_batch_clear(batch);
llama_batch_clear(batch);
if (all_slots_are_idle)
{
@@ -1614,7 +1574,7 @@ struct llama_server_context
slot.n_past = 0;
slot.truncated = false;
slot.has_next_token = true;
LOG("Context exhausted. Slot %d released (%d tokens in cache)\n", slot.id, (int) slot.cache_tokens.size());
LOG_TEE("Context exhausted. Slot %d released (%d tokens in cache)\n", slot.id, (int) slot.cache_tokens.size());
continue;
// END LOCALAI changes
@@ -1658,7 +1618,7 @@ struct llama_server_context
// TODO: we always have to take into account the "system_tokens"
// this is not great and needs to be improved somehow
common_batch_add(batch, slot.sampled, system_tokens.size() + slot_npast, { slot.id }, true);
llama_batch_add(batch, slot.sampled, system_tokens.size() + slot_npast, { slot.id }, true);
slot.n_past += 1;
}
@@ -1752,7 +1712,7 @@ struct llama_server_context
if (!slot.params.cache_prompt)
{
common_sampler_reset(slot.ctx_sampling);
llama_sampling_reset(slot.ctx_sampling);
slot.n_past = 0;
slot.n_past_se = 0;
@@ -1764,7 +1724,7 @@ struct llama_server_context
// push the prompt into the sampling context (do not apply grammar)
for (auto &token : prompt_tokens)
{
common_sampler_accept(slot.ctx_sampling, token, false);
llama_sampling_accept(slot.ctx_sampling, ctx, token, false);
}
slot.n_past = common_part(slot.cache_tokens, prompt_tokens);
@@ -1856,17 +1816,16 @@ struct llama_server_context
ga_i += ga_w/ga_n;
}
}
common_batch_add(batch, prefix_tokens[slot.n_past], system_tokens.size() + slot_npast, {slot.id }, false);
llama_batch_add(batch, prefix_tokens[slot.n_past], system_tokens.size() + slot_npast, {slot.id }, false);
slot_npast++;
}
if (has_images && !ingest_images(slot, n_batch))
{
LOG_ERR("%s: failed processing images Slot id : %d, Task id: %d",
__func__,
slot.id,
slot.task_id
);
LOG_ERROR("failed processing images", {
"slot_id", slot.id,
"task_id", slot.task_id,
});
// FIXME @phymbert: to be properly tested
// early returning without changing the slot state will block the slot for ever
// no one at the moment is checking the return value
@@ -1906,10 +1865,10 @@ struct llama_server_context
const int bd = (slot.ga_w / slot.ga_n) * (slot.ga_n - 1);
const int dd = (slot.ga_w / slot.ga_n) - ib * bd - slot.ga_w;
LOG("\n");
LOG("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", slot.ga_i, slot.n_past_se, ib * bd, slot.ga_i + ib * bd, slot.n_past_se + ib * bd);
LOG("div: [%6d, %6d] / %6d -> [%6d, %6d]\n", slot.ga_i + ib * bd, slot.ga_i + ib * bd + slot.ga_w, slot.ga_n, (slot.ga_i + ib * bd) / slot.ga_n, (slot.ga_i + ib * bd + slot.ga_w) / slot.ga_n);
LOG("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", slot.ga_i + ib * bd + slot.ga_w, slot.n_past_se + ib * bd, dd, slot.ga_i + ib * bd + slot.ga_w + dd, slot.n_past_se + ib * bd + dd);
LOG_TEE("\n");
LOG_TEE("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", slot.ga_i, slot.n_past_se, ib * bd, slot.ga_i + ib * bd, slot.n_past_se + ib * bd);
LOG_TEE("div: [%6d, %6d] / %6d -> [%6d, %6d]\n", slot.ga_i + ib * bd, slot.ga_i + ib * bd + slot.ga_w, slot.ga_n, (slot.ga_i + ib * bd) / slot.ga_n, (slot.ga_i + ib * bd + slot.ga_w) / slot.ga_n);
LOG_TEE("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", slot.ga_i + ib * bd + slot.ga_w, slot.n_past_se + ib * bd, dd, slot.ga_i + ib * bd + slot.ga_w + dd, slot.n_past_se + ib * bd + dd);
llama_kv_cache_seq_add(ctx, slot.id, slot.ga_i, slot.n_past_se, ib * bd);
llama_kv_cache_seq_div(ctx, slot.id, slot.ga_i + ib * bd, slot.ga_i + ib * bd + slot.ga_w,slot.ga_n);
@@ -1919,7 +1878,7 @@ struct llama_server_context
slot.ga_i += slot.ga_w / slot.ga_n;
LOG("\nn_past_old = %d, n_past = %d, ga_i = %d\n\n", slot.n_past_se + bd, slot.n_past_se, slot.ga_i);
LOG_TEE("\nn_past_old = %d, n_past = %d, ga_i = %d\n\n", slot.n_past_se + bd, slot.n_past_se, slot.ga_i);
}
slot.n_past_se += n_tokens;
}
@@ -1934,6 +1893,7 @@ struct llama_server_context
batch.n_seq_id + i,
batch.seq_id + i,
batch.logits + i,
0, 0, 0, // unused
};
const int ret = llama_decode(ctx, batch_view);
@@ -1943,11 +1903,11 @@ struct llama_server_context
if (n_batch == 1 || ret < 0)
{
// if you get here, it means the KV cache is full - try increasing it via the context size
LOG("%s : failed to decode the batch, n_batch = %d, ret = %d\n", __func__, n_batch, ret);
LOG_TEE("%s : failed to decode the batch, n_batch = %d, ret = %d\n", __func__, n_batch, ret);
return false;
}
LOG("%s : failed to find free space in the KV cache, retrying with smaller n_batch = %d\n", __func__, n_batch / 2);
LOG_TEE("%s : failed to find free space in the KV cache, retrying with smaller n_batch = %d\n", __func__, n_batch / 2);
// retry with half the batch size to try to find a free slot in the KV cache
n_batch /= 2;
@@ -1972,9 +1932,9 @@ struct llama_server_context
}
completion_token_output result;
const llama_token id = common_sampler_sample(slot.ctx_sampling, ctx, slot.i_batch - i);
const llama_token id = llama_sampling_sample(slot.ctx_sampling, ctx, NULL, slot.i_batch - i);
common_sampler_accept(slot.ctx_sampling, id, true);
llama_sampling_accept(slot.ctx_sampling, ctx, id, true);
slot.n_decoded += 1;
if (slot.n_decoded == 1)
@@ -1984,14 +1944,19 @@ struct llama_server_context
metrics.on_prompt_eval(slot);
}
llama_token_data_array cur_p = { slot.ctx_sampling->cur.data(), slot.ctx_sampling->cur.size(), false };
result.tok = id;
const auto * cur_p = common_sampler_get_candidates(slot.ctx_sampling);
for (size_t i = 0; i < (size_t) slot.sparams.n_probs; ++i) {
result.probs.push_back({
cur_p->data[i].id,
i >= cur_p->size ? 0.0f : cur_p->data[i].p,
});
const int32_t n_probs = slot.sparams.n_probs;
if (slot.sparams.temp <= 0 && n_probs > 0)
{
// for llama_sample_token_greedy we need to sort candidates
llama_sample_softmax(ctx, &cur_p);
}
for (size_t i = 0; i < std::min(cur_p.size, (size_t)n_probs); ++i)
{
result.probs.push_back({cur_p.data[i].id, cur_p.data[i].p});
}
if (!process_token(result, slot))
@@ -2038,7 +2003,7 @@ static json format_partial_response(
struct token_translator
{
llama_context * ctx;
std::string operator()(llama_token tok) const { return common_token_to_piece(ctx, tok); }
std::string operator()(llama_token tok) const { return llama_token_to_piece(ctx, tok); }
std::string operator()(const completion_token_output &cto) const { return (*this)(cto.tok); }
};
@@ -2103,6 +2068,7 @@ json parse_options(bool streaming, const backend::PredictOptions* predict, llama
// slot->params.n_predict = json_value(data, "n_predict", default_params.n_predict);
// slot->sparams.top_k = json_value(data, "top_k", default_sparams.top_k);
