mirror of
https://github.com/mudler/LocalAI.git
synced 2026-02-03 11:13:31 -05:00
Compare commits
20 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
bcf02449b3 | ||
|
|
d48faf35ab | ||
|
|
583bd28a5c | ||
|
|
7e1d8c489b | ||
|
|
de28867374 | ||
|
|
a1aa6cb7c2 | ||
|
|
85e2767dca | ||
|
|
fd48cb6506 | ||
|
|
522659eb59 | ||
|
|
f068efe509 | ||
|
|
726fe416bb | ||
|
|
66fa4f1767 | ||
|
|
d6565f3b99 | ||
|
|
27686ff20b | ||
|
|
a8b865022f | ||
|
|
c1888a8062 | ||
|
|
a95bb0521d | ||
|
|
e2311a145c | ||
|
|
d4e0bab6be | ||
|
|
5b0dc20e4c |
12
.github/workflows/image.yml
vendored
12
.github/workflows/image.yml
vendored
@@ -27,8 +27,10 @@ jobs:
|
||||
platforms: ${{ matrix.platforms }}
|
||||
runs-on: ${{ matrix.runs-on }}
|
||||
secrets:
|
||||
dockerUsername: ${{ secrets.LOCALAI_REGISTRY_USERNAME }}
|
||||
dockerPassword: ${{ secrets.LOCALAI_REGISTRY_PASSWORD }}
|
||||
dockerUsername: ${{ secrets.DOCKERHUB_USERNAME }}
|
||||
dockerPassword: ${{ secrets.DOCKERHUB_PASSWORD }}
|
||||
quayUsername: ${{ secrets.LOCALAI_REGISTRY_USERNAME }}
|
||||
quayPassword: ${{ secrets.LOCALAI_REGISTRY_PASSWORD }}
|
||||
strategy:
|
||||
# Pushing with all jobs in parallel
|
||||
# eats the bandwidth of all the nodes
|
||||
@@ -107,8 +109,10 @@ jobs:
|
||||
platforms: ${{ matrix.platforms }}
|
||||
runs-on: ${{ matrix.runs-on }}
|
||||
secrets:
|
||||
dockerUsername: ${{ secrets.LOCALAI_REGISTRY_USERNAME }}
|
||||
dockerPassword: ${{ secrets.LOCALAI_REGISTRY_PASSWORD }}
|
||||
dockerUsername: ${{ secrets.DOCKERHUB_USERNAME }}
|
||||
dockerPassword: ${{ secrets.DOCKERHUB_PASSWORD }}
|
||||
quayUsername: ${{ secrets.LOCALAI_REGISTRY_USERNAME }}
|
||||
quayPassword: ${{ secrets.LOCALAI_REGISTRY_PASSWORD }}
|
||||
strategy:
|
||||
matrix:
|
||||
include:
|
||||
|
||||
17
.github/workflows/image_build.yml
vendored
17
.github/workflows/image_build.yml
vendored
@@ -46,6 +46,10 @@ on:
|
||||
required: true
|
||||
dockerPassword:
|
||||
required: true
|
||||
quayUsername:
|
||||
required: true
|
||||
quayPassword:
|
||||
required: true
|
||||
jobs:
|
||||
reusable_image-build:
|
||||
runs-on: ${{ inputs.runs-on }}
|
||||
@@ -100,7 +104,9 @@ jobs:
|
||||
id: meta
|
||||
uses: docker/metadata-action@v5
|
||||
with:
|
||||
images: quay.io/go-skynet/local-ai
|
||||
images: |
|
||||
quay.io/go-skynet/local-ai
|
||||
localai/localai
|
||||
tags: |
|
||||
type=ref,event=branch
|
||||
type=semver,pattern={{raw}}
|
||||
@@ -122,10 +128,17 @@ jobs:
|
||||
if: github.event_name != 'pull_request'
|
||||
uses: docker/login-action@v3
|
||||
with:
|
||||
registry: quay.io
|
||||
username: ${{ secrets.dockerUsername }}
|
||||
password: ${{ secrets.dockerPassword }}
|
||||
|
||||
- name: Login to DockerHub
|
||||
if: github.event_name != 'pull_request'
|
||||
uses: docker/login-action@v3
|
||||
with:
|
||||
registry: quay.io
|
||||
username: ${{ secrets.quayUsername }}
|
||||
password: ${{ secrets.quayPassword }}
|
||||
|
||||
- name: Build and push
|
||||
uses: docker/build-push-action@v5
|
||||
with:
|
||||
|
||||
2
Makefile
2
Makefile
@@ -8,7 +8,7 @@ GOLLAMA_VERSION?=aeba71ee842819da681ea537e78846dc75949ac0
|
||||
|
||||
GOLLAMA_STABLE_VERSION?=50cee7712066d9e38306eccadcfbb44ea87df4b7
|
||||
|
||||
CPPLLAMA_VERSION?=65e5f6dadbba4b496bba27f573e473c66b446496
|
||||
CPPLLAMA_VERSION?=cb1e2818e0e12ec99f7236ec5d4f3ffd8bcc2f4a
|
||||
|
||||
# gpt4all version
|
||||
GPT4ALL_REPO?=https://github.com/nomic-ai/gpt4all
|
||||
|
||||
@@ -40,6 +40,7 @@
|
||||
|
||||
[Roadmap](https://github.com/mudler/LocalAI/issues?q=is%3Aissue+is%3Aopen+label%3Aroadmap)
|
||||
|
||||
- Start and share models with config file: https://github.com/mudler/LocalAI/pull/1522
|
||||
- 🐸 Coqui: https://github.com/mudler/LocalAI/pull/1489
|
||||
- Inline templates: https://github.com/mudler/LocalAI/pull/1452
|
||||
- Mixtral: https://github.com/mudler/LocalAI/pull/1449
|
||||
|
||||
46
api/api.go
46
api/api.go
@@ -5,6 +5,7 @@ import (
|
||||
"errors"
|
||||
"fmt"
|
||||
"os"
|
||||
"path/filepath"
|
||||
"strings"
|
||||
|
||||
config "github.com/go-skynet/LocalAI/api/config"
|
||||
@@ -16,6 +17,7 @@ import (
|
||||
"github.com/go-skynet/LocalAI/metrics"
|
||||
"github.com/go-skynet/LocalAI/pkg/assets"
|
||||
"github.com/go-skynet/LocalAI/pkg/model"
|
||||
"github.com/go-skynet/LocalAI/pkg/utils"
|
||||
|
||||
"github.com/gofiber/fiber/v2"
|
||||
"github.com/gofiber/fiber/v2/middleware/cors"
|
||||
@@ -36,6 +38,26 @@ func Startup(opts ...options.AppOption) (*options.Option, *config.ConfigLoader,
|
||||
log.Info().Msgf("Starting LocalAI using %d threads, with models path: %s", options.Threads, options.Loader.ModelPath)
|
||||
log.Info().Msgf("LocalAI version: %s", internal.PrintableVersion())
|
||||
|
||||
modelPath := options.Loader.ModelPath
|
||||
if len(options.ModelsURL) > 0 {
|
||||
for _, url := range options.ModelsURL {
|
||||
if utils.LooksLikeURL(url) {
|
||||
// md5 of model name
|
||||
md5Name := utils.MD5(url)
|
||||
|
||||
// check if file exists
|
||||
if _, err := os.Stat(filepath.Join(modelPath, md5Name)); errors.Is(err, os.ErrNotExist) {
|
