mirror of
https://github.com/mudler/LocalAI.git
synced 2026-02-03 03:02:38 -05:00
Compare commits
88 Commits
v2.25.0
...
speculativ
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
b16a01d0bd | ||
|
|
9a1182fa01 | ||
|
|
66e9ef3f33 | ||
|
|
8282414583 | ||
|
|
d1d7ce83d4 | ||
|
|
5177837ab0 | ||
|
|
f9e368b7c4 | ||
|
|
eef80b9880 | ||
|
|
073eaec729 | ||
|
|
318225f631 | ||
|
|
89429a439b | ||
|
|
200fe358f0 | ||
|
|
e426ab7c23 | ||
|
|
715071b68d | ||
|
|
a05737c7e4 | ||
|
|
e8eb0b2c50 | ||
|
|
e15d29aba2 | ||
|
|
10675ac28e | ||
|
|
0ec25b8b07 | ||
|
|
e81ceff681 | ||
|
|
6831719e1e | ||
|
|
b264a91b3f | ||
|
|
1a08948e63 | ||
|
|
14a1e02f44 | ||
|
|
2f09aa1b85 | ||
|
|
a396040886 | ||
|
|
aeb1dca52e | ||
|
|
83a8d90c52 | ||
|
|
adebd557ce | ||
|
|
0c0e015b38 | ||
|
|
390bb3f58b | ||
|
|
30739d94a4 | ||
|
|
83e2dd5dff | ||
|
|
f496d0113b | ||
|
|
a752183fb5 | ||
|
|
296b97925f | ||
|
|
d0cc3047dc | ||
|
|
032a33de49 | ||
|
|
1e9bf19c8d | ||
|
|
4bd8434ae0 | ||
|
|
958f6eb722 | ||
|
|
96306a39a0 | ||
|
|
895cd7c76a | ||
|
|
cbdbe59f16 | ||
|
|
ee7904f170 | ||
|
|
a761e01944 | ||
|
|
96f8ec0402 | ||
|
|
8027fdf1c7 | ||
|
|
212c8e1a6d | ||
|
|
78533d7230 | ||
|
|
b5eeb5c5ab | ||
|
|
b147ad0596 | ||
|
|
7d0ac1ea3f | ||
|
|
d08d97bebf | ||
|
|
acb2eb23c8 | ||
|
|
de4aa9fb1d | ||
|
|
560ba6f25e | ||
|
|
8131ddd878 | ||
|
|
26c3deb673 | ||
|
|
6d20497d45 | ||
|
|
482c6b8be4 | ||
|
|
5bba5edf45 | ||
|
|
792b866727 | ||
|
|
f053f7bde2 | ||
|
|
d7dee3a5ec | ||
|
|
b8d74e52b1 | ||
|
|
62abe0d2c9 | ||
|
|
5414c294c4 | ||
|
|
1b3e89c89c | ||
|
|
69c6e5b192 | ||
|
|
0c02512f15 | ||
|
|
b0ead0bf12 | ||
|
|
ab5adf40af | ||
|
|
8d82afb595 | ||
|
|
aea71dd2c6 | ||
|
|
9fdb44323d | ||
|
|
6a299c04a7 | ||
|
|
9ce71fe427 | ||
|
|
e8de7b52da | ||
|
|
1780ccadbc | ||
|
|
f8cffd05e5 | ||
|
|
b898cd49b5 | ||
|
|
7cd33d10c9 | ||
|
|
cd480dbe5c | ||
|
|
cb8bf79ada | ||
|
|
b206eab80f | ||
|
|
80dc23fab9 | ||
|
|
844c0c422d |
@@ -16,7 +16,7 @@ headers {
|
||||
|
||||
body:json {
|
||||
{
|
||||
"backend": "transformers-musicgen",
|
||||
"backend": "transformers",
|
||||
"model": "facebook/musicgen-small",
|
||||
"input": "80s Synths playing Jazz"
|
||||
}
|
||||
|
||||
@@ -7,7 +7,7 @@ services:
|
||||
args:
|
||||
- FFMPEG=true
|
||||
- IMAGE_TYPE=extras
|
||||
- GO_TAGS=stablediffusion p2p tts
|
||||
- GO_TAGS=p2p tts
|
||||
env_file:
|
||||
- ../.env
|
||||
ports:
|
||||
|
||||
6
.env
6
.env
@@ -38,12 +38,12 @@
|
||||
## Uncomment and set to true to enable rebuilding from source
|
||||
# REBUILD=true
|
||||
|
||||
## Enable go tags, available: stablediffusion, tts
|
||||
## stablediffusion: image generation with stablediffusion
|
||||
## Enable go tags, available: p2p, tts
|
||||
## p2p: enable distributed inferencing
|
||||
## tts: enables text-to-speech with go-piper
|
||||
## (requires REBUILD=true)
|
||||
#
|
||||
# GO_TAGS=stablediffusion
|
||||
# GO_TAGS=p2p
|
||||
|
||||
## Path where to store generated images
|
||||
# LOCALAI_IMAGE_PATH=/tmp/generated/images
|
||||
|
||||
8
.github/dependabot.yml
vendored
8
.github/dependabot.yml
vendored
@@ -81,14 +81,6 @@ updates:
|
||||
directory: "/backend/python/transformers"
|
||||
schedule:
|
||||
interval: "weekly"
|
||||
- package-ecosystem: "pip"
|
||||
directory: "/backend/python/transformers-musicgen"
|
||||
schedule:
|
||||
interval: "weekly"
|
||||
- package-ecosystem: "pip"
|
||||
directory: "/backend/python/vall-e-x"
|
||||
schedule:
|
||||
interval: "weekly"
|
||||
- package-ecosystem: "pip"
|
||||
directory: "/backend/python/vllm"
|
||||
schedule:
|
||||
|
||||
80
.github/workflows/image.yml
vendored
80
.github/workflows/image.yml
vendored
@@ -362,43 +362,43 @@ jobs:
|
||||
base-image: "ubuntu:22.04"
|
||||
skip-drivers: 'false'
|
||||
makeflags: "--jobs=4 --output-sync=target"
|
||||
# parallel-builds:
|
||||
# uses: ./.github/workflows/image_build.yml
|
||||
# with:
|
||||
# tag-latest: ${{ matrix.tag-latest }}
|
||||
# tag-suffix: ${{ matrix.tag-suffix }}
|
||||
# ffmpeg: ${{ matrix.ffmpeg }}
|
||||
# image-type: ${{ matrix.image-type }}
|
||||
# build-type: ${{ matrix.build-type }}
|
||||
# cuda-major-version: ${{ matrix.cuda-major-version }}
|
||||
# cuda-minor-version: ${{ matrix.cuda-minor-version }}
|
||||
# platforms: ${{ matrix.platforms }}
|
||||
# runs-on: ${{ matrix.runs-on }}
|
||||
# aio: ${{ matrix.aio }}
|
||||
# base-image: ${{ matrix.base-image }}
|
||||
# grpc-base-image: ${{ matrix.grpc-base-image }}
|
||||
# makeflags: ${{ matrix.makeflags }}
|
||||
# latest-image: ${{ matrix.latest-image }}
|
||||
# latest-image-aio: ${{ matrix.latest-image-aio }}
|
||||
# skip-drivers: ${{ matrix.skip-drivers }}
|
||||
# secrets:
|
||||
# dockerUsername: ${{ secrets.DOCKERHUB_USERNAME }}
|
||||
# dockerPassword: ${{ secrets.DOCKERHUB_PASSWORD }}
|
||||
# quayUsername: ${{ secrets.LOCALAI_REGISTRY_USERNAME }}
|
||||
# quayPassword: ${{ secrets.LOCALAI_REGISTRY_PASSWORD }}
|
||||
# strategy:
|
||||
# matrix:
|
||||
# include:
|
||||
# - build-type: 'cublas'
|
||||
# cuda-major-version: "12"
|
||||
# cuda-minor-version: "0"
|
||||
# platforms: 'linux/arm64'
|
||||
# tag-latest: 'false'
|
||||
# tag-suffix: '-nvidia-l4t-arm64-core'
|
||||
# latest-image: 'latest-nvidia-l4t-arm64-core'
|
||||
# ffmpeg: 'true'
|
||||
# image-type: 'core'
|
||||
# base-image: "nvcr.io/nvidia/l4t-jetpack:r36.4.0"
|
||||
# runs-on: 'self-hosted'
|
||||
# makeflags: "--jobs=4 --output-sync=target"
|
||||
# skip-drivers: 'true'
|
||||
gh-runner:
|
||||
uses: ./.github/workflows/image_build.yml
|
||||
with:
|
||||
tag-latest: ${{ matrix.tag-latest }}
|
||||
tag-suffix: ${{ matrix.tag-suffix }}
|
||||
ffmpeg: ${{ matrix.ffmpeg }}
|
||||
image-type: ${{ matrix.image-type }}
|
||||
build-type: ${{ matrix.build-type }}
|
||||
cuda-major-version: ${{ matrix.cuda-major-version }}
|
||||
cuda-minor-version: ${{ matrix.cuda-minor-version }}
|
||||
platforms: ${{ matrix.platforms }}
|
||||
runs-on: ${{ matrix.runs-on }}
|
||||
aio: ${{ matrix.aio }}
|
||||
base-image: ${{ matrix.base-image }}
|
||||
grpc-base-image: ${{ matrix.grpc-base-image }}
|
||||
makeflags: ${{ matrix.makeflags }}
|
||||
latest-image: ${{ matrix.latest-image }}
|
||||
latest-image-aio: ${{ matrix.latest-image-aio }}
|
||||
skip-drivers: ${{ matrix.skip-drivers }}
|
||||
secrets:
|
||||
dockerUsername: ${{ secrets.DOCKERHUB_USERNAME }}
|
||||
dockerPassword: ${{ secrets.DOCKERHUB_PASSWORD }}
|
||||
quayUsername: ${{ secrets.LOCALAI_REGISTRY_USERNAME }}
|
||||
quayPassword: ${{ secrets.LOCALAI_REGISTRY_PASSWORD }}
|
||||
strategy:
|
||||
matrix:
|
||||
include:
|
||||
- build-type: 'cublas'
|
||||
cuda-major-version: "12"
|
||||
cuda-minor-version: "0"
|
||||
platforms: 'linux/arm64'
|
||||
tag-latest: 'false'
|
||||
tag-suffix: '-nvidia-l4t-arm64-core'
|
||||
latest-image: 'latest-nvidia-l4t-arm64-core'
|
||||
ffmpeg: 'true'
|
||||
image-type: 'core'
|
||||
base-image: "nvcr.io/nvidia/l4t-jetpack:r36.4.0"
|
||||
runs-on: 'ubuntu-24.04-arm'
|
||||
makeflags: "--jobs=4 --output-sync=target"
|
||||
skip-drivers: 'true'
|
||||
35
.github/workflows/release.yaml
vendored
35
.github/workflows/release.yaml
vendored
@@ -237,40 +237,7 @@ jobs:
|
||||
detached: true
|
||||
connect-timeout-seconds: 180
|
||||
limit-access-to-actor: true
|
||||
build-stablediffusion:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
submodules: true
|
||||
- uses: actions/setup-go@v5
|
||||
with:
|
||||
go-version: '1.21.x'
|
||||
cache: false
|
||||
- name: Dependencies
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install -y --no-install-recommends libopencv-dev protobuf-compiler ccache upx-ucl
|
||||
go install google.golang.org/grpc/cmd/protoc-gen-go-grpc@1958fcbe2ca8bd93af633f11e97d44e567e945af
|
||||
go install google.golang.org/protobuf/cmd/protoc-gen-go@v1.34.2
|
||||
- name: Build stablediffusion
|
||||
run: |
|
||||
export PATH=$PATH:$GOPATH/bin
|
||||
make backend-assets/grpc/stablediffusion
|
||||
mkdir -p release && cp backend-assets/grpc/stablediffusion release
|
||||
env:
|
||||
GO_TAGS: stablediffusion
|
||||
- uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: stablediffusion
|
||||
path: release/
|
||||
- name: Release
|
||||
uses: softprops/action-gh-release@v2
|
||||
if: startsWith(github.ref, 'refs/tags/')
|
||||
with:
|
||||
files: |
|
||||
release/*
|
||||
|
||||
|
||||
build-macOS-x86_64:
|
||||
runs-on: macos-13
|
||||
|
||||
2
.github/workflows/secscan.yaml
vendored
2
.github/workflows/secscan.yaml
vendored
@@ -18,7 +18,7 @@ jobs:
|
||||
if: ${{ github.actor != 'dependabot[bot]' }}
|
||||
- name: Run Gosec Security Scanner
|
||||
if: ${{ github.actor != 'dependabot[bot]' }}
|
||||
uses: securego/gosec@v2.21.4
|
||||
uses: securego/gosec@v2.22.0
|
||||
with:
|
||||
# we let the report trigger content trigger a failure using the GitHub Security features.
|
||||
args: '-no-fail -fmt sarif -out results.sarif ./...'
|
||||
|
||||
135
.github/workflows/test-extra.yml
vendored
135
.github/workflows/test-extra.yml
vendored
@@ -35,30 +35,6 @@ jobs:
|
||||
run: |
|
||||
make --jobs=5 --output-sync=target -C backend/python/transformers
|
||||
make --jobs=5 --output-sync=target -C backend/python/transformers test
|
||||
|
||||
tests-sentencetransformers:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
submodules: true
|
||||
- name: Dependencies
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential ffmpeg
|
||||
# Install UV
|
||||
curl -LsSf https://astral.sh/uv/install.sh | sh
|
||||
sudo apt-get install -y ca-certificates cmake curl patch python3-pip
|
||||
sudo apt-get install -y libopencv-dev
|
||||
pip install --user --no-cache-dir grpcio-tools==1.64.1
|
||||
|
||||
- name: Test sentencetransformers
|
||||
run: |
|
||||
make --jobs=5 --output-sync=target -C backend/python/sentencetransformers
|
||||
make --jobs=5 --output-sync=target -C backend/python/sentencetransformers test
|
||||
|
||||
|
||||
tests-rerankers:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
@@ -102,78 +78,27 @@ jobs:
|
||||
make --jobs=5 --output-sync=target -C backend/python/diffusers
|
||||
make --jobs=5 --output-sync=target -C backend/python/diffusers test
|
||||
|
||||
tests-parler-tts:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
submodules: true
|
||||
- name: Dependencies
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential ffmpeg
|
||||
# Install UV
|
||||
curl -LsSf https://astral.sh/uv/install.sh | sh
|
||||
sudo apt-get install -y ca-certificates cmake curl patch python3-pip
|
||||
sudo apt-get install -y libopencv-dev
|
||||
pip install --user --no-cache-dir grpcio-tools==1.64.1
|
||||
# tests-transformers-musicgen:
|
||||
# runs-on: ubuntu-latest
|
||||
# steps:
|
||||
# - name: Clone
|
||||
# uses: actions/checkout@v4
|
||||
# with:
|
||||
# submodules: true
|
||||
# - name: Dependencies
|
||||
# run: |
|
||||
# sudo apt-get update
|
||||
# sudo apt-get install build-essential ffmpeg
|
||||
# # Install UV
|
||||
# curl -LsSf https://astral.sh/uv/install.sh | sh
|
||||
# sudo apt-get install -y ca-certificates cmake curl patch python3-pip
|
||||
# sudo apt-get install -y libopencv-dev
|
||||
# pip install --user --no-cache-dir grpcio-tools==1.64.1
|
||||
|
||||
- name: Test parler-tts
|
||||
run: |
|
||||
make --jobs=5 --output-sync=target -C backend/python/parler-tts
|
||||
make --jobs=5 --output-sync=target -C backend/python/parler-tts test
|
||||
- name: Setup tmate session if tests fail
|
||||
if: ${{ failure() }}
|
||||
uses: mxschmitt/action-tmate@v3.19
|
||||
with:
|
||||
detached: true
|
||||
connect-timeout-seconds: 180
|
||||
limit-access-to-actor: true
|
||||
|
||||
tests-openvoice:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
submodules: true
|
||||
- name: Dependencies
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential ffmpeg
|
||||
# Install UV
|
||||
curl -LsSf https://astral.sh/uv/install.sh | sh
|
||||
sudo apt-get install -y ca-certificates cmake curl patch python3-pip
|
||||
sudo apt-get install -y libopencv-dev
|
||||
pip install --user --no-cache-dir grpcio-tools==1.64.1
|
||||
|
||||
- name: Test openvoice
|
||||
run: |
|
||||
make --jobs=5 --output-sync=target -C backend/python/openvoice
|
||||
make --jobs=5 --output-sync=target -C backend/python/openvoice test
|
||||
|
||||
tests-transformers-musicgen:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
submodules: true
|
||||
- name: Dependencies
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential ffmpeg
|
||||
# Install UV
|
||||
curl -LsSf https://astral.sh/uv/install.sh | sh
|
||||
sudo apt-get install -y ca-certificates cmake curl patch python3-pip
|
||||
sudo apt-get install -y libopencv-dev
|
||||
pip install --user --no-cache-dir grpcio-tools==1.64.1
|
||||
|
||||
- name: Test transformers-musicgen
|
||||
run: |
|
||||
make --jobs=5 --output-sync=target -C backend/python/transformers-musicgen
|
||||
make --jobs=5 --output-sync=target -C backend/python/transformers-musicgen test
|
||||
# - name: Test transformers-musicgen
|
||||
# run: |
|
||||
# make --jobs=5 --output-sync=target -C backend/python/transformers-musicgen
|
||||
# make --jobs=5 --output-sync=target -C backend/python/transformers-musicgen test
|
||||
|
||||
# tests-bark:
|
||||
# runs-on: ubuntu-latest
|
||||
@@ -260,26 +185,6 @@ jobs:
|
||||
# run: |
|
||||
# make --jobs=5 --output-sync=target -C backend/python/vllm
|
||||
# make --jobs=5 --output-sync=target -C backend/python/vllm test
|
||||
tests-vallex:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
submodules: true
|
||||
- name: Dependencies
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential ffmpeg
|
||||
# Install UV
|
||||
curl -LsSf https://astral.sh/uv/install.sh | sh
|
||||
sudo apt-get install -y ca-certificates cmake curl patch python3-pip
|
||||
sudo apt-get install -y libopencv-dev
|
||||
pip install --user --no-cache-dir grpcio-tools==1.64.1
|
||||
- name: Test vall-e-x
|
||||
run: |
|
||||
make --jobs=5 --output-sync=target -C backend/python/vall-e-x
|
||||
make --jobs=5 --output-sync=target -C backend/python/vall-e-x test
|
||||
|
||||
tests-coqui:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
9
.github/workflows/test.yml
vendored
9
.github/workflows/test.yml
vendored
@@ -100,15 +100,12 @@ jobs:
|
||||
# The python3-grpc-tools package in 22.04 is too old
|
||||
pip install --user grpcio-tools
|
||||
|
||||
sudo rm -rfv /usr/bin/conda || true
|
||||
PATH=$PATH:/opt/conda/bin make -C backend/python/sentencetransformers
|
||||
make -C backend/python/transformers
|
||||
|
||||
# Pre-build piper before we start tests in order to have shared libraries in place
|
||||
make sources/go-piper && \
|
||||
GO_TAGS="tts" make -C sources/go-piper piper.o && \
|
||||
sudo cp -rfv sources/go-piper/piper-phonemize/pi/lib/. /usr/lib/ && \
|
||||
# Pre-build stable diffusion before we install a newer version of abseil (not compatible with stablediffusion-ncn)
|
||||
PATH="$PATH:/root/go/bin" GO_TAGS="stablediffusion tts" GRPC_BACKENDS=backend-assets/grpc/stablediffusion make build
|
||||
sudo cp -rfv sources/go-piper/piper-phonemize/pi/lib/. /usr/lib/
|
||||
env:
|
||||
CUDA_VERSION: 12-4
|
||||
- name: Cache grpc
|
||||
@@ -130,7 +127,7 @@ jobs:
|
||||
cd grpc && cd cmake/build && sudo make --jobs 5 install
|
||||
- name: Test
|
||||
run: |
|
||||
PATH="$PATH:/root/go/bin" GO_TAGS="stablediffusion tts" make --jobs 5 --output-sync=target test
|
||||
PATH="$PATH:/root/go/bin" GO_TAGS="tts" make --jobs 5 --output-sync=target test
|
||||
- name: Setup tmate session if tests fail
|
||||
if: ${{ failure() }}
|
||||
uses: mxschmitt/action-tmate@v3.19
|
||||
|
||||
2
.vscode/launch.json
vendored
2
.vscode/launch.json
vendored
@@ -26,7 +26,7 @@
|
||||
"LOCALAI_P2P": "true",
|
||||
"LOCALAI_FEDERATED": "true"
|
||||
},
|
||||
"buildFlags": ["-tags", "stablediffusion p2p tts", "-v"],
|
||||
"buildFlags": ["-tags", "p2p tts", "-v"],
|
||||
"envFile": "${workspaceFolder}/.env",
|
||||
"cwd": "${workspaceRoot}"
|
||||
}
|
||||
|
||||
67
Dockerfile
67
Dockerfile
@@ -15,8 +15,7 @@ ARG TARGETARCH
|
||||
ARG TARGETVARIANT
|
||||
|
||||
ENV DEBIAN_FRONTEND=noninteractive
|
||||
ENV EXTERNAL_GRPC_BACKENDS="coqui:/build/backend/python/coqui/run.sh,huggingface-embeddings:/build/backend/python/sentencetransformers/run.sh,transformers:/build/backend/python/transformers/run.sh,sentencetransformers:/build/backend/python/sentencetransformers/run.sh,rerankers:/build/backend/python/rerankers/run.sh,autogptq:/build/backend/python/autogptq/run.sh,bark:/build/backend/python/bark/run.sh,diffusers:/build/backend/python/diffusers/run.sh,openvoice:/build/backend/python/openvoice/run.sh,vall-e-x:/build/backend/python/vall-e-x/run.sh,vllm:/build/backend/python/vllm/run.sh,mamba:/build/backend/python/mamba/run.sh,exllama2:/build/backend/python/exllama2/run.sh,transformers-musicgen:/build/backend/python/transformers-musicgen/run.sh,parler-tts:/build/backend/python/parler-tts/run.sh"
|
||||
|
||||
ENV EXTERNAL_GRPC_BACKENDS="coqui:/build/backend/python/coqui/run.sh,transformers:/build/backend/python/transformers/run.sh,rerankers:/build/backend/python/rerankers/run.sh,autogptq:/build/backend/python/autogptq/run.sh,bark:/build/backend/python/bark/run.sh,diffusers:/build/backend/python/diffusers/run.sh,faster-whisper:/build/backend/python/faster-whisper/run.sh,kokoro:/build/backend/python/kokoro/run.sh,vllm:/build/backend/python/vllm/run.sh,exllama2:/build/backend/python/exllama2/run.sh"
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y --no-install-recommends \
|
||||
@@ -69,14 +68,10 @@ ENV PATH=/opt/rocm/bin:${PATH}
|
||||
# OpenBLAS requirements and stable diffusion
|
||||
RUN apt-get update && \
|
||||
apt-get install -y --no-install-recommends \
|
||||
libopenblas-dev \
|
||||
libopencv-dev && \
|
||||
libopenblas-dev && \
|
||||
apt-get clean && \
|
||||
rm -rf /var/lib/apt/lists/*
|
||||
|
||||
# Set up OpenCV
|
||||
RUN ln -s /usr/include/opencv4/opencv2 /usr/include/opencv2
|
||||
|
||||
WORKDIR /build
|
||||
|
||||
###################################
|
||||
@@ -251,7 +246,7 @@ RUN git clone --recurse-submodules --jobs 4 -b ${GRPC_VERSION} --depth 1 --shall
|
||||
|
||||
FROM requirements-drivers AS builder-base
|
||||
|
||||
ARG GO_TAGS="stablediffusion tts p2p"
|
||||
ARG GO_TAGS="tts p2p"
|
||||
ARG GRPC_BACKENDS
|
||||
ARG MAKEFLAGS
|
||||
ARG LD_FLAGS="-s -w"
|
||||
@@ -285,35 +280,12 @@ RUN <<EOT bash
|
||||
fi
|
||||
EOT
|
||||
|
||||
|
||||
###################################
|
||||
###################################
|
||||
|
||||
# This first portion of builder holds the layers specifically used to build backend-assets/grpc/stablediffusion
|
||||
# In most cases, builder is the image you should be using - however, this can save build time if one just needs to copy backend-assets/grpc/stablediffusion and nothing else.
|
||||
FROM builder-base AS builder-sd
|
||||
|
||||
# stablediffusion does not tolerate a newer version of abseil, copy only over enough elements to build it
|
||||
COPY Makefile .
|
||||
COPY go.mod .
|
||||
COPY go.sum .
|
||||
COPY backend/backend.proto ./backend/backend.proto
|
||||
COPY backend/go/image/stablediffusion ./backend/go/image/stablediffusion
|
||||
COPY pkg/grpc ./pkg/grpc
|
||||
COPY pkg/stablediffusion ./pkg/stablediffusion
|
||||
RUN git init
|
||||
RUN make sources/go-stable-diffusion
|
||||
RUN touch prepare-sources
|
||||
|
||||
# Actually build the backend
|
||||
RUN GRPC_BACKENDS=backend-assets/grpc/stablediffusion make backend-assets/grpc/stablediffusion