// slot->sparams.top_p = json_value(data, "top_p", default_sparams.top_p);
// slot->sparams.tfs_z = json_value(data, "tfs_z", default_sparams.tfs_z);
// slot->sparams.typical_p = json_value(data, "typical_p", default_sparams.typical_p);
// slot->sparams.temp = json_value(data, "temperature", default_sparams.temp);
// slot->sparams.penalty_last_n = json_value(data, "repeat_last_n", default_sparams.penalty_last_n);
@@ -2126,6 +2092,7 @@ json parse_options(bool streaming, const backend::PredictOptions* predict, llama
data["n_predict"] = predict->tokens() == 0 ? -1 : predict->tokens();
data["top_k"] = predict->topk();
data["top_p"] = predict->topp();
data["tfs_z"] = predict->tailfreesamplingz();
data["typical_p"] = predict->typicalp();
data["temperature"] = predict->temperature();
data["repeat_last_n"] = predict->repeat();
@@ -2141,10 +2108,6 @@ json parse_options(bool streaming, const backend::PredictOptions* predict, llama
data["grammar"] = predict->grammar();
data["prompt"] = predict->prompt();
data["ignore_eos"] = predict->ignoreeos();
data["embeddings"] = predict->embeddings();
// Add the correlationid to json data
data["correlation_id"] = predict->correlationid();
// for each image in the request, add the image data
//
@@ -2172,6 +2135,7 @@ json parse_options(bool streaming, const backend::PredictOptions* predict, llama
// llama.params.n_predict = predict->tokens() == 0 ? -1 : predict->tokens();
// llama.params.sparams.top_k = predict->topk();
// llama.params.sparams.top_p = predict->topp();
// llama.params.sparams.tfs_z = predict->tailfreesamplingz();
// llama.params.sparams.typical_p = predict->typicalp();
// llama.params.sparams.penalty_last_n = predict->repeat();
// llama.params.sparams.temp = predict->temperature();
@@ -2229,7 +2193,7 @@ json parse_options(bool streaming, const backend::PredictOptions* predict, llama
// }
static void params_parse(const backend::ModelOptions* request,
common_params & params) {
gpt_params & params) {
// this is comparable to: https://github.com/ggerganov/llama.cpp/blob/d9b33fe95bd257b36c84ee5769cc048230067d6f/examples/server/server.cpp#L1809
@@ -2243,7 +2207,7 @@ static void params_parse(const backend::ModelOptions* request,
params.model_alias = request->modelfile();
params.n_ctx = request->contextsize();
//params.memory_f16 = request->f16memory();
params.cpuparams.n_threads = request->threads();
params.n_threads = request->threads();
params.n_gpu_layers = request->ngpulayers();
params.n_batch = request->nbatch();
// Set params.n_parallel by environment variable (LLAMA_PARALLEL), defaults to 1
@@ -2293,13 +2257,13 @@ static void params_parse(const backend::ModelOptions* request,
}
// get the directory of modelfile
std::string model_dir = params.model.substr(0, params.model.find_last_of("/\\"));
params.lora_adapters.push_back({ model_dir + "/"+request->loraadapter(), scale_factor });
params.lora_adapter.push_back(std::make_tuple(model_dir + "/"+request->loraadapter(), scale_factor));
params.lora_base = model_dir + "/"+request->lorabase();
}
params.use_mlock = request->mlock();
params.use_mmap = request->mmap();
params.flash_attn = request->flashattention();
params.no_kv_offload = request->nokvoffload();
params.ctx_shift = false; // We control context-shifting in any case (and we disable it as it could just lead to infinite loops)
params.embedding = request->embeddings();
@@ -2338,7 +2302,7 @@ public:
grpc::Status LoadModel(ServerContext* context, const backend::ModelOptions* request, backend::Result* result) {
// Implement LoadModel RPC
common_params params;
gpt_params params;
params_parse(request, params);
llama_backend_init();
@@ -2384,11 +2348,6 @@ public:
int32_t tokens_evaluated = result.result_json.value("tokens_evaluated", 0);
reply.set_prompt_tokens(tokens_evaluated);
// Log Request Correlation Id
LOG_VERBOSE("correlation:", {
{ "id", data["correlation_id"] }
});
// Send the reply
writer->Write(reply);
@@ -2412,12 +2371,6 @@ public:
std::string completion_text;
task_result result = llama.queue_results.recv(task_id);
if (!result.error && result.stop) {
// Log Request Correlation Id
LOG_VERBOSE("correlation:", {
{ "id", data["correlation_id"] }
});
completion_text = result.result_json.value("content", "");
int32_t tokens_predicted = result.result_json.value("tokens_predicted", 0);
int32_t tokens_evaluated = result.result_json.value("tokens_evaluated", 0);
@@ -2432,56 +2385,6 @@ public:
return grpc::Status::OK;
}
/// https://github.com/ggerganov/llama.cpp/blob/aa2341298924ac89778252015efcb792f2df1e20/examples/server/server.cpp#L2969
grpc::Status Embedding(ServerContext* context, const backend::PredictOptions* request, backend::EmbeddingResult* embeddingResult) {
json data = parse_options(false, request, llama);
const int task_id = llama.queue_tasks.get_new_id();
llama.queue_results.add_waiting_task_id(task_id);
llama.request_completion(task_id, { {"prompt", data["embeddings"]}, { "n_predict", 0}, {"image_data", ""} }, false, true, -1);
// get the result
task_result result = llama.queue_results.recv(task_id);
//std::cout << "Embedding result JSON" << result.result_json.dump() << std::endl;
llama.queue_results.remove_waiting_task_id(task_id);
if (!result.error && result.stop) {
std::vector<float> embeddings = result.result_json.value("embedding", std::vector<float>());
// loop the vector and set the embeddings results
for (int i = 0; i < embeddings.size(); i++) {
embeddingResult->add_embeddings(embeddings[i]);
}
}
else
{
return grpc::Status::OK;
}
return grpc::Status::OK;
}
grpc::Status GetMetrics(ServerContext* context, const backend::MetricsRequest* request, backend::MetricsResponse* response) {
llama_client_slot* active_slot = llama.get_active_slot();
if (active_slot != nullptr) {
// Calculate the tokens per second using existing logic
double tokens_per_second = 1e3 / active_slot->t_token_generation * active_slot->n_decoded;
// Populate the response with metrics
response->set_slot_id(active_slot->id);
response->set_prompt_json_for_slot(active_slot->prompt.dump());
response->set_tokens_per_second(tokens_per_second);
response->set_tokens_generated(active_slot->n_decoded);
response->set_prompt_tokens_processed(active_slot->num_prompt_tokens_processed);
} else {
// Handle case when no active slot exists
response->set_slot_id(0);
response->set_prompt_json_for_slot("");
response->set_tokens_per_second(0);
response->set_tokens_generated(0);
response->set_prompt_tokens_processed(0);
}
return grpc::Status::OK;
}
};
void RunServer(const std::string& server_address) {