||||
err := utils.DownloadFile(url, filepath.Join(modelPath, md5Name)+".yaml", "", func(fileName, current, total string, percent float64) {
|
||||
utils.DisplayDownloadFunction(fileName, current, total, percent)
|
||||
})
|
||||
if err != nil {
|
||||
log.Error().Msgf("error loading model: %s", err.Error())
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
cl := config.NewConfigLoader()
|
||||
if err := cl.LoadConfigs(options.Loader.ModelPath); err != nil {
|
||||
log.Error().Msgf("error loading config files: %s", err.Error())
|
||||
@@ -51,6 +73,18 @@ func Startup(opts ...options.AppOption) (*options.Option, *config.ConfigLoader,
|
||||
log.Error().Msgf("error downloading models: %s", err.Error())
|
||||
}
|
||||
|
||||
if options.PreloadJSONModels != "" {
|
||||
if err := localai.ApplyGalleryFromString(options.Loader.ModelPath, options.PreloadJSONModels, cl, options.Galleries); err != nil {
|
||||
return nil, nil, err
|
||||
}
|
||||
}
|
||||
|
||||
if options.PreloadModelsFromPath != "" {
|
||||
if err := localai.ApplyGalleryFromFile(options.Loader.ModelPath, options.PreloadModelsFromPath, cl, options.Galleries); err != nil {
|
||||
return nil, nil, err
|
||||
}
|
||||
}
|
||||
|
||||
if options.Debug {
|
||||
for _, v := range cl.ListConfigs() {
|
||||
cfg, _ := cl.GetConfig(v)
|
||||
@@ -67,18 +101,6 @@ func Startup(opts ...options.AppOption) (*options.Option, *config.ConfigLoader,
|
||||
}
|
||||
}
|
||||
|
||||
if options.PreloadJSONModels != "" {
|
||||
if err := localai.ApplyGalleryFromString(options.Loader.ModelPath, options.PreloadJSONModels, cl, options.Galleries); err != nil {
|
||||
return nil, nil, err
|
||||
}
|
||||
}
|
||||
|
||||
if options.PreloadModelsFromPath != "" {
|
||||
if err := localai.ApplyGalleryFromFile(options.Loader.ModelPath, options.PreloadModelsFromPath, cl, options.Galleries); err != nil {
|
||||
return nil, nil, err
|
||||
}
|
||||
}
|
||||
|
||||
// turn off any process that was started by GRPC if the context is canceled
|
||||
go func() {
|
||||
<-options.Context.Done()
|
||||
|
||||
@@ -159,6 +159,9 @@ func Finetune(config config.Config, input, prediction string) string {
|
||||
for _, c := range config.TrimSpace {
|
||||
prediction = strings.TrimSpace(strings.TrimPrefix(prediction, c))
|
||||
}
|
||||
return prediction
|
||||
|
||||
for _, c := range config.TrimSuffix {
|
||||
prediction = strings.TrimSpace(strings.TrimSuffix(prediction, c))
|
||||
}
|
||||
return prediction
|
||||
}
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
package api_config
|
||||
|
||||
import (
|
||||
"errors"
|
||||
"fmt"
|
||||
"io/fs"
|
||||
"os"
|
||||
@@ -51,6 +52,14 @@ type Config struct {
|
||||
// CUDA
|
||||
// Explicitly enable CUDA or not (some backends might need it)
|
||||
CUDA bool `yaml:"cuda"`
|
||||
|
||||
DownloadFiles []File `yaml:"download_files"`
|
||||
}
|
||||
|
||||
type File struct {
|
||||
Filename string `yaml:"filename" json:"filename"`
|
||||
SHA256 string `yaml:"sha256" json:"sha256"`
|
||||
URI string `yaml:"uri" json:"uri"`
|
||||
}
|
||||
|
||||
type VallE struct {
|
||||
@@ -102,16 +111,18 @@ type LLMConfig struct {
|
||||
StopWords []string `yaml:"stopwords"`
|
||||
Cutstrings []string `yaml:"cutstrings"`
|
||||
TrimSpace []string `yaml:"trimspace"`
|
||||
ContextSize int `yaml:"context_size"`
|
||||
NUMA bool `yaml:"numa"`
|
||||
LoraAdapter string `yaml:"lora_adapter"`
|
||||
LoraBase string `yaml:"lora_base"`
|
||||
LoraScale float32 `yaml:"lora_scale"`
|
||||
NoMulMatQ bool `yaml:"no_mulmatq"`
|
||||
DraftModel string `yaml:"draft_model"`
|
||||
NDraft int32 `yaml:"n_draft"`
|
||||
Quantization string `yaml:"quantization"`
|
||||
MMProj string `yaml:"mmproj"`
|
||||
TrimSuffix []string `yaml:"trimsuffix"`
|
||||
|
||||
ContextSize int `yaml:"context_size"`
|
||||
NUMA bool `yaml:"numa"`
|
||||
LoraAdapter string `yaml:"lora_adapter"`
|
||||
LoraBase string `yaml:"lora_base"`
|
||||
LoraScale float32 `yaml:"lora_scale"`
|
||||
NoMulMatQ bool `yaml:"no_mulmatq"`
|
||||
DraftModel string `yaml:"draft_model"`
|
||||
NDraft int32 `yaml:"n_draft"`
|
||||
Quantization string `yaml:"quantization"`
|
||||
MMProj string `yaml:"mmproj"`
|
||||
|
||||
RopeScaling string `yaml:"rope_scaling"`
|
||||
YarnExtFactor float32 `yaml:"yarn_ext_factor"`
|
||||
@@ -266,22 +277,44 @@ func (cm *ConfigLoader) ListConfigs() []string {
|
||||
return res
|
||||
}
|
||||
|
||||
// Preload prepare models if they are not local but url or huggingface repositories
|
||||
func (cm *ConfigLoader) Preload(modelPath string) error {
|
||||
cm.Lock()
|
||||
defer cm.Unlock()
|
||||
|
||||
status := func(fileName, current, total string, percent float64) {
|
||||
utils.DisplayDownloadFunction(fileName, current, total, percent)
|
||||
}
|
||||
|
||||
log.Info().Msgf("Preloading models from %s", modelPath)
|
||||
|
||||
for i, config := range cm.configs {
|
||||
|
||||
// Download files and verify their SHA
|
||||
for _, file := range config.DownloadFiles {
|
||||
log.Debug().Msgf("Checking %q exists and matches SHA", file.Filename)
|
||||
|
||||