|
||||
|
||||
###################################
|
||||
###################################
|
||||
|
||||
# The builder target compiles LocalAI. This target is not the target that will be uploaded to the registry.
|
||||
# Adjustments to the build process should likely be made here.
|
||||
FROM builder-sd AS builder
|
||||
FROM builder-base AS builder
|
||||
|
||||
# Install the pre-built GRPC
|
||||
COPY --from=grpc /opt/grpc /usr/local
|
||||
@@ -331,7 +303,7 @@ RUN make prepare
|
||||
## We only leave the most CPU-optimized variant and the fallback for the cublas/hipblas build
|
||||
## (both will use CUDA or hipblas for the actual computation)
|
||||
RUN if [ "${BUILD_TYPE}" = "cublas" ] || [ "${BUILD_TYPE}" = "hipblas" ]; then \
|
||||
SKIP_GRPC_BACKEND="backend-assets/grpc/llama-cpp-avx backend-assets/grpc/llama-cpp-avx2" make build; \
|
||||
SKIP_GRPC_BACKEND="backend-assets/grpc/llama-cpp-avx512 backend-assets/grpc/llama-cpp-avx backend-assets/grpc/llama-cpp-avx2" make build; \
|
||||
else \
|
||||
make build; \
|
||||
fi
|
||||
@@ -353,8 +325,6 @@ ARG FFMPEG
|
||||
|
||||
COPY --from=grpc /opt/grpc /usr/local
|
||||
|
||||
COPY --from=builder-sd /build/backend-assets/grpc/stablediffusion /build/backend-assets/grpc/stablediffusion
|
||||
|
||||
COPY .devcontainer-scripts /.devcontainer-scripts
|
||||
|
||||
# Add FFmpeg
|
||||
@@ -427,36 +397,28 @@ COPY --from=builder /build/local-ai ./
|
||||
# Copy shared libraries for piper
|
||||
COPY --from=builder /build/sources/go-piper/piper-phonemize/pi/lib/* /usr/lib/
|
||||
|
||||
# do not let stablediffusion rebuild (requires an older version of absl)
|
||||
COPY --from=builder-sd /build/backend-assets/grpc/stablediffusion ./backend-assets/grpc/stablediffusion
|
||||
|
||||
# Change the shell to bash so we can use [[ tests below
|
||||
SHELL ["/bin/bash", "-c"]
|
||||
# We try to strike a balance between individual layer size (as that affects total push time) and total image size
|
||||
# Splitting the backends into more groups with fewer items results in a larger image, but a smaller size for the largest layer
|
||||
# Splitting the backends into fewer groups with more items results in a smaller image, but a larger size for the largest layer
|
||||
|
||||
RUN if [[ ( "${IMAGE_TYPE}" == "extras ")]]; then \
|
||||
apt-get -qq -y install espeak-ng \
|
||||
; fi
|
||||
|
||||
RUN if [[ ( "${EXTRA_BACKENDS}" =~ "coqui" || -z "${EXTRA_BACKENDS}" ) && "$IMAGE_TYPE" == "extras" ]]; then \
|
||||
make -C backend/python/coqui \
|
||||
; fi && \
|
||||
if [[ ( "${EXTRA_BACKENDS}" =~ "parler-tts" || -z "${EXTRA_BACKENDS}" ) && "$IMAGE_TYPE" == "extras" ]]; then \
|
||||
make -C backend/python/parler-tts \
|
||||
if [[ ( "${EXTRA_BACKENDS}" =~ "faster-whisper" || -z "${EXTRA_BACKENDS}" ) && "$IMAGE_TYPE" == "extras" ]]; then \
|
||||
make -C backend/python/faster-whisper \
|
||||
; fi && \
|
||||
if [[ ( "${EXTRA_BACKENDS}" =~ "diffusers" || -z "${EXTRA_BACKENDS}" ) && "$IMAGE_TYPE" == "extras" ]]; then \
|
||||
make -C backend/python/diffusers \
|
||||
; fi && \
|
||||
if [[ ( "${EXTRA_BACKENDS}" =~ "transformers-musicgen" || -z "${EXTRA_BACKENDS}" ) && "$IMAGE_TYPE" == "extras" ]]; then \
|
||||
make -C backend/python/transformers-musicgen \
|
||||
; fi
|
||||
|
||||
RUN if [[ ( "${EXTRA_BACKENDS}" =~ "vall-e-x" || -z "${EXTRA_BACKENDS}" ) && "$IMAGE_TYPE" == "extras" ]]; then \
|
||||
make -C backend/python/vall-e-x \
|
||||
; fi && \
|
||||
if [[ ( "${EXTRA_BACKENDS}" =~ "openvoice" || -z "${EXTRA_BACKENDS}" ) && "$IMAGE_TYPE" == "extras" ]]; then \
|
||||
make -C backend/python/openvoice \
|
||||
; fi && \
|
||||
if [[ ( "${EXTRA_BACKENDS}" =~ "sentencetransformers" || -z "${EXTRA_BACKENDS}" ) && "$IMAGE_TYPE" == "extras" ]]; then \
|
||||
make -C backend/python/sentencetransformers \
|
||||
RUN if [[ ( "${EXTRA_BACKENDS}" =~ "kokoro" || -z "${EXTRA_BACKENDS}" ) && "$IMAGE_TYPE" == "extras" ]]; then \
|
||||
make -C backend/python/kokoro \
|
||||
; fi && \
|
||||
if [[ ( "${EXTRA_BACKENDS}" =~ "exllama2" || -z "${EXTRA_BACKENDS}" ) && "$IMAGE_TYPE" == "extras" ]]; then \
|
||||
make -C backend/python/exllama2 \
|
||||
@@ -476,9 +438,6 @@ RUN if [[ ( "${EXTRA_BACKENDS}" =~ "vllm" || -z "${EXTRA_BACKENDS}" ) && "$IMAGE
|
||||
; fi && \
|
||||
if [[ ( "${EXTRA_BACKENDS}" =~ "rerankers" || -z "${EXTRA_BACKENDS}" ) && "$IMAGE_TYPE" == "extras" ]]; then \
|
||||
make -C backend/python/rerankers \
|
||||
; fi && \
|
||||
if [[ ( "${EXTRA_BACKENDS}" =~ "mamba" || -z "${EXTRA_BACKENDS}" ) && "$IMAGE_TYPE" == "extras" ]]; then \
|
||||
make -C backend/python/mamba \
|
||||
; fi
|
||||
|
||||
# Make sure the models directory exists
|
||||
|
||||
164
Makefile
164
Makefile
@@ -8,7 +8,7 @@ DETECT_LIBS?=true
|
||||
# llama.cpp versions
|
||||
GOLLAMA_REPO?=https://github.com/go-skynet/go-llama.cpp
|
||||
GOLLAMA_VERSION?=2b57a8ae43e4699d3dc5d1496a1ccd42922993be
|
||||
CPPLLAMA_VERSION?=ba8a1f9c5b675459c55a83e3f97f10df3a66c788
|
||||
CPPLLAMA_VERSION?=6152129d05870cb38162c422c6ba80434e021e9f
|
||||
|
||||
# whisper.cpp version
|
||||
WHISPER_REPO?=https://github.com/ggerganov/whisper.cpp
|
||||
@@ -18,21 +18,13 @@ WHISPER_CPP_VERSION?=6266a9f9e56a5b925e9892acf650f3eb1245814d
|
||||
PIPER_REPO?=https://github.com/mudler/go-piper
|
||||
PIPER_VERSION?=e10ca041a885d4a8f3871d52924b47792d5e5aa0
|
||||
|
||||
# stablediffusion version
|
||||
STABLEDIFFUSION_REPO?=https://github.com/mudler/go-stable-diffusion
|
||||
STABLEDIFFUSION_VERSION?=4a3cd6aeae6f66ee57eae9a0075f8c58c3a6a38f
|
||||
|
||||
# tinydream version
|
||||
TINYDREAM_REPO?=https://github.com/M0Rf30/go-tiny-dream
|
||||
TINYDREAM_VERSION?=c04fa463ace9d9a6464313aa5f9cd0f953b6c057
|
||||
|
||||
# bark.cpp
|
||||
BARKCPP_REPO?=https://github.com/PABannier/bark.cpp.git
|
||||
BARKCPP_VERSION?=v1.0.0
|
||||
|
||||
# stablediffusion.cpp (ggml)
|
||||
STABLEDIFFUSION_GGML_REPO?=https://github.com/leejet/stable-diffusion.cpp
|
||||
STABLEDIFFUSION_GGML_VERSION?=dcf91f9e0f2cbf9da472ee2a556751ed4bab2d2a
|
||||
STABLEDIFFUSION_GGML_VERSION?=5eb15ef4d022bef4a391de4f5f6556e81fbb5024
|
||||
|
||||
ONNX_VERSION?=1.20.0
|
||||
ONNX_ARCH?=x64
|
||||
@@ -183,16 +175,6 @@ ifeq ($(STATIC),true)
|
||||
LD_FLAGS+=-linkmode external -extldflags -static
|
||||
endif
|
||||
|
||||
ifeq ($(findstring stablediffusion,$(GO_TAGS)),stablediffusion)
|
||||
# OPTIONAL_TARGETS+=go-stable-diffusion/libstablediffusion.a
|
||||
OPTIONAL_GRPC+=backend-assets/grpc/stablediffusion
|
||||
endif
|
||||
|
||||
ifeq ($(findstring tinydream,$(GO_TAGS)),tinydream)
|
||||
# OPTIONAL_TARGETS+=go-tiny-dream/libtinydream.a
|
||||
OPTIONAL_GRPC+=backend-assets/grpc/tinydream
|
||||
endif
|
||||
|
||||
ifeq ($(findstring tts,$(GO_TAGS)),tts)
|
||||
# OPTIONAL_TARGETS+=go-piper/libpiper_binding.a
|
||||
# OPTIONAL_TARGETS+=backend-assets/espeak-ng-data
|
||||
@@ -204,6 +186,7 @@ endif
|
||||
ALL_GRPC_BACKENDS=backend-assets/grpc/huggingface
|
||||
ALL_GRPC_BACKENDS+=backend-assets/grpc/llama-cpp-avx
|
||||
ALL_GRPC_BACKENDS+=backend-assets/grpc/llama-cpp-avx2
|
||||
ALL_GRPC_BACKENDS+=backend-assets/grpc/llama-cpp-avx512
|
||||
ALL_GRPC_BACKENDS+=backend-assets/grpc/llama-cpp-fallback
|
||||
ALL_GRPC_BACKENDS+=backend-assets/grpc/llama-ggml
|
||||
ALL_GRPC_BACKENDS+=backend-assets/grpc/llama-cpp-grpc
|
||||
@@ -282,19 +265,6 @@ sources/go-piper:
|
||||
sources/go-piper/libpiper_binding.a: sources/go-piper
|
||||
$(MAKE) -C sources/go-piper libpiper_binding.a example/main piper.o
|
||||
|
||||
## stable diffusion (onnx)
|
||||
sources/go-stable-diffusion:
|
||||
mkdir -p sources/go-stable-diffusion
|
||||
cd sources/go-stable-diffusion && \
|
||||
git init && \
|
||||
git remote add origin $(STABLEDIFFUSION_REPO) && \
|
||||
git fetch origin && \
|
||||
git checkout $(STABLEDIFFUSION_VERSION) && \
|
||||
git submodule update --init --recursive --depth 1 --single-branch
|
||||
|
||||
sources/go-stable-diffusion/libstablediffusion.a: sources/go-stable-diffusion
|
||||
CPATH="$(CPATH):/usr/include/opencv4" $(MAKE) -C sources/go-stable-diffusion libstablediffusion.a
|
||||
|
||||
## stablediffusion (ggml)
|
||||
sources/stablediffusion-ggml.cpp:
|
||||
git clone --recursive $(STABLEDIFFUSION_GGML_REPO) sources/stablediffusion-ggml.cpp && \
|
||||
@@ -302,14 +272,8 @@ sources/stablediffusion-ggml.cpp:
|
||||
git checkout $(STABLEDIFFUSION_GGML_VERSION) && \
|
||||
git submodule update --init --recursive --depth 1 --single-branch
|
||||
|
||||
sources/stablediffusion-ggml.cpp/build/libstable-diffusion.a: sources/stablediffusion-ggml.cpp
|
||||
cd sources/stablediffusion-ggml.cpp && \
|
||||
mkdir -p build && \
|
||||
cd build && \
|
||||
cmake $(CMAKE_ARGS) .. && \
|
||||
cmake --build . --config Release
|
||||
|
||||
backend/go/image/stablediffusion-ggml/libsd.a: sources/stablediffusion-ggml.cpp/build/libstable-diffusion.a
|
||||
backend/go/image/stablediffusion-ggml/libsd.a: sources/stablediffusion-ggml.cpp
|
||||
$(MAKE) -C backend/go/image/stablediffusion-ggml build/libstable-diffusion.a
|
||||
$(MAKE) -C backend/go/image/stablediffusion-ggml libsd.a
|
||||
|
||||
backend-assets/grpc/stablediffusion-ggml: backend/go/image/stablediffusion-ggml/libsd.a backend-assets/grpc
|
||||
@@ -333,19 +297,6 @@ else
|
||||
mv backend-assets/lib/libonnxruntime.so.$(ONNX_VERSION) backend-assets/lib/libonnxruntime.so.1
|
||||
endif
|
||||
|
||||
## tiny-dream
|
||||
sources/go-tiny-dream:
|
||||
mkdir -p sources/go-tiny-dream
|
||||
cd sources/go-tiny-dream && \
|
||||
git init && \
|
||||
git remote add origin $(TINYDREAM_REPO) && \
|
||||
git fetch origin && \
|
||||
git checkout $(TINYDREAM_VERSION) && \
|
||||
git submodule update --init --recursive --depth 1 --single-branch
|
||||
|
||||
sources/go-tiny-dream/libtinydream.a: sources/go-tiny-dream
|
||||
$(MAKE) -C sources/go-tiny-dream libtinydream.a
|
||||
|
||||
## whisper
|
||||
sources/whisper.cpp:
|
||||
mkdir -p sources/whisper.cpp
|
||||
@@ -359,22 +310,18 @@ sources/whisper.cpp:
|
||||
sources/whisper.cpp/libwhisper.a: sources/whisper.cpp
|
||||
cd sources/whisper.cpp && $(MAKE) libwhisper.a libggml.a
|
||||
|
||||
get-sources: sources/go-llama.cpp sources/go-piper sources/stablediffusion-ggml.cpp sources/bark.cpp sources/whisper.cpp sources/go-stable-diffusion sources/go-tiny-dream backend/cpp/llama/llama.cpp
|
||||
get-sources: sources/go-llama.cpp sources/go-piper sources/stablediffusion-ggml.cpp sources/bark.cpp sources/whisper.cpp backend/cpp/llama/llama.cpp
|
||||
|
||||
replace:
|
||||
$(GOCMD) mod edit -replace github.com/ggerganov/whisper.cpp=$(CURDIR)/sources/whisper.cpp
|
||||
$(GOCMD) mod edit -replace github.com/ggerganov/whisper.cpp/bindings/go=$(CURDIR)/sources/whisper.cpp/bindings/go
|
||||
$(GOCMD) mod edit -replace github.com/M0Rf30/go-tiny-dream=$(CURDIR)/sources/go-tiny-dream
|
||||
$(GOCMD) mod edit -replace github.com/mudler/go-piper=$(CURDIR)/sources/go-piper
|
||||
$(GOCMD) mod edit -replace github.com/mudler/go-stable-diffusion=$(CURDIR)/sources/go-stable-diffusion
|
||||
$(GOCMD) mod edit -replace github.com/go-skynet/go-llama.cpp=$(CURDIR)/sources/go-llama.cpp
|
||||
|
||||
dropreplace:
|
||||
$(GOCMD) mod edit -dropreplace github.com/ggerganov/whisper.cpp
|
||||
$(GOCMD) mod edit -dropreplace github.com/ggerganov/whisper.cpp/bindings/go
|
||||
$(GOCMD) mod edit -dropreplace github.com/M0Rf30/go-tiny-dream
|
||||
$(GOCMD) mod edit -dropreplace github.com/mudler/go-piper
|
||||
$(GOCMD) mod edit -dropreplace github.com/mudler/go-stable-diffusion
|
||||
$(GOCMD) mod edit -dropreplace github.com/go-skynet/go-llama.cpp
|
||||
|
||||
prepare-sources: get-sources replace
|
||||
@@ -385,9 +332,7 @@ rebuild: ## Rebuilds the project
|
||||
$(GOCMD) clean -cache
|
||||
$(MAKE) -C sources/go-llama.cpp clean
|
||||
$(MAKE) -C sources/whisper.cpp clean
|
||||
$(MAKE) -C sources/go-stable-diffusion clean
|
||||
$(MAKE) -C sources/go-piper clean
|
||||
$(MAKE) -C sources/go-tiny-dream clean
|
||||
$(MAKE) build
|
||||
|
||||
prepare: prepare-sources $(OPTIONAL_TARGETS)
|
||||
@@ -501,9 +446,9 @@ prepare-test: grpcs
|
||||
|
||||
test: prepare test-models/testmodel.ggml grpcs
|
||||
@echo 'Running tests'
|
||||
export GO_TAGS="tts stablediffusion debug"
|
||||
export GO_TAGS="tts debug"
|
||||
$(MAKE) prepare-test
|
||||
HUGGINGFACE_GRPC=$(abspath ./)/backend/python/sentencetransformers/run.sh TEST_DIR=$(abspath ./)/test-dir/ FIXTURES=$(abspath ./)/tests/fixtures CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models \
|
||||
HUGGINGFACE_GRPC=$(abspath ./)/backend/python/transformers/run.sh TEST_DIR=$(abspath ./)/test-dir/ FIXTURES=$(abspath ./)/tests/fixtures CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models \
|
||||
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="!llama && !llama-gguf" --flake-attempts $(TEST_FLAKES) --fail-fast -v -r $(TEST_PATHS)
|
||||
$(MAKE) test-llama
|
||||
$(MAKE) test-llama-gguf
|
||||
@@ -589,10 +534,10 @@ protogen-go-clean:
|
||||
$(RM) bin/*
|
||||
|
||||
.PHONY: protogen-python
|
||||
protogen-python: autogptq-protogen bark-protogen coqui-protogen diffusers-protogen exllama2-protogen mamba-protogen rerankers-protogen sentencetransformers-protogen transformers-protogen parler-tts-protogen transformers-musicgen-protogen vall-e-x-protogen vllm-protogen openvoice-protogen
|
||||
protogen-python: autogptq-protogen bark-protogen coqui-protogen diffusers-protogen exllama2-protogen rerankers-protogen transformers-protogen kokoro-protogen vllm-protogen faster-whisper-protogen
|
||||
|
||||
.PHONY: protogen-python-clean
|
||||
protogen-python-clean: autogptq-protogen-clean bark-protogen-clean coqui-protogen-clean diffusers-protogen-clean exllama2-protogen-clean mamba-protogen-clean sentencetransformers-protogen-clean rerankers-protogen-clean transformers-protogen-clean transformers-musicgen-protogen-clean parler-tts-protogen-clean vall-e-x-protogen-clean vllm-protogen-clean openvoice-protogen-clean
|
||||
protogen-python-clean: autogptq-protogen-clean bark-protogen-clean coqui-protogen-clean diffusers-protogen-clean exllama2-protogen-clean rerankers-protogen-clean transformers-protogen-clean kokoro-protogen-clean vllm-protogen-clean faster-whisper-protogen-clean
|
||||
|
||||
.PHONY: autogptq-protogen
|
||||
autogptq-protogen:
|
||||
@@ -626,6 +571,14 @@ diffusers-protogen:
|
||||
diffusers-protogen-clean:
|
||||
$(MAKE) -C backend/python/diffusers protogen-clean
|
||||
|
||||
.PHONY: faster-whisper-protogen
|
||||
faster-whisper-protogen:
|
||||
$(MAKE) -C backend/python/faster-whisper protogen
|
||||
|
||||
.PHONY: faster-whisper-protogen-clean
|
||||
faster-whisper-protogen-clean:
|
||||
$(MAKE) -C backend/python/faster-whisper protogen-clean
|
||||
|
||||
.PHONY: exllama2-protogen
|
||||
exllama2-protogen:
|
||||
$(MAKE) -C backend/python/exllama2 protogen
|
||||
@@ -634,14 +587,6 @@ exllama2-protogen:
|
||||
exllama2-protogen-clean:
|
||||
$(MAKE) -C backend/python/exllama2 protogen-clean
|
||||
|
||||
.PHONY: mamba-protogen
|
||||
mamba-protogen:
|
||||
$(MAKE) -C backend/python/mamba protogen
|
||||
|
||||
.PHONY: mamba-protogen-clean
|
||||
mamba-protogen-clean:
|
||||
$(MAKE) -C backend/python/mamba protogen-clean
|
||||
|
||||
.PHONY: rerankers-protogen
|
||||
rerankers-protogen:
|
||||
$(MAKE) -C backend/python/rerankers protogen
|
||||
@@ -650,14 +595,6 @@ rerankers-protogen:
|
||||
rerankers-protogen-clean:
|
||||
$(MAKE) -C backend/python/rerankers protogen-clean
|
||||
|
||||
.PHONY: sentencetransformers-protogen
|
||||
sentencetransformers-protogen:
|
||||
$(MAKE) -C backend/python/sentencetransformers protogen
|
||||
|
||||
.PHONY: sentencetransformers-protogen-clean
|
||||
sentencetransformers-protogen-clean:
|
||||
$(MAKE) -C backend/python/sentencetransformers protogen-clean
|
||||
|
||||
.PHONY: transformers-protogen
|
||||
transformers-protogen:
|
||||
$(MAKE) -C backend/python/transformers protogen
|
||||
@@ -666,37 +603,13 @@ transformers-protogen:
|
||||
transformers-protogen-clean:
|
||||
$(MAKE) -C backend/python/transformers protogen-clean
|
||||
|
||||
.PHONY: parler-tts-protogen
|
||||
parler-tts-protogen:
|
||||
$(MAKE) -C backend/python/parler-tts protogen
|
||||
.PHONY: kokoro-protogen
|
||||
kokoro-protogen:
|
||||
$(MAKE) -C backend/python/kokoro protogen
|
||||
|
||||
.PHONY: parler-tts-protogen-clean
|
||||
parler-tts-protogen-clean:
|
||||
$(MAKE) -C backend/python/parler-tts protogen-clean
|
||||
|
||||
.PHONY: transformers-musicgen-protogen
|
||||
transformers-musicgen-protogen:
|
||||
$(MAKE) -C backend/python/transformers-musicgen protogen
|
||||
|
||||
.PHONY: transformers-musicgen-protogen-clean
|
||||
transformers-musicgen-protogen-clean:
|
||||
$(MAKE) -C backend/python/transformers-musicgen protogen-clean
|
||||
|
||||
.PHONY: vall-e-x-protogen
|
||||
vall-e-x-protogen:
|
||||
$(MAKE) -C backend/python/vall-e-x protogen
|
||||
|
||||
.PHONY: vall-e-x-protogen-clean
|
||||
vall-e-x-protogen-clean:
|
||||
$(MAKE) -C backend/python/vall-e-x protogen-clean
|
||||
|
||||
.PHONY: openvoice-protogen
|
||||
openvoice-protogen:
|
||||
$(MAKE) -C backend/python/openvoice protogen
|
||||
|
||||
.PHONY: openvoice-protogen-clean
|
||||
openvoice-protogen-clean:
|
||||
$(MAKE) -C backend/python/openvoice protogen-clean
|
||||
.PHONY: kokoro-protogen-clean
|
||||
kokoro-protogen-clean:
|
||||
$(MAKE) -C backend/python/kokoro protogen-clean
|
||||
|
||||
.PHONY: vllm-protogen
|
||||
vllm-protogen:
|
||||
@@ -713,15 +626,11 @@ prepare-extra-conda-environments: protogen-python
|
||||
$(MAKE) -C backend/python/bark
|
||||
$(MAKE) -C backend/python/coqui
|
||||
$(MAKE) -C backend/python/diffusers
|
||||
$(MAKE) -C backend/python/faster-whisper
|
||||
$(MAKE) -C backend/python/vllm
|
||||
$(MAKE) -C backend/python/mamba
|
||||
$(MAKE) -C backend/python/sentencetransformers
|
||||
$(MAKE) -C backend/python/rerankers
|
||||
$(MAKE) -C backend/python/transformers
|
||||
$(MAKE) -C backend/python/transformers-musicgen
|
||||
$(MAKE) -C backend/python/parler-tts
|
||||
$(MAKE) -C backend/python/vall-e-x
|
||||
$(MAKE) -C backend/python/openvoice
|
||||
$(MAKE) -C backend/python/kokoro
|
||||
$(MAKE) -C backend/python/exllama2
|
||||
|
||||
prepare-test-extra: protogen-python
|
||||
@@ -791,6 +700,13 @@ backend-assets/grpc/llama-cpp-avx2: backend-assets/grpc backend/cpp/llama/llama.
|
||||
CMAKE_ARGS="$(CMAKE_ARGS) -DGGML_AVX=on -DGGML_AVX2=on -DGGML_AVX512=off -DGGML_FMA=on -DGGML_F16C=on" $(MAKE) VARIANT="llama-avx2" build-llama-cpp-grpc-server
|
||||
cp -rfv backend/cpp/llama-avx2/grpc-server backend-assets/grpc/llama-cpp-avx2
|
||||
|
||||
backend-assets/grpc/llama-cpp-avx512: backend-assets/grpc backend/cpp/llama/llama.cpp
|
||||
cp -rf backend/cpp/llama backend/cpp/llama-avx512
|
||||
$(MAKE) -C backend/cpp/llama-avx512 purge
|
||||
$(info ${GREEN}I llama-cpp build info:avx512${RESET})
|
||||
CMAKE_ARGS="$(CMAKE_ARGS) -DGGML_AVX=on -DGGML_AVX2=off -DGGML_AVX512=on -DGGML_FMA=on -DGGML_F16C=on" $(MAKE) VARIANT="llama-avx512" build-llama-cpp-grpc-server
|
||||
cp -rfv backend/cpp/llama-avx512/grpc-server backend-assets/grpc/llama-cpp-avx512
|
||||
|
||||
backend-assets/grpc/llama-cpp-avx: backend-assets/grpc backend/cpp/llama/llama.cpp
|
||||
cp -rf backend/cpp/llama backend/cpp/llama-avx
|
||||
$(MAKE) -C backend/cpp/llama-avx purge
|
||||
@@ -865,13 +781,6 @@ ifneq ($(UPX),)
|
||||
$(UPX) backend-assets/grpc/piper
|
||||
endif
|
||||
|
||||
backend-assets/grpc/stablediffusion: sources/go-stable-diffusion sources/go-stable-diffusion/libstablediffusion.a backend-assets/grpc
|
||||
CGO_LDFLAGS="$(CGO_LDFLAGS)" CPATH="$(CPATH):$(CURDIR)/sources/go-stable-diffusion/:/usr/include/opencv4" LIBRARY_PATH=$(CURDIR)/sources/go-stable-diffusion/ \
|
||||
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/stablediffusion ./backend/go/image/stablediffusion
|
||||
ifneq ($(UPX),)
|
||||
$(UPX) backend-assets/grpc/stablediffusion
|
||||
endif
|
||||
|
||||
backend-assets/grpc/silero-vad: backend-assets/grpc backend-assets/lib/libonnxruntime.so.1
|
||||
CGO_LDFLAGS="$(CGO_LDFLAGS)" CPATH="$(CPATH):$(CURDIR)/sources/onnxruntime/include/" LIBRARY_PATH=$(CURDIR)/backend-assets/lib \
|
||||
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/silero-vad ./backend/go/vad/silero
|
||||
@@ -879,13 +788,6 @@ ifneq ($(UPX),)
|
||||
$(UPX) backend-assets/grpc/silero-vad
|
||||
endif
|
||||
|
||||
backend-assets/grpc/tinydream: sources/go-tiny-dream sources/go-tiny-dream/libtinydream.a backend-assets/grpc
|
||||
CGO_LDFLAGS="$(CGO_LDFLAGS)" LIBRARY_PATH=$(CURDIR)/go-tiny-dream \
|
||||
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/tinydream ./backend/go/image/tinydream
|
||||
ifneq ($(UPX),)
|
||||
$(UPX) backend-assets/grpc/tinydream
|
||||
endif
|
||||
|
||||
backend-assets/grpc/whisper: sources/whisper.cpp sources/whisper.cpp/libwhisper.a backend-assets/grpc
|
||||
CGO_LDFLAGS="$(CGO_LDFLAGS) $(CGO_LDFLAGS_WHISPER)" C_INCLUDE_PATH="$(CURDIR)/sources/whisper.cpp/include:$(CURDIR)/sources/whisper.cpp/ggml/include" LIBRARY_PATH=$(CURDIR)/sources/whisper.cpp \
|
||||
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/whisper ./backend/go/transcribe/whisper
|
||||
|
||||
12
README.md
12
README.md
@@ -39,7 +39,7 @@
|
||||
</p>
|
||||
|
||||
<p align="center">
|
||||
<a href="https://trendshift.io/repositories/1484" target="_blank"><img src="https://trendshift.io/api/badge/repositories/1484" alt="go-skynet%2FLocalAI | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/></a>
|
||||
<a href="https://trendshift.io/repositories/5539" target="_blank"><img src="https://trendshift.io/api/badge/repositories/5539" alt="mudler%2FLocalAI | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/></a>
|
||||
</p>
|
||||
|
||||
> :bulb: Get help - [❓FAQ](https://localai.io/faq/) [💭Discussions](https://github.com/go-skynet/LocalAI/discussions) [:speech_balloon: Discord](https://discord.gg/uJAeKSAGDy) [:book: Documentation website](https://localai.io/)
|
||||
@@ -92,19 +92,15 @@ local-ai run oci://localai/phi-2:latest
|
||||
|
||||
## 📰 Latest project news
|
||||
|
||||
- Jan 2025: LocalAI model release: https://huggingface.co/mudler/LocalAI-functioncall-phi-4-v0.3, SANA support in diffusers: https://github.com/mudler/LocalAI/pull/4603
|
||||
- Dec 2024: stablediffusion.cpp backend (ggml) added ( https://github.com/mudler/LocalAI/pull/4289 )
|
||||
- Nov 2024: Bark.cpp backend added ( https://github.com/mudler/LocalAI/pull/4287 )
|
||||
- Nov 2024: Voice activity detection models (**VAD**) added to the API: https://github.com/mudler/LocalAI/pull/4204
|
||||
- Oct 2024: examples moved to [LocalAI-examples](https://github.com/mudler/LocalAI-examples)
|
||||
- Aug 2024: 🆕 FLUX-1, [P2P Explorer](https://explorer.localai.io)
|
||||
- July 2024: 🔥🔥 🆕 P2P Dashboard, LocalAI Federated mode and AI Swarms: https://github.com/mudler/LocalAI/pull/2723
|
||||
- June 2024: 🆕 You can browse now the model gallery without LocalAI! Check out https://models.localai.io
|
||||
- June 2024: Support for models from OCI registries: https://github.com/mudler/LocalAI/pull/2628
|
||||
- July 2024: 🔥🔥 🆕 P2P Dashboard, LocalAI Federated mode and AI Swarms: https://github.com/mudler/LocalAI/pull/2723. P2P Global community pools: https://github.com/mudler/LocalAI/issues/3113
|
||||
- May 2024: 🔥🔥 Decentralized P2P llama.cpp: https://github.com/mudler/LocalAI/pull/2343 (peer2peer llama.cpp!) 👉 Docs https://localai.io/features/distribute/
|
||||
- May 2024: 🔥🔥 Openvoice: https://github.com/mudler/LocalAI/pull/2334
|
||||
- May 2024: 🆕 Function calls without grammars and mixed mode: https://github.com/mudler/LocalAI/pull/2328
|
||||
- May 2024: 🔥🔥 Distributed inferencing: https://github.com/mudler/LocalAI/pull/2324
|
||||
- May 2024: Chat, TTS, and Image generation in the WebUI: https://github.com/mudler/LocalAI/pull/2222
|
||||
- April 2024: Reranker API: https://github.com/mudler/LocalAI/pull/2121
|
||||
|
||||
Roadmap items: [List of issues](https://github.com/mudler/LocalAI/issues?q=is%3Aissue+is%3Aopen+label%3Aroadmap)
|
||||
@@ -113,12 +109,10 @@ Roadmap items: [List of issues](https://github.com/mudler/LocalAI/issues?q=is%3A
|
||||
|
||||
- Multimodal with vLLM and Video understanding: https://github.com/mudler/LocalAI/pull/3729
|
||||
- Realtime API https://github.com/mudler/LocalAI/issues/3714