View File

@@ -1,13 +0,0 @@
diff --git a/examples/llava/clip.cpp b/examples/llava/clip.cpp
index 342042ff..224db9b5 100644
--- a/examples/llava/clip.cpp
+++ b/examples/llava/clip.cpp
@@ -2419,7 +2419,7 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
struct ggml_tensor * patches = ggml_graph_get_tensor(gf, "patches");
int* patches_data = (int*)malloc(ggml_nbytes(patches));
for (int i = 0; i < num_patches; i++) {
- patches_data[i] = i + 1;
+ patches_data[i] = i;
}
ggml_backend_tensor_set(patches, patches_data, 0, ggml_nbytes(patches));
free(patches_data);

View File

@@ -1,12 +1,5 @@
#!/bin/bash
## Patches
## Apply patches from the `patches` directory
for patch in $(ls patches); do
echo "Applying patch $patch"
patch -d llama.cpp/ -p1 < patches/$patch
done
cp -r CMakeLists.txt llama.cpp/examples/grpc-server/
cp -r grpc-server.cpp llama.cpp/examples/grpc-server/
cp -rfv json.hpp llama.cpp/examples/grpc-server/

View File

@@ -480,4 +480,31 @@ static inline std::vector<uint8_t> base64_decode(const std::string & encoded_str
}
return ret;
}
//
// random string / id
//
static std::string random_string()
{
static const std::string str("0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz");
std::random_device rd;
std::mt19937 generator(rd());
std::string result(32, ' ');
for (int i = 0; i < 32; ++i) {
result[i] = str[generator() % str.size()];
}
return result;
}
static std::string gen_chatcmplid()
{
std::stringstream chatcmplid;
chatcmplid << "chatcmpl-" << random_string();
return chatcmplid.str();
}

View File

@@ -1,25 +0,0 @@
INCLUDE_PATH := $(abspath ./)
LIBRARY_PATH := $(abspath ./)
AR?=ar
BUILD_TYPE?=
# keep standard at C11 and C++11
CXXFLAGS = -I. -I$(INCLUDE_PATH)/../../../sources/bark.cpp/examples -I$(INCLUDE_PATH)/../../../sources/bark.cpp/spm-headers -I$(INCLUDE_PATH)/../../../sources/bark.cpp -O3 -DNDEBUG -std=c++17 -fPIC
LDFLAGS = -L$(LIBRARY_PATH) -L$(LIBRARY_PATH)/../../../sources/bark.cpp/build/examples -lbark -lstdc++ -lm
# warnings
CXXFLAGS += -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function
gobark.o:
$(CXX) $(CXXFLAGS) gobark.cpp -o gobark.o -c $(LDFLAGS)
libbark.a: gobark.o
cp $(INCLUDE_PATH)/../../../sources/bark.cpp/build/libbark.a ./
$(AR) rcs libbark.a gobark.o
$(AR) rcs libbark.a $(LIBRARY_PATH)/../../../sources/bark.cpp/build/encodec.cpp/ggml/src/CMakeFiles/ggml.dir/ggml.c.o
$(AR) rcs libbark.a $(LIBRARY_PATH)/../../../sources/bark.cpp/build/encodec.cpp/ggml/src/CMakeFiles/ggml.dir/ggml-alloc.c.o
$(AR) rcs libbark.a $(LIBRARY_PATH)/../../../sources/bark.cpp/build/encodec.cpp/ggml/src/CMakeFiles/ggml.dir/ggml-backend.c.o
clean:
rm -f gobark.o libbark.a

View File

@@ -1,85 +0,0 @@
#include <iostream>
#include <tuple>
#include "bark.h"
#include "gobark.h"
#include "common.h"
#include "ggml.h"
struct bark_context *c;
void bark_print_progress_callback(struct bark_context *bctx, enum bark_encoding_step step, int progress, void *user_data) {
if (step == bark_encoding_step::SEMANTIC) {
printf("\rGenerating semantic tokens... %d%%", progress);
} else if (step == bark_encoding_step::COARSE) {
printf("\rGenerating coarse tokens... %d%%", progress);
} else if (step == bark_encoding_step::FINE) {
printf("\rGenerating fine tokens... %d%%", progress);
}
fflush(stdout);
}
int load_model(char *model) {
// initialize bark context
struct bark_context_params ctx_params = bark_context_default_params();
bark_params params;
params.model_path = model;
// ctx_params.verbosity = verbosity;
ctx_params.progress_callback = bark_print_progress_callback;
ctx_params.progress_callback_user_data = nullptr;
struct bark_context *bctx = bark_load_model(params.model_path.c_str(), ctx_params, params.seed);
if (!bctx) {
fprintf(stderr, "%s: Could not load model\n", __func__);
return 1;
}
c = bctx;
return 0;
}
int tts(char *text,int threads, char *dst ) {
ggml_time_init();
const int64_t t_main_start_us = ggml_time_us();
// generate audio
if (!bark_generate_audio(c, text, threads)) {
fprintf(stderr, "%s: An error occured. If the problem persists, feel free to open an issue to report it.\n", __func__);
return 1;
}
const float *audio_data = bark_get_audio_data(c);
if (audio_data == NULL) {
fprintf(stderr, "%s: Could not get audio data\n", __func__);
return 1;
}
const int audio_arr_size = bark_get_audio_data_size(c);
std::vector<float> audio_arr(audio_data, audio_data + audio_arr_size);
write_wav_on_disk(audio_arr, dst);
// report timing
{
const int64_t t_main_end_us = ggml_time_us();
const int64_t t_load_us = bark_get_load_time(c);
const int64_t t_eval_us = bark_get_eval_time(c);
printf("\n\n");
printf("%s: load time = %8.2f ms\n", __func__, t_load_us / 1000.0f);
printf("%s: eval time = %8.2f ms\n", __func__, t_eval_us / 1000.0f);
printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us) / 1000.0f);
}
return 0;
}
int unload() {
bark_free(c);
}