if err := utils.VerifyPath(file.Filename, modelPath); err != nil {
|
||||
return err
|
||||
}
|
||||
// Create file path
|
||||
filePath := filepath.Join(modelPath, file.Filename)
|
||||
|
||||
if err := utils.DownloadFile(file.URI, filePath, file.SHA256, status); err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
|
||||
modelURL := config.PredictionOptions.Model
|
||||
modelURL = utils.ConvertURL(modelURL)
|
||||
if strings.HasPrefix(modelURL, "http://") || strings.HasPrefix(modelURL, "https://") {
|
||||
|
||||
if utils.LooksLikeURL(modelURL) {
|
||||
// md5 of model name
|
||||
md5Name := utils.MD5(modelURL)
|
||||
|
||||
// check if file exists
|
||||
if _, err := os.Stat(filepath.Join(modelPath, md5Name)); err == os.ErrNotExist {
|
||||
err := utils.DownloadFile(modelURL, filepath.Join(modelPath, md5Name), "", func(fileName, current, total string, percent float64) {
|
||||
log.Info().Msgf("Downloading %s: %s/%s (%.2f%%)", fileName, current, total, percent)
|
||||
})
|
||||
if _, err := os.Stat(filepath.Join(modelPath, md5Name)); errors.Is(err, os.ErrNotExist) {
|
||||
err := utils.DownloadFile(modelURL, filepath.Join(modelPath, md5Name), "", status)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
@@ -130,6 +130,12 @@ func (g *galleryApplier) Start(c context.Context, cm *config.ConfigLoader) {
|
||||
continue
|
||||
}
|
||||
|
||||
err = cm.Preload(g.modelPath)
|
||||
if err != nil {
|
||||
updateError(err)
|
||||
continue
|
||||
}
|
||||
|
||||
g.updateStatus(op.id, &galleryOpStatus{Processed: true, Message: "completed", Progress: 100})
|
||||
}
|
||||
}
|
||||
|
||||
@@ -40,9 +40,12 @@ type Option struct {
|
||||
SingleBackend bool
|
||||
ParallelBackendRequests bool
|
||||
|
||||
WatchDogIdle bool
|
||||
WatchDogBusy bool
|
||||
WatchDog bool
|
||||
WatchDogIdle bool
|
||||
WatchDogBusy bool
|
||||
WatchDog bool
|
||||
|
||||
ModelsURL []string
|
||||
|
||||
WatchDogBusyTimeout, WatchDogIdleTimeout time.Duration
|
||||
}
|
||||
|
||||
@@ -63,6 +66,12 @@ func NewOptions(o ...AppOption) *Option {
|
||||
return opt
|
||||
}
|
||||
|
||||
func WithModelsURL(urls ...string) AppOption {
|
||||
return func(o *Option) {
|
||||
o.ModelsURL = urls
|
||||
}
|
||||
}
|
||||
|
||||
func WithCors(b bool) AppOption {
|
||||
return func(o *Option) {
|
||||
o.CORS = b
|
||||
|
||||
@@ -17,9 +17,17 @@ cmake_minimum_required(VERSION 3.15)
|
||||
set(TARGET grpc-server)
|
||||
set(_PROTOBUF_LIBPROTOBUF libprotobuf)
|
||||
set(_REFLECTION grpc++_reflection)
|
||||
|
||||
if (${CMAKE_SYSTEM_NAME} MATCHES "Darwin")
|
||||
link_directories("/opt/homebrew/lib")
|
||||
include_directories("/opt/homebrew/include")
|
||||
# Set correct Homebrew install folder for Apple Silicon and Intel Macs
|
||||
if (CMAKE_HOST_SYSTEM_PROCESSOR MATCHES "arm64")
|
||||
set(HOMEBREW_DEFAULT_PREFIX "/opt/homebrew")
|
||||
else()
|
||||
set(HOMEBREW_DEFAULT_PREFIX "/usr/local")
|
||||
endif()
|
||||
|
||||
link_directories("${HOMEBREW_DEFAULT_PREFIX}/lib")
|
||||
include_directories("${HOMEBREW_DEFAULT_PREFIX}/include")
|
||||
endif()
|
||||
|
||||
find_package(absl CONFIG REQUIRED)
|
||||
|
||||
@@ -26,6 +26,7 @@
|
||||
#include <mutex>
|
||||
#include <chrono>
|
||||
#include <regex>
|
||||
#include <condition_variable>
|
||||
#include <grpcpp/ext/proto_server_reflection_plugin.h>
|
||||
#include <grpcpp/grpcpp.h>
|
||||
#include <grpcpp/health_check_service_interface.h>
|
||||
@@ -40,12 +41,15 @@ using backend::HealthMessage;
|
||||
|
||||
|
||||
///// LLAMA.CPP server code below
|
||||
|
||||
#define DEFAULT_OAICOMPAT_MODEL "gpt-3.5-turbo-0613"
|
||||
|
||||
using json = nlohmann::json;
|
||||
|
||||
struct server_params
|
||||
{
|
||||
std::string hostname = "127.0.0.1";
|
||||
std::string api_key;
|
||||
std::string public_path = "examples/server/public";
|
||||
int32_t port = 8080;
|
||||
int32_t read_timeout = 600;
|
||||
@@ -89,7 +93,7 @@ static inline bool is_base64(uint8_t c)
|
||||
return (isalnum(c) || (c == '+') || (c == '/'));
|
||||
}
|
||||
|
||||
static std::vector<uint8_t> base64_decode(std::string const &encoded_string)
|
||||
static std::vector<uint8_t> base64_decode(const std::string & encoded_string)
|
||||
{
|
||||
int i = 0;
|
||||
int j = 0;
|
||||
@@ -216,10 +220,10 @@ struct slot_image
|
||||
int32_t id;
|
||||
|
||||
bool request_encode_image = false;
|
||||
float* image_embedding = nullptr;
|
||||
float * image_embedding = nullptr;
|
||||
int32_t image_tokens = 0;
|
||||
|
||||
clip_image_u8 img_data;
|
||||
clip_image_u8 * img_data;
|
||||
|
||||
std::string prefix_prompt; // before of this image
|
||||
};
|
||||
@@ -441,15 +445,16 @@ struct llama_client_slot
|
||||
|
||||
generated_token_probs.clear();
|
||||
|
||||
for (slot_image &img : images)
|
||||
for (slot_image & img : images)
|
||||
{
|
||||
free(img.image_embedding);
|
||||
delete[] img.img_data.data;
|
||||
if (img.img_data) {
|
||||
clip_image_u8_free(img.img_data);
|
||||
}
|
||||
img.prefix_prompt = "";
|
||||
}
|
||||
|
||||
images.clear();
|
||||
// llama_set_rng_seed(ctx, params.seed); in batched the seed matter???????