|
||||
- 🔥🔥 Distributed, P2P Global community pools: https://github.com/mudler/LocalAI/issues/3113
|
||||
- WebUI improvements: https://github.com/mudler/LocalAI/issues/2156
|
||||
- Backends v2: https://github.com/mudler/LocalAI/issues/1126
|
||||
- Improving UX v2: https://github.com/mudler/LocalAI/issues/1373
|
||||
- Assistant API: https://github.com/mudler/LocalAI/issues/1273
|
||||
- Moderation endpoint: https://github.com/mudler/LocalAI/issues/999
|
||||
- Vulkan: https://github.com/mudler/LocalAI/issues/1647
|
||||
- Anthropic API: https://github.com/mudler/LocalAI/issues/1808
|
||||
|
||||
|
||||
@@ -1,56 +1,17 @@
|
||||
name: stablediffusion
|
||||
backend: stablediffusion
|
||||
backend: stablediffusion-ggml
|
||||
cfg_scale: 4.5
|
||||
|
||||
options:
|
||||
- sampler:euler
|
||||
parameters:
|
||||
model: stablediffusion_assets
|
||||
|
||||
license: "BSD-3"
|
||||
urls:
|
||||
- https://github.com/EdVince/Stable-Diffusion-NCNN
|
||||
- https://github.com/EdVince/Stable-Diffusion-NCNN/blob/main/LICENSE
|
||||
|
||||
description: |
|
||||
Stable Diffusion in NCNN with c++, supported txt2img and img2img
|
||||
model: stable-diffusion-v1-5-pruned-emaonly-Q4_0.gguf
|
||||
step: 25
|
||||
|
||||
download_files:
|
||||
- filename: "stablediffusion_assets/AutoencoderKL-256-256-fp16-opt.param"
|
||||
sha256: "18ca4b66685e21406bcf64c484b3b680b4949900415536d599cc876579c85c82"
|
||||
uri: "https://raw.githubusercontent.com/EdVince/Stable-Diffusion-NCNN/main/x86/linux/assets/AutoencoderKL-256-256-fp16-opt.param"
|
||||
- filename: "stablediffusion_assets/AutoencoderKL-512-512-fp16-opt.param"
|
||||
sha256: "cf45f63aacf3dbbab0f59ed92a6f2c14d9a1801314631cd3abe91e3c85639a20"
|
||||
uri: "https://raw.githubusercontent.com/EdVince/Stable-Diffusion-NCNN/main/x86/linux/assets/AutoencoderKL-512-512-fp16-opt.param"
|
||||
- filename: "stablediffusion_assets/AutoencoderKL-base-fp16.param"
|
||||
sha256: "0254a056dce61b0c27dc9ec1b78b53bcf55315c540f55f051eb841aa992701ba"
|
||||
uri: "https://raw.githubusercontent.com/EdVince/Stable-Diffusion-NCNN/main/x86/linux/assets/AutoencoderKL-base-fp16.param"
|
||||
- filename: "stablediffusion_assets/AutoencoderKL-encoder-512-512-fp16.bin"
|
||||
sha256: "ddcb79a9951b9f91e05e087739ed69da2c1c4ae30ba4168cce350b49d617c9fa"
|
||||
uri: "https://github.com/EdVince/Stable-Diffusion-NCNN/releases/download/naifu/AutoencoderKL-encoder-512-512-fp16.bin"
|
||||
- filename: "stablediffusion_assets/AutoencoderKL-fp16.bin"
|
||||
sha256: "f02e71f80e70252734724bbfaed5c4ddd3a8ed7e61bb2175ff5f53099f0e35dd"
|
||||
uri: "https://github.com/EdVince/Stable-Diffusion-NCNN/releases/download/naifu/AutoencoderKL-fp16.bin"
|
||||
- filename: "stablediffusion_assets/FrozenCLIPEmbedder-fp16.bin"
|
||||
sha256: "1c9a12f4e1dd1b295a388045f7f28a2352a4d70c3dc96a542189a3dd7051fdd6"
|
||||
uri: "https://github.com/EdVince/Stable-Diffusion-NCNN/releases/download/naifu/FrozenCLIPEmbedder-fp16.bin"
|
||||
- filename: "stablediffusion_assets/FrozenCLIPEmbedder-fp16.param"
|
||||
sha256: "471afbe678dd1fd3fe764ef9c6eccaccb0a7d7e601f27b462aa926b20eb368c9"
|
||||
uri: "https://raw.githubusercontent.com/EdVince/Stable-Diffusion-NCNN/main/x86/linux/assets/FrozenCLIPEmbedder-fp16.param"
|
||||
- filename: "stablediffusion_assets/log_sigmas.bin"
|
||||
sha256: "a2089f8aa4c61f9c200feaec541ab3f5c94233b28deb6d5e8bcd974fa79b68ac"
|
||||
uri: "https://github.com/EdVince/Stable-Diffusion-NCNN/raw/main/x86/linux/assets/log_sigmas.bin"
|
||||
- filename: "stablediffusion_assets/UNetModel-256-256-MHA-fp16-opt.param"
|
||||
sha256: "a58c380229f09491776df837b7aa7adffc0a87821dc4708b34535da2e36e3da1"
|
||||
uri: "https://raw.githubusercontent.com/EdVince/Stable-Diffusion-NCNN/main/x86/linux/assets/UNetModel-256-256-MHA-fp16-opt.param"
|
||||
- filename: "stablediffusion_assets/UNetModel-512-512-MHA-fp16-opt.param"
|
||||
sha256: "f12034067062827bd7f43d1d21888d1f03905401acf6c6eea22be23c259636fa"
|
||||
uri: "https://raw.githubusercontent.com/EdVince/Stable-Diffusion-NCNN/main/x86/linux/assets/UNetModel-512-512-MHA-fp16-opt.param"
|
||||
- filename: "stablediffusion_assets/UNetModel-base-MHA-fp16.param"
|
||||
sha256: "696f6975de49f4325b53ce32aff81861a6d6c07cd9ce3f0aae2cc405350af38d"
|
||||
uri: "https://raw.githubusercontent.com/EdVince/Stable-Diffusion-NCNN/main/x86/linux/assets/UNetModel-base-MHA-fp16.param"
|
||||
- filename: "stablediffusion_assets/UNetModel-MHA-fp16.bin"
|
||||
sha256: "d618918d011bfc1f644c0f2a33bf84931bd53b28a98492b0a8ed6f3a818852c3"
|
||||
uri: "https://github.com/EdVince/Stable-Diffusion-NCNN/releases/download/naifu/UNetModel-MHA-fp16.bin"
|
||||
- filename: "stablediffusion_assets/vocab.txt"
|
||||
sha256: "e30e57b6f1e47616982ef898d8922be24e535b4fa3d0110477b3a6f02ebbae7d"
|
||||
uri: "https://raw.githubusercontent.com/EdVince/Stable-Diffusion-NCNN/main/x86/linux/assets/vocab.txt"
|
||||
- filename: "stable-diffusion-v1-5-pruned-emaonly-Q4_0.gguf"
|
||||
sha256: "b8944e9fe0b69b36ae1b5bb0185b3a7b8ef14347fe0fa9af6c64c4829022261f"
|
||||
uri: "huggingface://second-state/stable-diffusion-v1-5-GGUF/stable-diffusion-v1-5-pruned-emaonly-Q4_0.gguf"
|
||||
|
||||
usage: |
|
||||
curl http://localhost:8080/v1/images/generations \
|
||||
|
||||
@@ -159,6 +159,8 @@ message Reply {
|
||||
bytes message = 1;
|
||||
int32 tokens = 2;
|
||||
int32 prompt_tokens = 3;
|
||||
double timing_prompt_processing = 4;
|
||||
double timing_token_generation = 5;
|
||||
}
|
||||
|
||||
message ModelOptions {
|
||||
@@ -348,4 +350,4 @@ message StatusResponse {
|
||||
message Message {
|
||||
string role = 1;
|
||||
string content = 2;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -22,6 +22,7 @@
|
||||
#include "backend.grpc.pb.h"
|
||||
#include "utils.hpp"
|
||||
#include "sampling.h"
|
||||
#include "speculative.h"
|
||||
// include std::regex
|
||||
#include <cstddef>
|
||||
#include <thread>
|
||||
@@ -134,6 +135,32 @@ static std::string tokens_to_output_formatted_string(const llama_context *ctx, c
|
||||
return out;
|
||||
}
|
||||
|
||||
// Adds an RPC server
|
||||
// https://github.com/ggerganov/llama.cpp/compare/4dbc8b9cb71876e005724f4e8f73a3544646bcf5..3edfa7d3753c29e44b964c0ff424d2ea8d5fdee6
|
||||
static void add_rpc_devices(std::string servers) {
|
||||
auto rpc_servers = string_split<std::string>(servers, ',');
|
||||
if (rpc_servers.empty()) {
|
||||
throw std::invalid_argument("no RPC servers specified");
|
||||
}
|
||||
ggml_backend_reg_t rpc_reg = ggml_backend_reg_by_name("RPC");
|
||||
if (!rpc_reg) {
|
||||
throw std::invalid_argument("failed to find RPC backend");
|
||||
}
|
||||
typedef ggml_backend_dev_t (*ggml_backend_rpc_add_device_t)(const char * endpoint);
|
||||
ggml_backend_rpc_add_device_t ggml_backend_rpc_add_device_fn = (ggml_backend_rpc_add_device_t) ggml_backend_reg_get_proc_address(rpc_reg, "ggml_backend_rpc_add_device");
|
||||
if (!ggml_backend_rpc_add_device_fn) {
|
||||
throw std::invalid_argument("failed to find RPC device add function");
|
||||
}
|
||||
for (const auto & server : rpc_servers) {
|
||||
ggml_backend_dev_t dev = ggml_backend_rpc_add_device_fn(server.c_str());
|
||||
if (dev) {
|
||||
ggml_backend_device_register(dev);
|
||||
} else {
|
||||
throw std::invalid_argument("failed to register RPC device");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// convert a vector of completion_token_output to json
|
||||
static json probs_vector_to_json(const llama_context *ctx, const std::vector<completion_token_output> &probs)
|
||||
{
|
||||
@@ -159,12 +186,45 @@ static json probs_vector_to_json(const llama_context *ctx, const std::vector<com
|
||||
return out;
|
||||
}
|
||||
|
||||
struct llama_slot_params {
|
||||
uint32_t seed = -1; // RNG seed
|
||||
bool stream = true;
|
||||
bool cache_prompt = true; // remember the prompt to avoid reprocessing all prompt
|
||||
bool return_tokens = false;
|
||||
|
||||
int32_t n_keep = 0; // number of tokens to keep from initial prompt
|
||||
int32_t n_discard = 0; // number of tokens after n_keep that may be discarded when shifting context, 0 defaults to half
|
||||
int32_t n_predict = -1; // new tokens to predict
|
||||
int32_t n_indent = 0; // mininum line indentation for the generated text in number of whitespace characters
|
||||
|
||||
int64_t t_max_prompt_ms = -1; // TODO: implement
|
||||
int64_t t_max_predict_ms = -1; // if positive, limit the generation phase to this time limit
|
||||
|
||||
std::vector<common_adapter_lora_info> lora;
|
||||
|
||||
std::vector<std::string> antiprompt;
|
||||
std::vector<std::string> response_fields;
|
||||
bool timings_per_token = false;
|
||||
bool post_sampling_probs = false;
|
||||
bool ignore_eos = false;
|
||||
|
||||
json input_prefix;
|
||||
json input_suffix;
|
||||
|
||||
struct common_params_sampling sampling;
|
||||
struct common_params_speculative speculative;
|
||||
};
|
||||
|
||||
|
||||
struct llama_client_slot
|
||||
{
|
||||
int id;
|
||||
int task_id = -1;
|
||||
|
||||
struct slot_params params;
|
||||
struct llama_slot_params params;
|
||||
common_speculative * spec = nullptr;
|
||||
llama_batch batch_spec = {};
|
||||
|
||||
|
||||
slot_state state = IDLE;
|
||||
slot_command command = NONE;
|
||||
@@ -257,6 +317,7 @@ struct llama_client_slot
|
||||
images.clear();
|
||||
}
|
||||
|
||||
|
||||
bool has_budget(common_params &global_params) {
|
||||
if (params.n_predict == -1 && global_params.n_predict == -1)
|
||||
{
|
||||
@@ -428,6 +489,11 @@ struct llama_server_context
|
||||
{
|
||||
llama_model *model = nullptr;
|
||||
llama_context *ctx = nullptr;
|
||||
common_init_result llama_init_dft;
|
||||
llama_context * ctx_dft = nullptr;
|
||||
llama_model * model_dft = nullptr;
|
||||
llama_context_params cparams_dft;
|
||||
const llama_vocab * vocab = nullptr;
|
||||
|
||||
clip_ctx *clp_ctx = nullptr;
|
||||
|
||||
@@ -439,6 +505,7 @@ struct llama_server_context
|
||||
bool clean_kv_cache = true;
|
||||
bool all_slots_are_idle = false;
|
||||
bool add_bos_token = true;
|
||||
bool has_eos_token = true;
|
||||
|
||||
int32_t n_ctx; // total context for all clients / slots
|
||||
|
||||
@@ -474,6 +541,7 @@ struct llama_server_context
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
bool load_model(const common_params ¶ms_)
|
||||
{
|
||||
params = params_;
|
||||
@@ -502,7 +570,7 @@ struct llama_server_context
|
||||
|
||||
if (multimodal) {
|
||||
const int n_embd_clip = clip_n_mmproj_embd(clp_ctx);
|
||||
const int n_embd_llm = llama_n_embd(model);
|
||||
const int n_embd_llm = llama_model_n_embd(model);
|
||||
if (n_embd_clip != n_embd_llm) {
|
||||
LOG("%s: embedding dim of the multimodal projector (%d) is not equal to that of LLaMA (%d). Make sure that you use the correct mmproj file.\n", __func__, n_embd_clip, n_embd_llm);
|
||||
llama_free(ctx);
|
||||
@@ -511,23 +579,54 @@ struct llama_server_context
|
||||
}
|
||||
}
|
||||
|
||||
vocab = llama_model_get_vocab(model);
|
||||
n_ctx = llama_n_ctx(ctx);
|
||||
|
||||
add_bos_token = llama_add_bos_token(model);
|
||||
add_bos_token = llama_vocab_get_add_bos(vocab);
|
||||
has_eos_token = llama_vocab_eos(vocab) != LLAMA_TOKEN_NULL;
|
||||
|
||||
if (!params.speculative.model.empty()) {
|
||||
LOG("loading draft model '%s'\n", params.speculative.model.c_str());
|
||||
|
||||
auto params_dft = params;
|
||||
|
||||
params_dft.devices = params.speculative.devices;
|
||||
params_dft.model = params.speculative.model;
|
||||
params_dft.n_ctx = params.speculative.n_ctx == 0 ? params.n_ctx / params.n_parallel : params.speculative.n_ctx;
|
||||
params_dft.n_gpu_layers = params.speculative.n_gpu_layers;
|
||||
params_dft.n_parallel = 1;
|
||||
|
||||
llama_init_dft = common_init_from_params(params_dft);
|
||||
|
||||
model_dft = llama_init_dft.model.get();
|
||||
|
||||
if (model_dft == nullptr) {
|
||||
LOG("failed to load draft model, '%s'\n", params.speculative.model.c_str());
|
||||
return false;
|
||||
}
|
||||
|
||||
if (!common_speculative_are_compatible(ctx, llama_init_dft.context.get())) {
|
||||
LOG("the draft model '%s' is not compatible with the target model '%s'\n", params.speculative.model.c_str(), params.model.c_str());
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
const int n_ctx_dft = llama_n_ctx(llama_init_dft.context.get());
|
||||
|
||||
cparams_dft = common_context_params_to_llama(params_dft);
|
||||
cparams_dft.n_batch = n_ctx_dft;
|
||||
|
||||
// force F16 KV cache for the draft model for extra performance
|
||||
cparams_dft.type_k = GGML_TYPE_F16;
|
||||
cparams_dft.type_v = GGML_TYPE_F16;
|
||||
|
||||
// the context is not needed - we will create one for each slot
|
||||
llama_init_dft.context.reset();
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
void validate_model_chat_template(server_params & sparams) {
|
||||
llama_chat_message chat[] = {{"user", "test"}};
|
||||
std::vector<char> buf(1);
|
||||
int res = llama_chat_apply_template(model, nullptr, chat, 1, true, buf.data(), buf.size());
|
||||
if (res < 0) {
|
||||
LOG_ERR("The chat template comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses", __func__);
|
||||
sparams.chat_template = "<|im_start|>"; // llama_chat_apply_template only checks if <|im_start|> exist in the template
|
||||
}
|
||||
}
|
||||
|
||||
llama_client_slot* get_active_slot() {
|
||||
for (llama_client_slot& slot : slots) {
|
||||
// Check if the slot is currently processing
|
||||
@@ -553,6 +652,22 @@ struct llama_server_context
|
||||
slot.n_ctx = n_ctx_slot;
|
||||
slot.n_predict = params.n_predict;
|
||||
|
||||
if (model_dft) {
|
||||
slot.batch_spec = llama_batch_init(params.speculative.n_max + 1, 0, 1);
|
||||
|
||||
ctx_dft = llama_init_from_model(model_dft, cparams_dft);
|
||||
if (ctx_dft == nullptr) {
|
||||
LOG("%s", "failed to create draft context\n");
|
||||
return;
|
||||
}
|
||||
|
||||
slot.spec = common_speculative_init(ctx_dft);
|
||||
if (slot.spec == nullptr) {
|
||||
LOG("%s", "failed to create speculator\n");
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
LOG_INFO("new slot", {
|
||||
{"slot_id", slot.id},
|
||||
{"n_ctx_slot", slot.n_ctx}
|
||||
@@ -661,9 +776,11 @@ struct llama_server_context
|
||||
}
|
||||
|
||||
bool launch_slot_with_data(llama_client_slot* &slot, json data) {
|
||||
slot_params default_params;
|
||||
llama_slot_params default_params;
|
||||
common_params_sampling default_sparams;
|
||||
|
||||
|
||||
default_sparams.speculative = params_base.speculative;
|
||||
|
||||
slot->params.stream = json_value(data, "stream", false);
|
||||
slot->params.cache_prompt = json_value(data, "cache_prompt", false);
|
||||
slot->params.n_predict = json_value(data, "n_predict", default_params.n_predict);
|
||||
@@ -687,6 +804,15 @@ struct llama_server_context
|
||||
slot->sparams.n_probs = json_value(data, "n_probs", default_sparams.n_probs);
|
||||
slot->sparams.min_keep = json_value(data, "min_keep", default_sparams.min_keep);
|
||||
|
||||
|
||||
slot->sparams.speculative.n_min = json_value(data, "speculative.n_min", defaults.speculative.n_min);
|
||||
slot->sparams.speculative.n_max = json_value(data, "speculative.n_max", defaults.speculative.n_max);
|
||||
slot->sparams.speculative.p_min = json_value(data, "speculative.p_min", defaults.speculative.p_min);
|
||||
|
||||
slot->sparams.speculative.n_min = std::min(params.speculative.n_max, params.speculative.n_min);
|
||||
slot->sparams.speculative.n_min = std::max(params.speculative.n_min, 2);
|
||||
slot->sparams.speculative.n_max = std::max(params.speculative.n_max, 0);
|
||||
|
||||
if (slot->n_predict > 0 && slot->params.n_predict > slot->n_predict) {
|
||||
// Might be better to reject the request with a 400 ?
|
||||
LOG_WARNING("Max tokens to predict exceeds server configuration", {
|
||||
@@ -725,8 +851,8 @@ struct llama_server_context
|
||||
slot->prompt = "";
|
||||
}
|
||||
|
||||
if (json_value(data, "ignore_eos", false)) {
|
||||
slot->sparams.logit_bias.push_back({llama_token_eos(model), -INFINITY});
|
||||
if (json_value(data, "ignore_eos", false) && has_eos_token) {
|
||||
slot->sparams.logit_bias.push_back({llama_vocab_eos(vocab), -INFINITY});
|
||||
}
|
||||
/*
|
||||
slot->sparams.penalty_prompt_tokens.clear();
|
||||
@@ -765,13 +891,13 @@ struct llama_server_context
|
||||
}
|
||||
}
|
||||
*/
|
||||
|
||||
slot->sparams.logit_bias.clear();
|
||||
|
||||
const auto &logit_bias = data.find("logit_bias");
|
||||
if (logit_bias != data.end() && logit_bias->is_array())
|
||||
{
|
||||
const int n_vocab = llama_n_vocab(model);
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
const int n_vocab = llama_vocab_n_tokens(vocab);
|
||||
for (const auto &el : *logit_bias)
|
||||
{
|
||||
if (el.is_array() && el.size() == 2)
|
||||
@@ -800,7 +926,7 @@ struct llama_server_context
|
||||
}
|
||||
else if (el[0].is_string())
|
||||
{
|
||||
auto toks = common_tokenize(model, el[0].get<std::string>(), false);
|
||||
auto toks = common_tokenize(vocab, el[0].get<std::string>(), false);
|
||||
for (auto tok : toks)
|
||||
{
|
||||
slot->sparams.logit_bias.push_back({tok, bias});
|
||||
@@ -1130,7 +1256,7 @@ struct llama_server_context
|
||||
slot.has_next_token = false;
|
||||
}
|
||||
|
||||
if (result.tok == llama_token_eos(model))
|
||||
if (result.tok == llama_vocab_eos(vocab) || llama_vocab_is_eog(vocab, result.tok))
|
||||
{
|
||||
slot.stopped_eos = true;
|
||||
slot.has_next_token = false;
|
||||
@@ -1325,7 +1451,7 @@ struct llama_server_context
|
||||
res.error = false;
|
||||
res.stop = true;
|
||||
|
||||
const int n_embd = llama_n_embd(model);
|
||||
const int n_embd = llama_model_n_embd(model);
|
||||
if (!params.embedding)
|
||||
{
|
||||
LOG_WARNING("embedding disabled", {
|
||||
@@ -1424,7 +1550,7 @@ struct llama_server_context
|
||||
n_eval = n_batch;
|
||||
}
|
||||
|
||||
const int n_embd = llama_n_embd(model);
|
||||
const int n_embd = llama_model_n_embd(model);
|
||||
float * embd = img.image_embedding + i * n_embd;
|
||||
llava_embd_batch llava_batch = llava_embd_batch(embd, n_eval, slot.n_past, 0);
|
||||
if (llama_decode(ctx, llava_batch.batch))
|
||||
@@ -1705,11 +1831,11 @@ struct llama_server_context
|
||||
suffix_tokens.erase(suffix_tokens.begin());
|
||||
}
|
||||
|
||||
prefix_tokens.insert(prefix_tokens.begin(), llama_token_prefix(model));
|
||||
prefix_tokens.insert(prefix_tokens.begin(), llama_token_bos(model)); // always add BOS
|
||||
prefix_tokens.insert(prefix_tokens.end(), llama_token_suffix(model));
|
||||
prefix_tokens.insert(prefix_tokens.begin(), llama_vocab_fim_pre(vocab));
|
||||
prefix_tokens.insert(prefix_tokens.begin(), llama_vocab_bos(vocab)); // always add BOS
|
||||
prefix_tokens.insert(prefix_tokens.end(), llama_vocab_fim_suf(vocab));
|
||||
prefix_tokens.insert(prefix_tokens.end(), suffix_tokens.begin(), suffix_tokens.end());
|
||||
prefix_tokens.push_back(llama_token_middle(model));
|
||||
prefix_tokens.push_back(llama_vocab_fim_mid(vocab));
|
||||
prompt_tokens = prefix_tokens;
|
||||
}
|
||||
else
|
||||
@@ -2004,6 +2130,97 @@ struct llama_server_context
|
||||
}
|
||||
}
|
||||
|
||||
// do speculative decoding
|
||||
for (auto & slot : slots) {
|
||||
if (!slot.is_processing() || !(ctx_dft && params.speculative.n_max > 0)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
if (slot.state != PROCESSING) {
|
||||
continue;
|
||||
}
|
||||
|
||||
// determine the max draft that fits the current slot state
|
||||
int n_draft_max = slot.params.speculative.n_max;
|
||||
|
||||
// note: n_past is not yet increased for the `id` token sampled above
|
||||
// also, need to leave space for 1 extra token to allow context shifts
|
||||
n_draft_max = std::min(n_draft_max, slot.n_ctx - slot.n_past - 2);
|
||||
|
||||
if (slot.n_remaining > 0) {
|
||||
n_draft_max = std::min(n_draft_max, slot.n_remaining - 1);
|
||||
}
|
||||
|
||||
LOG("max possible draft: %d\n", n_draft_max);
|
||||
|
||||
if (n_draft_max < slot.params.speculative.n_min) {
|
||||
LOG("the max possible draft is too small: %d < %d - skipping speculative decoding\n", n_draft_max, slot.params.speculative.n_min);
|
||||
|
||||
continue;
|
||||
}
|
||||
|
||||
llama_token id = slot.sampled;
|
||||
|
||||
struct common_speculative_params params_spec;
|
||||
params_spec.n_draft = n_draft_max;
|
||||
params_spec.n_reuse = llama_n_ctx(ctx_dft) - slot.params.speculative.n_max;
|
||||
params_spec.p_min = slot.params.speculative.p_min;
|
||||
|
||||
llama_tokens draft = common_speculative_gen_draft(slot.spec, params_spec, slot.cache_tokens, id);
|
||||
|
||||
// ignore small drafts
|
||||
if (slot.params.speculative.n_min > (int) draft.size()) {
|
||||
LOG("ignoring small draft: %d < %d\n", (int) draft.size(), slot.params.speculative.n_min);
|
||||
|
||||
continue;
|
||||
}
|
||||
|
||||
// construct the speculation batch
|
||||
common_batch_clear(slot.batch_spec);
|
||||
common_batch_add (slot.batch_spec, id, slot.n_past, { slot.id }, true);
|
||||
|
||||
for (size_t i = 0; i < draft.size(); ++i) {
|
||||
common_batch_add(slot.batch_spec, draft[i], slot.n_past + 1 + i, { slot.id }, true);
|
||||
}
|
||||
|
||||
LOG("decoding speculative batch, size = %d\n", slot.batch_spec.n_tokens);
|
||||
|
||||
llama_decode(ctx, slot.batch_spec);
|
||||
|
||||
// the accepted tokens from the speculation
|
||||
const auto ids = common_sampler_sample_and_accept_n(slot.ctx_sampling, ctx, draft);
|
||||
|
||||
slot.n_past += ids.size();
|
||||
slot.n_decoded += ids.size();
|
||||
|
||||
slot.cache_tokens.push_back(id);
|
||||
slot.cache_tokens.insert(slot.cache_tokens.end(), ids.begin(), ids.end() - 1);
|
||||
|
||||
llama_kv_cache_seq_rm(ctx, slot.id, slot.n_past, -1);
|
||||
|
||||
for (size_t i = 0; i < ids.size(); ++i) {
|
||||
completion_token_output result;
|
||||
|
||||
result.tok = ids[i];
|
||||
result.text_to_send = common_token_to_piece(ctx, result.tok, params.special);
|
||||
//result.prob = 1.0f; // set later
|
||||
|
||||
// TODO: set result.probs
|
||||
|
||||
if (!process_token(result, slot)) {
|
||||
// release slot because of stop condition
|
||||
slot.release();
|
||||
slot.print_timings();
|
||||
send_final_response(slot);
|
||||
metrics.on_prediction(slot);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
LOG("accepted %d/%d draft tokens, new n_past = %d\n", (int) ids.size() - 1, (int) draft.size(), slot.n_past);
|
||||
}
|
||||
|
||||
|
||||
LOG_VERBOSE("slots updated", {});
|
||||
return true;
|
||||
}
|
||||
@@ -2276,6 +2493,30 @@ static void params_parse(const backend::ModelOptions* request,
|
||||
params.cpuparams.n_threads = request->threads();
|
||||
params.n_gpu_layers = request->ngpulayers();
|
||||
params.n_batch = request->nbatch();
|
||||
params.speculative.model = request->draftmodel();
|
||||
|
||||
// If options is not NULL, parse options
|
||||
for (int i = 0; request->options()[i] != NULL; i++) {
|
||||
char *optname = strtok(request->options()[i], ":");
|
||||
char *optval = strtok(NULL, ":");
|
||||
if (optval == NULL) {
|
||||
optval = "true";
|
||||
}
|
||||
|
||||
if (!strcmp(optname, "speculative.n_gpu_layers")) {
|
||||
params.speculative.n_gpu_layers = std::stoi(optval);
|
||||
}
|
||||
if (!strcmp(optname, "speculative.n_ctx")) {
|
||||
params.speculative.n_ctx = std::stoi(optval);
|
||||
}
|
||||
}
|
||||
|
||||
if params.speculative.n_gpu_layers == 0 {
|
||||
params.speculative.n_gpu_layers = params.n_gpu_layers;
|
||||
}
|
||||
if params.speculative.n_ctx == 0 {
|
||||
params.speculative.n_ctx = params.n_ctx;
|
||||
}
|
||||
// Set params.n_parallel by environment variable (LLAMA_PARALLEL), defaults to 1
|
||||
//params.n_parallel = 1;
|
||||
const char *env_parallel = std::getenv("LLAMACPP_PARALLEL");
|
||||
@@ -2288,7 +2529,7 @@ static void params_parse(const backend::ModelOptions* request,
|
||||
|
||||
const char *llama_grpc_servers = std::getenv("LLAMACPP_GRPC_SERVERS");
|
||||
if (llama_grpc_servers != NULL) {
|
||||
params.rpc_servers = std::string(llama_grpc_servers);
|
||||
add_rpc_devices(std::string(llama_grpc_servers));
|
||||
}
|
||||
|
||||
// TODO: Add yarn
|
||||
@@ -2414,6 +2655,13 @@ public:
|
||||
int32_t tokens_evaluated = result.result_json.value("tokens_evaluated", 0);
|
||||
reply.set_prompt_tokens(tokens_evaluated);
|
||||
|
||||
if (result.result_json.contains("timings")) {
|
||||