View File

@@ -1,52 +0,0 @@
package main
// #cgo CXXFLAGS: -I${SRCDIR}/../../../sources/bark.cpp/ -I${SRCDIR}/../../../sources/bark.cpp/encodec.cpp -I${SRCDIR}/../../../sources/bark.cpp/examples -I${SRCDIR}/../../../sources/bark.cpp/spm-headers
// #cgo LDFLAGS: -L${SRCDIR}/ -L${SRCDIR}/../../../sources/bark.cpp/build/examples -L${SRCDIR}/../../../sources/bark.cpp/build/encodec.cpp/ -lbark -lencodec -lcommon
// #include <gobark.h>
// #include <stdlib.h>
import "C"
import (
"fmt"
"unsafe"
"github.com/mudler/LocalAI/pkg/grpc/base"
pb "github.com/mudler/LocalAI/pkg/grpc/proto"
)
type Bark struct {
base.SingleThread
threads int
}
func (sd *Bark) Load(opts *pb.ModelOptions) error {
sd.threads = int(opts.Threads)
modelFile := C.CString(opts.ModelFile)
defer C.free(unsafe.Pointer(modelFile))
ret := C.load_model(modelFile)
if ret != 0 {
return fmt.Errorf("inference failed")
}
return nil
}
func (sd *Bark) TTS(opts *pb.TTSRequest) error {
t := C.CString(opts.Text)
defer C.free(unsafe.Pointer(t))
dst := C.CString(opts.Dst)
defer C.free(unsafe.Pointer(dst))
threads := C.int(sd.threads)
ret := C.tts(t, threads, dst)
if ret != 0 {
return fmt.Errorf("inference failed")
}
return nil
}

View File

@@ -1,8 +0,0 @@
#ifdef __cplusplus
extern "C" {
#endif
int load_model(char *model);
int tts(char *text,int threads, char *dst );
#ifdef __cplusplus
}
#endif

View File

@@ -1,21 +0,0 @@
INCLUDE_PATH := $(abspath ./)
LIBRARY_PATH := $(abspath ./)
AR?=ar
BUILD_TYPE?=
# keep standard at C11 and C++11
CXXFLAGS = -I. -I$(INCLUDE_PATH)/../../../../sources/stablediffusion-ggml.cpp/thirdparty -I$(INCLUDE_PATH)/../../../../sources/stablediffusion-ggml.cpp/ggml/include -I$(INCLUDE_PATH)/../../../../sources/stablediffusion-ggml.cpp -O3 -DNDEBUG -std=c++17 -fPIC
# warnings
CXXFLAGS += -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function
gosd.o:
$(CXX) $(CXXFLAGS) gosd.cpp -o gosd.o -c
libsd.a: gosd.o
cp $(INCLUDE_PATH)/../../../../sources/stablediffusion-ggml.cpp/build/libstable-diffusion.a ./libsd.a
$(AR) rcs libsd.a gosd.o
clean:
rm -f gosd.o libsd.a

View File

@@ -1,228 +0,0 @@
#include <stdio.h>
#include <string.h>
#include <time.h>
#include <iostream>
#include <random>
#include <string>
#include <vector>
#include "gosd.h"
// #include "preprocessing.hpp"
#include "flux.hpp"
#include "stable-diffusion.h"
#define STB_IMAGE_IMPLEMENTATION
#define STB_IMAGE_STATIC
#include "stb_image.h"
#define STB_IMAGE_WRITE_IMPLEMENTATION
#define STB_IMAGE_WRITE_STATIC
#include "stb_image_write.h"
#define STB_IMAGE_RESIZE_IMPLEMENTATION
#define STB_IMAGE_RESIZE_STATIC
#include "stb_image_resize.h"
// Names of the sampler method, same order as enum sample_method in stable-diffusion.h
const char* sample_method_str[] = {
"euler_a",
"euler",
"heun",
"dpm2",
"dpm++2s_a",
"dpm++2m",
"dpm++2mv2",
"ipndm",
"ipndm_v",
"lcm",
};
// Names of the sigma schedule overrides, same order as sample_schedule in stable-diffusion.h
const char* schedule_str[] = {
"default",
"discrete",
"karras",
"exponential",
"ays",
"gits",
};
sd_ctx_t* sd_c;
sample_method_t sample_method;
int load_model(char *model, char* options[], int threads, int diff) {
fprintf (stderr, "Loading model!\n");
char *stableDiffusionModel = "";
if (diff == 1 ) {
stableDiffusionModel = model;
model = "";
}
// decode options. Options are in form optname:optvale, or if booleans only optname.
char *clip_l_path = "";
char *clip_g_path = "";
char *t5xxl_path = "";
char *vae_path = "";
char *scheduler = "";
char *sampler = "";
// If options is not NULL, parse options
for (int i = 0; options[i] != NULL; i++) {
char *optname = strtok(options[i], ":");
char *optval = strtok(NULL, ":");
if (optval == NULL) {
optval = "true";
}
if (!strcmp(optname, "clip_l_path")) {
clip_l_path = optval;
}
if (!strcmp(optname, "clip_g_path")) {
clip_g_path = optval;
}
if (!strcmp(optname, "t5xxl_path")) {
t5xxl_path = optval;
}
if (!strcmp(optname, "vae_path")) {
vae_path = optval;
}
if (!strcmp(optname, "scheduler")) {
scheduler = optval;
}
if (!strcmp(optname, "sampler")) {
sampler = optval;
}
}
int sample_method_found = -1;
for (int m = 0; m < N_SAMPLE_METHODS; m++) {
if (!strcmp(sampler, sample_method_str[m])) {
sample_method_found = m;
}
}
if (sample_method_found == -1) {
fprintf(stderr, "Invalid sample method, default to EULER_A!\n");
sample_method_found = EULER_A;
}
sample_method = (sample_method_t)sample_method_found;
int schedule_found = -1;
for (int d = 0; d < N_SCHEDULES; d++) {
if (!strcmp(scheduler, schedule_str[d])) {
schedule_found = d;
fprintf (stderr, "Found scheduler: %s\n", scheduler);
}
}
if (schedule_found == -1) {
fprintf (stderr, "Invalid scheduler! using DEFAULT\n");
schedule_found = DEFAULT;
}
schedule_t schedule = (schedule_t)schedule_found;
fprintf (stderr, "Creating context\n");
sd_ctx_t* sd_ctx = new_sd_ctx(model,
clip_l_path,
clip_g_path,
t5xxl_path,
stableDiffusionModel,
vae_path,
"",
"",
"",
"",
"",
false,
false,
false,
threads,
SD_TYPE_COUNT,
STD_DEFAULT_RNG,
schedule,
false,
false,
false,
false);
if (sd_ctx == NULL) {
fprintf (stderr, "failed loading model (generic error)\n");
return 1;
}
fprintf (stderr, "Created context: OK\n");
sd_c = sd_ctx;
return 0;
}
int gen_image(char *text, char *negativeText, int width, int height, int steps, int seed , char *dst, float cfg_scale) {
sd_image_t* results;
std::vector<int> skip_layers = {7, 8, 9};
fprintf (stderr, "Generating image\n");
results = txt2img(sd_c,
text,
negativeText,
-1, //clip_skip
cfg_scale, // sfg_scale
3.5f,
width,
height,
sample_method,
steps,
seed,
1,
NULL,
0.9f,
20.f,
false,
"",
skip_layers.data(),
skip_layers.size(),
0,
0.01,
0.2);
if (results == NULL) {
fprintf (stderr, "NO results\n");
return 1;
}
if (results[0].data == NULL) {
fprintf (stderr, "Results with no data\n");
return 1;
}
fprintf (stderr, "Writing PNG\n");
fprintf (stderr, "DST: %s\n", dst);
fprintf (stderr, "Width: %d\n", results[0].width);
fprintf (stderr, "Height: %d\n", results[0].height);
fprintf (stderr, "Channel: %d\n", results[0].channel);
fprintf (stderr, "Data: %p\n", results[0].data);
stbi_write_png(dst, results[0].width, results[0].height, results[0].channel,
results[0].data, 0, NULL);
fprintf (stderr, "Saved resulting image to '%s'\n", dst);
// TODO: free results. Why does it crash?
free(results[0].data);
results[0].data = NULL;
free(results);
fprintf (stderr, "gen_image is done", dst);
return 0;
}
int unload() {
free_sd_ctx(sd_c);
}