|
||||
}
|
||||
|
||||
bool has_budget(gpt_params &global_params) {
|
||||
@@ -550,7 +555,9 @@ struct llama_server_context
|
||||
std::vector<task_result> queue_results;
|
||||
std::vector<task_multi> queue_multitasks;
|
||||
std::mutex mutex_tasks; // also guards id_gen, and queue_multitasks
|
||||
std::condition_variable condition_tasks;
|
||||
std::mutex mutex_results;
|
||||
std::condition_variable condition_results;
|
||||
|
||||
~llama_server_context()
|
||||
{
|
||||
@@ -769,6 +776,42 @@ struct llama_server_context
|
||||
slot->prompt = "";
|
||||
}
|
||||
|
||||
slot->sparams.penalty_prompt_tokens.clear();
|
||||
slot->sparams.use_penalty_prompt_tokens = false;
|
||||
const auto &penalty_prompt = data.find("penalty_prompt");
|
||||
if (penalty_prompt != data.end())
|
||||
{
|
||||
if (penalty_prompt->is_string())
|
||||
{
|
||||
const auto penalty_prompt_string = penalty_prompt->get<std::string>();
|
||||
auto penalty_tokens = llama_tokenize(model, penalty_prompt_string, false);
|
||||
slot->sparams.penalty_prompt_tokens.swap(penalty_tokens);
|
||||
if (slot->params.n_predict > 0)
|
||||
{
|
||||
slot->sparams.penalty_prompt_tokens.reserve(slot->sparams.penalty_prompt_tokens.size() + slot->params.n_predict);
|
||||
}
|
||||
slot->sparams.use_penalty_prompt_tokens = true;
|
||||
}
|
||||
else if (penalty_prompt->is_array())
|
||||
{
|
||||
const auto n_tokens = penalty_prompt->size();
|
||||
slot->sparams.penalty_prompt_tokens.reserve(n_tokens + std::max(0, slot->params.n_predict));
|
||||
const int n_vocab = llama_n_vocab(model);
|
||||
for (const auto &penalty_token : *penalty_prompt)
|
||||
{
|
||||
if (penalty_token.is_number_integer())
|
||||
{
|
||||
const auto tok = penalty_token.get<llama_token>();
|
||||
if (tok >= 0 && tok < n_vocab)
|
||||
{
|
||||
slot->sparams.penalty_prompt_tokens.push_back(tok);
|
||||
}
|
||||
}
|
||||
}
|
||||
slot->sparams.use_penalty_prompt_tokens = true;
|
||||
}
|
||||
}
|
||||
|
||||
slot->sparams.logit_bias.clear();
|
||||
|
||||
if (json_value(data, "ignore_eos", false))
|
||||
@@ -821,24 +864,17 @@ struct llama_server_context
|
||||
{
|
||||
for (const auto &img : *images_data)
|
||||
{
|
||||
std::string data_b64 = img["data"].get<std::string>();
|
||||
const std::vector<uint8_t> image_buffer = base64_decode(img["data"].get<std::string>());
|
||||
|
||||
slot_image img_sl;
|
||||
img_sl.id = img.count("id") != 0 ? img["id"].get<int>() : slot->images.size();
|
||||
int width, height, channels;
|
||||
std::vector<uint8_t> image_buffer = base64_decode(data_b64);
|
||||
data_b64.clear();
|
||||
auto data = stbi_load_from_memory(image_buffer.data(), image_buffer.size(), &width, &height, &channels, 3);
|
||||
if (!data) {
|
||||
img_sl.img_data = clip_image_u8_init();
|
||||
if (!clip_image_load_from_bytes(image_buffer.data(), image_buffer.size(), img_sl.img_data))
|
||||
{
|
||||
LOG_TEE("slot %i - failed to load image [id: %i]\n", slot->id, img_sl.id);
|
||||
return false;
|
||||
}
|
||||
LOG_TEE("slot %i - image loaded [id: %i] resolution (%i x %i)\n", slot->id, img_sl.id, width, height);
|
||||
img_sl.img_data.nx = width;
|
||||
img_sl.img_data.ny = height;
|
||||
img_sl.img_data.size = width * height * 3;
|
||||
img_sl.img_data.data = new uint8_t[width * height * 3]();
|
||||
memcpy(img_sl.img_data.data, data, width * height * 3);
|
||||
stbi_image_free(data);
|
||||
LOG_TEE("slot %i - loaded image\n", slot->id);
|
||||
img_sl.request_encode_image = true;
|
||||
slot->images.push_back(img_sl);
|
||||
}
|
||||
@@ -893,6 +929,7 @@ struct llama_server_context
|
||||
llama_sampling_free(slot->ctx_sampling);
|
||||
}
|
||||
slot->ctx_sampling = llama_sampling_init(slot->sparams);
|
||||
llama_set_rng_seed(ctx, slot->params.seed);
|
||||
slot->command = LOAD_PROMPT;
|
||||
|
||||
all_slots_are_idle = false;
|
||||
@@ -1000,6 +1037,12 @@ struct llama_server_context
|
||||
slot.generated_text += token_str;
|
||||
slot.has_next_token = true;
|
||||
|
||||
if (slot.ctx_sampling->params.use_penalty_prompt_tokens && result.tok != -1)
|
||||
{
|
||||
// we can change penalty_prompt_tokens because it is always created from scratch each request
|
||||
slot.ctx_sampling->params.penalty_prompt_tokens.push_back(result.tok);
|
||||
}
|
||||
|
||||
// check if there is incomplete UTF-8 character at the end
|
||||
bool incomplete = false;
|
||||
for (unsigned i = 1; i < 5 && i <= slot.generated_text.size(); ++i)
|
||||
@@ -1106,8 +1149,8 @@ struct llama_server_context
|
||||
{
|
||||
continue;
|
||||
}
|
||||
clip_image_f32 img_res;
|
||||
if (!clip_image_preprocess(clp_ctx, &img.img_data, &img_res, /*pad2square =*/ true))
|
||||
clip_image_f32 * img_res = clip_image_f32_init();
|
||||
if (!clip_image_preprocess(clp_ctx, img.img_data, img_res, /*pad2square =*/ true))
|
||||
{
|
||||
LOG_TEE("Error processing the given image");
|
||||
clip_free(clp_ctx);
|
||||
@@ -1122,11 +1165,12 @@ struct llama_server_context
|
||||
return false;
|
||||
}
|
||||
LOG_TEE("slot %i - encoding image [id: %i]\n", slot.id, img.id);
|
||||
if (!clip_image_encode(clp_ctx, params.n_threads, &img_res, img.image_embedding))
|
||||
if (!clip_image_encode(clp_ctx, params.n_threads, img_res, img.image_embedding))
|
||||
{
|
||||
LOG_TEE("Unable to encode image\n");
|
||||
return false;
|
||||
}
|
||||
clip_image_f32_free(img_res);
|
||||
img.request_encode_image = false;
|
||||
}
|
||||
|
||||
@@ -1135,7 +1179,7 @@ struct llama_server_context
|
||||
|
||||
void send_error(task_server& task, std::string error)
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(mutex_results);
|
||||
std::unique_lock<std::mutex> lock(mutex_results);
|
||||
task_result res;
|
||||
res.id = task.id;
|
||||
res.multitask_id = task.multitask_id;
|
||||
@@ -1143,6 +1187,7 @@ struct llama_server_context
|
||||
res.error = true;
|
||||