double timing_prompt_processing = result.result_json.at("timings").value("prompt_ms", 0.0);
|
||||
reply.set_timing_prompt_processing(timing_prompt_processing);
|
||||
double timing_token_generation = result.result_json.at("timings").value("predicted_ms", 0.0);
|
||||
reply.set_timing_token_generation(timing_token_generation);
|
||||
}
|
||||
|
||||
// Log Request Correlation Id
|
||||
LOG_VERBOSE("correlation:", {
|
||||
{ "id", data["correlation_id"] }
|
||||
@@ -2454,6 +2702,13 @@ public:
|
||||
reply->set_prompt_tokens(tokens_evaluated);
|
||||
reply->set_tokens(tokens_predicted);
|
||||
reply->set_message(completion_text);
|
||||
|
||||
if (result.result_json.contains("timings")) {
|
||||
double timing_prompt_processing = result.result_json.at("timings").value("prompt_ms", 0.0);
|
||||
reply->set_timing_prompt_processing(timing_prompt_processing);
|
||||
double timing_token_generation = result.result_json.at("timings").value("predicted_ms", 0.0);
|
||||
reply->set_timing_token_generation(timing_token_generation);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
|
||||
@@ -2,20 +2,95 @@ INCLUDE_PATH := $(abspath ./)
|
||||
LIBRARY_PATH := $(abspath ./)
|
||||
|
||||
AR?=ar
|
||||
|
||||
CMAKE_ARGS?=
|
||||
BUILD_TYPE?=
|
||||
ONEAPI_VARS?=/opt/intel/oneapi/setvars.sh
|
||||
# keep standard at C11 and C++11
|
||||
CXXFLAGS = -I. -I$(INCLUDE_PATH)/../../../../sources/stablediffusion-ggml.cpp/thirdparty -I$(INCLUDE_PATH)/../../../../sources/stablediffusion-ggml.cpp/ggml/include -I$(INCLUDE_PATH)/../../../../sources/stablediffusion-ggml.cpp -O3 -DNDEBUG -std=c++17 -fPIC
|
||||
|
||||
# Disable Shared libs as we are linking on static gRPC and we can't mix shared and static
|
||||
CMAKE_ARGS+=-DBUILD_SHARED_LIBS=OFF
|
||||
|
||||
# If build type is cublas, then we set -DGGML_CUDA=ON to CMAKE_ARGS automatically
|
||||
ifeq ($(BUILD_TYPE),cublas)
|
||||
CMAKE_ARGS+=-DGGML_CUDA=ON
|
||||
# If build type is openblas then we set -DGGML_BLAS=ON -DGGML_BLAS_VENDOR=OpenBLAS
|
||||
# to CMAKE_ARGS automatically
|
||||
else ifeq ($(BUILD_TYPE),openblas)
|
||||
CMAKE_ARGS+=-DGGML_BLAS=ON -DGGML_BLAS_VENDOR=OpenBLAS
|
||||
# If build type is clblas (openCL) we set -DGGML_CLBLAST=ON -DCLBlast_DIR=/some/path
|
||||
else ifeq ($(BUILD_TYPE),clblas)
|
||||
CMAKE_ARGS+=-DGGML_CLBLAST=ON -DCLBlast_DIR=/some/path
|
||||
# If it's hipblas we do have also to set CC=/opt/rocm/llvm/bin/clang CXX=/opt/rocm/llvm/bin/clang++
|
||||
else ifeq ($(BUILD_TYPE),hipblas)
|
||||
CMAKE_ARGS+=-DGGML_HIP=ON
|
||||
# If it's OSX, DO NOT embed the metal library - -DGGML_METAL_EMBED_LIBRARY=ON requires further investigation
|
||||
# But if it's OSX without metal, disable it here
|
||||
else ifeq ($(OS),Darwin)
|
||||
ifneq ($(BUILD_TYPE),metal)
|
||||
CMAKE_ARGS+=-DGGML_METAL=OFF
|
||||
else
|
||||
CMAKE_ARGS+=-DGGML_METAL=ON
|
||||
CMAKE_ARGS+=-DGGML_METAL_EMBED_LIBRARY=ON
|
||||
TARGET+=--target ggml-metal
|
||||
endif
|
||||
endif
|
||||
|
||||
# ifeq ($(BUILD_TYPE),sycl_f16)
|
||||
# CMAKE_ARGS+=-DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_SYCL_F16=ON -DSD_SYCL=ON -DGGML_SYCL_F16=ON
|
||||
# endif
|
||||
|
||||
# ifeq ($(BUILD_TYPE),sycl_f32)
|
||||
# CMAKE_ARGS+=-DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DSD_SYCL=ON
|
||||
# endif
|
||||
|
||||
# warnings
|
||||
CXXFLAGS += -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function
|
||||
|
||||
# Find all .a archives in ARCHIVE_DIR
|
||||
# (ggml can have different backends cpu, cuda, etc., each backend generates a .a archive)
|
||||
GGML_ARCHIVE_DIR := build/ggml/src/
|
||||
ALL_ARCHIVES := $(shell find $(GGML_ARCHIVE_DIR) -type f -name '*.a')
|
||||
|
||||
# Name of the single merged library
|
||||
COMBINED_LIB := libggmlall.a
|
||||
|
||||
# Rule to merge all the .a files into one
|
||||
$(COMBINED_LIB): $(ALL_ARCHIVES)
|
||||
@echo "Merging all .a into $(COMBINED_LIB)"
|
||||
rm -f $@
|
||||
mkdir -p merge-tmp
|
||||
for a in $(ALL_ARCHIVES); do \
|
||||
( cd merge-tmp && ar x ../$$a ); \
|
||||
done
|
||||
( cd merge-tmp && ar rcs ../$@ *.o )
|
||||
# Ensure we have a proper index
|
||||
ranlib $@
|
||||
# Clean up
|
||||
rm -rf merge-tmp
|
||||
|
||||
build/libstable-diffusion.a:
|
||||
@echo "Building SD with $(BUILD_TYPE) build type and $(CMAKE_ARGS)"
|
||||
ifneq (,$(findstring sycl,$(BUILD_TYPE)))
|
||||
+bash -c "source $(ONEAPI_VARS); \
|
||||
mkdir -p build && \
|
||||
cd build && \
|
||||
cmake $(CMAKE_ARGS) ../../../../../sources/stablediffusion-ggml.cpp && \
|
||||
cmake --build . --config Release"
|
||||
else
|
||||
mkdir -p build && \
|
||||
cd build && \
|
||||
cmake $(CMAKE_ARGS) ../../../../../sources/stablediffusion-ggml.cpp && \
|
||||
cmake --build . --config Release
|
||||
endif
|
||||
$(MAKE) $(COMBINED_LIB)
|
||||
|
||||
gosd.o:
|
||||
$(CXX) $(CXXFLAGS) gosd.cpp -o gosd.o -c
|
||||
|
||||
libsd.a: gosd.o
|
||||
cp $(INCLUDE_PATH)/../../../../sources/stablediffusion-ggml.cpp/build/libstable-diffusion.a ./libsd.a
|
||||
cp $(INCLUDE_PATH)/build/libstable-diffusion.a ./libsd.a
|
||||
$(AR) rcs libsd.a gosd.o
|
||||
|
||||
clean:
|
||||
rm -f gosd.o libsd.a
|
||||
rm -rf gosd.o libsd.a build $(COMBINED_LIB)
|
||||
@@ -1,7 +1,7 @@
|
||||
package main
|
||||
|
||||
// #cgo CXXFLAGS: -I${SRCDIR}/../../../../sources/stablediffusion-ggml.cpp/thirdparty -I${SRCDIR}/../../../../sources/stablediffusion-ggml.cpp -I${SRCDIR}/../../../../sources/stablediffusion-ggml.cpp/ggml/include
|
||||
// #cgo LDFLAGS: -L${SRCDIR}/ -L${SRCDIR}/../../../../sources/stablediffusion-ggml.cpp/build/ggml/src/ggml-cpu -L${SRCDIR}/../../../../sources/stablediffusion-ggml.cpp/build/ggml/src -lsd -lstdc++ -lm -lggml -lggml-base -lggml-cpu -lgomp
|
||||
// #cgo LDFLAGS: -L${SRCDIR}/ -lsd -lstdc++ -lm -lggmlall -lgomp
|
||||
// #include <gosd.h>
|
||||
// #include <stdlib.h>
|
||||
import "C"
|
||||
|
||||
@@ -1,21 +0,0 @@
|
||||
package main
|
||||
|
||||
// Note: this is started internally by LocalAI and a server is allocated for each model
|
||||
|
||||
import (
|
||||
"flag"
|
||||
|
||||
grpc "github.com/mudler/LocalAI/pkg/grpc"
|
||||
)
|
||||
|
||||
var (
|
||||
addr = flag.String("addr", "localhost:50051", "the address to connect to")
|
||||
)
|
||||
|
||||
func main() {
|
||||
flag.Parse()
|
||||
|
||||
if err := grpc.StartServer(*addr, &Image{}); err != nil {
|
||||
panic(err)
|
||||
}
|
||||
}
|
||||
@@ -1,33 +0,0 @@
|
||||
package main
|
||||
|
||||
// This is a wrapper to statisfy the GRPC service interface
|
||||
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
|
||||
import (
|
||||
"github.com/mudler/LocalAI/pkg/grpc/base"
|
||||
pb "github.com/mudler/LocalAI/pkg/grpc/proto"
|
||||
"github.com/mudler/LocalAI/pkg/stablediffusion"
|
||||
)
|
||||
|
||||
type Image struct {
|
||||
base.SingleThread
|
||||
stablediffusion *stablediffusion.StableDiffusion
|
||||
}
|
||||
|
||||
func (image *Image) Load(opts *pb.ModelOptions) error {
|
||||
var err error
|
||||
// Note: the Model here is a path to a directory containing the model files
|
||||
image.stablediffusion, err = stablediffusion.New(opts.ModelFile)
|
||||
return err
|
||||
}
|
||||
|
||||
func (image *Image) GenerateImage(opts *pb.GenerateImageRequest) error {
|
||||
return image.stablediffusion.GenerateImage(
|
||||
int(opts.Height),
|
||||
int(opts.Width),
|
||||
int(opts.Mode),
|
||||
int(opts.Step),
|
||||
int(opts.Seed),
|
||||
opts.PositivePrompt,
|
||||
opts.NegativePrompt,
|
||||
opts.Dst)
|
||||
}
|
||||
@@ -1,21 +0,0 @@
|
||||
package main
|
||||
|
||||
// Note: this is started internally by LocalAI and a server is allocated for each model
|
||||
|
||||
import (
|
||||
"flag"
|
||||
|
||||
grpc "github.com/mudler/LocalAI/pkg/grpc"
|
||||
)
|
||||
|
||||
var (
|
||||
addr = flag.String("addr", "localhost:50051", "the address to connect to")
|
||||
)
|
||||
|
||||
func main() {
|
||||
flag.Parse()
|
||||
|
||||
if err := grpc.StartServer(*addr, &Image{}); err != nil {
|
||||
panic(err)
|
||||
}
|
||||
}
|
||||
@@ -1,32 +0,0 @@
|
||||
package main
|
||||
|
||||
// This is a wrapper to statisfy the GRPC service interface
|
||||
// It is meant to be used by the main executable that is the server for the specific backend type (falcon, gpt3, etc)
|
||||
import (
|
||||
"github.com/mudler/LocalAI/pkg/grpc/base"
|
||||
pb "github.com/mudler/LocalAI/pkg/grpc/proto"
|
||||
"github.com/mudler/LocalAI/pkg/tinydream"
|
||||
)
|
||||
|
||||
type Image struct {
|
||||
base.SingleThread
|
||||
tinydream *tinydream.TinyDream
|
||||
}
|
||||
|
||||
func (image *Image) Load(opts *pb.ModelOptions) error {
|
||||
var err error
|
||||
// Note: the Model here is a path to a directory containing the model files
|
||||
image.tinydream, err = tinydream.New(opts.ModelFile)
|
||||
return err
|
||||
}
|
||||
|
||||
func (image *Image) GenerateImage(opts *pb.GenerateImageRequest) error {
|
||||
return image.tinydream.GenerateImage(
|
||||
int(opts.Height),
|
||||
int(opts.Width),
|
||||
int(opts.Step),
|
||||
int(opts.Seed),
|
||||
opts.PositivePrompt,
|
||||
opts.NegativePrompt,
|
||||
opts.Dst)
|
||||
}
|
||||
@@ -311,12 +311,16 @@ func (s *Store) StoresGet(opts *pb.StoresGetOptions) (pb.StoresGetResult, error)
|
||||
}
|
||||
|
||||
func isNormalized(k []float32) bool {
|
||||
var sum float32
|
||||
var sum float64
|
||||
|
||||
for _, v := range k {
|
||||
sum += v
|
||||
v64 := float64(v)
|
||||
sum += v64*v64
|
||||
}
|
||||
|
||||
return sum == 1.0
|
||||
s := math.Sqrt(sum)
|
||||
|
||||
return s >= 0.99 && s <= 1.01
|
||||
}
|
||||
|
||||
// TODO: This we could replace with handwritten SIMD code
|
||||
@@ -328,7 +332,7 @@ func normalizedCosineSimilarity(k1, k2 []float32) float32 {
|
||||
dot += k1[i] * k2[i]
|
||||
}
|
||||
|
||||
assert(dot >= -1 && dot <= 1, fmt.Sprintf("dot = %f", dot))
|
||||
assert(dot >= -1.01 && dot <= 1.01, fmt.Sprintf("dot = %f", dot))
|
||||
|
||||
// 2.0 * (1.0 - dot) would be the Euclidean distance
|
||||
return dot
|
||||
@@ -418,7 +422,7 @@ func cosineSimilarity(k1, k2 []float32, mag1 float64) float32 {
|
||||
|
||||
sim := float32(dot / (mag1 * math.Sqrt(mag2)))
|
||||
|
||||
assert(sim >= -1 && sim <= 1, fmt.Sprintf("sim = %f", sim))
|
||||
assert(sim >= -1.01 && sim <= 1.01, fmt.Sprintf("sim = %f", sim))
|
||||
|
||||
return sim
|
||||
}
|
||||
|
||||
@@ -17,7 +17,7 @@ import backend_pb2_grpc
|
||||
|
||||
import grpc
|
||||
|
||||
from diffusers import StableDiffusion3Pipeline, StableDiffusionXLPipeline, StableDiffusionDepth2ImgPipeline, DPMSolverMultistepScheduler, StableDiffusionPipeline, DiffusionPipeline, \
|
||||
from diffusers import SanaPipeline, StableDiffusion3Pipeline, StableDiffusionXLPipeline, StableDiffusionDepth2ImgPipeline, DPMSolverMultistepScheduler, StableDiffusionPipeline, DiffusionPipeline, \
|
||||
EulerAncestralDiscreteScheduler, FluxPipeline, FluxTransformer2DModel
|
||||
from diffusers import StableDiffusionImg2ImgPipeline, AutoPipelineForText2Image, ControlNetModel, StableVideoDiffusionPipeline
|
||||
from diffusers.pipelines.stable_diffusion import safety_checker
|
||||
@@ -275,6 +275,13 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
|
||||
|
||||
if request.LowVRAM:
|
||||
self.pipe.enable_model_cpu_offload()
|
||||
elif request.PipelineType == "SanaPipeline":
|
||||
self.pipe = SanaPipeline.from_pretrained(
|
||||
request.Model,
|
||||
variant="bf16",
|
||||
torch_dtype=torch.bfloat16)
|
||||
self.pipe.vae.to(torch.bfloat16)
|
||||
self.pipe.text_encoder.to(torch.bfloat16)
|
||||
|
||||
if CLIPSKIP and request.CLIPSkip != 0:
|
||||
self.clip_skip = request.CLIPSkip
|
||||
|
||||
@@ -1,8 +1,9 @@
|
||||
.DEFAULT_GOAL := install
|
||||
|
||||
.PHONY: install
|
||||
install: protogen
|
||||
install:
|
||||
bash install.sh
|
||||
$(MAKE) protogen
|
||||
|
||||
.PHONY: protogen
|
||||
protogen: backend_pb2_grpc.py backend_pb2.py
|
||||
@@ -12,14 +13,8 @@ protogen-clean:
|
||||
$(RM) backend_pb2_grpc.py backend_pb2.py
|
||||
|
||||
backend_pb2_grpc.py backend_pb2.py:
|
||||
python3 -m grpc_tools.protoc -I../.. --python_out=. --grpc_python_out=. backend.proto
|
||||
bash protogen.sh
|
||||
|
||||
.PHONY: clean
|
||||
clean: protogen-clean
|
||||
rm -rf venv __pycache__
|
||||
|
||||
.PHONY: test
|
||||
test: protogen
|
||||
@echo "Testing openvoice..."
|
||||
bash test.sh
|
||||
@echo "openvoice tested."
|
||||
rm -rf venv __pycache__
|
||||
@@ -1,85 +1,65 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Extra gRPC server for HuggingFace SentenceTransformer models.
|
||||
This is an extra gRPC server of LocalAI for Bark TTS
|
||||
"""
|
||||
from concurrent import futures
|
||||
|
||||
import time
|
||||
import argparse
|
||||
import signal
|
||||
import sys
|
||||
import os
|
||||
|
||||
import time
|
||||
import backend_pb2
|
||||
import backend_pb2_grpc
|
||||
|
||||
from faster_whisper import WhisperModel
|
||||
|
||||
import grpc
|
||||
|
||||
from sentence_transformers import SentenceTransformer
|
||||
|
||||
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
|
||||
|
||||
# If MAX_WORKERS are specified in the environment use it, otherwise default to 1
|
||||
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1'))
|
||||
COQUI_LANGUAGE = os.environ.get('COQUI_LANGUAGE', None)
|
||||
|
||||
# Implement the BackendServicer class with the service methods
|
||||
class BackendServicer(backend_pb2_grpc.BackendServicer):
|
||||
"""
|
||||
A gRPC servicer for the backend service.
|
||||
|
||||
This class implements the gRPC methods for the backend service, including Health, LoadModel, and Embedding.
|
||||
BackendServicer is the class that implements the gRPC service
|
||||
"""
|
||||
def Health(self, request, context):
|
||||
"""
|
||||
A gRPC method that returns the health status of the backend service.
|
||||
|
||||
Args:
|
||||
request: A HealthRequest object that contains the request parameters.
|
||||
context: A grpc.ServicerContext object that provides information about the RPC.
|
||||
|
||||
Returns:
|
||||
A Reply object that contains the health status of the backend service.
|
||||
"""
|
||||
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
|
||||
|
||||
def LoadModel(self, request, context):
|
||||
"""
|
||||
A gRPC method that loads a model into memory.
|
||||
device = "cpu"
|
||||
# Get device
|
||||
# device = "cuda" if request.CUDA else "cpu"
|
||||
if request.CUDA:
|
||||
device = "cuda"
|
||||
|
||||
Args:
|
||||
request: A LoadModelRequest object that contains the request parameters.
|
||||
context: A grpc.ServicerContext object that provides information about the RPC.
|
||||
|
||||
Returns:
|
||||
A Result object that contains the result of the LoadModel operation.
|
||||
"""
|
||||
model_name = request.Model
|
||||
try:
|
||||
self.model = SentenceTransformer(model_name, trust_remote_code=request.TrustRemoteCode)
|
||||
print("Preparing models, please wait", file=sys.stderr)
|
||||
self.model = WhisperModel(request.Model, device=device, compute_type="float16")
|
||||
except Exception as err:
|
||||
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
|
||||
|
||||
# Implement your logic here for the LoadModel service
|
||||
# Replace this with your desired response
|
||||
return backend_pb2.Result(message="Model loaded successfully", success=True)
|
||||
|
||||
def Embedding(self, request, context):
|
||||
"""
|
||||
A gRPC method that calculates embeddings for a given sentence.
|
||||
|
||||
Args:
|
||||
request: An EmbeddingRequest object that contains the request parameters.
|
||||
context: A grpc.ServicerContext object that provides information about the RPC.
|
||||
|
||||
Returns:
|
||||
An EmbeddingResult object that contains the calculated embeddings.
|
||||
"""
|
||||
# Implement your logic here for the Embedding service
|
||||
# Replace this with your desired response
|
||||
print("Calculated embeddings for: " + request.Embeddings, file=sys.stderr)
|
||||
sentence_embeddings = self.model.encode(request.Embeddings)
|
||||
return backend_pb2.EmbeddingResult(embeddings=sentence_embeddings)
|
||||
def AudioTranscription(self, request, context):
|
||||
resultSegments = []
|
||||
text = ""
|
||||
try:
|
||||
segments, info = self.model.transcribe(request.dst, beam_size=5, condition_on_previous_text=False)
|
||||
id = 0
|
||||
for segment in segments:
|
||||
print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text))
|
||||
resultSegments.append(backend_pb2.TranscriptSegment(id=id, start=segment.start, end=segment.end, text=segment.text))
|
||||
text += segment.text
|
||||
id += 1
|
||||
except Exception as err:
|
||||
print(f"Unexpected {err=}, {type(err)=}", file=sys.stderr)
|
||||
|
||||
return backend_pb2.TranscriptResult(segments=resultSegments, text=text)
|
||||
|
||||
def serve(address):
|
||||
server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS))
|
||||
0
backend/python/parler-tts/protogen.sh → backend/python/faster-whisper/protogen.sh
Executable file → Normal file
0
backend/python/parler-tts/protogen.sh → backend/python/faster-whisper/protogen.sh
Executable file → Normal file
8
backend/python/faster-whisper/requirements-cpu.txt
Normal file
8
backend/python/faster-whisper/requirements-cpu.txt
Normal file
@@ -0,0 +1,8 @@
|
||||
faster-whisper
|
||||
opencv-python
|
||||
accelerate
|
||||
compel
|
||||
peft
|
||||
sentencepiece
|
||||
torch==2.4.1
|
||||
optimum-quanto
|
||||
@@ -1,4 +1,9 @@
|
||||
--extra-index-url https://download.pytorch.org/whl/cu118
|
||||
accelerate
|
||||
torch==2.4.1+cu118
|
||||
torchaudio==2.4.1+cu118
|
||||
faster-whisper
|
||||
opencv-python
|
||||
accelerate
|
||||
compel
|
||||
peft
|
||||
sentencepiece
|
||||
optimum-quanto
|
||||
8
backend/python/faster-whisper/requirements-cublas12.txt
Normal file
8
backend/python/faster-whisper/requirements-cublas12.txt
Normal file
@@ -0,0 +1,8 @@
|
||||
torch==2.4.1
|
||||
faster-whisper
|
||||
opencv-python
|
||||
accelerate
|
||||
compel
|
||||
peft
|
||||
sentencepiece
|
||||
optimum-quanto
|
||||
@@ -1,4 +1,3 @@
|
||||
--extra-index-url https://download.pytorch.org/whl/rocm6.0
|
||||
transformers
|
||||
accelerate
|
||||
torch==2.4.1+rocm6.0
|
||||
torch
|
||||
faster-whisper
|
||||
@@ -1,8 +1,6 @@
|
||||
--extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
|
||||
intel-extension-for-pytorch==2.3.110+xpu
|
||||
transformers
|
||||
oneccl_bind_pt==2.3.100+xpu
|
||||
accelerate
|
||||
torch==2.3.1+cxx11.abi
|
||||
oneccl_bind_pt==2.3.100+xpu
|
||||
optimum[openvino]
|
||||
setuptools
|
||||
faster-whisper
|
||||
@@ -1,3 +1,3 @@
|
||||
grpcio==1.69.0
|
||||
protobuf
|
||||
certifi
|
||||
grpcio-tools
|
||||
20
backend/python/kokoro/Makefile
Normal file
20
backend/python/kokoro/Makefile
Normal file
@@ -0,0 +1,20 @@
|
||||
.DEFAULT_GOAL := install
|
||||
|
||||
.PHONY: install
|
||||
install:
|
||||
bash install.sh
|
||||
$(MAKE) protogen
|
||||
|
||||
.PHONY: protogen
|
||||
protogen: backend_pb2_grpc.py backend_pb2.py
|
||||
|
||||
.PHONY: protogen-clean
|
||||
protogen-clean:
|
||||
$(RM) backend_pb2_grpc.py backend_pb2.py
|
||||
|
||||
backend_pb2_grpc.py backend_pb2.py:
|
||||
bash protogen.sh
|
||||
|
||||
.PHONY: clean
|
||||
clean: protogen-clean
|
||||
rm -rf venv __pycache__
|
||||
64
backend/python/parler-tts/backend.py → backend/python/kokoro/backend.py
Normal file → Executable file
64
backend/python/parler-tts/backend.py → backend/python/kokoro/backend.py
Normal file → Executable file
@@ -1,6 +1,6 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Extra gRPC server for MusicgenForConditionalGeneration models.
|
||||
Extra gRPC server for Kokoro models.
|
||||
"""
|
||||
from concurrent import futures
|
||||
|
||||
@@ -8,20 +8,17 @@ import argparse
|
||||
import signal
|
||||
import sys
|
||||
import os
|
||||
|
||||
import time
|
||||
import backend_pb2
|
||||
import backend_pb2_grpc
|
||||
|
||||
import soundfile as sf
|
||||
import grpc
|
||||
|
||||
from scipy.io.wavfile import write as write_wav
|
||||
|
||||
from parler_tts import ParlerTTSForConditionalGeneration
|
||||
from transformers import AutoTokenizer
|
||||
import soundfile as sf
|
||||
from models import build_model
|
||||
from kokoro import generate
|
||||
import torch
|
||||
|
||||
SAMPLE_RATE = 22050
|
||||
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
|
||||
|
||||
# If MAX_WORKERS are specified in the environment use it, otherwise default to 1
|
||||
@@ -59,10 +56,31 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
|
||||
A Result object that contains the result of the LoadModel operation.
|
||||
"""
|
||||
model_name = request.Model
|
||||
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
||||
try:
|
||||
self.model = ParlerTTSForConditionalGeneration.from_pretrained(model_name).to(device)
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
||||
self.MODEL = build_model(request.ModelFile, device)
|
||||
options = request.Options
|
||||
# Find the voice from the options, options are a list of strings in this form optname:optvalue:
|
||||
VOICE_NAME = None
|
||||
for opt in options:
|
||||
if opt.startswith("voice:"):
|
||||
VOICE_NAME = opt.split(":")[1]
|
||||
break
|
||||
if VOICE_NAME is None:
|
||||
return backend_pb2.Result(success=False, message=f"No voice specified in options")
|
||||
MODELPATH = request.ModelPath
|
||||
# If voice name contains a plus, split it and load the two models and combine them
|
||||
if "+" in VOICE_NAME:
|
||||
voice1, voice2 = VOICE_NAME.split("+")
|
||||
voice1 = torch.load(f'{MODELPATH}/{voice1}.pt', weights_only=True).to(device)
|
||||
voice2 = torch.load(f'{MODELPATH}/{voice2}.pt', weights_only=True).to(device)
|
||||
self.VOICEPACK = torch.mean(torch.stack([voice1, voice2]), dim=0)
|
||||
else:
|
||||
self.VOICEPACK = torch.load(f'{MODELPATH}/{VOICE_NAME}.pt', weights_only=True).to(device)
|
||||
|
||||
self.VOICE_NAME = VOICE_NAME
|
||||
|
||||
print(f'Loaded voice: {VOICE_NAME}')
|
||||
except Exception as err:
|
||||
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
|
||||
|
||||
@@ -70,38 +88,26 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
|
||||
|
||||
def TTS(self, request, context):
|
||||
model_name = request.model
|
||||
voice = request.voice
|
||||
if voice == "":
|
||||
voice = "A female speaker with a slightly low-pitched voice delivers her words quite expressively, in a very confined sounding environment with clear audio quality. She speaks very fast."
|
||||
if model_name == "":
|
||||
return backend_pb2.Result(success=False, message="request.model is required")
|
||||
try:
|
||||
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
||||
input_ids = self.tokenizer(voice, return_tensors="pt").input_ids.to(device)
|
||||
prompt_input_ids = self.tokenizer(request.text, return_tensors="pt").input_ids.to(device)
|
||||
|
||||
generation = self.model.generate(input_ids=input_ids, prompt_input_ids=prompt_input_ids)
|
||||
audio_arr = generation.cpu().numpy().squeeze()
|
||||
print("[parler-tts] TTS generated!", file=sys.stderr)
|
||||
sf.write(request.dst, audio_arr, self.model.config.sampling_rate)
|
||||
print("[parler-tts] TTS saved to", request.dst, file=sys.stderr)
|
||||
print("[parler-tts] TTS for", file=sys.stderr)
|
||||
print(request, file=sys.stderr)
|
||||
audio, out_ps = generate(self.MODEL, request.text, self.VOICEPACK, lang=self.VOICE_NAME)
|
||||
print(out_ps)
|
||||
sf.write(request.dst, audio, SAMPLE_RATE)
|
||||
except Exception as err:
|
||||
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
|
||||
return backend_pb2.Result(success=True)
|
||||
|
||||
|
||||
def serve(address):
|
||||
server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS))
|
||||
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
|
||||
server.add_insecure_port(address)
|
||||
server.start()
|
||||
print("[parler-tts] Server started. Listening on: " + address, file=sys.stderr)
|
||||
print("[Kokoro] Server started. Listening on: " + address, file=sys.stderr)
|
||||
|
||||
# Define the signal handler function
|
||||
def signal_handler(sig, frame):
|
||||
print("[parler-tts] Received termination signal. Shutting down...")
|
||||
print("[Kokoro] Received termination signal. Shutting down...")
|
||||
server.stop(0)
|
||||
sys.exit(0)
|
||||
|
||||
@@ -121,5 +127,5 @@ if __name__ == "__main__":
|
||||
"--addr", default="localhost:50051", help="The address to bind the server to."