View File

@@ -1,96 +0,0 @@
package main
// #cgo CXXFLAGS: -I${SRCDIR}/../../../../sources/stablediffusion-ggml.cpp/thirdparty -I${SRCDIR}/../../../../sources/stablediffusion-ggml.cpp -I${SRCDIR}/../../../../sources/stablediffusion-ggml.cpp/ggml/include
// #cgo LDFLAGS: -L${SRCDIR}/ -L${SRCDIR}/../../../../sources/stablediffusion-ggml.cpp/build/ggml/src/ggml-cpu -L${SRCDIR}/../../../../sources/stablediffusion-ggml.cpp/build/ggml/src -lsd -lstdc++ -lm -lggml -lggml-base -lggml-cpu -lgomp
// #include <gosd.h>
// #include <stdlib.h>
import "C"
import (
"fmt"
"os"
"path/filepath"
"strings"
"unsafe"
"github.com/mudler/LocalAI/pkg/grpc/base"
pb "github.com/mudler/LocalAI/pkg/grpc/proto"
"github.com/mudler/LocalAI/pkg/utils"
)
type SDGGML struct {
base.SingleThread
threads int
sampleMethod string
cfgScale float32
}
func (sd *SDGGML) Load(opts *pb.ModelOptions) error {
sd.threads = int(opts.Threads)
modelFile := C.CString(opts.ModelFile)
defer C.free(unsafe.Pointer(modelFile))
var options **C.char
// prepare the options array to pass to C
size := C.size_t(unsafe.Sizeof((*C.char)(nil)))
length := C.size_t(len(opts.Options))
options = (**C.char)(C.malloc(length * size))
view := (*[1 << 30]*C.char)(unsafe.Pointer(options))[0:len(opts.Options):len(opts.Options)]
var diffusionModel int
var oo []string
for _, op := range opts.Options {
if op == "diffusion_model" {
diffusionModel = 1
continue
}
// If it's an option path, we resolve absolute path from the model path
if strings.Contains(op, ":") && strings.Contains(op, "path") {
data := strings.Split(op, ":")
data[1] = filepath.Join(opts.ModelPath, data[1])
if err := utils.VerifyPath(data[1], opts.ModelPath); err == nil {
oo = append(oo, strings.Join(data, ":"))
}
} else {
oo = append(oo, op)
}
}
fmt.Fprintf(os.Stderr, "Options: %+v\n", oo)
for i, x := range oo {
view[i] = C.CString(x)
}
sd.cfgScale = opts.CFGScale
ret := C.load_model(modelFile, options, C.int(opts.Threads), C.int(diffusionModel))
if ret != 0 {
return fmt.Errorf("could not load model")
}
return nil
}
func (sd *SDGGML) GenerateImage(opts *pb.GenerateImageRequest) error {
t := C.CString(opts.PositivePrompt)
defer C.free(unsafe.Pointer(t))
dst := C.CString(opts.Dst)
defer C.free(unsafe.Pointer(dst))
negative := C.CString(opts.NegativePrompt)
defer C.free(unsafe.Pointer(negative))
ret := C.gen_image(t, negative, C.int(opts.Width), C.int(opts.Height), C.int(opts.Step), C.int(opts.Seed), dst, C.float(sd.cfgScale))
if ret != 0 {
return fmt.Errorf("inference failed")
}
return nil
}

View File

@@ -1,8 +0,0 @@
#ifdef __cplusplus
extern "C" {
#endif
int load_model(char *model, char* options[], int threads, int diffusionModel);
int gen_image(char *text, char *negativeText, int width, int height, int steps, int seed, char *dst, float cfg_scale);
#ifdef __cplusplus
}
#endif

View File

@@ -0,0 +1,34 @@
package main
// This is a wrapper to statisfy the GRPC service interface
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
import (
bert "github.com/go-skynet/go-bert.cpp"
"github.com/mudler/LocalAI/pkg/grpc/base"
pb "github.com/mudler/LocalAI/pkg/grpc/proto"
)
type Embeddings struct {
base.SingleThread
bert *bert.Bert
}
func (llm *Embeddings) Load(opts *pb.ModelOptions) error {
model, err := bert.New(opts.ModelFile)
llm.bert = model
return err
}
func (llm *Embeddings) Embeddings(opts *pb.PredictOptions) ([]float32, error) {
if len(opts.EmbeddingTokens) > 0 {
tokens := []int{}
for _, t := range opts.EmbeddingTokens {
tokens = append(tokens, int(t))
}
return llm.bert.TokenEmbeddings(tokens, bert.SetThreads(int(opts.Threads)))
}
return llm.bert.Embeddings(opts.Embeddings, bert.SetThreads(int(opts.Threads)))
}

View File

@@ -1,6 +1,7 @@
package main
// Note: this is started internally by LocalAI and a server is allocated for each model
import (
"flag"
@@ -14,7 +15,7 @@ var (
func main() {
flag.Parse()
if err := grpc.StartServer(*addr, &SDGGML{}); err != nil {
if err := grpc.StartServer(*addr, &Embeddings{}); err != nil {
panic(err)
}
}