res.result_json = { { "content", error } };
|
||||
queue_results.push_back(res);
|
||||
condition_results.notify_all();
|
||||
}
|
||||
|
||||
void add_multi_task(int id, std::vector<int>& sub_ids)
|
||||
@@ -1152,6 +1197,7 @@ struct llama_server_context
|
||||
multi.id = id;
|
||||
std::copy(sub_ids.begin(), sub_ids.end(), std::inserter(multi.subtasks_remaining, multi.subtasks_remaining.end()));
|
||||
queue_multitasks.push_back(multi);
|
||||
condition_tasks.notify_one();
|
||||
}
|
||||
|
||||
void update_multi_task(int multitask_id, int subtask_id, task_result& result)
|
||||
@@ -1163,6 +1209,7 @@ struct llama_server_context
|
||||
{
|
||||
multitask.subtasks_remaining.erase(subtask_id);
|
||||
multitask.results.push_back(result);
|
||||
condition_tasks.notify_one();
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -1181,7 +1228,7 @@ struct llama_server_context
|
||||
{"n_ctx", slot.n_ctx},
|
||||
{"model", params.model_alias},
|
||||
{"seed", slot.params.seed},
|
||||
{"temp", slot.sparams.temp},
|
||||
{"temperature", slot.sparams.temp},
|
||||
{"top_k", slot.sparams.top_k},
|
||||
{"top_p", slot.sparams.top_p},
|
||||
{"min_p", slot.sparams.min_p},
|
||||
@@ -1191,6 +1238,8 @@ struct llama_server_context
|
||||
{"repeat_penalty", slot.sparams.penalty_repeat},
|
||||
{"presence_penalty", slot.sparams.penalty_present},
|
||||
{"frequency_penalty", slot.sparams.penalty_freq},
|
||||
{"penalty_prompt_tokens", slot.sparams.penalty_prompt_tokens},
|
||||
{"use_penalty_prompt_tokens", slot.sparams.use_penalty_prompt_tokens},
|
||||
{"mirostat", slot.sparams.mirostat},
|
||||
{"mirostat_tau", slot.sparams.mirostat_tau},
|
||||
{"mirostat_eta", slot.sparams.mirostat_eta},
|
||||
@@ -1208,7 +1257,7 @@ struct llama_server_context
|
||||
|
||||
void send_partial_response(llama_client_slot &slot, completion_token_output tkn)
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(mutex_results);
|
||||
std::unique_lock<std::mutex> lock(mutex_results);
|
||||
task_result res;
|
||||
res.id = slot.task_id;
|
||||
res.multitask_id = slot.multitask_id;
|
||||
@@ -1244,11 +1293,12 @@ struct llama_server_context
|
||||
}
|
||||
|
||||
queue_results.push_back(res);
|
||||
condition_results.notify_all();
|
||||
}
|
||||
|
||||
void send_final_response(llama_client_slot &slot)
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(mutex_results);
|
||||
std::unique_lock<std::mutex> lock(mutex_results);
|
||||
task_result res;
|
||||
res.id = slot.task_id;
|
||||
res.multitask_id = slot.multitask_id;
|
||||
@@ -1304,11 +1354,12 @@ struct llama_server_context
|
||||
}
|
||||
|
||||
queue_results.push_back(res);
|
||||
condition_results.notify_all();
|
||||
}
|
||||
|
||||
void send_embedding(llama_client_slot &slot)
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(mutex_results);
|
||||
std::unique_lock<std::mutex> lock(mutex_results);
|
||||
task_result res;
|
||||
res.id = slot.task_id;
|
||||
res.multitask_id = slot.multitask_id;
|
||||
@@ -1336,6 +1387,7 @@ struct llama_server_context
|
||||
};
|
||||
}
|
||||
queue_results.push_back(res);
|
||||
condition_results.notify_all();
|
||||
}
|
||||
|
||||
int request_completion(json data, bool infill, bool embedding, int multitask_id)
|
||||
@@ -1359,6 +1411,7 @@ struct llama_server_context
|
||||
|
||||
// otherwise, it's a single-prompt task, we actually queue it
|
||||
queue_tasks.push_back(task);
|
||||
condition_tasks.notify_one();
|
||||
return task.id;
|
||||
}
|
||||
|
||||
@@ -1366,13 +1419,10 @@ struct llama_server_context
|
||||
{
|
||||
while (true)
|
||||
{
|
||||
std::this_thread::sleep_for(std::chrono::microseconds(5));
|
||||
std::lock_guard<std::mutex> lock(mutex_results);
|
||||
|
||||
if (queue_results.empty())
|
||||
{
|
||||
continue;
|
||||
}
|
||||
std::unique_lock<std::mutex> lock(mutex_results);
|
||||
condition_results.wait(lock, [&]{
|
||||
return !queue_results.empty();
|
||||
});
|
||||
|
||||
for (int i = 0; i < (int) queue_results.size(); i++)
|
||||
{
|
||||
@@ -1468,12 +1518,13 @@ struct llama_server_context
|
||||
|
||||
void request_cancel(int task_id)
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(mutex_tasks);
|
||||
std::unique_lock<std::mutex> lock(mutex_tasks);
|
||||
task_server task;
|
||||
task.id = id_gen++;
|
||||
task.type = CANCEL_TASK;
|
||||
task.target_id = task_id;
|
||||
queue_tasks.push_back(task);
|
||||
condition_tasks.notify_one();
|
||||
}
|
||||
|
||||
int split_multiprompt_task(task_server& multiprompt_task)
|
||||
@@ -1499,7 +1550,7 @@ struct llama_server_context
|
||||
|
||||
void process_tasks()
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(mutex_tasks);
|
||||
std::unique_lock<std::mutex> lock(mutex_tasks);
|
||||
while (!queue_tasks.empty())
|
||||
{
|
||||
task_server task = queue_tasks.front();
|
||||
@@ -1571,6 +1622,7 @@ struct llama_server_context
|
||||
|
||||
std::lock_guard<std::mutex> lock(mutex_results);
|
||||
queue_results.push_back(aggregate_result);
|
||||
condition_results.notify_all();
|
||||
|
||||
queue_iterator = queue_multitasks.erase(queue_iterator);
|
||||
}
|
||||
@@ -1601,8 +1653,10 @@ struct llama_server_context
|
||||
LOG_TEE("all slots are idle and system prompt is empty, clear the KV cache\n");
|
||||
kv_cache_clear();
|
||||
}
|
||||
// avoid 100% usage of cpu all time
|
||||
std::this_thread::sleep_for(std::chrono::milliseconds(5));
|
||||
std::unique_lock<std::mutex> lock(mutex_tasks);
|
||||
condition_tasks.wait(lock, [&]{
|
||||
return !queue_tasks.empty();
|
||||
});
|
||||
}
|
||||
|
||||
for (llama_client_slot &slot : slots)
|
||||
@@ -1962,28 +2016,35 @@ json oaicompat_completion_params_parse(
|
||||
llama_params["__oaicompat"] = true;
|
||||
|
||||
// Map OpenAI parameters to llama.cpp parameters
|
||||
//
|
||||
// For parameters that are defined by the OpenAI documentation (e.g.