|
||||
)
|
||||
args = parser.parse_args()
|
||||
print(f"[parler-tts] startup: {args}", file=sys.stderr)
|
||||
print(f"[Kokoro] startup: {args}", file=sys.stderr)
|
||||
serve(args.addr)
|
||||
524
backend/python/kokoro/istftnet.py
Normal file
524
backend/python/kokoro/istftnet.py
Normal file
@@ -0,0 +1,524 @@
|
||||
# https://huggingface.co/hexgrad/Kokoro-82M/blob/main/istftnet.py
|
||||
# https://github.com/yl4579/StyleTTS2/blob/main/Modules/istftnet.py
|
||||
from scipy.signal import get_window
|
||||
from torch.nn import Conv1d, ConvTranspose1d
|
||||
from torch.nn.utils import weight_norm, remove_weight_norm
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
# https://github.com/yl4579/StyleTTS2/blob/main/Modules/utils.py
|
||||
def init_weights(m, mean=0.0, std=0.01):
|
||||
classname = m.__class__.__name__
|
||||
if classname.find("Conv") != -1:
|
||||
m.weight.data.normal_(mean, std)
|
||||
|
||||
def get_padding(kernel_size, dilation=1):
|
||||
return int((kernel_size*dilation - dilation)/2)
|
||||
|
||||
LRELU_SLOPE = 0.1
|
||||
|
||||
class AdaIN1d(nn.Module):
|
||||
def __init__(self, style_dim, num_features):
|
||||
super().__init__()
|
||||
self.norm = nn.InstanceNorm1d(num_features, affine=False)
|
||||
self.fc = nn.Linear(style_dim, num_features*2)
|
||||
|
||||
def forward(self, x, s):
|
||||
h = self.fc(s)
|
||||
h = h.view(h.size(0), h.size(1), 1)
|
||||
gamma, beta = torch.chunk(h, chunks=2, dim=1)
|
||||
return (1 + gamma) * self.norm(x) + beta
|
||||
|
||||
class AdaINResBlock1(torch.nn.Module):
|
||||
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5), style_dim=64):
|
||||
super(AdaINResBlock1, self).__init__()
|
||||
self.convs1 = nn.ModuleList([
|
||||
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
||||
padding=get_padding(kernel_size, dilation[0]))),
|
||||
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
||||
padding=get_padding(kernel_size, dilation[1]))),
|
||||
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
|
||||
padding=get_padding(kernel_size, dilation[2])))
|
||||
])
|
||||
self.convs1.apply(init_weights)
|
||||
|
||||
self.convs2 = nn.ModuleList([
|
||||
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
||||
padding=get_padding(kernel_size, 1))),
|
||||
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
||||
padding=get_padding(kernel_size, 1))),
|
||||
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
||||
padding=get_padding(kernel_size, 1)))
|
||||
])
|
||||
self.convs2.apply(init_weights)
|
||||
|
||||
self.adain1 = nn.ModuleList([
|
||||
AdaIN1d(style_dim, channels),
|
||||
AdaIN1d(style_dim, channels),
|
||||
AdaIN1d(style_dim, channels),
|
||||
])
|
||||
|
||||
self.adain2 = nn.ModuleList([
|
||||
AdaIN1d(style_dim, channels),
|
||||
AdaIN1d(style_dim, channels),
|
||||
AdaIN1d(style_dim, channels),
|
||||
])
|
||||
|
||||
self.alpha1 = nn.ParameterList([nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs1))])
|
||||
self.alpha2 = nn.ParameterList([nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs2))])
|
||||
|
||||
|
||||
def forward(self, x, s):
|
||||
for c1, c2, n1, n2, a1, a2 in zip(self.convs1, self.convs2, self.adain1, self.adain2, self.alpha1, self.alpha2):
|
||||
xt = n1(x, s)
|
||||
xt = xt + (1 / a1) * (torch.sin(a1 * xt) ** 2) # Snake1D
|
||||
xt = c1(xt)
|
||||
xt = n2(xt, s)
|
||||
xt = xt + (1 / a2) * (torch.sin(a2 * xt) ** 2) # Snake1D
|
||||
xt = c2(xt)
|
||||
x = xt + x
|
||||
return x
|
||||
|
||||
def remove_weight_norm(self):
|
||||
for l in self.convs1:
|
||||
remove_weight_norm(l)
|
||||
for l in self.convs2:
|
||||
remove_weight_norm(l)
|
||||
|
||||
class TorchSTFT(torch.nn.Module):
|
||||
def __init__(self, filter_length=800, hop_length=200, win_length=800, window='hann'):
|
||||
super().__init__()
|
||||
self.filter_length = filter_length
|
||||
self.hop_length = hop_length
|
||||
self.win_length = win_length
|
||||
self.window = torch.from_numpy(get_window(window, win_length, fftbins=True).astype(np.float32))
|
||||
|
||||
def transform(self, input_data):
|
||||
forward_transform = torch.stft(
|
||||
input_data,
|
||||
self.filter_length, self.hop_length, self.win_length, window=self.window.to(input_data.device),
|
||||
return_complex=True)
|
||||
|
||||
return torch.abs(forward_transform), torch.angle(forward_transform)
|
||||
|
||||
def inverse(self, magnitude, phase):
|
||||
inverse_transform = torch.istft(
|
||||
magnitude * torch.exp(phase * 1j),
|
||||
self.filter_length, self.hop_length, self.win_length, window=self.window.to(magnitude.device))
|
||||
|
||||
return inverse_transform.unsqueeze(-2) # unsqueeze to stay consistent with conv_transpose1d implementation
|
||||
|
||||
def forward(self, input_data):
|
||||
self.magnitude, self.phase = self.transform(input_data)
|
||||
reconstruction = self.inverse(self.magnitude, self.phase)
|
||||
return reconstruction
|
||||
|
||||
class SineGen(torch.nn.Module):
|
||||
""" Definition of sine generator
|
||||
SineGen(samp_rate, harmonic_num = 0,
|
||||
sine_amp = 0.1, noise_std = 0.003,
|
||||
voiced_threshold = 0,
|
||||
flag_for_pulse=False)
|
||||
samp_rate: sampling rate in Hz
|
||||
harmonic_num: number of harmonic overtones (default 0)
|
||||
sine_amp: amplitude of sine-wavefrom (default 0.1)
|
||||
noise_std: std of Gaussian noise (default 0.003)
|
||||
voiced_thoreshold: F0 threshold for U/V classification (default 0)
|
||||
flag_for_pulse: this SinGen is used inside PulseGen (default False)
|
||||
Note: when flag_for_pulse is True, the first time step of a voiced
|
||||
segment is always sin(np.pi) or cos(0)
|
||||
"""
|
||||
|
||||
def __init__(self, samp_rate, upsample_scale, harmonic_num=0,
|
||||
sine_amp=0.1, noise_std=0.003,
|
||||
voiced_threshold=0,
|
||||
flag_for_pulse=False):
|
||||
super(SineGen, self).__init__()
|
||||
self.sine_amp = sine_amp
|
||||
self.noise_std = noise_std
|
||||
self.harmonic_num = harmonic_num
|
||||
self.dim = self.harmonic_num + 1
|
||||
self.sampling_rate = samp_rate
|
||||
self.voiced_threshold = voiced_threshold
|
||||
self.flag_for_pulse = flag_for_pulse
|
||||
self.upsample_scale = upsample_scale
|
||||
|
||||
def _f02uv(self, f0):
|
||||
# generate uv signal
|
||||
uv = (f0 > self.voiced_threshold).type(torch.float32)
|
||||
return uv
|
||||
|
||||
def _f02sine(self, f0_values):
|
||||
""" f0_values: (batchsize, length, dim)
|
||||
where dim indicates fundamental tone and overtones
|
||||
"""
|
||||
# convert to F0 in rad. The interger part n can be ignored
|
||||
# because 2 * np.pi * n doesn't affect phase
|
||||
rad_values = (f0_values / self.sampling_rate) % 1
|
||||
|
||||
# initial phase noise (no noise for fundamental component)
|
||||
rand_ini = torch.rand(f0_values.shape[0], f0_values.shape[2], \
|
||||
device=f0_values.device)
|
||||
rand_ini[:, 0] = 0
|
||||
rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
|
||||
|
||||
# instantanouse phase sine[t] = sin(2*pi \sum_i=1 ^{t} rad)
|
||||
if not self.flag_for_pulse:
|
||||
# # for normal case
|
||||
|
||||
# # To prevent torch.cumsum numerical overflow,
|
||||
# # it is necessary to add -1 whenever \sum_k=1^n rad_value_k > 1.
|
||||
# # Buffer tmp_over_one_idx indicates the time step to add -1.
|
||||
# # This will not change F0 of sine because (x-1) * 2*pi = x * 2*pi
|
||||
# tmp_over_one = torch.cumsum(rad_values, 1) % 1
|
||||
# tmp_over_one_idx = (padDiff(tmp_over_one)) < 0
|
||||
# cumsum_shift = torch.zeros_like(rad_values)
|
||||
# cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
|
||||
|
||||
# phase = torch.cumsum(rad_values, dim=1) * 2 * np.pi
|
||||
rad_values = torch.nn.functional.interpolate(rad_values.transpose(1, 2),
|
||||
scale_factor=1/self.upsample_scale,
|
||||
mode="linear").transpose(1, 2)
|
||||
|
||||
# tmp_over_one = torch.cumsum(rad_values, 1) % 1
|
||||
# tmp_over_one_idx = (padDiff(tmp_over_one)) < 0
|
||||
# cumsum_shift = torch.zeros_like(rad_values)
|
||||
# cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
|
||||
|
||||
phase = torch.cumsum(rad_values, dim=1) * 2 * np.pi
|
||||
phase = torch.nn.functional.interpolate(phase.transpose(1, 2) * self.upsample_scale,
|
||||
scale_factor=self.upsample_scale, mode="linear").transpose(1, 2)
|
||||
sines = torch.sin(phase)
|
||||
|
||||
else:
|
||||
# If necessary, make sure that the first time step of every
|
||||
# voiced segments is sin(pi) or cos(0)
|
||||
# This is used for pulse-train generation
|
||||
|
||||
# identify the last time step in unvoiced segments
|
||||
uv = self._f02uv(f0_values)
|
||||
uv_1 = torch.roll(uv, shifts=-1, dims=1)
|
||||
uv_1[:, -1, :] = 1
|
||||
u_loc = (uv < 1) * (uv_1 > 0)
|
||||
|
||||
# get the instantanouse phase
|
||||
tmp_cumsum = torch.cumsum(rad_values, dim=1)
|
||||
# different batch needs to be processed differently
|
||||
for idx in range(f0_values.shape[0]):
|
||||
temp_sum = tmp_cumsum[idx, u_loc[idx, :, 0], :]
|
||||
temp_sum[1:, :] = temp_sum[1:, :] - temp_sum[0:-1, :]
|
||||
# stores the accumulation of i.phase within
|
||||
# each voiced segments
|
||||
tmp_cumsum[idx, :, :] = 0
|
||||
tmp_cumsum[idx, u_loc[idx, :, 0], :] = temp_sum
|
||||
|
||||
# rad_values - tmp_cumsum: remove the accumulation of i.phase
|
||||
# within the previous voiced segment.
|
||||
i_phase = torch.cumsum(rad_values - tmp_cumsum, dim=1)
|
||||
|
||||
# get the sines
|
||||
sines = torch.cos(i_phase * 2 * np.pi)
|
||||
return sines
|
||||
|
||||
def forward(self, f0):
|
||||
""" sine_tensor, uv = forward(f0)
|
||||
input F0: tensor(batchsize=1, length, dim=1)
|
||||
f0 for unvoiced steps should be 0
|
||||
output sine_tensor: tensor(batchsize=1, length, dim)
|
||||
output uv: tensor(batchsize=1, length, 1)
|
||||
"""
|
||||
f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim,
|
||||
device=f0.device)
|
||||
# fundamental component
|
||||
fn = torch.multiply(f0, torch.FloatTensor([[range(1, self.harmonic_num + 2)]]).to(f0.device))
|
||||
|
||||
# generate sine waveforms
|
||||
sine_waves = self._f02sine(fn) * self.sine_amp
|
||||
|
||||
# generate uv signal
|
||||
# uv = torch.ones(f0.shape)
|
||||
# uv = uv * (f0 > self.voiced_threshold)
|
||||
uv = self._f02uv(f0)
|
||||
|
||||
# noise: for unvoiced should be similar to sine_amp
|
||||
# std = self.sine_amp/3 -> max value ~ self.sine_amp
|
||||
# . for voiced regions is self.noise_std
|
||||
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
|
||||
noise = noise_amp * torch.randn_like(sine_waves)
|
||||
|
||||
# first: set the unvoiced part to 0 by uv
|
||||
# then: additive noise
|
||||
sine_waves = sine_waves * uv + noise
|
||||
return sine_waves, uv, noise
|
||||
|
||||
|
||||
class SourceModuleHnNSF(torch.nn.Module):
|
||||
""" SourceModule for hn-nsf
|
||||
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
|
||||
add_noise_std=0.003, voiced_threshod=0)
|
||||
sampling_rate: sampling_rate in Hz
|
||||
harmonic_num: number of harmonic above F0 (default: 0)
|
||||
sine_amp: amplitude of sine source signal (default: 0.1)
|
||||
add_noise_std: std of additive Gaussian noise (default: 0.003)
|
||||
note that amplitude of noise in unvoiced is decided
|
||||
by sine_amp
|
||||
voiced_threshold: threhold to set U/V given F0 (default: 0)
|
||||
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
||||
F0_sampled (batchsize, length, 1)
|
||||
Sine_source (batchsize, length, 1)
|
||||
noise_source (batchsize, length 1)
|
||||
uv (batchsize, length, 1)
|
||||
"""
|
||||
|
||||
def __init__(self, sampling_rate, upsample_scale, harmonic_num=0, sine_amp=0.1,
|
||||
add_noise_std=0.003, voiced_threshod=0):
|
||||
super(SourceModuleHnNSF, self).__init__()
|
||||
|
||||
self.sine_amp = sine_amp
|
||||
self.noise_std = add_noise_std
|
||||
|
||||
# to produce sine waveforms
|
||||
self.l_sin_gen = SineGen(sampling_rate, upsample_scale, harmonic_num,
|
||||
sine_amp, add_noise_std, voiced_threshod)
|
||||
|
||||
# to merge source harmonics into a single excitation
|
||||
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
|
||||
self.l_tanh = torch.nn.Tanh()
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
||||
F0_sampled (batchsize, length, 1)
|
||||
Sine_source (batchsize, length, 1)
|
||||
noise_source (batchsize, length 1)
|
||||
"""
|
||||
# source for harmonic branch
|
||||
with torch.no_grad():
|
||||
sine_wavs, uv, _ = self.l_sin_gen(x)
|
||||
sine_merge = self.l_tanh(self.l_linear(sine_wavs))
|
||||
|
||||
# source for noise branch, in the same shape as uv
|
||||
noise = torch.randn_like(uv) * self.sine_amp / 3
|
||||
return sine_merge, noise, uv
|
||||
def padDiff(x):
|
||||
return F.pad(F.pad(x, (0,0,-1,1), 'constant', 0) - x, (0,0,0,-1), 'constant', 0)
|
||||
|
||||
|
||||
class Generator(torch.nn.Module):
|
||||
def __init__(self, style_dim, resblock_kernel_sizes, upsample_rates, upsample_initial_channel, resblock_dilation_sizes, upsample_kernel_sizes, gen_istft_n_fft, gen_istft_hop_size):
|
||||
super(Generator, self).__init__()
|
||||
|
||||
self.num_kernels = len(resblock_kernel_sizes)
|
||||
self.num_upsamples = len(upsample_rates)
|
||||
resblock = AdaINResBlock1
|
||||
|
||||
self.m_source = SourceModuleHnNSF(
|
||||
sampling_rate=24000,
|
||||
upsample_scale=np.prod(upsample_rates) * gen_istft_hop_size,
|
||||
harmonic_num=8, voiced_threshod=10)
|
||||
self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates) * gen_istft_hop_size)
|
||||
self.noise_convs = nn.ModuleList()
|
||||
self.noise_res = nn.ModuleList()
|
||||
|
||||
self.ups = nn.ModuleList()
|
||||
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
||||
self.ups.append(weight_norm(
|
||||
ConvTranspose1d(upsample_initial_channel//(2**i), upsample_initial_channel//(2**(i+1)),
|
||||
k, u, padding=(k-u)//2)))
|
||||
|
||||
self.resblocks = nn.ModuleList()
|
||||
for i in range(len(self.ups)):
|
||||
ch = upsample_initial_channel//(2**(i+1))
|
||||
for j, (k, d) in enumerate(zip(resblock_kernel_sizes,resblock_dilation_sizes)):
|
||||
self.resblocks.append(resblock(ch, k, d, style_dim))
|
||||
|
||||
c_cur = upsample_initial_channel // (2 ** (i + 1))
|
||||
|
||||
if i + 1 < len(upsample_rates): #
|
||||
stride_f0 = np.prod(upsample_rates[i + 1:])
|
||||
self.noise_convs.append(Conv1d(
|
||||
gen_istft_n_fft + 2, c_cur, kernel_size=stride_f0 * 2, stride=stride_f0, padding=(stride_f0+1) // 2))
|
||||
self.noise_res.append(resblock(c_cur, 7, [1,3,5], style_dim))
|
||||
else:
|
||||
self.noise_convs.append(Conv1d(gen_istft_n_fft + 2, c_cur, kernel_size=1))
|
||||
self.noise_res.append(resblock(c_cur, 11, [1,3,5], style_dim))
|
||||
|
||||
|
||||
self.post_n_fft = gen_istft_n_fft
|
||||
self.conv_post = weight_norm(Conv1d(ch, self.post_n_fft + 2, 7, 1, padding=3))
|
||||
self.ups.apply(init_weights)
|
||||
self.conv_post.apply(init_weights)
|
||||
self.reflection_pad = torch.nn.ReflectionPad1d((1, 0))
|
||||
self.stft = TorchSTFT(filter_length=gen_istft_n_fft, hop_length=gen_istft_hop_size, win_length=gen_istft_n_fft)
|
||||
|
||||
|
||||
def forward(self, x, s, f0):
|
||||
with torch.no_grad():
|
||||
f0 = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t
|
||||
|
||||
har_source, noi_source, uv = self.m_source(f0)
|
||||
har_source = har_source.transpose(1, 2).squeeze(1)
|
||||
har_spec, har_phase = self.stft.transform(har_source)
|
||||
har = torch.cat([har_spec, har_phase], dim=1)
|
||||
|
||||
for i in range(self.num_upsamples):
|
||||
x = F.leaky_relu(x, LRELU_SLOPE)
|
||||
x_source = self.noise_convs[i](har)
|
||||
x_source = self.noise_res[i](x_source, s)
|
||||
|
||||
x = self.ups[i](x)
|
||||
if i == self.num_upsamples - 1:
|
||||
x = self.reflection_pad(x)
|
||||
|
||||
x = x + x_source
|
||||
xs = None
|
||||
for j in range(self.num_kernels):
|
||||
if xs is None:
|
||||
xs = self.resblocks[i*self.num_kernels+j](x, s)
|
||||
else:
|
||||
xs += self.resblocks[i*self.num_kernels+j](x, s)
|
||||
x = xs / self.num_kernels
|
||||
x = F.leaky_relu(x)
|
||||
x = self.conv_post(x)
|
||||
spec = torch.exp(x[:,:self.post_n_fft // 2 + 1, :])
|
||||
phase = torch.sin(x[:, self.post_n_fft // 2 + 1:, :])
|
||||
return self.stft.inverse(spec, phase)
|
||||
|
||||
def fw_phase(self, x, s):
|
||||
for i in range(self.num_upsamples):
|
||||
x = F.leaky_relu(x, LRELU_SLOPE)
|
||||
x = self.ups[i](x)
|
||||
xs = None
|
||||
for j in range(self.num_kernels):
|
||||
if xs is None:
|
||||
xs = self.resblocks[i*self.num_kernels+j](x, s)
|
||||
else:
|
||||
xs += self.resblocks[i*self.num_kernels+j](x, s)
|
||||
x = xs / self.num_kernels
|
||||
x = F.leaky_relu(x)
|
||||
x = self.reflection_pad(x)
|
||||
x = self.conv_post(x)
|
||||
spec = torch.exp(x[:,:self.post_n_fft // 2 + 1, :])
|
||||
phase = torch.sin(x[:, self.post_n_fft // 2 + 1:, :])
|
||||
return spec, phase
|
||||
|
||||
def remove_weight_norm(self):
|
||||
print('Removing weight norm...')
|
||||
for l in self.ups:
|
||||
remove_weight_norm(l)
|
||||
for l in self.resblocks:
|
||||
l.remove_weight_norm()
|
||||
remove_weight_norm(self.conv_pre)
|
||||
remove_weight_norm(self.conv_post)
|
||||
|
||||
|
||||
class AdainResBlk1d(nn.Module):
|
||||
def __init__(self, dim_in, dim_out, style_dim=64, actv=nn.LeakyReLU(0.2),
|
||||
upsample='none', dropout_p=0.0):
|
||||
super().__init__()
|
||||
self.actv = actv
|
||||
self.upsample_type = upsample
|
||||
self.upsample = UpSample1d(upsample)
|
||||
self.learned_sc = dim_in != dim_out
|
||||
self._build_weights(dim_in, dim_out, style_dim)
|
||||
self.dropout = nn.Dropout(dropout_p)
|
||||
|
||||
if upsample == 'none':
|
||||
self.pool = nn.Identity()
|
||||
else:
|
||||
self.pool = weight_norm(nn.ConvTranspose1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1, output_padding=1))
|
||||
|
||||
|
||||
def _build_weights(self, dim_in, dim_out, style_dim):
|
||||
self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1))
|
||||
self.conv2 = weight_norm(nn.Conv1d(dim_out, dim_out, 3, 1, 1))
|
||||
self.norm1 = AdaIN1d(style_dim, dim_in)
|
||||
self.norm2 = AdaIN1d(style_dim, dim_out)
|
||||
if self.learned_sc:
|
||||
self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False))
|
||||
|
||||
def _shortcut(self, x):
|
||||
x = self.upsample(x)
|
||||
if self.learned_sc:
|
||||
x = self.conv1x1(x)
|
||||
return x
|
||||
|
||||
def _residual(self, x, s):
|
||||
x = self.norm1(x, s)
|
||||
x = self.actv(x)
|
||||
x = self.pool(x)
|
||||
x = self.conv1(self.dropout(x))
|
||||
x = self.norm2(x, s)
|
||||
x = self.actv(x)
|
||||
x = self.conv2(self.dropout(x))
|
||||
return x
|
||||
|
||||
def forward(self, x, s):
|
||||
out = self._residual(x, s)
|
||||
out = (out + self._shortcut(x)) / np.sqrt(2)
|
||||
return out
|
||||
|
||||
class UpSample1d(nn.Module):
|
||||
def __init__(self, layer_type):
|
||||
super().__init__()
|
||||
self.layer_type = layer_type
|
||||
|
||||
def forward(self, x):
|
||||
if self.layer_type == 'none':
|
||||
return x
|
||||
else:
|
||||
return F.interpolate(x, scale_factor=2, mode='nearest')
|
||||
|
||||
class Decoder(nn.Module):
|
||||
def __init__(self, dim_in=512, F0_channel=512, style_dim=64, dim_out=80,
|
||||
resblock_kernel_sizes = [3,7,11],
|
||||
upsample_rates = [10, 6],
|
||||
upsample_initial_channel=512,
|
||||
resblock_dilation_sizes=[[1,3,5], [1,3,5], [1,3,5]],
|
||||
upsample_kernel_sizes=[20, 12],
|
||||
gen_istft_n_fft=20, gen_istft_hop_size=5):
|
||||
super().__init__()
|
||||
|
||||
self.decode = nn.ModuleList()
|
||||
|
||||
self.encode = AdainResBlk1d(dim_in + 2, 1024, style_dim)
|
||||
|
||||
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
|
||||
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
|
||||
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
|
||||
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 512, style_dim, upsample=True))
|
||||
|
||||
self.F0_conv = weight_norm(nn.Conv1d(1, 1, kernel_size=3, stride=2, groups=1, padding=1))
|
||||
|
||||
self.N_conv = weight_norm(nn.Conv1d(1, 1, kernel_size=3, stride=2, groups=1, padding=1))
|
||||
|
||||
self.asr_res = nn.Sequential(
|
||||
weight_norm(nn.Conv1d(512, 64, kernel_size=1)),
|
||||
)
|
||||
|
||||
|
||||
self.generator = Generator(style_dim, resblock_kernel_sizes, upsample_rates,
|
||||
upsample_initial_channel, resblock_dilation_sizes,
|
||||
upsample_kernel_sizes, gen_istft_n_fft, gen_istft_hop_size)
|
||||
|
||||
def forward(self, asr, F0_curve, N, s):
|
||||
F0 = self.F0_conv(F0_curve.unsqueeze(1))
|
||||
N = self.N_conv(N.unsqueeze(1))
|
||||
|
||||
x = torch.cat([asr, F0, N], axis=1)
|
||||
x = self.encode(x, s)
|
||||
|
||||
asr_res = self.asr_res(asr)
|
||||
|
||||
res = True
|
||||
for block in self.decode:
|
||||
if res:
|
||||
x = torch.cat([x, asr_res, F0, N], axis=1)
|
||||
x = block(x, s)
|
||||
if block.upsample_type != "none":
|
||||
res = False
|
||||
|
||||
x = self.generator(x, s, F0_curve)
|
||||
return x
|
||||
166
backend/python/kokoro/kokoro.py
Normal file
166
backend/python/kokoro/kokoro.py
Normal file
@@ -0,0 +1,166 @@
|
||||
# https://huggingface.co/hexgrad/Kokoro-82M/blob/main/kokoro.py
|
||||
import phonemizer
|
||||
import re
|
||||
import torch
|
||||
import numpy as np
|
||||
|
||||
def split_num(num):
|
||||
num = num.group()
|
||||
if '.' in num:
|
||||
return num
|
||||
elif ':' in num:
|
||||
h, m = [int(n) for n in num.split(':')]
|
||||
if m == 0:
|
||||
return f"{h} o'clock"
|
||||
elif m < 10:
|
||||
return f'{h} oh {m}'
|
||||
return f'{h} {m}'
|
||||
year = int(num[:4])
|
||||
if year < 1100 or year % 1000 < 10:
|
||||
return num
|
||||
left, right = num[:2], int(num[2:4])
|
||||
s = 's' if num.endswith('s') else ''
|
||||
if 100 <= year % 1000 <= 999:
|
||||
if right == 0:
|
||||
return f'{left} hundred{s}'
|
||||
elif right < 10:
|
||||
return f'{left} oh {right}{s}'
|
||||
return f'{left} {right}{s}'
|
||||
|
||||
def flip_money(m):
|
||||
m = m.group()
|
||||
bill = 'dollar' if m[0] == '$' else 'pound'
|
||||
if m[-1].isalpha():
|
||||
return f'{m[1:]} {bill}s'
|
||||
elif '.' not in m:
|
||||
s = '' if m[1:] == '1' else 's'
|
||||
return f'{m[1:]} {bill}{s}'
|
||||
b, c = m[1:].split('.')
|
||||
s = '' if b == '1' else 's'
|
||||
c = int(c.ljust(2, '0'))
|
||||
coins = f"cent{'' if c == 1 else 's'}" if m[0] == '$' else ('penny' if c == 1 else 'pence')
|
||||
return f'{b} {bill}{s} and {c} {coins}'
|
||||
|
||||
def point_num(num):
|
||||
a, b = num.group().split('.')