View File

@@ -0,0 +1,62 @@
package main
// This is a wrapper to statisfy the GRPC service interface
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
import (
"fmt"
"github.com/mudler/LocalAI/pkg/grpc/base"
pb "github.com/mudler/LocalAI/pkg/grpc/proto"
gpt4all "github.com/nomic-ai/gpt4all/gpt4all-bindings/golang"
)
type LLM struct {
base.SingleThread
gpt4all *gpt4all.Model
}
func (llm *LLM) Load(opts *pb.ModelOptions) error {
model, err := gpt4all.New(opts.ModelFile,
gpt4all.SetThreads(int(opts.Threads)),
gpt4all.SetLibrarySearchPath(opts.LibrarySearchPath))
llm.gpt4all = model
return err
}
func buildPredictOptions(opts *pb.PredictOptions) []gpt4all.PredictOption {
predictOptions := []gpt4all.PredictOption{
gpt4all.SetTemperature(float64(opts.Temperature)),
gpt4all.SetTopP(float64(opts.TopP)),
gpt4all.SetTopK(int(opts.TopK)),
gpt4all.SetTokens(int(opts.Tokens)),
}
if opts.Batch != 0 {
predictOptions = append(predictOptions, gpt4all.SetBatch(int(opts.Batch)))
}
return predictOptions
}
func (llm *LLM) Predict(opts *pb.PredictOptions) (string, error) {
return llm.gpt4all.Predict(opts.Prompt, buildPredictOptions(opts)...)
}
func (llm *LLM) PredictStream(opts *pb.PredictOptions, results chan string) error {
predictOptions := buildPredictOptions(opts)
go func() {
llm.gpt4all.SetTokenCallback(func(token string) bool {
results <- token
return true
})
_, err := llm.gpt4all.Predict(opts.Prompt, predictOptions...)
if err != nil {
fmt.Println("err: ", err)
}
llm.gpt4all.SetTokenCallback(nil)
close(results)
}()
return nil
}

View File

@@ -15,7 +15,7 @@ var (
func main() {
flag.Parse()
if err := grpc.StartServer(*addr, &VAD{}); err != nil {
if err := grpc.StartServer(*addr, &LLM{}); err != nil {
panic(err)
}
}

View File

@@ -6,9 +6,9 @@ import (
"fmt"
"path/filepath"
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
"github.com/go-skynet/go-llama.cpp"
"github.com/mudler/LocalAI/pkg/grpc/base"
pb "github.com/mudler/LocalAI/pkg/grpc/proto"
)
type LLM struct {

View File

@@ -1,6 +1,7 @@
package main
// Note: this is started internally by LocalAI and a server is allocated for each model
import (
"flag"
@@ -14,7 +15,7 @@ var (
func main() {
flag.Parse()
if err := grpc.StartServer(*addr, &Bark{}); err != nil {
if err := grpc.StartServer(*addr, &LLM{}); err != nil {
panic(err)
}
}

View File

@@ -0,0 +1,95 @@
package main
// This is a wrapper to statisfy the GRPC service interface
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
import (
"fmt"
"path/filepath"
"github.com/donomii/go-rwkv.cpp"
"github.com/mudler/LocalAI/pkg/grpc/base"
pb "github.com/mudler/LocalAI/pkg/grpc/proto"
)
const tokenizerSuffix = ".tokenizer.json"
type LLM struct {
base.SingleThread
rwkv *rwkv.RwkvState
}
func (llm *LLM) Load(opts *pb.ModelOptions) error {
tokenizerFile := opts.Tokenizer
if tokenizerFile == "" {
modelFile := filepath.Base(opts.ModelFile)
tokenizerFile = modelFile + tokenizerSuffix
}
modelPath := filepath.Dir(opts.ModelFile)
tokenizerPath := filepath.Join(modelPath, tokenizerFile)
model := rwkv.LoadFiles(opts.ModelFile, tokenizerPath, uint32(opts.GetThreads()))
if model == nil {
return fmt.Errorf("rwkv could not load model")
}
llm.rwkv = model
return nil
}
func (llm *LLM) Predict(opts *pb.PredictOptions) (string, error) {
stopWord := "\n"
if len(opts.StopPrompts) > 0 {
stopWord = opts.StopPrompts[0]
}
if err := llm.rwkv.ProcessInput(opts.Prompt); err != nil {
return "", err
}
response := llm.rwkv.GenerateResponse(int(opts.Tokens), stopWord, float32(opts.Temperature), float32(opts.TopP), nil)
return response, nil
}
func (llm *LLM) PredictStream(opts *pb.PredictOptions, results chan string) error {
go func() {
stopWord := "\n"
if len(opts.StopPrompts) > 0 {
stopWord = opts.StopPrompts[0]
}
if err := llm.rwkv.ProcessInput(opts.Prompt); err != nil {
fmt.Println("Error processing input: ", err)
return
}
llm.rwkv.GenerateResponse(int(opts.Tokens), stopWord, float32(opts.Temperature), float32(opts.TopP), func(s string) bool {
results <- s
return true
})
close(results)
}()
return nil
}
func (llm *LLM) TokenizeString(opts *pb.PredictOptions) (pb.TokenizationResponse, error) {
tokens, err := llm.rwkv.Tokenizer.Encode(opts.Prompt)
if err != nil {
return pb.TokenizationResponse{}, err
}
l := len(tokens)
i32Tokens := make([]int32, l)
for i, t := range tokens {
i32Tokens[i] = int32(t.ID)
}
return pb.TokenizationResponse{
Length: int32(l),
Tokens: i32Tokens,
}, nil
}

View File

@@ -0,0 +1,104 @@
package main
import (
"fmt"
"os"
"os/exec"
"path/filepath"
"github.com/ggerganov/whisper.cpp/bindings/go/pkg/whisper"
"github.com/go-audio/wav"
"github.com/mudler/LocalAI/core/schema"
)
func ffmpegCommand(args []string) (string, error) {
cmd := exec.Command("ffmpeg", args...) // Constrain this to ffmpeg to permit security scanner to see that the command is safe.
cmd.Env = os.Environ()
out, err := cmd.CombinedOutput()
return string(out), err
}
// AudioToWav converts audio to wav for transcribe.
// TODO: use https://github.com/mccoyst/ogg?
func audioToWav(src, dst string) error {
commandArgs := []string{"-i", src, "-format", "s16le", "-ar", "16000", "-ac", "1", "-acodec", "pcm_s16le", dst}
out, err := ffmpegCommand(commandArgs)
if err != nil {
return fmt.Errorf("error: %w out: %s", err, out)
}
return nil
}
func Transcript(model whisper.Model, audiopath, language string, translate bool, threads uint) (schema.TranscriptionResult, error) {
res := schema.TranscriptionResult{}
dir, err := os.MkdirTemp("", "whisper")
if err != nil {
return res, err
}
defer os.RemoveAll(dir)
convertedPath := filepath.Join(dir, "converted.wav")
if err := audioToWav(audiopath, convertedPath); err != nil {
return res, err
}
// Open samples
fh, err := os.Open(convertedPath)
if err != nil {
return res, err
}
defer fh.Close()
// Read samples
d := wav.NewDecoder(fh)
buf, err := d.FullPCMBuffer()
if err != nil {
return res, err
}
data := buf.AsFloat32Buffer().Data
// Process samples
context, err := model.NewContext()
if err != nil {
return res, err
}
context.SetThreads(threads)
if language != "" {
context.SetLanguage(language)
} else {
context.SetLanguage("auto")
}
if translate {
context.SetTranslate(true)
}
if err := context.Process(data, nil, nil); err != nil {
return res, err
}
for {
s, err := context.NextSegment()
if err != nil {
break
}
var tokens []int
for _, t := range s.Tokens {
tokens = append(tokens, t.Id)
}
segment := schema.Segment{Id: s.Num, Text: s.Text, Start: s.Start, End: s.End, Tokens: tokens}
res.Segments = append(res.Segments, segment)
res.Text += s.Text
}
return res, nil
}