|
||||
// temperature), we explicitly specify OpenAI's intended default; we
|
||||
// need to do that because sometimes OpenAI disagrees with llama.cpp
|
||||
//
|
||||
// https://platform.openai.com/docs/api-reference/chat/create
|
||||
llama_sampling_params default_sparams;
|
||||
llama_params["model"] = json_value(body, "model", std::string("uknown"));
|
||||
llama_params["prompt"] = format_chatml(body["messages"]); // OpenAI 'messages' to llama.cpp 'prompt'
|
||||
llama_params["cache_prompt"] = json_value(body, "cache_prompt", false);
|
||||
llama_params["temperature"] = json_value(body, "temperature", 0.8);
|
||||
llama_params["top_k"] = json_value(body, "top_k", 40);
|
||||
llama_params["top_p"] = json_value(body, "top_p", 0.95);
|
||||
llama_params["temperature"] = json_value(body, "temperature", 0.0);
|
||||
llama_params["top_k"] = json_value(body, "top_k", default_sparams.top_k);
|
||||
llama_params["top_p"] = json_value(body, "top_p", 1.0);
|
||||
llama_params["n_predict"] = json_value(body, "max_tokens", -1);
|
||||
llama_params["logit_bias"] = json_value(body, "logit_bias",json::object());
|
||||
llama_params["frequency_penalty"] = json_value(body, "frequency_penalty", 0.0);
|
||||
llama_params["presence_penalty"] = json_value(body, "presence_penalty", 0.0);
|
||||
llama_params["seed"] = json_value(body, "seed", 0);
|
||||
llama_params["seed"] = json_value(body, "seed", LLAMA_DEFAULT_SEED);
|
||||
llama_params["stream"] = json_value(body, "stream", false);
|
||||
llama_params["mirostat"] = json_value(body, "mirostat", false);
|
||||
llama_params["mirostat_tau"] = json_value(body, "mirostat_tau", 0.0);
|
||||
llama_params["mirostat_eta"] = json_value(body, "mirostat_eta", 0.0);
|
||||
llama_params["penalize_nl"] = json_value(body, "penalize_nl", false);
|
||||
llama_params["typical_p"] = json_value(body, "typical_p", 0.0);
|
||||
llama_params["repeat_last_n"] = json_value(body, "repeat_last_n", 0);
|
||||
llama_params["mirostat"] = json_value(body, "mirostat", default_sparams.mirostat);
|
||||
llama_params["mirostat_tau"] = json_value(body, "mirostat_tau", default_sparams.mirostat_tau);
|
||||
llama_params["mirostat_eta"] = json_value(body, "mirostat_eta", default_sparams.mirostat_eta);
|
||||
llama_params["penalize_nl"] = json_value(body, "penalize_nl", default_sparams.penalize_nl);
|
||||
llama_params["typical_p"] = json_value(body, "typical_p", default_sparams.typical_p);
|
||||
llama_params["repeat_last_n"] = json_value(body, "repeat_last_n", default_sparams.penalty_last_n);
|
||||
llama_params["ignore_eos"] = json_value(body, "ignore_eos", false);
|
||||
llama_params["tfs_z"] = json_value(body, "tfs_z", 0.0);
|
||||
llama_params["tfs_z"] = json_value(body, "tfs_z", default_sparams.tfs_z);
|
||||
|
||||
if (llama_params.count("grammar") != 0) {
|
||||
if (body.count("grammar") != 0) {
|
||||
llama_params["grammar"] = json_value(body, "grammar", json::object());
|
||||
}
|
||||
|
||||
|
||||
@@ -53,6 +53,7 @@ dependencies:
|
||||
- nvidia-nccl-cu12==2.18.1
|
||||
- nvidia-nvjitlink-cu12==12.2.140
|
||||
- nvidia-nvtx-cu12==12.1.105
|
||||
- omegaconf
|
||||
- packaging==23.2
|
||||
- pillow==10.0.1
|
||||
- protobuf==4.24.4
|
||||
|
||||
@@ -11,4 +11,6 @@ source activate exllama
|
||||
# get the directory where the bash script is located
|
||||
DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
|
||||
|
||||
cd $DIR
|
||||
|
||||
python $DIR/exllama.py $@
|
||||
|
||||
@@ -11,4 +11,6 @@ source activate exllama2
|
||||
# get the directory where the bash script is located
|
||||
DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
|
||||
|
||||
cd $DIR
|
||||
|
||||
python $DIR/exllama2_backend.py $@
|
||||
|
||||
@@ -10,4 +10,6 @@ source activate transformers
|
||||
# get the directory where the bash script is located
|
||||
DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
|
||||
|
||||
cd $DIR
|
||||
|
||||
python $DIR/ttsvalle.py $@
|
||||
@@ -36,10 +36,10 @@ In a nutshell:
|
||||
|
||||
- Local, OpenAI drop-in alternative REST API. You own your data.
|
||||
- NO GPU required. NO Internet access is required either
|
||||
- Optional, GPU Acceleration is available in `llama.cpp`-compatible LLMs. See also the [build section](https://localai.io/basics/build/index.html).
|
||||
- Optional, GPU Acceleration is available. See also the [build section](https://localai.io/basics/build/index.html).
|
||||
- Supports multiple models
|
||||
- 🏃 Once loaded the first time, it keep models loaded in memory for faster inference
|
||||
- ⚡ Doesn't shell-out, but uses C++ bindings for a faster inference and better performance.
|
||||
- ⚡ Doesn't shell-out, but uses bindings for a faster inference and better performance.
|
||||
|
||||
LocalAI is focused on making the AI accessible to anyone. Any contribution, feedback and PR is welcome!
|
||||
|
||||
|
||||
@@ -359,15 +359,7 @@ docker run --env REBUILD=true localai
|
||||
docker run --env-file .env localai
|
||||
```
|
||||
|
||||
### Build only a single backend
|
||||
|
||||
You can control the backends that are built by setting the `GRPC_BACKENDS` environment variable. For instance, to build only the `llama-cpp` backend only:
|
||||
|
||||
```bash
|
||||
make GRPC_BACKENDS=backend-assets/grpc/llama-cpp build
|
||||
```
|
||||
|
||||
By default, all the backends are built.