|
||||
return ' point '.join([a, ' '.join(b)])
|
||||
|
||||
def normalize_text(text):
|
||||
text = text.replace(chr(8216), "'").replace(chr(8217), "'")
|
||||
text = text.replace('«', chr(8220)).replace('»', chr(8221))
|
||||
text = text.replace(chr(8220), '"').replace(chr(8221), '"')
|
||||
text = text.replace('(', '«').replace(')', '»')
|
||||
for a, b in zip('、。!,:;?', ',.!,:;?'):
|
||||
text = text.replace(a, b+' ')
|
||||
text = re.sub(r'[^\S \n]', ' ', text)
|
||||
text = re.sub(r' +', ' ', text)
|
||||
text = re.sub(r'(?<=\n) +(?=\n)', '', text)
|
||||
text = re.sub(r'\bD[Rr]\.(?= [A-Z])', 'Doctor', text)
|
||||
text = re.sub(r'\b(?:Mr\.|MR\.(?= [A-Z]))', 'Mister', text)
|
||||
text = re.sub(r'\b(?:Ms\.|MS\.(?= [A-Z]))', 'Miss', text)
|
||||
text = re.sub(r'\b(?:Mrs\.|MRS\.(?= [A-Z]))', 'Mrs', text)
|
||||
text = re.sub(r'\betc\.(?! [A-Z])', 'etc', text)
|
||||
text = re.sub(r'(?i)\b(y)eah?\b', r"\1e'a", text)
|
||||
text = re.sub(r'\d*\.\d+|\b\d{4}s?\b|(?<!:)\b(?:[1-9]|1[0-2]):[0-5]\d\b(?!:)', split_num, text)
|
||||
text = re.sub(r'(?<=\d),(?=\d)', '', text)
|
||||
text = re.sub(r'(?i)[$£]\d+(?:\.\d+)?(?: hundred| thousand| (?:[bm]|tr)illion)*\b|[$£]\d+\.\d\d?\b', flip_money, text)
|
||||
text = re.sub(r'\d*\.\d+', point_num, text)
|
||||
text = re.sub(r'(?<=\d)-(?=\d)', ' to ', text)
|
||||
text = re.sub(r'(?<=\d)S', ' S', text)
|
||||
text = re.sub(r"(?<=[BCDFGHJ-NP-TV-Z])'?s\b", "'S", text)
|
||||
text = re.sub(r"(?<=X')S\b", 's', text)
|
||||
text = re.sub(r'(?:[A-Za-z]\.){2,} [a-z]', lambda m: m.group().replace('.', '-'), text)
|
||||
text = re.sub(r'(?i)(?<=[A-Z])\.(?=[A-Z])', '-', text)
|
||||
return text.strip()
|
||||
|
||||
def get_vocab():
|
||||
_pad = "$"
|
||||
_punctuation = ';:,.!?¡¿—…"«»“” '
|
||||
_letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'
|
||||
_letters_ipa = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ"
|
||||
symbols = [_pad] + list(_punctuation) + list(_letters) + list(_letters_ipa)
|
||||
dicts = {}
|
||||
for i in range(len((symbols))):
|
||||
dicts[symbols[i]] = i
|
||||
return dicts
|
||||
|
||||
VOCAB = get_vocab()
|
||||
def tokenize(ps):
|
||||
return [i for i in map(VOCAB.get, ps) if i is not None]
|
||||
|
||||
phonemizers = dict(
|
||||
a=phonemizer.backend.EspeakBackend(language='en-us', preserve_punctuation=True, with_stress=True),
|
||||
b=phonemizer.backend.EspeakBackend(language='en-gb', preserve_punctuation=True, with_stress=True),
|
||||
)
|
||||
def phonemize(text, lang, norm=True):
|
||||
if norm:
|
||||
text = normalize_text(text)
|
||||
ps = phonemizers[lang].phonemize([text])
|
||||
ps = ps[0] if ps else ''
|
||||
# https://en.wiktionary.org/wiki/kokoro#English
|
||||
ps = ps.replace('kəkˈoːɹoʊ', 'kˈoʊkəɹoʊ').replace('kəkˈɔːɹəʊ', 'kˈəʊkəɹəʊ')
|
||||
ps = ps.replace('ʲ', 'j').replace('r', 'ɹ').replace('x', 'k').replace('ɬ', 'l')
|
||||
ps = re.sub(r'(?<=[a-zɹː])(?=hˈʌndɹɪd)', ' ', ps)
|
||||
ps = re.sub(r' z(?=[;:,.!?¡¿—…"«»“” ]|$)', 'z', ps)
|
||||
if lang == 'a':
|
||||
ps = re.sub(r'(?<=nˈaɪn)ti(?!ː)', 'di', ps)
|
||||
ps = ''.join(filter(lambda p: p in VOCAB, ps))
|
||||
return ps.strip()
|
||||
|
||||
def length_to_mask(lengths):
|
||||
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
|
||||
mask = torch.gt(mask+1, lengths.unsqueeze(1))
|
||||
return mask
|
||||
|
||||
@torch.no_grad()
|
||||
def forward(model, tokens, ref_s, speed):
|
||||
device = ref_s.device
|
||||
tokens = torch.LongTensor([[0, *tokens, 0]]).to(device)
|
||||
input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device)
|
||||
text_mask = length_to_mask(input_lengths).to(device)
|
||||
bert_dur = model.bert(tokens, attention_mask=(~text_mask).int())
|
||||
d_en = model.bert_encoder(bert_dur).transpose(-1, -2)
|
||||
s = ref_s[:, 128:]
|
||||
d = model.predictor.text_encoder(d_en, s, input_lengths, text_mask)
|
||||
x, _ = model.predictor.lstm(d)
|
||||
duration = model.predictor.duration_proj(x)
|
||||
duration = torch.sigmoid(duration).sum(axis=-1) / speed
|
||||
pred_dur = torch.round(duration).clamp(min=1).long()
|
||||
pred_aln_trg = torch.zeros(input_lengths, pred_dur.sum().item())
|
||||
c_frame = 0
|
||||
for i in range(pred_aln_trg.size(0)):
|
||||
pred_aln_trg[i, c_frame:c_frame + pred_dur[0,i].item()] = 1
|
||||
c_frame += pred_dur[0,i].item()
|
||||
en = d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device)
|
||||
F0_pred, N_pred = model.predictor.F0Ntrain(en, s)
|
||||
t_en = model.text_encoder(tokens, input_lengths, text_mask)
|
||||
asr = t_en @ pred_aln_trg.unsqueeze(0).to(device)
|
||||
return model.decoder(asr, F0_pred, N_pred, ref_s[:, :128]).squeeze().cpu().numpy()
|
||||
|
||||
def generate(model, text, voicepack, lang='a', speed=1, ps=None):
|
||||
ps = ps or phonemize(text, lang)
|
||||
tokens = tokenize(ps)
|
||||
if not tokens:
|
||||
return None
|
||||
elif len(tokens) > 510:
|
||||
tokens = tokens[:510]
|
||||
print('Truncated to 510 tokens')
|
||||
ref_s = voicepack[len(tokens)]
|
||||
out = forward(model, tokens, ref_s, speed)
|
||||
ps = ''.join(next(k for k, v in VOCAB.items() if i == v) for i in tokens)
|
||||
return out, ps
|
||||
|
||||
def generate_full(model, text, voicepack, lang='a', speed=1, ps=None):
|
||||
ps = ps or phonemize(text, lang)
|
||||
tokens = tokenize(ps)
|
||||
if not tokens:
|
||||
return None
|
||||
outs = []
|
||||
loop_count = len(tokens)//510 + (1 if len(tokens) % 510 != 0 else 0)
|
||||
for i in range(loop_count):
|
||||
ref_s = voicepack[len(tokens[i*510:(i+1)*510])]
|
||||
out = forward(model, tokens[i*510:(i+1)*510], ref_s, speed)
|
||||
outs.append(out)
|
||||
outs = np.concatenate(outs)
|
||||
ps = ''.join(next(k for k, v in VOCAB.items() if i == v) for i in tokens)
|
||||
return outs, ps
|
||||
373
backend/python/kokoro/models.py
Normal file
373
backend/python/kokoro/models.py
Normal file
@@ -0,0 +1,373 @@
|
||||
# https://github.com/yl4579/StyleTTS2/blob/main/models.py
|
||||
# https://huggingface.co/hexgrad/Kokoro-82M/blob/main/models.py
|
||||
from istftnet import AdaIN1d, Decoder
|
||||
from munch import Munch
|
||||
from pathlib import Path
|
||||
from plbert import load_plbert
|
||||
from torch.nn.utils import weight_norm, spectral_norm
|
||||
import json
|
||||
import numpy as np
|
||||
import os
|
||||
import os.path as osp
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
class LinearNorm(torch.nn.Module):
|
||||
def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'):
|
||||
super(LinearNorm, self).__init__()
|
||||
self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias)
|
||||
|
||||
torch.nn.init.xavier_uniform_(
|
||||
self.linear_layer.weight,
|
||||
gain=torch.nn.init.calculate_gain(w_init_gain))
|
||||
|
||||
def forward(self, x):
|
||||
return self.linear_layer(x)
|
||||
|
||||
class LayerNorm(nn.Module):
|
||||
def __init__(self, channels, eps=1e-5):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.eps = eps
|
||||
|
||||
self.gamma = nn.Parameter(torch.ones(channels))
|
||||
self.beta = nn.Parameter(torch.zeros(channels))
|
||||
|
||||
def forward(self, x):
|
||||
x = x.transpose(1, -1)
|
||||
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
|
||||
return x.transpose(1, -1)
|
||||
|
||||
class TextEncoder(nn.Module):
|
||||
def __init__(self, channels, kernel_size, depth, n_symbols, actv=nn.LeakyReLU(0.2)):
|
||||
super().__init__()
|
||||
self.embedding = nn.Embedding(n_symbols, channels)
|
||||
|
||||
padding = (kernel_size - 1) // 2
|
||||
self.cnn = nn.ModuleList()
|
||||
for _ in range(depth):
|
||||
self.cnn.append(nn.Sequential(
|
||||
weight_norm(nn.Conv1d(channels, channels, kernel_size=kernel_size, padding=padding)),
|
||||
LayerNorm(channels),
|
||||
actv,
|
||||
nn.Dropout(0.2),
|
||||
))
|
||||
# self.cnn = nn.Sequential(*self.cnn)
|
||||
|
||||
self.lstm = nn.LSTM(channels, channels//2, 1, batch_first=True, bidirectional=True)
|
||||
|
||||
def forward(self, x, input_lengths, m):
|
||||
x = self.embedding(x) # [B, T, emb]
|
||||
x = x.transpose(1, 2) # [B, emb, T]
|
||||
m = m.to(input_lengths.device).unsqueeze(1)
|
||||
x.masked_fill_(m, 0.0)
|
||||
|
||||
for c in self.cnn:
|
||||
x = c(x)
|
||||
x.masked_fill_(m, 0.0)
|
||||
|
||||
x = x.transpose(1, 2) # [B, T, chn]
|
||||
|
||||
input_lengths = input_lengths.cpu().numpy()
|
||||
x = nn.utils.rnn.pack_padded_sequence(
|
||||
x, input_lengths, batch_first=True, enforce_sorted=False)
|
||||
|
||||
self.lstm.flatten_parameters()
|
||||
x, _ = self.lstm(x)
|
||||
x, _ = nn.utils.rnn.pad_packed_sequence(
|
||||
x, batch_first=True)
|
||||
|
||||
x = x.transpose(-1, -2)
|
||||
x_pad = torch.zeros([x.shape[0], x.shape[1], m.shape[-1]])
|
||||
|
||||
x_pad[:, :, :x.shape[-1]] = x
|
||||
x = x_pad.to(x.device)
|
||||
|
||||
x.masked_fill_(m, 0.0)
|
||||
|
||||
return x
|
||||
|
||||
def inference(self, x):
|
||||
x = self.embedding(x)
|
||||
x = x.transpose(1, 2)
|
||||
x = self.cnn(x)
|
||||
x = x.transpose(1, 2)
|
||||
self.lstm.flatten_parameters()
|
||||
x, _ = self.lstm(x)
|
||||
return x
|
||||
|
||||
def length_to_mask(self, lengths):
|
||||
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
|
||||
mask = torch.gt(mask+1, lengths.unsqueeze(1))
|
||||
return mask
|
||||
|
||||
|
||||
class UpSample1d(nn.Module):
|
||||
def __init__(self, layer_type):
|
||||
super().__init__()
|
||||
self.layer_type = layer_type
|
||||
|
||||
def forward(self, x):
|
||||
if self.layer_type == 'none':
|
||||
return x
|
||||
else:
|
||||
return F.interpolate(x, scale_factor=2, mode='nearest')
|
||||
|
||||
class AdainResBlk1d(nn.Module):
|
||||
def __init__(self, dim_in, dim_out, style_dim=64, actv=nn.LeakyReLU(0.2),
|
||||
upsample='none', dropout_p=0.0):
|
||||
super().__init__()
|
||||
self.actv = actv
|
||||
self.upsample_type = upsample
|
||||
self.upsample = UpSample1d(upsample)
|
||||
self.learned_sc = dim_in != dim_out
|
||||
self._build_weights(dim_in, dim_out, style_dim)
|
||||
self.dropout = nn.Dropout(dropout_p)
|
||||
|
||||
if upsample == 'none':
|
||||
self.pool = nn.Identity()
|
||||
else:
|
||||
self.pool = weight_norm(nn.ConvTranspose1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1, output_padding=1))
|
||||
|
||||
|
||||
def _build_weights(self, dim_in, dim_out, style_dim):
|
||||
self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1))
|
||||
self.conv2 = weight_norm(nn.Conv1d(dim_out, dim_out, 3, 1, 1))
|
||||
self.norm1 = AdaIN1d(style_dim, dim_in)
|
||||
self.norm2 = AdaIN1d(style_dim, dim_out)
|
||||
if self.learned_sc:
|
||||
self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False))
|
||||
|
||||
def _shortcut(self, x):
|
||||
x = self.upsample(x)
|
||||
if self.learned_sc:
|
||||
x = self.conv1x1(x)
|
||||
return x
|
||||
|
||||
def _residual(self, x, s):
|
||||
x = self.norm1(x, s)
|
||||
x = self.actv(x)
|
||||
x = self.pool(x)
|
||||
x = self.conv1(self.dropout(x))
|
||||
x = self.norm2(x, s)
|
||||
x = self.actv(x)
|
||||
x = self.conv2(self.dropout(x))
|
||||
return x
|
||||
|
||||
def forward(self, x, s):
|
||||
out = self._residual(x, s)
|
||||
out = (out + self._shortcut(x)) / np.sqrt(2)
|
||||
return out
|
||||
|
||||
class AdaLayerNorm(nn.Module):
|
||||
def __init__(self, style_dim, channels, eps=1e-5):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.eps = eps
|
||||
|
||||
self.fc = nn.Linear(style_dim, channels*2)
|
||||
|
||||
def forward(self, x, s):
|
||||
x = x.transpose(-1, -2)
|
||||
x = x.transpose(1, -1)
|
||||
|
||||
h = self.fc(s)
|
||||
h = h.view(h.size(0), h.size(1), 1)
|
||||
gamma, beta = torch.chunk(h, chunks=2, dim=1)
|
||||
gamma, beta = gamma.transpose(1, -1), beta.transpose(1, -1)
|
||||
|
||||
|
||||
x = F.layer_norm(x, (self.channels,), eps=self.eps)
|
||||
x = (1 + gamma) * x + beta
|
||||
return x.transpose(1, -1).transpose(-1, -2)
|
||||
|
||||
class ProsodyPredictor(nn.Module):
|
||||
|
||||
def __init__(self, style_dim, d_hid, nlayers, max_dur=50, dropout=0.1):
|
||||
super().__init__()
|
||||
|
||||
self.text_encoder = DurationEncoder(sty_dim=style_dim,
|
||||
d_model=d_hid,
|
||||
nlayers=nlayers,
|
||||
dropout=dropout)
|
||||
|
||||
self.lstm = nn.LSTM(d_hid + style_dim, d_hid // 2, 1, batch_first=True, bidirectional=True)
|
||||
self.duration_proj = LinearNorm(d_hid, max_dur)
|
||||
|
||||
self.shared = nn.LSTM(d_hid + style_dim, d_hid // 2, 1, batch_first=True, bidirectional=True)
|
||||
self.F0 = nn.ModuleList()
|
||||
self.F0.append(AdainResBlk1d(d_hid, d_hid, style_dim, dropout_p=dropout))
|
||||
self.F0.append(AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True, dropout_p=dropout))
|
||||
self.F0.append(AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim, dropout_p=dropout))
|
||||
|
||||
self.N = nn.ModuleList()
|
||||
self.N.append(AdainResBlk1d(d_hid, d_hid, style_dim, dropout_p=dropout))
|
||||
self.N.append(AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True, dropout_p=dropout))
|
||||
self.N.append(AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim, dropout_p=dropout))
|
||||
|
||||
self.F0_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0)
|
||||
self.N_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0)
|
||||
|
||||
|
||||
def forward(self, texts, style, text_lengths, alignment, m):
|
||||
d = self.text_encoder(texts, style, text_lengths, m)
|
||||
|
||||
batch_size = d.shape[0]
|
||||
text_size = d.shape[1]
|
||||
|
||||
# predict duration
|
||||
input_lengths = text_lengths.cpu().numpy()
|
||||
x = nn.utils.rnn.pack_padded_sequence(
|
||||
d, input_lengths, batch_first=True, enforce_sorted=False)
|
||||
|
||||
m = m.to(text_lengths.device).unsqueeze(1)
|
||||
|
||||
self.lstm.flatten_parameters()
|
||||
x, _ = self.lstm(x)
|
||||
x, _ = nn.utils.rnn.pad_packed_sequence(
|
||||
x, batch_first=True)
|
||||
|
||||
x_pad = torch.zeros([x.shape[0], m.shape[-1], x.shape[-1]])
|
||||
|
||||
x_pad[:, :x.shape[1], :] = x
|
||||
x = x_pad.to(x.device)
|
||||
|
||||
duration = self.duration_proj(nn.functional.dropout(x, 0.5, training=self.training))
|
||||
|
||||
en = (d.transpose(-1, -2) @ alignment)
|
||||
|
||||
return duration.squeeze(-1), en
|
||||
|
||||
def F0Ntrain(self, x, s):
|
||||
x, _ = self.shared(x.transpose(-1, -2))
|
||||
|
||||
F0 = x.transpose(-1, -2)
|
||||
for block in self.F0:
|
||||
F0 = block(F0, s)
|
||||
F0 = self.F0_proj(F0)
|
||||
|
||||
N = x.transpose(-1, -2)
|
||||
for block in self.N:
|
||||
N = block(N, s)
|
||||
N = self.N_proj(N)
|
||||
|
||||
return F0.squeeze(1), N.squeeze(1)
|
||||
|
||||
def length_to_mask(self, lengths):
|
||||
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
|
||||
mask = torch.gt(mask+1, lengths.unsqueeze(1))
|
||||
return mask
|
||||
|
||||
class DurationEncoder(nn.Module):
|
||||
|
||||
def __init__(self, sty_dim, d_model, nlayers, dropout=0.1):
|
||||
super().__init__()
|
||||
self.lstms = nn.ModuleList()
|
||||
for _ in range(nlayers):
|
||||
self.lstms.append(nn.LSTM(d_model + sty_dim,
|
||||
d_model // 2,
|
||||
num_layers=1,
|
||||
batch_first=True,
|
||||
bidirectional=True,
|
||||
dropout=dropout))
|
||||
self.lstms.append(AdaLayerNorm(sty_dim, d_model))
|
||||
|
||||
|
||||
self.dropout = dropout
|
||||
self.d_model = d_model
|
||||
self.sty_dim = sty_dim
|
||||
|
||||
def forward(self, x, style, text_lengths, m):
|
||||
masks = m.to(text_lengths.device)
|
||||
|
||||
x = x.permute(2, 0, 1)
|
||||
s = style.expand(x.shape[0], x.shape[1], -1)
|
||||
x = torch.cat([x, s], axis=-1)
|
||||
x.masked_fill_(masks.unsqueeze(-1).transpose(0, 1), 0.0)
|
||||
|
||||
x = x.transpose(0, 1)
|
||||
input_lengths = text_lengths.cpu().numpy()
|
||||
x = x.transpose(-1, -2)
|
||||
|
||||
for block in self.lstms:
|
||||
if isinstance(block, AdaLayerNorm):
|
||||
x = block(x.transpose(-1, -2), style).transpose(-1, -2)
|
||||
x = torch.cat([x, s.permute(1, -1, 0)], axis=1)
|
||||
x.masked_fill_(masks.unsqueeze(-1).transpose(-1, -2), 0.0)
|
||||
else:
|
||||
x = x.transpose(-1, -2)
|
||||
x = nn.utils.rnn.pack_padded_sequence(
|
||||
x, input_lengths, batch_first=True, enforce_sorted=False)
|
||||
block.flatten_parameters()
|
||||
x, _ = block(x)
|
||||
x, _ = nn.utils.rnn.pad_packed_sequence(
|
||||
x, batch_first=True)
|
||||
x = F.dropout(x, p=self.dropout, training=self.training)
|
||||
x = x.transpose(-1, -2)
|
||||
|
||||
x_pad = torch.zeros([x.shape[0], x.shape[1], m.shape[-1]])
|
||||
|
||||
x_pad[:, :, :x.shape[-1]] = x
|
||||
x = x_pad.to(x.device)
|
||||
|
||||
return x.transpose(-1, -2)
|
||||
|
||||
def inference(self, x, style):
|
||||
x = self.embedding(x.transpose(-1, -2)) * np.sqrt(self.d_model)
|
||||
style = style.expand(x.shape[0], x.shape[1], -1)
|
||||
x = torch.cat([x, style], axis=-1)
|
||||
src = self.pos_encoder(x)
|
||||
output = self.transformer_encoder(src).transpose(0, 1)
|
||||
return output
|
||||
|
||||
def length_to_mask(self, lengths):
|
||||
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
|
||||
mask = torch.gt(mask+1, lengths.unsqueeze(1))
|
||||
return mask
|
||||
|
||||
# https://github.com/yl4579/StyleTTS2/blob/main/utils.py
|
||||
def recursive_munch(d):
|
||||
if isinstance(d, dict):
|
||||
return Munch((k, recursive_munch(v)) for k, v in d.items())
|
||||
elif isinstance(d, list):
|
||||
return [recursive_munch(v) for v in d]
|
||||
else:
|
||||
return d
|
||||
|
||||
def build_model(path, device):
|
||||
config = Path(__file__).parent / 'config.json'
|
||||
assert config.exists(), f'Config path incorrect: config.json not found at {config}'
|
||||
with open(config, 'r') as r:
|
||||
args = recursive_munch(json.load(r))
|
||||
assert args.decoder.type == 'istftnet', f'Unknown decoder type: {args.decoder.type}'
|
||||
decoder = Decoder(dim_in=args.hidden_dim, style_dim=args.style_dim, dim_out=args.n_mels,
|
||||
resblock_kernel_sizes = args.decoder.resblock_kernel_sizes,
|
||||
upsample_rates = args.decoder.upsample_rates,
|
||||
upsample_initial_channel=args.decoder.upsample_initial_channel,
|
||||
resblock_dilation_sizes=args.decoder.resblock_dilation_sizes,
|
||||
upsample_kernel_sizes=args.decoder.upsample_kernel_sizes,
|
||||
gen_istft_n_fft=args.decoder.gen_istft_n_fft, gen_istft_hop_size=args.decoder.gen_istft_hop_size)
|
||||
text_encoder = TextEncoder(channels=args.hidden_dim, kernel_size=5, depth=args.n_layer, n_symbols=args.n_token)
|
||||
predictor = ProsodyPredictor(style_dim=args.style_dim, d_hid=args.hidden_dim, nlayers=args.n_layer, max_dur=args.max_dur, dropout=args.dropout)
|
||||
bert = load_plbert()
|
||||
bert_encoder = nn.Linear(bert.config.hidden_size, args.hidden_dim)
|
||||
for parent in [bert, bert_encoder, predictor, decoder, text_encoder]:
|
||||
for child in parent.children():
|
||||
if isinstance(child, nn.RNNBase):
|
||||
child.flatten_parameters()
|
||||
model = Munch(
|
||||
bert=bert.to(device).eval(),
|
||||
bert_encoder=bert_encoder.to(device).eval(),
|
||||
predictor=predictor.to(device).eval(),
|
||||
decoder=decoder.to(device).eval(),
|
||||
text_encoder=text_encoder.to(device).eval(),
|
||||
)
|
||||
for key, state_dict in torch.load(path, map_location='cpu', weights_only=True)['net'].items():
|
||||
assert key in model, key
|
||||
try:
|
||||
model[key].load_state_dict(state_dict)
|
||||
except:
|
||||
state_dict = {k[7:]: v for k, v in state_dict.items()}
|
||||
model[key].load_state_dict(state_dict, strict=False)
|
||||
return model
|
||||
16
backend/python/kokoro/plbert.py
Normal file
16
backend/python/kokoro/plbert.py
Normal file
@@ -0,0 +1,16 @@
|
||||
# https://huggingface.co/hexgrad/Kokoro-82M/blob/main/plbert.py
|
||||
# https://github.com/yl4579/StyleTTS2/blob/main/Utils/PLBERT/util.py
|
||||
from transformers import AlbertConfig, AlbertModel
|
||||
|
||||
class CustomAlbert(AlbertModel):
|
||||
def forward(self, *args, **kwargs):
|
||||
# Call the original forward method
|
||||
outputs = super().forward(*args, **kwargs)
|
||||
# Only return the last_hidden_state
|
||||
return outputs.last_hidden_state
|
||||
|
||||
def load_plbert():
|
||||
plbert_config = {'vocab_size': 178, 'hidden_size': 768, 'num_attention_heads': 12, 'intermediate_size': 2048, 'max_position_embeddings': 512, 'num_hidden_layers': 12, 'dropout': 0.1}
|
||||
albert_base_configuration = AlbertConfig(**plbert_config)
|
||||
bert = CustomAlbert(albert_base_configuration)
|
||||
return bert
|
||||
6
backend/python/kokoro/protogen.sh
Normal file
6
backend/python/kokoro/protogen.sh
Normal file
@@ -0,0 +1,6 @@
|
||||
#!/bin/bash
|
||||
set -e
|
||||
|
||||
source $(dirname $0)/../common/libbackend.sh
|
||||
|
||||
python3 -m grpc_tools.protoc -I../.. --python_out=. --grpc_python_out=. backend.proto
|
||||
@@ -1,5 +1,3 @@
|
||||
--extra-index-url https://download.pytorch.org/whl/rocm6.0
|
||||
torch==2.4.1+rocm6.0
|
||||
accelerate
|
||||
sentence-transformers==3.3.1
|
||||
transformers
|
||||
@@ -1,8 +1,5 @@
|
||||
--extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
|
||||
intel-extension-for-pytorch==2.3.110+xpu
|
||||
torch==2.3.1+cxx11.abi
|
||||
torchaudio==2.3.1+cxx11.abi
|
||||
oneccl_bind_pt==2.3.100+xpu
|
||||
optimum[openvino]
|
||||
transformers
|
||||
accelerate
|
||||
transformers
|
||||
7
backend/python/kokoro/requirements.txt
Normal file
7
backend/python/kokoro/requirements.txt
Normal file
@@ -0,0 +1,7 @@
|
||||
grpcio==1.69.0
|
||||
protobuf
|
||||
phonemizer
|
||||
scipy
|
||||
munch
|
||||
setuptools
|
||||
soundfile
|
||||
@@ -1,29 +0,0 @@
|
||||
.PHONY: mamba
|
||||
mamba: protogen
|
||||
bash install.sh
|
||||
|
||||
.PHONY: run
|
||||
run: protogen
|
||||
@echo "Running mamba..."
|
||||
bash run.sh
|
||||
@echo "mamba run."
|
||||
|
||||
.PHONY: test
|
||||
test: protogen
|
||||
@echo "Testing mamba..."
|
||||
bash test.sh
|
||||
@echo "mamba tested."
|
||||
|
||||
.PHONY: protogen
|
||||
protogen: backend_pb2_grpc.py backend_pb2.py
|
||||
|
||||
.PHONY: protogen-clean
|
||||
protogen-clean:
|
||||
$(RM) backend_pb2_grpc.py backend_pb2.py
|
||||
|
||||
backend_pb2_grpc.py backend_pb2.py:
|
||||
python3 -m grpc_tools.protoc -I../.. --python_out=. --grpc_python_out=. backend.proto
|
||||
|
||||
.PHONY: clean
|
||||
clean: protogen-clean
|
||||
$(RM) -r venv __pycache__
|
||||
@@ -1,5 +0,0 @@
|
||||
# Creating a separate environment for the mamba project
|
||||
|
||||
```
|
||||
make mamba
|
||||
```
|
||||
@@ -1,179 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
from concurrent import futures
|
||||
import time
|
||||
import argparse
|
||||
import signal
|
||||
import sys
|
||||
import os
|
||||
|
||||
import backend_pb2
|
||||
import backend_pb2_grpc
|
||||
|
||||
import grpc
|
||||
|
||||
import torch
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM
|
||||
from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel
|
||||
|
||||
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
|
||||
|
||||
# If MAX_WORKERS are specified in the environment use it, otherwise default to 1
|
||||
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1'))
|
||||
MAMBA_CHAT= os.environ.get('MAMBA_CHAT', '1') == '1'
|
||||
|
||||
# Implement the BackendServicer class with the service methods
|
||||
class BackendServicer(backend_pb2_grpc.BackendServicer):
|
||||
"""
|
||||
A gRPC servicer that implements the Backend service defined in backend.proto.
|
||||
"""
|
||||
def generate(self,prompt, max_new_tokens):
|
||||
"""
|
||||
Generates text based on the given prompt and maximum number of new tokens.
|
||||
|
||||
Args:
|
||||
prompt (str): The prompt to generate text from.
|
||||
max_new_tokens (int): The maximum number of new tokens to generate.
|
||||
|
||||
Returns:
|
||||
str: The generated text.
|
||||
"""
|
||||
self.generator.end_beam_search()
|
||||
|
||||
# Tokenizing the input
|
||||
ids = self.generator.tokenizer.encode(prompt)
|
||||
|
||||
self.generator.gen_begin_reuse(ids)
|
||||
initial_len = self.generator.sequence[0].shape[0]
|
||||
has_leading_space = False
|
||||
decoded_text = ''
|
||||
for i in range(max_new_tokens):
|
||||
token = self.generator.gen_single_token()
|
||||
if i == 0 and self.generator.tokenizer.tokenizer.IdToPiece(int(token)).startswith('▁'):
|
||||
has_leading_space = True
|
||||
|
||||
decoded_text = self.generator.tokenizer.decode(self.generator.sequence[0][initial_len:])
|
||||
if has_leading_space:
|
||||
decoded_text = ' ' + decoded_text
|
||||
|
||||
if token.item() == self.generator.tokenizer.eos_token_id:
|
||||
break
|
||||
return decoded_text
|
||||
|
||||
def Health(self, request, context):
|
||||
"""
|
||||
Returns a health check message.
|
||||
|
||||
Args:
|
||||
request: The health check request.
|
||||
context: The gRPC context.
|
||||
|
||||
Returns:
|
||||
backend_pb2.Reply: The health check reply.
|
||||
"""
|
||||
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
|
||||
|
||||
def LoadModel(self, request, context):
|
||||
"""
|
||||
Loads a language model.
|
||||
|
||||
Args:
|
||||
request: The load model request.
|
||||
context: The gRPC context.
|
||||
|
||||
Returns:
|
||||
backend_pb2.Result: The load model result.
|
||||
"""
|
||||
try:
|
||||
tokenizerModel = request.Tokenizer
|
||||
if tokenizerModel == "":
|
||||
tokenizerModel = request.Model
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(tokenizerModel)
|
||||
if MAMBA_CHAT:
|
||||
tokenizer.eos_token = "<|endoftext|>"
|
||||
tokenizer.pad_token = tokenizer.eos_token
|
||||
self.tokenizer = tokenizer
|
||||
self.model = MambaLMHeadModel.from_pretrained(request.Model, device="cuda", dtype=torch.float16)
|
||||
except Exception as err:
|
||||
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
|
||||
return backend_pb2.Result(message="Model loaded successfully", success=True)
|
||||
|
||||
def Predict(self, request, context):
|
||||
"""
|
||||
Generates text based on the given prompt and sampling parameters.
|
||||
|
||||
Args:
|
||||
request: The predict request.
|
||||
context: The gRPC context.
|
||||
|
||||
Returns:
|
||||
backend_pb2.Result: The predict result.
|
||||
"""
|
||||
if request.TopP == 0:
|
||||
request.TopP = 0.9
|
||||
|
||||
max_tokens = request.Tokens
|
||||
|
||||
if request.Tokens == 0:
|
||||
max_tokens = 2000
|
||||
|
||||
# encoded_input = self.tokenizer(request.Prompt)
|
||||
tokens = self.tokenizer(request.Prompt, return_tensors="pt")
|
||||
input_ids = tokens.input_ids.to(device="cuda")
|
||||
out = self.model.generate(input_ids=input_ids, max_length=max_tokens, temperature=request.Temperature,
|
||||
top_p=request.TopP, eos_token_id=self.tokenizer.eos_token_id)
|
||||
|
||||
decoded = self.tokenizer.batch_decode(out)
|
||||
|
||||
generated_text = decoded[0]
|
||||
|
||||
# Remove prompt from response if present
|
||||
if request.Prompt in generated_text:
|
||||
generated_text = generated_text.replace(request.Prompt, "")
|
||||
|
||||
return backend_pb2.Reply(message=bytes(generated_text, encoding='utf-8'))
|
||||
|
||||
def PredictStream(self, request, context):
|
||||
"""
|
||||
Generates text based on the given prompt and sampling parameters, and streams the results.
|
||||
|
||||
Args:
|
||||
request: The predict stream request.
|
||||
context: The gRPC context.
|
||||
|
||||
Returns:
|
||||
backend_pb2.Result: The predict stream result.
|
||||
"""
|
||||
yield self.Predict(request, context)
|
||||
|
||||
def serve(address):
|
||||
server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS))
|
||||
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
|
||||
server.add_insecure_port(address)
|
||||
server.start()
|
||||
print("Server started. Listening on: " + address, file=sys.stderr)
|
||||
|
||||
# Define the signal handler function
|
||||
def signal_handler(sig, frame):
|
||||
print("Received termination signal. Shutting down...")
|
||||
server.stop(0)
|
||||
sys.exit(0)
|
||||
|
||||
# Set the signal handlers for SIGINT and SIGTERM
|
||||
signal.signal(signal.SIGINT, signal_handler)
|
||||
signal.signal(signal.SIGTERM, signal_handler)
|
||||
|
||||
try:
|
||||
while True:
|
||||
time.sleep(_ONE_DAY_IN_SECONDS)
|
||||
except KeyboardInterrupt:
|
||||
server.stop(0)
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Run the gRPC server.")
|
||||
parser.add_argument(
|
||||
"--addr", default="localhost:50051", help="The address to bind the server to."