View File

@@ -0,0 +1,26 @@
package main
// This is a wrapper to statisfy the GRPC service interface
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
import (
"github.com/ggerganov/whisper.cpp/bindings/go/pkg/whisper"
"github.com/mudler/LocalAI/core/schema"
"github.com/mudler/LocalAI/pkg/grpc/base"
pb "github.com/mudler/LocalAI/pkg/grpc/proto"
)
type Whisper struct {
base.SingleThread
whisper whisper.Model
}
func (sd *Whisper) Load(opts *pb.ModelOptions) error {
// Note: the Model here is a path to a directory containing the model files
w, err := whisper.New(opts.ModelFile)
sd.whisper = w
return err
}
func (sd *Whisper) AudioTranscription(opts *pb.TranscriptRequest) (schema.TranscriptionResult, error) {
return Transcript(sd.whisper, opts.Dst, opts.Language, opts.Translate, uint(opts.Threads))
}

View File

@@ -1,105 +0,0 @@
package main
// This is a wrapper to statisfy the GRPC service interface
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
import (
"os"
"path/filepath"
"github.com/ggerganov/whisper.cpp/bindings/go/pkg/whisper"
"github.com/go-audio/wav"
"github.com/mudler/LocalAI/pkg/grpc/base"
pb "github.com/mudler/LocalAI/pkg/grpc/proto"
"github.com/mudler/LocalAI/pkg/utils"
)
type Whisper struct {
base.SingleThread
whisper whisper.Model
}
func (sd *Whisper) Load(opts *pb.ModelOptions) error {
// Note: the Model here is a path to a directory containing the model files
w, err := whisper.New(opts.ModelFile)
sd.whisper = w
return err
}
func (sd *Whisper) AudioTranscription(opts *pb.TranscriptRequest) (pb.TranscriptResult, error) {
dir, err := os.MkdirTemp("", "whisper")
if err != nil {
return pb.TranscriptResult{}, err
}
defer os.RemoveAll(dir)
convertedPath := filepath.Join(dir, "converted.wav")
if err := utils.AudioToWav(opts.Dst, convertedPath); err != nil {
return pb.TranscriptResult{}, err
}
// Open samples
fh, err := os.Open(convertedPath)
if err != nil {
return pb.TranscriptResult{}, err
}
defer fh.Close()
// Read samples
d := wav.NewDecoder(fh)
buf, err := d.FullPCMBuffer()
if err != nil {
return pb.TranscriptResult{}, err
}
data := buf.AsFloat32Buffer().Data
// Process samples
context, err := sd.whisper.NewContext()
if err != nil {
return pb.TranscriptResult{}, err
}
context.SetThreads(uint(opts.Threads))
if opts.Language != "" {
context.SetLanguage(opts.Language)
} else {
context.SetLanguage("auto")
}
if opts.Translate {
context.SetTranslate(true)
}
if err := context.Process(data, nil, nil); err != nil {
return pb.TranscriptResult{}, err
}
segments := []*pb.TranscriptSegment{}
text := ""
for {
s, err := context.NextSegment()
if err != nil {
break
}
var tokens []int32
for _, t := range s.Tokens {
tokens = append(tokens, int32(t.Id))
}
segment := &pb.TranscriptSegment{Id: int32(s.Num), Text: s.Text, Start: int64(s.Start), End: int64(s.End), Tokens: tokens}
segments = append(segments, segment)
text += s.Text
}
return pb.TranscriptResult{
Segments: segments,
Text: text,
}, nil
}

View File

@@ -1,54 +0,0 @@
package main
// This is a wrapper to statisfy the GRPC service interface
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
import (
"fmt"
"github.com/mudler/LocalAI/pkg/grpc/base"
pb "github.com/mudler/LocalAI/pkg/grpc/proto"
"github.com/streamer45/silero-vad-go/speech"
)
type VAD struct {
base.SingleThread
detector *speech.Detector
}
func (vad *VAD) Load(opts *pb.ModelOptions) error {
v, err := speech.NewDetector(speech.DetectorConfig{
ModelPath: opts.ModelFile,
SampleRate: 16000,
//WindowSize: 1024,
Threshold: 0.5,
MinSilenceDurationMs: 0,
SpeechPadMs: 0,
})
if err != nil {
return fmt.Errorf("create silero detector: %w", err)
}
vad.detector = v
return err
}
func (vad *VAD) VAD(req *pb.VADRequest) (pb.VADResponse, error) {
audio := req.Audio
segments, err := vad.detector.Detect(audio)
if err != nil {
return pb.VADResponse{}, fmt.Errorf("detect: %w", err)
}
vadSegments := []*pb.VADSegment{}
for _, s := range segments {
vadSegments = append(vadSegments, &pb.VADSegment{
Start: float32(s.SpeechStartAt),
End: float32(s.SpeechEndAt),
})
}
return pb.VADResponse{
Segments: vadSegments,
}, nil
}

View File

@@ -1,2 +0,0 @@
--extra-index-url https://download.pytorch.org/whl/cu118
torch==2.4.1+cu118

View File

@@ -1 +0,0 @@
torch==2.4.1

View File

@@ -1,2 +1,2 @@
--extra-index-url https://download.pytorch.org/whl/rocm6.0
torch==2.4.1+rocm6.0
torch

View File

@@ -2,4 +2,4 @@
intel-extension-for-pytorch
torch
optimum[openvino]
setuptools==75.1.0 # https://github.com/mudler/LocalAI/issues/2406
setuptools==69.5.1 # https://github.com/mudler/LocalAI/issues/2406

View File

@@ -1,6 +1,7 @@
accelerate
auto-gptq==0.7.1
grpcio==1.68.1
grpcio==1.64.0
protobuf
torch
certifi
transformers

View File

@@ -1,4 +0,0 @@
transformers
accelerate
torch==2.4.1
torchaudio==2.4.1

View File

@@ -1,5 +0,0 @@
--extra-index-url https://download.pytorch.org/whl/cu118
torch==2.4.1+cu118
torchaudio==2.4.1+cu118
transformers
accelerate