|
||||
|
||||
### Extra backends
|
||||
|
||||
|
||||
@@ -7,16 +7,15 @@ url = '/basics/build/'
|
||||
|
||||
+++
|
||||
|
||||
### Build locally
|
||||
### Build
|
||||
|
||||
#### Container image
|
||||
|
||||
Requirements:
|
||||
|
||||
Either Docker/podman, or
|
||||
- Golang >= 1.21
|
||||
- Cmake/make
|
||||
- GCC
|
||||
- Docker or podman, or a container engine
|
||||
|
||||
In order to build the `LocalAI` container image locally you can use `docker`:
|
||||
In order to build the `LocalAI` container image locally you can use `docker`, for example:
|
||||
|
||||
```
|
||||
# build the image
|
||||
@@ -24,7 +23,45 @@ docker build -t localai .
|
||||
docker run localai
|
||||
```
|
||||
|
||||
Or you can build the manually binary with `make`:
|
||||
#### Locally
|
||||
|
||||
In order to build LocalAI locally, you need the following requirements:
|
||||
|
||||
- Golang >= 1.21
|
||||
- Cmake/make
|
||||
- GCC
|
||||
- GRPC
|
||||
|
||||
To install the dependencies follow the instructions below:
|
||||
|
||||
{{< tabs >}}
|
||||
{{% tab name="Apple" %}}
|
||||
|
||||
```bash
|
||||
brew install abseil cmake go grpc protobuf wget
|
||||
```
|
||||
|
||||
{{% /tab %}}
|
||||
{{% tab name="Debian" %}}
|
||||
|
||||
```bash
|
||||
apt install protobuf-compiler-grpc libgrpc-dev make cmake
|
||||
```
|
||||
|
||||
{{% /tab %}}
|
||||
{{% tab name="From source" %}}
|
||||
|
||||
Specify `BUILD_GRPC_FOR_BACKEND_LLAMA=true` to build automatically the gRPC dependencies
|
||||
|
||||
```bash
|
||||
make ... BUILD_GRPC_FOR_BACKEND_LLAMA=true build
|
||||
```
|
||||
|
||||
{{% /tab %}}
|
||||
{{< /tabs >}}
|
||||
|
||||
|
||||
To build LocalAI with `make`:
|
||||
|
||||
```
|
||||
git clone https://github.com/go-skynet/LocalAI
|
||||
@@ -32,7 +69,7 @@ cd LocalAI
|
||||
make build
|
||||
```
|
||||
|
||||
To run: `./local-ai`
|
||||
This should produce the binary `local-ai`
|
||||
|
||||
{{% notice note %}}
|
||||
|
||||
@@ -54,7 +91,7 @@ docker run --rm -ti -p 8080:8080 -e DEBUG=true -e MODELS_PATH=/models -e THREADS
|
||||
|
||||
{{% /notice %}}
|
||||
|
||||
### Build on mac
|
||||
### Example: Build on mac
|
||||
|
||||
Building on Mac (M1 or M2) works, but you may need to install some prerequisites using `brew`.
|
||||
|
||||
@@ -188,6 +225,16 @@ make BUILD_TYPE=metal build
|
||||
# Note: only models quantized with q4_0 are supported!
|
||||
```
|
||||
|
||||
### Build only a single backend
|
||||
|
||||
You can control the backends that are built by setting the `GRPC_BACKENDS` environment variable. For instance, to build only the `llama-cpp` backend only:
|
||||
|
||||
```bash
|
||||
make GRPC_BACKENDS=backend-assets/grpc/llama-cpp build
|
||||
```
|
||||
|
||||
By default, all the backends are built.
|
||||
|
||||
### Windows compatibility
|
||||
|
||||
Make sure to give enough resources to the running container. See https://github.com/go-skynet/LocalAI/issues/2
|
||||
|
||||
@@ -1,3 +1,3 @@
|
||||
{
|
||||
"version": "v2.2.0"
|
||||
"version": "v2.3.1"
|
||||
}
|
||||
|
||||
@@ -67,6 +67,17 @@ curl http://localhost:8080/v1/chat/completions -H "Content-Type: application/jso
|
||||
|
||||
```
|
||||
|
||||
### Phi-2
|
||||
|
||||
```
|
||||
cp -r examples/configurations/phi-2.yaml models/
|
||||
|
||||
curl http://localhost:8080/v1/chat/completions -H "Content-Type: application/json" -d '{
|
||||
"model": "phi-2",
|
||||
"messages": [{"role": "user", "content": "How are you doing?", "temperature": 0.1}]
|
||||
}'
|
||||
```
|
||||
|
||||
### Mixtral
|
||||
|
||||
```
|
||||
|
||||
17
examples/configurations/phi-2.yaml
Normal file
17
examples/configurations/phi-2.yaml
Normal file
@@ -0,0 +1,17 @@
|
||||
name: phi-2
|
||||
context_size: 2048
|
||||
f16: true
|
||||
gpu_layers: 90
|
||||
mmap: true
|
||||
trimsuffix:
|
||||
- "\n"
|
||||
parameters:
|
||||
model: huggingface://TheBloke/phi-2-GGUF/phi-2.Q8_0.gguf
|
||||
temperature: 0.2
|
||||
top_k: 40
|
||||
top_p: 0.95
|
||||
template:
|
||||
chat: &template |
|
||||
Instruct: {{.Input}}
|
||||
Output:
|
||||
completion: *template
|
||||
6
main.go
6
main.go
@@ -99,6 +99,11 @@ func main() {
|
||||
Usage: "A List of models to apply in JSON at start",
|
||||
EnvVars: []string{"PRELOAD_MODELS"},
|
||||
},
|
||||
&cli.StringFlag{
|
||||
Name: "models",
|
||||
Usage: "A List of models URLs configurations.",
|
||||
EnvVars: []string{"MODELS"},
|
||||
},
|
||||
&cli.StringFlag{
|
||||
Name: "preload-models-config",
|
||||
Usage: "A List of models to apply at startup. Path to a YAML config file",
|
||||
@@ -222,6 +227,7 @@ For a list of compatible model, check out: https://localai.io/model-compatibilit
|
||||
options.WithBackendAssetsOutput(ctx.String("backend-assets-path")),
|
||||
options.WithUploadLimitMB(ctx.Int("upload-limit")),
|
||||
options.WithApiKeys(ctx.StringSlice("api-keys")),
|
||||
options.WithModelsURL(append(ctx.StringSlice("models"), ctx.Args().Slice()...)...),
|
||||
}
|
||||
|
||||
idleWatchDog := ctx.Bool("enable-watchdog-idle")
|
||||
|
||||
@@ -239,10 +239,10 @@ func (ml *ModelLoader) GreedyLoader(opts ...Option) (*grpc.Client, error) {
|
||||
for _, b := range o.externalBackends {
|
||||
allBackendsToAutoLoad = append(allBackendsToAutoLoad, b)
|
||||
}
|
||||
log.Debug().Msgf("Loading model '%s' greedly from all the available backends: %s", o.model, strings.Join(allBackendsToAutoLoad, ", "))
|
||||
log.Info().Msgf("Loading model '%s' greedly from all the available backends: %s", o.model, strings.Join(allBackendsToAutoLoad, ", "))
|
||||
|
||||
for _, b := range allBackendsToAutoLoad {
|
||||
log.Debug().Msgf("[%s] Attempting to load", b)
|
||||
log.Info().Msgf("[%s] Attempting to load", b)
|
||||
options := []Option{
|
||||
WithBackendString(b),
|
||||
WithModel(o.model),
|
||||
@@ -257,14 +257,14 @@ func (ml *ModelLoader) GreedyLoader(opts ...Option) (*grpc.Client, error) {
|
||||
|
||||
model, modelerr := ml.BackendLoader(options...)