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
serve(args.addr)
|
||||
@@ -1,9 +0,0 @@
|
||||
#!/bin/bash
|
||||
set -e
|
||||
|
||||
LIMIT_TARGETS="cublas"
|
||||
EXTRA_PIP_INSTALL_FLAGS="--no-build-isolation"
|
||||
|
||||
source $(dirname $0)/../common/libbackend.sh
|
||||
|
||||
installRequirements
|
||||
@@ -1,2 +0,0 @@
|
||||
causal-conv1d==1.4.0
|
||||
mamba-ssm==2.2.2
|
||||
@@ -1,6 +0,0 @@
|
||||
# mabma does not specify it's build dependencies per PEP517, so we need to disable build isolation
|
||||
# this also means that we need to install the basic build dependencies into the venv ourselves
|
||||
# https://github.com/Dao-AILab/causal-conv1d/issues/24
|
||||
packaging
|
||||
setuptools
|
||||
wheel
|
||||
@@ -1,6 +0,0 @@
|
||||
#!/bin/bash
|
||||
LIMIT_TARGETS="cublas"
|
||||
|
||||
source $(dirname $0)/../common/libbackend.sh
|
||||
|
||||
startBackend $@
|
||||
@@ -1,76 +0,0 @@
|
||||
import unittest
|
||||
import subprocess
|
||||
import time
|
||||
import backend_pb2
|
||||
import backend_pb2_grpc
|
||||
|
||||
import grpc
|
||||
|
||||
import unittest
|
||||
import subprocess
|
||||
import time
|
||||
import grpc
|
||||
import backend_pb2_grpc
|
||||
import backend_pb2
|
||||
|
||||
class TestBackendServicer(unittest.TestCase):
|
||||
"""
|
||||
TestBackendServicer is the class that tests the gRPC service.
|
||||
|
||||
This class contains methods to test the startup and shutdown of the gRPC service.
|
||||
"""
|
||||
def setUp(self):
|
||||
self.service = subprocess.Popen(["python", "backend.py", "--addr", "localhost:50051"])
|
||||
time.sleep(10)
|
||||
|
||||
def tearDown(self) -> None:
|
||||
self.service.terminate()
|
||||
self.service.wait()
|
||||
|
||||
def test_server_startup(self):
|
||||
try:
|
||||
self.setUp()
|
||||
with grpc.insecure_channel("localhost:50051") as channel:
|
||||
stub = backend_pb2_grpc.BackendStub(channel)
|
||||
response = stub.Health(backend_pb2.HealthMessage())
|
||||
self.assertEqual(response.message, b'OK')
|
||||
except Exception as err:
|
||||
print(err)
|
||||
self.fail("Server failed to start")
|
||||
finally:
|
||||
self.tearDown()
|
||||
def test_load_model(self):
|
||||
"""
|
||||
This method tests if the model is loaded successfully
|
||||
"""
|
||||
try:
|
||||
self.setUp()
|
||||
with grpc.insecure_channel("localhost:50051") as channel:
|
||||
stub = backend_pb2_grpc.BackendStub(channel)
|
||||
response = stub.LoadModel(backend_pb2.ModelOptions(Model="facebook/opt-125m"))
|
||||
self.assertTrue(response.success)
|
||||
self.assertEqual(response.message, "Model loaded successfully")
|
||||
except Exception as err:
|
||||
print(err)
|
||||
self.fail("LoadModel service failed")
|
||||
finally:
|
||||
self.tearDown()
|
||||
|
||||
def test_text(self):
|
||||
"""
|
||||
This method tests if the embeddings are generated successfully
|
||||
"""
|
||||
try:
|
||||
self.setUp()
|
||||
with grpc.insecure_channel("localhost:50051") as channel:
|
||||
stub = backend_pb2_grpc.BackendStub(channel)
|
||||
response = stub.LoadModel(backend_pb2.ModelOptions(Model="facebook/opt-125m"))
|
||||
self.assertTrue(response.success)
|
||||
req = backend_pb2.PredictOptions(Prompt="The capital of France is")
|
||||
resp = stub.Predict(req)
|
||||
self.assertIsNotNone(resp.message)
|
||||
except Exception as err:
|
||||
print(err)
|
||||
self.fail("text service failed")
|
||||
finally:
|
||||
self.tearDown()
|
||||
@@ -1,158 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Extra gRPC server for OpenVoice models.
|
||||
"""
|
||||
from concurrent import futures
|
||||
|
||||
import argparse
|
||||
import signal
|
||||
import sys
|
||||
import os
|
||||
import torch
|
||||
from openvoice import se_extractor
|
||||
from openvoice.api import ToneColorConverter
|
||||
from melo.api import TTS
|
||||
|
||||
import time
|
||||
import backend_pb2
|
||||
import backend_pb2_grpc
|
||||
|
||||
import grpc
|
||||
|
||||
|
||||
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
|
||||
|
||||
# If MAX_WORKERS are specified in the environment use it, otherwise default to 1
|
||||
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1'))
|
||||
|
||||
# Implement the BackendServicer class with the service methods
|
||||
class BackendServicer(backend_pb2_grpc.BackendServicer):
|
||||
"""
|
||||
A gRPC servicer for the backend service.
|
||||
|
||||
This class implements the gRPC methods for the backend service, including Health, LoadModel, and Embedding.
|
||||
"""
|
||||
def Health(self, request, context):
|
||||
"""
|
||||
A gRPC method that returns the health status of the backend service.
|
||||
|
||||
Args:
|
||||
request: A HealthRequest object that contains the request parameters.
|
||||
context: A grpc.ServicerContext object that provides information about the RPC.
|
||||
|
||||
Returns:
|
||||
A Reply object that contains the health status of the backend service.
|
||||
"""
|
||||
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
|
||||
|
||||
def LoadModel(self, request, context):
|
||||
"""
|
||||
A gRPC method that loads a model into memory.
|
||||
|
||||
Args:
|
||||
request: A LoadModelRequest object that contains the request parameters.
|
||||
context: A grpc.ServicerContext object that provides information about the RPC.
|
||||
|
||||
Returns:
|
||||
A Result object that contains the result of the LoadModel operation.
|
||||
"""
|
||||
model_name = request.Model
|
||||
try:
|
||||
|
||||
self.clonedVoice = False
|
||||
# Assume directory from request.ModelFile.
|
||||
# Only if request.LoraAdapter it's not an absolute path
|
||||
if request.AudioPath and request.ModelFile != "" and not os.path.isabs(request.AudioPath):
|
||||
# get base path of modelFile
|
||||
modelFileBase = os.path.dirname(request.ModelFile)
|
||||
request.AudioPath = os.path.join(modelFileBase, request.AudioPath)
|
||||
if request.AudioPath != "":
|
||||
self.clonedVoice = True
|
||||
|
||||
self.modelpath = request.ModelFile
|
||||
self.speaker = request.Type
|
||||
self.ClonedVoicePath = request.AudioPath
|
||||
|
||||
ckpt_converter = request.Model+'/converter'
|
||||
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
||||
self.device = device
|
||||
self.tone_color_converter = None
|
||||
if self.clonedVoice:
|
||||
self.tone_color_converter = ToneColorConverter(f'{ckpt_converter}/config.json', device=device)
|
||||
self.tone_color_converter.load_ckpt(f'{ckpt_converter}/checkpoint.pth')
|
||||
|
||||
except Exception as err:
|
||||
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
|
||||
|
||||
return backend_pb2.Result(message="Model loaded successfully", success=True)
|
||||
|
||||
def TTS(self, request, context):
|
||||
model_name = request.model
|
||||
if model_name == "":
|
||||
return backend_pb2.Result(success=False, message="request.model is required")
|
||||
try:
|
||||
# Speed is adjustable
|
||||
speed = 1.0
|
||||
voice = "EN"
|
||||
if request.voice:
|
||||
voice = request.voice
|
||||
model = TTS(language=voice, device=self.device)
|
||||
speaker_ids = model.hps.data.spk2id
|
||||
speaker_key = self.speaker
|
||||
modelpath = self.modelpath
|
||||
for s in speaker_ids.keys():
|
||||
print(f"Speaker: {s} - ID: {speaker_ids[s]}")
|
||||
speaker_id = speaker_ids[speaker_key]
|
||||
speaker_key = speaker_key.lower().replace('_', '-')
|
||||
source_se = torch.load(f'{modelpath}/base_speakers/ses/{speaker_key}.pth', map_location=self.device)
|
||||
model.tts_to_file(request.text, speaker_id, request.dst, speed=speed)
|
||||
if self.clonedVoice:
|
||||
reference_speaker = self.ClonedVoicePath
|
||||
target_se, audio_name = se_extractor.get_se(reference_speaker, self.tone_color_converter, vad=False)
|
||||
# Run the tone color converter
|
||||
encode_message = "@MyShell"
|
||||
self.tone_color_converter.convert(
|
||||
audio_src_path=request.dst,
|
||||
src_se=source_se,
|
||||
tgt_se=target_se,
|
||||
output_path=request.dst,
|
||||
message=encode_message)
|
||||
|
||||
print("[OpenVoice] TTS generated!", file=sys.stderr)
|
||||
print("[OpenVoice] TTS saved to", request.dst, file=sys.stderr)
|
||||
print(request, file=sys.stderr)
|
||||
except Exception as err:
|
||||
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
|
||||
return backend_pb2.Result(success=True)
|
||||
|
||||
def serve(address):
|
||||
server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS))
|
||||
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
|
||||
server.add_insecure_port(address)
|
||||
server.start()
|
||||
print("[OpenVoice] Server started. Listening on: " + address, file=sys.stderr)
|
||||
|
||||
# Define the signal handler function
|
||||
def signal_handler(sig, frame):
|
||||
print("[OpenVoice] Received termination signal. Shutting down...")
|
||||
server.stop(0)
|
||||
sys.exit(0)
|
||||
|
||||
# Set the signal handlers for SIGINT and SIGTERM
|
||||
signal.signal(signal.SIGINT, signal_handler)
|
||||
signal.signal(signal.SIGTERM, signal_handler)
|
||||
|
||||
try:
|
||||
while True:
|
||||
time.sleep(_ONE_DAY_IN_SECONDS)
|
||||
except KeyboardInterrupt:
|
||||
server.stop(0)
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Run the gRPC server.")
|
||||
parser.add_argument(
|
||||
"--addr", default="localhost:50051", help="The address to bind the server to."
|
||||
)
|
||||
args = parser.parse_args()
|
||||
print(f"[OpenVoice] startup: {args}", file=sys.stderr)
|
||||
serve(args.addr)
|
||||
@@ -1,16 +0,0 @@
|
||||
#!/bin/bash
|
||||
set -e
|
||||
|
||||
source $(dirname $0)/../common/libbackend.sh
|
||||
|
||||
# This is here because the Intel pip index is broken and returns 200 status codes for every package name, it just doesn't return any package links.
|
||||
# This makes uv think that the package exists in the Intel pip index, and by default it stops looking at other pip indexes once it finds a match.
|
||||
# We need uv to continue falling through to the pypi default index to find optimum[openvino] in the pypi index
|
||||
# the --upgrade actually allows us to *downgrade* torch to the version provided in the Intel pip index
|
||||
if [ "x${BUILD_PROFILE}" == "xintel" ]; then
|
||||
EXTRA_PIP_INSTALL_FLAGS+=" --upgrade --index-strategy=unsafe-first-match"
|
||||
fi
|
||||
|
||||
installRequirements
|
||||
|
||||
python -m unidic download
|
||||
@@ -1,7 +0,0 @@
|
||||
torch==2.4.1
|
||||
git+https://github.com/myshell-ai/MeloTTS.git
|
||||
git+https://github.com/myshell-ai/OpenVoice.git
|
||||
whisper-timestamped
|
||||
pydub==0.25.1
|
||||
wavmark==0.0.3
|
||||
eng_to_ipa==0.0.2
|
||||
@@ -1,8 +0,0 @@
|
||||
--extra-index-url https://download.pytorch.org/whl/cu118
|
||||
torch==2.4.1+cu118
|
||||
git+https://github.com/myshell-ai/MeloTTS.git
|
||||
git+https://github.com/myshell-ai/OpenVoice.git
|
||||
whisper-timestamped
|
||||
pydub==0.25.1
|
||||
wavmark==0.0.3
|
||||
eng_to_ipa==0.0.2
|
||||
@@ -1,7 +0,0 @@
|
||||
torch==2.4.1
|
||||
git+https://github.com/myshell-ai/MeloTTS.git
|
||||
git+https://github.com/myshell-ai/OpenVoice.git
|
||||
whisper-timestamped
|
||||
pydub==0.25.1
|
||||
wavmark==0.0.3
|
||||
eng_to_ipa==0.0.2
|
||||
@@ -1,8 +0,0 @@
|
||||
--extra-index-url https://download.pytorch.org/whl/rocm6.0
|
||||
torch==2.4.1+rocm6.0
|
||||
git+https://github.com/myshell-ai/MeloTTS.git
|
||||
git+https://github.com/myshell-ai/OpenVoice.git
|
||||
whisper-timestamped
|
||||
pydub==0.25.1
|
||||
wavmark==0.0.3
|
||||
eng_to_ipa==0.0.2
|
||||
@@ -1,24 +0,0 @@
|
||||
--extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
|
||||
intel-extension-for-pytorch==2.3.110+xpu
|
||||
torch==2.3.1+cxx11.abi
|
||||
torchaudio==2.3.1+cxx11.abi
|
||||
oneccl_bind_pt==2.3.100+xpu
|
||||
optimum[openvino]
|
||||
grpcio==1.69.0
|
||||
protobuf
|
||||
librosa==0.9.1
|
||||
faster-whisper==0.9.0
|
||||
pydub==0.25.1
|
||||
wavmark==0.0.3
|
||||
eng_to_ipa==0.0.2
|
||||
inflect==7.0.0
|
||||
unidecode==1.3.7
|
||||
whisper-timestamped==1.14.2
|
||||
openai
|
||||
python-dotenv
|
||||
pypinyin==0.50.0
|
||||
cn2an==0.5.22
|
||||
jieba==0.42.1
|
||||
langid==1.1.6
|
||||
git+https://github.com/myshell-ai/MeloTTS.git
|
||||
git+https://github.com/myshell-ai/OpenVoice.git
|
||||
@@ -1,17 +0,0 @@
|
||||
grpcio==1.69.0
|
||||
protobuf
|
||||
librosa
|
||||
faster-whisper
|
||||
inflect
|
||||
unidecode
|
||||
openai
|
||||
python-dotenv
|
||||
pypinyin
|
||||
cn2an==0.5.22
|
||||
numpy==1.22.0
|
||||
networkx==2.8.8
|
||||
jieba==0.42.1
|
||||
gradio==5.9.1
|
||||
langid==1.1.6
|
||||
llvmlite==0.43.0
|
||||
setuptools
|
||||
@@ -1,82 +0,0 @@
|
||||
"""
|
||||
A test script to test the gRPC service
|
||||
"""
|
||||
import unittest
|
||||
import subprocess
|
||||
import time
|
||||
import backend_pb2
|
||||
import backend_pb2_grpc
|
||||
|
||||
import grpc
|
||||
|
||||
|
||||
class TestBackendServicer(unittest.TestCase):
|
||||
"""
|
||||
TestBackendServicer is the class that tests the gRPC service
|
||||
"""
|
||||
def setUp(self):
|
||||
"""
|
||||
This method sets up the gRPC service by starting the server
|
||||
"""
|
||||
self.service = subprocess.Popen(["python3", "backend.py", "--addr", "localhost:50051"])
|
||||
time.sleep(30)
|
||||
|
||||
def tearDown(self) -> None:
|
||||
"""
|
||||
This method tears down the gRPC service by terminating the server
|
||||
"""
|
||||
self.service.terminate()
|
||||
self.service.wait()
|
||||
|
||||
def test_server_startup(self):
|
||||
"""
|
||||
This method tests if the server starts up successfully
|
||||
"""
|
||||
try:
|
||||
self.setUp()
|
||||
with grpc.insecure_channel("localhost:50051") as channel:
|
||||
stub = backend_pb2_grpc.BackendStub(channel)
|
||||
response = stub.Health(backend_pb2.HealthMessage())
|
||||
self.assertEqual(response.message, b'OK')
|
||||
except Exception as err:
|
||||
print(err)
|
||||
self.fail("Server failed to start")
|
||||
finally:
|
||||
self.tearDown()
|
||||
|
||||
def test_load_model(self):
|
||||
"""
|
||||
This method tests if the model is loaded successfully
|
||||
"""
|
||||
try:
|
||||
self.setUp()
|
||||
with grpc.insecure_channel("localhost:50051") as channel:
|
||||
stub = backend_pb2_grpc.BackendStub(channel)
|
||||
response = stub.LoadModel(backend_pb2.ModelOptions(Model="checkpoints_v2",
|
||||
Type="en-us"))
|
||||
self.assertTrue(response.success)
|
||||
self.assertEqual(response.message, "Model loaded successfully")
|
||||
except Exception as err:
|
||||
print(err)
|
||||
self.fail("LoadModel service failed")
|
||||
finally:
|
||||
self.tearDown()
|
||||
|
||||
def test_tts(self):
|
||||
"""
|
||||
This method tests if the embeddings are generated successfully
|
||||
"""
|
||||
try:
|
||||
self.setUp()
|
||||
with grpc.insecure_channel("localhost:50051") as channel:
|
||||
stub = backend_pb2_grpc.BackendStub(channel)
|
||||
response = stub.LoadModel(backend_pb2.ModelOptions(Model="dingzhen"))
|
||||
self.assertTrue(response.success)
|
||||
tts_request = backend_pb2.TTSRequest(text="80s TV news production music hit for tonight's biggest story", voice="EN")
|
||||
tts_response = stub.TTS(tts_request)
|
||||
self.assertIsNotNone(tts_response)
|
||||
except Exception as err:
|
||||
print(err)
|
||||
self.fail("TTS service failed")
|
||||
finally:
|
||||
self.tearDown()
|
||||
@@ -1,12 +0,0 @@
|
||||
#!/bin/bash
|
||||
set -e
|
||||
|
||||
source $(dirname $0)/../common/libbackend.sh
|
||||
|
||||
# Download checkpoints if not present
|
||||
if [ ! -d "checkpoints_v2" ]; then
|
||||
wget https://myshell-public-repo-host.s3.amazonaws.com/openvoice/checkpoints_v2_0417.zip -O checkpoints_v2.zip
|
||||
unzip checkpoints_v2.zip
|
||||
fi
|
||||
|
||||
runUnittests
|
||||
@@ -1,44 +0,0 @@
|
||||
export CONDA_ENV_PATH = "parler.yml"
|
||||
SKIP_CONDA?=0
|
||||
ifeq ($(BUILD_TYPE), cublas)
|
||||
export CONDA_ENV_PATH = "parler-nvidia.yml"
|
||||
endif
|
||||
|
||||
# Intel GPU are supposed to have dependencies installed in the main python
|
||||
# environment, so we skip conda installation for SYCL builds.
|
||||
# https://github.com/intel/intel-extension-for-pytorch/issues/538
|
||||
ifneq (,$(findstring sycl,$(BUILD_TYPE)))
|
||||
export SKIP_CONDA=1
|
||||
endif
|
||||
|
||||
.PHONY: parler-tts
|
||||
parler-tts:
|
||||
@echo "Installing $(CONDA_ENV_PATH)..."
|
||||
bash install.sh $(CONDA_ENV_PATH)
|
||||
$(MAKE) protogen
|
||||
|
||||
.PHONY: run
|
||||
run: protogen
|
||||
@echo "Running transformers..."
|
||||
bash run.sh
|
||||
@echo "transformers run."
|
||||
|
||||
.PHONY: test
|
||||
test: protogen
|
||||
@echo "Testing transformers..."
|
||||
bash test.sh
|
||||
@echo "transformers tested."
|
||||
|
||||
.PHONY: protogen
|
||||
protogen: backend_pb2_grpc.py backend_pb2.py
|
||||
|
||||
.PHONY: protogen-clean
|
||||
protogen-clean:
|
||||
$(RM) backend_pb2_grpc.py backend_pb2.py
|
||||
|
||||
backend_pb2_grpc.py backend_pb2.py:
|
||||
bash protogen.sh
|
||||
|
||||
.PHONY: clean
|
||||
clean: protogen-clean
|
||||
$(RM) -r venv __pycache__
|
||||
@@ -1,28 +0,0 @@
|
||||
#!/bin/bash
|
||||
set -e
|
||||
|
||||
source $(dirname $0)/../common/libbackend.sh
|
||||
|
||||
# This is here because the Intel pip index is broken and returns 200 status codes for every package name, it just doesn't return any package links.
|
||||
# This makes uv think that the package exists in the Intel pip index, and by default it stops looking at other pip indexes once it finds a match.
|
||||
# We need uv to continue falling through to the pypi default index to find optimum[openvino] in the pypi index
|
||||
# the --upgrade actually allows us to *downgrade* torch to the version provided in the Intel pip index
|
||||
if [ "x${BUILD_PROFILE}" == "xintel" ]; then
|
||||
EXTRA_PIP_INSTALL_FLAGS+=" --upgrade --index-strategy=unsafe-first-match"
|
||||
fi
|
||||
|
||||
|
||||
installRequirements
|
||||
|
||||
|
||||
# https://github.com/descriptinc/audiotools/issues/101
|
||||
# incompatible protobuf versions.
|
||||
PYDIR=python3.10
|
||||
pyenv="${MY_DIR}/venv/lib/${PYDIR}/site-packages/google/protobuf/internal/"
|
||||
|
||||
if [ ! -d ${pyenv} ]; then
|
||||
echo "(parler-tts/install.sh): Error: ${pyenv} does not exist"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
curl -L https://raw.githubusercontent.com/protocolbuffers/protobuf/main/python/google/protobuf/internal/builder.py -o ${pyenv}/builder.py
|
||||
@@ -1,4 +0,0 @@
|
||||
git+https://github.com/huggingface/parler-tts.git@8e465f1b5fcd223478e07175cb40494d19ffbe17
|
||||
llvmlite==0.43.0
|
||||
numba==0.60.0
|
||||
grpcio-tools==1.42.0
|
||||
@@ -1,3 +0,0 @@
|
||||
transformers
|
||||
accelerate
|
||||
torch==2.4.1
|
||||
@@ -1,5 +0,0 @@
|
||||
--extra-index-url https://download.pytorch.org/whl/cu118
|
||||
torch==2.4.1+cu118
|
||||
torchaudio==2.4.1+cu118
|
||||
transformers
|
||||
accelerate
|
||||
@@ -1,4 +0,0 @@
|
||||
torch==2.4.1
|
||||
torchaudio==2.4.1
|
||||
transformers
|
||||
accelerate
|
||||
@@ -1,5 +0,0 @@
|
||||
--extra-index-url https://download.pytorch.org/whl/rocm6.0
|
||||
torch==2.3.0+rocm6.0
|
||||
torchaudio==2.3.0+rocm6.0
|
||||
transformers
|
||||
accelerate
|
||||
@@ -1,4 +0,0 @@
|
||||
grpcio==1.69.0
|
||||
certifi
|
||||
llvmlite==0.43.0
|
||||
setuptools
|
||||
@@ -1,81 +0,0 @@
|
||||
"""
|
||||
A test script to test the gRPC service
|
||||
"""
|
||||
import unittest
|
||||
import subprocess
|
||||
import time
|
||||
import backend_pb2
|
||||
import backend_pb2_grpc
|
||||
|
||||
import grpc
|
||||
|
||||
|
||||
class TestBackendServicer(unittest.TestCase):
|
||||
"""
|
||||
TestBackendServicer is the class that tests the gRPC service
|
||||
"""
|
||||
def setUp(self):
|
||||
"""
|
||||
This method sets up the gRPC service by starting the server
|
||||
"""
|
||||
self.service = subprocess.Popen(["python3", "backend.py", "--addr", "localhost:50051"])
|
||||
time.sleep(10)
|
||||
|
||||
def tearDown(self) -> None:
|
||||
"""
|
||||
This method tears down the gRPC service by terminating the server
|
||||
"""
|
||||
self.service.terminate()
|
||||
self.service.wait()
|
||||
|
||||
def test_server_startup(self):
|
||||
"""
|
||||
This method tests if the server starts up successfully
|
||||
"""
|
||||
try:
|
||||
self.setUp()
|
||||
with grpc.insecure_channel("localhost:50051") as channel:
|
||||
stub = backend_pb2_grpc.BackendStub(channel)
|
||||
response = stub.Health(backend_pb2.HealthMessage())
|
||||
self.assertEqual(response.message, b'OK')
|
||||
except Exception as err:
|
||||
print(err)
|
||||
self.fail("Server failed to start")
|
||||
finally:
|
||||
self.tearDown()
|
||||
|
||||
def test_load_model(self):
|
||||
"""
|
||||
This method tests if the model is loaded successfully
|
||||
"""
|
||||
try:
|
||||
self.setUp()
|
||||
with grpc.insecure_channel("localhost:50051") as channel:
|
||||
stub = backend_pb2_grpc.BackendStub(channel)
|
||||
response = stub.LoadModel(backend_pb2.ModelOptions(Model="parler-tts/parler_tts_mini_v0.1"))
|
||||
self.assertTrue(response.success)
|
||||
self.assertEqual(response.message, "Model loaded successfully")
|
||||
except Exception as err:
|
||||
print(err)
|
||||
self.fail("LoadModel service failed")
|
||||
finally:
|
||||
self.tearDown()
|
||||
|
||||
def test_tts(self):
|
||||
"""
|
||||
This method tests if the embeddings are generated successfully
|
||||
"""
|
||||
try:
|
||||
self.setUp()
|
||||
with grpc.insecure_channel("localhost:50051") as channel:
|
||||
stub = backend_pb2_grpc.BackendStub(channel)
|
||||
response = stub.LoadModel(backend_pb2.ModelOptions(Model="parler-tts/parler_tts_mini_v0.1"))
|
||||
self.assertTrue(response.success)
|
||||
tts_request = backend_pb2.TTSRequest(text="Hey, how are you doing today?")
|
||||
tts_response = stub.TTS(tts_request)
|
||||
self.assertIsNotNone(tts_response)
|
||||
except Exception as err:
|
||||
print(err)
|
||||
self.fail("TTS service failed")
|
||||
finally:
|
||||
self.tearDown()
|
||||
@@ -1,31 +0,0 @@
|
||||
.PHONY: sentencetransformers
|
||||
sentencetransformers: protogen
|
||||
bash ./install.sh
|
||||
|
||||
|
||||
.PHONY: run
|
||||
run: protogen
|
||||
@echo "Running sentencetransformers..."
|
||||
bash run.sh
|
||||
@echo "sentencetransformers run."
|
||||
|
||||
# It is not working well by using command line. It only6 works with IDE like VSCode.
|
||||
.PHONY: test
|
||||
test: protogen
|
||||
@echo "Testing sentencetransformers..."
|
||||
bash test.sh
|
||||
@echo "sentencetransformers tested."