View File

@@ -1,4 +0,0 @@
torch==2.4.1
torchaudio==2.4.1
transformers
accelerate

View File

@@ -1,5 +1,3 @@
--extra-index-url https://download.pytorch.org/whl/rocm6.0
torch==2.4.1+rocm6.0
torchaudio==2.4.1+rocm6.0
transformers
accelerate
torch
torchaudio

View File

@@ -3,6 +3,4 @@ intel-extension-for-pytorch
torch
torchaudio
optimum[openvino]
setuptools==75.1.0 # https://github.com/mudler/LocalAI/issues/2406
transformers
accelerate
setuptools==69.5.1 # https://github.com/mudler/LocalAI/issues/2406

View File

@@ -1,4 +1,6 @@
accelerate
bark==0.1.5
grpcio==1.68.1
grpcio==1.64.0
protobuf
certifi
certifi
transformers

View File

@@ -18,23 +18,10 @@
# source $(dirname $0)/../common/libbackend.sh
#
function init() {
# Name of the backend (directory name)
BACKEND_NAME=${PWD##*/}
# Path where all backends files are
MY_DIR=$(realpath `dirname $0`)
# Build type
BUILD_PROFILE=$(getBuildProfile)
# Environment directory
EDIR=${MY_DIR}
# Allow to specify a custom env dir for shared environments
if [ "x${ENV_DIR}" != "x" ]; then
EDIR=${ENV_DIR}
fi
# If a backend has defined a list of valid build profiles...
if [ ! -z "${LIMIT_TARGETS}" ]; then
isValidTarget=$(checkTargets ${LIMIT_TARGETS})
@@ -87,14 +74,13 @@ function getBuildProfile() {
# This function is idempotent, so you can call it as many times as you want and it will
# always result in an activated virtual environment
function ensureVenv() {
if [ ! -d "${EDIR}/venv" ]; then
uv venv ${EDIR}/venv
if [ ! -d "${MY_DIR}/venv" ]; then
uv venv ${MY_DIR}/venv
echo "virtualenv created"
fi
# Source if we are not already in a Virtual env
if [ "x${VIRTUAL_ENV}" != "x${EDIR}/venv" ]; then
source ${EDIR}/venv/bin/activate
if [ "x${VIRTUAL_ENV}" != "x${MY_DIR}/venv" ]; then
source ${MY_DIR}/venv/bin/activate
echo "virtualenv activated"
fi
@@ -127,24 +113,13 @@ function installRequirements() {
# These are the requirements files we will attempt to install, in order
declare -a requirementFiles=(
"${EDIR}/requirements-install.txt"
"${EDIR}/requirements.txt"
"${EDIR}/requirements-${BUILD_TYPE}.txt"
"${MY_DIR}/requirements-install.txt"
"${MY_DIR}/requirements.txt"
"${MY_DIR}/requirements-${BUILD_TYPE}.txt"
)
if [ "x${BUILD_TYPE}" != "x${BUILD_PROFILE}" ]; then
requirementFiles+=("${EDIR}/requirements-${BUILD_PROFILE}.txt")
fi
# if BUILD_TYPE is empty, we are a CPU build, so we should try to install the CPU requirements
if [ "x${BUILD_TYPE}" == "x" ]; then
requirementFiles+=("${EDIR}/requirements-cpu.txt")
fi
requirementFiles+=("${EDIR}/requirements-after.txt")
if [ "x${BUILD_TYPE}" != "x${BUILD_PROFILE}" ]; then
requirementFiles+=("${EDIR}/requirements-${BUILD_PROFILE}-after.txt")
requirementFiles+=("${MY_DIR}/requirements-${BUILD_PROFILE}.txt")
fi
for reqFile in ${requirementFiles[@]}; do
@@ -173,13 +148,13 @@ function startBackend() {
ensureVenv
if [ ! -z ${BACKEND_FILE} ]; then
exec python ${BACKEND_FILE} $@
python ${BACKEND_FILE} $@
elif [ -e "${MY_DIR}/server.py" ]; then
exec python ${MY_DIR}/server.py $@
python ${MY_DIR}/server.py $@
elif [ -e "${MY_DIR}/backend.py" ]; then
exec python ${MY_DIR}/backend.py $@
python ${MY_DIR}/backend.py $@
elif [ -e "${MY_DIR}/${BACKEND_NAME}.py" ]; then
exec python ${MY_DIR}/${BACKEND_NAME}.py $@
python ${MY_DIR}/${BACKEND_NAME}.py $@
fi
}
@@ -235,4 +210,4 @@ function checkTargets() {
echo false
}
init
init

View File

@@ -1,9 +1,8 @@
.DEFAULT_GOAL := install
.PHONY: install
install:
install: protogen
bash install.sh
$(MAKE) protogen
.PHONY: protogen
protogen: backend_pb2_grpc.py backend_pb2.py
@@ -13,7 +12,7 @@ protogen-clean:
$(RM) backend_pb2_grpc.py backend_pb2.py
backend_pb2_grpc.py backend_pb2.py:
bash protogen.sh
python3 -m grpc_tools.protoc -I../.. --python_out=. --grpc_python_out=. backend.proto
.PHONY: clean
clean: protogen-clean

View File

@@ -1,6 +0,0 @@
#!/bin/bash
set -e
source $(dirname $0)/../common/libbackend.sh
python3 -m grpc_tools.protoc -I../.. --python_out=. --grpc_python_out=. backend.proto

View File

@@ -1,3 +1,2 @@
grpcio==1.68.1
protobuf
grpcio-tools
grpcio==1.64.0
protobuf

View File

@@ -1,4 +0,0 @@
transformers
accelerate
torch==2.4.1
coqui-tts

View File

@@ -1,6 +0,0 @@
--extra-index-url https://download.pytorch.org/whl/cu118
torch==2.4.1+cu118
torchaudio==2.4.1+cu118
transformers
accelerate
coqui-tts

View File

@@ -1,5 +0,0 @@
torch==2.4.1
torchaudio==2.4.1
transformers
accelerate
coqui-tts

View File

@@ -1,6 +1,3 @@
--extra-index-url https://download.pytorch.org/whl/rocm6.0
torch==2.4.1+rocm6.0
torchaudio==2.4.1+rocm6.0
transformers
accelerate
coqui-tts
torch
torchaudio

View File

@@ -3,7 +3,4 @@ intel-extension-for-pytorch
torch
torchaudio
optimum[openvino]
setuptools==75.1.0 # https://github.com/mudler/LocalAI/issues/2406
transformers
accelerate
coqui-tts
setuptools==69.5.1 # https://github.com/mudler/LocalAI/issues/2406

View File

@@ -1,4 +1,6 @@
grpcio==1.68.1
accelerate
TTS==0.22.0
grpcio==1.64.0
protobuf
certifi
packaging==24.1
transformers

Some files were not shown because too many files have changed in this diff Show More