|
||||
if modelerr == nil && model != nil {
|
||||
log.Debug().Msgf("[%s] Loads OK", b)
|
||||
log.Info().Msgf("[%s] Loads OK", b)
|
||||
return model, nil
|
||||
} else if modelerr != nil {
|
||||
err = multierror.Append(err, modelerr)
|
||||
log.Debug().Msgf("[%s] Fails: %s", b, modelerr.Error())
|
||||
log.Info().Msgf("[%s] Fails: %s", b, modelerr.Error())
|
||||
} else if model == nil {
|
||||
err = multierror.Append(err, fmt.Errorf("backend returned no usable model"))
|
||||
log.Debug().Msgf("[%s] Fails: %s", b, "backend returned no usable model")
|
||||
log.Info().Msgf("[%s] Fails: %s", b, "backend returned no usable model")
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -29,9 +29,9 @@ func DisplayDownloadFunction(fileName string, current string, total string, perc
|
||||
}
|
||||
|
||||
if total != "" {
|
||||
log.Debug().Msgf("Downloading %s: %s/%s (%.2f%%) ETA: %s", fileName, current, total, percentage, eta)
|
||||
log.Info().Msgf("Downloading %s: %s/%s (%.2f%%) ETA: %s", fileName, current, total, percentage, eta)
|
||||
} else {
|
||||
log.Debug().Msgf("Downloading: %s", current)
|
||||
log.Info().Msgf("Downloading: %s", current)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -15,27 +15,8 @@ import (
|
||||
"github.com/rs/zerolog/log"
|
||||
)
|
||||
|
||||
const (
|
||||
githubURI = "github:"
|
||||
)
|
||||
|
||||
func GetURI(url string, f func(url string, i []byte) error) error {
|
||||
if strings.HasPrefix(url, githubURI) {
|
||||
parts := strings.Split(url, ":")
|
||||
repoParts := strings.Split(parts[1], "@")
|
||||
branch := "main"
|
||||
|
||||
if len(repoParts) > 1 {
|
||||
branch = repoParts[1]
|
||||
}
|
||||
|
||||
repoPath := strings.Split(repoParts[0], "/")
|
||||
org := repoPath[0]
|
||||
project := repoPath[1]
|
||||
projectPath := strings.Join(repoPath[2:], "/")
|
||||
|
||||
url = fmt.Sprintf("https://raw.githubusercontent.com/%s/%s/%s/%s", org, project, branch, projectPath)
|
||||
}
|
||||
url = ConvertURL(url)
|
||||
|
||||
if strings.HasPrefix(url, "file://") {
|
||||
rawURL := strings.TrimPrefix(url, "file://")
|
||||
@@ -71,10 +52,57 @@ func GetURI(url string, f func(url string, i []byte) error) error {
|
||||
return f(url, body)
|
||||
}
|
||||
|
||||
const (
|
||||
HuggingFacePrefix = "huggingface://"
|
||||
HTTPPrefix = "http://"
|
||||
HTTPSPrefix = "https://"
|
||||
GithubURI = "github:"
|
||||
GithubURI2 = "github://"
|
||||
)
|
||||
|
||||
func LooksLikeURL(s string) bool {
|
||||
return strings.HasPrefix(s, HTTPPrefix) ||
|
||||
strings.HasPrefix(s, HTTPSPrefix) ||
|
||||
strings.HasPrefix(s, HuggingFacePrefix) ||
|
||||
strings.HasPrefix(s, GithubURI) ||
|
||||
strings.HasPrefix(s, GithubURI2)
|
||||
}
|
||||
|
||||
func ConvertURL(s string) string {
|
||||
switch {
|
||||
case strings.HasPrefix(s, "huggingface://"):
|
||||
repository := strings.Replace(s, "huggingface://", "", 1)
|
||||
case strings.HasPrefix(s, GithubURI2):
|
||||
repository := strings.Replace(s, GithubURI2, "", 1)
|
||||
|
||||
repoParts := strings.Split(repository, "@")
|
||||
branch := "main"
|
||||
|
||||
if len(repoParts) > 1 {
|
||||
branch = repoParts[1]
|
||||
}
|
||||
|
||||
repoPath := strings.Split(repoParts[0], "/")
|
||||
org := repoPath[0]
|
||||
project := repoPath[1]
|
||||
projectPath := strings.Join(repoPath[2:], "/")
|
||||
|
||||
return fmt.Sprintf("https://raw.githubusercontent.com/%s/%s/%s/%s", org, project, branch, projectPath)
|
||||
case strings.HasPrefix(s, GithubURI):
|
||||
parts := strings.Split(s, ":")
|
||||
repoParts := strings.Split(parts[1], "@")
|
||||
branch := "main"
|
||||
|
||||
if len(repoParts) > 1 {
|
||||
branch = repoParts[1]
|
||||
}
|
||||
|
||||
repoPath := strings.Split(repoParts[0], "/")
|
||||
org := repoPath[0]
|
||||
project := repoPath[1]
|
||||
projectPath := strings.Join(repoPath[2:], "/")
|
||||
|
||||
return fmt.Sprintf("https://raw.githubusercontent.com/%s/%s/%s/%s", org, project, branch, projectPath)
|
||||
case strings.HasPrefix(s, HuggingFacePrefix):
|
||||
repository := strings.Replace(s, HuggingFacePrefix, "", 1)
|
||||
// convert repository to a full URL.
|
||||
// e.g. TheBloke/Mixtral-8x7B-v0.1-GGUF/mixtral-8x7b-v0.1.Q2_K.gguf@main -> https://huggingface.co/TheBloke/Mixtral-8x7B-v0.1-GGUF/resolve/main/mixtral-8x7b-v0.1.Q2_K.gguf
|
||||
owner := strings.Split(repository, "/")[0]
|
||||
|
||||
Reference in New Issue
Block a user