|
||||
|
||||
.PHONY: protogen
|
||||
protogen: backend_pb2_grpc.py backend_pb2.py
|
||||
|
||||
.PHONY: protogen-clean
|
||||
protogen-clean:
|
||||
$(RM) backend_pb2_grpc.py backend_pb2.py
|
||||
|
||||
backend_pb2_grpc.py backend_pb2.py:
|
||||
python3 -m grpc_tools.protoc -I../.. --python_out=. --grpc_python_out=. backend.proto
|
||||
|
||||
.PHONY: clean
|
||||
clean: protogen-clean
|
||||
rm -rf venv __pycache__
|
||||
@@ -1,5 +0,0 @@
|
||||
# Creating a separate environment for the sentencetransformers project
|
||||
|
||||
```
|
||||
make sentencetransformers
|
||||
```
|
||||
@@ -1,6 +0,0 @@
|
||||
torch==2.4.1
|
||||
accelerate
|
||||
transformers
|
||||
bitsandbytes
|
||||
sentence-transformers==3.3.1
|
||||
transformers
|
||||
@@ -1,5 +0,0 @@
|
||||
--extra-index-url https://download.pytorch.org/whl/cu118
|
||||
torch==2.4.1+cu118
|
||||
accelerate
|
||||
sentence-transformers==3.3.1
|
||||
transformers
|
||||
@@ -1,4 +0,0 @@
|
||||
torch==2.4.1
|
||||
accelerate
|
||||
sentence-transformers==3.3.1
|
||||
transformers
|
||||
@@ -1,9 +0,0 @@
|
||||
--extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
|
||||
intel-extension-for-pytorch==2.3.110+xpu
|
||||
torch==2.3.1+cxx11.abi
|
||||
oneccl_bind_pt==2.3.100+xpu
|
||||
optimum[openvino]
|
||||
setuptools
|
||||
accelerate
|
||||
sentence-transformers==3.3.1
|
||||
transformers
|
||||
@@ -1,5 +0,0 @@
|
||||
grpcio==1.69.0
|
||||
protobuf
|
||||
certifi
|
||||
datasets
|
||||
einops
|
||||
@@ -1,4 +0,0 @@
|
||||
#!/bin/bash
|
||||
source $(dirname $0)/../common/libbackend.sh
|
||||
|
||||
startBackend $@
|
||||
@@ -1,81 +0,0 @@
|
||||
"""
|
||||
A test script to test the gRPC service
|
||||
"""
|
||||
import unittest
|
||||
import subprocess
|
||||
import time
|
||||
import backend_pb2
|
||||
import backend_pb2_grpc
|
||||
|
||||
import grpc
|
||||
|
||||
|
||||
class TestBackendServicer(unittest.TestCase):
|
||||
"""
|
||||
TestBackendServicer is the class that tests the gRPC service
|
||||
"""
|
||||
def setUp(self):
|
||||
"""
|
||||
This method sets up the gRPC service by starting the server
|
||||
"""
|
||||
self.service = subprocess.Popen(["python3", "backend.py", "--addr", "localhost:50051"])
|
||||
time.sleep(10)
|
||||
|
||||
def tearDown(self) -> None:
|
||||
"""
|
||||
This method tears down the gRPC service by terminating the server
|
||||
"""
|
||||
self.service.kill()
|
||||
self.service.wait()
|
||||
|
||||
def test_server_startup(self):
|
||||
"""
|
||||
This method tests if the server starts up successfully
|
||||
"""
|
||||
try:
|
||||
self.setUp()
|
||||
with grpc.insecure_channel("localhost:50051") as channel:
|
||||
stub = backend_pb2_grpc.BackendStub(channel)
|
||||
response = stub.Health(backend_pb2.HealthMessage())
|
||||
self.assertEqual(response.message, b'OK')
|
||||
except Exception as err:
|
||||
print(err)
|
||||
self.fail("Server failed to start")
|
||||
finally:
|
||||
self.tearDown()
|
||||
|
||||
def test_load_model(self):
|
||||
"""
|
||||
This method tests if the model is loaded successfully
|
||||
"""
|
||||
try:
|
||||
self.setUp()
|
||||
with grpc.insecure_channel("localhost:50051") as channel:
|
||||
stub = backend_pb2_grpc.BackendStub(channel)
|
||||
response = stub.LoadModel(backend_pb2.ModelOptions(Model="bert-base-nli-mean-tokens"))
|
||||
self.assertTrue(response.success)
|
||||
self.assertEqual(response.message, "Model loaded successfully")
|
||||
except Exception as err:
|
||||
print(err)
|
||||
self.fail("LoadModel service failed")
|
||||
finally:
|
||||
self.tearDown()
|
||||
|
||||
def test_embedding(self):
|
||||
"""
|
||||
This method tests if the embeddings are generated successfully
|
||||
"""
|
||||
try:
|
||||
self.setUp()
|
||||
with grpc.insecure_channel("localhost:50051") as channel:
|
||||
stub = backend_pb2_grpc.BackendStub(channel)
|
||||
response = stub.LoadModel(backend_pb2.ModelOptions(Model="bert-base-nli-mean-tokens"))
|
||||
self.assertTrue(response.success)
|
||||
embedding_request = backend_pb2.PredictOptions(Embeddings="This is a test sentence.")
|
||||
embedding_response = stub.Embedding(embedding_request)
|
||||
self.assertIsNotNone(embedding_response.embeddings)
|
||||
except Exception as err:
|
||||
print(err)
|
||||
self.fail("Embedding service failed")
|
||||
finally:
|
||||
self.tearDown()
|
||||
@@ -1,6 +0,0 @@
|
||||
#!/bin/bash
|
||||
set -e
|
||||
|
||||
source $(dirname $0)/../common/libbackend.sh
|
||||
|
||||
runUnittests
|
||||
@@ -1,29 +0,0 @@
|
||||
.PHONY: transformers-musicgen
|
||||
transformers-musicgen: protogen
|
||||
bash install.sh
|
||||
|
||||
.PHONY: run
|
||||
run: protogen
|
||||
@echo "Running transformers..."
|
||||
bash run.sh
|
||||
@echo "transformers run."
|
||||
|
||||
.PHONY: test
|
||||
test: protogen
|
||||
@echo "Testing transformers..."
|
||||
bash test.sh
|
||||
@echo "transformers tested."
|
||||
|
||||
.PHONY: protogen
|
||||
protogen: backend_pb2_grpc.py backend_pb2.py
|
||||
|
||||
.PHONY: protogen-clean
|
||||
protogen-clean:
|
||||
$(RM) backend_pb2_grpc.py backend_pb2.py
|
||||
|
||||
backend_pb2_grpc.py backend_pb2.py:
|
||||
python3 -m grpc_tools.protoc -I../.. --python_out=. --grpc_python_out=. backend.proto
|
||||
|
||||
.PHONY: clean
|
||||
clean: protogen-clean
|
||||
rm -rf venv __pycache__
|
||||
@@ -1,5 +0,0 @@
|
||||
# Creating a separate environment for the transformers project
|
||||
|
||||
```
|
||||
make transformers-musicgen
|
||||
```
|
||||
@@ -1,176 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Extra gRPC server for MusicgenForConditionalGeneration models.
|
||||
"""
|
||||
from concurrent import futures
|
||||
|
||||
import argparse
|
||||
import signal
|
||||
import sys
|
||||
import os
|
||||
|
||||
import time
|
||||
import backend_pb2
|
||||
import backend_pb2_grpc
|
||||
|
||||
import grpc
|
||||
|
||||
from scipy.io import wavfile
|
||||
from transformers import AutoProcessor, MusicgenForConditionalGeneration
|
||||
|
||||
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
|
||||
|
||||
# If MAX_WORKERS are specified in the environment use it, otherwise default to 1
|
||||
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1'))
|
||||
|
||||
# Implement the BackendServicer class with the service methods
|
||||
class BackendServicer(backend_pb2_grpc.BackendServicer):
|
||||
"""
|
||||
A gRPC servicer for the backend service.
|
||||
|
||||
This class implements the gRPC methods for the backend service, including Health, LoadModel, and Embedding.
|
||||
"""
|
||||
def Health(self, request, context):
|
||||
"""
|
||||
A gRPC method that returns the health status of the backend service.
|
||||
|
||||
Args:
|
||||
request: A HealthRequest object that contains the request parameters.
|
||||
context: A grpc.ServicerContext object that provides information about the RPC.
|
||||
|
||||
Returns:
|
||||
A Reply object that contains the health status of the backend service.
|
||||
"""
|
||||
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
|
||||
|
||||
def LoadModel(self, request, context):
|
||||
"""
|
||||
A gRPC method that loads a model into memory.
|
||||
|
||||
Args:
|
||||
request: A LoadModelRequest object that contains the request parameters.
|
||||
context: A grpc.ServicerContext object that provides information about the RPC.
|
||||
|
||||
Returns:
|
||||
A Result object that contains the result of the LoadModel operation.
|
||||
"""
|
||||
model_name = request.Model
|
||||
try:
|
||||
self.processor = AutoProcessor.from_pretrained(model_name)
|
||||
self.model = MusicgenForConditionalGeneration.from_pretrained(model_name)
|
||||
except Exception as err:
|
||||
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
|
||||
|
||||
return backend_pb2.Result(message="Model loaded successfully", success=True)
|
||||
|
||||
def SoundGeneration(self, request, context):
|
||||
model_name = request.model
|
||||
if model_name == "":
|
||||
return backend_pb2.Result(success=False, message="request.model is required")
|
||||
try:
|
||||
self.processor = AutoProcessor.from_pretrained(model_name)
|
||||
self.model = MusicgenForConditionalGeneration.from_pretrained(model_name)
|
||||
inputs = None
|
||||
if request.text == "":
|
||||
inputs = self.model.get_unconditional_inputs(num_samples=1)
|
||||
elif request.HasField('src'):
|
||||
# TODO SECURITY CODE GOES HERE LOL
|
||||
# WHO KNOWS IF THIS WORKS???
|
||||
sample_rate, wsamples = wavfile.read('path_to_your_file.wav')
|
||||
|
||||
if request.HasField('src_divisor'):
|
||||
wsamples = wsamples[: len(wsamples) // request.src_divisor]
|
||||
|
||||
inputs = self.processor(
|
||||
audio=wsamples,
|
||||
sampling_rate=sample_rate,
|
||||
text=[request.text],
|
||||
padding=True,
|
||||
return_tensors="pt",
|
||||
)
|
||||
else:
|
||||
inputs = self.processor(
|
||||
text=[request.text],
|
||||
padding=True,
|
||||
return_tensors="pt",
|
||||
)
|
||||
|
||||
tokens = 256
|
||||
if request.HasField('duration'):
|
||||
tokens = int(request.duration * 51.2) # 256 tokens = 5 seconds, therefore 51.2 tokens is one second
|
||||
guidance = 3.0
|
||||
if request.HasField('temperature'):
|
||||
guidance = request.temperature
|
||||
dosample = True
|
||||
if request.HasField('sample'):
|
||||
dosample = request.sample
|
||||
audio_values = self.model.generate(**inputs, do_sample=dosample, guidance_scale=guidance, max_new_tokens=tokens)
|
||||
print("[transformers-musicgen] SoundGeneration generated!", file=sys.stderr)
|
||||
sampling_rate = self.model.config.audio_encoder.sampling_rate
|
||||
wavfile.write(request.dst, rate=sampling_rate, data=audio_values[0, 0].numpy())
|
||||
print("[transformers-musicgen] SoundGeneration saved to", request.dst, file=sys.stderr)
|
||||
print("[transformers-musicgen] SoundGeneration for", file=sys.stderr)
|
||||
print("[transformers-musicgen] SoundGeneration requested tokens", tokens, file=sys.stderr)
|
||||
print(request, file=sys.stderr)
|
||||
except Exception as err:
|
||||
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
|
||||
return backend_pb2.Result(success=True)
|
||||
|
||||
|
||||
# The TTS endpoint is older, and provides fewer features, but exists for compatibility reasons
|
||||
def TTS(self, request, context):
|
||||
model_name = request.model
|
||||
if model_name == "":
|
||||
return backend_pb2.Result(success=False, message="request.model is required")
|
||||
try:
|
||||
self.processor = AutoProcessor.from_pretrained(model_name)
|
||||
self.model = MusicgenForConditionalGeneration.from_pretrained(model_name)
|
||||
inputs = self.processor(
|
||||
text=[request.text],
|
||||
padding=True,
|
||||
return_tensors="pt",
|
||||
)
|
||||
tokens = 512 # No good place to set the "length" in TTS, so use 10s as a sane default
|
||||
audio_values = self.model.generate(**inputs, max_new_tokens=tokens)
|
||||
print("[transformers-musicgen] TTS generated!", file=sys.stderr)
|
||||
sampling_rate = self.model.config.audio_encoder.sampling_rate
|
||||
write_wav(request.dst, rate=sampling_rate, data=audio_values[0, 0].numpy())
|
||||
print("[transformers-musicgen] TTS saved to", request.dst, file=sys.stderr)
|
||||
print("[transformers-musicgen] TTS for", file=sys.stderr)
|
||||
print(request, file=sys.stderr)
|
||||
except Exception as err:
|
||||
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
|
||||
return backend_pb2.Result(success=True)
|
||||
|
||||
|
||||
def serve(address):
|
||||
server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS))
|
||||
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
|
||||
server.add_insecure_port(address)
|
||||
server.start()
|
||||
print("[transformers-musicgen] Server started. Listening on: " + address, file=sys.stderr)
|
||||
|
||||
# Define the signal handler function
|
||||
def signal_handler(sig, frame):
|
||||
print("[transformers-musicgen] Received termination signal. Shutting down...")
|
||||
server.stop(0)
|
||||
sys.exit(0)
|
||||
|
||||
# Set the signal handlers for SIGINT and SIGTERM
|
||||
signal.signal(signal.SIGINT, signal_handler)
|
||||
signal.signal(signal.SIGTERM, signal_handler)
|
||||
|
||||
try:
|
||||
while True:
|
||||
time.sleep(_ONE_DAY_IN_SECONDS)
|
||||
except KeyboardInterrupt:
|
||||
server.stop(0)
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Run the gRPC server.")
|
||||
parser.add_argument(
|
||||
"--addr", default="localhost:50051", help="The address to bind the server to."
|
||||
)
|
||||
args = parser.parse_args()
|
||||
print(f"[transformers-musicgen] startup: {args}", file=sys.stderr)
|
||||
serve(args.addr)
|
||||
@@ -1,3 +0,0 @@
|
||||
transformers
|
||||
accelerate
|
||||
torch==2.4.1
|
||||
@@ -1,4 +0,0 @@
|
||||
--extra-index-url https://download.pytorch.org/whl/cu118
|
||||
transformers
|
||||
accelerate
|
||||
torch==2.4.1+cu118
|
||||
@@ -1,3 +0,0 @@
|
||||
transformers
|
||||
accelerate
|
||||
torch==2.4.1
|
||||
@@ -1,4 +0,0 @@
|
||||
grpcio==1.69.0
|
||||
protobuf
|
||||
scipy==1.14.0
|
||||
certifi
|
||||
@@ -1,4 +0,0 @@
|
||||
#!/bin/bash
|
||||
source $(dirname $0)/../common/libbackend.sh
|
||||
|
||||
startBackend $@
|
||||
@@ -1,100 +0,0 @@
|
||||
"""
|
||||
A test script to test the gRPC service
|
||||
"""
|
||||
import unittest
|
||||
import subprocess
|
||||
import time
|
||||
import backend_pb2
|
||||
import backend_pb2_grpc
|
||||
|
||||
import grpc
|
||||
|
||||
|
||||
class TestBackendServicer(unittest.TestCase):
|
||||
"""
|
||||
TestBackendServicer is the class that tests the gRPC service
|
||||
"""
|
||||
def setUp(self):
|
||||
"""
|
||||
This method sets up the gRPC service by starting the server
|
||||
"""
|
||||
self.service = subprocess.Popen(["python3", "backend.py", "--addr", "localhost:50051"])
|
||||
time.sleep(10)
|
||||
|
||||
def tearDown(self) -> None:
|
||||
"""
|
||||
This method tears down the gRPC service by terminating the server
|
||||
"""
|
||||
self.service.terminate()
|
||||
self.service.wait()
|
||||
|
||||
def test_server_startup(self):
|
||||
"""
|
||||
This method tests if the server starts up successfully
|
||||
"""
|
||||
try:
|
||||
self.setUp()
|
||||
with grpc.insecure_channel("localhost:50051") as channel:
|
||||
stub = backend_pb2_grpc.BackendStub(channel)
|
||||
response = stub.Health(backend_pb2.HealthMessage())
|
||||
self.assertEqual(response.message, b'OK')
|
||||
except Exception as err:
|
||||
print(err)
|
||||
self.fail("Server failed to start")
|
||||
finally:
|
||||
self.tearDown()
|
||||
|
||||
def test_load_model(self):
|
||||
"""
|
||||
This method tests if the model is loaded successfully
|
||||
"""
|
||||
try:
|
||||
self.setUp()
|
||||
with grpc.insecure_channel("localhost:50051") as channel:
|
||||
stub = backend_pb2_grpc.BackendStub(channel)
|
||||
response = stub.LoadModel(backend_pb2.ModelOptions(Model="facebook/musicgen-small"))
|
||||
self.assertTrue(response.success)
|
||||
self.assertEqual(response.message, "Model loaded successfully")
|
||||
except Exception as err:
|
||||
print(err)
|
||||
self.fail("LoadModel service failed")
|
||||
finally:
|
||||
self.tearDown()
|
||||
|
||||
def test_tts(self):
|
||||
"""
|
||||
This method tests if TTS is generated successfully
|
||||
"""
|
||||
try:
|
||||
self.setUp()
|
||||
with grpc.insecure_channel("localhost:50051") as channel:
|
||||
stub = backend_pb2_grpc.BackendStub(channel)
|
||||
response = stub.LoadModel(backend_pb2.ModelOptions(Model="facebook/musicgen-small"))
|
||||
self.assertTrue(response.success)
|
||||
tts_request = backend_pb2.TTSRequest(text="80s TV news production music hit for tonight's biggest story")
|
||||
tts_response = stub.TTS(tts_request)
|
||||
self.assertIsNotNone(tts_response)
|
||||
except Exception as err:
|
||||
print(err)
|
||||
self.fail("TTS service failed")
|
||||
finally:
|
||||
self.tearDown()
|
||||
|
||||
def test_sound_generation(self):
|
||||
"""
|
||||
This method tests if SoundGeneration is generated successfully
|
||||
"""
|
||||
try:
|
||||
self.setUp()
|
||||
with grpc.insecure_channel("localhost:50051") as channel:
|
||||
stub = backend_pb2_grpc.BackendStub(channel)
|
||||
response = stub.LoadModel(backend_pb2.ModelOptions(Model="facebook/musicgen-small"))
|
||||
self.assertTrue(response.success)
|
||||
sg_request = backend_pb2.SoundGenerationRequest(text="80s TV news production music hit for tonight's biggest story")
|
||||
sg_response = stub.SoundGeneration(sg_request)
|
||||
self.assertIsNotNone(sg_response)
|
||||
except Exception as err:
|
||||
print(err)
|
||||
self.fail("SoundGeneration service failed")
|
||||
finally:
|
||||
self.tearDown()
|
||||
@@ -1,6 +0,0 @@
|
||||
#!/bin/bash
|
||||
set -e
|
||||
|
||||
source $(dirname $0)/../common/libbackend.sh
|
||||
|
||||
runUnittests
|
||||
@@ -21,7 +21,11 @@ import torch.cuda
|
||||
|
||||
|
||||
XPU=os.environ.get("XPU", "0") == "1"
|
||||
from transformers import AutoTokenizer, AutoModel, set_seed, TextIteratorStreamer, StoppingCriteriaList, StopStringCriteria
|
||||
from transformers import AutoTokenizer, AutoModel, set_seed, TextIteratorStreamer, StoppingCriteriaList, StopStringCriteria, MambaConfig, MambaForCausalLM
|
||||
from transformers import AutoProcessor, MusicgenForConditionalGeneration
|
||||
from scipy.io import wavfile
|
||||
import outetts
|
||||
from sentence_transformers import SentenceTransformer
|
||||
|
||||
|
||||
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
|
||||
@@ -85,10 +89,13 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
|
||||
|
||||
self.CUDA = torch.cuda.is_available()
|
||||
self.OV=False
|
||||
self.OuteTTS=False
|
||||
self.SentenceTransformer = False
|
||||
|
||||
device_map="cpu"
|
||||
|
||||
quantization = None
|
||||
autoTokenizer = True
|
||||
|
||||
if self.CUDA:
|
||||
from transformers import BitsAndBytesConfig, AutoModelForCausalLM
|
||||
@@ -191,6 +198,57 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
|
||||
export=True,
|
||||
device=device_map)
|
||||
self.OV = True
|
||||
elif request.Type == "MusicgenForConditionalGeneration":
|
||||
autoTokenizer = False
|
||||
self.processor = AutoProcessor.from_pretrained(model_name)
|
||||
self.model = MusicgenForConditionalGeneration.from_pretrained(model_name)
|
||||
elif request.Type == "OuteTTS":
|
||||
autoTokenizer = False
|
||||
options = request.Options
|
||||
MODELNAME = "OuteAI/OuteTTS-0.3-1B"
|
||||
TOKENIZER = "OuteAI/OuteTTS-0.3-1B"
|
||||
VERSION = "0.3"
|
||||
SPEAKER = "en_male_1"
|
||||
for opt in options:
|
||||
if opt.startswith("tokenizer:"):
|
||||
TOKENIZER = opt.split(":")[1]
|
||||
break
|
||||
if opt.startswith("version:"):
|
||||
VERSION = opt.split(":")[1]
|
||||
break
|
||||
if opt.startswith("speaker:"):
|
||||
SPEAKER = opt.split(":")[1]
|
||||
break
|
||||
|
||||
if model_name != "":
|
||||
MODELNAME = model_name
|
||||
|
||||
# Configure the model
|
||||
model_config = outetts.HFModelConfig_v2(
|
||||
model_path=MODELNAME,
|
||||
tokenizer_path=TOKENIZER
|
||||
)
|
||||
# Initialize the interface
|
||||
self.interface = outetts.InterfaceHF(model_version=VERSION, cfg=model_config)
|
||||
self.OuteTTS = True
|
||||
|
||||
self.interface.print_default_speakers()
|
||||
if request.AudioPath:
|
||||
if os.path.isabs(request.AudioPath):
|
||||
self.AudioPath = request.AudioPath
|
||||
else:
|
||||
self.AudioPath = os.path.join(request.ModelPath, request.AudioPath)
|
||||
self.speaker = self.interface.create_speaker(audio_path=self.AudioPath)
|
||||
else:
|
||||
self.speaker = self.interface.load_default_speaker(name=SPEAKER)
|
||||
elif request.Type == "SentenceTransformer":
|
||||
autoTokenizer = False
|
||||
self.model = SentenceTransformer(model_name, trust_remote_code=request.TrustRemoteCode)
|
||||
self.SentenceTransformer = True
|
||||
elif request.Type == "Mamba":
|
||||
autoTokenizer = False
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
self.model = MambaForCausalLM.from_pretrained(model_name)
|
||||
else:
|
||||
print("Automodel", file=sys.stderr)
|
||||
self.model = AutoModel.from_pretrained(model_name,
|
||||
@@ -201,19 +259,22 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
|
||||
torch_dtype=compute)
|
||||
if request.ContextSize > 0:
|
||||
self.max_tokens = request.ContextSize
|
||||
else:
|
||||
elif hasattr(self.model, 'config') and hasattr(self.model.config, 'max_position_embeddings'):
|
||||
self.max_tokens = self.model.config.max_position_embeddings
|
||||
else:
|
||||
self.max_tokens = 512
|
||||
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(model_name, use_safetensors=True)
|
||||
self.XPU = False
|
||||
if autoTokenizer:
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(model_name, use_safetensors=True)
|
||||
self.XPU = False
|
||||
|
||||
if XPU and self.OV == False:
|
||||
self.XPU = True
|
||||
try:
|
||||
print("Optimizing model", model_name, "to XPU.", file=sys.stderr)
|
||||
self.model = ipex.optimize_transformers(self.model, inplace=True, dtype=torch.float16, device="xpu")
|
||||
except Exception as err:
|
||||
print("Not using XPU:", err, file=sys.stderr)
|
||||
if XPU and self.OV == False:
|
||||
self.XPU = True
|
||||
try:
|
||||
print("Optimizing model", model_name, "to XPU.", file=sys.stderr)
|
||||
self.model = ipex.optimize_transformers(self.model, inplace=True, dtype=torch.float16, device="xpu")
|
||||
except Exception as err:
|
||||
print("Not using XPU:", err, file=sys.stderr)
|
||||
|
||||
except Exception as err:
|
||||
print("Error:", err, file=sys.stderr)
|
||||
@@ -239,18 +300,26 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
|
||||
max_length = 512
|
||||
if request.Tokens != 0:
|
||||
max_length = request.Tokens
|
||||
encoded_input = self.tokenizer(request.Embeddings, padding=True, truncation=True, max_length=max_length, return_tensors="pt")
|
||||
|
||||
# Create word embeddings
|
||||
if self.CUDA:
|
||||
encoded_input = encoded_input.to("cuda")
|
||||
embeds = None
|
||||
|
||||
with torch.no_grad():
|
||||
model_output = self.model(**encoded_input)
|
||||
if self.SentenceTransformer:
|
||||
print("Calculated embeddings for: " + request.Embeddings, file=sys.stderr)
|
||||
embeds = self.model.encode(request.Embeddings)
|
||||
else:
|
||||
encoded_input = self.tokenizer(request.Embeddings, padding=True, truncation=True, max_length=max_length, return_tensors="pt")
|
||||
|
||||
# Pool to get sentence embeddings; i.e. generate one 1024 vector for the entire sentence
|
||||
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
||||
return backend_pb2.EmbeddingResult(embeddings=sentence_embeddings[0])
|
||||
# Create word embeddings
|
||||
if self.CUDA:
|
||||
encoded_input = encoded_input.to("cuda")
|
||||
|
||||
with torch.no_grad():
|
||||
model_output = self.model(**encoded_input)
|
||||
|
||||
# Pool to get sentence embeddings; i.e. generate one 1024 vector for the entire sentence
|
||||
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
||||
embeds = sentence_embeddings[0]
|
||||
return backend_pb2.EmbeddingResult(embeddings=embeds)
|
||||
|
||||
async def _predict(self, request, context, streaming=False):
|
||||
set_seed(request.Seed)
|
||||
@@ -380,6 +449,114 @@ class BackendServicer(backend_pb2_grpc.BackendServicer):
|
||||
finally:
|
||||
await iterations.aclose()
|
||||
|
||||
def SoundGeneration(self, request, context):
|
||||
model_name = request.model
|
||||
try:
|
||||
if self.processor is None:
|
||||
if model_name == "":
|
||||
return backend_pb2.Result(success=False, message="request.model is required")
|
||||
self.processor = AutoProcessor.from_pretrained(model_name)
|
||||
if self.model is None:
|
||||
if model_name == "":
|
||||
return backend_pb2.Result(success=False, message="request.model is required")
|
||||
self.model = MusicgenForConditionalGeneration.from_pretrained(model_name)
|
||||
inputs = None
|
||||
if request.text == "":
|
||||
inputs = self.model.get_unconditional_inputs(num_samples=1)
|
||||
elif request.HasField('src'):
|
||||
# TODO SECURITY CODE GOES HERE LOL
|
||||
# WHO KNOWS IF THIS WORKS???
|
||||
sample_rate, wsamples = wavfile.read('path_to_your_file.wav')
|
||||
|
||||
if request.HasField('src_divisor'):
|
||||
wsamples = wsamples[: len(wsamples) // request.src_divisor]
|
||||
|
||||
inputs = self.processor(
|
||||
audio=wsamples,
|
||||
sampling_rate=sample_rate,
|
||||
text=[request.text],
|
||||
padding=True,
|
||||
return_tensors="pt",
|
||||
)
|
||||
else:
|
||||
inputs = self.processor(
|
||||
text=[request.text],
|
||||
padding=True,
|
||||
return_tensors="pt",
|
||||
)
|
||||
|
||||
tokens = 256
|
||||
if request.HasField('duration'):
|
||||
tokens = int(request.duration * 51.2) # 256 tokens = 5 seconds, therefore 51.2 tokens is one second
|
||||
guidance = 3.0
|
||||
if request.HasField('temperature'):
|
||||
guidance = request.temperature
|
||||
dosample = True
|
||||
if request.HasField('sample'):
|
||||
dosample = request.sample
|
||||
audio_values = self.model.generate(**inputs, do_sample=dosample, guidance_scale=guidance, max_new_tokens=tokens)
|
||||
print("[transformers-musicgen] SoundGeneration generated!", file=sys.stderr)
|
||||
sampling_rate = self.model.config.audio_encoder.sampling_rate
|
||||
wavfile.write(request.dst, rate=sampling_rate, data=audio_values[0, 0].numpy())
|
||||
print("[transformers-musicgen] SoundGeneration saved to", request.dst, file=sys.stderr)
|
||||
print("[transformers-musicgen] SoundGeneration for", file=sys.stderr)
|
||||
print("[transformers-musicgen] SoundGeneration requested tokens", tokens, file=sys.stderr)
|
||||
print(request, file=sys.stderr)
|
||||
except Exception as err:
|
||||
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
|
||||
return backend_pb2.Result(success=True)
|
||||
|
||||
def OuteTTS(self, request, context):
|
||||
try:
|
||||
print("[OuteTTS] generating TTS", file=sys.stderr)
|
||||
gen_cfg = outetts.GenerationConfig(
|
||||
text="Speech synthesis is the artificial production of human speech.",
|
||||
temperature=0.1,
|
||||
repetition_penalty=1.1,
|
||||
max_length=self.max_tokens,
|
||||
speaker=self.speaker,
|
||||
# voice_characteristics="upbeat enthusiasm, friendliness, clarity, professionalism, and trustworthiness"
|
||||
)
|
||||
output = self.interface.generate(config=gen_cfg)
|
||||
print("[OuteTTS] Generated TTS", file=sys.stderr)
|
||||
output.save(request.dst)
|
||||
print("[OuteTTS] TTS done", file=sys.stderr)
|
||||
except Exception as err:
|
||||
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
|
||||
return backend_pb2.Result(success=True)
|
||||
|
||||
# The TTS endpoint is older, and provides fewer features, but exists for compatibility reasons
|
||||
def TTS(self, request, context):
|
||||
if self.OuteTTS:
|
||||
return self.OuteTTS(request, context)
|
||||
|
||||
model_name = request.model
|
||||
try:
|
||||
if self.processor is None:
|
||||
if model_name == "":
|
||||
return backend_pb2.Result(success=False, message="request.model is required")
|
||||
self.processor = AutoProcessor.from_pretrained(model_name)
|
||||
if self.model is None:
|
||||
if model_name == "":
|
||||
return backend_pb2.Result(success=False, message="request.model is required")
|
||||
self.model = MusicgenForConditionalGeneration.from_pretrained(model_name)
|
||||
inputs = self.processor(
|
||||
text=[request.text],
|
||||
padding=True,
|
||||
return_tensors="pt",
|
||||
)
|
||||
tokens = self.max_tokens # No good place to set the "length" in TTS, so use 10s as a sane default
|
||||
audio_values = self.model.generate(**inputs, max_new_tokens=tokens)
|
||||
print("[transformers-musicgen] TTS generated!", file=sys.stderr)
|
||||
sampling_rate = self.model.config.audio_encoder.sampling_rate
|
||||
wavfile.write(request.dst, rate=sampling_rate, data=audio_values[0, 0].numpy())
|
||||
print("[transformers-musicgen] TTS saved to", request.dst, file=sys.stderr)
|
||||
print("[transformers-musicgen] TTS for", file=sys.stderr)
|
||||
print(request, file=sys.stderr)
|
||||
except Exception as err:
|
||||
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
|
||||
return backend_pb2.Result(success=True)
|
||||
|
||||
async def serve(address):
|
||||
# Start asyncio gRPC server
|
||||
server = grpc.aio.server(migration_thread_pool=futures.ThreadPoolExecutor(max_workers=MAX_WORKERS))
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user